**Motivation**
-CPUs without VSX/VMX lack a way to efficiently transfer data between FPRs and GPRs, they need to go through memory, this proposal adds more efficient data transfer (both bitwise copy and Integer <-> FP conversion) instructions that transfer directly between FPRs and GPRs without needing to go through memory.
-
-IEEE 754 doesn't specify what results are obtained when converting a NaN or out-of-range floating-point value to integer, so different programming languages and ISAs have made different choices. Below is an overview
+CPUs without VSX/VMX lack a way to efficiently transfer data between
+FPRs and GPRs, they need to go through memory, this proposal adds more
+efficient data transfer (both bitwise copy and Integer <-> FP conversion)
+instructions that transfer directly between FPRs and GPRs without needing
+to go through memory.
+
+IEEE 754 doesn't specify what results are obtained when converting a NaN
+or out-of-range floating-point value to integer, so different programming
+languages and ISAs have made different choices. Below is an overview
of the different variants, listing the languages and hardware that
implements each variant.
-For convenience, we will give those different conversion semantics names based on which common ISA or programming language uses them, since there may not be an established name for them:
-
-* **Standard OpenPOWER-style conversion**
-
-This conversion, performs "saturation with NaN converted to minimum valid integer". This
-is also exactly the same as the x86 ISA conversion semantics.
-OpenPOWER has instructions for this conversion semantic for both:
-
-* rounding mode read from FPSCR
-* rounding mode always set to truncate
-
-* **Java/Saturating conversion**
-
-For the sake of simplicity, the FP -> Integer conversion semantics generalized from those used by Java's semantics (and Rust's `as` operator) will be referred to as
-[Java/Saturating conversion semantics](#fp-to-int-java-saturating-conversion-semantics).
-
-Those same semantics are used in some way by all of the following languages (not necessarily for the default conversion method):
-
-* Java's
- [FP -> Integer conversion](https://docs.oracle.com/javase/specs/jls/se16/html/jls-5.html#jls-5.1.3) (only for long/int results)
-* Rust's FP -> Integer conversion using the
- [`as` operator](https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics)
-* LLVM's
- [`llvm.fptosi.sat`](https://llvm.org/docs/LangRef.html#llvm-fptosi-sat-intrinsic) and
- [`llvm.fptoui.sat`](https://llvm.org/docs/LangRef.html#llvm-fptoui-sat-intrinsic) intrinsics
-* SPIR-V's OpenCL dialect's
- [`OpConvertFToU`](https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpConvertFToU) and
- [`OpConvertFToS`](https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpConvertFToS)
- instructions when decorated with
- [the `SaturatedConversion` decorator](https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#_a_id_decoration_a_decoration).
-* WebAssembly has also introduced
- [trunc_sat_u](ttps://webassembly.github.io/spec/core/exec/numerics.html#op-trunc-sat-u) and
- [trunc_sat_s](https://webassembly.github.io/spec/core/exec/numerics.html#op-trunc-sat-s)
-
-* **JavaScript conversion**
-
-For the sake of simplicity, the FP -> Integer conversion semantics generalized from those used by JavaScripts's `ToInt32` abstract operation will be referred to as [JavaScript conversion semantics](#fp-to-int-javascript-conversion-semantics).
-
-This instruction is present in ARM assembler as FJCVTZS
-<https://developer.arm.com/documentation/dui0801/g/hko1477562192868>
-
**Notes and Observations**:
-* TODO
+* These instructions are present in many other ISAs.
+* Javascript rounding as one instruction saves 35 instructions including
+ six branches.
**Changes**
| PO | RT | 0 | FRB | XO | RCS | X-Form |
```
-if RCS[0] = 1 then # if Single mode
- RT <- [0] * 32 || SINGLE((FRB)) # SINGLE since that's what stfs uses
-else
- RT <- (FRB)
+ if RCS[0] = 1 then # if Single mode
+ RT <- [0] * 32 || SINGLE((FRB)) # SINGLE since that's what stfs uses
+ else
+ RT <- (FRB)
```
-move a 32/64-bit float from a FPR to a GPR, just copying bits of the IEEE 754 representation directly. This is equivalent to `stfs` followed by `lwz` or equivalent to `stfd` followed by `ld`.
-As `fmvtg` is just copying bits, `FPSCR` is not affected in any way.
+Move a 32/64-bit float from a FPR to a GPR, just copying bits of the
+IEEE754 representation directly. This is equivalent to `stfs` followed
+by `lwz` or equivalent to `stfd` followed by `ld`. As `fmvtg` is just
+copying bits, `FPSCR` is not affected in any way.
Rc=1 tests RT and sets CR0, exactly like all other Scalar Fixed-Point
operations.
+Special Registers altered:
+
+ CR1 (if Rc=1)
+
### Assembly Aliases
| Assembly Alias | Full Instruction |
| PO | FRT | 0 | RB | XO | RCS | X-Form |
```
-if RCS[0] = 1 then # if Single mode
- FRT <- DOUBLE((RB)[32:63]) # DOUBLE since that's what lfs uses
-else
- FRT <- (RB)
+ if RCS[0] = 1 then # if Single mode
+ FRT <- DOUBLE((RB)[32:63]) # DOUBLE since that's what lfs uses
+ else
+ FRT <- (RB)
```
-move a 32/64-bit float from a GPR to a FPR, just copying bits of the IEEE 754 representation directly. This is equivalent to `stw` followed by `lfs` or equivalent to `std` followed by `lfd`. As `fmvfg` is just copying bits, `FPSCR` is not affected in any way.
+move a 32/64-bit float from a GPR to a FPR, just copying bits of the IEEE
+754 representation directly. This is equivalent to `stw` followed by `lfs`
+or equivalent to `std` followed by `lfd`. As `fmvfg` is just copying bits,
+`FPSCR` is not affected in any way.
Rc=1 tests FRT and sets CR1, exactly like all other Scalar Floating-Point
operations.
+Special Registers altered:
+
+ CR1 (if Rc=1)
+
### Assembly Aliases
| Assembly Alias | Full Instruction |
`fcvtfg FRT, RB, IT, RCS`
```
-if IT[0] = 0 and RCS[0] = 0 then # 32-bit int -> 64-bit float
- # rounding never necessary, so don't touch FPSCR
- # based off xvcvsxwdp
- if IT = 0 then # Signed 32-bit
- src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
- else # IT = 1 -- Unsigned 32-bit
- src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
- FRT <- bfp64_CONVERT_FROM_BFP(src)
-else
- # rounding may be necessary
- # based off xscvuxdsp
- reset_xflags()
- switch(IT)
- case(0): # Signed 32-bit
+ if IT[0] = 0 and RCS[0] = 0 then # 32-bit int -> 64-bit float
+ # rounding never necessary, so don't touch FPSCR
+ # based off xvcvsxwdp
+ if IT = 0 then # Signed 32-bit
src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
- case(1): # Unsigned 32-bit
+ else # IT = 1 -- Unsigned 32-bit
src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
- case(2): # Signed 64-bit
- src <- bfp_CONVERT_FROM_SI64((RB))
- default: # Unsigned 64-bit
- src <- bfp_CONVERT_FROM_UI64((RB))
- if RCS[0] = 1 then # Single
- rnd <- bfp_ROUND_TO_BFP32(FPSCR.RN, src)
- result32 <- bfp32_CONVERT_FROM_BFP(rnd)
- cls <- fprf_CLASS_BFP32(result32)
- result <- DOUBLE(result32)
+ FRT <- bfp64_CONVERT_FROM_BFP(src)
else
- rnd <- bfp_ROUND_TO_BFP64(FPSCR.RN, src)
- result <- bfp64_CONVERT_FROM_BFP(rnd)
- cls <- fprf_CLASS_BFP64(result)
-
- if xx_flag = 1 then SetFX(FPSCR.XX)
-
- FRT <- result
- FPSCR.FPRF <- cls
- FPSCR.FR <- inc_flag
- FPSCR.FI <- xx_flag
+ # rounding may be necessary. based off xscvuxdsp
+ reset_xflags()
+ switch(IT)
+ case(0): # Signed 32-bit
+ src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
+ case(1): # Unsigned 32-bit
+ src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
+ case(2): # Signed 64-bit
+ src <- bfp_CONVERT_FROM_SI64((RB))
+ default: # Unsigned 64-bit
+ src <- bfp_CONVERT_FROM_UI64((RB))
+ if RCS[0] = 1 then # Single
+ rnd <- bfp_ROUND_TO_BFP32(FPSCR.RN, src)
+ result32 <- bfp32_CONVERT_FROM_BFP(rnd)
+ cls <- fprf_CLASS_BFP32(result32)
+ result <- DOUBLE(result32)
+ else
+ rnd <- bfp_ROUND_TO_BFP64(FPSCR.RN, src)
+ result <- bfp64_CONVERT_FROM_BFP(rnd)
+ cls <- fprf_CLASS_BFP64(result)
+ if xx_flag = 1 then SetFX(FPSCR.XX)
+ FRT <- result
+ FPSCR.FPRF <- cls
+ FPSCR.FR <- inc_flag
+ FPSCR.FI <- xx_flag
```
-Convert from a unsigned/signed 32/64-bit integer in RB to a 32/64-bit float in FRT, following the usual 32-bit float in 64-bit float format.
-
-If converting from a unsigned/signed 32-bit integer to a 64-bit float, rounding is never necessary, so `FPSCR` is unmodified and exceptions are never raised. Otherwise, `FPSCR` is modified and exceptions are raised as usual.
+Convert from a unsigned/signed 32/64-bit integer in RB to a 32/64-bit
+float in FRT, following the usual 32-bit float in 64-bit float format.
+If converting from a unsigned/signed 32-bit integer to a 64-bit float,
+rounding is never necessary, so `FPSCR` is unmodified and exceptions are
+never raised. Otherwise, `FPSCR` is modified and exceptions are raised
+as usual.
Rc=1 tests FRT and sets CR1, exactly like all other Scalar Floating-Point
operations.
+Special Registers altered:
+
+ CR1 (if Rc=1)
+ FPCSR (TODO: which bits?)
+
### Assembly Aliases
| Assembly Alias | Full Instruction |
<div id="fpr-to-gpr-conversion-mode"></div>
-IEEE 754 doesn't specify what results are obtained when converting a NaN or out-of-range floating-point value to integer, so different programming languages and ISAs have made different choices. Below is an overview
+IEEE 754 doesn't specify what results are obtained when converting a NaN
+or out-of-range floating-point value to integer, so different programming
+languages and ISAs have made different choices. Below is an overview
of the different variants, listing the languages and hardware that
implements each variant.
-For convenience, we will give those different conversion semantics names based on which common ISA or programming language uses them, since there may not be an established name for them:
+For convenience, we will give those different conversion semantics names
+based on which common ISA or programming language uses them, since there
+may not be an established name for them:
**Standard OpenPower conversion**
-This conversion performs "saturation with NaN converted to minimum valid integer". This
-is also exactly the same as the x86 ISA conversion semantics.
-OpenPOWER however has instructions for both:
+This conversion performs "saturation with NaN converted to minimum
+valid integer". This is also exactly the same as the x86 ISA conversion
+semantics. OpenPOWER however has instructions for both:
* rounding mode read from FPSCR
* rounding mode always set to truncate
**Java/Saturating conversion**
-For the sake of simplicity, the FP -> Integer conversion semantics generalized from those used by Java's semantics (and Rust's `as` operator) will be referred to as
-[Java/Saturating conversion semantics](#fp-to-int-java-saturating-conversion-semantics).
+For the sake of simplicity, the FP -> Integer conversion semantics
+generalized from those used by Java's semantics (and Rust's `as`
+operator) will be referred to as [Java/Saturating conversion
+semantics](#fp-to-int-java-saturating-conversion-semantics).
-Those same semantics are used in some way by all of the following languages (not necessarily for the default conversion method):
+Those same semantics are used in some way by all of the following
+languages (not necessarily for the default conversion method):
* Java's
- [FP -> Integer conversion](https://docs.oracle.com/javase/specs/jls/se16/html/jls-5.html#jls-5.1.3) (only for ling/int results)
+ [FP -> Integer conversion](https://docs.oracle.com/javase/specs/jls/se16/html/jls-5.html#jls-5.1.3)
+ (only for ling/int results)
* Rust's FP -> Integer conversion using the
[`as` operator](https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics)
* LLVM's
**JavaScript conversion**
-For the sake of simplicity, the FP -> Integer conversion semantics generalized from those used by JavaScripts's `ToInt32` abstract operation will be referred to as [JavaScript conversion semantics](#fp-to-int-javascript-conversion-semantics).
+For the sake of simplicity, the FP -> Integer conversion
+semantics generalized from those used by JavaScripts's `ToInt32`
+abstract operation will be referred to as [JavaScript conversion
+semantics](#fp-to-int-javascript-conversion-semantics).
This instruction is present in ARM assembler as FJCVTZS
<https://developer.arm.com/documentation/dui0801/g/hko1477562192868>
| `rint(fp, rounding_mode)` | `fp` | rounds the floating-point value `fp` to an integer according to rounding mode `rounding_mode` |
<div id="fp-to-int-openpower-conversion-semantics"></div>
-OpenPower conversion semantics (section A.2 page 1009 (page 1035) of Power ISA v3.1B):
+OpenPower conversion semantics (section A.2 page 1009 (page 1035) of
+Power ISA v3.1B):
```
-def fp_to_int_open_power<fp, int>(v: fp) -> int:
- if v is NaN:
- return int::MIN_VALUE
- if v >= int::MAX_VALUE:
- return int::MAX_VALUE
- if v <= int::MIN_VALUE:
- return int::MIN_VALUE
- return (int)rint(v, rounding_mode)
+ def fp_to_int_open_power<fp, int>(v: fp) -> int:
+ if v is NaN:
+ return int::MIN_VALUE
+ if v >= int::MAX_VALUE:
+ return int::MAX_VALUE
+ if v <= int::MIN_VALUE:
+ return int::MIN_VALUE
+ return (int)rint(v, rounding_mode)
```
<div id="fp-to-int-java-saturating-conversion-semantics"></div>
(with adjustment to add non-truncate rounding modes):
```
-def fp_to_int_java_saturating<fp, int>(v: fp) -> int:
- if v is NaN:
- return 0
- if v >= int::MAX_VALUE:
- return int::MAX_VALUE
- if v <= int::MIN_VALUE:
- return int::MIN_VALUE
- return (int)rint(v, rounding_mode)
+ def fp_to_int_java_saturating<fp, int>(v: fp) -> int:
+ if v is NaN:
+ return 0
+ if v >= int::MAX_VALUE:
+ return int::MAX_VALUE
+ if v <= int::MIN_VALUE:
+ return int::MIN_VALUE
+ return (int)rint(v, rounding_mode)
```
<div id="fp-to-int-javascript-conversion-semantics"></div>
Section 7.1 of the ECMAScript / JavaScript
-[conversion semantics](https://262.ecma-international.org/11.0/#sec-toint32) (with adjustment to add non-truncate rounding modes):
+[conversion semantics](https://262.ecma-international.org/11.0/#sec-toint32)
+(with adjustment to add non-truncate rounding modes):
```
-def fp_to_int_java_script<fp, int>(v: fp) -> int:
- if v is NaN or infinite:
- return 0
- v = rint(v, rounding_mode) # assume no loss of precision in result
- v = v mod int::VALUE_COUNT # 2^32 for i32, 2^64 for i64, result is non-negative
- bits = (uint)v
- return (int)bits
+ def fp_to_int_java_script<fp, int>(v: fp) -> int:
+ if v is NaN or infinite:
+ return 0
+ v = rint(v, rounding_mode) # assume no loss of precision in result
+ v = v mod int::VALUE_COUNT # 2^32 for i32, 2^64 for i64, result is non-negative
+ bits = (uint)v
+ return (int)bits
```
`fcvttgo RT, FRB, CVM, IT, RCS`
```
-# based on xscvdpuxws
-reset_xflags()
-
-if RCS[0] = 1 then # if Single mode
- src <- bfp_CONVERT_FROM_BFP32(SINGLE((FRB)))
-else
- src <- bfp_CONVERT_FROM_BFP64((FRB))
-
-switch(IT)
- case(0): # Signed 32-bit
- range_min <- bfp_CONVERT_FROM_SI32(0x8000_0000)
- range_max <- bfp_CONVERT_FROM_SI32(0x7FFF_FFFF)
- js_mask <- 0xFFFF_FFFF
- case(1): # Unsigned 32-bit
- range_min <- bfp_CONVERT_FROM_UI32(0)
- range_max <- bfp_CONVERT_FROM_UI32(0xFFFF_FFFF)
- js_mask <- 0xFFFF_FFFF
- case(2): # Signed 64-bit
- range_min <- bfp_CONVERT_FROM_SI64(-0x8000_0000_0000_0000)
- range_max <- bfp_CONVERT_FROM_SI64(0x7FFF_FFFF_FFFF_FFFF)
- js_mask <- 0xFFFF_FFFF_FFFF_FFFF
- default: # Unsigned 64-bit
- range_min <- bfp_CONVERT_FROM_UI64(0)
- range_max <- bfp_CONVERT_FROM_UI64(0xFFFF_FFFF_FFFF_FFFF)
- js_mask <- 0xFFFF_FFFF_FFFF_FFFF
-
-if CVM[2] = 1 or FPSCR.RN = 0b01 then
- rnd <- bfp_ROUND_TO_INTEGER_TRUNC(src)
-else if FPSCR.RN = 0b00 then
- rnd <- bfp_ROUND_TO_INTEGER_NEAR_EVEN(src)
-else if FPSCR.RN = 0b10 then
- rnd <- bfp_ROUND_TO_INTEGER_CEIL(src)
-else if FPSCR.RN = 0b11 then
- rnd <- bfp_ROUND_TO_INTEGER_FLOOR(src)
-
-switch(CVM)
- case(0, 1): # OpenPower semantics
- if IsNaN(rnd) then
- result <- si64_CONVERT_FROM_BFP(range_min)
- else if bfp_COMPARE_GT(rnd, range_max) then
- result <- ui64_CONVERT_FROM_BFP(range_max)
- else if bfp_COMPARE_LT(rnd, range_min) then
- result <- si64_CONVERT_FROM_BFP(range_min)
- else if IT[1] = 1 then # Unsigned 32/64-bit
- result <- ui64_CONVERT_FROM_BFP(range_max)
- else # Signed 32/64-bit
- result <- si64_CONVERT_FROM_BFP(range_max)
- case(2, 3): # Java/Saturating semantics
- if IsNaN(rnd) then
- result <- [0] * 64
- else if bfp_COMPARE_GT(rnd, range_max) then
- result <- ui64_CONVERT_FROM_BFP(range_max)
- else if bfp_COMPARE_LT(rnd, range_min) then
- result <- si64_CONVERT_FROM_BFP(range_min)
- else if IT[1] = 1 then # Unsigned 32/64-bit
- result <- ui64_CONVERT_FROM_BFP(range_max)
- else # Signed 32/64-bit
- result <- si64_CONVERT_FROM_BFP(range_max)
- default: # JavaScript semantics
- # CVM = 6, 7 are illegal instructions
-
- # this works because the largest type we try to
- # convert from has 53 significand bits, and the
- # largest type we try to convert to has 64 bits,
- # and the sum of those is strictly less than the
- # 128 bits of the intermediate result.
- limit <- bfp_CONVERT_FROM_UI128([1] * 128)
- if IsInf(rnd) or IsNaN(rnd) then
- result <- [0] * 64
- else if bfp_COMPARE_GT(bfp_ABSOLUTE(rnd), limit) then
- result <- [0] * 64
- else
- result128 <- si128_CONVERT_FROM_BFP(rnd)
- result <- result128[64:127] & js_mask
-
-switch(IT)
- case(0): # Signed 32-bit
- result <- EXTS64(result[32:63])
- result_bfp <- bfp_CONVERT_FROM_SI32(result[32:63])
- case(1): # Unsigned 32-bit
- result <- EXTZ64(result[32:63])
- result_bfp <- bfp_CONVERT_FROM_UI32(result[32:63])
- case(2): # Signed 64-bit
- result_bfp <- bfp_CONVERT_FROM_SI64(result)
- default: # Unsigned 64-bit
- result_bfp <- bfp_CONVERT_FROM_UI64(result)
-
-if vxsnan_flag = 1 then SetFX(FPSCR.VXSNAN)
-if vxcvi_flag = 1 then SetFX(FPSCR.VXCVI)
-if xx_flag = 1 then SetFX(FPSCR.XX)
-
-vx_flag <- vxsnan_flag | vxcvi_flag
-vex_flag <- FPSCR.VE & vx_flag
-
-if vex_flag = 0 then
- RT <- result
- FPSCR.FPRF <- undefined
- FPSCR.FR <- inc_flag
- FPSCR.FI <- xx_flag
- if IsNaN(src) or not bfp_COMPARE_EQ(src, result_bfp) then
- overflow <- 1 # signals SO only when OE = 1
-else
- FPSCR.FR <- 0
- FPSCR.FI <- 0
+ # based on xscvdpuxws
+ reset_xflags()
+
+ if RCS[0] = 1 then # if Single mode
+ src <- bfp_CONVERT_FROM_BFP32(SINGLE((FRB)))
+ else
+ src <- bfp_CONVERT_FROM_BFP64((FRB))
+
+ switch(IT)
+ case(0): # Signed 32-bit
+ range_min <- bfp_CONVERT_FROM_SI32(0x8000_0000)
+ range_max <- bfp_CONVERT_FROM_SI32(0x7FFF_FFFF)
+ js_mask <- 0xFFFF_FFFF
+ case(1): # Unsigned 32-bit
+ range_min <- bfp_CONVERT_FROM_UI32(0)
+ range_max <- bfp_CONVERT_FROM_UI32(0xFFFF_FFFF)
+ js_mask <- 0xFFFF_FFFF
+ case(2): # Signed 64-bit
+ range_min <- bfp_CONVERT_FROM_SI64(-0x8000_0000_0000_0000)
+ range_max <- bfp_CONVERT_FROM_SI64(0x7FFF_FFFF_FFFF_FFFF)
+ js_mask <- 0xFFFF_FFFF_FFFF_FFFF
+ default: # Unsigned 64-bit
+ range_min <- bfp_CONVERT_FROM_UI64(0)
+ range_max <- bfp_CONVERT_FROM_UI64(0xFFFF_FFFF_FFFF_FFFF)
+ js_mask <- 0xFFFF_FFFF_FFFF_FFFF
+
+ if CVM[2] = 1 or FPSCR.RN = 0b01 then
+ rnd <- bfp_ROUND_TO_INTEGER_TRUNC(src)
+ else if FPSCR.RN = 0b00 then
+ rnd <- bfp_ROUND_TO_INTEGER_NEAR_EVEN(src)
+ else if FPSCR.RN = 0b10 then
+ rnd <- bfp_ROUND_TO_INTEGER_CEIL(src)
+ else if FPSCR.RN = 0b11 then
+ rnd <- bfp_ROUND_TO_INTEGER_FLOOR(src)
+
+ switch(CVM)
+ case(0, 1): # OpenPower semantics
+ if IsNaN(rnd) then
+ result <- si64_CONVERT_FROM_BFP(range_min)
+ else if bfp_COMPARE_GT(rnd, range_max) then
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else if bfp_COMPARE_LT(rnd, range_min) then
+ result <- si64_CONVERT_FROM_BFP(range_min)
+ else if IT[1] = 1 then # Unsigned 32/64-bit
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else # Signed 32/64-bit
+ result <- si64_CONVERT_FROM_BFP(range_max)
+ case(2, 3): # Java/Saturating semantics
+ if IsNaN(rnd) then
+ result <- [0] * 64
+ else if bfp_COMPARE_GT(rnd, range_max) then
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else if bfp_COMPARE_LT(rnd, range_min) then
+ result <- si64_CONVERT_FROM_BFP(range_min)
+ else if IT[1] = 1 then # Unsigned 32/64-bit
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else # Signed 32/64-bit
+ result <- si64_CONVERT_FROM_BFP(range_max)
+ default: # JavaScript semantics
+ # CVM = 6, 7 are illegal instructions
+
+ # this works because the largest type we try to
+ # convert from has 53 significand bits, and the
+ # largest type we try to convert to has 64 bits,
+ # and the sum of those is strictly less than the
+ # 128 bits of the intermediate result.
+ limit <- bfp_CONVERT_FROM_UI128([1] * 128)
+ if IsInf(rnd) or IsNaN(rnd) then
+ result <- [0] * 64
+ else if bfp_COMPARE_GT(bfp_ABSOLUTE(rnd), limit) then
+ result <- [0] * 64
+ else
+ result128 <- si128_CONVERT_FROM_BFP(rnd)
+ result <- result128[64:127] & js_mask
+
+ switch(IT)
+ case(0): # Signed 32-bit
+ result <- EXTS64(result[32:63])
+ result_bfp <- bfp_CONVERT_FROM_SI32(result[32:63])
+ case(1): # Unsigned 32-bit
+ result <- EXTZ64(result[32:63])
+ result_bfp <- bfp_CONVERT_FROM_UI32(result[32:63])
+ case(2): # Signed 64-bit
+ result_bfp <- bfp_CONVERT_FROM_SI64(result)
+ default: # Unsigned 64-bit
+ result_bfp <- bfp_CONVERT_FROM_UI64(result)
+
+ if vxsnan_flag = 1 then SetFX(FPSCR.VXSNAN)
+ if vxcvi_flag = 1 then SetFX(FPSCR.VXCVI)
+ if xx_flag = 1 then SetFX(FPSCR.XX)
+
+ vx_flag <- vxsnan_flag | vxcvi_flag
+ vex_flag <- FPSCR.VE & vx_flag
+
+ if vex_flag = 0 then
+ RT <- result
+ FPSCR.FPRF <- undefined
+ FPSCR.FR <- inc_flag
+ FPSCR.FI <- xx_flag
+ if IsNaN(src) or not bfp_COMPARE_EQ(src, result_bfp) then
+ overflow <- 1 # signals SO only when OE = 1
+ else
+ FPSCR.FR <- 0
+ FPSCR.FI <- 0
```
-Convert from 32/64-bit float in FRB to a unsigned/signed 32/64-bit integer in RT, with the conversion overflow/rounding semantics following the chosen `CVM` value, following the usual 32-bit float in 64-bit float format.
+Convert from 32/64-bit float in FRB to a unsigned/signed 32/64-bit integer
+in RT, with the conversion overflow/rounding semantics following the
+chosen `CVM` value, following the usual 32-bit float in 64-bit float
+format.
`FPSCR` is modified and exceptions are raised as usual.
-Both of these instructions have an Rc=1 mode which sets CR0
-in the normal way for any instructions producing a GPR result.
-Additionally, when OE=1, if the numerical value of the FP number
-is not 100% accurately preserved (due to truncation or saturation
-and including when the FP number was NaN) then this is considered
-to be an integer Overflow condition, and CR0.SO, XER.SO and XER.OV
-are all set as normal for any GPR instructions that overflow.
+Both of these instructions have an Rc=1 mode which sets CR0 in the normal
+way for any instructions producing a GPR result. Additionally, when OE=1,
+if the numerical value of the FP number is not 100% accurately preserved
+(due to truncation or saturation and including when the FP number was
+NaN) then this is considered to be an integer Overflow condition, and
+CR0.SO, XER.SO and XER.OV are all set as normal for any GPR instructions
+that overflow.
+
+Special Registers altered:
+
+ CR0 (if Rc=1)
+ XER SO, OV, OV32 (if OE=1)
----------
\newpage{}
-
----------
# Appendices