GHDLFLAGS=--std=08
CFLAGS=-O2 -Wall
-all = core_tb simple_ram_behavioural_tb soc_reset_tb icache_tb multiply_tb
+all = core_tb simple_ram_behavioural_tb soc_reset_tb icache_tb multiply_tb divider_tb
# XXX
# loadstore_tb fetch_tb
common.o: decode_types.o
core_tb.o: common.o core.o soc.o
-core.o: common.o wishbone_types.o fetch1.o fetch2.o icache.o decode1.o decode2.o register_file.o cr_file.o execute1.o execute2.o loadstore1.o loadstore2.o multiply.o writeback.o
+core.o: common.o wishbone_types.o fetch1.o fetch2.o icache.o decode1.o decode2.o register_file.o cr_file.o execute1.o execute2.o loadstore1.o loadstore2.o multiply.o divider.o writeback.o
cr_file.o: common.o
crhelpers.o: common.o
decode1.o: common.o decode_types.o
loadstore2.o: common.o helpers.o wishbone_types.o
multiply_tb.o: common.o glibc_random.o ppc_fx_insns.o multiply.o
multiply.o: common.o decode_types.o ppc_fx_insns.o crhelpers.o
+divider_tb.o: common.o glibc_random.o ppc_fx_insns.o divider.o
+divider.o: common.o decode_types.o ppc_fx_insns.o crhelpers.o
ppc_fx_insns.o: helpers.o
register_file.o: common.o
sim_console.o:
multiply_tb: multiply_tb.o
$(GHDL) -e $(GHDLFLAGS) $@
+divider_tb: divider_tb.o
+ $(GHDL) -e $(GHDLFLAGS) $@
+
simple_ram_tb: simple_ram_tb.o
$(GHDL) -e $(GHDLFLAGS) $@
end record;
constant Decode2ToMultiplyInit : Decode2ToMultiplyType := (valid => '0', insn_type => OP_ILLEGAL, rc => '0', others => (others => '0'));
+ type Decode2ToDividerType is record
+ valid: std_ulogic;
+ write_reg: std_ulogic_vector(4 downto 0);
+ dividend: std_ulogic_vector(63 downto 0);
+ divisor: std_ulogic_vector(63 downto 0);
+ neg_result: std_ulogic;
+ is_32bit: std_ulogic;
+ is_extended: std_ulogic;
+ is_modulus: std_ulogic;
+ rc: std_ulogic;
+ end record;
+ constant Decode2ToDividerInit: Decode2ToDividerType := (valid => '0', neg_result => '0', is_32bit => '0', is_extended => '0', is_modulus => '0', rc => '0', others => (others => '0'));
+
type Decode2ToRegisterFileType is record
read1_enable : std_ulogic;
read1_reg : std_ulogic_vector(4 downto 0);
end record;
constant MultiplyToWritebackInit : MultiplyToWritebackType := (valid => '0', write_reg_enable => '0', write_cr_enable => '0', others => (others => '0'));
+ type DividerToWritebackType is record
+ valid: std_ulogic;
+
+ write_reg_enable : std_ulogic;
+ write_reg_nr: std_ulogic_vector(4 downto 0);
+ write_reg_data: std_ulogic_vector(63 downto 0);
+ write_cr_enable: std_ulogic;
+ write_cr_mask: std_ulogic_vector(7 downto 0);
+ write_cr_data: std_ulogic_vector(31 downto 0);
+ end record;
+ constant DividerToWritebackInit : DividerToWritebackType := (valid => '0', write_reg_enable => '0', write_cr_enable => '0', others => (others => '0'));
+
type WritebackToRegisterFileType is record
write_reg : std_ulogic_vector(4 downto 0);
write_data : std_ulogic_vector(63 downto 0);
signal decode2_to_multiply: Decode2ToMultiplyType;
signal multiply_to_writeback: MultiplyToWritebackType;
+ -- divider signals
+ signal decode2_to_divider: Decode2ToDividerType;
+ signal divider_to_writeback: DividerToWritebackType;
+
-- local signals
signal fetch1_stall_in : std_ulogic;
signal fetch2_stall_in : std_ulogic;
e_out => decode2_to_execute1,
l_out => decode2_to_loadstore1,
m_out => decode2_to_multiply,
+ d_out => decode2_to_divider,
r_in => register_file_to_decode2,
r_out => decode2_to_register_file,
c_in => cr_file_to_decode2,
m_out => multiply_to_writeback
);
+ divider_0: entity work.divider
+ port map (
+ clk => clk,
+ rst => rst,
+ d_in => decode2_to_divider,
+ d_out => divider_to_writeback
+ );
+
writeback_0: entity work.writeback
port map (
clk => clk,
e_in => execute2_to_writeback,
l_in => loadstore2_to_writeback,
m_in => multiply_to_writeback,
+ d_in => divider_to_writeback,
w_out => writeback_to_register_file,
c_out => writeback_to_cr_file,
complete_out => complete
PPC_DCBT => (ALU, OP_NOP, NONE, NONE, NONE, NONE, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'),
PPC_DCBTST => (ALU, OP_NOP, NONE, NONE, NONE, NONE, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'),
--PPC_DCBZ
- PPC_DIVD => (ALU, OP_DIVD, RA, RB, NONE, RT, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'),
- --PPC_DIVDE
- --PPC_DIVDEU
- PPC_DIVDU => (ALU, OP_DIVDU, RA, RB, NONE, RT, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'),
- PPC_DIVW => (ALU, OP_DIVW, RA, RB, NONE, RT, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'),
- --PPC_DIVWE
- --PPC_DIVWEU
- PPC_DIVWU => (ALU, OP_DIVWU, RA, RB, NONE, RT, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'),
+ PPC_DIV => (DIV, OP_DIV, RA, RB, NONE, RT, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'),
PPC_EQV => (ALU, OP_EQV, RS, RB, NONE, RA, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'),
PPC_EXTSB => (ALU, OP_EXTSB, RS, NONE, NONE, RA, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'),
PPC_EXTSH => (ALU, OP_EXTSH, RS, NONE, NONE, RA, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'),
PPC_MTCTR => (ALU, OP_MTCTR, RS, NONE, NONE, NONE, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'),
PPC_MTLR => (ALU, OP_MTLR, RS, NONE, NONE, NONE, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'),
--PPC_MFSPR
- --PPC_MODSD
- --PPC_MODSW
- --PPC_MODUD
- --PPC_MODUW
+ PPC_MOD => (DIV, OP_MOD, RA, RB, NONE, RT, NONE, NONE, NONE, '0', '0', '0', '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'),
PPC_MTCRF => (ALU, OP_MTCRF, RS, NONE, NONE, NONE, FXM, NONE, NONE, '0', '1', '0', '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'),
PPC_MTOCRF => (ALU, OP_MTOCRF, RS, NONE, NONE, NONE, FXM, NONE, NONE, '0', '1', '0', '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'),
--PPC_MTSPR
elsif std_match(f_in.insn, "011111---------------1111110110-") then
report "PPC_dcbz";
ppc_insn := PPC_DCBZ;
- elsif std_match(f_in.insn, "011111---------------0111101001-") then
- report "PPC_divd";
- ppc_insn := PPC_DIVD;
- elsif std_match(f_in.insn, "011111---------------0110101001-") then
- report "PPC_divde";
- ppc_insn := PPC_DIVDE;
- elsif std_match(f_in.insn, "011111---------------0110001001-") then
- report "PPC_divdeu";
- ppc_insn := PPC_DIVDEU;
- elsif std_match(f_in.insn, "011111---------------0111001001-") then
- report "PPC_divdu";
- ppc_insn := PPC_DIVDU;
- elsif std_match(f_in.insn, "011111---------------0111101011-") then
- report "PPC_divw";
- ppc_insn := PPC_DIVW;
- elsif std_match(f_in.insn, "011111---------------0110101011-") then
- report "PPC_divwe";
- ppc_insn := PPC_DIVWE;
- elsif std_match(f_in.insn, "011111---------------0110001011-") then
- report "PPC_divweu";
- ppc_insn := PPC_DIVWEU;
- elsif std_match(f_in.insn, "011111---------------0111001011-") then
- report "PPC_divwu";
- ppc_insn := PPC_DIVWU;
+ elsif std_match(f_in.insn, "011111----------------11--010-1-") then
+ report "PPC_div";
+ ppc_insn := PPC_DIV;
elsif std_match(f_in.insn, "011111---------------0100011100-") then
report "PPC_eqv";
ppc_insn := PPC_EQV;
elsif std_match(f_in.insn, "011111---------------0101010011-") then
report "PPC_mfspr";
ppc_insn := PPC_MFSPR;
- elsif std_match(f_in.insn, "011111---------------1100001001-") then
- report "PPC_modsd";
- ppc_insn := PPC_MODSD;
- elsif std_match(f_in.insn, "011111---------------1100001011-") then
- report "PPC_modsw";
- ppc_insn := PPC_MODSW;
- elsif std_match(f_in.insn, "011111---------------0100001001-") then
- report "PPC_modud";
- ppc_insn := PPC_MODUD;
- elsif std_match(f_in.insn, "011111---------------0100001011-") then
- report "PPC_moduw";
- ppc_insn := PPC_MODUW;
+ elsif std_match(f_in.insn, "011111----------------1000010-1-") then
+ report "PPC_mod";
+ ppc_insn := PPC_MOD;
elsif std_match(f_in.insn, "011111-----0---------0010010000-") then
report "PPC_mtcrf";
ppc_insn := PPC_MTCRF;
e_out : out Decode2ToExecute1Type;
m_out : out Decode2ToMultiplyType;
+ d_out : out Decode2ToDividerType;
l_out : out Decode2ToLoadstore1Type;
r_in : in RegisterFileToDecode2Type;
type reg_type is record
e : Decode2ToExecute1Type;
m : Decode2ToMultiplyType;
+ d : Decode2ToDividerType;
l : Decode2ToLoadstore1Type;
end record;
if rising_edge(clk) then
assert r_int.outstanding <= 1 report "Outstanding bad " & integer'image(r_int.outstanding) severity failure;
- if rin.e.valid = '1' or rin.l.valid = '1' or rin.m.valid = '1' then
+ if rin.e.valid = '1' or rin.l.valid = '1' or rin.m.valid = '1' or rin.d.valid = '1' then
report "execute " & to_hstring(rin.e.nia);
end if;
r <= rin;
variable v_int : reg_internal_type;
variable mul_a : std_ulogic_vector(63 downto 0);
variable mul_b : std_ulogic_vector(63 downto 0);
+ variable dividend : std_ulogic_vector(63 downto 0);
+ variable divisor : std_ulogic_vector(63 downto 0);
+ variable absdend : std_ulogic_vector(31 downto 0);
variable decoded_reg_a : decode_input_reg_t;
variable decoded_reg_b : decode_input_reg_t;
variable decoded_reg_c : decode_input_reg_t;
+ variable signed_division: std_ulogic;
variable is_valid : std_ulogic;
begin
v := r;
v.e := Decode2ToExecute1Init;
v.l := Decode2ToLoadStore1Init;
v.m := Decode2ToMultiplyInit;
+ v.d := Decode2ToDividerInit;
mul_a := (others => '0');
mul_b := (others => '0');
end if;
end if;
+ -- divide unit
+ -- PPC divide and modulus instruction words have these bits in
+ -- the bottom 11 bits: o1dns 010t1 r
+ -- where o = OE for div instrs, signedness for mod instrs
+ -- d = 1 for div*, 0 for mod*
+ -- n = 1 for normal, 0 for extended (dividend << 32/64)
+ -- s = 1 for signed, 0 for unsigned (for div*)
+ -- t = 1 for 32-bit, 0 for 64-bit
+ -- r = RC bit (record condition code)
+ -- For signed division/modulus, we take absolute values and
+ -- tell the divider what the sign of the result should be,
+ -- which is the dividend sign for modulus, and the XOR of
+ -- the dividend and divisor signs for division.
+ dividend := decoded_reg_a.data;
+ divisor := decoded_reg_b.data;
+ v.d.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
+ v.d.is_modulus := not d_in.insn(8);
+ if d_in.insn(8) = '1' then
+ signed_division := d_in.insn(6);
+ else
+ signed_division := d_in.insn(10);
+ end if;
+ if d_in.insn(2) = '0' then
+ -- 64-bit forms
+ v.d.is_32bit := '0';
+ if d_in.insn(8) = '1' and d_in.insn(7) = '0' then
+ v.d.is_extended := '1';
+ end if;
+ if signed_division = '1' and dividend(63) = '1' then
+ v.d.neg_result := '1';
+ v.d.dividend := std_ulogic_vector(- signed(dividend));
+ else
+ v.d.dividend := dividend;
+ end if;
+ if signed_division = '1' and divisor(63) = '1' then
+ if d_in.insn(8) = '1' then
+ v.d.neg_result := not v.d.neg_result;
+ end if;
+ v.d.divisor := std_ulogic_vector(- signed(divisor));
+ else
+ v.d.divisor := divisor;
+ end if;
+ else
+ -- 32-bit forms
+ v.d.is_32bit := '1';
+ if signed_division = '1' and dividend(31) = '1' then
+ v.d.neg_result := '1';
+ absdend := std_ulogic_vector(- signed(dividend(31 downto 0)));
+ else
+ absdend := dividend(31 downto 0);
+ end if;
+ if d_in.insn(8) = '1' and d_in.insn(7) = '0' then -- extended forms
+ v.d.dividend := absdend & x"00000000";
+ else
+ v.d.dividend := x"00000000" & absdend;
+ end if;
+ if signed_division = '1' and divisor(31) = '1' then
+ if d_in.insn(8) = '1' then
+ v.d.neg_result := not v.d.neg_result;
+ end if;
+ v.d.divisor := x"00000000" & std_ulogic_vector(- signed(divisor(31 downto 0)));
+ else
+ v.d.divisor := x"00000000" & divisor(31 downto 0);
+ end if;
+ end if;
+ v.d.rc := decode_rc(d_in.decode.rc, d_in.insn);
+
-- load/store unit
v.l.update_reg := decoded_reg_a.reg;
v.l.addr1 := decoded_reg_a.data;
v.e.valid := '0';
v.m.valid := '0';
+ v.d.valid := '0';
v.l.valid := '0';
case d_in.decode.unit is
when ALU =>
v.l.valid := is_valid;
when MUL =>
v.m.valid := is_valid;
+ when DIV =>
+ v.d.valid := is_valid;
when NONE =>
v.e.valid := is_valid;
v.e.insn_type := OP_ILLEGAL;
if flush_in = '1' then
v.e.valid := '0';
v.m.valid := '0';
+ v.d.valid := '0';
v.l.valid := '0';
end if;
-- track outstanding instructions
- if v.e.valid = '1' or v.l.valid = '1' or v.m.valid = '1' then
+ if v.e.valid = '1' or v.l.valid = '1' or v.m.valid = '1' or v.d.valid = '1' then
v_int.outstanding := v_int.outstanding + 1;
end if;
v.e := Decode2ToExecute1Init;
v.l := Decode2ToLoadStore1Init;
v.m := Decode2ToMultiplyInit;
+ v.d := Decode2ToDividerInit;
end if;
-- Update registers
e_out <= r.e;
l_out <= r.l;
m_out <= r.m;
+ d_out <= r.d;
end process;
end architecture behaviour;
PPC_CMPRB, PPC_CNTLZD, PPC_CNTLZW, PPC_CNTTZD, PPC_CNTTZW,
PPC_CRAND, PPC_CRANDC, PPC_CREQV, PPC_CRNAND, PPC_CRNOR,
PPC_CROR, PPC_CRORC, PPC_CRXOR, PPC_DARN, PPC_DCBF, PPC_DCBST,
- PPC_DCBT, PPC_DCBTST, PPC_DCBZ, PPC_DIVD, PPC_DIVDE,
- PPC_DIVDEU, PPC_DIVDU, PPC_DIVW, PPC_DIVWE, PPC_DIVWEU,
- PPC_DIVWU, PPC_EQV, PPC_EXTSB, PPC_EXTSH, PPC_EXTSW,
+ PPC_DCBT, PPC_DCBTST, PPC_DCBZ, PPC_DIV,
+ PPC_EQV, PPC_EXTSB, PPC_EXTSH, PPC_EXTSW,
PPC_EXTSWSLI, PPC_ICBI, PPC_ICBT, PPC_ISEL, PPC_ISYNC,
PPC_LBARX, PPC_LBZ, PPC_LBZU, PPC_LBZUX, PPC_LBZX, PPC_LD,
PPC_LDARX, PPC_LDBRX, PPC_LDU, PPC_LDUX, PPC_LDX, PPC_LHA,
PPC_LWAX, PPC_LWBRX, PPC_LWZ, PPC_LWZU, PPC_LWZUX, PPC_LWZX,
PPC_MADDHD, PPC_MADDHDU, PPC_MADDLD, PPC_MCRF, PPC_MCRXR,
PPC_MCRXRX, PPC_MFCR, PPC_MFOCRF, PPC_MFSPR, PPC_MFTB,
- PPC_MODSD, PPC_MODSW, PPC_MODUD, PPC_MODUW, PPC_MTCRF,
+ PPC_MOD, PPC_MTCRF,
PPC_MFCTR, PPC_MTCTR, PPC_MFLR, PPC_MTLR, PPC_MTOCRF,
PPC_MTSPR, PPC_MULHD, PPC_MULHDU, PPC_MULHW, PPC_MULHWU,
PPC_MULLD, PPC_MULLI, PPC_MULLW, PPC_NAND, PPC_NEG, PPC_NOR, PPC_NOP,
OP_CNTLZD, OP_CNTLZW, OP_CNTTZD, OP_CNTTZW, OP_CRAND,
OP_CRANDC, OP_CREQV, OP_CRNAND, OP_CRNOR, OP_CROR, OP_CRORC,
OP_CRXOR, OP_DARN, OP_DCBF, OP_DCBST, OP_DCBT, OP_DCBTST,
- OP_DCBZ, OP_DIVD, OP_DIVDE, OP_DIVDEU, OP_DIVDU, OP_DIVW,
- OP_DIVWE, OP_DIVWEU, OP_DIVWU, OP_EQV, OP_EXTSB, OP_EXTSH,
+ OP_DCBZ, OP_DIV, OP_EQV, OP_EXTSB, OP_EXTSH,
OP_EXTSW, OP_EXTSWSLI, OP_ICBI, OP_ICBT, OP_ISEL, OP_ISYNC,
OP_LOAD, OP_STORE, OP_MADDHD, OP_MADDHDU, OP_MADDLD, OP_MCRF,
OP_MCRXR, OP_MCRXRX, OP_MFCR, OP_MFOCRF, OP_MFCTR, OP_MFLR,
- OP_MFTB, OP_MFSPR, OP_MODSD, OP_MODSW, OP_MODUD, OP_MODUW,
+ OP_MFTB, OP_MFSPR, OP_MOD,
OP_MTCRF, OP_MTOCRF, OP_MTCTR, OP_MTLR, OP_MTSPR, OP_MUL_L64,
OP_MUL_H64, OP_MUL_H32, OP_NAND, OP_NEG, OP_NOR, OP_OR,
OP_ORC, OP_POPCNTB, OP_POPCNTD, OP_POPCNTW, OP_PRTYD,
constant TOO_OFFSET : integer := 0;
- type unit_t is (NONE, ALU, LDST, MUL);
+ type unit_t is (NONE, ALU, LDST, MUL, DIV);
type length_t is (NONE, is1B, is2B, is4B, is8B);
type decode_rom_t is record
--- /dev/null
+library ieee;
+use ieee.std_logic_1164.all;
+use ieee.numeric_std.all;
+
+library work;
+use work.common.all;
+use work.decode_types.all;
+use work.crhelpers.all;
+
+entity divider is
+ port (
+ clk : in std_logic;
+ rst : in std_logic;
+ d_in : in Decode2ToDividerType;
+ d_out : out DividerToWritebackType
+ );
+end entity divider;
+
+architecture behaviour of divider is
+ signal dend : std_ulogic_vector(127 downto 0);
+ signal div : unsigned(63 downto 0);
+ signal quot : std_ulogic_vector(63 downto 0);
+ signal result : std_ulogic_vector(63 downto 0);
+ signal sresult : std_ulogic_vector(63 downto 0);
+ signal qbit : std_ulogic;
+ signal running : std_ulogic;
+ signal count : unsigned(6 downto 0);
+ signal neg_result : std_ulogic;
+ signal is_modulus : std_ulogic;
+ signal is_32bit : std_ulogic;
+ signal rc : std_ulogic;
+ signal write_reg : std_ulogic_vector(4 downto 0);
+
+ function compare_zero(value : std_ulogic_vector(63 downto 0); is_32 : std_ulogic)
+ return std_ulogic_vector is
+ begin
+ if is_32 = '1' then
+ if value(31) = '1' then
+ return "1000";
+ elsif unsigned(value(30 downto 0)) > 0 then
+ return "0100";
+ else
+ return "0010";
+ end if;
+ else
+ if value(63) = '1' then
+ return "1000";
+ elsif unsigned(value(62 downto 0)) > 0 then
+ return "0100";
+ else
+ return "0010";
+ end if;
+ end if;
+ end function compare_zero;
+
+begin
+ divider_0: process(clk)
+ begin
+ if rising_edge(clk) then
+ if rst = '1' then
+ dend <= (others => '0');
+ div <= (others => '0');
+ quot <= (others => '0');
+ running <= '0';
+ count <= "0000000";
+ elsif d_in.valid = '1' then
+ if d_in.is_extended = '1' then
+ dend <= d_in.dividend & x"0000000000000000";
+ else
+ dend <= x"0000000000000000" & d_in.dividend;
+ end if;
+ div <= unsigned(d_in.divisor);
+ quot <= (others => '0');
+ write_reg <= d_in.write_reg;
+ neg_result <= d_in.neg_result;
+ is_modulus <= d_in.is_modulus;
+ is_32bit <= d_in.is_32bit;
+ rc <= d_in.rc;
+ count <= "0000000";
+ running <= '1';
+ elsif running = '1' then
+ if dend(127) = '1' or unsigned(dend(126 downto 63)) >= div then
+ dend <= std_ulogic_vector(unsigned(dend(126 downto 63)) - div) &
+ dend(62 downto 0) & '0';
+ quot <= quot(62 downto 0) & '1';
+ else
+ dend <= dend(126 downto 0) & '0';
+ quot <= quot(62 downto 0) & '0';
+ end if;
+ if count = "0111111" then
+ running <= '0';
+ end if;
+ count <= count + 1;
+ else
+ count <= "0000000";
+ end if;
+ end if;
+ end process;
+
+ divider_1: process(all)
+ begin
+ d_out <= DividerToWritebackInit;
+ d_out.write_reg_nr <= write_reg;
+
+ if count(6) = '1' then
+ d_out.valid <= '1';
+ d_out.write_reg_enable <= '1';
+ if is_modulus = '1' then
+ result <= dend(127 downto 64);
+ else
+ result <= quot;
+ end if;
+ if neg_result = '1' then
+ sresult <= std_ulogic_vector(- signed(result));
+ else
+ sresult <= result;
+ end if;
+ d_out.write_reg_data <= sresult;
+ if rc = '1' then
+ d_out.write_cr_enable <= '1';
+ d_out.write_cr_mask <= num_to_fxm(0);
+ d_out.write_cr_data <= compare_zero(sresult, is_32bit) & x"0000000";
+ end if;
+ end if;
+ end process;
+
+end architecture behaviour;
--- /dev/null
+library ieee;
+use ieee.std_logic_1164.all;
+use ieee.numeric_std.all;
+
+library work;
+use work.decode_types.all;
+use work.common.all;
+use work.glibc_random.all;
+use work.ppc_fx_insns.all;
+
+entity divider_tb is
+end divider_tb;
+
+architecture behave of divider_tb is
+ signal clk : std_ulogic;
+ signal rst : std_ulogic;
+ constant clk_period : time := 10 ns;
+
+ signal d1 : Decode2ToDividerType;
+ signal d2 : DividerToWritebackType;
+begin
+ divider_0: entity work.divider
+ port map (clk => clk, rst => rst, d_in => d1, d_out => d2);
+
+ clk_process: process
+ begin
+ clk <= '0';
+ wait for clk_period/2;
+ clk <= '1';
+ wait for clk_period/2;
+ end process;
+
+ stim_process: process
+ variable ra, rb, rt, behave_rt: std_ulogic_vector(63 downto 0);
+ variable si: std_ulogic_vector(15 downto 0);
+ variable d128: std_ulogic_vector(127 downto 0);
+ variable q128: std_ulogic_vector(127 downto 0);
+ begin
+ rst <= '1';
+ wait for clk_period;
+ rst <= '0';
+
+ d1.valid <= '1';
+ d1.write_reg <= "10001";
+ d1.dividend <= x"0000000010001000";
+ d1.divisor <= x"0000000000001111";
+ d1.neg_result <= '0';
+ d1.is_32bit <= '0';
+ d1.is_extended <= '0';
+ d1.is_modulus <= '0';
+ d1.rc <= '0';
+
+ wait for clk_period;
+ assert d2.valid = '0';
+
+ d1.valid <= '0';
+
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+
+ assert d2.valid = '1';
+ assert d2.write_reg_enable = '1';
+ assert d2.write_reg_nr = "10001";
+ assert d2.write_reg_data = x"000000000000f001" report "result " & to_hstring(d2.write_reg_data);
+ assert d2.write_cr_enable = '0';
+
+ wait for clk_period;
+ assert d2.valid = '0' report "valid";
+
+ d1.valid <= '1';
+ d1.rc <= '1';
+
+ wait for clk_period;
+ assert d2.valid = '0' report "valid";
+
+ d1.valid <= '0';
+
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+
+ assert d2.valid = '1';
+ assert d2.write_reg_enable = '1';
+ assert d2.write_reg_nr = "10001";
+ assert d2.write_reg_data = x"000000000000f001" report "result " & to_hstring(d2.write_reg_data);
+ assert d2.write_cr_enable = '1';
+ assert d2.write_cr_mask = "10000000";
+ assert d2.write_cr_data = x"40000000" report "cr data is " & to_hstring(d2.write_cr_data);
+
+ wait for clk_period;
+ assert d2.valid = '0';
+
+ -- test divd
+ report "test divd";
+ divd_loop : for dlength in 1 to 8 loop
+ for vlength in 1 to dlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 64));
+ rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
+
+ if ra(63) = '1' then
+ d1.dividend <= std_ulogic_vector(- signed(ra));
+ else
+ d1.dividend <= ra;
+ end if;
+ if rb(63) = '1' then
+ d1.divisor <= std_ulogic_vector(- signed(rb));
+ else
+ d1.divisor <= rb;
+ end if;
+ if ra(63) = rb(63) then
+ d1.neg_result <= '0';
+ else
+ d1.neg_result <= '1';
+ end if;
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if rb /= x"0000000000000000" then
+ behave_rt := ppc_divd(ra, rb);
+ assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
+ report "bad divd expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divd";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test divdu
+ report "test divdu";
+ divdu_loop : for dlength in 1 to 8 loop
+ for vlength in 1 to dlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 64));
+ rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
+
+ d1.dividend <= ra;
+ d1.divisor <= rb;
+ d1.neg_result <= '0';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if rb /= x"0000000000000000" then
+ behave_rt := ppc_divdu(ra, rb);
+ assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
+ report "bad divdu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divdu";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test divde
+ report "test divde";
+ divde_loop : for vlength in 1 to 8 loop
+ for dlength in 1 to vlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 64));
+ rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
+
+ if ra(63) = '1' then
+ d1.dividend <= std_ulogic_vector(- signed(ra));
+ else
+ d1.dividend <= ra;
+ end if;
+ if rb(63) = '1' then
+ d1.divisor <= std_ulogic_vector(- signed(rb));
+ else
+ d1.divisor <= rb;
+ end if;
+ if ra(63) = rb(63) then
+ d1.neg_result <= '0';
+ else
+ d1.neg_result <= '1';
+ end if;
+ d1.is_extended <= '1';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if unsigned(d1.divisor) > unsigned(d1.dividend) then
+ d128 := ra & x"0000000000000000";
+ q128 := std_ulogic_vector(signed(d128) / signed(rb));
+ behave_rt := q128(63 downto 0);
+ assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
+ report "bad divde expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divde";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test divdeu
+ report "test divdeu";
+ divdeu_loop : for vlength in 1 to 8 loop
+ for dlength in 1 to vlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 64));
+ rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
+
+ d1.dividend <= ra;
+ d1.divisor <= rb;
+ d1.neg_result <= '0';
+ d1.is_extended <= '1';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if unsigned(d1.divisor) > unsigned(d1.dividend) then
+ d128 := ra & x"0000000000000000";
+ q128 := std_ulogic_vector(unsigned(d128) / unsigned(rb));
+ behave_rt := q128(63 downto 0);
+ assert to_hstring(behave_rt) = to_hstring(d2.write_reg_data)
+ report "bad divdeu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divdeu";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test divw
+ report "test divw";
+ divw_loop : for dlength in 1 to 4 loop
+ for vlength in 1 to dlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 64));
+ rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
+
+ if ra(63) = '1' then
+ d1.dividend <= std_ulogic_vector(- signed(ra));
+ else
+ d1.dividend <= ra;
+ end if;
+ if rb(63) = '1' then
+ d1.divisor <= std_ulogic_vector(- signed(rb));
+ else
+ d1.divisor <= rb;
+ end if;
+ if ra(63) = rb(63) then
+ d1.neg_result <= '0';
+ else
+ d1.neg_result <= '1';
+ end if;
+ d1.is_extended <= '0';
+ d1.is_32bit <= '1';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if rb /= x"0000000000000000" then
+ behave_rt := ppc_divw(ra, rb);
+ assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
+ report "bad divw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divw";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test divwu
+ report "test divwu";
+ divwu_loop : for dlength in 1 to 4 loop
+ for vlength in 1 to dlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 64));
+ rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
+
+ d1.dividend <= ra;
+ d1.divisor <= rb;
+ d1.neg_result <= '0';
+ d1.is_extended <= '0';
+ d1.is_32bit <= '1';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if rb /= x"0000000000000000" then
+ behave_rt := ppc_divwu(ra, rb);
+ assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
+ report "bad divwu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divwu";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test divwe
+ report "test divwe";
+ divwe_loop : for vlength in 1 to 4 loop
+ for dlength in 1 to vlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 32)) & x"00000000";
+ rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
+
+ if ra(63) = '1' then
+ d1.dividend <= std_ulogic_vector(- signed(ra));
+ else
+ d1.dividend <= ra;
+ end if;
+ if rb(63) = '1' then
+ d1.divisor <= std_ulogic_vector(- signed(rb));
+ else
+ d1.divisor <= rb;
+ end if;
+ if ra(63) = rb(63) then
+ d1.neg_result <= '0';
+ else
+ d1.neg_result <= '1';
+ end if;
+ d1.is_extended <= '0';
+ d1.is_32bit <= '1';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if unsigned(d1.divisor(31 downto 0)) > unsigned(d1.dividend(63 downto 32)) then
+ behave_rt := std_ulogic_vector(signed(ra) / signed(rb));
+ assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
+ report "bad divwe expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
+ assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divwe";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test divweu
+ report "test divweu";
+ divweu_loop : for vlength in 1 to 4 loop
+ for dlength in 1 to vlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 32)) & x"00000000";
+ rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
+
+ d1.dividend <= ra;
+ d1.divisor <= rb;
+ d1.neg_result <= '0';
+ d1.is_extended <= '0';
+ d1.is_32bit <= '1';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if unsigned(d1.divisor(31 downto 0)) > unsigned(d1.dividend(63 downto 32)) then
+ behave_rt := std_ulogic_vector(unsigned(ra) / unsigned(rb));
+ assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
+ report "bad divweu expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data) & " for ra = " & to_hstring(ra) & " rb = " & to_hstring(rb);
+ assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for divweu";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test modsd
+ report "test modsd";
+ modsd_loop : for dlength in 1 to 8 loop
+ for vlength in 1 to dlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 64));
+ rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
+
+ if ra(63) = '1' then
+ d1.dividend <= std_ulogic_vector(- signed(ra));
+ else
+ d1.dividend <= ra;
+ end if;
+ if rb(63) = '1' then
+ d1.divisor <= std_ulogic_vector(- signed(rb));
+ else
+ d1.divisor <= rb;
+ end if;
+ d1.neg_result <= ra(63);
+ d1.is_extended <= '0';
+ d1.is_32bit <= '0';
+ d1.is_modulus <= '1';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if rb /= x"0000000000000000" then
+ behave_rt := std_ulogic_vector(signed(ra) rem signed(rb));
+ assert behave_rt = d2.write_reg_data
+ report "bad modsd expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for modsd";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test modud
+ report "test modud";
+ modud_loop : for dlength in 1 to 8 loop
+ for vlength in 1 to dlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 64));
+ rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
+
+ d1.dividend <= ra;
+ d1.divisor <= rb;
+ d1.neg_result <= '0';
+ d1.is_extended <= '0';
+ d1.is_32bit <= '0';
+ d1.is_modulus <= '1';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if rb /= x"0000000000000000" then
+ behave_rt := std_ulogic_vector(unsigned(ra) rem unsigned(rb));
+ assert behave_rt = d2.write_reg_data
+ report "bad modud expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('1', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for modud";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test modsw
+ report "test modsw";
+ modsw_loop : for dlength in 1 to 4 loop
+ for vlength in 1 to dlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(signed(pseudorand(dlength * 8)), 64));
+ rb := std_ulogic_vector(resize(signed(pseudorand(vlength * 8)), 64));
+
+ if ra(63) = '1' then
+ d1.dividend <= std_ulogic_vector(- signed(ra));
+ else
+ d1.dividend <= ra;
+ end if;
+ if rb(63) = '1' then
+ d1.divisor <= std_ulogic_vector(- signed(rb));
+ else
+ d1.divisor <= rb;
+ end if;
+ d1.neg_result <= ra(63);
+ d1.is_extended <= '0';
+ d1.is_32bit <= '1';
+ d1.is_modulus <= '1';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if rb /= x"0000000000000000" then
+ behave_rt := x"00000000" & std_ulogic_vector(signed(ra(31 downto 0)) rem signed(rb(31 downto 0)));
+ assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
+ report "bad modsw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for modsw";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ -- test moduw
+ report "test moduw";
+ moduw_loop : for dlength in 1 to 4 loop
+ for vlength in 1 to dlength loop
+ for i in 0 to 100 loop
+ ra := std_ulogic_vector(resize(unsigned(pseudorand(dlength * 8)), 64));
+ rb := std_ulogic_vector(resize(unsigned(pseudorand(vlength * 8)), 64));
+
+ d1.dividend <= ra;
+ d1.divisor <= rb;
+ d1.neg_result <= '0';
+ d1.is_extended <= '0';
+ d1.is_32bit <= '1';
+ d1.is_modulus <= '1';
+ d1.valid <= '1';
+
+ wait for clk_period;
+
+ d1.valid <= '0';
+ for j in 0 to 64 loop
+ wait for clk_period;
+ if d2.valid = '1' then
+ exit;
+ end if;
+ end loop;
+ assert d2.valid = '1';
+
+ if rb /= x"0000000000000000" then
+ behave_rt := x"00000000" & std_ulogic_vector(unsigned(ra(31 downto 0)) rem unsigned(rb(31 downto 0)));
+ assert behave_rt(31 downto 0) = d2.write_reg_data(31 downto 0)
+ report "bad moduw expected " & to_hstring(behave_rt) & " got " & to_hstring(d2.write_reg_data);
+ assert ppc_cmpi('0', behave_rt, x"0000") & x"0000000" = d2.write_cr_data
+ report "bad CR setting for moduw";
+ end if;
+ end loop;
+ end loop;
+ end loop;
+
+ assert false report "end of test" severity failure;
+ wait;
+ end process;
+end behave;
-- Keep our test cases happy for now, ignore trap instructions
report "OP_TDI FIXME";
- when OP_DIVDU =>
- if SIM = true then
- result := ppc_divdu(e_in.read_data1, e_in.read_data2);
- result_en := 1;
- else
- terminate_out <= '1';
- report "illegal";
- end if;
- when OP_DIVD =>
- if SIM = true then
- result := ppc_divd(e_in.read_data1, e_in.read_data2);
- result_en := 1;
- else
- terminate_out <= '1';
- report "illegal";
- end if;
- when OP_DIVWU =>
- if SIM = true then
- result := ppc_divwu(e_in.read_data1, e_in.read_data2);
- result_en := 1;
- else
- terminate_out <= '1';
- report "illegal";
- end if;
- when OP_DIVW =>
- if SIM = true then
- result := ppc_divw(e_in.read_data1, e_in.read_data2);
- result_en := 1;
- else
- terminate_out <= '1';
- report "illegal";
- end if;
when others =>
terminate_out <= '1';
report "illegal";
- loadstore1.vhdl
- loadstore2.vhdl
- multiply.vhdl
+ - divider.vhdl
- writeback.vhdl
- insn_helpers.vhdl
- core.vhdl
e_in : in Execute2ToWritebackType;
l_in : in Loadstore2ToWritebackType;
m_in : in MultiplyToWritebackType;
+ d_in : in DividerToWritebackType;
w_out : out WritebackToRegisterFileType;
c_out : out WritebackToCrFileType;
variable x : std_ulogic_vector(0 downto 0);
variable y : std_ulogic_vector(0 downto 0);
variable z : std_ulogic_vector(0 downto 0);
+ variable w : std_ulogic_vector(0 downto 0);
begin
x := "" & e_in.valid;
y := "" & l_in.valid;
z := "" & m_in.valid;
- assert (to_integer(unsigned(x)) + to_integer(unsigned(y)) + to_integer(unsigned(z))) <= 1 severity failure;
+ w := "" & d_in.valid;
+ assert (to_integer(unsigned(x)) + to_integer(unsigned(y)) + to_integer(unsigned(z)) + to_integer(unsigned(w))) <= 1 severity failure;
x := "" & e_in.write_enable;
y := "" & l_in.write_enable;
z := "" & m_in.write_reg_enable;
- assert (to_integer(unsigned(x)) + to_integer(unsigned(y)) + to_integer(unsigned(z))) <= 1 severity failure;
+ w := "" & d_in.write_reg_enable;
+ assert (to_integer(unsigned(x)) + to_integer(unsigned(y)) + to_integer(unsigned(z)) + to_integer(unsigned(w))) <= 1 severity failure;
- assert not(e_in.write_cr_enable = '1' and m_in.write_cr_enable = '1');
+ x := "" & e_in.write_cr_enable;
+ y := "" & m_in.write_cr_enable;
+ z := "" & d_in.write_cr_enable;
+ assert (to_integer(unsigned(x)) + to_integer(unsigned(y)) + to_integer(unsigned(z))) <= 1 severity failure;
w_out <= WritebackToRegisterFileInit;
c_out <= WritebackToCrFileInit;
complete_out <= '0';
- if e_in.valid = '1' or l_in.valid = '1' or m_in.valid = '1' then
+ if e_in.valid = '1' or l_in.valid = '1' or m_in.valid = '1' or d_in.valid = '1' then
complete_out <= '1';
end if;
c_out.write_cr_mask <= m_in.write_cr_mask;
c_out.write_cr_data <= m_in.write_cr_data;
end if;
+
+ if d_in.write_reg_enable = '1' then
+ w_out.write_enable <= '1';
+ w_out.write_reg <= d_in.write_reg_nr;
+ w_out.write_data <= d_in.write_reg_data;
+ end if;
+
+ if d_in.write_cr_enable = '1' then
+ c_out.write_cr_enable <= '1';
+ c_out.write_cr_mask <= d_in.write_cr_mask;
+ c_out.write_cr_data <= d_in.write_cr_data;
+ end if;
end process;
end;