The "persistence" bit if set will result in all Active REMAPs being applied
 indefinitely.
 
+----------------
+
+\newpage{}
+
 # svremap instruction <a name="svremap"> </a>
 
 SVRM-Form:
 
 Pseudo-code:
 
+```
     # registers RA RB RC RT EA/FRS SVSHAPE0-3 indices
     SVSTATE[32:33] <- mi0
     SVSTATE[34:35] <- mi1
     SVSTATE[42:46] <- SVme
     # persistence bit (applies to more than one instruction)
     SVSTATE[62] <- pst
+```
 
 Special Registers Altered:
 
 
 offset will have the effect of offsetting the result by ```offset``` elements:
 
+```
     for i in 0..VL-1:
         GPR(RT + remap(i) + SVSHAPE.offset) = ....
+```
 
 this appears redundant because the register RT could simply be changed by a compiler, until element width overrides are introduced.  also
 bear in mind that unlike a static compiler SVSHAPE.offset may
 
 The format of the array is therefore as follows:
 
+```
     array[xdimsz+1][ydimsz+1][zdimsz+1]
+```
 
 However whilst illustrative of the dimensionality, that does not take the
 "permute" setting into account.  "permute" may be any one of six values
 In its simplest form (without elwidth overrides or other modes):
 
 ```
-def index_remap(i):
-    return GPR((SVSHAPE.SVGPR<<1)+i) + SVSHAPE.offset
+    def index_remap(i):
+        return GPR((SVSHAPE.SVGPR<<1)+i) + SVSHAPE.offset
 
-for i in 0..VL-1:
-    element_result = ....
-    GPR(RT + indexed_remap(i)) = element_result
+    for i in 0..VL-1:
+        element_result = ....
+        GPR(RT + indexed_remap(i)) = element_result
 ```
 
 With element-width overrides included, and using the pseudocode
 this becomes:
 
 ```
-def index_remap(i):
-    svreg = SVSHAPE.SVGPR << 1
-    srcwid = elwid_to_bitwidth(SVSHAPE.elwid)
-    offs = SVSHAPE.offset
-    return get_polymorphed_reg(svreg, srcwid, i) + offs
-
-for i in 0..VL-1:
-    element_result = ....
-    rt_idx = indexed_remap(i)
-    set_polymorphed_reg(RT, destwid, rt_idx, element_result)
+    def index_remap(i):
+        svreg = SVSHAPE.SVGPR << 1
+        srcwid = elwid_to_bitwidth(SVSHAPE.elwid)
+        offs = SVSHAPE.offset
+        return get_polymorphed_reg(svreg, srcwid, i) + offs
+
+    for i in 0..VL-1:
+        element_result = ....
+        rt_idx = indexed_remap(i)
+        set_polymorphed_reg(RT, destwid, rt_idx, element_result)
 ```
 
 Matrix-style reordering still applies to the indices, except limited
 purposed to ensure that the 3rd dimension (Z) has no effect:
 
 ```
-def index_remap(ISHAPE, i):
-    MSHAPE.skip   = 0b0 || ISHAPE.sk1
-    MSHAPE.invxyz = 0b0 || ISHAPE.invxy
-    MSHAPE.xdimsz = ISHAPE.xdimsz
-    MSHAPE.ydimsz = ISHAPE.ydimsz
-    MSHAPE.zdimsz = 0 # disabled
-    if ISHAPE.permute = 0b110 # 0,1
-       MSHAPE.permute = 0b000 # 0,1,2
-    if ISHAPE.permute = 0b111 # 1,0
-       MSHAPE.permute = 0b010 # 1,0,2
-    el_idx = remap_matrix(MSHAPE, i)
-    svreg = ISHAPE.SVGPR << 1
-    srcwid = elwid_to_bitwidth(ISHAPE.elwid)
-    offs = ISHAPE.offset
-    return get_polymorphed_reg(svreg, srcwid, el_idx) + offs
+    def index_remap(ISHAPE, i):
+        MSHAPE.skip   = 0b0 || ISHAPE.sk1
+        MSHAPE.invxyz = 0b0 || ISHAPE.invxy
+        MSHAPE.xdimsz = ISHAPE.xdimsz
+        MSHAPE.ydimsz = ISHAPE.ydimsz
+        MSHAPE.zdimsz = 0 # disabled
+        if ISHAPE.permute = 0b110 # 0,1
+           MSHAPE.permute = 0b000 # 0,1,2
+        if ISHAPE.permute = 0b111 # 1,0
+           MSHAPE.permute = 0b010 # 1,0,2
+        el_idx = remap_matrix(MSHAPE, i)
+        svreg = ISHAPE.SVGPR << 1
+        srcwid = elwid_to_bitwidth(ISHAPE.elwid)
+        offs = ISHAPE.offset
+        return get_polymorphed_reg(svreg, srcwid, el_idx) + offs
 ```
 
 The most important observation above is that the Matrix-style