--- /dev/null
- struct nir_function_overload *overload =
- vtn_value(b, w[3], vtn_value_type_function)->func->impl->overload;
+/*
+ * Copyright © 2015 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ * Authors:
+ * Jason Ekstrand (jason@jlekstrand.net)
+ *
+ */
+
+#include "spirv_to_nir_private.h"
+#include "nir_vla.h"
+#include "nir_control_flow.h"
+
+static struct vtn_ssa_value *
+vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
+{
+ struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
+ val->type = type;
+
+ if (glsl_type_is_vector_or_scalar(type)) {
+ unsigned num_components = glsl_get_vector_elements(val->type);
+ nir_ssa_undef_instr *undef =
+ nir_ssa_undef_instr_create(b->shader, num_components);
+
+ nir_instr_insert_before_cf_list(&b->impl->body, &undef->instr);
+ val->def = &undef->def;
+ } else {
+ unsigned elems = glsl_get_length(val->type);
+ val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
+ if (glsl_type_is_matrix(type)) {
+ const struct glsl_type *elem_type =
+ glsl_vector_type(glsl_get_base_type(type),
+ glsl_get_vector_elements(type));
+
+ for (unsigned i = 0; i < elems; i++)
+ val->elems[i] = vtn_undef_ssa_value(b, elem_type);
+ } else if (glsl_type_is_array(type)) {
+ const struct glsl_type *elem_type = glsl_get_array_element(type);
+ for (unsigned i = 0; i < elems; i++)
+ val->elems[i] = vtn_undef_ssa_value(b, elem_type);
+ } else {
+ for (unsigned i = 0; i < elems; i++) {
+ const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
+ val->elems[i] = vtn_undef_ssa_value(b, elem_type);
+ }
+ }
+ }
+
+ return val;
+}
+
+static struct vtn_ssa_value *
+vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
+ const struct glsl_type *type)
+{
+ struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
+
+ if (entry)
+ return entry->data;
+
+ struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
+ val->type = type;
+
+ switch (glsl_get_base_type(type)) {
+ case GLSL_TYPE_INT:
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_BOOL:
+ case GLSL_TYPE_FLOAT:
+ case GLSL_TYPE_DOUBLE:
+ if (glsl_type_is_vector_or_scalar(type)) {
+ unsigned num_components = glsl_get_vector_elements(val->type);
+ nir_load_const_instr *load =
+ nir_load_const_instr_create(b->shader, num_components);
+
+ for (unsigned i = 0; i < num_components; i++)
+ load->value.u[i] = constant->value.u[i];
+
+ nir_instr_insert_before_cf_list(&b->impl->body, &load->instr);
+ val->def = &load->def;
+ } else {
+ assert(glsl_type_is_matrix(type));
+ unsigned rows = glsl_get_vector_elements(val->type);
+ unsigned columns = glsl_get_matrix_columns(val->type);
+ val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
+
+ for (unsigned i = 0; i < columns; i++) {
+ struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
+ col_val->type = glsl_get_column_type(val->type);
+ nir_load_const_instr *load =
+ nir_load_const_instr_create(b->shader, rows);
+
+ for (unsigned j = 0; j < rows; j++)
+ load->value.u[j] = constant->value.u[rows * i + j];
+
+ nir_instr_insert_before_cf_list(&b->impl->body, &load->instr);
+ col_val->def = &load->def;
+
+ val->elems[i] = col_val;
+ }
+ }
+ break;
+
+ case GLSL_TYPE_ARRAY: {
+ unsigned elems = glsl_get_length(val->type);
+ val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
+ const struct glsl_type *elem_type = glsl_get_array_element(val->type);
+ for (unsigned i = 0; i < elems; i++)
+ val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
+ elem_type);
+ break;
+ }
+
+ case GLSL_TYPE_STRUCT: {
+ unsigned elems = glsl_get_length(val->type);
+ val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
+ for (unsigned i = 0; i < elems; i++) {
+ const struct glsl_type *elem_type =
+ glsl_get_struct_field(val->type, i);
+ val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
+ elem_type);
+ }
+ break;
+ }
+
+ default:
+ unreachable("bad constant type");
+ }
+
+ return val;
+}
+
+static struct vtn_ssa_value *
+vtn_variable_load(struct vtn_builder *b, nir_deref_var *src,
+ struct vtn_type *src_type);
+
+struct vtn_ssa_value *
+vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
+{
+ struct vtn_value *val = vtn_untyped_value(b, value_id);
+ switch (val->value_type) {
+ case vtn_value_type_undef:
+ return vtn_undef_ssa_value(b, val->type->type);
+
+ case vtn_value_type_constant:
+ return vtn_const_ssa_value(b, val->constant, val->const_type);
+
+ case vtn_value_type_ssa:
+ return val->ssa;
+
+ case vtn_value_type_deref:
+ /* This is needed for function parameters */
+ return vtn_variable_load(b, val->deref, val->deref_type);
+
+ default:
+ unreachable("Invalid type for an SSA value");
+ }
+}
+
+static char *
+vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
+ unsigned word_count)
+{
+ return ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
+}
+
+static const uint32_t *
+vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
+ const uint32_t *end, vtn_instruction_handler handler)
+{
+ const uint32_t *w = start;
+ while (w < end) {
+ SpvOp opcode = w[0] & SpvOpCodeMask;
+ unsigned count = w[0] >> SpvWordCountShift;
+ assert(count >= 1 && w + count <= end);
+
+ if (opcode == SpvOpNop) {
+ w++;
+ continue;
+ }
+
+ if (!handler(b, opcode, w, count))
+ return w;
+
+ w += count;
+ }
+ assert(w == end);
+ return w;
+}
+
+static void
+vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ switch (opcode) {
+ case SpvOpExtInstImport: {
+ struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
+ if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) {
+ val->ext_handler = vtn_handle_glsl450_instruction;
+ } else {
+ assert(!"Unsupported extension");
+ }
+ break;
+ }
+
+ case SpvOpExtInst: {
+ struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
+ bool handled = val->ext_handler(b, w[4], w, count);
+ (void)handled;
+ assert(handled);
+ break;
+ }
+
+ default:
+ unreachable("Unhandled opcode");
+ }
+}
+
+static void
+_foreach_decoration_helper(struct vtn_builder *b,
+ struct vtn_value *base_value,
+ int parent_member,
+ struct vtn_value *value,
+ vtn_decoration_foreach_cb cb, void *data)
+{
+ for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
+ int member;
+ if (dec->member < 0) {
+ member = parent_member;
+ } else {
+ assert(parent_member == -1);
+ member = dec->member;
+ }
+
+ if (dec->group) {
+ assert(dec->group->value_type == vtn_value_type_decoration_group);
+ _foreach_decoration_helper(b, base_value, member, dec->group,
+ cb, data);
+ } else {
+ cb(b, base_value, member, dec, data);
+ }
+ }
+}
+
+/** Iterates (recursively if needed) over all of the decorations on a value
+ *
+ * This function iterates over all of the decorations applied to a given
+ * value. If it encounters a decoration group, it recurses into the group
+ * and iterates over all of those decorations as well.
+ */
+void
+vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
+ vtn_decoration_foreach_cb cb, void *data)
+{
+ _foreach_decoration_helper(b, value, -1, value, cb, data);
+}
+
+static void
+vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ const uint32_t *w_end = w + count;
+ const uint32_t target = w[1];
+ w += 2;
+
+ int member = -1;
+ switch (opcode) {
+ case SpvOpDecorationGroup:
+ vtn_push_value(b, target, vtn_value_type_undef);
+ break;
+
+ case SpvOpMemberDecorate:
+ member = *(w++);
+ /* fallthrough */
+ case SpvOpDecorate: {
+ struct vtn_value *val = &b->values[target];
+
+ struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
+ dec->member = member;
+ dec->decoration = *(w++);
+ dec->literals = w;
+
+ /* Link into the list */
+ dec->next = val->decoration;
+ val->decoration = dec;
+ break;
+ }
+
+ case SpvOpGroupMemberDecorate:
+ member = *(w++);
+ /* fallthrough */
+ case SpvOpGroupDecorate: {
+ struct vtn_value *group = &b->values[target];
+ assert(group->value_type == vtn_value_type_decoration_group);
+
+ for (; w < w_end; w++) {
+ struct vtn_value *val = &b->values[*w];
+ struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
+ dec->member = member;
+ dec->group = group;
+
+ /* Link into the list */
+ dec->next = val->decoration;
+ val->decoration = dec;
+ }
+ break;
+ }
+
+ default:
+ unreachable("Unhandled opcode");
+ }
+}
+
+struct member_decoration_ctx {
+ struct glsl_struct_field *fields;
+ struct vtn_type *type;
+};
+
+/* does a shallow copy of a vtn_type */
+
+static struct vtn_type *
+vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
+{
+ struct vtn_type *dest = ralloc(b, struct vtn_type);
+ dest->type = src->type;
+ dest->is_builtin = src->is_builtin;
+ if (src->is_builtin)
+ dest->builtin = src->builtin;
+
+ if (!glsl_type_is_vector_or_scalar(src->type)) {
+ switch (glsl_get_base_type(src->type)) {
+ case GLSL_TYPE_ARRAY:
+ dest->array_element = src->array_element;
+ dest->stride = src->stride;
+ break;
+
+ case GLSL_TYPE_INT:
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_BOOL:
+ case GLSL_TYPE_FLOAT:
+ case GLSL_TYPE_DOUBLE:
+ /* matrices */
+ dest->row_major = src->row_major;
+ dest->stride = src->stride;
+ break;
+
+ case GLSL_TYPE_STRUCT: {
+ unsigned elems = glsl_get_length(src->type);
+
+ dest->members = ralloc_array(b, struct vtn_type *, elems);
+ memcpy(dest->members, src->members, elems * sizeof(struct vtn_type *));
+
+ dest->offsets = ralloc_array(b, unsigned, elems);
+ memcpy(dest->offsets, src->offsets, elems * sizeof(unsigned));
+ break;
+ }
+
+ default:
+ unreachable("unhandled type");
+ }
+ }
+
+ return dest;
+}
+
+static void
+struct_member_decoration_cb(struct vtn_builder *b,
+ struct vtn_value *val, int member,
+ const struct vtn_decoration *dec, void *void_ctx)
+{
+ struct member_decoration_ctx *ctx = void_ctx;
+
+ if (member < 0)
+ return;
+
+ switch (dec->decoration) {
+ case SpvDecorationRelaxedPrecision:
+ break; /* FIXME: Do nothing with this for now. */
+ case SpvDecorationNoPerspective:
+ ctx->fields[member].interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
+ break;
+ case SpvDecorationFlat:
+ ctx->fields[member].interpolation = INTERP_QUALIFIER_FLAT;
+ break;
+ case SpvDecorationCentroid:
+ ctx->fields[member].centroid = true;
+ break;
+ case SpvDecorationSample:
+ ctx->fields[member].sample = true;
+ break;
+ case SpvDecorationLocation:
+ ctx->fields[member].location = dec->literals[0];
+ break;
+ case SpvDecorationBuiltIn:
+ ctx->type->members[member] = vtn_type_copy(b,
+ ctx->type->members[member]);
+ ctx->type->members[member]->is_builtin = true;
+ ctx->type->members[member]->builtin = dec->literals[0];
+ ctx->type->builtin_block = true;
+ break;
+ case SpvDecorationOffset:
+ ctx->type->offsets[member] = dec->literals[0];
+ break;
+ case SpvDecorationMatrixStride:
+ ctx->type->members[member]->stride = dec->literals[0];
+ break;
+ case SpvDecorationColMajor:
+ break; /* Nothing to do here. Column-major is the default. */
+ default:
+ unreachable("Unhandled member decoration");
+ }
+}
+
+static void
+type_decoration_cb(struct vtn_builder *b,
+ struct vtn_value *val, int member,
+ const struct vtn_decoration *dec, void *ctx)
+{
+ struct vtn_type *type = val->type;
+
+ if (member != -1)
+ return;
+
+ switch (dec->decoration) {
+ case SpvDecorationArrayStride:
+ type->stride = dec->literals[0];
+ break;
+ case SpvDecorationBlock:
+ type->block = true;
+ break;
+ case SpvDecorationBufferBlock:
+ type->buffer_block = true;
+ break;
+ case SpvDecorationGLSLShared:
+ case SpvDecorationGLSLPacked:
+ /* Ignore these, since we get explicit offsets anyways */
+ break;
+
+ case SpvDecorationStream:
+ assert(dec->literals[0] == 0);
+ break;
+
+ default:
+ unreachable("Unhandled type decoration");
+ }
+}
+
+static unsigned
+translate_image_format(SpvImageFormat format)
+{
+ switch (format) {
+ case SpvImageFormatUnknown: return 0; /* GL_NONE */
+ case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
+ case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
+ case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
+ case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
+ case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
+ case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
+ case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
+ case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
+ case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
+ case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
+ case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
+ case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
+ case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
+ case SpvImageFormatR16: return 0x822A; /* GL_R16 */
+ case SpvImageFormatR8: return 0x8229; /* GL_R8 */
+ case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
+ case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
+ case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
+ case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
+ case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
+ case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
+ case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
+ case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
+ case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
+ case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
+ case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
+ case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
+ case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
+ case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
+ case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
+ case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
+ case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
+ case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
+ case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
+ case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
+ case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
+ case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
+ case SpvImageFormatR16ui: return 0x823A; /* GL_RG16UI */
+ case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
+ default:
+ assert(!"Invalid image format");
+ return 0;
+ }
+}
+
+static void
+vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type);
+
+ val->type = rzalloc(b, struct vtn_type);
+ val->type->is_builtin = false;
+
+ switch (opcode) {
+ case SpvOpTypeVoid:
+ val->type->type = glsl_void_type();
+ break;
+ case SpvOpTypeBool:
+ val->type->type = glsl_bool_type();
+ break;
+ case SpvOpTypeInt:
+ val->type->type = glsl_int_type();
+ break;
+ case SpvOpTypeFloat:
+ val->type->type = glsl_float_type();
+ break;
+
+ case SpvOpTypeVector: {
+ const struct glsl_type *base =
+ vtn_value(b, w[2], vtn_value_type_type)->type->type;
+ unsigned elems = w[3];
+
+ assert(glsl_type_is_scalar(base));
+ val->type->type = glsl_vector_type(glsl_get_base_type(base), elems);
+ break;
+ }
+
+ case SpvOpTypeMatrix: {
+ struct vtn_type *base =
+ vtn_value(b, w[2], vtn_value_type_type)->type;
+ unsigned columns = w[3];
+
+ assert(glsl_type_is_vector(base->type));
+ val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
+ glsl_get_vector_elements(base->type),
+ columns);
+ val->type->array_element = base;
+ val->type->row_major = false;
+ val->type->stride = 0;
+ break;
+ }
+
+ case SpvOpTypeRuntimeArray:
+ case SpvOpTypeArray: {
+ struct vtn_type *array_element =
+ vtn_value(b, w[2], vtn_value_type_type)->type;
+
+ unsigned length;
+ if (opcode == SpvOpTypeRuntimeArray) {
+ /* A length of 0 is used to denote unsized arrays */
+ length = 0;
+ } else {
+ length =
+ vtn_value(b, w[3], vtn_value_type_constant)->constant->value.u[0];
+ }
+
+ val->type->type = glsl_array_type(array_element->type, length);
+ val->type->array_element = array_element;
+ val->type->stride = 0;
+ break;
+ }
+
+ case SpvOpTypeStruct: {
+ unsigned num_fields = count - 2;
+ val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
+ val->type->offsets = ralloc_array(b, unsigned, num_fields);
+
+ NIR_VLA(struct glsl_struct_field, fields, count);
+ for (unsigned i = 0; i < num_fields; i++) {
+ /* TODO: Handle decorators */
+ val->type->members[i] =
+ vtn_value(b, w[i + 2], vtn_value_type_type)->type;
+ fields[i].type = val->type->members[i]->type;
+ fields[i].name = ralloc_asprintf(b, "field%d", i);
+ fields[i].location = -1;
+ fields[i].interpolation = 0;
+ fields[i].centroid = 0;
+ fields[i].sample = 0;
+ fields[i].matrix_layout = 2;
+ }
+
+ struct member_decoration_ctx ctx = {
+ .fields = fields,
+ .type = val->type
+ };
+
+ vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
+
+ const char *name = val->name ? val->name : "struct";
+
+ val->type->type = glsl_struct_type(fields, num_fields, name);
+ break;
+ }
+
+ case SpvOpTypeFunction: {
+ const struct glsl_type *return_type =
+ vtn_value(b, w[2], vtn_value_type_type)->type->type;
+ NIR_VLA(struct glsl_function_param, params, count - 3);
+ for (unsigned i = 0; i < count - 3; i++) {
+ params[i].type = vtn_value(b, w[i + 3], vtn_value_type_type)->type->type;
+
+ /* FIXME: */
+ params[i].in = true;
+ params[i].out = true;
+ }
+ val->type->type = glsl_function_type(return_type, params, count - 3);
+ break;
+ }
+
+ case SpvOpTypePointer:
+ /* FIXME: For now, we'll just do the really lame thing and return
+ * the same type. The validator should ensure that the proper number
+ * of dereferences happen
+ */
+ val->type = vtn_value(b, w[3], vtn_value_type_type)->type;
+ break;
+
+ case SpvOpTypeImage: {
+ const struct glsl_type *sampled_type =
+ vtn_value(b, w[2], vtn_value_type_type)->type->type;
+
+ assert(glsl_type_is_vector_or_scalar(sampled_type));
+
+ enum glsl_sampler_dim dim;
+ switch ((SpvDim)w[3]) {
+ case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
+ case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
+ case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
+ case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
+ case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
+ case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
+ default:
+ unreachable("Invalid SPIR-V Sampler dimension");
+ }
+
+ bool is_shadow = w[4];
+ bool is_array = w[5];
+ bool multisampled = w[6];
+ unsigned sampled = w[7];
+ SpvImageFormat format = w[8];
+
+ assert(!multisampled && "FIXME: Handl multi-sampled textures");
+
+ val->type->image_format = translate_image_format(format);
+
+ if (sampled == 1) {
+ val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
+ glsl_get_base_type(sampled_type));
+ } else if (sampled == 2) {
+ assert(format);
+ assert(!is_shadow);
+ val->type->type = glsl_image_type(dim, is_array,
+ glsl_get_base_type(sampled_type));
+ } else {
+ assert(!"We need to know if the image will be sampled");
+ }
+ break;
+ }
+
+ case SpvOpTypeSampledImage:
+ val->type = vtn_value(b, w[2], vtn_value_type_type)->type;
+ break;
+
+ case SpvOpTypeSampler:
+ /* The actual sampler type here doesn't really matter. It gets
+ * thrown away the moment you combine it with an image. What really
+ * matters is that it's a sampler type as opposed to an integer type
+ * so the backend knows what to do.
+ *
+ * TODO: Eventually we should consider adding a "bare sampler" type
+ * to glsl_types.
+ */
+ val->type->type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false,
+ GLSL_TYPE_FLOAT);
+ break;
+
+ case SpvOpTypeOpaque:
+ case SpvOpTypeEvent:
+ case SpvOpTypeDeviceEvent:
+ case SpvOpTypeReserveId:
+ case SpvOpTypeQueue:
+ case SpvOpTypePipe:
+ default:
+ unreachable("Unhandled opcode");
+ }
+
+ vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
+}
+
+static void
+vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
+ val->const_type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
+ val->constant = ralloc(b, nir_constant);
+ switch (opcode) {
+ case SpvOpConstantTrue:
+ assert(val->const_type == glsl_bool_type());
+ val->constant->value.u[0] = NIR_TRUE;
+ break;
+ case SpvOpConstantFalse:
+ assert(val->const_type == glsl_bool_type());
+ val->constant->value.u[0] = NIR_FALSE;
+ break;
+ case SpvOpConstant:
+ assert(glsl_type_is_scalar(val->const_type));
+ val->constant->value.u[0] = w[3];
+ break;
+ case SpvOpConstantComposite: {
+ unsigned elem_count = count - 3;
+ nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
+ for (unsigned i = 0; i < elem_count; i++)
+ elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant;
+
+ switch (glsl_get_base_type(val->const_type)) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ case GLSL_TYPE_FLOAT:
+ case GLSL_TYPE_BOOL:
+ if (glsl_type_is_matrix(val->const_type)) {
+ unsigned rows = glsl_get_vector_elements(val->const_type);
+ assert(glsl_get_matrix_columns(val->const_type) == elem_count);
+ for (unsigned i = 0; i < elem_count; i++)
+ for (unsigned j = 0; j < rows; j++)
+ val->constant->value.u[rows * i + j] = elems[i]->value.u[j];
+ } else {
+ assert(glsl_type_is_vector(val->const_type));
+ assert(glsl_get_vector_elements(val->const_type) == elem_count);
+ for (unsigned i = 0; i < elem_count; i++)
+ val->constant->value.u[i] = elems[i]->value.u[0];
+ }
+ ralloc_free(elems);
+ break;
+
+ case GLSL_TYPE_STRUCT:
+ case GLSL_TYPE_ARRAY:
+ ralloc_steal(val->constant, elems);
+ val->constant->elements = elems;
+ break;
+
+ default:
+ unreachable("Unsupported type for constants");
+ }
+ break;
+ }
+
+ default:
+ unreachable("Unhandled opcode");
+ }
+}
+
+static void
+set_mode_system_value(nir_variable_mode *mode)
+{
+ assert(*mode == nir_var_system_value || *mode == nir_var_shader_in);
+ *mode = nir_var_system_value;
+}
+
+static void
+validate_per_vertex_mode(struct vtn_builder *b, nir_variable_mode mode)
+{
+ switch (b->shader->stage) {
+ case MESA_SHADER_VERTEX:
+ assert(mode == nir_var_shader_out);
+ break;
+ case MESA_SHADER_GEOMETRY:
+ assert(mode == nir_var_shader_out || mode == nir_var_shader_in);
+ break;
+ default:
+ assert(!"Invalid shader stage");
+ }
+}
+
+static void
+vtn_get_builtin_location(struct vtn_builder *b,
+ SpvBuiltIn builtin, int *location,
+ nir_variable_mode *mode)
+{
+ switch (builtin) {
+ case SpvBuiltInPosition:
+ *location = VARYING_SLOT_POS;
+ validate_per_vertex_mode(b, *mode);
+ break;
+ case SpvBuiltInPointSize:
+ *location = VARYING_SLOT_PSIZ;
+ validate_per_vertex_mode(b, *mode);
+ break;
+ case SpvBuiltInClipDistance:
+ *location = VARYING_SLOT_CLIP_DIST0; /* XXX CLIP_DIST1? */
+ validate_per_vertex_mode(b, *mode);
+ break;
+ case SpvBuiltInCullDistance:
+ /* XXX figure this out */
+ unreachable("unhandled builtin");
+ case SpvBuiltInVertexId:
+ /* Vulkan defines VertexID to be zero-based and reserves the new
+ * builtin keyword VertexIndex to indicate the non-zero-based value.
+ */
+ *location = SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInInstanceId:
+ *location = SYSTEM_VALUE_INSTANCE_ID;
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInPrimitiveId:
+ *location = VARYING_SLOT_PRIMITIVE_ID;
+ *mode = nir_var_shader_out;
+ break;
+ case SpvBuiltInInvocationId:
+ *location = SYSTEM_VALUE_INVOCATION_ID;
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInLayer:
+ *location = VARYING_SLOT_LAYER;
+ *mode = nir_var_shader_out;
+ break;
+ case SpvBuiltInTessLevelOuter:
+ case SpvBuiltInTessLevelInner:
+ case SpvBuiltInTessCoord:
+ case SpvBuiltInPatchVertices:
+ unreachable("no tessellation support");
+ case SpvBuiltInFragCoord:
+ *location = VARYING_SLOT_POS;
+ assert(b->shader->stage == MESA_SHADER_FRAGMENT);
+ assert(*mode == nir_var_shader_in);
+ break;
+ case SpvBuiltInPointCoord:
+ *location = VARYING_SLOT_PNTC;
+ assert(b->shader->stage == MESA_SHADER_FRAGMENT);
+ assert(*mode == nir_var_shader_in);
+ break;
+ case SpvBuiltInFrontFacing:
+ *location = VARYING_SLOT_FACE;
+ assert(b->shader->stage == MESA_SHADER_FRAGMENT);
+ assert(*mode == nir_var_shader_in);
+ break;
+ case SpvBuiltInSampleId:
+ *location = SYSTEM_VALUE_SAMPLE_ID;
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInSamplePosition:
+ *location = SYSTEM_VALUE_SAMPLE_POS;
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInSampleMask:
+ *location = SYSTEM_VALUE_SAMPLE_MASK_IN; /* XXX out? */
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInFragDepth:
+ *location = FRAG_RESULT_DEPTH;
+ assert(b->shader->stage == MESA_SHADER_FRAGMENT);
+ assert(*mode == nir_var_shader_out);
+ break;
+ case SpvBuiltInNumWorkgroups:
+ *location = SYSTEM_VALUE_NUM_WORK_GROUPS;
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInWorkgroupSize:
+ /* This should already be handled */
+ unreachable("unsupported builtin");
+ break;
+ case SpvBuiltInWorkgroupId:
+ *location = SYSTEM_VALUE_WORK_GROUP_ID;
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInLocalInvocationId:
+ *location = SYSTEM_VALUE_LOCAL_INVOCATION_ID;
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInLocalInvocationIndex:
+ *location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInGlobalInvocationId:
+ *location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID;
+ set_mode_system_value(mode);
+ break;
+ case SpvBuiltInHelperInvocation:
+ default:
+ unreachable("unsupported builtin");
+ }
+}
+
+static void
+var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
+ const struct vtn_decoration *dec, void *void_var)
+{
+ assert(val->value_type == vtn_value_type_deref);
+ assert(val->deref->deref.child == NULL);
+ assert(val->deref->var == void_var);
+
+ nir_variable *var = void_var;
+ switch (dec->decoration) {
+ case SpvDecorationRelaxedPrecision:
+ break; /* FIXME: Do nothing with this for now. */
+ case SpvDecorationNoPerspective:
+ var->data.interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
+ break;
+ case SpvDecorationFlat:
+ var->data.interpolation = INTERP_QUALIFIER_FLAT;
+ break;
+ case SpvDecorationCentroid:
+ var->data.centroid = true;
+ break;
+ case SpvDecorationSample:
+ var->data.sample = true;
+ break;
+ case SpvDecorationInvariant:
+ var->data.invariant = true;
+ break;
+ case SpvDecorationConstant:
+ assert(var->constant_initializer != NULL);
+ var->data.read_only = true;
+ break;
+ case SpvDecorationNonWritable:
+ var->data.read_only = true;
+ break;
+ case SpvDecorationLocation:
+ var->data.location = dec->literals[0];
+ break;
+ case SpvDecorationComponent:
+ var->data.location_frac = dec->literals[0];
+ break;
+ case SpvDecorationIndex:
+ var->data.explicit_index = true;
+ var->data.index = dec->literals[0];
+ break;
+ case SpvDecorationBinding:
+ var->data.explicit_binding = true;
+ var->data.binding = dec->literals[0];
+ break;
+ case SpvDecorationDescriptorSet:
+ var->data.descriptor_set = dec->literals[0];
+ break;
+ case SpvDecorationBuiltIn: {
+ SpvBuiltIn builtin = dec->literals[0];
+
+ if (builtin == SpvBuiltInWorkgroupSize) {
+ /* This shouldn't be a builtin. It's actually a constant. */
+ var->data.mode = nir_var_global;
+ var->data.read_only = true;
+
+ nir_constant *val = ralloc(var, nir_constant);
+ val->value.u[0] = b->shader->info.cs.local_size[0];
+ val->value.u[1] = b->shader->info.cs.local_size[1];
+ val->value.u[2] = b->shader->info.cs.local_size[2];
+ var->constant_initializer = val;
+ break;
+ }
+
+ nir_variable_mode mode = var->data.mode;
+ vtn_get_builtin_location(b, builtin, &var->data.location, &mode);
+ var->data.explicit_location = true;
+ var->data.mode = mode;
+ if (mode == nir_var_shader_in || mode == nir_var_system_value)
+ var->data.read_only = true;
+
+ if (builtin == SpvBuiltInFragCoord || builtin == SpvBuiltInSamplePosition)
+ var->data.origin_upper_left = b->origin_upper_left;
+
+ if (mode == nir_var_shader_out)
+ b->builtins[dec->literals[0]].out = var;
+ else
+ b->builtins[dec->literals[0]].in = var;
+ break;
+ }
+ case SpvDecorationRowMajor:
+ case SpvDecorationColMajor:
+ case SpvDecorationGLSLShared:
+ case SpvDecorationPatch:
+ case SpvDecorationRestrict:
+ case SpvDecorationAliased:
+ case SpvDecorationVolatile:
+ case SpvDecorationCoherent:
+ case SpvDecorationNonReadable:
+ case SpvDecorationUniform:
+ /* This is really nice but we have no use for it right now. */
+ case SpvDecorationCPacked:
+ case SpvDecorationSaturatedConversion:
+ case SpvDecorationStream:
+ case SpvDecorationOffset:
+ case SpvDecorationXfbBuffer:
+ case SpvDecorationFuncParamAttr:
+ case SpvDecorationFPRoundingMode:
+ case SpvDecorationFPFastMathMode:
+ case SpvDecorationLinkageAttributes:
+ case SpvDecorationSpecId:
+ break;
+ default:
+ unreachable("Unhandled variable decoration");
+ }
+}
+
+static nir_variable *
+get_builtin_variable(struct vtn_builder *b,
+ nir_variable_mode mode,
+ const struct glsl_type *type,
+ SpvBuiltIn builtin)
+{
+ nir_variable *var;
+ if (mode == nir_var_shader_out)
+ var = b->builtins[builtin].out;
+ else
+ var = b->builtins[builtin].in;
+
+ if (!var) {
+ int location;
+ vtn_get_builtin_location(b, builtin, &location, &mode);
+
+ var = nir_variable_create(b->shader, mode, type, "builtin");
+
+ var->data.location = location;
+ var->data.explicit_location = true;
+
+ if (builtin == SpvBuiltInFragCoord || builtin == SpvBuiltInSamplePosition)
+ var->data.origin_upper_left = b->origin_upper_left;
+
+ if (mode == nir_var_shader_out)
+ b->builtins[builtin].out = var;
+ else
+ b->builtins[builtin].in = var;
+ }
+
+ return var;
+}
+
+static struct vtn_ssa_value *
+_vtn_variable_load(struct vtn_builder *b,
+ nir_deref_var *src_deref, nir_deref *src_deref_tail)
+{
+ struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
+ val->type = src_deref_tail->type;
+
+ /* The deref tail may contain a deref to select a component of a vector (in
+ * other words, it might not be an actual tail) so we have to save it away
+ * here since we overwrite it later.
+ */
+ nir_deref *old_child = src_deref_tail->child;
+
+ if (glsl_type_is_vector_or_scalar(val->type)) {
+ /* Terminate the deref chain in case there is one more link to pick
+ * off a component of the vector.
+ */
+ src_deref_tail->child = NULL;
+
+ nir_intrinsic_instr *load =
+ nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_var);
+ load->variables[0] =
+ nir_deref_as_var(nir_copy_deref(load, &src_deref->deref));
+ load->num_components = glsl_get_vector_elements(val->type);
+ nir_ssa_dest_init(&load->instr, &load->dest, load->num_components, NULL);
+
+ nir_builder_instr_insert(&b->nb, &load->instr);
+
+ if (src_deref->var->data.mode == nir_var_uniform &&
+ glsl_get_base_type(val->type) == GLSL_TYPE_BOOL) {
+ /* Uniform boolean loads need to be fixed up since they're defined
+ * to be zero/nonzero rather than NIR_FALSE/NIR_TRUE.
+ */
+ val->def = nir_ine(&b->nb, &load->dest.ssa, nir_imm_int(&b->nb, 0));
+ } else {
+ val->def = &load->dest.ssa;
+ }
+ } else if (glsl_get_base_type(val->type) == GLSL_TYPE_ARRAY ||
+ glsl_type_is_matrix(val->type)) {
+ unsigned elems = glsl_get_length(val->type);
+ val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
+
+ nir_deref_array *deref = nir_deref_array_create(b);
+ deref->deref_array_type = nir_deref_array_type_direct;
+ deref->deref.type = glsl_get_array_element(val->type);
+ src_deref_tail->child = &deref->deref;
+ for (unsigned i = 0; i < elems; i++) {
+ deref->base_offset = i;
+ val->elems[i] = _vtn_variable_load(b, src_deref, &deref->deref);
+ }
+ } else {
+ assert(glsl_get_base_type(val->type) == GLSL_TYPE_STRUCT);
+ unsigned elems = glsl_get_length(val->type);
+ val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
+
+ nir_deref_struct *deref = nir_deref_struct_create(b, 0);
+ src_deref_tail->child = &deref->deref;
+ for (unsigned i = 0; i < elems; i++) {
+ deref->index = i;
+ deref->deref.type = glsl_get_struct_field(val->type, i);
+ val->elems[i] = _vtn_variable_load(b, src_deref, &deref->deref);
+ }
+ }
+
+ src_deref_tail->child = old_child;
+
+ return val;
+}
+
+static void
+_vtn_variable_store(struct vtn_builder *b,
+ nir_deref_var *dest_deref, nir_deref *dest_deref_tail,
+ struct vtn_ssa_value *src)
+{
+ nir_deref *old_child = dest_deref_tail->child;
+
+ if (glsl_type_is_vector_or_scalar(src->type)) {
+ /* Terminate the deref chain in case there is one more link to pick
+ * off a component of the vector.
+ */
+ dest_deref_tail->child = NULL;
+
+ nir_intrinsic_instr *store =
+ nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_var);
+ store->variables[0] =
+ nir_deref_as_var(nir_copy_deref(store, &dest_deref->deref));
+ store->num_components = glsl_get_vector_elements(src->type);
+ store->const_index[0] = (1 << store->num_components) - 1;
+ store->src[0] = nir_src_for_ssa(src->def);
+
+ nir_builder_instr_insert(&b->nb, &store->instr);
+ } else if (glsl_get_base_type(src->type) == GLSL_TYPE_ARRAY ||
+ glsl_type_is_matrix(src->type)) {
+ unsigned elems = glsl_get_length(src->type);
+
+ nir_deref_array *deref = nir_deref_array_create(b);
+ deref->deref_array_type = nir_deref_array_type_direct;
+ deref->deref.type = glsl_get_array_element(src->type);
+ dest_deref_tail->child = &deref->deref;
+ for (unsigned i = 0; i < elems; i++) {
+ deref->base_offset = i;
+ _vtn_variable_store(b, dest_deref, &deref->deref, src->elems[i]);
+ }
+ } else {
+ assert(glsl_get_base_type(src->type) == GLSL_TYPE_STRUCT);
+ unsigned elems = glsl_get_length(src->type);
+
+ nir_deref_struct *deref = nir_deref_struct_create(b, 0);
+ dest_deref_tail->child = &deref->deref;
+ for (unsigned i = 0; i < elems; i++) {
+ deref->index = i;
+ deref->deref.type = glsl_get_struct_field(src->type, i);
+ _vtn_variable_store(b, dest_deref, &deref->deref, src->elems[i]);
+ }
+ }
+
+ dest_deref_tail->child = old_child;
+}
+
+static nir_ssa_def *
+nir_vulkan_resource_index(nir_builder *b, unsigned set, unsigned binding,
+ nir_variable_mode mode, nir_ssa_def *array_index)
+{
+ if (array_index == NULL)
+ array_index = nir_imm_int(b, 0);
+
+ nir_intrinsic_instr *instr =
+ nir_intrinsic_instr_create(b->shader,
+ nir_intrinsic_vulkan_resource_index);
+ instr->src[0] = nir_src_for_ssa(array_index);
+ instr->const_index[0] = set;
+ instr->const_index[1] = binding;
+ instr->const_index[2] = mode;
+
+ nir_ssa_dest_init(&instr->instr, &instr->dest, 1, NULL);
+ nir_builder_instr_insert(b, &instr->instr);
+
+ return &instr->dest.ssa;
+}
+
+static struct vtn_ssa_value *
+_vtn_block_load(struct vtn_builder *b, nir_intrinsic_op op,
+ unsigned set, unsigned binding, nir_variable_mode mode,
+ nir_ssa_def *index, nir_ssa_def *offset, struct vtn_type *type)
+{
+ struct vtn_ssa_value *val = ralloc(b, struct vtn_ssa_value);
+ val->type = type->type;
+ val->transposed = NULL;
+ if (glsl_type_is_vector_or_scalar(type->type)) {
+ nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, op);
+ load->num_components = glsl_get_vector_elements(type->type);
+
+ switch (op) {
+ case nir_intrinsic_load_ubo:
+ case nir_intrinsic_load_ssbo: {
+ nir_ssa_def *res_index = nir_vulkan_resource_index(&b->nb,
+ set, binding,
+ mode, index);
+ load->src[0] = nir_src_for_ssa(res_index);
+ load->src[1] = nir_src_for_ssa(offset);
+ break;
+ }
+
+ case nir_intrinsic_load_push_constant:
+ load->src[0] = nir_src_for_ssa(offset);
+ break;
+
+ default:
+ unreachable("Invalid block load intrinsic");
+ }
+
+ nir_ssa_dest_init(&load->instr, &load->dest, load->num_components, NULL);
+ nir_builder_instr_insert(&b->nb, &load->instr);
+
+ if (glsl_get_base_type(type->type) == GLSL_TYPE_BOOL) {
+ /* Loads of booleans from externally visible memory need to be
+ * fixed up since they're defined to be zero/nonzero rather than
+ * NIR_FALSE/NIR_TRUE.
+ */
+ val->def = nir_ine(&b->nb, &load->dest.ssa, nir_imm_int(&b->nb, 0));
+ } else {
+ val->def = &load->dest.ssa;
+ }
+ } else {
+ unsigned elems = glsl_get_length(type->type);
+ val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
+ if (glsl_type_is_struct(type->type)) {
+ for (unsigned i = 0; i < elems; i++) {
+ nir_ssa_def *child_offset =
+ nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, type->offsets[i]));
+ val->elems[i] = _vtn_block_load(b, op, set, binding, mode, index,
+ child_offset, type->members[i]);
+ }
+ } else {
+ for (unsigned i = 0; i < elems; i++) {
+ nir_ssa_def *child_offset =
+ nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * type->stride));
+ val->elems[i] = _vtn_block_load(b, op, set, binding, mode, index,
+ child_offset,type->array_element);
+ }
+ }
+ }
+
+ return val;
+}
+
+static void
+vtn_block_get_offset(struct vtn_builder *b, nir_deref_var *src,
+ struct vtn_type **type, nir_deref *src_tail,
+ nir_ssa_def **index, nir_ssa_def **offset)
+{
+ nir_deref *deref = &src->deref;
+
+ if (deref->child->deref_type == nir_deref_type_array) {
+ deref = deref->child;
+ *type = (*type)->array_element;
+ nir_deref_array *deref_array = nir_deref_as_array(deref);
+ *index = nir_imm_int(&b->nb, deref_array->base_offset);
+
+ if (deref_array->deref_array_type == nir_deref_array_type_indirect)
+ *index = nir_iadd(&b->nb, *index, deref_array->indirect.ssa);
+ } else {
+ *index = nir_imm_int(&b->nb, 0);
+ }
+
+ *offset = nir_imm_int(&b->nb, 0);
+ while (deref != src_tail) {
+ deref = deref->child;
+ switch (deref->deref_type) {
+ case nir_deref_type_array: {
+ nir_deref_array *deref_array = nir_deref_as_array(deref);
+ nir_ssa_def *off = nir_imm_int(&b->nb, deref_array->base_offset);
+
+ if (deref_array->deref_array_type == nir_deref_array_type_indirect)
+ off = nir_iadd(&b->nb, off, deref_array->indirect.ssa);
+
+ off = nir_imul(&b->nb, off, nir_imm_int(&b->nb, (*type)->stride));
+ *offset = nir_iadd(&b->nb, *offset, off);
+
+ *type = (*type)->array_element;
+ break;
+ }
+
+ case nir_deref_type_struct: {
+ nir_deref_struct *deref_struct = nir_deref_as_struct(deref);
+
+ unsigned elem_off = (*type)->offsets[deref_struct->index];
+ *offset = nir_iadd(&b->nb, *offset, nir_imm_int(&b->nb, elem_off));
+
+ *type = (*type)->members[deref_struct->index];
+ break;
+ }
+
+ default:
+ unreachable("unknown deref type");
+ }
+ }
+}
+
+static struct vtn_ssa_value *
+vtn_block_load(struct vtn_builder *b, nir_deref_var *src,
+ struct vtn_type *type, nir_deref *src_tail)
+{
+ nir_ssa_def *index;
+ nir_ssa_def *offset;
+ vtn_block_get_offset(b, src, &type, src_tail, &index, &offset);
+
+ nir_intrinsic_op op;
+ if (src->var->data.mode == nir_var_uniform) {
+ if (src->var->data.descriptor_set >= 0) {
+ /* UBO load */
+ assert(src->var->data.binding >= 0);
+
+ op = nir_intrinsic_load_ubo;
+ } else {
+ /* Push constant load */
+ assert(src->var->data.descriptor_set == -1 &&
+ src->var->data.binding == -1);
+
+ op = nir_intrinsic_load_push_constant;
+ }
+ } else {
+ assert(src->var->data.mode == nir_var_shader_storage);
+ op = nir_intrinsic_load_ssbo;
+ }
+
+ return _vtn_block_load(b, op, src->var->data.descriptor_set,
+ src->var->data.binding, src->var->data.mode,
+ index, offset, type);
+}
+
+/*
+ * Gets the NIR-level deref tail, which may have as a child an array deref
+ * selecting which component due to OpAccessChain supporting per-component
+ * indexing in SPIR-V.
+ */
+
+static nir_deref *
+get_deref_tail(nir_deref_var *deref)
+{
+ nir_deref *cur = &deref->deref;
+ while (!glsl_type_is_vector_or_scalar(cur->type) && cur->child)
+ cur = cur->child;
+
+ return cur;
+}
+
+static nir_ssa_def *vtn_vector_extract(struct vtn_builder *b,
+ nir_ssa_def *src, unsigned index);
+
+static nir_ssa_def *vtn_vector_extract_dynamic(struct vtn_builder *b,
+ nir_ssa_def *src,
+ nir_ssa_def *index);
+
+static bool
+variable_is_external_block(nir_variable *var)
+{
+ return var->interface_type &&
+ glsl_type_is_struct(var->interface_type) &&
+ (var->data.mode == nir_var_uniform ||
+ var->data.mode == nir_var_shader_storage);
+}
+
+static struct vtn_ssa_value *
+vtn_variable_load(struct vtn_builder *b, nir_deref_var *src,
+ struct vtn_type *src_type)
+{
+ nir_deref *src_tail = get_deref_tail(src);
+
+ struct vtn_ssa_value *val;
+ if (variable_is_external_block(src->var))
+ val = vtn_block_load(b, src, src_type, src_tail);
+ else
+ val = _vtn_variable_load(b, src, src_tail);
+
+ if (src_tail->child) {
+ nir_deref_array *vec_deref = nir_deref_as_array(src_tail->child);
+ assert(vec_deref->deref.child == NULL);
+ val->type = vec_deref->deref.type;
+ if (vec_deref->deref_array_type == nir_deref_array_type_direct)
+ val->def = vtn_vector_extract(b, val->def, vec_deref->base_offset);
+ else
+ val->def = vtn_vector_extract_dynamic(b, val->def,
+ vec_deref->indirect.ssa);
+ }
+
+ return val;
+}
+
+static void
+_vtn_block_store(struct vtn_builder *b, nir_intrinsic_op op,
+ struct vtn_ssa_value *src, unsigned set, unsigned binding,
+ nir_variable_mode mode, nir_ssa_def *index,
+ nir_ssa_def *offset, struct vtn_type *type)
+{
+ assert(src->type == type->type);
+ if (glsl_type_is_vector_or_scalar(type->type)) {
+ nir_intrinsic_instr *store = nir_intrinsic_instr_create(b->shader, op);
+ store->num_components = glsl_get_vector_elements(type->type);
+ store->const_index[0] = (1 << store->num_components) - 1;
+ store->src[0] = nir_src_for_ssa(src->def);
+
+ nir_ssa_def *res_index = nir_vulkan_resource_index(&b->nb,
+ set, binding,
+ mode, index);
+ store->src[1] = nir_src_for_ssa(res_index);
+ store->src[2] = nir_src_for_ssa(offset);
+
+ nir_builder_instr_insert(&b->nb, &store->instr);
+ } else {
+ unsigned elems = glsl_get_length(type->type);
+ if (glsl_type_is_struct(type->type)) {
+ for (unsigned i = 0; i < elems; i++) {
+ nir_ssa_def *child_offset =
+ nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, type->offsets[i]));
+ _vtn_block_store(b, op, src->elems[i], set, binding, mode,
+ index, child_offset, type->members[i]);
+ }
+ } else {
+ for (unsigned i = 0; i < elems; i++) {
+ nir_ssa_def *child_offset =
+ nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * type->stride));
+ _vtn_block_store(b, op, src->elems[i], set, binding, mode,
+ index, child_offset, type->array_element);
+ }
+ }
+ }
+}
+
+static void
+vtn_block_store(struct vtn_builder *b, struct vtn_ssa_value *src,
+ nir_deref_var *dest, struct vtn_type *type,
+ nir_deref *dest_tail)
+{
+ nir_ssa_def *index;
+ nir_ssa_def *offset;
+ vtn_block_get_offset(b, dest, &type, dest_tail, &index, &offset);
+
+ nir_intrinsic_op op = nir_intrinsic_store_ssbo;
+
+ return _vtn_block_store(b, op, src, dest->var->data.descriptor_set,
+ dest->var->data.binding, dest->var->data.mode,
+ index, offset, type);
+}
+
+static nir_ssa_def * vtn_vector_insert(struct vtn_builder *b,
+ nir_ssa_def *src, nir_ssa_def *insert,
+ unsigned index);
+
+static nir_ssa_def * vtn_vector_insert_dynamic(struct vtn_builder *b,
+ nir_ssa_def *src,
+ nir_ssa_def *insert,
+ nir_ssa_def *index);
+static void
+vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src,
+ nir_deref_var *dest, struct vtn_type *dest_type)
+{
+ nir_deref *dest_tail = get_deref_tail(dest);
+ if (variable_is_external_block(dest->var)) {
+ assert(dest->var->data.mode == nir_var_shader_storage);
+ vtn_block_store(b, src, dest, dest_type, dest_tail);
+ } else {
+ if (dest_tail->child) {
+ struct vtn_ssa_value *val = _vtn_variable_load(b, dest, dest_tail);
+ nir_deref_array *deref = nir_deref_as_array(dest_tail->child);
+ assert(deref->deref.child == NULL);
+ if (deref->deref_array_type == nir_deref_array_type_direct)
+ val->def = vtn_vector_insert(b, val->def, src->def,
+ deref->base_offset);
+ else
+ val->def = vtn_vector_insert_dynamic(b, val->def, src->def,
+ deref->indirect.ssa);
+ _vtn_variable_store(b, dest, dest_tail, val);
+ } else {
+ _vtn_variable_store(b, dest, dest_tail, src);
+ }
+ }
+}
+
+static void
+vtn_variable_copy(struct vtn_builder *b, nir_deref_var *src,
+ nir_deref_var *dest, struct vtn_type *type)
+{
+ nir_deref *src_tail = get_deref_tail(src);
+
+ if (src_tail->child || src->var->interface_type) {
+ assert(get_deref_tail(dest)->child);
+ struct vtn_ssa_value *val = vtn_variable_load(b, src, type);
+ vtn_variable_store(b, val, dest, type);
+ } else {
+ nir_intrinsic_instr *copy =
+ nir_intrinsic_instr_create(b->shader, nir_intrinsic_copy_var);
+ copy->variables[0] = nir_deref_as_var(nir_copy_deref(copy, &dest->deref));
+ copy->variables[1] = nir_deref_as_var(nir_copy_deref(copy, &src->deref));
+
+ nir_builder_instr_insert(&b->nb, ©->instr);
+ }
+}
+
+/* Tries to compute the size of an interface block based on the strides and
+ * offsets that are provided to us in the SPIR-V source.
+ */
+static unsigned
+vtn_type_block_size(struct vtn_type *type)
+{
+ enum glsl_base_type base_type = glsl_get_base_type(type->type);
+ switch (base_type) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ case GLSL_TYPE_FLOAT:
+ case GLSL_TYPE_BOOL:
+ case GLSL_TYPE_DOUBLE: {
+ unsigned cols = type->row_major ? glsl_get_vector_elements(type->type) :
+ glsl_get_matrix_columns(type->type);
+ if (cols > 1) {
+ assert(type->stride > 0);
+ return type->stride * cols;
+ } else if (base_type == GLSL_TYPE_DOUBLE) {
+ return glsl_get_vector_elements(type->type) * 8;
+ } else {
+ return glsl_get_vector_elements(type->type) * 4;
+ }
+ }
+
+ case GLSL_TYPE_STRUCT:
+ case GLSL_TYPE_INTERFACE: {
+ unsigned size = 0;
+ unsigned num_fields = glsl_get_length(type->type);
+ for (unsigned f = 0; f < num_fields; f++) {
+ unsigned field_end = type->offsets[f] +
+ vtn_type_block_size(type->members[f]);
+ size = MAX2(size, field_end);
+ }
+ return size;
+ }
+
+ case GLSL_TYPE_ARRAY:
+ assert(type->stride > 0);
+ assert(glsl_get_length(type->type) > 0);
+ return type->stride * glsl_get_length(type->type);
+
+ default:
+ assert(!"Invalid block type");
+ return 0;
+ }
+}
+
+static bool
+is_interface_type(struct vtn_type *type)
+{
+ return type->block || type->buffer_block ||
+ glsl_type_is_sampler(type->type) ||
+ glsl_type_is_image(type->type);
+}
+
+static void
+vtn_handle_variables(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ switch (opcode) {
+ case SpvOpVariable: {
+ struct vtn_type *type =
+ vtn_value(b, w[1], vtn_value_type_type)->type;
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_deref);
+
+ nir_variable *var = rzalloc(b->shader, nir_variable);
+
+ var->type = type->type;
+ var->name = ralloc_strdup(var, val->name);
+
+ struct vtn_type *interface_type;
+ if (is_interface_type(type)) {
+ interface_type = type;
+ } else if (glsl_type_is_array(type->type) &&
+ is_interface_type(type->array_element)) {
+ interface_type = type->array_element;
+ } else {
+ interface_type = NULL;
+ }
+
+ if (interface_type)
+ var->interface_type = interface_type->type;
+
+ switch ((SpvStorageClass)w[3]) {
+ case SpvStorageClassUniform:
+ case SpvStorageClassUniformConstant:
+ if (interface_type && interface_type->buffer_block) {
+ var->data.mode = nir_var_shader_storage;
+ b->shader->info.num_ssbos++;
+ } else {
+ /* UBO's and samplers */
+ var->data.mode = nir_var_uniform;
+ var->data.read_only = true;
+ if (interface_type) {
+ if (glsl_type_is_image(interface_type->type)) {
+ b->shader->info.num_images++;
+ var->data.image.format = interface_type->image_format;
+ } else if (glsl_type_is_sampler(interface_type->type)) {
+ b->shader->info.num_textures++;
+ } else {
+ assert(glsl_type_is_struct(interface_type->type));
+ b->shader->info.num_ubos++;
+ }
+ }
+ }
+ break;
+ case SpvStorageClassPushConstant:
+ assert(interface_type && interface_type->block);
+ var->data.mode = nir_var_uniform;
+ var->data.read_only = true;
+ var->data.descriptor_set = -1;
+ var->data.binding = -1;
+
+ /* We have exactly one push constant block */
+ assert(b->shader->num_uniforms == 0);
+ b->shader->num_uniforms = vtn_type_block_size(type) * 4;
+ break;
+ case SpvStorageClassInput:
+ var->data.mode = nir_var_shader_in;
+ var->data.read_only = true;
+ break;
+ case SpvStorageClassOutput:
+ var->data.mode = nir_var_shader_out;
+ break;
+ case SpvStorageClassPrivate:
+ var->data.mode = nir_var_global;
+ break;
+ case SpvStorageClassFunction:
+ var->data.mode = nir_var_local;
+ break;
+ case SpvStorageClassWorkgroup:
+ case SpvStorageClassCrossWorkgroup:
+ case SpvStorageClassGeneric:
+ case SpvStorageClassAtomicCounter:
+ default:
+ unreachable("Unhandled variable storage class");
+ }
+
+ if (count > 4) {
+ assert(count == 5);
+ var->constant_initializer =
+ vtn_value(b, w[4], vtn_value_type_constant)->constant;
+ }
+
+ val->deref = nir_deref_var_create(b, var);
+ val->deref_type = type;
+
+ /* We handle decorations first because decorations might give us
+ * location information. We use the data.explicit_location field to
+ * note that the location provided is the "final" location. If
+ * data.explicit_location == false, this means that it's relative to
+ * whatever the base location is.
+ */
+ vtn_foreach_decoration(b, val, var_decoration_cb, var);
+
+ if (!var->data.explicit_location) {
+ if (b->execution_model == SpvExecutionModelFragment &&
+ var->data.mode == nir_var_shader_out) {
+ var->data.location += FRAG_RESULT_DATA0;
+ } else if (b->execution_model == SpvExecutionModelVertex &&
+ var->data.mode == nir_var_shader_in) {
+ var->data.location += VERT_ATTRIB_GENERIC0;
+ } else if (var->data.mode == nir_var_shader_in ||
+ var->data.mode == nir_var_shader_out) {
+ var->data.location += VARYING_SLOT_VAR0;
+ }
+ }
+
+ /* Interface block variables aren't actually going to be referenced
+ * by the generated NIR, so we don't put them in the list
+ */
+ if (interface_type && glsl_type_is_struct(interface_type->type))
+ break;
+
+ if (var->data.mode == nir_var_local) {
+ nir_function_impl_add_variable(b->impl, var);
+ } else {
+ nir_shader_add_variable(b->shader, var);
+ }
+
+ break;
+ }
+
+ case SpvOpAccessChain:
+ case SpvOpInBoundsAccessChain: {
+ nir_deref_var *base;
+ struct vtn_value *base_val = vtn_untyped_value(b, w[3]);
+ if (base_val->value_type == vtn_value_type_sampled_image) {
+ /* This is rather insane. SPIR-V allows you to use OpSampledImage
+ * to combine an array of images with a single sampler to get an
+ * array of sampled images that all share the same sampler.
+ * Fortunately, this means that we can more-or-less ignore the
+ * sampler when crawling the access chain, but it does leave us
+ * with this rather awkward little special-case.
+ */
+ base = base_val->sampled_image->image;
+ } else {
+ assert(base_val->value_type == vtn_value_type_deref);
+ base = base_val->deref;
+ }
+
+ nir_deref_var *deref = nir_deref_as_var(nir_copy_deref(b, &base->deref));
+ struct vtn_type *deref_type = vtn_value(b, w[3], vtn_value_type_deref)->deref_type;
+
+ nir_deref *tail = &deref->deref;
+ while (tail->child)
+ tail = tail->child;
+
+ for (unsigned i = 0; i < count - 4; i++) {
+ assert(w[i + 4] < b->value_id_bound);
+ struct vtn_value *idx_val = &b->values[w[i + 4]];
+
+ enum glsl_base_type base_type = glsl_get_base_type(tail->type);
+ switch (base_type) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ case GLSL_TYPE_FLOAT:
+ case GLSL_TYPE_DOUBLE:
+ case GLSL_TYPE_BOOL:
+ case GLSL_TYPE_ARRAY: {
+ nir_deref_array *deref_arr = nir_deref_array_create(b);
+ if (base_type == GLSL_TYPE_ARRAY ||
+ glsl_type_is_matrix(tail->type)) {
+ deref_type = deref_type->array_element;
+ } else {
+ assert(glsl_type_is_vector(tail->type));
+ deref_type = ralloc(b, struct vtn_type);
+ deref_type->type = glsl_scalar_type(base_type);
+ }
+
+ deref_arr->deref.type = deref_type->type;
+
+ if (idx_val->value_type == vtn_value_type_constant) {
+ unsigned idx = idx_val->constant->value.u[0];
+ deref_arr->deref_array_type = nir_deref_array_type_direct;
+ deref_arr->base_offset = idx;
+ } else {
+ assert(idx_val->value_type == vtn_value_type_ssa);
+ assert(glsl_type_is_scalar(idx_val->ssa->type));
+ deref_arr->deref_array_type = nir_deref_array_type_indirect;
+ deref_arr->base_offset = 0;
+ deref_arr->indirect = nir_src_for_ssa(idx_val->ssa->def);
+ }
+ tail->child = &deref_arr->deref;
+ break;
+ }
+
+ case GLSL_TYPE_STRUCT: {
+ assert(idx_val->value_type == vtn_value_type_constant);
+ unsigned idx = idx_val->constant->value.u[0];
+ deref_type = deref_type->members[idx];
+ nir_deref_struct *deref_struct = nir_deref_struct_create(b, idx);
+ deref_struct->deref.type = deref_type->type;
+ tail->child = &deref_struct->deref;
+ break;
+ }
+ default:
+ unreachable("Invalid type for deref");
+ }
+
+ if (deref_type->is_builtin) {
+ /* If we encounter a builtin, we throw away the ress of the
+ * access chain, jump to the builtin, and keep building.
+ */
+ const struct glsl_type *builtin_type = deref_type->type;
+
+ nir_deref_array *per_vertex_deref = NULL;
+ if (glsl_type_is_array(base->var->type)) {
+ /* This builtin is a per-vertex builtin */
+ assert(b->shader->stage == MESA_SHADER_GEOMETRY);
+ assert(base->var->data.mode == nir_var_shader_in);
+ builtin_type = glsl_array_type(builtin_type,
+ b->shader->info.gs.vertices_in);
+
+ /* The first non-var deref should be an array deref. */
+ assert(deref->deref.child->deref_type ==
+ nir_deref_type_array);
+ per_vertex_deref = nir_deref_as_array(deref->deref.child);
+ }
+
+ nir_variable *builtin = get_builtin_variable(b,
+ base->var->data.mode,
+ builtin_type,
+ deref_type->builtin);
+ deref = nir_deref_var_create(b, builtin);
+
+ if (per_vertex_deref) {
+ /* Since deref chains start at the variable, we can just
+ * steal that link and use it.
+ */
+ deref->deref.child = &per_vertex_deref->deref;
+ per_vertex_deref->deref.child = NULL;
+ per_vertex_deref->deref.type =
+ glsl_get_array_element(builtin_type);
+
+ tail = &per_vertex_deref->deref;
+ } else {
+ tail = &deref->deref;
+ }
+ } else {
+ tail = tail->child;
+ }
+ }
+
+ /* For uniform blocks, we don't resolve the access chain until we
+ * actually access the variable, so we need to keep around the original
+ * type of the variable.
+ */
+ if (variable_is_external_block(base->var))
+ deref_type = vtn_value(b, w[3], vtn_value_type_deref)->deref_type;
+
+ if (base_val->value_type == vtn_value_type_sampled_image) {
+ struct vtn_value *val =
+ vtn_push_value(b, w[2], vtn_value_type_sampled_image);
+ val->sampled_image = ralloc(b, struct vtn_sampled_image);
+ val->sampled_image->image = deref;
+ val->sampled_image->sampler = base_val->sampled_image->sampler;
+ } else {
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_deref);
+ val->deref = deref;
+ val->deref_type = deref_type;
+ }
+
+ break;
+ }
+
+ case SpvOpCopyMemory: {
+ nir_deref_var *dest = vtn_value(b, w[1], vtn_value_type_deref)->deref;
+ nir_deref_var *src = vtn_value(b, w[2], vtn_value_type_deref)->deref;
+ struct vtn_type *type =
+ vtn_value(b, w[1], vtn_value_type_deref)->deref_type;
+
+ vtn_variable_copy(b, src, dest, type);
+ break;
+ }
+
+ case SpvOpLoad: {
+ nir_deref_var *src = vtn_value(b, w[3], vtn_value_type_deref)->deref;
+ struct vtn_type *src_type =
+ vtn_value(b, w[3], vtn_value_type_deref)->deref_type;
+
+ if (src->var->interface_type &&
+ (glsl_type_is_sampler(src->var->interface_type) ||
+ glsl_type_is_image(src->var->interface_type))) {
+ vtn_push_value(b, w[2], vtn_value_type_deref)->deref = src;
+ return;
+ }
+
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
+ val->ssa = vtn_variable_load(b, src, src_type);
+ break;
+ }
+
+ case SpvOpStore: {
+ nir_deref_var *dest = vtn_value(b, w[1], vtn_value_type_deref)->deref;
+ struct vtn_type *dest_type =
+ vtn_value(b, w[1], vtn_value_type_deref)->deref_type;
+ struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]);
+ vtn_variable_store(b, src, dest, dest_type);
+ break;
+ }
+
+ case SpvOpCopyMemorySized:
+ case SpvOpArrayLength:
+ default:
+ unreachable("Unhandled opcode");
+ }
+}
+
+static void
+vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
- nir_call_instr *call = nir_call_instr_create(b->nb.shader, overload);
++ struct nir_function *callee =
++ vtn_value(b, w[3], vtn_value_type_function)->func->impl->function;
+
- if (!glsl_type_is_void(overload->return_type)) {
- out_tmp = nir_local_variable_create(b->impl, overload->return_type,
++ nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
+ for (unsigned i = 0; i < call->num_params; i++) {
+ unsigned arg_id = w[4 + i];
+ struct vtn_value *arg = vtn_untyped_value(b, arg_id);
+ if (arg->value_type == vtn_value_type_deref) {
+ call->params[i] =
+ nir_deref_as_var(nir_copy_deref(call, &arg->deref->deref));
+ } else {
+ struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id);
+
+ /* Make a temporary to store the argument in */
+ nir_variable *tmp =
+ nir_local_variable_create(b->impl, arg_ssa->type, "arg_tmp");
+ call->params[i] = nir_deref_var_create(call, tmp);
+
+ vtn_variable_store(b, arg_ssa, call->params[i], arg->type);
+ }
+ }
+
+ nir_variable *out_tmp = NULL;
- if (glsl_type_is_void(overload->return_type)) {
++ if (!glsl_type_is_void(callee->return_type)) {
++ out_tmp = nir_local_variable_create(b->impl, callee->return_type,
+ "out_tmp");
+ call->return_deref = nir_deref_var_create(call, out_tmp);
+ }
+
+ nir_builder_instr_insert(&b->nb, &call->instr);
+
- nir_function_overload *overload = nir_function_overload_create(func);
- overload->num_params = glsl_get_length(func_type);
- overload->params = ralloc_array(overload, nir_parameter,
- overload->num_params);
- for (unsigned i = 0; i < overload->num_params; i++) {
++ if (glsl_type_is_void(callee->return_type)) {
+ vtn_push_value(b, w[2], vtn_value_type_undef);
+ } else {
+ struct vtn_type *rettype = vtn_value(b, w[1], vtn_value_type_type)->type;
+ struct vtn_value *retval = vtn_push_value(b, w[2], vtn_value_type_ssa);
+ retval->ssa = vtn_variable_load(b, call->return_deref, rettype);
+ }
+}
+
+static struct vtn_ssa_value *
+vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
+{
+ struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
+ val->type = type;
+
+ if (!glsl_type_is_vector_or_scalar(type)) {
+ unsigned elems = glsl_get_length(type);
+ val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
+ for (unsigned i = 0; i < elems; i++) {
+ const struct glsl_type *child_type;
+
+ switch (glsl_get_base_type(type)) {
+ case GLSL_TYPE_INT:
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_BOOL:
+ case GLSL_TYPE_FLOAT:
+ case GLSL_TYPE_DOUBLE:
+ child_type = glsl_get_column_type(type);
+ break;
+ case GLSL_TYPE_ARRAY:
+ child_type = glsl_get_array_element(type);
+ break;
+ case GLSL_TYPE_STRUCT:
+ child_type = glsl_get_struct_field(type, i);
+ break;
+ default:
+ unreachable("unkown base type");
+ }
+
+ val->elems[i] = vtn_create_ssa_value(b, child_type);
+ }
+ }
+
+ return val;
+}
+
+static nir_tex_src
+vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
+{
+ nir_tex_src src;
+ src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
+ src.src_type = type;
+ return src;
+}
+
+static void
+vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ if (opcode == SpvOpSampledImage) {
+ struct vtn_value *val =
+ vtn_push_value(b, w[2], vtn_value_type_sampled_image);
+ val->sampled_image = ralloc(b, struct vtn_sampled_image);
+ val->sampled_image->image =
+ vtn_value(b, w[3], vtn_value_type_deref)->deref;
+ val->sampled_image->sampler =
+ vtn_value(b, w[4], vtn_value_type_deref)->deref;
+ return;
+ }
+
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
+
+ struct vtn_sampled_image sampled;
+ struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
+ if (sampled_val->value_type == vtn_value_type_sampled_image) {
+ sampled = *sampled_val->sampled_image;
+ } else {
+ assert(sampled_val->value_type == vtn_value_type_deref);
+ sampled.image = NULL;
+ sampled.sampler = sampled_val->deref;
+ }
+
+ nir_tex_src srcs[8]; /* 8 should be enough */
+ nir_tex_src *p = srcs;
+
+ unsigned idx = 4;
+
+ unsigned coord_components = 0;
+ switch (opcode) {
+ case SpvOpImageSampleImplicitLod:
+ case SpvOpImageSampleExplicitLod:
+ case SpvOpImageSampleDrefImplicitLod:
+ case SpvOpImageSampleDrefExplicitLod:
+ case SpvOpImageSampleProjImplicitLod:
+ case SpvOpImageSampleProjExplicitLod:
+ case SpvOpImageSampleProjDrefImplicitLod:
+ case SpvOpImageSampleProjDrefExplicitLod:
+ case SpvOpImageFetch:
+ case SpvOpImageGather:
+ case SpvOpImageDrefGather:
+ case SpvOpImageQueryLod: {
+ /* All these types have the coordinate as their first real argument */
+ struct vtn_ssa_value *coord = vtn_ssa_value(b, w[idx++]);
+ coord_components = glsl_get_vector_elements(coord->type);
+ p->src = nir_src_for_ssa(coord->def);
+ p->src_type = nir_tex_src_coord;
+ p++;
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* These all have an explicit depth value as their next source */
+ switch (opcode) {
+ case SpvOpImageSampleDrefImplicitLod:
+ case SpvOpImageSampleDrefExplicitLod:
+ case SpvOpImageSampleProjDrefImplicitLod:
+ case SpvOpImageSampleProjDrefExplicitLod:
+ (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparitor);
+ break;
+ default:
+ break;
+ }
+
+ /* Figure out the base texture operation */
+ nir_texop texop;
+ switch (opcode) {
+ case SpvOpImageSampleImplicitLod:
+ case SpvOpImageSampleDrefImplicitLod:
+ case SpvOpImageSampleProjImplicitLod:
+ case SpvOpImageSampleProjDrefImplicitLod:
+ texop = nir_texop_tex;
+ break;
+
+ case SpvOpImageSampleExplicitLod:
+ case SpvOpImageSampleDrefExplicitLod:
+ case SpvOpImageSampleProjExplicitLod:
+ case SpvOpImageSampleProjDrefExplicitLod:
+ texop = nir_texop_txl;
+ break;
+
+ case SpvOpImageFetch:
+ texop = nir_texop_txf;
+ break;
+
+ case SpvOpImageGather:
+ case SpvOpImageDrefGather:
+ texop = nir_texop_tg4;
+ break;
+
+ case SpvOpImageQuerySizeLod:
+ case SpvOpImageQuerySize:
+ texop = nir_texop_txs;
+ break;
+
+ case SpvOpImageQueryLod:
+ texop = nir_texop_lod;
+ break;
+
+ case SpvOpImageQueryLevels:
+ texop = nir_texop_query_levels;
+ break;
+
+ case SpvOpImageQuerySamples:
+ default:
+ unreachable("Unhandled opcode");
+ }
+
+ /* Now we need to handle some number of optional arguments */
+ if (idx < count) {
+ uint32_t operands = w[idx++];
+
+ if (operands & SpvImageOperandsBiasMask) {
+ assert(texop == nir_texop_tex);
+ texop = nir_texop_txb;
+ (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
+ }
+
+ if (operands & SpvImageOperandsLodMask) {
+ assert(texop == nir_texop_txl || texop == nir_texop_txf ||
+ texop == nir_texop_txs);
+ (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
+ }
+
+ if (operands & SpvImageOperandsGradMask) {
+ assert(texop == nir_texop_tex);
+ texop = nir_texop_txd;
+ (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
+ (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
+ }
+
+ if (operands & SpvImageOperandsOffsetMask ||
+ operands & SpvImageOperandsConstOffsetMask)
+ (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
+
+ if (operands & SpvImageOperandsConstOffsetsMask)
+ assert(!"Constant offsets to texture gather not yet implemented");
+
+ if (operands & SpvImageOperandsSampleMask) {
+ assert(texop == nir_texop_txf);
+ texop = nir_texop_txf_ms;
+ (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
+ }
+ }
+ /* We should have now consumed exactly all of the arguments */
+ assert(idx == count);
+
+ nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
+
+ const struct glsl_type *sampler_type =
+ nir_deref_tail(&sampled.sampler->deref)->type;
+ instr->sampler_dim = glsl_get_sampler_dim(sampler_type);
+
+ switch (glsl_get_sampler_result_type(sampler_type)) {
+ case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
+ case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
+ case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
+ case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
+ default:
+ unreachable("Invalid base type for sampler result");
+ }
+
+ instr->op = texop;
+ memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
+ instr->coord_components = coord_components;
+ instr->is_array = glsl_sampler_type_is_array(sampler_type);
+ instr->is_shadow = glsl_sampler_type_is_shadow(sampler_type);
+
+ instr->sampler =
+ nir_deref_as_var(nir_copy_deref(instr, &sampled.sampler->deref));
+ if (sampled.image) {
+ instr->texture =
+ nir_deref_as_var(nir_copy_deref(instr, &sampled.image->deref));
+ } else {
+ instr->texture = NULL;
+ }
+
+ nir_ssa_dest_init(&instr->instr, &instr->dest, 4, NULL);
+ val->ssa = vtn_create_ssa_value(b, glsl_vector_type(GLSL_TYPE_FLOAT, 4));
+ val->ssa->def = &instr->dest.ssa;
+
+ nir_builder_instr_insert(&b->nb, &instr->instr);
+}
+
+static nir_ssa_def *
+get_image_coord(struct vtn_builder *b, uint32_t value)
+{
+ struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
+
+ /* The image_load_store intrinsics assume a 4-dim coordinate */
+ unsigned dim = glsl_get_vector_elements(coord->type);
+ unsigned swizzle[4];
+ for (unsigned i = 0; i < 4; i++)
+ swizzle[i] = MIN2(i, dim - 1);
+
+ return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
+}
+
+static void
+vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ /* Just get this one out of the way */
+ if (opcode == SpvOpImageTexelPointer) {
+ struct vtn_value *val =
+ vtn_push_value(b, w[2], vtn_value_type_image_pointer);
+ val->image = ralloc(b, struct vtn_image_pointer);
+
+ val->image->deref = vtn_value(b, w[3], vtn_value_type_deref)->deref;
+ val->image->coord = get_image_coord(b, w[4]);
+ val->image->sample = vtn_ssa_value(b, w[5])->def;
+ return;
+ }
+
+ struct vtn_image_pointer image;
+
+ switch (opcode) {
+ case SpvOpAtomicExchange:
+ case SpvOpAtomicCompareExchange:
+ case SpvOpAtomicCompareExchangeWeak:
+ case SpvOpAtomicIIncrement:
+ case SpvOpAtomicIDecrement:
+ case SpvOpAtomicIAdd:
+ case SpvOpAtomicISub:
+ case SpvOpAtomicSMin:
+ case SpvOpAtomicUMin:
+ case SpvOpAtomicSMax:
+ case SpvOpAtomicUMax:
+ case SpvOpAtomicAnd:
+ case SpvOpAtomicOr:
+ case SpvOpAtomicXor:
+ image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
+ break;
+
+ case SpvOpImageRead:
+ image.deref = vtn_value(b, w[3], vtn_value_type_deref)->deref;
+ image.coord = get_image_coord(b, w[4]);
+
+ if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
+ assert(w[5] == SpvImageOperandsSampleMask);
+ image.sample = vtn_ssa_value(b, w[6])->def;
+ } else {
+ image.sample = nir_ssa_undef(&b->nb, 1);
+ }
+ break;
+
+ case SpvOpImageWrite:
+ image.deref = vtn_value(b, w[1], vtn_value_type_deref)->deref;
+ image.coord = get_image_coord(b, w[2]);
+
+ /* texel = w[3] */
+
+ if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
+ assert(w[4] == SpvImageOperandsSampleMask);
+ image.sample = vtn_ssa_value(b, w[5])->def;
+ } else {
+ image.sample = nir_ssa_undef(&b->nb, 1);
+ }
+
+ default:
+ unreachable("Invalid image opcode");
+ }
+
+ nir_intrinsic_op op;
+ switch (opcode) {
+#define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_##N; break;
+ OP(ImageRead, load)
+ OP(ImageWrite, store)
+ OP(AtomicExchange, atomic_exchange)
+ OP(AtomicCompareExchange, atomic_comp_swap)
+ OP(AtomicIIncrement, atomic_add)
+ OP(AtomicIDecrement, atomic_add)
+ OP(AtomicIAdd, atomic_add)
+ OP(AtomicISub, atomic_add)
+ OP(AtomicSMin, atomic_min)
+ OP(AtomicUMin, atomic_min)
+ OP(AtomicSMax, atomic_max)
+ OP(AtomicUMax, atomic_max)
+ OP(AtomicAnd, atomic_and)
+ OP(AtomicOr, atomic_or)
+ OP(AtomicXor, atomic_xor)
+#undef OP
+ default:
+ unreachable("Invalid image opcode");
+ }
+
+ nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
+ intrin->variables[0] =
+ nir_deref_as_var(nir_copy_deref(&intrin->instr, &image.deref->deref));
+ intrin->src[0] = nir_src_for_ssa(image.coord);
+ intrin->src[1] = nir_src_for_ssa(image.sample);
+
+ switch (opcode) {
+ case SpvOpImageRead:
+ break;
+ case SpvOpImageWrite:
+ intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def);
+ break;
+ case SpvOpAtomicIIncrement:
+ intrin->src[2] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
+ break;
+ case SpvOpAtomicIDecrement:
+ intrin->src[2] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
+ break;
+
+ case SpvOpAtomicExchange:
+ case SpvOpAtomicIAdd:
+ case SpvOpAtomicSMin:
+ case SpvOpAtomicUMin:
+ case SpvOpAtomicSMax:
+ case SpvOpAtomicUMax:
+ case SpvOpAtomicAnd:
+ case SpvOpAtomicOr:
+ case SpvOpAtomicXor:
+ intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
+ break;
+
+ case SpvOpAtomicCompareExchange:
+ intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
+ intrin->src[3] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
+ break;
+
+ case SpvOpAtomicISub:
+ intrin->src[2] = nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
+ break;
+
+ default:
+ unreachable("Invalid image opcode");
+ }
+
+ if (opcode != SpvOpImageWrite) {
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
+ struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
+ nir_ssa_dest_init(&intrin->instr, &intrin->dest,
+ glsl_get_vector_elements(type->type), NULL);
+ val->ssa = vtn_create_ssa_value(b, type->type);
+ val->ssa->def = &intrin->dest.ssa;
+ }
+
+ nir_builder_instr_insert(&b->nb, &intrin->instr);
+}
+
+static nir_alu_instr *
+create_vec(nir_shader *shader, unsigned num_components)
+{
+ nir_op op;
+ switch (num_components) {
+ case 1: op = nir_op_fmov; break;
+ case 2: op = nir_op_vec2; break;
+ case 3: op = nir_op_vec3; break;
+ case 4: op = nir_op_vec4; break;
+ default: unreachable("bad vector size");
+ }
+
+ nir_alu_instr *vec = nir_alu_instr_create(shader, op);
+ nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components, NULL);
+ vec->dest.write_mask = (1 << num_components) - 1;
+
+ return vec;
+}
+
+static struct vtn_ssa_value *
+vtn_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
+{
+ if (src->transposed)
+ return src->transposed;
+
+ struct vtn_ssa_value *dest =
+ vtn_create_ssa_value(b, glsl_transposed_type(src->type));
+
+ for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
+ nir_alu_instr *vec = create_vec(b->shader,
+ glsl_get_matrix_columns(src->type));
+ if (glsl_type_is_vector_or_scalar(src->type)) {
+ vec->src[0].src = nir_src_for_ssa(src->def);
+ vec->src[0].swizzle[0] = i;
+ } else {
+ for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
+ vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
+ vec->src[j].swizzle[0] = i;
+ }
+ }
+ nir_builder_instr_insert(&b->nb, &vec->instr);
+ dest->elems[i]->def = &vec->dest.dest.ssa;
+ }
+
+ dest->transposed = src;
+
+ return dest;
+}
+
+/*
+ * Normally, column vectors in SPIR-V correspond to a single NIR SSA
+ * definition. But for matrix multiplies, we want to do one routine for
+ * multiplying a matrix by a matrix and then pretend that vectors are matrices
+ * with one column. So we "wrap" these things, and unwrap the result before we
+ * send it off.
+ */
+
+static struct vtn_ssa_value *
+vtn_wrap_matrix(struct vtn_builder *b, struct vtn_ssa_value *val)
+{
+ if (val == NULL)
+ return NULL;
+
+ if (glsl_type_is_matrix(val->type))
+ return val;
+
+ struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
+ dest->type = val->type;
+ dest->elems = ralloc_array(b, struct vtn_ssa_value *, 1);
+ dest->elems[0] = val;
+
+ return dest;
+}
+
+static struct vtn_ssa_value *
+vtn_unwrap_matrix(struct vtn_ssa_value *val)
+{
+ if (glsl_type_is_matrix(val->type))
+ return val;
+
+ return val->elems[0];
+}
+
+static struct vtn_ssa_value *
+vtn_matrix_multiply(struct vtn_builder *b,
+ struct vtn_ssa_value *_src0, struct vtn_ssa_value *_src1)
+{
+
+ struct vtn_ssa_value *src0 = vtn_wrap_matrix(b, _src0);
+ struct vtn_ssa_value *src1 = vtn_wrap_matrix(b, _src1);
+ struct vtn_ssa_value *src0_transpose = vtn_wrap_matrix(b, _src0->transposed);
+ struct vtn_ssa_value *src1_transpose = vtn_wrap_matrix(b, _src1->transposed);
+
+ unsigned src0_rows = glsl_get_vector_elements(src0->type);
+ unsigned src0_columns = glsl_get_matrix_columns(src0->type);
+ unsigned src1_columns = glsl_get_matrix_columns(src1->type);
+
+ const struct glsl_type *dest_type;
+ if (src1_columns > 1) {
+ dest_type = glsl_matrix_type(glsl_get_base_type(src0->type),
+ src0_rows, src1_columns);
+ } else {
+ dest_type = glsl_vector_type(glsl_get_base_type(src0->type), src0_rows);
+ }
+ struct vtn_ssa_value *dest = vtn_create_ssa_value(b, dest_type);
+
+ dest = vtn_wrap_matrix(b, dest);
+
+ bool transpose_result = false;
+ if (src0_transpose && src1_transpose) {
+ /* transpose(A) * transpose(B) = transpose(B * A) */
+ src1 = src0_transpose;
+ src0 = src1_transpose;
+ src0_transpose = NULL;
+ src1_transpose = NULL;
+ transpose_result = true;
+ }
+
+ if (src0_transpose && !src1_transpose &&
+ glsl_get_base_type(src0->type) == GLSL_TYPE_FLOAT) {
+ /* We already have the rows of src0 and the columns of src1 available,
+ * so we can just take the dot product of each row with each column to
+ * get the result.
+ */
+
+ for (unsigned i = 0; i < src1_columns; i++) {
+ nir_alu_instr *vec = create_vec(b->shader, src0_rows);
+ for (unsigned j = 0; j < src0_rows; j++) {
+ vec->src[j].src =
+ nir_src_for_ssa(nir_fdot(&b->nb, src0_transpose->elems[j]->def,
+ src1->elems[i]->def));
+ }
+
+ nir_builder_instr_insert(&b->nb, &vec->instr);
+ dest->elems[i]->def = &vec->dest.dest.ssa;
+ }
+ } else {
+ /* We don't handle the case where src1 is transposed but not src0, since
+ * the general case only uses individual components of src1 so the
+ * optimizer should chew through the transpose we emitted for src1.
+ */
+
+ for (unsigned i = 0; i < src1_columns; i++) {
+ /* dest[i] = sum(src0[j] * src1[i][j] for all j) */
+ dest->elems[i]->def =
+ nir_fmul(&b->nb, src0->elems[0]->def,
+ vtn_vector_extract(b, src1->elems[i]->def, 0));
+ for (unsigned j = 1; j < src0_columns; j++) {
+ dest->elems[i]->def =
+ nir_fadd(&b->nb, dest->elems[i]->def,
+ nir_fmul(&b->nb, src0->elems[j]->def,
+ vtn_vector_extract(b,
+ src1->elems[i]->def, j)));
+ }
+ }
+ }
+
+ dest = vtn_unwrap_matrix(dest);
+
+ if (transpose_result)
+ dest = vtn_transpose(b, dest);
+
+ return dest;
+}
+
+static struct vtn_ssa_value *
+vtn_mat_times_scalar(struct vtn_builder *b,
+ struct vtn_ssa_value *mat,
+ nir_ssa_def *scalar)
+{
+ struct vtn_ssa_value *dest = vtn_create_ssa_value(b, mat->type);
+ for (unsigned i = 0; i < glsl_get_matrix_columns(mat->type); i++) {
+ if (glsl_get_base_type(mat->type) == GLSL_TYPE_FLOAT)
+ dest->elems[i]->def = nir_fmul(&b->nb, mat->elems[i]->def, scalar);
+ else
+ dest->elems[i]->def = nir_imul(&b->nb, mat->elems[i]->def, scalar);
+ }
+
+ return dest;
+}
+
+static void
+vtn_handle_matrix_alu(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
+
+ switch (opcode) {
+ case SpvOpTranspose: {
+ struct vtn_ssa_value *src = vtn_ssa_value(b, w[3]);
+ val->ssa = vtn_transpose(b, src);
+ break;
+ }
+
+ case SpvOpOuterProduct: {
+ struct vtn_ssa_value *src0 = vtn_ssa_value(b, w[3]);
+ struct vtn_ssa_value *src1 = vtn_ssa_value(b, w[4]);
+
+ val->ssa = vtn_matrix_multiply(b, src0, vtn_transpose(b, src1));
+ break;
+ }
+
+ case SpvOpMatrixTimesScalar: {
+ struct vtn_ssa_value *mat = vtn_ssa_value(b, w[3]);
+ struct vtn_ssa_value *scalar = vtn_ssa_value(b, w[4]);
+
+ if (mat->transposed) {
+ val->ssa = vtn_transpose(b, vtn_mat_times_scalar(b, mat->transposed,
+ scalar->def));
+ } else {
+ val->ssa = vtn_mat_times_scalar(b, mat, scalar->def);
+ }
+ break;
+ }
+
+ case SpvOpVectorTimesMatrix:
+ case SpvOpMatrixTimesVector:
+ case SpvOpMatrixTimesMatrix: {
+ struct vtn_ssa_value *src0 = vtn_ssa_value(b, w[3]);
+ struct vtn_ssa_value *src1 = vtn_ssa_value(b, w[4]);
+
+ if (opcode == SpvOpVectorTimesMatrix) {
+ val->ssa = vtn_matrix_multiply(b, vtn_transpose(b, src1), src0);
+ } else {
+ val->ssa = vtn_matrix_multiply(b, src0, src1);
+ }
+ break;
+ }
+
+ default: unreachable("unknown matrix opcode");
+ }
+}
+
+static void
+vtn_handle_alu(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
+ const struct glsl_type *type =
+ vtn_value(b, w[1], vtn_value_type_type)->type->type;
+ val->ssa = vtn_create_ssa_value(b, type);
+
+ /* Collect the various SSA sources */
+ const unsigned num_inputs = count - 3;
+ nir_ssa_def *src[4];
+ for (unsigned i = 0; i < num_inputs; i++)
+ src[i] = vtn_ssa_value(b, w[i + 3])->def;
+ for (unsigned i = num_inputs; i < 4; i++)
+ src[i] = NULL;
+
+ /* Indicates that the first two arguments should be swapped. This is
+ * used for implementing greater-than and less-than-or-equal.
+ */
+ bool swap = false;
+
+ nir_op op;
+ switch (opcode) {
+ /* Basic ALU operations */
+ case SpvOpSNegate: op = nir_op_ineg; break;
+ case SpvOpFNegate: op = nir_op_fneg; break;
+ case SpvOpNot: op = nir_op_inot; break;
+
+ case SpvOpAny:
+ if (src[0]->num_components == 1) {
+ op = nir_op_imov;
+ } else {
+ switch (src[0]->num_components) {
+ case 2: op = nir_op_bany_inequal2; break;
+ case 3: op = nir_op_bany_inequal3; break;
+ case 4: op = nir_op_bany_inequal4; break;
+ }
+ src[1] = nir_imm_int(&b->nb, NIR_FALSE);
+ }
+ break;
+
+ case SpvOpAll:
+ if (src[0]->num_components == 1) {
+ op = nir_op_imov;
+ } else {
+ switch (src[0]->num_components) {
+ case 2: op = nir_op_ball_iequal2; break;
+ case 3: op = nir_op_ball_iequal3; break;
+ case 4: op = nir_op_ball_iequal4; break;
+ }
+ src[1] = nir_imm_int(&b->nb, NIR_TRUE);
+ }
+ break;
+
+ case SpvOpIAdd: op = nir_op_iadd; break;
+ case SpvOpFAdd: op = nir_op_fadd; break;
+ case SpvOpISub: op = nir_op_isub; break;
+ case SpvOpFSub: op = nir_op_fsub; break;
+ case SpvOpIMul: op = nir_op_imul; break;
+ case SpvOpFMul: op = nir_op_fmul; break;
+ case SpvOpUDiv: op = nir_op_udiv; break;
+ case SpvOpSDiv: op = nir_op_idiv; break;
+ case SpvOpFDiv: op = nir_op_fdiv; break;
+ case SpvOpUMod: op = nir_op_umod; break;
+ case SpvOpSMod: op = nir_op_umod; break; /* FIXME? */
+ case SpvOpFMod: op = nir_op_fmod; break;
+
+ case SpvOpDot:
+ assert(src[0]->num_components == src[1]->num_components);
+ switch (src[0]->num_components) {
+ case 1: op = nir_op_fmul; break;
+ case 2: op = nir_op_fdot2; break;
+ case 3: op = nir_op_fdot3; break;
+ case 4: op = nir_op_fdot4; break;
+ }
+ break;
+
+ case SpvOpShiftRightLogical: op = nir_op_ushr; break;
+ case SpvOpShiftRightArithmetic: op = nir_op_ishr; break;
+ case SpvOpShiftLeftLogical: op = nir_op_ishl; break;
+ case SpvOpLogicalOr: op = nir_op_ior; break;
+ case SpvOpLogicalEqual: op = nir_op_ieq; break;
+ case SpvOpLogicalNotEqual: op = nir_op_ine; break;
+ case SpvOpLogicalAnd: op = nir_op_iand; break;
+ case SpvOpLogicalNot: op = nir_op_inot; break;
+ case SpvOpBitwiseOr: op = nir_op_ior; break;
+ case SpvOpBitwiseXor: op = nir_op_ixor; break;
+ case SpvOpBitwiseAnd: op = nir_op_iand; break;
+ case SpvOpSelect: op = nir_op_bcsel; break;
+ case SpvOpIEqual: op = nir_op_ieq; break;
+
+ /* Comparisons: (TODO: How do we want to handled ordered/unordered?) */
+ case SpvOpFOrdEqual: op = nir_op_feq; break;
+ case SpvOpFUnordEqual: op = nir_op_feq; break;
+ case SpvOpINotEqual: op = nir_op_ine; break;
+ case SpvOpFOrdNotEqual: op = nir_op_fne; break;
+ case SpvOpFUnordNotEqual: op = nir_op_fne; break;
+ case SpvOpULessThan: op = nir_op_ult; break;
+ case SpvOpSLessThan: op = nir_op_ilt; break;
+ case SpvOpFOrdLessThan: op = nir_op_flt; break;
+ case SpvOpFUnordLessThan: op = nir_op_flt; break;
+ case SpvOpUGreaterThan: op = nir_op_ult; swap = true; break;
+ case SpvOpSGreaterThan: op = nir_op_ilt; swap = true; break;
+ case SpvOpFOrdGreaterThan: op = nir_op_flt; swap = true; break;
+ case SpvOpFUnordGreaterThan: op = nir_op_flt; swap = true; break;
+ case SpvOpULessThanEqual: op = nir_op_uge; swap = true; break;
+ case SpvOpSLessThanEqual: op = nir_op_ige; swap = true; break;
+ case SpvOpFOrdLessThanEqual: op = nir_op_fge; swap = true; break;
+ case SpvOpFUnordLessThanEqual: op = nir_op_fge; swap = true; break;
+ case SpvOpUGreaterThanEqual: op = nir_op_uge; break;
+ case SpvOpSGreaterThanEqual: op = nir_op_ige; break;
+ case SpvOpFOrdGreaterThanEqual: op = nir_op_fge; break;
+ case SpvOpFUnordGreaterThanEqual:op = nir_op_fge; break;
+
+ /* Conversions: */
+ case SpvOpConvertFToU: op = nir_op_f2u; break;
+ case SpvOpConvertFToS: op = nir_op_f2i; break;
+ case SpvOpConvertSToF: op = nir_op_i2f; break;
+ case SpvOpConvertUToF: op = nir_op_u2f; break;
+ case SpvOpBitcast: op = nir_op_imov; break;
+ case SpvOpUConvert:
+ case SpvOpSConvert:
+ op = nir_op_imov; /* TODO: NIR is 32-bit only; these are no-ops. */
+ break;
+ case SpvOpFConvert:
+ op = nir_op_fmov;
+ break;
+
+ /* Derivatives: */
+ case SpvOpDPdx: op = nir_op_fddx; break;
+ case SpvOpDPdy: op = nir_op_fddy; break;
+ case SpvOpDPdxFine: op = nir_op_fddx_fine; break;
+ case SpvOpDPdyFine: op = nir_op_fddy_fine; break;
+ case SpvOpDPdxCoarse: op = nir_op_fddx_coarse; break;
+ case SpvOpDPdyCoarse: op = nir_op_fddy_coarse; break;
+ case SpvOpFwidth:
+ val->ssa->def = nir_fadd(&b->nb,
+ nir_fabs(&b->nb, nir_fddx(&b->nb, src[0])),
+ nir_fabs(&b->nb, nir_fddx(&b->nb, src[1])));
+ return;
+ case SpvOpFwidthFine:
+ val->ssa->def = nir_fadd(&b->nb,
+ nir_fabs(&b->nb, nir_fddx_fine(&b->nb, src[0])),
+ nir_fabs(&b->nb, nir_fddx_fine(&b->nb, src[1])));
+ return;
+ case SpvOpFwidthCoarse:
+ val->ssa->def = nir_fadd(&b->nb,
+ nir_fabs(&b->nb, nir_fddx_coarse(&b->nb, src[0])),
+ nir_fabs(&b->nb, nir_fddx_coarse(&b->nb, src[1])));
+ return;
+
+ case SpvOpVectorTimesScalar:
+ /* The builder will take care of splatting for us. */
+ val->ssa->def = nir_fmul(&b->nb, src[0], src[1]);
+ return;
+
+ case SpvOpSRem:
+ case SpvOpFRem:
+ unreachable("No NIR equivalent");
+
+ case SpvOpIsNan:
+ case SpvOpIsInf:
+ case SpvOpIsFinite:
+ case SpvOpIsNormal:
+ case SpvOpSignBitSet:
+ case SpvOpLessOrGreater:
+ case SpvOpOrdered:
+ case SpvOpUnordered:
+ default:
+ unreachable("Unhandled opcode");
+ }
+
+ if (swap) {
+ nir_ssa_def *tmp = src[0];
+ src[0] = src[1];
+ src[1] = tmp;
+ }
+
+ val->ssa->def = nir_build_alu(&b->nb, op, src[0], src[1], src[2], src[3]);
+}
+
+static nir_ssa_def *
+vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
+{
+ unsigned swiz[4] = { index };
+ return nir_swizzle(&b->nb, src, swiz, 1, true);
+}
+
+
+static nir_ssa_def *
+vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
+ unsigned index)
+{
+ nir_alu_instr *vec = create_vec(b->shader, src->num_components);
+
+ for (unsigned i = 0; i < src->num_components; i++) {
+ if (i == index) {
+ vec->src[i].src = nir_src_for_ssa(insert);
+ } else {
+ vec->src[i].src = nir_src_for_ssa(src);
+ vec->src[i].swizzle[0] = i;
+ }
+ }
+
+ nir_builder_instr_insert(&b->nb, &vec->instr);
+
+ return &vec->dest.dest.ssa;
+}
+
+static nir_ssa_def *
+vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
+ nir_ssa_def *index)
+{
+ nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
+ for (unsigned i = 1; i < src->num_components; i++)
+ dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
+ vtn_vector_extract(b, src, i), dest);
+
+ return dest;
+}
+
+static nir_ssa_def *
+vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
+ nir_ssa_def *insert, nir_ssa_def *index)
+{
+ nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
+ for (unsigned i = 1; i < src->num_components; i++)
+ dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
+ vtn_vector_insert(b, src, insert, i), dest);
+
+ return dest;
+}
+
+static nir_ssa_def *
+vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
+ nir_ssa_def *src0, nir_ssa_def *src1,
+ const uint32_t *indices)
+{
+ nir_alu_instr *vec = create_vec(b->shader, num_components);
+
+ nir_ssa_undef_instr *undef = nir_ssa_undef_instr_create(b->shader, 1);
+ nir_builder_instr_insert(&b->nb, &undef->instr);
+
+ for (unsigned i = 0; i < num_components; i++) {
+ uint32_t index = indices[i];
+ if (index == 0xffffffff) {
+ vec->src[i].src = nir_src_for_ssa(&undef->def);
+ } else if (index < src0->num_components) {
+ vec->src[i].src = nir_src_for_ssa(src0);
+ vec->src[i].swizzle[0] = index;
+ } else {
+ vec->src[i].src = nir_src_for_ssa(src1);
+ vec->src[i].swizzle[0] = index - src0->num_components;
+ }
+ }
+
+ nir_builder_instr_insert(&b->nb, &vec->instr);
+
+ return &vec->dest.dest.ssa;
+}
+
+/*
+ * Concatentates a number of vectors/scalars together to produce a vector
+ */
+static nir_ssa_def *
+vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
+ unsigned num_srcs, nir_ssa_def **srcs)
+{
+ nir_alu_instr *vec = create_vec(b->shader, num_components);
+
+ unsigned dest_idx = 0;
+ for (unsigned i = 0; i < num_srcs; i++) {
+ nir_ssa_def *src = srcs[i];
+ for (unsigned j = 0; j < src->num_components; j++) {
+ vec->src[dest_idx].src = nir_src_for_ssa(src);
+ vec->src[dest_idx].swizzle[0] = j;
+ dest_idx++;
+ }
+ }
+
+ nir_builder_instr_insert(&b->nb, &vec->instr);
+
+ return &vec->dest.dest.ssa;
+}
+
+static struct vtn_ssa_value *
+vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
+{
+ struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
+ dest->type = src->type;
+
+ if (glsl_type_is_vector_or_scalar(src->type)) {
+ dest->def = src->def;
+ } else {
+ unsigned elems = glsl_get_length(src->type);
+
+ dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
+ for (unsigned i = 0; i < elems; i++)
+ dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
+ }
+
+ return dest;
+}
+
+static struct vtn_ssa_value *
+vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
+ struct vtn_ssa_value *insert, const uint32_t *indices,
+ unsigned num_indices)
+{
+ struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
+
+ struct vtn_ssa_value *cur = dest;
+ unsigned i;
+ for (i = 0; i < num_indices - 1; i++) {
+ cur = cur->elems[indices[i]];
+ }
+
+ if (glsl_type_is_vector_or_scalar(cur->type)) {
+ /* According to the SPIR-V spec, OpCompositeInsert may work down to
+ * the component granularity. In that case, the last index will be
+ * the index to insert the scalar into the vector.
+ */
+
+ cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
+ } else {
+ cur->elems[indices[i]] = insert;
+ }
+
+ return dest;
+}
+
+static struct vtn_ssa_value *
+vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
+ const uint32_t *indices, unsigned num_indices)
+{
+ struct vtn_ssa_value *cur = src;
+ for (unsigned i = 0; i < num_indices; i++) {
+ if (glsl_type_is_vector_or_scalar(cur->type)) {
+ assert(i == num_indices - 1);
+ /* According to the SPIR-V spec, OpCompositeExtract may work down to
+ * the component granularity. The last index will be the index of the
+ * vector to extract.
+ */
+
+ struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
+ ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
+ ret->def = vtn_vector_extract(b, cur->def, indices[i]);
+ return ret;
+ } else {
+ cur = cur->elems[indices[i]];
+ }
+ }
+
+ return cur;
+}
+
+static void
+vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
+ const struct glsl_type *type =
+ vtn_value(b, w[1], vtn_value_type_type)->type->type;
+ val->ssa = vtn_create_ssa_value(b, type);
+
+ switch (opcode) {
+ case SpvOpVectorExtractDynamic:
+ val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
+ vtn_ssa_value(b, w[4])->def);
+ break;
+
+ case SpvOpVectorInsertDynamic:
+ val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
+ vtn_ssa_value(b, w[4])->def,
+ vtn_ssa_value(b, w[5])->def);
+ break;
+
+ case SpvOpVectorShuffle:
+ val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
+ vtn_ssa_value(b, w[3])->def,
+ vtn_ssa_value(b, w[4])->def,
+ w + 5);
+ break;
+
+ case SpvOpCompositeConstruct: {
+ unsigned elems = count - 3;
+ if (glsl_type_is_vector_or_scalar(type)) {
+ nir_ssa_def *srcs[4];
+ for (unsigned i = 0; i < elems; i++)
+ srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
+ val->ssa->def =
+ vtn_vector_construct(b, glsl_get_vector_elements(type),
+ elems, srcs);
+ } else {
+ val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
+ for (unsigned i = 0; i < elems; i++)
+ val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
+ }
+ break;
+ }
+ case SpvOpCompositeExtract:
+ val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
+ w + 4, count - 4);
+ break;
+
+ case SpvOpCompositeInsert:
+ val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
+ vtn_ssa_value(b, w[3]),
+ w + 5, count - 5);
+ break;
+
+ case SpvOpCopyObject:
+ val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
+ break;
+
+ default:
+ unreachable("unknown composite operation");
+ }
+}
+
+static void
+vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ nir_intrinsic_op intrinsic_op;
+ switch (opcode) {
+ case SpvOpEmitVertex:
+ case SpvOpEmitStreamVertex:
+ intrinsic_op = nir_intrinsic_emit_vertex;
+ break;
+ case SpvOpEndPrimitive:
+ case SpvOpEndStreamPrimitive:
+ intrinsic_op = nir_intrinsic_end_primitive;
+ break;
+ case SpvOpMemoryBarrier:
+ intrinsic_op = nir_intrinsic_memory_barrier;
+ break;
+ case SpvOpControlBarrier:
+ default:
+ unreachable("unknown barrier instruction");
+ }
+
+ nir_intrinsic_instr *intrin =
+ nir_intrinsic_instr_create(b->shader, intrinsic_op);
+
+ if (opcode == SpvOpEmitStreamVertex || opcode == SpvOpEndStreamPrimitive)
+ intrin->const_index[0] = w[1];
+
+ nir_builder_instr_insert(&b->nb, &intrin->instr);
+}
+
+static void
+vtn_phi_node_init(struct vtn_builder *b, struct vtn_ssa_value *val)
+{
+ if (glsl_type_is_vector_or_scalar(val->type)) {
+ nir_phi_instr *phi = nir_phi_instr_create(b->shader);
+ nir_ssa_dest_init(&phi->instr, &phi->dest,
+ glsl_get_vector_elements(val->type), NULL);
+ exec_list_make_empty(&phi->srcs);
+ nir_builder_instr_insert(&b->nb, &phi->instr);
+ val->def = &phi->dest.ssa;
+ } else {
+ unsigned elems = glsl_get_length(val->type);
+ for (unsigned i = 0; i < elems; i++)
+ vtn_phi_node_init(b, val->elems[i]);
+ }
+}
+
+static struct vtn_ssa_value *
+vtn_phi_node_create(struct vtn_builder *b, const struct glsl_type *type)
+{
+ struct vtn_ssa_value *val = vtn_create_ssa_value(b, type);
+ vtn_phi_node_init(b, val);
+ return val;
+}
+
+static void
+vtn_handle_phi_first_pass(struct vtn_builder *b, const uint32_t *w)
+{
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
+ const struct glsl_type *type =
+ vtn_value(b, w[1], vtn_value_type_type)->type->type;
+ val->ssa = vtn_phi_node_create(b, type);
+}
+
+static void
+vtn_phi_node_add_src(struct vtn_ssa_value *phi, const nir_block *pred,
+ struct vtn_ssa_value *val)
+{
+ assert(phi->type == val->type);
+ if (glsl_type_is_vector_or_scalar(phi->type)) {
+ nir_phi_instr *phi_instr = nir_instr_as_phi(phi->def->parent_instr);
+ nir_phi_src *src = ralloc(phi_instr, nir_phi_src);
+ src->pred = (nir_block *) pred;
+ src->src = nir_src_for_ssa(val->def);
+ exec_list_push_tail(&phi_instr->srcs, &src->node);
+ } else {
+ unsigned elems = glsl_get_length(phi->type);
+ for (unsigned i = 0; i < elems; i++)
+ vtn_phi_node_add_src(phi->elems[i], pred, val->elems[i]);
+ }
+}
+
+static struct vtn_ssa_value *
+vtn_get_phi_node_src(struct vtn_builder *b, nir_block *block,
+ const struct glsl_type *type, const uint32_t *w,
+ unsigned count)
+{
+ struct hash_entry *entry = _mesa_hash_table_search(b->block_table, block);
+ if (entry) {
+ struct vtn_block *spv_block = entry->data;
+ for (unsigned off = 4; off < count; off += 2) {
+ if (spv_block == vtn_value(b, w[off], vtn_value_type_block)->block) {
+ return vtn_ssa_value(b, w[off - 1]);
+ }
+ }
+ }
+
+ b->nb.cursor = nir_before_block(block);
+ struct vtn_ssa_value *phi = vtn_phi_node_create(b, type);
+
+ struct set_entry *entry2;
+ set_foreach(block->predecessors, entry2) {
+ nir_block *pred = (nir_block *) entry2->key;
+ struct vtn_ssa_value *val = vtn_get_phi_node_src(b, pred, type, w,
+ count);
+ vtn_phi_node_add_src(phi, pred, val);
+ }
+
+ return phi;
+}
+
+static bool
+vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ if (opcode == SpvOpLabel) {
+ b->block = vtn_value(b, w[1], vtn_value_type_block)->block;
+ return true;
+ }
+
+ if (opcode != SpvOpPhi)
+ return true;
+
+ struct vtn_ssa_value *phi = vtn_value(b, w[2], vtn_value_type_ssa)->ssa;
+
+ struct set_entry *entry;
+ set_foreach(b->block->block->predecessors, entry) {
+ nir_block *pred = (nir_block *) entry->key;
+
+ struct vtn_ssa_value *val = vtn_get_phi_node_src(b, pred, phi->type, w,
+ count);
+ vtn_phi_node_add_src(phi, pred, val);
+ }
+
+ return true;
+}
+
+static unsigned
+gl_primitive_from_spv_execution_mode(SpvExecutionMode mode)
+{
+ switch (mode) {
+ case SpvExecutionModeInputPoints:
+ case SpvExecutionModeOutputPoints:
+ return 0; /* GL_POINTS */
+ case SpvExecutionModeInputLines:
+ return 1; /* GL_LINES */
+ case SpvExecutionModeInputLinesAdjacency:
+ return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
+ case SpvExecutionModeTriangles:
+ return 4; /* GL_TRIANGLES */
+ case SpvExecutionModeInputTrianglesAdjacency:
+ return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
+ case SpvExecutionModeQuads:
+ return 7; /* GL_QUADS */
+ case SpvExecutionModeIsolines:
+ return 0x8E7A; /* GL_ISOLINES */
+ case SpvExecutionModeOutputLineStrip:
+ return 3; /* GL_LINE_STRIP */
+ case SpvExecutionModeOutputTriangleStrip:
+ return 5; /* GL_TRIANGLE_STRIP */
+ default:
+ assert(!"Invalid primitive type");
+ return 4;
+ }
+}
+
+static unsigned
+vertices_in_from_spv_execution_mode(SpvExecutionMode mode)
+{
+ switch (mode) {
+ case SpvExecutionModeInputPoints:
+ return 1;
+ case SpvExecutionModeInputLines:
+ return 2;
+ case SpvExecutionModeInputLinesAdjacency:
+ return 4;
+ case SpvExecutionModeTriangles:
+ return 3;
+ case SpvExecutionModeInputTrianglesAdjacency:
+ return 6;
+ default:
+ assert(!"Invalid GS input mode");
+ return 0;
+ }
+}
+
+static bool
+vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ switch (opcode) {
+ case SpvOpSource:
+ case SpvOpSourceExtension:
+ case SpvOpExtension:
+ /* Unhandled, but these are for debug so that's ok. */
+ break;
+
+ case SpvOpCapability:
+ switch ((SpvCapability)w[1]) {
+ case SpvCapabilityMatrix:
+ case SpvCapabilityShader:
+ /* All shaders support these */
+ break;
+ case SpvCapabilityGeometry:
+ assert(b->shader->stage == MESA_SHADER_GEOMETRY);
+ break;
+ default:
+ assert(!"Unsupported capability");
+ }
+ break;
+
+ case SpvOpExtInstImport:
+ vtn_handle_extension(b, opcode, w, count);
+ break;
+
+ case SpvOpMemoryModel:
+ assert(w[1] == SpvAddressingModelLogical);
+ assert(w[2] == SpvMemoryModelGLSL450);
+ break;
+
+ case SpvOpEntryPoint:
+ assert(b->entry_point == NULL);
+ b->entry_point = &b->values[w[2]];
+ b->execution_model = w[1];
+ break;
+
+ case SpvOpExecutionMode:
+ assert(b->entry_point == &b->values[w[1]]);
+
+ SpvExecutionMode mode = w[2];
+ switch(mode) {
+ case SpvExecutionModeOriginUpperLeft:
+ case SpvExecutionModeOriginLowerLeft:
+ b->origin_upper_left = (mode == SpvExecutionModeOriginUpperLeft);
+ break;
+
+ case SpvExecutionModeEarlyFragmentTests:
+ assert(b->shader->stage == MESA_SHADER_FRAGMENT);
+ b->shader->info.fs.early_fragment_tests = true;
+ break;
+
+ case SpvExecutionModeInvocations:
+ assert(b->shader->stage == MESA_SHADER_GEOMETRY);
+ b->shader->info.gs.invocations = MAX2(1, w[3]);
+ break;
+
+ case SpvExecutionModeDepthReplacing:
+ assert(b->shader->stage == MESA_SHADER_FRAGMENT);
+ b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
+ break;
+ case SpvExecutionModeDepthGreater:
+ assert(b->shader->stage == MESA_SHADER_FRAGMENT);
+ b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
+ break;
+ case SpvExecutionModeDepthLess:
+ assert(b->shader->stage == MESA_SHADER_FRAGMENT);
+ b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
+ break;
+ case SpvExecutionModeDepthUnchanged:
+ assert(b->shader->stage == MESA_SHADER_FRAGMENT);
+ b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
+ break;
+
+ case SpvExecutionModeLocalSize:
+ assert(b->shader->stage == MESA_SHADER_COMPUTE);
+ b->shader->info.cs.local_size[0] = w[3];
+ b->shader->info.cs.local_size[1] = w[4];
+ b->shader->info.cs.local_size[2] = w[5];
+ break;
+ case SpvExecutionModeLocalSizeHint:
+ break; /* Nothing do do with this */
+
+ case SpvExecutionModeOutputVertices:
+ assert(b->shader->stage == MESA_SHADER_GEOMETRY);
+ b->shader->info.gs.vertices_out = w[3];
+ break;
+
+ case SpvExecutionModeInputPoints:
+ case SpvExecutionModeInputLines:
+ case SpvExecutionModeInputLinesAdjacency:
+ case SpvExecutionModeTriangles:
+ case SpvExecutionModeInputTrianglesAdjacency:
+ case SpvExecutionModeQuads:
+ case SpvExecutionModeIsolines:
+ if (b->shader->stage == MESA_SHADER_GEOMETRY) {
+ b->shader->info.gs.vertices_in =
+ vertices_in_from_spv_execution_mode(mode);
+ } else {
+ assert(!"Tesselation shaders not yet supported");
+ }
+ break;
+
+ case SpvExecutionModeOutputPoints:
+ case SpvExecutionModeOutputLineStrip:
+ case SpvExecutionModeOutputTriangleStrip:
+ assert(b->shader->stage == MESA_SHADER_GEOMETRY);
+ b->shader->info.gs.output_primitive =
+ gl_primitive_from_spv_execution_mode(mode);
+ break;
+
+ case SpvExecutionModeSpacingEqual:
+ case SpvExecutionModeSpacingFractionalEven:
+ case SpvExecutionModeSpacingFractionalOdd:
+ case SpvExecutionModeVertexOrderCw:
+ case SpvExecutionModeVertexOrderCcw:
+ case SpvExecutionModePointMode:
+ assert(!"TODO: Add tessellation metadata");
+ break;
+
+ case SpvExecutionModePixelCenterInteger:
+ case SpvExecutionModeXfb:
+ assert(!"Unhandled execution mode");
+ break;
+
+ case SpvExecutionModeVecTypeHint:
+ case SpvExecutionModeContractionOff:
+ break; /* OpenCL */
+ }
+ break;
+
+ case SpvOpString:
+ vtn_push_value(b, w[1], vtn_value_type_string)->str =
+ vtn_string_literal(b, &w[2], count - 2);
+ break;
+
+ case SpvOpName:
+ b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2);
+ break;
+
+ case SpvOpMemberName:
+ /* TODO */
+ break;
+
+ case SpvOpLine:
+ break; /* Ignored for now */
+
+ case SpvOpDecorationGroup:
+ case SpvOpDecorate:
+ case SpvOpMemberDecorate:
+ case SpvOpGroupDecorate:
+ case SpvOpGroupMemberDecorate:
+ vtn_handle_decoration(b, opcode, w, count);
+ break;
+
+ case SpvOpTypeVoid:
+ case SpvOpTypeBool:
+ case SpvOpTypeInt:
+ case SpvOpTypeFloat:
+ case SpvOpTypeVector:
+ case SpvOpTypeMatrix:
+ case SpvOpTypeImage:
+ case SpvOpTypeSampler:
+ case SpvOpTypeSampledImage:
+ case SpvOpTypeArray:
+ case SpvOpTypeRuntimeArray:
+ case SpvOpTypeStruct:
+ case SpvOpTypeOpaque:
+ case SpvOpTypePointer:
+ case SpvOpTypeFunction:
+ case SpvOpTypeEvent:
+ case SpvOpTypeDeviceEvent:
+ case SpvOpTypeReserveId:
+ case SpvOpTypeQueue:
+ case SpvOpTypePipe:
+ vtn_handle_type(b, opcode, w, count);
+ break;
+
+ case SpvOpConstantTrue:
+ case SpvOpConstantFalse:
+ case SpvOpConstant:
+ case SpvOpConstantComposite:
+ case SpvOpConstantSampler:
+ case SpvOpSpecConstantTrue:
+ case SpvOpSpecConstantFalse:
+ case SpvOpSpecConstant:
+ case SpvOpSpecConstantComposite:
+ vtn_handle_constant(b, opcode, w, count);
+ break;
+
+ case SpvOpVariable:
+ vtn_handle_variables(b, opcode, w, count);
+ break;
+
+ default:
+ return false; /* End of preamble */
+ }
+
+ return true;
+}
+
+static bool
+vtn_handle_first_cfg_pass_instruction(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ switch (opcode) {
+ case SpvOpFunction: {
+ assert(b->func == NULL);
+ b->func = rzalloc(b, struct vtn_function);
+
+ const struct glsl_type *result_type =
+ vtn_value(b, w[1], vtn_value_type_type)->type->type;
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function);
+ val->func = b->func;
+
+ const struct glsl_type *func_type =
+ vtn_value(b, w[4], vtn_value_type_type)->type->type;
+
+ assert(glsl_get_function_return_type(func_type) == result_type);
+
+ nir_function *func =
+ nir_function_create(b->shader, ralloc_strdup(b->shader, val->name));
+
- overload->params[i].type = param->type;
++ func->num_params = glsl_get_length(func_type);
++ func->params = ralloc_array(b->shader, nir_parameter, func->num_params);
++ for (unsigned i = 0; i < func->num_params; i++) {
+ const struct glsl_function_param *param =
+ glsl_get_function_param(func_type, i);
- overload->params[i].param_type = nir_parameter_inout;
++ func->params[i].type = param->type;
+ if (param->in) {
+ if (param->out) {
- overload->params[i].param_type = nir_parameter_in;
++ func->params[i].param_type = nir_parameter_inout;
+ } else {
- overload->params[i].param_type = nir_parameter_out;
++ func->params[i].param_type = nir_parameter_in;
+ }
+ } else {
+ if (param->out) {
- overload->return_type = glsl_get_function_return_type(func_type);
++ func->params[i].param_type = nir_parameter_out;
+ } else {
+ assert(!"Parameter is neither in nor out");
+ }
+ }
+ }
+
- b->func->impl = nir_function_impl_create(overload);
- if (!glsl_type_is_void(overload->return_type)) {
++ func->return_type = glsl_get_function_return_type(func_type);
+
- nir_local_variable_create(b->func->impl,
- overload->return_type, "retval");
++ b->func->impl = nir_function_impl_create(func);
++ if (!glsl_type_is_void(func->return_type)) {
+ b->func->impl->return_var =
- b->func->impl->overload->params[idx].type,
++ nir_local_variable_create(b->func->impl, func->return_type, "ret");
+ }
+
+ b->func_param_idx = 0;
+ break;
+ }
+
+ case SpvOpFunctionEnd:
+ b->func->end = w;
+ b->func = NULL;
+ break;
+
+ case SpvOpFunctionParameter: {
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_deref);
+
+ assert(b->func_param_idx < b->func->impl->num_params);
+ unsigned idx = b->func_param_idx++;
+
+ nir_variable *param =
+ nir_local_variable_create(b->func->impl,
++ b->func->impl->function->params[idx].type,
+ val->name);
+
+ b->func->impl->params[idx] = param;
+ val->deref = nir_deref_var_create(b, param);
+ val->deref_type = vtn_value(b, w[1], vtn_value_type_type)->type;
+ break;
+ }
+
+ case SpvOpLabel: {
+ assert(b->block == NULL);
+ b->block = rzalloc(b, struct vtn_block);
+ b->block->label = w;
+ vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block;
+
+ if (b->func->start_block == NULL) {
+ /* This is the first block encountered for this function. In this
+ * case, we set the start block and add it to the list of
+ * implemented functions that we'll walk later.
+ */
+ b->func->start_block = b->block;
+ exec_list_push_tail(&b->functions, &b->func->node);
+ }
+ break;
+ }
+
+ case SpvOpBranch:
+ case SpvOpBranchConditional:
+ case SpvOpSwitch:
+ case SpvOpKill:
+ case SpvOpReturn:
+ case SpvOpReturnValue:
+ case SpvOpUnreachable:
+ assert(b->block);
+ b->block->branch = w;
+ b->block = NULL;
+ break;
+
+ case SpvOpSelectionMerge:
+ case SpvOpLoopMerge:
+ assert(b->block && b->block->merge_op == SpvOpNop);
+ b->block->merge_op = opcode;
+ b->block->merge_block_id = w[1];
+ break;
+
+ default:
+ /* Continue on as per normal */
+ return true;
+ }
+
+ return true;
+}
+
+static bool
+vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
+ const uint32_t *w, unsigned count)
+{
+ switch (opcode) {
+ case SpvOpLabel: {
+ struct vtn_block *block = vtn_value(b, w[1], vtn_value_type_block)->block;
+ assert(block->block == NULL);
+
+ block->block = nir_cursor_current_block(b->nb.cursor);
+ break;
+ }
+
+ case SpvOpLoopMerge:
+ case SpvOpSelectionMerge:
+ /* This is handled by cfg pre-pass and walk_blocks */
+ break;
+
+ case SpvOpUndef: {
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
+ val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
+ break;
+ }
+
+ case SpvOpExtInst:
+ vtn_handle_extension(b, opcode, w, count);
+ break;
+
+ case SpvOpVariable:
+ case SpvOpLoad:
+ case SpvOpStore:
+ case SpvOpCopyMemory:
+ case SpvOpCopyMemorySized:
+ case SpvOpAccessChain:
+ case SpvOpInBoundsAccessChain:
+ case SpvOpArrayLength:
+ vtn_handle_variables(b, opcode, w, count);
+ break;
+
+ case SpvOpFunctionCall:
+ vtn_handle_function_call(b, opcode, w, count);
+ break;
+
+ case SpvOpSampledImage:
+ case SpvOpImageSampleImplicitLod:
+ case SpvOpImageSampleExplicitLod:
+ case SpvOpImageSampleDrefImplicitLod:
+ case SpvOpImageSampleDrefExplicitLod:
+ case SpvOpImageSampleProjImplicitLod:
+ case SpvOpImageSampleProjExplicitLod:
+ case SpvOpImageSampleProjDrefImplicitLod:
+ case SpvOpImageSampleProjDrefExplicitLod:
+ case SpvOpImageFetch:
+ case SpvOpImageGather:
+ case SpvOpImageDrefGather:
+ case SpvOpImageQuerySizeLod:
+ case SpvOpImageQuerySize:
+ case SpvOpImageQueryLod:
+ case SpvOpImageQueryLevels:
+ case SpvOpImageQuerySamples:
+ vtn_handle_texture(b, opcode, w, count);
+ break;
+
+ case SpvOpImageRead:
+ case SpvOpImageWrite:
+ case SpvOpImageTexelPointer:
+ vtn_handle_image(b, opcode, w, count);
+ break;
+
+ case SpvOpAtomicExchange:
+ case SpvOpAtomicCompareExchange:
+ case SpvOpAtomicCompareExchangeWeak:
+ case SpvOpAtomicIIncrement:
+ case SpvOpAtomicIDecrement:
+ case SpvOpAtomicIAdd:
+ case SpvOpAtomicISub:
+ case SpvOpAtomicSMin:
+ case SpvOpAtomicUMin:
+ case SpvOpAtomicSMax:
+ case SpvOpAtomicUMax:
+ case SpvOpAtomicAnd:
+ case SpvOpAtomicOr:
+ case SpvOpAtomicXor: {
+ struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
+ if (pointer->value_type == vtn_value_type_image_pointer) {
+ vtn_handle_image(b, opcode, w, count);
+ } else {
+ assert(!"Atomic buffers not yet implemented");
+ }
+ }
+
+ case SpvOpSNegate:
+ case SpvOpFNegate:
+ case SpvOpNot:
+ case SpvOpAny:
+ case SpvOpAll:
+ case SpvOpConvertFToU:
+ case SpvOpConvertFToS:
+ case SpvOpConvertSToF:
+ case SpvOpConvertUToF:
+ case SpvOpUConvert:
+ case SpvOpSConvert:
+ case SpvOpFConvert:
+ case SpvOpConvertPtrToU:
+ case SpvOpConvertUToPtr:
+ case SpvOpPtrCastToGeneric:
+ case SpvOpGenericCastToPtr:
+ case SpvOpBitcast:
+ case SpvOpIsNan:
+ case SpvOpIsInf:
+ case SpvOpIsFinite:
+ case SpvOpIsNormal:
+ case SpvOpSignBitSet:
+ case SpvOpLessOrGreater:
+ case SpvOpOrdered:
+ case SpvOpUnordered:
+ case SpvOpIAdd:
+ case SpvOpFAdd:
+ case SpvOpISub:
+ case SpvOpFSub:
+ case SpvOpIMul:
+ case SpvOpFMul:
+ case SpvOpUDiv:
+ case SpvOpSDiv:
+ case SpvOpFDiv:
+ case SpvOpUMod:
+ case SpvOpSRem:
+ case SpvOpSMod:
+ case SpvOpFRem:
+ case SpvOpFMod:
+ case SpvOpVectorTimesScalar:
+ case SpvOpDot:
+ case SpvOpShiftRightLogical:
+ case SpvOpShiftRightArithmetic:
+ case SpvOpShiftLeftLogical:
+ case SpvOpLogicalEqual:
+ case SpvOpLogicalNotEqual:
+ case SpvOpLogicalOr:
+ case SpvOpLogicalAnd:
+ case SpvOpLogicalNot:
+ case SpvOpBitwiseOr:
+ case SpvOpBitwiseXor:
+ case SpvOpBitwiseAnd:
+ case SpvOpSelect:
+ case SpvOpIEqual:
+ case SpvOpFOrdEqual:
+ case SpvOpFUnordEqual:
+ case SpvOpINotEqual:
+ case SpvOpFOrdNotEqual:
+ case SpvOpFUnordNotEqual:
+ case SpvOpULessThan:
+ case SpvOpSLessThan:
+ case SpvOpFOrdLessThan:
+ case SpvOpFUnordLessThan:
+ case SpvOpUGreaterThan:
+ case SpvOpSGreaterThan:
+ case SpvOpFOrdGreaterThan:
+ case SpvOpFUnordGreaterThan:
+ case SpvOpULessThanEqual:
+ case SpvOpSLessThanEqual:
+ case SpvOpFOrdLessThanEqual:
+ case SpvOpFUnordLessThanEqual:
+ case SpvOpUGreaterThanEqual:
+ case SpvOpSGreaterThanEqual:
+ case SpvOpFOrdGreaterThanEqual:
+ case SpvOpFUnordGreaterThanEqual:
+ case SpvOpDPdx:
+ case SpvOpDPdy:
+ case SpvOpFwidth:
+ case SpvOpDPdxFine:
+ case SpvOpDPdyFine:
+ case SpvOpFwidthFine:
+ case SpvOpDPdxCoarse:
+ case SpvOpDPdyCoarse:
+ case SpvOpFwidthCoarse:
+ vtn_handle_alu(b, opcode, w, count);
+ break;
+
+ case SpvOpTranspose:
+ case SpvOpOuterProduct:
+ case SpvOpMatrixTimesScalar:
+ case SpvOpVectorTimesMatrix:
+ case SpvOpMatrixTimesVector:
+ case SpvOpMatrixTimesMatrix:
+ vtn_handle_matrix_alu(b, opcode, w, count);
+ break;
+
+ case SpvOpVectorExtractDynamic:
+ case SpvOpVectorInsertDynamic:
+ case SpvOpVectorShuffle:
+ case SpvOpCompositeConstruct:
+ case SpvOpCompositeExtract:
+ case SpvOpCompositeInsert:
+ case SpvOpCopyObject:
+ vtn_handle_composite(b, opcode, w, count);
+ break;
+
+ case SpvOpPhi:
+ vtn_handle_phi_first_pass(b, w);
+ break;
+
+ case SpvOpEmitVertex:
+ case SpvOpEndPrimitive:
+ case SpvOpEmitStreamVertex:
+ case SpvOpEndStreamPrimitive:
+ case SpvOpControlBarrier:
+ case SpvOpMemoryBarrier:
+ vtn_handle_barrier(b, opcode, w, count);
+ break;
+
+ default:
+ unreachable("Unhandled opcode");
+ }
+
+ return true;
+}
+
+static void
+vtn_walk_blocks(struct vtn_builder *b, struct vtn_block *start,
+ struct vtn_block *break_block, struct vtn_block *cont_block,
+ struct vtn_block *end_block)
+{
+ struct vtn_block *block = start;
+ while (block != end_block) {
+ if (block->merge_op == SpvOpLoopMerge) {
+ /* This is the jump into a loop. */
+ struct vtn_block *new_cont_block = block;
+ struct vtn_block *new_break_block =
+ vtn_value(b, block->merge_block_id, vtn_value_type_block)->block;
+
+ nir_loop *loop = nir_loop_create(b->shader);
+ nir_cf_node_insert(b->nb.cursor, &loop->cf_node);
+
+ /* Reset the merge_op to prerevent infinite recursion */
+ block->merge_op = SpvOpNop;
+
+ b->nb.cursor = nir_after_cf_list(&loop->body);
+ vtn_walk_blocks(b, block, new_break_block, new_cont_block, NULL);
+
+ b->nb.cursor = nir_after_cf_node(&loop->cf_node);
+ block = new_break_block;
+ continue;
+ }
+
+ const uint32_t *w = block->branch;
+ SpvOp branch_op = w[0] & SpvOpCodeMask;
+
+ b->block = block;
+ vtn_foreach_instruction(b, block->label, block->branch,
+ vtn_handle_body_instruction);
+
+ nir_block *cur_block = nir_cursor_current_block(b->nb.cursor);
+ assert(cur_block == block->block);
+ _mesa_hash_table_insert(b->block_table, cur_block, block);
+
+ switch (branch_op) {
+ case SpvOpBranch: {
+ struct vtn_block *branch_block =
+ vtn_value(b, w[1], vtn_value_type_block)->block;
+
+ if (branch_block == break_block) {
+ nir_jump_instr *jump = nir_jump_instr_create(b->shader,
+ nir_jump_break);
+ nir_builder_instr_insert(&b->nb, &jump->instr);
+
+ return;
+ } else if (branch_block == cont_block) {
+ nir_jump_instr *jump = nir_jump_instr_create(b->shader,
+ nir_jump_continue);
+ nir_builder_instr_insert(&b->nb, &jump->instr);
+
+ return;
+ } else if (branch_block == end_block) {
+ /* We're branching to the merge block of an if, since for loops
+ * and functions end_block == NULL, so we're done here.
+ */
+ return;
+ } else {
+ /* We're branching to another block, and according to the rules,
+ * we can only branch to another block with one predecessor (so
+ * we're the only one jumping to it) so we can just process it
+ * next.
+ */
+ block = branch_block;
+ continue;
+ }
+ }
+
+ case SpvOpBranchConditional: {
+ /* Gather up the branch blocks */
+ struct vtn_block *then_block =
+ vtn_value(b, w[2], vtn_value_type_block)->block;
+ struct vtn_block *else_block =
+ vtn_value(b, w[3], vtn_value_type_block)->block;
+
+ nir_if *if_stmt = nir_if_create(b->shader);
+ if_stmt->condition = nir_src_for_ssa(vtn_ssa_value(b, w[1])->def);
+ nir_cf_node_insert(b->nb.cursor, &if_stmt->cf_node);
+
+ if (then_block == break_block) {
+ nir_jump_instr *jump = nir_jump_instr_create(b->shader,
+ nir_jump_break);
+ nir_instr_insert_after_cf_list(&if_stmt->then_list,
+ &jump->instr);
+ block = else_block;
+ } else if (else_block == break_block) {
+ nir_jump_instr *jump = nir_jump_instr_create(b->shader,
+ nir_jump_break);
+ nir_instr_insert_after_cf_list(&if_stmt->else_list,
+ &jump->instr);
+ block = then_block;
+ } else if (then_block == cont_block) {
+ nir_jump_instr *jump = nir_jump_instr_create(b->shader,
+ nir_jump_continue);
+ nir_instr_insert_after_cf_list(&if_stmt->then_list,
+ &jump->instr);
+ block = else_block;
+ } else if (else_block == cont_block) {
+ nir_jump_instr *jump = nir_jump_instr_create(b->shader,
+ nir_jump_continue);
+ nir_instr_insert_after_cf_list(&if_stmt->else_list,
+ &jump->instr);
+ block = then_block;
+ } else {
+ /* According to the rules we're branching to two blocks that don't
+ * have any other predecessors, so we can handle this as a
+ * conventional if.
+ */
+ assert(block->merge_op == SpvOpSelectionMerge);
+ struct vtn_block *merge_block =
+ vtn_value(b, block->merge_block_id, vtn_value_type_block)->block;
+
+ b->nb.cursor = nir_after_cf_list(&if_stmt->then_list);
+ vtn_walk_blocks(b, then_block, break_block, cont_block, merge_block);
+
+ b->nb.cursor = nir_after_cf_list(&if_stmt->else_list);
+ vtn_walk_blocks(b, else_block, break_block, cont_block, merge_block);
+
+ b->nb.cursor = nir_after_cf_node(&if_stmt->cf_node);
+ block = merge_block;
+ continue;
+ }
+
+ /* If we got here then we inserted a predicated break or continue
+ * above and we need to handle the other case. We already set
+ * `block` above to indicate what block to visit after the
+ * predicated break.
+ */
+
+ /* It's possible that the other branch is also a break/continue.
+ * If it is, we handle that here.
+ */
+ if (block == break_block) {
+ nir_jump_instr *jump = nir_jump_instr_create(b->shader,
+ nir_jump_break);
+ nir_builder_instr_insert(&b->nb, &jump->instr);
+
+ return;
+ } else if (block == cont_block) {
+ nir_jump_instr *jump = nir_jump_instr_create(b->shader,
+ nir_jump_continue);
+ nir_builder_instr_insert(&b->nb, &jump->instr);
+
+ return;
+ }
+
+ /* If we got here then there was a predicated break/continue but
+ * the other half of the if has stuff in it. `block` was already
+ * set above so there is nothing left for us to do.
+ */
+ continue;
+ }
+
+ case SpvOpReturn: {
+ nir_jump_instr *jump = nir_jump_instr_create(b->shader,
+ nir_jump_return);
+ nir_builder_instr_insert(&b->nb, &jump->instr);
+ return;
+ }
+
+ case SpvOpReturnValue: {
+ struct vtn_ssa_value *src = vtn_ssa_value(b, w[1]);
+ vtn_variable_store(b, src,
+ nir_deref_var_create(b, b->impl->return_var),
+ NULL);
+
+ nir_jump_instr *jump = nir_jump_instr_create(b->shader,
+ nir_jump_return);
+ nir_builder_instr_insert(&b->nb, &jump->instr);
+ return;
+ }
+
+ case SpvOpKill: {
+ nir_intrinsic_instr *discard =
+ nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard);
+ nir_builder_instr_insert(&b->nb, &discard->instr);
+ return;
+ }
+
+ case SpvOpSwitch:
+ case SpvOpUnreachable:
+ default:
+ unreachable("Unhandled opcode");
+ }
+ }
+}
+
+nir_shader *
+spirv_to_nir(const uint32_t *words, size_t word_count,
+ gl_shader_stage stage,
+ const nir_shader_compiler_options *options)
+{
+ const uint32_t *word_end = words + word_count;
+
+ /* Handle the SPIR-V header (first 4 dwords) */
+ assert(word_count > 5);
+
+ assert(words[0] == SpvMagicNumber);
+ assert(words[1] >= 0x10000);
+ /* words[2] == generator magic */
+ unsigned value_id_bound = words[3];
+ assert(words[4] == 0);
+
+ words+= 5;
+
+ nir_shader *shader = nir_shader_create(NULL, stage, options);
+
+ /* Initialize the stn_builder object */
+ struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
+ b->shader = shader;
+ b->value_id_bound = value_id_bound;
+ b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
+ exec_list_make_empty(&b->functions);
+
+ /* XXX: We shouldn't need these defaults */
+ if (b->shader->stage == MESA_SHADER_GEOMETRY) {
+ b->shader->info.gs.vertices_in = 3;
+ b->shader->info.gs.output_primitive = 4; /* GL_TRIANGLES */
+ }
+
+ /* Handle all the preamble instructions */
+ words = vtn_foreach_instruction(b, words, word_end,
+ vtn_handle_preamble_instruction);
+
+ /* Do a very quick CFG analysis pass */
+ vtn_foreach_instruction(b, words, word_end,
+ vtn_handle_first_cfg_pass_instruction);
+
+ foreach_list_typed(struct vtn_function, func, node, &b->functions) {
+ b->impl = func->impl;
+ b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
+ _mesa_key_pointer_equal);
+ b->block_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
+ _mesa_key_pointer_equal);
+ nir_builder_init(&b->nb, b->impl);
+ b->nb.cursor = nir_after_cf_list(&b->impl->body);
+ vtn_walk_blocks(b, func->start_block, NULL, NULL, NULL);
+ vtn_foreach_instruction(b, func->start_block->label, func->end,
+ vtn_handle_phi_second_pass);
+ }
+
+ /* Because we can still have output reads in NIR, we need to lower
+ * outputs to temporaries before we are truely finished.
+ */
+ nir_lower_outputs_to_temporaries(shader);
+
+ ralloc_free(b);
+
+ return shader;
+}
--- /dev/null
- assert(exec_list_length(&func->overload_list) == 1);
- foreach_list_typed(nir_function_overload, overload, node,
- &func->overload_list) {
- assert(overload->impl);
- entrypoint = overload->impl;
- }
+/*
+ * Copyright © 2015 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include <assert.h>
+#include <stdbool.h>
+#include <string.h>
+#include <unistd.h>
+#include <fcntl.h>
+
+#include "anv_private.h"
+#include "brw_nir.h"
+#include "anv_nir.h"
+#include "glsl/nir/nir_spirv.h"
+
+/* Needed for SWIZZLE macros */
+#include "program/prog_instruction.h"
+
+// Shader functions
+
+VkResult anv_CreateShaderModule(
+ VkDevice _device,
+ const VkShaderModuleCreateInfo* pCreateInfo,
+ const VkAllocationCallbacks* pAllocator,
+ VkShaderModule* pShaderModule)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ struct anv_shader_module *module;
+
+ assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
+ assert(pCreateInfo->flags == 0);
+
+ module = anv_alloc2(&device->alloc, pAllocator,
+ sizeof(*module) + pCreateInfo->codeSize, 8,
+ VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
+ if (module == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ module->nir = NULL;
+ module->size = pCreateInfo->codeSize;
+ memcpy(module->data, pCreateInfo->pCode, module->size);
+
+ *pShaderModule = anv_shader_module_to_handle(module);
+
+ return VK_SUCCESS;
+}
+
+void anv_DestroyShaderModule(
+ VkDevice _device,
+ VkShaderModule _module,
+ const VkAllocationCallbacks* pAllocator)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_shader_module, module, _module);
+
+ anv_free2(&device->alloc, pAllocator, module);
+}
+
+#define SPIR_V_MAGIC_NUMBER 0x07230203
+
+/* Eventually, this will become part of anv_CreateShader. Unfortunately,
+ * we can't do that yet because we don't have the ability to copy nir.
+ */
+static nir_shader *
+anv_shader_compile_to_nir(struct anv_device *device,
+ struct anv_shader_module *module,
+ const char *entrypoint_name,
+ gl_shader_stage stage)
+{
+ if (strcmp(entrypoint_name, "main") != 0) {
+ anv_finishme("Multiple shaders per module not really supported");
+ }
+
+ const struct brw_compiler *compiler =
+ device->instance->physicalDevice.compiler;
+ const nir_shader_compiler_options *nir_options =
+ compiler->glsl_compiler_options[stage].NirOptions;
+
+ nir_shader *nir;
+ if (module->nir) {
+ /* Some things such as our meta clear/blit code will give us a NIR
+ * shader directly. In that case, we just ignore the SPIR-V entirely
+ * and just use the NIR shader */
+ nir = module->nir;
+ nir->options = nir_options;
+ nir_validate_shader(nir);
+ } else {
+ uint32_t *spirv = (uint32_t *) module->data;
+ assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
+ assert(module->size % 4 == 0);
+
+ nir = spirv_to_nir(spirv, module->size / 4, stage, nir_options);
+ nir_validate_shader(nir);
+
+ nir_lower_returns(nir);
+ nir_validate_shader(nir);
+
+ nir_inline_functions(nir);
+ nir_validate_shader(nir);
+
+ nir_lower_system_values(nir);
+ nir_validate_shader(nir);
+ }
+
+ /* Vulkan uses the separate-shader linking model */
+ nir->info.separate_shader = true;
+
+ /* Pick off the single entrypoint that we want */
+ nir_function_impl *entrypoint = NULL;
+ foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
+ if (strcmp(entrypoint_name, func->name) != 0) {
+ /* Not our function, get rid of it */
+ exec_node_remove(&func->node);
+ continue;
+ }
+
++ assert(entrypoint == NULL);
++ assert(func->impl);
++ entrypoint = func->impl;
+ }
++ assert(exec_list_length(&nir->functions) == 1);
+ assert(entrypoint != NULL);
+
+ nir = brw_preprocess_nir(nir, compiler->scalar_stage[stage]);
+
+ nir_shader_gather_info(nir, entrypoint);
+
+ return nir;
+}
+
+VkResult anv_CreatePipelineCache(
+ VkDevice device,
+ const VkPipelineCacheCreateInfo* pCreateInfo,
+ const VkAllocationCallbacks* pAllocator,
+ VkPipelineCache* pPipelineCache)
+{
+ *pPipelineCache = (VkPipelineCache)1;
+
+ stub_return(VK_SUCCESS);
+}
+
+void anv_DestroyPipelineCache(
+ VkDevice _device,
+ VkPipelineCache _cache,
+ const VkAllocationCallbacks* pAllocator)
+{
+}
+
+VkResult anv_GetPipelineCacheData(
+ VkDevice device,
+ VkPipelineCache pipelineCache,
+ size_t* pDataSize,
+ void* pData)
+{
+ *pDataSize = 0;
+ stub_return(VK_SUCCESS);
+}
+
+VkResult anv_MergePipelineCaches(
+ VkDevice device,
+ VkPipelineCache destCache,
+ uint32_t srcCacheCount,
+ const VkPipelineCache* pSrcCaches)
+{
+ stub_return(VK_SUCCESS);
+}
+
+void anv_DestroyPipeline(
+ VkDevice _device,
+ VkPipeline _pipeline,
+ const VkAllocationCallbacks* pAllocator)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
+
+ anv_reloc_list_finish(&pipeline->batch_relocs,
+ pAllocator ? pAllocator : &device->alloc);
+ anv_state_stream_finish(&pipeline->program_stream);
+ if (pipeline->blend_state.map)
+ anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
+ anv_free2(&device->alloc, pAllocator, pipeline);
+}
+
+static const uint32_t vk_to_gen_primitive_type[] = {
+ [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
+ [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
+ [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
+ [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
+ [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
+ [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
+ [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
+ [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
+ [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
+ [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
+/* [VK_PRIMITIVE_TOPOLOGY_PATCH_LIST] = _3DPRIM_PATCHLIST_1 */
+};
+
+static void
+populate_sampler_prog_key(const struct brw_device_info *devinfo,
+ struct brw_sampler_prog_key_data *key)
+{
+ /* XXX: Handle texture swizzle on HSW- */
+ for (int i = 0; i < MAX_SAMPLERS; i++) {
+ /* Assume color sampler, no swizzling. (Works for BDW+) */
+ key->swizzles[i] = SWIZZLE_XYZW;
+ }
+}
+
+static void
+populate_vs_prog_key(const struct brw_device_info *devinfo,
+ struct brw_vs_prog_key *key)
+{
+ memset(key, 0, sizeof(*key));
+
+ populate_sampler_prog_key(devinfo, &key->tex);
+
+ /* XXX: Handle vertex input work-arounds */
+
+ /* XXX: Handle sampler_prog_key */
+}
+
+static void
+populate_gs_prog_key(const struct brw_device_info *devinfo,
+ struct brw_gs_prog_key *key)
+{
+ memset(key, 0, sizeof(*key));
+
+ populate_sampler_prog_key(devinfo, &key->tex);
+}
+
+static void
+populate_wm_prog_key(const struct brw_device_info *devinfo,
+ const VkGraphicsPipelineCreateInfo *info,
+ struct brw_wm_prog_key *key)
+{
+ ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
+
+ memset(key, 0, sizeof(*key));
+
+ populate_sampler_prog_key(devinfo, &key->tex);
+
+ /* TODO: Fill out key->input_slots_valid */
+
+ /* Vulkan doesn't specify a default */
+ key->high_quality_derivatives = false;
+
+ /* XXX Vulkan doesn't appear to specify */
+ key->clamp_fragment_color = false;
+
+ /* Vulkan always specifies upper-left coordinates */
+ key->drawable_height = 0;
+ key->render_to_fbo = false;
+
+ key->nr_color_regions = render_pass->subpasses[info->subpass].color_count;
+
+ key->replicate_alpha = key->nr_color_regions > 1 &&
+ info->pMultisampleState &&
+ info->pMultisampleState->alphaToCoverageEnable;
+
+ if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
+ /* We should probably pull this out of the shader, but it's fairly
+ * harmless to compute it and then let dead-code take care of it.
+ */
+ key->persample_shading = info->pMultisampleState->sampleShadingEnable;
+ if (key->persample_shading)
+ key->persample_2x = info->pMultisampleState->rasterizationSamples == 2;
+
+ key->compute_pos_offset = info->pMultisampleState->sampleShadingEnable;
+ key->compute_sample_id = info->pMultisampleState->sampleShadingEnable;
+ }
+}
+
+static void
+populate_cs_prog_key(const struct brw_device_info *devinfo,
+ struct brw_cs_prog_key *key)
+{
+ memset(key, 0, sizeof(*key));
+
+ populate_sampler_prog_key(devinfo, &key->tex);
+}
+
+static nir_shader *
+anv_pipeline_compile(struct anv_pipeline *pipeline,
+ struct anv_shader_module *module,
+ const char *entrypoint,
+ gl_shader_stage stage,
+ struct brw_stage_prog_data *prog_data)
+{
+ const struct brw_compiler *compiler =
+ pipeline->device->instance->physicalDevice.compiler;
+
+ nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
+ module, entrypoint, stage);
+ if (nir == NULL)
+ return NULL;
+
+ anv_nir_lower_push_constants(nir, compiler->scalar_stage[stage]);
+
+ /* Figure out the number of parameters */
+ prog_data->nr_params = 0;
+
+ if (nir->num_uniforms > 0) {
+ /* If the shader uses any push constants at all, we'll just give
+ * them the maximum possible number
+ */
+ prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
+ }
+
+ if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
+ prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
+
+ if (pipeline->layout && pipeline->layout->stage[stage].image_count > 0)
+ prog_data->nr_params += pipeline->layout->stage[stage].image_count *
+ BRW_IMAGE_PARAM_SIZE;
+
+ if (prog_data->nr_params > 0) {
+ /* XXX: I think we're leaking this */
+ prog_data->param = (const union gl_constant_value **)
+ malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
+
+ /* We now set the param values to be offsets into a
+ * anv_push_constant_data structure. Since the compiler doesn't
+ * actually dereference any of the gl_constant_value pointers in the
+ * params array, it doesn't really matter what we put here.
+ */
+ struct anv_push_constants *null_data = NULL;
+ if (nir->num_uniforms > 0) {
+ /* Fill out the push constants section of the param array */
+ for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
+ prog_data->param[i] = (const union gl_constant_value *)
+ &null_data->client_data[i * sizeof(float)];
+ }
+ }
+
+ /* Set up dynamic offsets */
+ anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
+
+ /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
+ if (pipeline->layout)
+ anv_nir_apply_pipeline_layout(nir, prog_data, pipeline->layout);
+
+ /* All binding table offsets provided by apply_pipeline_layout() are
+ * relative to the start of the bindint table (plus MAX_RTS for VS).
+ */
+ unsigned bias;
+ switch (stage) {
+ case MESA_SHADER_FRAGMENT:
+ bias = MAX_RTS;
+ break;
+ case MESA_SHADER_COMPUTE:
+ bias = 1;
+ break;
+ default:
+ bias = 0;
+ break;
+ }
+ prog_data->binding_table.size_bytes = 0;
+ prog_data->binding_table.texture_start = bias;
+ prog_data->binding_table.ubo_start = bias;
+ prog_data->binding_table.ssbo_start = bias;
+ prog_data->binding_table.image_start = bias;
+
+ /* Finish the optimization and compilation process */
+ nir = brw_nir_lower_io(nir, &pipeline->device->info,
+ compiler->scalar_stage[stage]);
+
+ /* nir_lower_io will only handle the push constants; we need to set this
+ * to the full number of possible uniforms.
+ */
+ nir->num_uniforms = prog_data->nr_params * 4;
+
+ return nir;
+}
+
+static uint32_t
+anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
+ const void *data, size_t size)
+{
+ struct anv_state state =
+ anv_state_stream_alloc(&pipeline->program_stream, size, 64);
+
+ assert(size < pipeline->program_stream.block_pool->block_size);
+
+ memcpy(state.map, data, size);
+
+ if (!pipeline->device->info.has_llc)
+ anv_state_clflush(state);
+
+ return state.offset;
+}
+
+static void
+anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
+ gl_shader_stage stage,
+ struct brw_stage_prog_data *prog_data)
+{
+ struct brw_device_info *devinfo = &pipeline->device->info;
+ uint32_t max_threads[] = {
+ [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
+ [MESA_SHADER_TESS_CTRL] = 0,
+ [MESA_SHADER_TESS_EVAL] = 0,
+ [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
+ [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
+ [MESA_SHADER_COMPUTE] = devinfo->max_cs_threads,
+ };
+
+ pipeline->prog_data[stage] = prog_data;
+ pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
+ pipeline->scratch_start[stage] = pipeline->total_scratch;
+ pipeline->total_scratch =
+ align_u32(pipeline->total_scratch, 1024) +
+ prog_data->total_scratch * max_threads[stage];
+}
+
+static VkResult
+anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
+ const VkGraphicsPipelineCreateInfo *info,
+ struct anv_shader_module *module,
+ const char *entrypoint)
+{
+ const struct brw_compiler *compiler =
+ pipeline->device->instance->physicalDevice.compiler;
+ struct brw_vs_prog_data *prog_data = &pipeline->vs_prog_data;
+ struct brw_vs_prog_key key;
+
+ populate_vs_prog_key(&pipeline->device->info, &key);
+
+ /* TODO: Look up shader in cache */
+
+ memset(prog_data, 0, sizeof(*prog_data));
+
+ nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
+ MESA_SHADER_VERTEX,
+ &prog_data->base.base);
+ if (nir == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ void *mem_ctx = ralloc_context(NULL);
+
+ if (module->nir == NULL)
+ ralloc_steal(mem_ctx, nir);
+
+ prog_data->inputs_read = nir->info.inputs_read;
+ pipeline->writes_point_size = nir->info.outputs_written & VARYING_SLOT_PSIZ;
+
+ brw_compute_vue_map(&pipeline->device->info,
+ &prog_data->base.vue_map,
+ nir->info.outputs_written,
+ nir->info.separate_shader);
+
+ unsigned code_size;
+ const unsigned *shader_code =
+ brw_compile_vs(compiler, NULL, mem_ctx, &key, prog_data, nir,
+ NULL, false, -1, &code_size, NULL);
+ if (shader_code == NULL) {
+ ralloc_free(mem_ctx);
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+ }
+
+ const uint32_t offset =
+ anv_pipeline_upload_kernel(pipeline, shader_code, code_size);
+ if (prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) {
+ pipeline->vs_simd8 = offset;
+ pipeline->vs_vec4 = NO_KERNEL;
+ } else {
+ pipeline->vs_simd8 = NO_KERNEL;
+ pipeline->vs_vec4 = offset;
+ }
+
+ ralloc_free(mem_ctx);
+
+ anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX,
+ &prog_data->base.base);
+
+ return VK_SUCCESS;
+}
+
+static VkResult
+anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
+ const VkGraphicsPipelineCreateInfo *info,
+ struct anv_shader_module *module,
+ const char *entrypoint)
+{
+ const struct brw_compiler *compiler =
+ pipeline->device->instance->physicalDevice.compiler;
+ struct brw_gs_prog_data *prog_data = &pipeline->gs_prog_data;
+ struct brw_gs_prog_key key;
+
+ populate_gs_prog_key(&pipeline->device->info, &key);
+
+ /* TODO: Look up shader in cache */
+
+ memset(prog_data, 0, sizeof(*prog_data));
+
+ nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
+ MESA_SHADER_GEOMETRY,
+ &prog_data->base.base);
+ if (nir == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ void *mem_ctx = ralloc_context(NULL);
+
+ if (module->nir == NULL)
+ ralloc_steal(mem_ctx, nir);
+
+ brw_compute_vue_map(&pipeline->device->info,
+ &prog_data->base.vue_map,
+ nir->info.outputs_written,
+ nir->info.separate_shader);
+
+ unsigned code_size;
+ const unsigned *shader_code =
+ brw_compile_gs(compiler, NULL, mem_ctx, &key, prog_data, nir,
+ NULL, -1, &code_size, NULL);
+ if (shader_code == NULL) {
+ ralloc_free(mem_ctx);
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+ }
+
+ /* TODO: SIMD8 GS */
+ pipeline->gs_kernel =
+ anv_pipeline_upload_kernel(pipeline, shader_code, code_size);
+ pipeline->gs_vertex_count = nir->info.gs.vertices_in;
+
+ ralloc_free(mem_ctx);
+
+ anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY,
+ &prog_data->base.base);
+
+ return VK_SUCCESS;
+}
+
+static VkResult
+anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
+ const VkGraphicsPipelineCreateInfo *info,
+ struct anv_shader_module *module,
+ const char *entrypoint)
+{
+ const struct brw_compiler *compiler =
+ pipeline->device->instance->physicalDevice.compiler;
+ struct brw_wm_prog_data *prog_data = &pipeline->wm_prog_data;
+ struct brw_wm_prog_key key;
+
+ populate_wm_prog_key(&pipeline->device->info, info, &key);
+
+ if (pipeline->use_repclear)
+ key.nr_color_regions = 1;
+
+ /* TODO: Look up shader in cache */
+
+ memset(prog_data, 0, sizeof(*prog_data));
+
+ prog_data->binding_table.render_target_start = 0;
+
+ nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
+ MESA_SHADER_FRAGMENT,
+ &prog_data->base);
+ if (nir == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ void *mem_ctx = ralloc_context(NULL);
+
+ if (module->nir == NULL)
+ ralloc_steal(mem_ctx, nir);
+
+ unsigned code_size;
+ const unsigned *shader_code =
+ brw_compile_fs(compiler, NULL, mem_ctx, &key, prog_data, nir,
+ NULL, -1, -1, pipeline->use_repclear, &code_size, NULL);
+ if (shader_code == NULL) {
+ ralloc_free(mem_ctx);
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+ }
+
+ uint32_t offset = anv_pipeline_upload_kernel(pipeline,
+ shader_code, code_size);
+ if (prog_data->no_8)
+ pipeline->ps_simd8 = NO_KERNEL;
+ else
+ pipeline->ps_simd8 = offset;
+
+ if (prog_data->no_8 || prog_data->prog_offset_16) {
+ pipeline->ps_simd16 = offset + prog_data->prog_offset_16;
+ } else {
+ pipeline->ps_simd16 = NO_KERNEL;
+ }
+
+ pipeline->ps_ksp2 = 0;
+ pipeline->ps_grf_start2 = 0;
+ if (pipeline->ps_simd8 != NO_KERNEL) {
+ pipeline->ps_ksp0 = pipeline->ps_simd8;
+ pipeline->ps_grf_start0 = prog_data->base.dispatch_grf_start_reg;
+ if (pipeline->ps_simd16 != NO_KERNEL) {
+ pipeline->ps_ksp2 = pipeline->ps_simd16;
+ pipeline->ps_grf_start2 = prog_data->dispatch_grf_start_reg_16;
+ }
+ } else if (pipeline->ps_simd16 != NO_KERNEL) {
+ pipeline->ps_ksp0 = pipeline->ps_simd16;
+ pipeline->ps_grf_start0 = prog_data->dispatch_grf_start_reg_16;
+ }
+
+ ralloc_free(mem_ctx);
+
+ anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT,
+ &prog_data->base);
+
+ return VK_SUCCESS;
+}
+
+VkResult
+anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
+ const VkComputePipelineCreateInfo *info,
+ struct anv_shader_module *module,
+ const char *entrypoint)
+{
+ const struct brw_compiler *compiler =
+ pipeline->device->instance->physicalDevice.compiler;
+ struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
+ struct brw_cs_prog_key key;
+
+ populate_cs_prog_key(&pipeline->device->info, &key);
+
+ /* TODO: Look up shader in cache */
+
+ memset(prog_data, 0, sizeof(*prog_data));
+
+ prog_data->binding_table.work_groups_start = 0;
+
+ nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
+ MESA_SHADER_COMPUTE,
+ &prog_data->base);
+ if (nir == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ void *mem_ctx = ralloc_context(NULL);
+
+ if (module->nir == NULL)
+ ralloc_steal(mem_ctx, nir);
+
+ unsigned code_size;
+ const unsigned *shader_code =
+ brw_compile_cs(compiler, NULL, mem_ctx, &key, prog_data, nir,
+ -1, &code_size, NULL);
+ if (shader_code == NULL) {
+ ralloc_free(mem_ctx);
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+ }
+
+ pipeline->cs_simd = anv_pipeline_upload_kernel(pipeline,
+ shader_code, code_size);
+ ralloc_free(mem_ctx);
+
+ anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE,
+ &prog_data->base);
+
+ return VK_SUCCESS;
+}
+
+static const int gen8_push_size = 32 * 1024;
+
+static void
+gen7_compute_urb_partition(struct anv_pipeline *pipeline)
+{
+ const struct brw_device_info *devinfo = &pipeline->device->info;
+ bool vs_present = pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT;
+ unsigned vs_size = vs_present ? pipeline->vs_prog_data.base.urb_entry_size : 1;
+ unsigned vs_entry_size_bytes = vs_size * 64;
+ bool gs_present = pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT;
+ unsigned gs_size = gs_present ? pipeline->gs_prog_data.base.urb_entry_size : 1;
+ unsigned gs_entry_size_bytes = gs_size * 64;
+
+ /* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
+ *
+ * VS Number of URB Entries must be divisible by 8 if the VS URB Entry
+ * Allocation Size is less than 9 512-bit URB entries.
+ *
+ * Similar text exists for GS.
+ */
+ unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
+ unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
+
+ /* URB allocations must be done in 8k chunks. */
+ unsigned chunk_size_bytes = 8192;
+
+ /* Determine the size of the URB in chunks. */
+ unsigned urb_chunks = devinfo->urb.size * 1024 / chunk_size_bytes;
+
+ /* Reserve space for push constants */
+ unsigned push_constant_bytes = gen8_push_size;
+ unsigned push_constant_chunks =
+ push_constant_bytes / chunk_size_bytes;
+
+ /* Initially, assign each stage the minimum amount of URB space it needs,
+ * and make a note of how much additional space it "wants" (the amount of
+ * additional space it could actually make use of).
+ */
+
+ /* VS has a lower limit on the number of URB entries */
+ unsigned vs_chunks =
+ ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes,
+ chunk_size_bytes) / chunk_size_bytes;
+ unsigned vs_wants =
+ ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes,
+ chunk_size_bytes) / chunk_size_bytes - vs_chunks;
+
+ unsigned gs_chunks = 0;
+ unsigned gs_wants = 0;
+ if (gs_present) {
+ /* There are two constraints on the minimum amount of URB space we can
+ * allocate:
+ *
+ * (1) We need room for at least 2 URB entries, since we always operate
+ * the GS in DUAL_OBJECT mode.
+ *
+ * (2) We can't allocate less than nr_gs_entries_granularity.
+ */
+ gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
+ chunk_size_bytes) / chunk_size_bytes;
+ gs_wants =
+ ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes,
+ chunk_size_bytes) / chunk_size_bytes - gs_chunks;
+ }
+
+ /* There should always be enough URB space to satisfy the minimum
+ * requirements of each stage.
+ */
+ unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
+ assert(total_needs <= urb_chunks);
+
+ /* Mete out remaining space (if any) in proportion to "wants". */
+ unsigned total_wants = vs_wants + gs_wants;
+ unsigned remaining_space = urb_chunks - total_needs;
+ if (remaining_space > total_wants)
+ remaining_space = total_wants;
+ if (remaining_space > 0) {
+ unsigned vs_additional = (unsigned)
+ round(vs_wants * (((double) remaining_space) / total_wants));
+ vs_chunks += vs_additional;
+ remaining_space -= vs_additional;
+ gs_chunks += remaining_space;
+ }
+
+ /* Sanity check that we haven't over-allocated. */
+ assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);
+
+ /* Finally, compute the number of entries that can fit in the space
+ * allocated to each stage.
+ */
+ unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
+ unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
+
+ /* Since we rounded up when computing *_wants, this may be slightly more
+ * than the maximum allowed amount, so correct for that.
+ */
+ nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries);
+ nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries);
+
+ /* Ensure that we program a multiple of the granularity. */
+ nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
+ nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
+
+ /* Finally, sanity check to make sure we have at least the minimum number
+ * of entries needed for each stage.
+ */
+ assert(nr_vs_entries >= devinfo->urb.min_vs_entries);
+ if (gs_present)
+ assert(nr_gs_entries >= 2);
+
+ /* Lay out the URB in the following order:
+ * - push constants
+ * - VS
+ * - GS
+ */
+ pipeline->urb.vs_start = push_constant_chunks;
+ pipeline->urb.vs_size = vs_size;
+ pipeline->urb.nr_vs_entries = nr_vs_entries;
+
+ pipeline->urb.gs_start = push_constant_chunks + vs_chunks;
+ pipeline->urb.gs_size = gs_size;
+ pipeline->urb.nr_gs_entries = nr_gs_entries;
+}
+
+static void
+anv_pipeline_init_dynamic_state(struct anv_pipeline *pipeline,
+ const VkGraphicsPipelineCreateInfo *pCreateInfo)
+{
+ anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
+ ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
+ struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
+
+ pipeline->dynamic_state = default_dynamic_state;
+
+ if (pCreateInfo->pDynamicState) {
+ /* Remove all of the states that are marked as dynamic */
+ uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
+ for (uint32_t s = 0; s < count; s++)
+ states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
+ }
+
+ struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
+
+ dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
+ if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
+ typed_memcpy(dynamic->viewport.viewports,
+ pCreateInfo->pViewportState->pViewports,
+ pCreateInfo->pViewportState->viewportCount);
+ }
+
+ dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
+ if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
+ typed_memcpy(dynamic->scissor.scissors,
+ pCreateInfo->pViewportState->pScissors,
+ pCreateInfo->pViewportState->scissorCount);
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
+ assert(pCreateInfo->pRasterizationState);
+ dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
+ assert(pCreateInfo->pRasterizationState);
+ dynamic->depth_bias.bias =
+ pCreateInfo->pRasterizationState->depthBiasConstantFactor;
+ dynamic->depth_bias.clamp =
+ pCreateInfo->pRasterizationState->depthBiasClamp;
+ dynamic->depth_bias.slope =
+ pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
+ assert(pCreateInfo->pColorBlendState);
+ typed_memcpy(dynamic->blend_constants,
+ pCreateInfo->pColorBlendState->blendConstants, 4);
+ }
+
+ /* If there is no depthstencil attachment, then don't read
+ * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
+ * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
+ * no need to override the depthstencil defaults in
+ * anv_pipeline::dynamic_state when there is no depthstencil attachment.
+ *
+ * From the Vulkan spec (20 Oct 2015, git-aa308cb):
+ *
+ * pDepthStencilState [...] may only be NULL if renderPass and subpass
+ * specify a subpass that has no depth/stencil attachment.
+ */
+ if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
+ if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
+ assert(pCreateInfo->pDepthStencilState);
+ dynamic->depth_bounds.min =
+ pCreateInfo->pDepthStencilState->minDepthBounds;
+ dynamic->depth_bounds.max =
+ pCreateInfo->pDepthStencilState->maxDepthBounds;
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
+ assert(pCreateInfo->pDepthStencilState);
+ dynamic->stencil_compare_mask.front =
+ pCreateInfo->pDepthStencilState->front.compareMask;
+ dynamic->stencil_compare_mask.back =
+ pCreateInfo->pDepthStencilState->back.compareMask;
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
+ assert(pCreateInfo->pDepthStencilState);
+ dynamic->stencil_write_mask.front =
+ pCreateInfo->pDepthStencilState->front.writeMask;
+ dynamic->stencil_write_mask.back =
+ pCreateInfo->pDepthStencilState->back.writeMask;
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
+ assert(pCreateInfo->pDepthStencilState);
+ dynamic->stencil_reference.front =
+ pCreateInfo->pDepthStencilState->front.reference;
+ dynamic->stencil_reference.back =
+ pCreateInfo->pDepthStencilState->back.reference;
+ }
+ }
+
+ pipeline->dynamic_state_mask = states;
+}
+
+static void
+anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
+{
+ struct anv_render_pass *renderpass = NULL;
+ struct anv_subpass *subpass = NULL;
+
+ /* Assert that all required members of VkGraphicsPipelineCreateInfo are
+ * present, as explained by the Vulkan (20 Oct 2015, git-aa308cb), Section
+ * 4.2 Graphics Pipeline.
+ */
+ assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
+
+ renderpass = anv_render_pass_from_handle(info->renderPass);
+ assert(renderpass);
+
+ if (renderpass != &anv_meta_dummy_renderpass) {
+ assert(info->subpass < renderpass->subpass_count);
+ subpass = &renderpass->subpasses[info->subpass];
+ }
+
+ assert(info->stageCount >= 1);
+ assert(info->pVertexInputState);
+ assert(info->pInputAssemblyState);
+ assert(info->pViewportState);
+ assert(info->pRasterizationState);
+
+ if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
+ assert(info->pDepthStencilState);
+
+ if (subpass && subpass->color_count > 0)
+ assert(info->pColorBlendState);
+
+ for (uint32_t i = 0; i < info->stageCount; ++i) {
+ switch (info->pStages[i].stage) {
+ case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
+ case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
+ assert(info->pTessellationState);
+ break;
+ default:
+ break;
+ }
+ }
+}
+
+VkResult
+anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
+ const VkGraphicsPipelineCreateInfo *pCreateInfo,
+ const struct anv_graphics_pipeline_create_info *extra,
+ const VkAllocationCallbacks *alloc)
+{
+ anv_validate {
+ anv_pipeline_validate_create_info(pCreateInfo);
+ }
+
+ if (alloc == NULL)
+ alloc = &device->alloc;
+
+ pipeline->device = device;
+ pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
+
+ anv_reloc_list_init(&pipeline->batch_relocs, alloc);
+ /* TODO: Handle allocation fail */
+
+ pipeline->batch.alloc = alloc;
+ pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
+ pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
+ pipeline->batch.relocs = &pipeline->batch_relocs;
+
+ anv_state_stream_init(&pipeline->program_stream,
+ &device->instruction_block_pool);
+
+ anv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
+
+ if (pCreateInfo->pTessellationState)
+ anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO");
+ if (pCreateInfo->pMultisampleState &&
+ pCreateInfo->pMultisampleState->rasterizationSamples > 1)
+ anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO");
+
+ pipeline->use_repclear = extra && extra->use_repclear;
+ pipeline->writes_point_size = false;
+
+ /* When we free the pipeline, we detect stages based on the NULL status
+ * of various prog_data pointers. Make them NULL by default.
+ */
+ memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
+ memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
+
+ pipeline->vs_simd8 = NO_KERNEL;
+ pipeline->vs_vec4 = NO_KERNEL;
+ pipeline->gs_kernel = NO_KERNEL;
+
+ pipeline->active_stages = 0;
+ pipeline->total_scratch = 0;
+
+ for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
+ ANV_FROM_HANDLE(anv_shader_module, module,
+ pCreateInfo->pStages[i].module);
+ const char *entrypoint = pCreateInfo->pStages[i].pName;
+
+ switch (pCreateInfo->pStages[i].stage) {
+ case VK_SHADER_STAGE_VERTEX_BIT:
+ anv_pipeline_compile_vs(pipeline, pCreateInfo, module, entrypoint);
+ break;
+ case VK_SHADER_STAGE_GEOMETRY_BIT:
+ anv_pipeline_compile_gs(pipeline, pCreateInfo, module, entrypoint);
+ break;
+ case VK_SHADER_STAGE_FRAGMENT_BIT:
+ anv_pipeline_compile_fs(pipeline, pCreateInfo, module, entrypoint);
+ break;
+ default:
+ anv_finishme("Unsupported shader stage");
+ }
+ }
+
+ if (!(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT)) {
+ /* Vertex is only optional if disable_vs is set */
+ assert(extra->disable_vs);
+ memset(&pipeline->vs_prog_data, 0, sizeof(pipeline->vs_prog_data));
+ }
+
+ gen7_compute_urb_partition(pipeline);
+
+ const VkPipelineVertexInputStateCreateInfo *vi_info =
+ pCreateInfo->pVertexInputState;
+ pipeline->vb_used = 0;
+ for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
+ const VkVertexInputBindingDescription *desc =
+ &vi_info->pVertexBindingDescriptions[i];
+
+ pipeline->vb_used |= 1 << desc->binding;
+ pipeline->binding_stride[desc->binding] = desc->stride;
+
+ /* Step rate is programmed per vertex element (attribute), not
+ * binding. Set up a map of which bindings step per instance, for
+ * reference by vertex element setup. */
+ switch (desc->inputRate) {
+ default:
+ case VK_VERTEX_INPUT_RATE_VERTEX:
+ pipeline->instancing_enable[desc->binding] = false;
+ break;
+ case VK_VERTEX_INPUT_RATE_INSTANCE:
+ pipeline->instancing_enable[desc->binding] = true;
+ break;
+ }
+ }
+
+ const VkPipelineInputAssemblyStateCreateInfo *ia_info =
+ pCreateInfo->pInputAssemblyState;
+ pipeline->primitive_restart = ia_info->primitiveRestartEnable;
+ pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
+
+ if (extra && extra->use_rectlist)
+ pipeline->topology = _3DPRIM_RECTLIST;
+
+ return VK_SUCCESS;
+}
+
+VkResult
+anv_graphics_pipeline_create(
+ VkDevice _device,
+ const VkGraphicsPipelineCreateInfo *pCreateInfo,
+ const struct anv_graphics_pipeline_create_info *extra,
+ const VkAllocationCallbacks *pAllocator,
+ VkPipeline *pPipeline)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+
+ switch (device->info.gen) {
+ case 7:
+ if (device->info.is_haswell)
+ return gen75_graphics_pipeline_create(_device, pCreateInfo, extra, pAllocator, pPipeline);
+ else
+ return gen7_graphics_pipeline_create(_device, pCreateInfo, extra, pAllocator, pPipeline);
+ case 8:
+ return gen8_graphics_pipeline_create(_device, pCreateInfo, extra, pAllocator, pPipeline);
+ case 9:
+ return gen9_graphics_pipeline_create(_device, pCreateInfo, extra, pAllocator, pPipeline);
+ default:
+ unreachable("unsupported gen\n");
+ }
+}
+
+VkResult anv_CreateGraphicsPipelines(
+ VkDevice _device,
+ VkPipelineCache pipelineCache,
+ uint32_t count,
+ const VkGraphicsPipelineCreateInfo* pCreateInfos,
+ const VkAllocationCallbacks* pAllocator,
+ VkPipeline* pPipelines)
+{
+ VkResult result = VK_SUCCESS;
+
+ unsigned i = 0;
+ for (; i < count; i++) {
+ result = anv_graphics_pipeline_create(_device, &pCreateInfos[i],
+ NULL, pAllocator, &pPipelines[i]);
+ if (result != VK_SUCCESS) {
+ for (unsigned j = 0; j < i; j++) {
+ anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
+ }
+
+ return result;
+ }
+ }
+
+ return VK_SUCCESS;
+}
+
+static VkResult anv_compute_pipeline_create(
+ VkDevice _device,
+ const VkComputePipelineCreateInfo* pCreateInfo,
+ const VkAllocationCallbacks* pAllocator,
+ VkPipeline* pPipeline)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+
+ switch (device->info.gen) {
+ case 7:
+ if (device->info.is_haswell)
+ return gen75_compute_pipeline_create(_device, pCreateInfo, pAllocator, pPipeline);
+ else
+ return gen7_compute_pipeline_create(_device, pCreateInfo, pAllocator, pPipeline);
+ case 8:
+ return gen8_compute_pipeline_create(_device, pCreateInfo, pAllocator, pPipeline);
+ case 9:
+ return gen9_compute_pipeline_create(_device, pCreateInfo, pAllocator, pPipeline);
+ default:
+ unreachable("unsupported gen\n");
+ }
+}
+
+VkResult anv_CreateComputePipelines(
+ VkDevice _device,
+ VkPipelineCache pipelineCache,
+ uint32_t count,
+ const VkComputePipelineCreateInfo* pCreateInfos,
+ const VkAllocationCallbacks* pAllocator,
+ VkPipeline* pPipelines)
+{
+ VkResult result = VK_SUCCESS;
+
+ unsigned i = 0;
+ for (; i < count; i++) {
+ result = anv_compute_pipeline_create(_device, &pCreateInfos[i],
+ pAllocator, &pPipelines[i]);
+ if (result != VK_SUCCESS) {
+ for (unsigned j = 0; j < i; j++) {
+ anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
+ }
+
+ return result;
+ }
+ }
+
+ return VK_SUCCESS;
+}