("exp", [Format.EXP], 'Export_instruction', [(0, 4)]),
("branch", [Format.PSEUDO_BRANCH], 'Pseudo_branch_instruction', itertools.product([0], [0, 1])),
("barrier", [Format.PSEUDO_BARRIER], 'Pseudo_barrier_instruction', [(0, 0)]),
- ("reduction", [Format.PSEUDO_REDUCTION], 'Pseudo_reduction_instruction', [(3, 2)]),
+ ("reduction", [Format.PSEUDO_REDUCTION], 'Pseudo_reduction_instruction', [(3, 2), (3, 4)]),
("vop1", [Format.VOP1], 'VOP1_instruction', [(1, 1), (2, 2)]),
("vop2", [Format.VOP2], 'VOP2_instruction', itertools.product([1, 2], [2, 3])),
("vopc", [Format.VOPC], 'VOPC_instruction', itertools.product([1, 2], [2])),
return dst;
}
+static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
+{
+ Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
+
+ /* Currently not implemented on GFX6-7 */
+ assert(ctx->options->chip_class >= GFX8);
+
+ if (ctx->options->chip_class <= GFX9 || ctx->options->wave_size == 32) {
+ return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
+ }
+
+ /* GFX10, wave64 mode:
+ * The bpermute instruction is limited to half-wave operation, which means that it can't
+ * properly support subgroup shuffle like older generations (or wave32 mode), so we
+ * emulate it here.
+ */
+
+ Temp lane_id = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u));
+ lane_id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1), lane_id);
+ Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
+ Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
+ Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(s2, vcc), lane_is_hi, index_is_hi);
+
+ return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
+ bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
+}
+
Temp as_vgpr(isel_context *ctx, Temp val)
{
if (val.type() == RegType::sgpr) {
assert(tid.regClass() == v1);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (src.regClass() == v1) {
- tid = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), tid);
- emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, src), dst);
+ emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
} else if (src.regClass() == v2) {
- tid = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), tid);
-
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
- lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, lo));
- hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, hi));
+ lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
+ hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
iand32, iand64,
ior32, ior64,
ixor32, ixor64,
+ gfx10_wave64_bpermute
};
/**
#include "aco_builder.h"
#include "util/u_math.h"
#include "sid.h"
+#include "vulkan/radv_shader.h"
namespace aco {
return 0xff800000u; /* negative infinity */
case fmax64:
return idx ? 0xfff00000u : 0u; /* negative infinity */
+ default:
+ unreachable("Invalid reduction operation");
+ break;
}
- unreachable("Invalid reduction operation");
+ return 0;
}
aco_opcode get_reduction_opcode(lower_context *ctx, ReduceOp op, bool *clobber_vcc, Format *format)
case ixor64:
assert(false);
break;
+ default:
+ unreachable("Invalid reduction operation");
+ break;
}
- unreachable("Invalid reduction operation");
return aco_opcode::v_min_u32;
}
} else if (instr->format == Format::PSEUDO_REDUCTION) {
Pseudo_reduction_instruction* reduce = static_cast<Pseudo_reduction_instruction*>(instr.get());
- emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size,
- reduce->operands[1].physReg(), // tmp
- reduce->definitions[1].physReg(), // stmp
- reduce->operands[2].physReg(), // vtmp
- reduce->definitions[2].physReg(), // sitmp
- reduce->operands[0], reduce->definitions[0]);
+ if (reduce->reduce_op == gfx10_wave64_bpermute) {
+ /* Only makes sense on GFX10 wave64 */
+ assert(program->chip_class >= GFX10);
+ assert(program->info->wave_size == 64);
+ assert(instr->definitions[0].regClass() == v1); /* Destination */
+ assert(instr->definitions[1].regClass() == s2); /* Temp EXEC */
+ assert(instr->definitions[1].physReg() != vcc);
+ assert(instr->definitions[2].physReg() == scc); /* SCC clobber */
+ assert(instr->operands[0].physReg() == vcc); /* Compare */
+ assert(instr->operands[1].regClass() == v2.as_linear()); /* Temp VGPR pair */
+ assert(instr->operands[2].regClass() == v1); /* Indices x4 */
+ assert(instr->operands[3].regClass() == v1); /* Input data */
+
+ /* Shared VGPRs are allocated in groups of 8 */
+ program->config->num_shared_vgprs = 8;
+
+ PhysReg shared_vgpr_reg_lo = PhysReg(align(program->config->num_vgprs, 4) + 256);
+ PhysReg shared_vgpr_reg_hi = PhysReg(shared_vgpr_reg_lo + 1);
+ Operand compare = instr->operands[0];
+ Operand tmp1(instr->operands[1].physReg(), v1);
+ Operand tmp2(PhysReg(instr->operands[1].physReg() + 1), v1);
+ Operand index_x4 = instr->operands[2];
+ Operand input_data = instr->operands[3];
+ Definition shared_vgpr_lo(shared_vgpr_reg_lo, v1);
+ Definition shared_vgpr_hi(shared_vgpr_reg_hi, v1);
+ Definition def_temp1(tmp1.physReg(), v1);
+ Definition def_temp2(tmp2.physReg(), v1);
+
+ /* Save EXEC and clear it */
+ bld.sop1(aco_opcode::s_and_saveexec_b64, instr->definitions[1], instr->definitions[2],
+ Definition(exec, s2), Operand(0u), Operand(exec, s2));
+
+ /* Set EXEC to enable HI lanes only */
+ bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand((uint32_t)-1));
+ /* HI: Copy data from high lanes 32-63 to shared vgpr */
+ bld.vop1(aco_opcode::v_mov_b32, shared_vgpr_hi, input_data);
+
+ /* Invert EXEC to enable LO lanes only */
+ bld.sop1(aco_opcode::s_not_b64, Definition(exec, s2), Operand(exec, s2));
+ /* LO: Copy data from low lanes 0-31 to shared vgpr */
+ bld.vop1(aco_opcode::v_mov_b32, shared_vgpr_lo, input_data);
+ /* LO: Copy shared vgpr (high lanes' data) to output vgpr */
+ bld.vop1(aco_opcode::v_mov_b32, def_temp1, Operand(shared_vgpr_reg_hi, v1));
+
+ /* Invert EXEC to enable HI lanes only */
+ bld.sop1(aco_opcode::s_not_b64, Definition(exec, s2), Operand(exec, s2));
+ /* HI: Copy shared vgpr (low lanes' data) to output vgpr */
+ bld.vop1(aco_opcode::v_mov_b32, def_temp1, Operand(shared_vgpr_reg_lo, v1));
+
+ /* Enable exec mask for all lanes */
+ bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand((uint32_t)-1));
+ /* Permute the original input */
+ bld.ds(aco_opcode::ds_bpermute_b32, def_temp2, index_x4, input_data);
+ /* Permute the swapped input */
+ bld.ds(aco_opcode::ds_bpermute_b32, def_temp1, index_x4, tmp1);
+
+ /* Restore saved EXEC */
+ bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(instr->definitions[1].physReg(), s2));
+ /* Choose whether to use the original or swapped */
+ bld.vop2(aco_opcode::v_cndmask_b32, instr->definitions[0], tmp1, tmp2, compare);
+ } else {
+ emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size,
+ reduce->operands[1].physReg(), // tmp
+ reduce->definitions[1].physReg(), // stmp
+ reduce->operands[2].physReg(), // vtmp
+ reduce->definitions[2].physReg(), // sitmp
+ reduce->operands[0], reduce->definitions[0]);
+ }
} else {
ctx.instructions.emplace_back(std::move(instr));
}
opcode("p_inclusive_scan", format=Format.PSEUDO_REDUCTION)
# e.g. subgroupExclusiveMin()
opcode("p_exclusive_scan", format=Format.PSEUDO_REDUCTION)
+# simulates proper bpermute behavior on GFX10 wave64
+opcode("p_wave64_bpermute", format=Format.PSEUDO_REDUCTION)
opcode("p_branch", format=Format.PSEUDO_BRANCH)
opcode("p_cbranch", format=Format.PSEUDO_BRANCH)
unsigned cluster_size = static_cast<Pseudo_reduction_instruction *>(instr)->cluster_size;
bool need_vtmp = op == imul32 || op == fadd64 || op == fmul64 ||
op == fmin64 || op == fmax64;
- if (program->chip_class >= GFX10 && cluster_size == 64)
+
+ if (program->chip_class >= GFX10 && cluster_size == 64 && op != gfx10_wave64_bpermute)
need_vtmp = true;
need_vtmp |= cluster_size == 32;
+
vtmp_in_loop |= need_vtmp && block.loop_nest_depth > 0;
if (need_vtmp && (int)last_top_level_block_idx != vtmp_inserted_at) {
vtmp = {program->allocateId(), vtmp.regClass()};