lcm.c: New file.
authorJeffrey A Law <law@cygnus.com>
Wed, 10 Mar 1999 22:03:36 +0000 (22:03 +0000)
committerJeff Law <law@gcc.gnu.org>
Wed, 10 Mar 1999 22:03:36 +0000 (15:03 -0700)
        * lcm.c: New file.
        * Makefile.in (OBJS): Add lcm.o
        (lcm.o): Add dependencies.

From-SVN: r25679

gcc/ChangeLog
gcc/Makefile.in
gcc/lcm.c [new file with mode: 0644]

index d74b95fa00916d81c6e617c31cf362c6b97a7e0d..215fe7ac61fbfb958aaa9a9caa9726feb06a47f3 100644 (file)
@@ -22,6 +22,10 @@ Wed Mar 10 23:11:19 1999  Kaveh R. Ghazi  <ghazi@caip.rutgers.edu>
 
 Wed Mar 10 20:28:29 1999  Jeffrey A Law  (law@cygnus.com)
 
+       * lcm.c: New file.
+       * Makefile.in (OBJS): Add lcm.o
+       (lcm.o): Add dependencies.
+
        * gcse.c (compute_pre_local_properties): Delete.
        (compute_pre_data): Use compute_local_properties instead of
        compute_pre_local_properties.
index 3078a736a3de41cda399c8bd98ee16c670719125..49322d5f79126a2579b3403ea3902cebf4c9b0a6 100644 (file)
@@ -676,7 +676,7 @@ OBJS = toplev.o version.o tree.o print-tree.o stor-layout.o fold-const.o \
  integrate.o jump.o cse.o loop.o unroll.o flow.o stupid.o combine.o varray.o \
  regclass.o regmove.o local-alloc.o global.o reload.o reload1.o caller-save.o \
  insn-peep.o reorg.o $(SCHED_PREFIX)sched.o final.o recog.o reg-stack.o \
- insn-opinit.o insn-recog.o insn-extract.o insn-output.o insn-emit.o \
+ insn-opinit.o insn-recog.o insn-extract.o insn-output.o insn-emit.o lcm.o \
  profile.o insn-attrtab.o $(out_object_file) getpwd.o $(EXTRA_OBJS) convert.o \
  mbchar.o dyn-string.o splay-tree.o graph.o sbitmap.o resource.o
 
@@ -1505,6 +1505,8 @@ gcse.o : gcse.c $(CONFIG_H) system.h $(RTL_H) $(REGS_H) hard-reg-set.h flags.h \
    real.h insn-config.h $(RECOG_H) $(EXPR_H) $(BASIC_BLOCK_H) output.h
 resource.o : resource.c $(CONFIG_H) $(RTL_H) hard-reg-set.h system.h \
    $(BASIC_BLOCK_H) $(REGS_H) flags.h output.h resource.h
+lcm.o : lcm.c $(CONFIG_H) system.h $(RTL_H) $(REGS_H) hard-reg-set.h flags.h \
+   real.h insn-config.h $(RECOG_H) $(EXPR_H) $(BASIC_BLOCK_H)
 profile.o : profile.c $(CONFIG_H) system.h $(RTL_H) flags.h insn-flags.h \
    gcov-io.h $(TREE_H) output.h $(REGS_H) toplev.h insn-config.h
 loop.o : loop.c $(CONFIG_H) system.h $(RTL_H) flags.h loop.h insn-config.h \
diff --git a/gcc/lcm.c b/gcc/lcm.c
new file mode 100644 (file)
index 0000000..01367e3
--- /dev/null
+++ b/gcc/lcm.c
@@ -0,0 +1,799 @@
+/* Generic partial redundancy elimination with lazy code motion
+   support.
+   Copyright (C) 1998 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING.  If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA.  */
+
+/* These routines are meant to be used by various optimization
+   passes which can be modeled as lazy code motion problems. 
+   Including, but not limited to:
+
+       * Traditional partial redundancy elimination.
+
+       * Placement of caller/caller register save/restores.
+
+       * Load/store motion.
+
+       * Copy motion.
+
+       * Conversion of flat register files to a stacked register
+       model.
+
+       * Dead load/store elimination.
+
+  These routines accept as input:
+
+       * Basic block information (number of blocks, lists of
+       predecessors and successors).  Note the granularity
+       does not need to be basic block, they could be statements
+       or functions.
+
+       * Bitmaps of local properties (computed, transparent and
+       anticipatable expressions).
+
+  The output of these routines is bitmap of redundant computations
+  and a bitmap of optimal placement points.  */
+
+
+#include "config.h"
+#include "system.h"
+
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+#include "real.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "basic-block.h"
+
+static void compute_antinout   PROTO ((int, int_list_ptr *, sbitmap *,
+                                       sbitmap *, sbitmap *, sbitmap *));
+static void compute_earlyinout PROTO ((int, int, int_list_ptr *, sbitmap *,
+                                       sbitmap *, sbitmap *, sbitmap *));
+static void compute_delayinout  PROTO ((int, int, int_list_ptr *, sbitmap *,
+                                       sbitmap *, sbitmap *,
+                                       sbitmap *, sbitmap *));
+static void compute_latein     PROTO ((int, int, int_list_ptr *, sbitmap *,
+                                       sbitmap *, sbitmap *));
+static void compute_isoinout   PROTO ((int, int_list_ptr *, sbitmap *,
+                                       sbitmap *, sbitmap *, sbitmap *));
+static void compute_optimal    PROTO ((int, sbitmap *,
+                                       sbitmap *, sbitmap *));
+static void compute_redundant  PROTO ((int, int, sbitmap *,
+                                       sbitmap *, sbitmap *, sbitmap *));
+
+/* Similarly, but for the reversed flowgraph.  */
+static void compute_avinout    PROTO ((int, int_list_ptr *, sbitmap *,
+                                       sbitmap *, sbitmap *, sbitmap *));
+static void compute_fartherinout       PROTO ((int, int, int_list_ptr *,
+                                               sbitmap *, sbitmap *,
+                                               sbitmap *, sbitmap *));
+static void compute_earlierinout  PROTO ((int, int, int_list_ptr *, sbitmap *,
+                                         sbitmap *, sbitmap *,
+                                         sbitmap *, sbitmap *));
+static void compute_firstout   PROTO ((int, int, int_list_ptr *, sbitmap *,
+                                       sbitmap *, sbitmap *));
+static void compute_rev_isoinout PROTO ((int, int_list_ptr *, sbitmap *,
+                                        sbitmap *, sbitmap *, sbitmap *));
+
+/* Given local properties TRANSP, ANTLOC, return the redundant and optimal
+   computation points for expressions.
+
+   To reduce overall memory consumption, we allocate memory immediately
+   before its needed and deallocate it as soon as possible.  */
+void
+pre_lcm (n_blocks, n_exprs, s_preds, s_succs, transp,
+        antloc, redundant, optimal)
+     int n_blocks;
+     int n_exprs;
+     int_list_ptr *s_preds;
+     int_list_ptr *s_succs;
+     sbitmap *transp;
+     sbitmap *antloc;
+     sbitmap *redundant;
+     sbitmap *optimal;
+{
+  sbitmap *antin, *antout, *earlyin, *earlyout, *delayin, *delayout;
+  sbitmap *latein, *isoin, *isoout;
+
+  /* Compute global anticipatability.  ANTOUT is not needed except to
+     compute ANTIN, so free its memory as soon as we return from
+     compute_antinout.  */
+  antin = sbitmap_vector_alloc (n_blocks, n_exprs);
+  antout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  compute_antinout (n_blocks, s_succs, antloc,
+                   transp, antin, antout);
+  free (antout);
+  antout = NULL;
+
+  /* Compute earliestness.  EARLYOUT is not needed except to compute
+     EARLYIN, so free its memory as soon as we return from
+     compute_earlyinout.  */
+  earlyin = sbitmap_vector_alloc (n_blocks, n_exprs);
+  earlyout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  compute_earlyinout (n_blocks, n_exprs, s_preds, transp, antin,
+                     earlyin, earlyout);
+  free (earlyout);
+  earlyout = NULL;
+
+  /* Compute delayedness.  DELAYOUT is not needed except to compute
+     DELAYIN, so free its memory as soon as we return from
+     compute_delayinout.  We also no longer need ANTIN and EARLYIN.  */
+  delayin = sbitmap_vector_alloc (n_blocks, n_exprs);
+  delayout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  compute_delayinout (n_blocks, n_exprs, s_preds, antloc,
+                     antin, earlyin, delayin, delayout);
+  free (delayout);
+  delayout = NULL;
+  free (antin);
+  antin = NULL;
+  free (earlyin);
+  earlyin = NULL;
+
+  /* Compute latestness.  We no longer need DELAYIN after we compute
+     LATEIN.  */
+  latein = sbitmap_vector_alloc (n_blocks, n_exprs);
+  compute_latein (n_blocks, n_exprs, s_succs, antloc, delayin, latein);
+  free (delayin);
+  delayin = NULL;
+
+  /* Compute isolatedness.  ISOIN is not needed except to compute
+     ISOOUT, so free its memory as soon as we return from
+     compute_isoinout.  */
+  isoin = sbitmap_vector_alloc (n_blocks, n_exprs);
+  isoout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  compute_isoinout (n_blocks, s_succs, antloc, latein, isoin, isoout);
+  free (isoin);
+  isoin = NULL;
+
+  /* Now compute optimal placement points and the redundant expressions.  */
+  compute_optimal (n_blocks, latein, isoout, optimal);
+  compute_redundant (n_blocks, n_exprs, antloc, latein, isoout, redundant);
+  free (latein);
+  latein = NULL;
+  free (isoout);
+  isoout = NULL;
+}
+
+/* Given local properties TRANSP, AVLOC, return the redundant and optimal
+   computation points for expressions on the reverse flowgraph.
+
+   To reduce overall memory consumption, we allocate memory immediately
+   before its needed and deallocate it as soon as possible.  */
+
+void
+pre_rev_lcm (n_blocks, n_exprs, s_preds, s_succs, transp,
+            avloc, redundant, optimal)
+     int n_blocks;
+     int n_exprs;
+     int_list_ptr *s_preds;
+     int_list_ptr *s_succs;
+     sbitmap *transp;
+     sbitmap *avloc;
+     sbitmap *redundant;
+     sbitmap *optimal;
+{
+  sbitmap *avin, *avout, *fartherin, *fartherout, *earlierin, *earlierout;
+  sbitmap *firstout, *rev_isoin, *rev_isoout;
+
+  /* Compute global availability.  AVIN is not needed except to
+     compute AVOUT, so free its memory as soon as we return from
+     compute_avinout.  */
+  avin = sbitmap_vector_alloc (n_blocks, n_exprs);
+  avout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  compute_avinout (n_blocks, s_preds, avloc, transp, avin, avout);
+  free (avin);
+  avin = NULL;
+
+  /* Compute fartherness.  FARTHERIN is not needed except to compute
+     FARTHEROUT, so free its memory as soon as we return from
+     compute_earlyinout.  */
+  fartherin = sbitmap_vector_alloc (n_blocks, n_exprs);
+  fartherout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  compute_fartherinout (n_blocks, n_exprs, s_succs, transp,
+                       avout, fartherin, fartherout);
+  free (fartherin);
+  fartherin = NULL;
+
+  /* Compute earlierness.  EARLIERIN is not needed except to compute
+     EARLIEROUT, so free its memory as soon as we return from
+     compute_delayinout.  We also no longer need AVOUT and FARTHEROUT.  */
+  earlierin = sbitmap_vector_alloc (n_blocks, n_exprs);
+  earlierout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  compute_earlierinout (n_blocks, n_exprs, s_succs, avloc,
+                       avout, fartherout, earlierin, earlierout);
+  free (earlierin);
+  earlierin = NULL;
+  free (avout);
+  avout = NULL;
+  free (fartherout);
+  fartherout = NULL;
+
+  /* Compute firstness.  We no longer need EARLIEROUT after we compute
+     FIRSTOUT.  */
+  firstout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  compute_firstout (n_blocks, n_exprs, s_preds, avloc, earlierout, firstout);
+  free (earlierout);
+  earlierout = NULL;
+
+  /* Compute rev_isolatedness.  ISOIN is not needed except to compute
+     ISOOUT, so free its memory as soon as we return from
+     compute_isoinout.  */
+  rev_isoin = sbitmap_vector_alloc (n_blocks, n_exprs);
+  rev_isoout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  compute_rev_isoinout (n_blocks, s_preds, avloc, firstout,
+                       rev_isoin, rev_isoout);
+  free (rev_isoout);
+  rev_isoout = NULL;
+
+  /* Now compute optimal placement points and the redundant expressions.  */
+  compute_optimal (n_blocks, firstout, rev_isoin, optimal);
+  compute_redundant (n_blocks, n_exprs, avloc, firstout, rev_isoin, redundant);
+  free (firstout);
+  firstout = NULL;
+  free (rev_isoin);
+  rev_isoin = NULL;
+}
+
+/* Compute expression anticipatability at entrance and exit of each block.  */
+
+static void
+compute_antinout (n_blocks, s_succs, antloc, transp, antin, antout)
+     int n_blocks;
+     int_list_ptr *s_succs;
+     sbitmap *antloc;
+     sbitmap *transp;
+     sbitmap *antin;
+     sbitmap *antout;
+{
+  int bb, changed, passes;
+  sbitmap old_changed, new_changed;
+
+  sbitmap_zero (antout[n_blocks - 1]);
+  sbitmap_vector_ones (antin, n_blocks);
+
+  old_changed = sbitmap_alloc (n_blocks);
+  new_changed = sbitmap_alloc (n_blocks);
+  sbitmap_ones (old_changed);
+
+  passes = 0;
+  changed = 1;
+  while (changed)
+    {
+      changed = 0;
+      sbitmap_zero (new_changed);
+      /* We scan the blocks in the reverse order to speed up
+        the convergence.  */
+      for (bb = n_blocks - 1; bb >= 0; bb--)
+       {
+         int_list_ptr ps;
+
+         /* If none of the successors of this block have changed,
+            then this block is not going to change.  */
+         for (ps = s_succs[bb] ; ps; ps = ps->next)
+           {
+             if (INT_LIST_VAL (ps) == EXIT_BLOCK
+                 || INT_LIST_VAL (ps) == ENTRY_BLOCK)
+               break;
+
+             if (TEST_BIT (old_changed, INT_LIST_VAL (ps))
+                 || TEST_BIT (new_changed, INT_LIST_VAL (ps)))
+               break;
+           }
+
+         if (!ps)
+           continue;
+
+         if (bb != n_blocks - 1)
+           sbitmap_intersect_of_successors (antout[bb], antin,
+                                            bb, s_succs);
+         if (sbitmap_a_or_b_and_c (antin[bb], antloc[bb],
+                                   transp[bb], antout[bb]))
+           {
+             changed = 1;
+             SET_BIT (new_changed, bb);
+           }
+       }
+      sbitmap_copy (old_changed, new_changed);
+      passes++;
+    }
+  free (old_changed);
+  free (new_changed);
+}
+
+/* Compute expression earliestness at entrance and exit of each block.
+
+   From Advanced Compiler Design and Implementation pp411.
+
+   An expression is earliest at the entrance to basic block BB if no
+   block from entry to block BB both evaluates the expression and
+   produces the same value as evaluating it at the entry to block BB
+   does.  Similarly for earlistness at basic block BB exit.  */
+
+static void
+compute_earlyinout (n_blocks, n_exprs, s_preds, transp, antin,
+                   earlyin, earlyout)
+     int n_blocks;
+     int n_exprs;
+     int_list_ptr *s_preds;
+     sbitmap *transp;
+     sbitmap *antin;
+     sbitmap *earlyin;
+     sbitmap *earlyout;
+{
+  int bb, changed, passes;
+  sbitmap temp_bitmap;
+  sbitmap old_changed, new_changed;
+
+  temp_bitmap = sbitmap_alloc (n_exprs);
+
+  sbitmap_vector_zero (earlyout, n_blocks);
+  sbitmap_ones (earlyin[0]);
+
+  old_changed = sbitmap_alloc (n_blocks);
+  new_changed = sbitmap_alloc (n_blocks);
+  sbitmap_ones (old_changed);
+
+  passes = 0;
+  changed = 1;
+  while (changed)
+    {
+      changed = 0;
+      sbitmap_zero (new_changed);
+      for (bb = 0; bb < n_blocks; bb++)
+       {
+         int_list_ptr ps;
+
+         /* If none of the predecessors of this block have changed,
+            then this block is not going to change.  */
+         for (ps = s_preds[bb] ; ps; ps = ps->next)
+           {
+             if (INT_LIST_VAL (ps) == EXIT_BLOCK
+                 || INT_LIST_VAL (ps) == ENTRY_BLOCK)
+               break;
+
+             if (TEST_BIT (old_changed, INT_LIST_VAL (ps))
+                 || TEST_BIT (new_changed, INT_LIST_VAL (ps)))
+               break;
+           }
+
+         if (!ps)
+           continue;
+
+         if (bb != 0)
+           sbitmap_union_of_predecessors (earlyin[bb], earlyout,
+                                          bb, s_preds);
+         sbitmap_not (temp_bitmap, transp[bb]);
+         if (sbitmap_union_of_diff (earlyout[bb], temp_bitmap,
+                                    earlyin[bb], antin[bb]))
+           {
+             changed = 1;
+             SET_BIT (new_changed, bb);
+           }
+       }
+      sbitmap_copy (old_changed, new_changed);
+      passes++;
+    }
+  free (old_changed);
+  free (new_changed);
+  free (temp_bitmap);
+}
+
+/* Compute expression delayedness at entrance and exit of each block.
+
+   From Advanced Compiler Design and Implementation pp411.
+
+   An expression is delayed at the entrance to BB if it is anticipatable
+   and earliest at that point and if all subsequent computations of
+   the expression are in block BB.   */
+
+static void
+compute_delayinout (n_blocks, n_exprs, s_preds, antloc,
+                   antin, earlyin, delayin, delayout)
+     int n_blocks;
+     int n_exprs;
+     int_list_ptr *s_preds;
+     sbitmap *antloc;
+     sbitmap *antin;
+     sbitmap *earlyin;
+     sbitmap *delayin;
+     sbitmap *delayout;
+{
+  int bb, changed, passes;
+  sbitmap *anti_and_early;
+  sbitmap temp_bitmap;
+
+  temp_bitmap = sbitmap_alloc (n_exprs);
+
+  /* This is constant throughout the flow equations below, so compute
+     it once to save time.  */
+  anti_and_early = sbitmap_vector_alloc (n_blocks, n_exprs);
+  for (bb = 0; bb < n_blocks; bb++)
+    sbitmap_a_and_b (anti_and_early[bb], antin[bb], earlyin[bb]);
+  
+  sbitmap_vector_zero (delayout, n_blocks);
+  sbitmap_copy (delayin[0], anti_and_early[0]);
+
+  passes = 0;
+  changed = 1;
+  while (changed)
+    {
+      changed = 0;
+      for (bb = 0; bb < n_blocks; bb++)
+       {
+         if (bb != 0)
+           {
+             sbitmap_intersect_of_predecessors (temp_bitmap, delayout,
+                                                bb, s_preds);
+             changed |= sbitmap_a_or_b (delayin[bb],
+                                        anti_and_early[bb],
+                                        temp_bitmap);
+           }
+         sbitmap_not (temp_bitmap, antloc[bb]);
+         changed |= sbitmap_a_and_b (delayout[bb],
+                                     temp_bitmap,
+                                     delayin[bb]);
+       }
+      passes++;
+    }
+
+  /* We're done with this, so go ahead and free it's memory now instead
+     of waiting until the end of pre.  */
+  free (anti_and_early);
+  free (temp_bitmap);
+}
+
+/* Compute latestness.
+
+   From Advanced Compiler Design and Implementation pp412.
+
+   An expression is latest at the entrance to block BB if that is an optimal
+   point for computing the expression and if on every path from block BB's
+   entrance to the exit block, any optimal computation point for the 
+   expression occurs after one of the points at which the expression was
+   computed in the original flowgraph.  */
+
+static void
+compute_latein (n_blocks, n_exprs, s_succs, antloc, delayin, latein)
+     int n_blocks;
+     int n_exprs;
+     int_list_ptr *s_succs;
+     sbitmap *antloc;
+     sbitmap *delayin;
+     sbitmap *latein;
+{
+  int bb;
+  sbitmap temp_bitmap;
+
+  temp_bitmap = sbitmap_alloc (n_exprs);
+
+  for (bb = 0; bb < n_blocks; bb++)
+    {
+      /* The last block is succeeded only by the exit block; therefore,
+        temp_bitmap will not be set by the following call!  */
+      if (bb == n_blocks - 1)
+       {
+          sbitmap_intersect_of_successors (temp_bitmap, delayin,
+                                          bb, s_succs);
+         sbitmap_not (temp_bitmap, temp_bitmap);
+       }
+      else
+       sbitmap_ones (temp_bitmap);
+      sbitmap_a_and_b_or_c (latein[bb], delayin[bb],
+                           antloc[bb], temp_bitmap);
+    }
+  free (temp_bitmap);
+}
+
+/* Compute isolated.
+
+   From Advanced Compiler Design and Implementation pp413.
+
+   A computationally optimal placement for the evaluation of an expression
+   is defined to be isolated if and only if on every path from a successor
+   of the block in which it is computed to the exit block, every original
+   computation of the expression is preceded by the optimal placement point.  */
+
+static void
+compute_isoinout (n_blocks, s_succs, antloc, latein, isoin, isoout)
+     int n_blocks;
+     int_list_ptr *s_succs;
+     sbitmap *antloc;
+     sbitmap *latein;
+     sbitmap *isoin;
+     sbitmap *isoout;
+{
+  int bb, changed, passes;
+
+  sbitmap_vector_zero (isoin, n_blocks);
+  sbitmap_zero (isoout[n_blocks - 1]);
+
+  passes = 0;
+  changed = 1;
+  while (changed)
+    {
+      changed = 0;
+      for (bb = n_blocks - 1; bb >= 0; bb--)
+       {
+         if (bb != n_blocks - 1)
+           sbitmap_intersect_of_successors (isoout[bb], isoin,
+                                            bb, s_succs);
+         changed |= sbitmap_union_of_diff (isoin[bb], latein[bb],
+                                           isoout[bb], antloc[bb]);
+       }
+      passes++;
+    }
+}
+
+/* Compute the set of expressions which have optimal computational points
+   in each basic block.  This is the set of expressions that are latest, but
+   that are not isolated in the block.  */
+
+static void
+compute_optimal (n_blocks, latein, isoout, optimal)
+     int n_blocks;
+     sbitmap *latein;
+     sbitmap *isoout;
+     sbitmap *optimal;
+{
+  int bb;
+
+  for (bb = 0; bb < n_blocks; bb++)
+    sbitmap_difference (optimal[bb], latein[bb], isoout[bb]);
+}
+
+/* Compute the set of expressions that are redundant in a block.  They are
+   the expressions that are used in the block and that are neither isolated
+   or latest.  */
+
+static void
+compute_redundant (n_blocks, n_exprs, antloc, latein, isoout, redundant)
+     int n_blocks;
+     int n_exprs;
+     sbitmap *antloc;
+     sbitmap *latein;
+     sbitmap *isoout;
+     sbitmap *redundant;
+{
+  int bb;
+  sbitmap temp_bitmap;
+
+  temp_bitmap = sbitmap_alloc (n_exprs);
+
+  for (bb = 0; bb < n_blocks; bb++)
+    {
+      sbitmap_a_or_b (temp_bitmap, latein[bb], isoout[bb]);
+      sbitmap_difference (redundant[bb], antloc[bb], temp_bitmap);
+    }
+  free (temp_bitmap);
+}
+
+/* Compute expression availability at entrance and exit of each block.  */
+
+static void
+compute_avinout (n_blocks, s_preds, avloc, transp, avin, avout)
+     int n_blocks;
+     int_list_ptr *s_preds;
+     sbitmap *avloc;
+     sbitmap *transp;
+     sbitmap *avin;
+     sbitmap *avout;
+{
+  int bb, changed, passes;
+
+  sbitmap_zero (avin[0]);
+  sbitmap_vector_ones (avout, n_blocks);
+
+  passes = 0;
+  changed = 1;
+  while (changed)
+    {
+      changed = 0;
+      for (bb = 0; bb < n_blocks; bb++)
+       {
+         if (bb != 0)
+           sbitmap_intersect_of_predecessors (avin[bb], avout,
+                                              bb, s_preds);
+         changed |= sbitmap_a_or_b_and_c (avout[bb], avloc[bb],
+                                          transp[bb], avin[bb]);
+       }
+      passes++;
+    }
+}
+
+/* Compute expression latestness.
+
+   This is effectively the same as earliestness computed on the reverse
+   flow graph.  */
+
+static void
+compute_fartherinout (n_blocks, n_exprs, s_succs,
+                     transp, avout, fartherin, fartherout)
+     int n_blocks;
+     int n_exprs;
+     int_list_ptr *s_succs;
+     sbitmap *transp;
+     sbitmap *avout;
+     sbitmap *fartherin;
+     sbitmap *fartherout;
+{
+  int bb, changed, passes;
+  sbitmap temp_bitmap;
+
+  temp_bitmap = sbitmap_alloc (n_exprs);
+
+  sbitmap_vector_zero (fartherin, n_blocks);
+  sbitmap_ones (fartherout[n_blocks - 1]);
+
+  passes = 0;
+  changed = 1;
+  while (changed)
+    {
+      changed = 0;
+      for (bb = n_blocks - 1; bb >= 0; bb--)
+       {
+         if (bb != n_blocks - 1)
+           sbitmap_union_of_successors (fartherout[bb], fartherin,
+                                        bb, s_succs);
+         sbitmap_not (temp_bitmap, transp[bb]);
+         changed |= sbitmap_union_of_diff (fartherin[bb], temp_bitmap,
+                                           fartherout[bb], avout[bb]);
+       }
+      passes++;
+    }
+
+  free (temp_bitmap);
+}
+
+/* Compute expression earlierness at entrance and exit of each block.
+
+   This is effectively the same as delayedness computed on the reverse
+   flow graph.  */
+
+static void
+compute_earlierinout (n_blocks, n_exprs, s_succs, avloc,
+                     avout, fartherout, earlierin, earlierout)
+     int n_blocks;
+     int n_exprs;
+     int_list_ptr *s_succs;
+     sbitmap *avloc;
+     sbitmap *avout;
+     sbitmap *fartherout;
+     sbitmap *earlierin;
+     sbitmap *earlierout;
+{
+  int bb, changed, passes;
+  sbitmap *av_and_farther;
+  sbitmap temp_bitmap;
+
+  temp_bitmap = sbitmap_alloc (n_exprs);
+
+  /* This is constant throughout the flow equations below, so compute
+     it once to save time.  */
+  av_and_farther = sbitmap_vector_alloc (n_blocks, n_exprs);
+  for (bb = 0; bb < n_blocks; bb++)
+    sbitmap_a_and_b (av_and_farther[bb], avout[bb], fartherout[bb]);
+  
+  sbitmap_vector_zero (earlierin, n_blocks);
+  sbitmap_copy (earlierout[n_blocks - 1], av_and_farther[n_blocks - 1]);
+
+  passes = 0;
+  changed = 1;
+  while (changed)
+    {
+      changed = 0;
+      for (bb = n_blocks - 1; bb >= 0; bb--)
+       {
+         if (bb != n_blocks - 1)
+           {
+             sbitmap_intersect_of_successors (temp_bitmap, earlierin,
+                                              bb, s_succs);
+             changed |= sbitmap_a_or_b (earlierout[bb],
+                                        av_and_farther[bb],
+                                        temp_bitmap);
+           }
+         sbitmap_not (temp_bitmap, avloc[bb]);
+         changed |= sbitmap_a_and_b (earlierin[bb],
+                                     temp_bitmap,
+                                     earlierout[bb]);
+       }
+      passes++;
+    }
+
+  /* We're done with this, so go ahead and free it's memory now instead
+     of waiting until the end of pre.  */
+  free (av_and_farther);
+  free (temp_bitmap);
+}
+
+/* Compute firstness. 
+
+   This is effectively the same as latestness computed on the reverse
+   flow graph.  */
+
+static void
+compute_firstout (n_blocks, n_exprs, s_preds, avloc, earlierout, firstout)
+     int n_blocks;
+     int n_exprs;
+     int_list_ptr *s_preds;
+     sbitmap *avloc;
+     sbitmap *earlierout;
+     sbitmap *firstout;
+{
+  int bb;
+  sbitmap temp_bitmap;
+
+  temp_bitmap = sbitmap_alloc (n_exprs);
+
+  for (bb = 0; bb < n_blocks; bb++)
+    {
+      /* The first block is preceded only by the entry block; therefore,
+        temp_bitmap will not be set by the following call!  */
+      if (bb != 0)
+       {
+         sbitmap_intersect_of_predecessors (temp_bitmap, earlierout,
+                                            bb, s_preds);
+         sbitmap_not (temp_bitmap, temp_bitmap);
+       }
+      else
+       {
+         sbitmap_ones (temp_bitmap);
+       }
+      sbitmap_a_and_b_or_c (firstout[bb], earlierout[bb],
+                           avloc[bb], temp_bitmap);
+    }
+  free (temp_bitmap);
+}
+
+/* Compute reverse isolated.
+
+   This is effectively the same as isolatedness computed on the reverse
+   flow graph.  */
+
+static void
+compute_rev_isoinout (n_blocks, s_preds, avloc, firstout,
+                     rev_isoin, rev_isoout)
+     int n_blocks;
+     int_list_ptr *s_preds;
+     sbitmap *avloc;
+     sbitmap *firstout;
+     sbitmap *rev_isoin;
+     sbitmap *rev_isoout;
+{
+  int bb, changed, passes;
+
+  sbitmap_vector_zero (rev_isoout, n_blocks);
+  sbitmap_zero (rev_isoin[0]);
+
+  passes = 0;
+  changed = 1;
+  while (changed)
+    {
+      changed = 0;
+      for (bb = 0; bb < n_blocks; bb++)
+       {
+         if (bb != 0)
+           sbitmap_intersect_of_predecessors (rev_isoin[bb], rev_isoout,
+                                              bb, s_preds);
+         changed |= sbitmap_union_of_diff (rev_isoout[bb], firstout[bb],
+                                           rev_isoin[bb], avloc[bb]);
+       }
+      passes++;
+    }
+}