end entity divider;
architecture behaviour of divider is
- signal dend : std_ulogic_vector(127 downto 0);
+ signal dend : std_ulogic_vector(128 downto 0);
signal div : unsigned(63 downto 0);
signal quot : std_ulogic_vector(63 downto 0);
signal result : std_ulogic_vector(63 downto 0);
signal is_modulus : std_ulogic;
signal is_32bit : std_ulogic;
signal extended : std_ulogic;
+ signal is_signed : std_ulogic;
signal rc : std_ulogic;
signal write_reg : std_ulogic_vector(4 downto 0);
-
- function compare_zero(value : std_ulogic_vector(63 downto 0); is_32 : std_ulogic)
- return std_ulogic_vector is
- begin
- if is_32 = '1' then
- if value(31) = '1' then
- return "1000";
- elsif unsigned(value(30 downto 0)) > 0 then
- return "0100";
- else
- return "0010";
- end if;
- else
- if value(63) = '1' then
- return "1000";
- elsif unsigned(value(62 downto 0)) > 0 then
- return "0100";
- else
- return "0010";
- end if;
- end if;
- end function compare_zero;
+ signal overflow : std_ulogic;
+ signal did_ovf : std_ulogic;
begin
divider_0: process(clk)
count <= "0000000";
elsif d_in.valid = '1' then
if d_in.is_extended = '1' and not (d_in.is_signed = '1' and d_in.dividend(63) = '1') then
- dend <= d_in.dividend & x"0000000000000000";
+ dend <= '0' & d_in.dividend & x"0000000000000000";
else
- dend <= x"0000000000000000" & d_in.dividend;
+ dend <= '0' & x"0000000000000000" & d_in.dividend;
end if;
div <= unsigned(d_in.divisor);
quot <= (others => '0');
is_modulus <= d_in.is_modulus;
extended <= d_in.is_extended;
is_32bit <= d_in.is_32bit;
+ is_signed <= d_in.is_signed;
rc <= d_in.rc;
- count <= "0000000";
+ count <= "1111111";
running <= '1';
+ overflow <= '0';
signcheck <= d_in.is_signed and (d_in.dividend(63) or d_in.divisor(63));
elsif signcheck = '1' then
signcheck <= '0';
neg_result <= dend(63) xor (div(63) and not is_modulus);
if dend(63) = '1' then
if extended = '1' then
- dend <= std_ulogic_vector(- signed(dend(63 downto 0))) & x"0000000000000000";
+ dend <= '0' & std_ulogic_vector(- signed(dend(63 downto 0))) & x"0000000000000000";
else
- dend <= x"0000000000000000" & std_ulogic_vector(- signed(dend(63 downto 0)));
+ dend <= '0' & x"0000000000000000" & std_ulogic_vector(- signed(dend(63 downto 0)));
end if;
end if;
if div(63) = '1' then
if count = "0111111" then
running <= '0';
end if;
- if dend(127) = '1' or unsigned(dend(126 downto 63)) >= div then
- dend <= std_ulogic_vector(unsigned(dend(126 downto 63)) - div) &
- dend(62 downto 0) & '0';
+ overflow <= quot(63);
+ if dend(128) = '1' or unsigned(dend(127 downto 64)) >= div then
+ dend <= std_ulogic_vector(unsigned(dend(127 downto 64)) - div) &
+ dend(63 downto 0) & '0';
quot <= quot(62 downto 0) & '1';
count <= count + 1;
- elsif dend(127 downto 56) = x"000000000000000000" and count(5 downto 3) /= "111" then
+ elsif dend(128 downto 57) = x"000000000000000000" and count(6 downto 3) /= "0111" then
-- consume 8 bits of zeroes in one cycle
- dend <= dend(119 downto 0) & x"00";
+ dend <= dend(120 downto 0) & x"00";
quot <= quot(55 downto 0) & x"00";
count <= count + 8;
else
- dend <= dend(126 downto 0) & '0';
+ dend <= dend(127 downto 0) & '0';
quot <= quot(62 downto 0) & '0';
count <= count + 1;
end if;
d_out.write_reg_nr <= write_reg;
if is_modulus = '1' then
- result <= dend(127 downto 64);
+ result <= dend(128 downto 65);
else
result <= quot;
end if;
else
sresult <= result;
end if;
- d_out.write_reg_data <= sresult;
+ did_ovf <= '0';
+ if is_32bit = '0' then
+ did_ovf <= overflow or (is_signed and (sresult(63) xor neg_result));
+ elsif is_signed = '1' then
+ if overflow = '1' or
+ (sresult(63 downto 31) /= x"00000000" & '0' and
+ sresult(63 downto 31) /= x"ffffffff" & '1') then
+ did_ovf <= '1';
+ end if;
+ else
+ did_ovf <= overflow or (or (sresult(63 downto 32)));
+ end if;
+ if did_ovf = '1' then
+ d_out.write_reg_data <= (others => '0');
+ elsif (is_32bit = '1') and (is_modulus = '0') then
+ -- 32-bit divisions set the top 32 bits of the result to 0
+ d_out.write_reg_data <= x"00000000" & sresult(31 downto 0);
+ else
+ d_out.write_reg_data <= sresult;
+ end if;
- if count(6) = '1' then
+ if count = "1000000" then
d_out.valid <= '1';
d_out.write_reg_enable <= '1';
if rc = '1' then
d_out.write_cr_enable <= '1';
d_out.write_cr_mask <= num_to_fxm(0);
- d_out.write_cr_data <= compare_zero(sresult, is_32bit) & x"0000000";
+ if (did_ovf = '1') or (or (sresult) = '0') then
+ d_out.write_cr_data <= x"20000000";
+ elsif (sresult(63) = '1') and not ((is_32bit = '1') and (is_modulus = '0')) then
+ d_out.write_cr_data <= x"80000000";
+ else
+ d_out.write_cr_data <= x"40000000";
+ end if;
end if;
end if;
end process;
variable si: std_ulogic_vector(15 downto 0);
variable d128: std_ulogic_vector(127 downto 0);
variable q128: std_ulogic_vector(127 downto 0);
+ variable q64: std_ulogic_vector(63 downto 0);
+ variable rem32: std_ulogic_vector(31 downto 0);
begin
rst <= '1';
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
- if rb /= x"0000000000000000" then
+ behave_rt := (others => '0');
+ if rb /= x"0000000000000000" and (ra /= x"8000000000000000" or rb /= x"ffffffffffffffff") then
behave_rt := ppc_divd(ra, rb);
- assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
- report "bad divd expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
- assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for divd";
end if;
+ assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
+ report "bad divd expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divd";
end loop;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
+ behave_rt := (others => '0');
if rb /= x"0000000000000000" then
behave_rt := ppc_divdu(ra, rb);
- assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
- report "bad divdu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
- assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for divdu";
end if;
+ assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
+ report "bad divdu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divdu";
end loop;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
+ behave_rt := (others => '0');
if rb /= x"0000000000000000" then
d128 := ra & x"0000000000000000";
q128 := std_ulogic_vector(signed(d128) / signed(rb));
if q128(127 downto 63) = x"0000000000000000" & '0' or
q128(127 downto 63) = x"ffffffffffffffff" & '1' then
behave_rt := q128(63 downto 0);
- assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
- report "bad divde expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
- assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for divde";
end if;
end if;
+ assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
+ report "bad divde expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divde";
end loop;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
+ behave_rt := (others => '0');
if unsigned(rb) > unsigned(ra) then
d128 := ra & x"0000000000000000";
q128 := std_ulogic_vector(unsigned(d128) / unsigned(rb));
behave_rt := q128(63 downto 0);
- assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
- report "bad divdeu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
- assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for divdeu";
end if;
+ assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
+ report "bad divdeu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divdeu";
end loop;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
- if rb /= x"0000000000000000" then
+ behave_rt := (others => '0');
+ if rb /= x"0000000000000000" and (ra /= x"ffffffff80000000" or rb /= x"ffffffffffffffff") then
behave_rt := ppc_divw(ra, rb);
- assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
- report "bad divw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
- assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for divw";
end if;
+ assert behave_rt = d2.write_reg_data
+ report "bad divw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divw";
end loop;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
+ behave_rt := (others => '0');
if rb /= x"0000000000000000" then
behave_rt := ppc_divwu(ra, rb);
- assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
- report "bad divwu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
- assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for divwu";
end if;
+ assert behave_rt = d2.write_reg_data
+ report "bad divwu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divwu";
end loop;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
+ behave_rt := (others => '0');
if rb /= x"0000000000000000" then
- behave_rt := std_ulogic_vector(signed(ra) / signed(rb));
- if behave_rt(63 downto 31) = x"00000000" & '0' or
- behave_rt(63 downto 31) = x"ffffffff" & '1' then
- assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
- report "bad divwe expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
- assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for divwe";
+ q64 := std_ulogic_vector(signed(ra) / signed(rb));
+ if q64(63 downto 31) = x"00000000" & '0' or
+ q64(63 downto 31) = x"ffffffff" & '1' then
+ behave_rt := x"00000000" & q64(31 downto 0);
end if;
+ assert behave_rt = d2.write_reg_data
+ report "bad divwe expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divwe";
end if;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
+ behave_rt := (others => '0');
if unsigned(rb(31 downto 0)) > unsigned(ra(63 downto 32)) then
behave_rt := std_ulogic_vector(unsigned(ra) / unsigned(rb));
- assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
- report "bad divweu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
- assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for divweu";
end if;
+ assert behave_rt = d2.write_reg_data
+ report "bad divweu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divweu";
end loop;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
+ behave_rt := (others => '0');
if rb /= x"0000000000000000" then
behave_rt := std_ulogic_vector(signed(ra) rem signed(rb));
- assert behave_rt = d2.write_reg_data
- report "bad modsd expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
- assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for modsd";
end if;
+ assert behave_rt = d2.write_reg_data
+ report "bad modsd expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for modsd";
end loop;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
+ behave_rt := (others => '0');
if rb /= x"0000000000000000" then
behave_rt := std_ulogic_vector(unsigned(ra) rem unsigned(rb));
- assert behave_rt = d2.write_reg_data
- report "bad modud expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
- assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for modud";
end if;
+ assert behave_rt = d2.write_reg_data
+ report "bad modud expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for modud";
end loop;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
+ behave_rt := (others => '0');
if rb /= x"0000000000000000" then
- behave_rt := x"00000000" & std_ulogic_vector(signed(ra(31 downto 0)) rem signed(rb(31 downto 0)));
- assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
- report "bad modsw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
- assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for modsw";
+ rem32 := std_ulogic_vector(signed(ra(31 downto 0)) rem signed(rb(31 downto 0)));
+ if rem32(31) = '0' then
+ behave_rt := x"00000000" & rem32;
+ else
+ behave_rt := x"ffffffff" & rem32;
+ end if;
end if;
+ assert behave_rt = d2.write_reg_data
+ report "bad modsw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for modsw";
end loop;
end loop;
end loop;
wait for clk_period;
d1.valid <= '0';
- for j in 0 to 65 loop
+ for j in 0 to 66 loop
wait for clk_period;
if d2.valid = '1' then
exit;
end loop;
assert d2.valid = '1';
+ behave_rt := (others => '0');
if rb /= x"0000000000000000" then
behave_rt := x"00000000" & std_ulogic_vector(unsigned(ra(31 downto 0)) rem unsigned(rb(31 downto 0)));
- assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
- report "bad moduw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
- assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
- report "bad CR setting for moduw";
end if;
+ assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
+ report "bad moduw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for moduw";
end loop;
end loop;
end loop;