//schedule UPDATE
CP0Event *cp0_event = new CP0Event(this, cpu, UpdateCP0);
- cp0_event->schedule(curTick + cpu->cycles(delay));
+ cp0_event->schedule(curTick + cpu->ticks(delay));
}
}
MiscRegFile::CP0Event::scheduleEvent(int delay)
{
if (squashed())
- reschedule(curTick + cpu->cycles(delay));
+ reschedule(curTick + cpu->ticks(delay));
else if (!scheduled())
- schedule(curTick + cpu->cycles(delay));
+ schedule(curTick + cpu->ticks(delay));
}
void
(uint32_t)asi, va);
}
pkt->makeAtomicResponse();
- return tc->getCpuPtr()->cycles(1);
+ return tc->getCpuPtr()->ticks(1);
}
Tick
(uint32_t)pkt->req->getAsi(), pkt->getAddr(), data);
}
pkt->makeAtomicResponse();
- return tc->getCpuPtr()->cycles(1);
+ return tc->getCpuPtr()->ticks(1);
}
#endif
if (!(tick_cmpr & ~mask(63)) && time > 0) {
if (tickCompare->scheduled())
tickCompare->deschedule();
- tickCompare->schedule(time * tc->getCpuPtr()->cycles(1));
+ tickCompare->schedule(time * tc->getCpuPtr()->ticks(1));
}
panic("writing to TICK compare register %#X\n", val);
break;
if (!(stick_cmpr & ~mask(63)) && time > 0) {
if (sTickCompare->scheduled())
sTickCompare->deschedule();
- sTickCompare->schedule(time * tc->getCpuPtr()->cycles(1) + curTick);
+ sTickCompare->schedule(time * tc->getCpuPtr()->ticks(1) + curTick);
}
DPRINTF(Timer, "writing to sTICK compare register value %#X\n", val);
break;
if (!(hstick_cmpr & ~mask(63)) && time > 0) {
if (hSTickCompare->scheduled())
hSTickCompare->deschedule();
- hSTickCompare->schedule(curTick + time * tc->getCpuPtr()->cycles(1));
+ hSTickCompare->schedule(curTick + time * tc->getCpuPtr()->ticks(1));
}
DPRINTF(Timer, "writing to hsTICK compare register value %#X\n", val);
break;
setReg(MISCREG_SOFTINT, softint | (ULL(1) << 16), tc);
}
} else
- sTickCompare->schedule(ticks * tc->getCpuPtr()->cycles(1) + curTick);
+ sTickCompare->schedule(ticks * tc->getCpuPtr()->ticks(1) + curTick);
}
void
}
// Need to do something to cause interrupt to happen here !!! @todo
} else
- hSTickCompare->schedule(ticks * tc->getCpuPtr()->cycles(1) + curTick);
+ hSTickCompare->schedule(ticks * tc->getCpuPtr()->ticks(1) + curTick);
}
Tick
DTB::doMmuRegRead(ThreadContext *tc, Packet *pkt)
{
- return tc->getCpuPtr()->cycles(1);
+ return tc->getCpuPtr()->ticks(1);
}
Tick
DTB::doMmuRegWrite(ThreadContext *tc, Packet *pkt)
{
- return tc->getCpuPtr()->cycles(1);
+ return tc->getCpuPtr()->ticks(1);
}
#endif
{
Counter temp = cpu->totalInstructions();
#ifndef NDEBUG
- double ipc = double(temp - lastNumInst) / (interval / cpu->cycles(1));
+ double ipc = double(temp - lastNumInst) / (interval / cpu->ticks(1));
DPRINTFN("%s progress event, instructions committed: %lli, IPC: %0.8d\n",
cpu->name(), temp - lastNumInst, ipc);
if (params->progress_interval) {
new CPUProgressEvent(&mainEventQueue,
- cycles(params->progress_interval),
+ ticks(params->progress_interval),
this);
}
}
public:
// Tick currentTick;
inline Tick frequency() const { return Clock::Frequency / clock; }
- inline Tick cycles(int numCycles) const { return clock * numCycles; }
+ inline Tick ticks(int numCycles) const { return clock * numCycles; }
inline Tick curCycle() const { return curTick / clock; }
inline Tick tickToCycles(Tick val) const { return val / clock; }
// @todo remove me after debugging with legion done
MemTest::tick()
{
if (!tickEvent.scheduled())
- tickEvent.schedule(curTick + cycles(1));
+ tickEvent.schedule(curTick + ticks(1));
if (++noResponseCycles >= 500000) {
cerr << name() << ": deadlocked at cycle " << curTick << endl;
// register statistics
virtual void regStats();
- inline Tick cycles(int numCycles) const { return numCycles; }
+ inline Tick ticks(int numCycles) const { return numCycles; }
// main simulation loop (one cycle)
void tick();
cpu->activateStage(O3CPU::CommitIdx);
cpu->activityThisCycle();
- trapLatency = cpu->cycles(trapLatency);
+ trapLatency = cpu->ticks(trapLatency);
}
template <class Impl>
lastRunningCycle = curTick;
timesIdled++;
} else {
- tickEvent.schedule(nextCycle(curTick + cycles(1)));
+ tickEvent.schedule(nextCycle(curTick + ticks(1)));
DPRINTF(O3CPU, "Scheduling next tick!\n");
}
}
// Needs to set each stage to running as well.
if (delay){
DPRINTF(O3CPU, "[tid:%i]: Scheduling thread context to activate "
- "on cycle %d\n", tid, curTick + cycles(delay));
+ "on cycle %d\n", tid, curTick + ticks(delay));
scheduleActivateThreadEvent(tid, delay);
} else {
activateThread(tid);
// Schedule removal of thread data from CPU
if (delay){
DPRINTF(O3CPU, "[tid:%i]: Scheduling thread context to deallocate "
- "on cycle %d\n", tid, curTick + cycles(delay));
+ "on cycle %d\n", tid, curTick + ticks(delay));
scheduleDeallocateContextEvent(tid, remove, delay);
return false;
} else {
void scheduleTickEvent(int delay)
{
if (tickEvent.squashed())
- tickEvent.reschedule(nextCycle(curTick + cycles(delay)));
+ tickEvent.reschedule(nextCycle(curTick + ticks(delay)));
else if (!tickEvent.scheduled())
- tickEvent.schedule(nextCycle(curTick + cycles(delay)));
+ tickEvent.schedule(nextCycle(curTick + ticks(delay)));
}
/** Unschedule tick event, regardless of its current state. */
// Schedule thread to activate, regardless of its current state.
if (activateThreadEvent[tid].squashed())
activateThreadEvent[tid].
- reschedule(nextCycle(curTick + cycles(delay)));
+ reschedule(nextCycle(curTick + ticks(delay)));
else if (!activateThreadEvent[tid].scheduled())
activateThreadEvent[tid].
- schedule(nextCycle(curTick + cycles(delay)));
+ schedule(nextCycle(curTick + ticks(delay)));
}
/** Unschedule actiavte thread event, regardless of its current state. */
// Schedule thread to activate, regardless of its current state.
if (deallocateContextEvent[tid].squashed())
deallocateContextEvent[tid].
- reschedule(nextCycle(curTick + cycles(delay)));
+ reschedule(nextCycle(curTick + ticks(delay)));
else if (!deallocateContextEvent[tid].scheduled())
deallocateContextEvent[tid].
- schedule(nextCycle(curTick + cycles(delay)));
+ schedule(nextCycle(curTick + ticks(delay)));
}
/** Unschedule thread deallocation in CPU */
FUCompletion *execution = new FUCompletion(issuing_inst,
idx, this);
- execution->schedule(curTick + cpu->cycles(issue_latency - 1));
+ execution->schedule(curTick + cpu->ticks(issue_latency - 1));
// @todo: Enforce that issue_latency == 1 or op_latency
if (issue_latency > 1) {
void scheduleTickEvent(int delay)
{
if (tickEvent.squashed())
- tickEvent.reschedule(curTick + cycles(delay));
+ tickEvent.reschedule(curTick + ticks(delay));
else if (!tickEvent.scheduled())
- tickEvent.schedule(curTick + cycles(delay));
+ tickEvent.schedule(curTick + ticks(delay));
}
/// Unschedule tick event, regardless of its current state.
comInstEventQueue[0]->serviceEvents(numInst);
if (!tickEvent.scheduled() && _status == Running)
- tickEvent.schedule(curTick + cycles(1));
+ tickEvent.schedule(curTick + ticks(1));
}
template <class Impl>
TrapEvent *trap = new TrapEvent(this);
- trap->schedule(curTick + cpu->cycles(latency));
+ trap->schedule(curTick + cpu->ticks(latency));
thread->trapPending = true;
}
notIdleFraction++;
//Make sure ticks are still on multiples of cycles
- tickEvent.schedule(nextCycle(curTick + cycles(delay)));
+ tickEvent.schedule(nextCycle(curTick + ticks(delay)));
_status = Running;
}
{
DPRINTF(SimpleCPU, "Tick\n");
- Tick latency = cycles(1); // instruction takes one cycle by default
+ Tick latency = ticks(1); // instruction takes one cycle by default
for (int i = 0; i < width; ++i) {
numCycles++;
if (simulate_stalls) {
Tick icache_stall =
- icache_access ? icache_latency - cycles(1) : 0;
+ icache_access ? icache_latency - ticks(1) : 0;
Tick dcache_stall =
- dcache_access ? dcache_latency - cycles(1) : 0;
- Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
- if (cycles(stall_cycles) < (icache_stall + dcache_stall))
- latency += cycles(stall_cycles+1);
+ dcache_access ? dcache_latency - ticks(1) : 0;
+ Tick stall_cycles = (icache_stall + dcache_stall) / ticks(1);
+ if (ticks(stall_cycles) < (icache_stall + dcache_stall))
+ latency += ticks(stall_cycles+1);
else
- latency += cycles(stall_cycles);
+ latency += ticks(stall_cycles);
}
}
_status = Running;
// kick things off by initiating the fetch of the next instruction
- fetchEvent = new FetchEvent(this, nextCycle(curTick + cycles(delay)));
+ fetchEvent = new FetchEvent(this, nextCycle(curTick + ticks(delay)));
}
if (mainEventQueue.empty()) {
exitSimLoop("end of memory trace reached");
} else {
- tickEvent.schedule(mainEventQueue.nextEventTime() + cycles(1));
+ tickEvent.schedule(mainEventQueue.nextEventTime() + ticks(1));
}
} else {
- tickEvent.schedule(max(curTick + cycles(1), nextCycle));
+ tickEvent.schedule(max(curTick + ticks(1), nextCycle));
}
}
MemInterface *dcache_interface,
MemTraceReader *data_trace);
- inline Tick cycles(int numCycles) { return numCycles; }
+ inline Tick ticks(int numCycles) { return numCycles; }
/**
* Perform all the accesses for one cycle.
{
if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) && getState() ==
SimObject::Running)
- tickEvent.schedule((curTick/cycles(1)) * cycles(1) + cycles(1));
+ tickEvent.schedule((curTick/ticks(1)) * ticks(1) + ticks(1));
}
unsigned int
if (rxTick || txTick || txFifoTick)
- tickEvent.schedule(curTick + cycles(1));
+ tickEvent.schedule(curTick + ticks(1));
}
void
virtual EtherInt *getEthPort(const std::string &if_name, int idx);
Tick clock;
- inline Tick cycles(int numCycles) const { return numCycles * clock; }
+ inline Tick ticks(int numCycles) const { return numCycles * clock; }
virtual Tick read(PacketPtr pkt);
virtual Tick write(PacketPtr pkt);
}
// Go to the next state machine clock tick.
- rxKickTick = curTick + cycles(1);
+ rxKickTick = curTick + ticks(1);
}
switch(rxDmaState) {
}
// Go to the next state machine clock tick.
- txKickTick = curTick + cycles(1);
+ txKickTick = curTick + ticks(1);
}
switch(txDmaState) {
DPRINTF(Ethernet, "transfer complete: data in txFifo...schedule xmit\n");
- txEvent.reschedule(curTick + cycles(1), true);
+ txEvent.reschedule(curTick + ticks(1), true);
}
bool
/* state machine cycle time */
Tick clock;
- inline Tick cycles(int numCycles) const { return numCycles * clock; }
+ inline Tick ticks(int numCycles) const { return numCycles * clock; }
/* tx State Machine */
TxState txState;
DPRINTF(Ethernet, "transfer complete: data in txFifo...schedule xmit\n");
- txEvent.reschedule(curTick + cycles(1), true);
+ txEvent.reschedule(curTick + ticks(1), true);
}
bool
bool rxEnable;
bool txEnable;
Tick clock;
- inline Tick cycles(int numCycles) const { return numCycles * clock; }
+ inline Tick ticks(int numCycles) const { return numCycles * clock; }
protected:
Tick intrDelay;
EndQuiesceEvent *quiesceEvent = tc->getQuiesceEvent();
- Tick resume = curTick + tc->getCpuPtr()->cycles(cycles);
+ Tick resume = curTick + tc->getCpuPtr()->ticks(cycles);
quiesceEvent->reschedule(resume, true);