setup_type(type, {"\\A", "\\B", "\\S"}, {"\\Y"}, true);
setup_type("$alu", {"\\A", "\\B", "\\CI", "\\BI"}, {"\\X", "\\Y", "\\CO"}, true);
+ setup_type("$fa", {"\\A", "\\B", "\\C"}, {"\\X", "\\Y"}, true);
setup_type("$assert", {"\\A", "\\EN"}, std::set<RTLIL::IdString>(), true);
}
else
set(sig_y, y_values.front());
}
+ else if (cell->type == "$fa")
+ {
+ RTLIL::SigSpec sig_c = cell->getPort("\\C");
+ RTLIL::SigSpec sig_x = cell->getPort("\\X");
+ int width = SIZE(sig_c);
+
+ if (!eval(sig_a, undef, cell))
+ return false;
+
+ if (!eval(sig_b, undef, cell))
+ return false;
+
+ if (!eval(sig_c, undef, cell))
+ return false;
+
+ RTLIL::Const t1 = const_xor(sig_a.as_const(), sig_b.as_const(), false, false, width);
+ RTLIL::Const val_y = const_xor(t1, sig_c.as_const(), false, false, width);
+
+ RTLIL::Const t2 = const_and(sig_a.as_const(), sig_b.as_const(), false, false, width);
+ RTLIL::Const t3 = const_and(sig_c.as_const(), t1, false, false, width);
+ RTLIL::Const val_x = const_or(t2, t3, false, false, width);
+
+ set(sig_y, val_y);
+ set(sig_x, val_x);
+ }
else if (cell->type == "$alu")
{
bool signed_a = cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters["\\A_SIGNED"].as_bool();
return;
}
+ if (cell->type == "$fa") {
+ port("\\A", param("\\WIDTH"));
+ port("\\B", param("\\WIDTH"));
+ port("\\C", param("\\WIDTH"));
+ port("\\X", param("\\WIDTH"));
+ port("\\Y", param("\\WIDTH"));
+ check_expected();
+ return;
+ }
+
if (cell->type == "$alu") {
param_bool("\\A_SIGNED");
param_bool("\\B_SIGNED");
return;
}
+ if (type == "$fa") {
+ parameters["\\WIDTH"] = SIZE(connections_["\\Y"]);
+ return;
+ }
+
bool signedness_ab = !type.in("$slice", "$concat", "$macc");
if (connections_.count("\\A")) {
return true;
}
+ if (cell->type == "$fa")
+ {
+ std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep);
+ std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep);
+ std::vector<int> c = importDefSigSpec(cell->getPort("\\C"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep);
+ std::vector<int> x = importDefSigSpec(cell->getPort("\\X"), timestep);
+
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
+ std::vector<int> xx = model_undef ? ez->vec_var(x.size()) : x;
+
+ std::vector<int> t1 = ez->vec_xor(a, b);
+ ez->assume(ez->vec_eq(yy, ez->vec_xor(t1, c)));
+
+ std::vector<int> t2 = ez->vec_and(a, b);
+ std::vector<int> t3 = ez->vec_and(c, t1);
+ ez->assume(ez->vec_eq(xx, ez->vec_or(t2, t3)));
+
+ if (model_undef)
+ {
+ std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep);
+ std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep);
+ std::vector<int> undef_c = importUndefSigSpec(cell->getPort("\\C"), timestep);
+
+ std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep);
+ std::vector<int> undef_x = importUndefSigSpec(cell->getPort("\\X"), timestep);
+
+ ez->assume(ez->vec_eq(undef_y, ez->vec_or(ez->vec_or(undef_a, undef_b), undef_c)));
+
+ std::vector<int> undef_t1 = ez->vec_or(undef_a, undef_b);
+
+ std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a));
+ std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b));
+ std::vector<int> undef_t2 = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b0)));
+
+ std::vector<int> c0 = ez->vec_and(ez->vec_not(c), ez->vec_not(undef_c));
+ std::vector<int> t10 = ez->vec_and(ez->vec_not(t1), ez->vec_not(undef_t1));
+ std::vector<int> undef_t3 = ez->vec_and(ez->vec_or(undef_c, undef_t1), ez->vec_not(ez->vec_or(c0, t10)));
+
+ std::vector<int> t21 = ez->vec_and(t2, ez->vec_not(undef_t2));
+ std::vector<int> t31 = ez->vec_and(t3, ez->vec_not(undef_t3));
+ ez->assume(ez->vec_eq(undef_x, ez->vec_and(ez->vec_or(undef_t2, undef_t3), ez->vec_not(ez->vec_or(t21, t31)))));
+
+ undefGating(y, yy, undef_y);
+ undefGating(x, xx, undef_x);
+ }
+ return true;
+ }
+
if (cell->type == "$alu")
{
std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep);
in2 = in2.extract(start_index, stop_index-start_index);
in3 = in3.extract(start_index, stop_index-start_index);
- RTLIL::SigSpec t1 = module->Xor(NEW_ID, in1, in2);
- out1 = {out_zeros_msb, module->Xor(NEW_ID, t1, in3), out_zeros_lsb};
-
- RTLIL::SigSpec t2 = module->And(NEW_ID, in1, in2);
- RTLIL::SigSpec t3 = module->And(NEW_ID, in3, t1);
- out2 = {out_zeros_msb, module->Or(NEW_ID, t2, t3), out_zeros_lsb};
+ int width = SIZE(in1);
+ RTLIL::Wire *w1 = module->addWire(NEW_ID, width);
+ RTLIL::Wire *w2 = module->addWire(NEW_ID, width);
+
+ RTLIL::Cell *cell = module->addCell(NEW_ID, "$fa");
+ cell->setParam("\\WIDTH", width);
+ cell->setPort("\\A", in1);
+ cell->setPort("\\B", in2);
+ cell->setPort("\\C", in3);
+ cell->setPort("\\Y", w1);
+ cell->setPort("\\X", w2);
+
+ out1 = {out_zeros_msb, w1, out_zeros_lsb};
+ out2 = {out_zeros_msb, w2, out_zeros_lsb};
}
}
summands.swap(new_summands);
}
+ log_assert(tree_sum_bits.empty());
+
return module->Add(NEW_ID, summands.front(), summands.back());
}
};
RTLIL::Cell *cell = module->addCell("\\UUT", cell_type);
RTLIL::Wire *wire;
+ if (cell_type == "$fa")
+ {
+ int width = 1 + xorshift32(8);
+
+ wire = module->addWire("\\A");
+ wire->width = width;
+ wire->port_input = true;
+ cell->setPort("\\A", wire);
+
+ wire = module->addWire("\\B");
+ wire->width = width;
+ wire->port_input = true;
+ cell->setPort("\\B", wire);
+
+ wire = module->addWire("\\C");
+ wire->width = width;
+ wire->port_input = true;
+ cell->setPort("\\C", wire);
+
+ wire = module->addWire("\\X");
+ wire->width = width;
+ wire->port_output = true;
+ cell->setPort("\\X", wire);
+
+ wire = module->addWire("\\Y");
+ wire->width = width;
+ wire->port_output = true;
+ cell->setPort("\\Y", wire);
+ }
+
if (cell_type == "$macc")
{
Macc macc;
cell_types["$lut"] = "*";
cell_types["$alu"] = "ABSY";
cell_types["$macc"] = "*";
+ cell_types["$fa"] = "*";
for (; argidx < SIZE(args); argidx++)
{
// --------------------------------------------------------
+module \$fa (A, B, C, X, Y);
+
+parameter WIDTH = 1;
+
+input [WIDTH-1:0] A, B, C;
+output [WIDTH-1:0] X, Y;
+
+wire [WIDTH-1:0] t1, t2, t3;
+
+assign t1 = A ^ B, t2 = A & B, t3 = C & t1;
+assign Y = t1 ^ C, X = t2 | t3;
+
+endmodule
+
+// --------------------------------------------------------
+
module \$alu (A, B, CI, BI, X, Y, CO);
parameter A_SIGNED = 0;
// ALU Infrastructure
// --------------------------------------------------------
+module \$fa (A, B, C, X, Y);
+ parameter WIDTH = 1;
+
+ input [WIDTH-1:0] A, B, C;
+ output [WIDTH-1:0] X, Y;
+
+ wire [WIDTH-1:0] t1, t2, t3;
+
+ assign t1 = A ^ B, t2 = A & B, t3 = C & t1;
+ assign Y = t1 ^ C, X = t2 | t3;
+endmodule
+
module \$__alu_ripple (A, B, CI, X, Y, CO);
parameter WIDTH = 1;