Our documentation for `toPythonObj` says that real values are represented as Fractions. However, getRealValue yields a float approximation thereof.
We should probably stick to Fractions, since they allow us to precisely capture values in LRA. Also, that's more aligned with the C++ API, which returns a string representation of the (unapproximated) Rational.
Also, document some (potential) weirdness with calling mkReal on floating-point values.
return term
def mkReal(self, val, den=None):
+ '''
+ Make a real number term.
+
+ Really, makes a rational term.
+
+ Can be used in various forms.
+ * Given a string "N/D" constructs the corresponding rational.
+ * Given a string "W.D" constructs the reduction of (W * P + D)/P, where
+ P is the appropriate power of 10.
+ * Given a float f, constructs the rational matching f's string
+ representation. This means that mkReal(0.3) gives 3/10 and not the
+ IEEE-754 approximation of 3/10.
+ * Given a string "W" or an integer, constructs that integer.
+ * Given two strings and/or integers N and D, constructs N/D.
+ '''
cdef Term term = Term(self)
if den is None:
term.cterm = self.csolver.mkReal(str(val).encode())
return self.cterm.isRealValue()
def getRealValue(self):
- return float(Fraction(self.cterm.getRealValue().decode()))
+ '''Returns the value of a real term as a Fraction'''
+ return Fraction(self.cterm.getRealValue().decode())
def isBitVectorValue(self):
return self.cterm.isBitVectorValue()
def getBitVectorValue(self, base = 2):
+ '''Returns the value of a bit-vector term as a 0/1 string'''
return self.cterm.getBitVectorValue(base).decode()
def toPythonObj(self):
import pycvc5
from pycvc5 import kinds
from pycvc5 import Sort, Term
+from fractions import Fraction
@pytest.fixture
assert 0 == real1.getRealValue()
assert 0 == real2.getRealValue()
assert -17 == real3.getRealValue()
- assert -3 / 5 == real4.getRealValue()
- assert 127 / 10 == real5.getRealValue()
- assert 1 / 4294967297 == real6.getRealValue()
+ assert Fraction(-3, 5) == real4.getRealValue()
+ assert Fraction(127, 10) == real5.getRealValue()
+ assert Fraction(1, 4294967297) == real6.getRealValue()
assert 4294967297 == real7.getRealValue()
- assert 1 / 18446744073709551617 == real8.getRealValue()
- assert float(18446744073709551617) == real9.getRealValue()
+ assert Fraction(1, 18446744073709551617) == real8.getRealValue()
+ assert Fraction(18446744073709551617, 1) == real9.getRealValue()
+
+ # Check denominator too large for float
+ num = 1
+ den = 2 ** 64 + 1
+ real_big = solver.mkReal(num, den)
+ assert real_big.isRealValue()
+ assert Fraction(num, den) == real_big.getRealValue()
+
+ # Check that we're treating floats as decimal aproximations rather than
+ # IEEE-754-specified values.
+ real_decimal = solver.mkReal(0.3)
+ assert real_decimal.isRealValue()
+ assert Fraction("0.3") == real_decimal.getRealValue()
+ assert Fraction(0.3) == Fraction(5404319552844595, 18014398509481984)
+ assert Fraction(0.3) != real_decimal.getRealValue()
def test_get_boolean(solver):
solver = pycvc5.Solver()
t = solver.mkTrue()
f = solver.mkFalse()
- assert t.toPythonObj() == True
- assert f.toPythonObj() == False
+ assert t.toPythonObj() is True
+ assert f.toPythonObj() is False
def testGetInt():
xval = solver.getValue(x)
yval = solver.getValue(y)
assert xval.toPythonObj() == Fraction("6")
- assert yval.toPythonObj() == float(Fraction("8.33"))
+ assert yval.toPythonObj() == Fraction("8.33")