if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
return NULL;
- if (mpfr_sgn (y->value.real) == 0 && mpfr_sgn (x->value.real) == 0)
+ if (mpfr_zero_p (y->value.real) && mpfr_zero_p (x->value.real))
{
gfc_error ("If first argument of ATAN2 %L is zero, then the "
"second argument must not be zero", &x->where);
gfc_expr *
gfc_simplify_exponent (gfc_expr *x)
{
- int i;
+ long int val;
gfc_expr *result;
if (x->expr_type != EXPR_CONSTANT)
result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
&x->where);
- gfc_set_model (x->value.real);
+ /* EXPONENT(inf) = EXPONENT(nan) = HUGE(0) */
+ if (mpfr_inf_p (x->value.real) || mpfr_nan_p (x->value.real))
+ {
+ int i = gfc_validate_kind (BT_INTEGER, gfc_default_integer_kind, false);
+ mpz_set (result->value.integer, gfc_integer_kinds[i].huge);
+ return result;
+ }
- if (mpfr_sgn (x->value.real) == 0)
+ /* EXPONENT(+/- 0.0) = 0 */
+ if (mpfr_zero_p (x->value.real))
{
mpz_set_ui (result->value.integer, 0);
return result;
}
- i = (int) mpfr_get_exp (x->value.real);
- mpz_set_si (result->value.integer, i);
+ gfc_set_model (x->value.real);
+
+ val = (long int) mpfr_get_exp (x->value.real);
+ mpz_set_si (result->value.integer, val);
return range_check (result, "EXPONENT");
}
result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
+ /* FRACTION(inf) = NaN. */
+ if (mpfr_inf_p (x->value.real))
+ {
+ mpfr_set_nan (result->value.real);
+ return result;
+ }
+
#if MPFR_VERSION < MPFR_VERSION_NUM(3,1,0)
/* MPFR versions before 3.1.0 do not include mpfr_frexp.
#else
+ /* mpfr_frexp() correctly handles zeros and NaNs. */
mpfr_frexp (&e, result->value.real, x->value.real, GFC_RND_MODE);
#endif
break;
case BT_COMPLEX:
- if ((mpfr_sgn (mpc_realref (x->value.complex)) == 0)
- && (mpfr_sgn (mpc_imagref (x->value.complex)) == 0))
+ if (mpfr_zero_p (mpc_realref (x->value.complex))
+ && mpfr_zero_p (mpc_imagref (x->value.complex)))
{
gfc_error ("Complex argument of LOG at %L cannot be zero",
&x->where);
i = gfc_validate_kind (x->ts.type, x->ts.kind, false);
result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
- mpfr_abs (result->value.real, x->value.real, GFC_RND_MODE);
- /* Special case x = -0 and 0. */
- if (mpfr_sgn (result->value.real) == 0)
+ /* RRSPACING(+/- 0.0) = 0.0 */
+ if (mpfr_zero_p (x->value.real))
{
mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
return result;
}
+ /* RRSPACING(inf) = NaN */
+ if (mpfr_inf_p (x->value.real))
+ {
+ mpfr_set_nan (result->value.real);
+ return result;
+ }
+
+ /* RRSPACING(NaN) = same NaN */
+ if (mpfr_nan_p (x->value.real))
+ {
+ mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
+ return result;
+ }
+
/* | x * 2**(-e) | * 2**p. */
+ mpfr_abs (result->value.real, x->value.real, GFC_RND_MODE);
e = - (long int) mpfr_get_exp (x->value.real);
mpfr_mul_2si (result->value.real, result->value.real, e, GFC_RND_MODE);
result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
- if (mpfr_sgn (x->value.real) == 0)
+ if (mpfr_zero_p (x->value.real))
{
mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
return result;
result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
- if (mpfr_sgn (x->value.real) == 0)
+ /* SET_EXPONENT (+/-0.0, I) = +/- 0.0
+ SET_EXPONENT (NaN) = same NaN */
+ if (mpfr_zero_p (x->value.real) || mpfr_nan_p (x->value.real))
{
- mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
+ mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
+ return result;
+ }
+
+ /* SET_EXPONENT (inf) = NaN */
+ if (mpfr_inf_p (x->value.real))
+ {
+ mpfr_set_nan (result->value.real);
return result;
}
return NULL;
i = gfc_validate_kind (x->ts.type, x->ts.kind, false);
-
result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
- /* Special case x = 0 and -0. */
- mpfr_abs (result->value.real, x->value.real, GFC_RND_MODE);
- if (mpfr_sgn (result->value.real) == 0)
+ /* SPACING(+/- 0.0) = SPACING(TINY(0.0)) = TINY(0.0) */
+ if (mpfr_zero_p (x->value.real))
{
mpfr_set (result->value.real, gfc_real_kinds[i].tiny, GFC_RND_MODE);
return result;
}
+ /* SPACING(inf) = NaN */
+ if (mpfr_inf_p (x->value.real))
+ {
+ mpfr_set_nan (result->value.real);
+ return result;
+ }
+
+ /* SPACING(NaN) = same NaN */
+ if (mpfr_nan_p (x->value.real))
+ {
+ mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
+ return result;
+ }
+
/* In the Fortran 95 standard, the result is b**(e - p) where b, e, and p
are the radix, exponent of x, and precision. This excludes the
possibility of subnormal numbers. Fortran 2003 states the result is
--- /dev/null
+! { dg-do run }
+! { dg-additional-options "-fno-range-check" }
+!
+! Check compile-time simplification of functions FRACTION, EXPONENT,
+! SPACING, RRSPACING and SET_EXPONENT for special values.
+
+program test
+ implicit none
+ real, parameter :: inf = 2 * huge(0.)
+ real, parameter :: nan = 0. / 0.
+
+ call check_positive_zero(fraction(0.))
+ call check_negative_zero(fraction(-0.))
+ if (.not. isnan(fraction(inf))) call abort
+ if (.not. isnan(fraction(-inf))) call abort
+ if (.not. isnan(fraction(nan))) call abort
+
+ if (exponent(0.) /= 0) call abort
+ if (exponent(-0.) /= 0) call abort
+ if (exponent(inf) /= huge(0)) call abort
+ if (exponent(-inf) /= huge(0)) call abort
+ if (exponent(nan) /= huge(0)) call abort
+
+ if (spacing(0.) /= spacing(tiny(0.))) call abort
+ if (spacing(-0.) /= spacing(tiny(0.))) call abort
+ if (.not. isnan(spacing(inf))) call abort
+ if (.not. isnan(spacing(-inf))) call abort
+ if (.not. isnan(spacing(nan))) call abort
+
+ call check_positive_zero(rrspacing(0.))
+ call check_positive_zero(rrspacing(-0.))
+ if (.not. isnan(rrspacing(inf))) call abort
+ if (.not. isnan(rrspacing(-inf))) call abort
+ if (.not. isnan(rrspacing(nan))) call abort
+
+ call check_positive_zero(set_exponent(0.,42))
+ call check_negative_zero(set_exponent(-0.,42))
+ if (.not. isnan(set_exponent(inf, 42))) call abort
+ if (.not. isnan(set_exponent(-inf, 42))) call abort
+ if (.not. isnan(set_exponent(nan, 42))) call abort
+
+contains
+
+ subroutine check_positive_zero(x)
+ use ieee_arithmetic
+ implicit none
+ real, value :: x
+
+ if (ieee_class (x) /= ieee_positive_zero) call abort
+ end
+
+ subroutine check_negative_zero(x)
+ use ieee_arithmetic
+ implicit none
+ real, value :: x
+
+ if (ieee_class (x) /= ieee_negative_zero) call abort
+ end
+
+end