2003-07-21 Andrew Cagney <cagney@redhat.com>
authorAndrew Cagney <cagney@redhat.com>
Mon, 21 Jul 2003 18:56:05 +0000 (18:56 +0000)
committerAndrew Cagney <cagney@redhat.com>
Mon, 21 Jul 2003 18:56:05 +0000 (18:56 +0000)
From 2003-07-04 Kei Sakamoto <sakamoto.kei@renesas.com>:
* m32r-tdep.c, m32r-stub.c, m32r-tdep.c: Rewrite.

gdb/ChangeLog
gdb/m32r-rom.c
gdb/m32r-stub.c
gdb/m32r-tdep.c

index 97c94842087e63efb2fae82b4548f7faee2c54ad..a3dc614558c7c7b5b92795edd2ca2cce3c477ea5 100644 (file)
@@ -1,3 +1,8 @@
+2003-07-21  Andrew Cagney  <cagney@redhat.com>
+
+       From 2003-07-04 Kei Sakamoto <sakamoto.kei@renesas.com>:
+       * m32r-tdep.c, m32r-stub.c, m32r-tdep.c: Rewrite.
+
 2003-07-20  Stephane Carrez  <stcarrez@nerim.fr>
 
        * m68hc11-tdep.c (m68hc11_pseudo_register_read): Use 
index f8ac1542409a363e41a1cba2e56b13e03451dc18..54e2cd9e39b26862043102cec45dbe73de6917a7 100644 (file)
-// OBSOLETE /* Remote debugging interface to m32r and mon2000 ROM monitors for GDB, 
-// OBSOLETE    the GNU debugger.
-// OBSOLETE    Copyright 1996, 1997, 1998, 1999, 2000, 2001
-// OBSOLETE    Free Software Foundation, Inc.
-// OBSOLETE 
-// OBSOLETE    Adapted by Michael Snyder of Cygnus Support.
-// OBSOLETE 
-// OBSOLETE    This file is part of GDB.
-// OBSOLETE 
-// OBSOLETE    This program is free software; you can redistribute it and/or modify
-// OBSOLETE    it under the terms of the GNU General Public License as published by
-// OBSOLETE    the Free Software Foundation; either version 2 of the License, or
-// OBSOLETE    (at your option) any later version.
-// OBSOLETE 
-// OBSOLETE    This program is distributed in the hope that it will be useful,
-// OBSOLETE    but WITHOUT ANY WARRANTY; without even the implied warranty of
-// OBSOLETE    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-// OBSOLETE    GNU General Public License for more details.
-// OBSOLETE 
-// OBSOLETE    You should have received a copy of the GNU General Public License
-// OBSOLETE    along with this program; if not, write to the Free Software
-// OBSOLETE    Foundation, Inc., 59 Temple Place - Suite 330,
-// OBSOLETE    Boston, MA 02111-1307, USA.  */
-// OBSOLETE 
-// OBSOLETE /* This module defines communication with the Mitsubishi m32r monitor */
-// OBSOLETE 
-// OBSOLETE #include "defs.h"
-// OBSOLETE #include "gdbcore.h"
-// OBSOLETE #include "target.h"
-// OBSOLETE #include "monitor.h"
-// OBSOLETE #include "serial.h"
-// OBSOLETE #include "symtab.h"
-// OBSOLETE #include "command.h"
-// OBSOLETE #include "gdbcmd.h"
-// OBSOLETE #include "symfile.h"               /* for generic load */
-// OBSOLETE #include <time.h>          /* for time_t */
-// OBSOLETE #include "gdb_string.h"
-// OBSOLETE #include "objfiles.h"              /* for ALL_OBJFILES etc. */
-// OBSOLETE #include "inferior.h"              /* for write_pc() */
-// OBSOLETE #include <ctype.h>
-// OBSOLETE #include "regcache.h"
-// OBSOLETE 
-// OBSOLETE extern void report_transfer_performance (unsigned long, time_t, time_t);
-// OBSOLETE 
-// OBSOLETE /*
-// OBSOLETE  * All this stuff just to get my host computer's IP address!
-// OBSOLETE  */
-// OBSOLETE #include <sys/types.h>
-// OBSOLETE #include <netdb.h>         /* for hostent */
-// OBSOLETE #include <netinet/in.h>            /* for struct in_addr */
-// OBSOLETE #if 1
-// OBSOLETE #include <arpa/inet.h>             /* for inet_ntoa */
-// OBSOLETE #endif
-// OBSOLETE 
-// OBSOLETE static char *board_addr;   /* user-settable IP address for M32R-EVA */
-// OBSOLETE static char *server_addr;  /* user-settable IP address for gdb host */
-// OBSOLETE static char *download_path;        /* user-settable path for SREC files     */
-// OBSOLETE 
-// OBSOLETE 
-// OBSOLETE /* 
-// OBSOLETE  * Function: m32r_load_1 (helper function)
-// OBSOLETE  */
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE m32r_load_section (bfd *abfd, asection *s, void *obj)
-// OBSOLETE {
-// OBSOLETE   unsigned int *data_count = obj;
-// OBSOLETE   if (s->flags & SEC_LOAD)
-// OBSOLETE     {
-// OBSOLETE       bfd_size_type section_size = bfd_section_size (abfd, s);
-// OBSOLETE       bfd_vma section_base = bfd_section_lma (abfd, s);
-// OBSOLETE       unsigned int buffer, i;
-// OBSOLETE 
-// OBSOLETE       *data_count += section_size;
-// OBSOLETE 
-// OBSOLETE       printf_filtered ("Loading section %s, size 0x%lx lma ",
-// OBSOLETE                   bfd_section_name (abfd, s), section_size);
-// OBSOLETE       print_address_numeric (section_base, 1, gdb_stdout);
-// OBSOLETE       printf_filtered ("\n");
-// OBSOLETE       gdb_flush (gdb_stdout);
-// OBSOLETE       monitor_printf ("%s mw\r", paddr_nz (section_base));
-// OBSOLETE       for (i = 0; i < section_size; i += 4)
-// OBSOLETE    {
-// OBSOLETE      QUIT;
-// OBSOLETE      monitor_expect (" -> ", NULL, 0);
-// OBSOLETE      bfd_get_section_contents (abfd, s, (char *) &buffer, i, 4);
-// OBSOLETE      monitor_printf ("%x\n", buffer);
-// OBSOLETE    }
-// OBSOLETE       monitor_expect (" -> ", NULL, 0);
-// OBSOLETE       monitor_printf ("q\n");
-// OBSOLETE       monitor_expect_prompt (NULL, 0);
-// OBSOLETE     }
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static int
-// OBSOLETE m32r_load_1 (void *dummy)
-// OBSOLETE {
-// OBSOLETE   int data_count = 0;
-// OBSOLETE 
-// OBSOLETE   bfd_map_over_sections ((bfd *) dummy, m32r_load_section, &data_count);
-// OBSOLETE   return data_count;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* 
-// OBSOLETE  * Function: m32r_load (an alternate way to load) 
-// OBSOLETE  */
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE m32r_load (char *filename, int from_tty)
-// OBSOLETE {
-// OBSOLETE   bfd *abfd;
-// OBSOLETE   asection *s;
-// OBSOLETE   unsigned int i, data_count = 0;
-// OBSOLETE   time_t start_time, end_time;     /* for timing of download */
-// OBSOLETE 
-// OBSOLETE   if (filename == NULL || filename[0] == 0)
-// OBSOLETE     filename = get_exec_file (1);
-// OBSOLETE 
-// OBSOLETE   abfd = bfd_openr (filename, 0);
-// OBSOLETE   if (!abfd)
-// OBSOLETE     error ("Unable to open file %s\n", filename);
-// OBSOLETE   if (bfd_check_format (abfd, bfd_object) == 0)
-// OBSOLETE     error ("File is not an object file\n");
-// OBSOLETE   start_time = time (NULL);
-// OBSOLETE #if 0
-// OBSOLETE   for (s = abfd->sections; s; s = s->next)
-// OBSOLETE     if (s->flags & SEC_LOAD)
-// OBSOLETE       {
-// OBSOLETE    bfd_size_type section_size = bfd_section_size (abfd, s);
-// OBSOLETE    bfd_vma section_base = bfd_section_vma (abfd, s);
-// OBSOLETE    unsigned int buffer;
-// OBSOLETE 
-// OBSOLETE    data_count += section_size;
-// OBSOLETE 
-// OBSOLETE    printf_filtered ("Loading section %s, size 0x%lx vma ",
-// OBSOLETE                     bfd_section_name (abfd, s), section_size);
-// OBSOLETE    print_address_numeric (section_base, 1, gdb_stdout);
-// OBSOLETE    printf_filtered ("\n");
-// OBSOLETE    gdb_flush (gdb_stdout);
-// OBSOLETE    monitor_printf ("%x mw\r", section_base);
-// OBSOLETE    for (i = 0; i < section_size; i += 4)
-// OBSOLETE      {
-// OBSOLETE        monitor_expect (" -> ", NULL, 0);
-// OBSOLETE        bfd_get_section_contents (abfd, s, (char *) &buffer, i, 4);
-// OBSOLETE        monitor_printf ("%x\n", buffer);
-// OBSOLETE      }
-// OBSOLETE    monitor_expect (" -> ", NULL, 0);
-// OBSOLETE    monitor_printf ("q\n");
-// OBSOLETE    monitor_expect_prompt (NULL, 0);
-// OBSOLETE       }
-// OBSOLETE #else
-// OBSOLETE   if (!(catch_errors (m32r_load_1, abfd, "Load aborted!\n", RETURN_MASK_ALL)))
-// OBSOLETE     {
-// OBSOLETE       monitor_printf ("q\n");
-// OBSOLETE       return;
-// OBSOLETE     }
-// OBSOLETE #endif
-// OBSOLETE   end_time = time (NULL);
-// OBSOLETE   printf_filtered ("Start address 0x%lx\n", bfd_get_start_address (abfd));
-// OBSOLETE   report_transfer_performance (data_count, start_time, end_time);
-// OBSOLETE 
-// OBSOLETE   /* Finally, make the PC point at the start address */
-// OBSOLETE   if (exec_bfd)
-// OBSOLETE     write_pc (bfd_get_start_address (exec_bfd));
-// OBSOLETE 
-// OBSOLETE   inferior_ptid = null_ptid;       /* No process now */
-// OBSOLETE 
-// OBSOLETE   /* This is necessary because many things were based on the PC at the
-// OBSOLETE      time that we attached to the monitor, which is no longer valid
-// OBSOLETE      now that we have loaded new code (and just changed the PC).
-// OBSOLETE      Another way to do this might be to call normal_stop, except that
-// OBSOLETE      the stack may not be valid, and things would get horribly
-// OBSOLETE      confused... */
-// OBSOLETE 
-// OBSOLETE   clear_symtab_users ();
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE m32r_load_gen (char *filename, int from_tty)
-// OBSOLETE {
-// OBSOLETE   generic_load (filename, from_tty);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static void m32r_open (char *args, int from_tty);
-// OBSOLETE static void mon2000_open (char *args, int from_tty);
-// OBSOLETE 
-// OBSOLETE /* This array of registers needs to match the indexes used by GDB. The
-// OBSOLETE    whole reason this exists is because the various ROM monitors use
-// OBSOLETE    different names than GDB does, and don't support all the registers
-// OBSOLETE    either. So, typing "info reg sp" becomes an "A7". */
-// OBSOLETE 
-// OBSOLETE static char *m32r_regnames[] =
-// OBSOLETE {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
-// OBSOLETE  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
-// OBSOLETE  "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
-// OBSOLETE };
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE m32r_supply_register (char *regname, int regnamelen, char *val, int vallen)
-// OBSOLETE {
-// OBSOLETE   int regno;
-// OBSOLETE   int num_regs = sizeof (m32r_regnames) / sizeof (m32r_regnames[0]);
-// OBSOLETE 
-// OBSOLETE   for (regno = 0; regno < num_regs; regno++)
-// OBSOLETE     if (strncmp (regname, m32r_regnames[regno], regnamelen) == 0)
-// OBSOLETE       break;
-// OBSOLETE 
-// OBSOLETE   if (regno >= num_regs)
-// OBSOLETE     return;                        /* no match */
-// OBSOLETE 
-// OBSOLETE   if (regno == ACCL_REGNUM)
-// OBSOLETE     {                              /* special handling for 64-bit acc reg */
-// OBSOLETE       monitor_supply_register (ACCH_REGNUM, val);
-// OBSOLETE       val = strchr (val, ':');     /* skip past ':' to get 2nd word */
-// OBSOLETE       if (val != NULL)
-// OBSOLETE    monitor_supply_register (ACCL_REGNUM, val + 1);
-// OBSOLETE     }
-// OBSOLETE   else
-// OBSOLETE     {
-// OBSOLETE       monitor_supply_register (regno, val);
-// OBSOLETE       if (regno == PSW_REGNUM)
-// OBSOLETE    {
-// OBSOLETE      unsigned long psw = strtoul (val, NULL, 16);
-// OBSOLETE      char *zero = "00000000", *one = "00000001";
-// OBSOLETE 
-// OBSOLETE #ifdef SM_REGNUM
-// OBSOLETE      /* Stack mode bit */
-// OBSOLETE      monitor_supply_register (SM_REGNUM, (psw & 0x80) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef BSM_REGNUM
-// OBSOLETE      /* Backup stack mode bit */
-// OBSOLETE      monitor_supply_register (BSM_REGNUM, (psw & 0x8000) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef IE_REGNUM
-// OBSOLETE      /* Interrupt enable bit */
-// OBSOLETE      monitor_supply_register (IE_REGNUM, (psw & 0x40) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef BIE_REGNUM
-// OBSOLETE      /* Backup interrupt enable bit */
-// OBSOLETE      monitor_supply_register (BIE_REGNUM, (psw & 0x4000) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef COND_REGNUM
-// OBSOLETE      /* Condition bit (carry etc.) */
-// OBSOLETE      monitor_supply_register (COND_REGNUM, (psw & 0x1) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef CBR_REGNUM
-// OBSOLETE      monitor_supply_register (CBR_REGNUM, (psw & 0x1) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef BPC_REGNUM
-// OBSOLETE      monitor_supply_register (BPC_REGNUM, zero);   /* KLUDGE:   (???????) */
-// OBSOLETE #endif
-// OBSOLETE #ifdef BCARRY_REGNUM
-// OBSOLETE      monitor_supply_register (BCARRY_REGNUM, zero);        /* KLUDGE: (??????) */
-// OBSOLETE #endif
-// OBSOLETE    }
-// OBSOLETE 
-// OBSOLETE       if (regno == SPI_REGNUM || regno == SPU_REGNUM)
-// OBSOLETE    {                       /* special handling for stack pointer (spu or spi) */
-// OBSOLETE      unsigned long stackmode = read_register (PSW_REGNUM) & 0x80;
-// OBSOLETE 
-// OBSOLETE      if (regno == SPI_REGNUM && !stackmode)        /* SP == SPI */
-// OBSOLETE        monitor_supply_register (SP_REGNUM, val);
-// OBSOLETE      else if (regno == SPU_REGNUM && stackmode)    /* SP == SPU */
-// OBSOLETE        monitor_supply_register (SP_REGNUM, val);
-// OBSOLETE    }
-// OBSOLETE     }
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* m32r RevC board monitor */
-// OBSOLETE 
-// OBSOLETE static struct target_ops m32r_ops;
-// OBSOLETE 
-// OBSOLETE static char *m32r_inits[] =
-// OBSOLETE {"\r", NULL};
-// OBSOLETE 
-// OBSOLETE static struct monitor_ops m32r_cmds;
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE init_m32r_cmds (void)
-// OBSOLETE {
-// OBSOLETE   m32r_cmds.flags = MO_CLR_BREAK_USES_ADDR | MO_REGISTER_VALUE_FIRST;
-// OBSOLETE   m32r_cmds.init = m32r_inits;     /* Init strings */
-// OBSOLETE   m32r_cmds.cont = "go\r"; /* continue command */
-// OBSOLETE   m32r_cmds.step = "step\r";       /* single step */
-// OBSOLETE   m32r_cmds.stop = NULL;   /* interrupt command */
-// OBSOLETE   m32r_cmds.set_break = "%x +bp\r";        /* set a breakpoint */
-// OBSOLETE   m32r_cmds.clr_break = "%x -bp\r";        /* clear a breakpoint */
-// OBSOLETE   m32r_cmds.clr_all_break = "bpoff\r";     /* clear all breakpoints */
-// OBSOLETE   m32r_cmds.fill = "%x %x %x fill\r";      /* fill (start length val) */
-// OBSOLETE   m32r_cmds.setmem.cmdb = "%x 1 %x fill\r";        /* setmem.cmdb (addr, value) */
-// OBSOLETE   m32r_cmds.setmem.cmdw = "%x 1 %x fillh\r";       /* setmem.cmdw (addr, value) */
-// OBSOLETE   m32r_cmds.setmem.cmdl = "%x 1 %x fillw\r";       /* setmem.cmdl (addr, value) */
-// OBSOLETE   m32r_cmds.setmem.cmdll = NULL;   /* setmem.cmdll (addr, value) */
-// OBSOLETE   m32r_cmds.setmem.resp_delim = NULL;      /* setmem.resp_delim */
-// OBSOLETE   m32r_cmds.setmem.term = NULL;    /* setmem.term */
-// OBSOLETE   m32r_cmds.setmem.term_cmd = NULL;        /* setmem.term_cmd */
-// OBSOLETE   m32r_cmds.getmem.cmdb = "%x %x dump\r";  /* getmem.cmdb (addr, len) */
-// OBSOLETE   m32r_cmds.getmem.cmdw = NULL;    /* getmem.cmdw (addr, len) */
-// OBSOLETE   m32r_cmds.getmem.cmdl = NULL;    /* getmem.cmdl (addr, len) */
-// OBSOLETE   m32r_cmds.getmem.cmdll = NULL;   /* getmem.cmdll (addr, len) */
-// OBSOLETE   m32r_cmds.getmem.resp_delim = ": ";      /* getmem.resp_delim */
-// OBSOLETE   m32r_cmds.getmem.term = NULL;    /* getmem.term */
-// OBSOLETE   m32r_cmds.getmem.term_cmd = NULL;        /* getmem.term_cmd */
-// OBSOLETE   m32r_cmds.setreg.cmd = "%x to %%%s\r";   /* setreg.cmd (name, value) */
-// OBSOLETE   m32r_cmds.setreg.resp_delim = NULL;      /* setreg.resp_delim */
-// OBSOLETE   m32r_cmds.setreg.term = NULL;    /* setreg.term */
-// OBSOLETE   m32r_cmds.setreg.term_cmd = NULL;        /* setreg.term_cmd */
-// OBSOLETE   m32r_cmds.getreg.cmd = NULL;     /* getreg.cmd (name) */
-// OBSOLETE   m32r_cmds.getreg.resp_delim = NULL;      /* getreg.resp_delim */
-// OBSOLETE   m32r_cmds.getreg.term = NULL;    /* getreg.term */
-// OBSOLETE   m32r_cmds.getreg.term_cmd = NULL;        /* getreg.term_cmd */
-// OBSOLETE   m32r_cmds.dump_registers = ".reg\r";     /* dump_registers */
-// OBSOLETE   m32r_cmds.register_pattern = "\\(\\w+\\) += \\([0-9a-fA-F]+\\b\\)";      /* register_pattern */
-// OBSOLETE   m32r_cmds.supply_register = m32r_supply_register;        /* supply_register */
-// OBSOLETE   m32r_cmds.load_routine = NULL;   /* load_routine (defaults to SRECs) */
-// OBSOLETE   m32r_cmds.load = NULL;   /* download command */
-// OBSOLETE   m32r_cmds.loadresp = NULL;       /* load response */
-// OBSOLETE   m32r_cmds.prompt = "ok ";        /* monitor command prompt */
-// OBSOLETE   m32r_cmds.line_term = "\r";      /* end-of-line terminator */
-// OBSOLETE   m32r_cmds.cmd_end = NULL;        /* optional command terminator */
-// OBSOLETE   m32r_cmds.target = &m32r_ops;    /* target operations */
-// OBSOLETE   m32r_cmds.stopbits = SERIAL_1_STOPBITS;  /* number of stop bits */
-// OBSOLETE   m32r_cmds.regnames = m32r_regnames;      /* registers names */
-// OBSOLETE   m32r_cmds.magic = MONITOR_OPS_MAGIC;     /* magic */
-// OBSOLETE }                          /* init_m32r_cmds */
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE m32r_open (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE   monitor_open (args, &m32r_cmds, from_tty);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Mon2000 monitor (MSA2000 board) */
-// OBSOLETE 
-// OBSOLETE static struct target_ops mon2000_ops;
-// OBSOLETE static struct monitor_ops mon2000_cmds;
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE init_mon2000_cmds (void)
-// OBSOLETE {
-// OBSOLETE   mon2000_cmds.flags = MO_CLR_BREAK_USES_ADDR | MO_REGISTER_VALUE_FIRST;
-// OBSOLETE   mon2000_cmds.init = m32r_inits;  /* Init strings */
-// OBSOLETE   mon2000_cmds.cont = "go\r";      /* continue command */
-// OBSOLETE   mon2000_cmds.step = "step\r";    /* single step */
-// OBSOLETE   mon2000_cmds.stop = NULL;        /* interrupt command */
-// OBSOLETE   mon2000_cmds.set_break = "%x +bp\r";     /* set a breakpoint */
-// OBSOLETE   mon2000_cmds.clr_break = "%x -bp\r";     /* clear a breakpoint */
-// OBSOLETE   mon2000_cmds.clr_all_break = "bpoff\r";  /* clear all breakpoints */
-// OBSOLETE   mon2000_cmds.fill = "%x %x %x fill\r";   /* fill (start length val) */
-// OBSOLETE   mon2000_cmds.setmem.cmdb = "%x 1 %x fill\r";     /* setmem.cmdb (addr, value) */
-// OBSOLETE   mon2000_cmds.setmem.cmdw = "%x 1 %x fillh\r";            /* setmem.cmdw (addr, value) */
-// OBSOLETE   mon2000_cmds.setmem.cmdl = "%x 1 %x fillw\r";            /* setmem.cmdl (addr, value) */
-// OBSOLETE   mon2000_cmds.setmem.cmdll = NULL;        /* setmem.cmdll (addr, value) */
-// OBSOLETE   mon2000_cmds.setmem.resp_delim = NULL;   /* setmem.resp_delim */
-// OBSOLETE   mon2000_cmds.setmem.term = NULL; /* setmem.term */
-// OBSOLETE   mon2000_cmds.setmem.term_cmd = NULL;     /* setmem.term_cmd */
-// OBSOLETE   mon2000_cmds.getmem.cmdb = "%x %x dump\r";       /* getmem.cmdb (addr, len) */
-// OBSOLETE   mon2000_cmds.getmem.cmdw = NULL; /* getmem.cmdw (addr, len) */
-// OBSOLETE   mon2000_cmds.getmem.cmdl = NULL; /* getmem.cmdl (addr, len) */
-// OBSOLETE   mon2000_cmds.getmem.cmdll = NULL;        /* getmem.cmdll (addr, len) */
-// OBSOLETE   mon2000_cmds.getmem.resp_delim = ": ";   /* getmem.resp_delim */
-// OBSOLETE   mon2000_cmds.getmem.term = NULL; /* getmem.term */
-// OBSOLETE   mon2000_cmds.getmem.term_cmd = NULL;     /* getmem.term_cmd */
-// OBSOLETE   mon2000_cmds.setreg.cmd = "%x to %%%s\r";        /* setreg.cmd (name, value) */
-// OBSOLETE   mon2000_cmds.setreg.resp_delim = NULL;   /* setreg.resp_delim */
-// OBSOLETE   mon2000_cmds.setreg.term = NULL; /* setreg.term */
-// OBSOLETE   mon2000_cmds.setreg.term_cmd = NULL;     /* setreg.term_cmd */
-// OBSOLETE   mon2000_cmds.getreg.cmd = NULL;  /* getreg.cmd (name) */
-// OBSOLETE   mon2000_cmds.getreg.resp_delim = NULL;   /* getreg.resp_delim */
-// OBSOLETE   mon2000_cmds.getreg.term = NULL; /* getreg.term */
-// OBSOLETE   mon2000_cmds.getreg.term_cmd = NULL;     /* getreg.term_cmd */
-// OBSOLETE   mon2000_cmds.dump_registers = ".reg\r";  /* dump_registers */
-// OBSOLETE   mon2000_cmds.register_pattern = "\\(\\w+\\) += \\([0-9a-fA-F]+\\b\\)";   /* register_pattern */
-// OBSOLETE   mon2000_cmds.supply_register = m32r_supply_register;     /* supply_register */
-// OBSOLETE   mon2000_cmds.load_routine = NULL;        /* load_routine (defaults to SRECs) */
-// OBSOLETE   mon2000_cmds.load = NULL;        /* download command */
-// OBSOLETE   mon2000_cmds.loadresp = NULL;    /* load response */
-// OBSOLETE   mon2000_cmds.prompt = "Mon2000>";        /* monitor command prompt */
-// OBSOLETE   mon2000_cmds.line_term = "\r";   /* end-of-line terminator */
-// OBSOLETE   mon2000_cmds.cmd_end = NULL;     /* optional command terminator */
-// OBSOLETE   mon2000_cmds.target = &mon2000_ops;      /* target operations */
-// OBSOLETE   mon2000_cmds.stopbits = SERIAL_1_STOPBITS;       /* number of stop bits */
-// OBSOLETE   mon2000_cmds.regnames = m32r_regnames;   /* registers names */
-// OBSOLETE   mon2000_cmds.magic = MONITOR_OPS_MAGIC;  /* magic */
-// OBSOLETE }                          /* init_mon2000_cmds */
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE mon2000_open (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE   monitor_open (args, &mon2000_cmds, from_tty);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: set_board_address
-// OBSOLETE    Tell the BootOne monitor what it's ethernet IP address is. */
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE m32r_set_board_address (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE   int resp_len;
-// OBSOLETE   char buf[1024];
-// OBSOLETE 
-// OBSOLETE   if (args && *args)
-// OBSOLETE     {
-// OBSOLETE       monitor_printf ("ulip %s\n", args);
-// OBSOLETE       resp_len = monitor_expect_prompt (buf, sizeof (buf));
-// OBSOLETE       /* now parse the result for success */
-// OBSOLETE     }
-// OBSOLETE   else
-// OBSOLETE     error ("Requires argument (IP address for M32R-EVA board)");
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: set_server_address
-// OBSOLETE    Tell the BootOne monitor what gdb's ethernet IP address is. */
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE m32r_set_server_address (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE   int resp_len;
-// OBSOLETE   char buf[1024];
-// OBSOLETE 
-// OBSOLETE   if (args && *args)
-// OBSOLETE     {
-// OBSOLETE       monitor_printf ("uhip %s\n", args);
-// OBSOLETE       resp_len = monitor_expect_prompt (buf, sizeof (buf));
-// OBSOLETE       /* now parse the result for success */
-// OBSOLETE     }
-// OBSOLETE   else
-// OBSOLETE     error ("Requires argument (IP address of GDB's host computer)");
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: set_download_path
-// OBSOLETE    Tell the BootOne monitor the default path for downloadable SREC files. */
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE m32r_set_download_path (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE   int resp_len;
-// OBSOLETE   char buf[1024];
-// OBSOLETE 
-// OBSOLETE   if (args && *args)
-// OBSOLETE     {
-// OBSOLETE       monitor_printf ("up %s\n", args);
-// OBSOLETE       resp_len = monitor_expect_prompt (buf, sizeof (buf));
-// OBSOLETE       /* now parse the result for success */
-// OBSOLETE     }
-// OBSOLETE   else
-// OBSOLETE     error ("Requires argument (default path for downloadable SREC files)");
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE m32r_upload_command (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE   bfd *abfd;
-// OBSOLETE   asection *s;
-// OBSOLETE   time_t start_time, end_time;     /* for timing of download */
-// OBSOLETE   int resp_len, data_count = 0;
-// OBSOLETE   char buf[1024];
-// OBSOLETE   struct hostent *hostent;
-// OBSOLETE   struct in_addr inet_addr;
-// OBSOLETE 
-// OBSOLETE   /* first check to see if there's an ethernet port! */
-// OBSOLETE   monitor_printf ("ust\r");
-// OBSOLETE   resp_len = monitor_expect_prompt (buf, sizeof (buf));
-// OBSOLETE   if (!strchr (buf, ':'))
-// OBSOLETE     error ("No ethernet connection!");
-// OBSOLETE 
-// OBSOLETE   if (board_addr == 0)
-// OBSOLETE     {
-// OBSOLETE       /* scan second colon in the output from the "ust" command */
-// OBSOLETE       char *myIPaddress = strchr (strchr (buf, ':') + 1, ':') + 1;
-// OBSOLETE 
-// OBSOLETE       while (isspace (*myIPaddress))
-// OBSOLETE    myIPaddress++;
-// OBSOLETE 
-// OBSOLETE       if (!strncmp (myIPaddress, "0.0.", 4))       /* empty */
-// OBSOLETE    error ("Please use 'set board-address' to set the M32R-EVA board's IP address.");
-// OBSOLETE       if (strchr (myIPaddress, '('))
-// OBSOLETE    *(strchr (myIPaddress, '(')) = '\0';    /* delete trailing junk */
-// OBSOLETE       board_addr = xstrdup (myIPaddress);
-// OBSOLETE     }
-// OBSOLETE   if (server_addr == 0)
-// OBSOLETE     {
-// OBSOLETE       buf[0] = 0;
-// OBSOLETE       gethostname (buf, sizeof (buf));
-// OBSOLETE       if (buf[0] != 0)
-// OBSOLETE    hostent = gethostbyname (buf);
-// OBSOLETE       if (hostent != 0)
-// OBSOLETE    {
-// OBSOLETE #if 1
-// OBSOLETE      memcpy (&inet_addr.s_addr, hostent->h_addr,
-// OBSOLETE              sizeof (inet_addr.s_addr));
-// OBSOLETE      server_addr = (char *) inet_ntoa (inet_addr);
-// OBSOLETE #else
-// OBSOLETE      server_addr = (char *) inet_ntoa (hostent->h_addr);
-// OBSOLETE #endif
-// OBSOLETE    }
-// OBSOLETE       if (server_addr == 0)        /* failed? */
-// OBSOLETE    error ("Need to know gdb host computer's IP address (use 'set server-address')");
-// OBSOLETE     }
-// OBSOLETE 
-// OBSOLETE   if (args == 0 || args[0] == 0)   /* no args: upload the current file */
-// OBSOLETE     args = get_exec_file (1);
-// OBSOLETE 
-// OBSOLETE   if (args[0] != '/' && download_path == 0)
-// OBSOLETE     {
-// OBSOLETE       if (current_directory)
-// OBSOLETE    download_path = xstrdup (current_directory);
-// OBSOLETE       else
-// OBSOLETE    error ("Need to know default download path (use 'set download-path')");
-// OBSOLETE     }
-// OBSOLETE 
-// OBSOLETE   start_time = time (NULL);
-// OBSOLETE   monitor_printf ("uhip %s\r", server_addr);
-// OBSOLETE   resp_len = monitor_expect_prompt (buf, sizeof (buf));            /* parse result? */
-// OBSOLETE   monitor_printf ("ulip %s\r", board_addr);
-// OBSOLETE   resp_len = monitor_expect_prompt (buf, sizeof (buf));            /* parse result? */
-// OBSOLETE   if (args[0] != '/')
-// OBSOLETE     monitor_printf ("up %s\r", download_path);     /* use default path */
-// OBSOLETE   else
-// OBSOLETE     monitor_printf ("up\r");       /* rooted filename/path */
-// OBSOLETE   resp_len = monitor_expect_prompt (buf, sizeof (buf));            /* parse result? */
-// OBSOLETE 
-// OBSOLETE   if (strrchr (args, '.') && !strcmp (strrchr (args, '.'), ".srec"))
-// OBSOLETE     monitor_printf ("ul %s\r", args);
-// OBSOLETE   else                             /* add ".srec" suffix */
-// OBSOLETE     monitor_printf ("ul %s.srec\r", args);
-// OBSOLETE   resp_len = monitor_expect_prompt (buf, sizeof (buf));            /* parse result? */
-// OBSOLETE 
-// OBSOLETE   if (buf[0] == 0 || strstr (buf, "complete") == 0)
-// OBSOLETE     error ("Upload file not found: %s.srec\nCheck IP addresses and download path.", args);
-// OBSOLETE   else
-// OBSOLETE     printf_filtered (" -- Ethernet load complete.\n");
-// OBSOLETE 
-// OBSOLETE   end_time = time (NULL);
-// OBSOLETE   abfd = bfd_openr (args, 0);
-// OBSOLETE   if (abfd != NULL)
-// OBSOLETE     {                              /* Download is done -- print section statistics */
-// OBSOLETE       if (bfd_check_format (abfd, bfd_object) == 0)
-// OBSOLETE    {
-// OBSOLETE      printf_filtered ("File is not an object file\n");
-// OBSOLETE    }
-// OBSOLETE       for (s = abfd->sections; s; s = s->next)
-// OBSOLETE    if (s->flags & SEC_LOAD)
-// OBSOLETE      {
-// OBSOLETE        bfd_size_type section_size = bfd_section_size (abfd, s);
-// OBSOLETE        bfd_vma section_base = bfd_section_lma (abfd, s);
-// OBSOLETE        unsigned int buffer;
-// OBSOLETE 
-// OBSOLETE        data_count += section_size;
-// OBSOLETE 
-// OBSOLETE        printf_filtered ("Loading section %s, size 0x%lx lma ",
-// OBSOLETE                         bfd_section_name (abfd, s), section_size);
-// OBSOLETE        print_address_numeric (section_base, 1, gdb_stdout);
-// OBSOLETE        printf_filtered ("\n");
-// OBSOLETE        gdb_flush (gdb_stdout);
-// OBSOLETE      }
-// OBSOLETE       /* Finally, make the PC point at the start address */
-// OBSOLETE       write_pc (bfd_get_start_address (abfd));
-// OBSOLETE       report_transfer_performance (data_count, start_time, end_time);
-// OBSOLETE       printf_filtered ("Start address 0x%lx\n", bfd_get_start_address (abfd));
-// OBSOLETE     }
-// OBSOLETE   inferior_ptid = null_ptid;       /* No process now */
-// OBSOLETE 
-// OBSOLETE   /* This is necessary because many things were based on the PC at the
-// OBSOLETE      time that we attached to the monitor, which is no longer valid
-// OBSOLETE      now that we have loaded new code (and just changed the PC).
-// OBSOLETE      Another way to do this might be to call normal_stop, except that
-// OBSOLETE      the stack may not be valid, and things would get horribly
-// OBSOLETE      confused... */
-// OBSOLETE 
-// OBSOLETE   clear_symtab_users ();
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE void
-// OBSOLETE _initialize_m32r_rom (void)
-// OBSOLETE {
-// OBSOLETE   /* Initialize m32r RevC monitor target */
-// OBSOLETE   init_m32r_cmds ();
-// OBSOLETE   init_monitor_ops (&m32r_ops);
-// OBSOLETE 
-// OBSOLETE   m32r_ops.to_shortname = "m32r";
-// OBSOLETE   m32r_ops.to_longname = "m32r monitor";
-// OBSOLETE   m32r_ops.to_load = m32r_load_gen;        /* monitor lacks a download command */
-// OBSOLETE   m32r_ops.to_doc = "Debug via the m32r monitor.\n\
-// OBSOLETE Specify the serial device it is connected to (e.g. /dev/ttya).";
-// OBSOLETE   m32r_ops.to_open = m32r_open;
-// OBSOLETE   add_target (&m32r_ops);
-// OBSOLETE 
-// OBSOLETE   /* Initialize mon2000 monitor target */
-// OBSOLETE   init_mon2000_cmds ();
-// OBSOLETE   init_monitor_ops (&mon2000_ops);
-// OBSOLETE 
-// OBSOLETE   mon2000_ops.to_shortname = "mon2000";
-// OBSOLETE   mon2000_ops.to_longname = "Mon2000 monitor";
-// OBSOLETE   mon2000_ops.to_load = m32r_load_gen;     /* monitor lacks a download command */
-// OBSOLETE   mon2000_ops.to_doc = "Debug via the Mon2000 monitor.\n\
-// OBSOLETE Specify the serial device it is connected to (e.g. /dev/ttya).";
-// OBSOLETE   mon2000_ops.to_open = mon2000_open;
-// OBSOLETE   add_target (&mon2000_ops);
-// OBSOLETE 
-// OBSOLETE   add_show_from_set
-// OBSOLETE     (add_set_cmd ("download-path", class_obscure, var_string,
-// OBSOLETE              (char *) &download_path,
-// OBSOLETE              "Set the default path for downloadable SREC files.",
-// OBSOLETE              &setlist),
-// OBSOLETE      &showlist);
-// OBSOLETE 
-// OBSOLETE   add_show_from_set
-// OBSOLETE     (add_set_cmd ("board-address", class_obscure, var_string,
-// OBSOLETE              (char *) &board_addr,
-// OBSOLETE              "Set IP address for M32R-EVA target board.",
-// OBSOLETE              &setlist),
-// OBSOLETE      &showlist);
-// OBSOLETE 
-// OBSOLETE   add_show_from_set
-// OBSOLETE     (add_set_cmd ("server-address", class_obscure, var_string,
-// OBSOLETE              (char *) &server_addr,
-// OBSOLETE            "Set IP address for download server (GDB's host computer).",
-// OBSOLETE              &setlist),
-// OBSOLETE      &showlist);
-// OBSOLETE 
-// OBSOLETE   add_com ("upload", class_obscure, m32r_upload_command,
-// OBSOLETE       "Upload the srec file via the monitor's Ethernet upload capability.");
-// OBSOLETE 
-// OBSOLETE   add_com ("tload", class_obscure, m32r_load, "test upload command.");
-// OBSOLETE }
+/* Remote debugging interface to m32r and mon2000 ROM monitors for GDB, 
+   the GNU debugger.
+   Copyright 1996, 1997, 1998, 1999, 2000, 2001
+   Free Software Foundation, Inc.
+
+   Adapted by Michael Snyder of Cygnus Support.
+
+   This file is part of GDB.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2 of the License, or
+   (at your option) any later version.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with this program; if not, write to the Free Software
+   Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* This module defines communication with the Renesas m32r monitor */
+
+#include "defs.h"
+#include "gdbcore.h"
+#include "target.h"
+#include "monitor.h"
+#include "serial.h"
+#include "symtab.h"
+#include "command.h"
+#include "gdbcmd.h"
+#include "symfile.h"           /* for generic load */
+#include <time.h>              /* for time_t */
+#include "gdb_string.h"
+#include "objfiles.h"          /* for ALL_OBJFILES etc. */
+#include "inferior.h"          /* for write_pc() */
+#include <ctype.h>
+#include "regcache.h"
+
+extern void report_transfer_performance (unsigned long, time_t, time_t);
+
+/*
+ * All this stuff just to get my host computer's IP address!
+ */
+#include <sys/types.h>
+#include <netdb.h>             /* for hostent */
+#include <netinet/in.h>                /* for struct in_addr */
+#if 1
+#include <arpa/inet.h>         /* for inet_ntoa */
+#endif
+
+static char *board_addr;       /* user-settable IP address for M32R-EVA */
+static char *server_addr;      /* user-settable IP address for gdb host */
+static char *download_path;    /* user-settable path for SREC files     */
+
+
+/* REGNUM */
+#define PSW_REGNUM      16
+#define SPI_REGNUM      18
+#define SPU_REGNUM      19
+#define ACCL_REGNUM     22
+#define ACCH_REGNUM     23
+
+
+/* 
+ * Function: m32r_load_1 (helper function)
+ */
+
+static void
+m32r_load_section (bfd *abfd, asection *s, void *obj)
+{
+  unsigned int *data_count = obj;
+  if (s->flags & SEC_LOAD)
+    {
+      bfd_size_type section_size = bfd_section_size (abfd, s);
+      bfd_vma section_base = bfd_section_lma (abfd, s);
+      unsigned int buffer, i;
+
+      *data_count += section_size;
+
+      printf_filtered ("Loading section %s, size 0x%lx lma ",
+                      bfd_section_name (abfd, s), section_size);
+      print_address_numeric (section_base, 1, gdb_stdout);
+      printf_filtered ("\n");
+      gdb_flush (gdb_stdout);
+      monitor_printf ("%s mw\r", paddr_nz (section_base));
+      for (i = 0; i < section_size; i += 4)
+       {
+         QUIT;
+         monitor_expect (" -> ", NULL, 0);
+         bfd_get_section_contents (abfd, s, (char *) &buffer, i, 4);
+         monitor_printf ("%x\n", buffer);
+       }
+      monitor_expect (" -> ", NULL, 0);
+      monitor_printf ("q\n");
+      monitor_expect_prompt (NULL, 0);
+    }
+}
+
+static int
+m32r_load_1 (void *dummy)
+{
+  int data_count = 0;
+
+  bfd_map_over_sections ((bfd *) dummy, m32r_load_section, &data_count);
+  return data_count;
+}
+
+/* 
+ * Function: m32r_load (an alternate way to load) 
+ */
+
+static void
+m32r_load (char *filename, int from_tty)
+{
+  bfd *abfd;
+  asection *s;
+  unsigned int i, data_count = 0;
+  time_t start_time, end_time; /* for timing of download */
+
+  if (filename == NULL || filename[0] == 0)
+    filename = get_exec_file (1);
+
+  abfd = bfd_openr (filename, 0);
+  if (!abfd)
+    error ("Unable to open file %s\n", filename);
+  if (bfd_check_format (abfd, bfd_object) == 0)
+    error ("File is not an object file\n");
+  start_time = time (NULL);
+#if 0
+  for (s = abfd->sections; s; s = s->next)
+    if (s->flags & SEC_LOAD)
+      {
+       bfd_size_type section_size = bfd_section_size (abfd, s);
+       bfd_vma section_base = bfd_section_vma (abfd, s);
+       unsigned int buffer;
+
+       data_count += section_size;
+
+       printf_filtered ("Loading section %s, size 0x%lx vma ",
+                        bfd_section_name (abfd, s), section_size);
+       print_address_numeric (section_base, 1, gdb_stdout);
+       printf_filtered ("\n");
+       gdb_flush (gdb_stdout);
+       monitor_printf ("%x mw\r", section_base);
+       for (i = 0; i < section_size; i += 4)
+         {
+           monitor_expect (" -> ", NULL, 0);
+           bfd_get_section_contents (abfd, s, (char *) &buffer, i, 4);
+           monitor_printf ("%x\n", buffer);
+         }
+       monitor_expect (" -> ", NULL, 0);
+       monitor_printf ("q\n");
+       monitor_expect_prompt (NULL, 0);
+      }
+#else
+  if (!(catch_errors (m32r_load_1, abfd, "Load aborted!\n", RETURN_MASK_ALL)))
+    {
+      monitor_printf ("q\n");
+      return;
+    }
+#endif
+  end_time = time (NULL);
+  printf_filtered ("Start address 0x%lx\n", bfd_get_start_address (abfd));
+  report_transfer_performance (data_count, start_time, end_time);
+
+  /* Finally, make the PC point at the start address */
+  if (exec_bfd)
+    write_pc (bfd_get_start_address (exec_bfd));
+
+  inferior_ptid = null_ptid;   /* No process now */
+
+  /* This is necessary because many things were based on the PC at the
+     time that we attached to the monitor, which is no longer valid
+     now that we have loaded new code (and just changed the PC).
+     Another way to do this might be to call normal_stop, except that
+     the stack may not be valid, and things would get horribly
+     confused... */
+
+  clear_symtab_users ();
+}
+
+static void
+m32r_load_gen (char *filename, int from_tty)
+{
+  generic_load (filename, from_tty);
+}
+
+static void m32r_open (char *args, int from_tty);
+static void mon2000_open (char *args, int from_tty);
+
+/* This array of registers needs to match the indexes used by GDB. The
+   whole reason this exists is because the various ROM monitors use
+   different names than GDB does, and don't support all the registers
+   either. So, typing "info reg sp" becomes an "A7". */
+
+static char *m32r_regnames[] =
+  { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+  "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
+};
+
+static void
+m32r_supply_register (char *regname, int regnamelen, char *val, int vallen)
+{
+  int regno;
+  int num_regs = sizeof (m32r_regnames) / sizeof (m32r_regnames[0]);
+
+  for (regno = 0; regno < num_regs; regno++)
+    if (strncmp (regname, m32r_regnames[regno], regnamelen) == 0)
+      break;
+
+  if (regno >= num_regs)
+    return;                    /* no match */
+
+  if (regno == ACCL_REGNUM)
+    {                          /* special handling for 64-bit acc reg */
+      monitor_supply_register (ACCH_REGNUM, val);
+      val = strchr (val, ':'); /* skip past ':' to get 2nd word */
+      if (val != NULL)
+       monitor_supply_register (ACCL_REGNUM, val + 1);
+    }
+  else
+    {
+      monitor_supply_register (regno, val);
+      if (regno == PSW_REGNUM)
+       {
+         unsigned long psw = strtoul (val, NULL, 16);
+         char *zero = "00000000", *one = "00000001";
+
+#ifdef SM_REGNUM
+         /* Stack mode bit */
+         monitor_supply_register (SM_REGNUM, (psw & 0x80) ? one : zero);
+#endif
+#ifdef BSM_REGNUM
+         /* Backup stack mode bit */
+         monitor_supply_register (BSM_REGNUM, (psw & 0x8000) ? one : zero);
+#endif
+#ifdef IE_REGNUM
+         /* Interrupt enable bit */
+         monitor_supply_register (IE_REGNUM, (psw & 0x40) ? one : zero);
+#endif
+#ifdef BIE_REGNUM
+         /* Backup interrupt enable bit */
+         monitor_supply_register (BIE_REGNUM, (psw & 0x4000) ? one : zero);
+#endif
+#ifdef COND_REGNUM
+         /* Condition bit (carry etc.) */
+         monitor_supply_register (COND_REGNUM, (psw & 0x1) ? one : zero);
+#endif
+#ifdef CBR_REGNUM
+         monitor_supply_register (CBR_REGNUM, (psw & 0x1) ? one : zero);
+#endif
+#ifdef BPC_REGNUM
+         monitor_supply_register (BPC_REGNUM, zero);   /* KLUDGE:   (???????) */
+#endif
+#ifdef BCARRY_REGNUM
+         monitor_supply_register (BCARRY_REGNUM, zero);        /* KLUDGE: (??????) */
+#endif
+       }
+
+      if (regno == SPI_REGNUM || regno == SPU_REGNUM)
+       {                       /* special handling for stack pointer (spu or spi) */
+         unsigned long stackmode = read_register (PSW_REGNUM) & 0x80;
+
+         if (regno == SPI_REGNUM && !stackmode)        /* SP == SPI */
+           monitor_supply_register (SP_REGNUM, val);
+         else if (regno == SPU_REGNUM && stackmode)    /* SP == SPU */
+           monitor_supply_register (SP_REGNUM, val);
+       }
+    }
+}
+
+/* m32r RevC board monitor */
+
+static struct target_ops m32r_ops;
+
+static char *m32r_inits[] = { "\r", NULL };
+
+static struct monitor_ops m32r_cmds;
+
+static void
+init_m32r_cmds (void)
+{
+  m32r_cmds.flags = MO_CLR_BREAK_USES_ADDR | MO_REGISTER_VALUE_FIRST;
+  m32r_cmds.init = m32r_inits; /* Init strings */
+  m32r_cmds.cont = "go\r";     /* continue command */
+  m32r_cmds.step = "step\r";   /* single step */
+  m32r_cmds.stop = NULL;       /* interrupt command */
+  m32r_cmds.set_break = "%x +bp\r";    /* set a breakpoint */
+  m32r_cmds.clr_break = "%x -bp\r";    /* clear a breakpoint */
+  m32r_cmds.clr_all_break = "bpoff\r"; /* clear all breakpoints */
+  m32r_cmds.fill = "%x %x %x fill\r";  /* fill (start length val) */
+  m32r_cmds.setmem.cmdb = "%x 1 %x fill\r";    /* setmem.cmdb (addr, value) */
+  m32r_cmds.setmem.cmdw = "%x 1 %x fillh\r";   /* setmem.cmdw (addr, value) */
+  m32r_cmds.setmem.cmdl = "%x 1 %x fillw\r";   /* setmem.cmdl (addr, value) */
+  m32r_cmds.setmem.cmdll = NULL;       /* setmem.cmdll (addr, value) */
+  m32r_cmds.setmem.resp_delim = NULL;  /* setmem.resp_delim */
+  m32r_cmds.setmem.term = NULL;        /* setmem.term */
+  m32r_cmds.setmem.term_cmd = NULL;    /* setmem.term_cmd */
+  m32r_cmds.getmem.cmdb = "%x %x dump\r";      /* getmem.cmdb (addr, len) */
+  m32r_cmds.getmem.cmdw = NULL;        /* getmem.cmdw (addr, len) */
+  m32r_cmds.getmem.cmdl = NULL;        /* getmem.cmdl (addr, len) */
+  m32r_cmds.getmem.cmdll = NULL;       /* getmem.cmdll (addr, len) */
+  m32r_cmds.getmem.resp_delim = ": ";  /* getmem.resp_delim */
+  m32r_cmds.getmem.term = NULL;        /* getmem.term */
+  m32r_cmds.getmem.term_cmd = NULL;    /* getmem.term_cmd */
+  m32r_cmds.setreg.cmd = "%x to %%%s\r";       /* setreg.cmd (name, value) */
+  m32r_cmds.setreg.resp_delim = NULL;  /* setreg.resp_delim */
+  m32r_cmds.setreg.term = NULL;        /* setreg.term */
+  m32r_cmds.setreg.term_cmd = NULL;    /* setreg.term_cmd */
+  m32r_cmds.getreg.cmd = NULL; /* getreg.cmd (name) */
+  m32r_cmds.getreg.resp_delim = NULL;  /* getreg.resp_delim */
+  m32r_cmds.getreg.term = NULL;        /* getreg.term */
+  m32r_cmds.getreg.term_cmd = NULL;    /* getreg.term_cmd */
+  m32r_cmds.dump_registers = ".reg\r"; /* dump_registers */
+  m32r_cmds.register_pattern = "\\(\\w+\\) += \\([0-9a-fA-F]+\\b\\)";  /* register_pattern */
+  m32r_cmds.supply_register = m32r_supply_register;    /* supply_register */
+  m32r_cmds.load_routine = NULL;       /* load_routine (defaults to SRECs) */
+  m32r_cmds.load = NULL;       /* download command */
+  m32r_cmds.loadresp = NULL;   /* load response */
+  m32r_cmds.prompt = "ok ";    /* monitor command prompt */
+  m32r_cmds.line_term = "\r";  /* end-of-line terminator */
+  m32r_cmds.cmd_end = NULL;    /* optional command terminator */
+  m32r_cmds.target = &m32r_ops;        /* target operations */
+  m32r_cmds.stopbits = SERIAL_1_STOPBITS;      /* number of stop bits */
+  m32r_cmds.regnames = m32r_regnames;  /* registers names */
+  m32r_cmds.magic = MONITOR_OPS_MAGIC; /* magic */
+}                              /* init_m32r_cmds */
+
+static void
+m32r_open (char *args, int from_tty)
+{
+  monitor_open (args, &m32r_cmds, from_tty);
+}
+
+/* Mon2000 monitor (MSA2000 board) */
+
+static struct target_ops mon2000_ops;
+static struct monitor_ops mon2000_cmds;
+
+static void
+init_mon2000_cmds (void)
+{
+  mon2000_cmds.flags = MO_CLR_BREAK_USES_ADDR | MO_REGISTER_VALUE_FIRST;
+  mon2000_cmds.init = m32r_inits;      /* Init strings */
+  mon2000_cmds.cont = "go\r";  /* continue command */
+  mon2000_cmds.step = "step\r";        /* single step */
+  mon2000_cmds.stop = NULL;    /* interrupt command */
+  mon2000_cmds.set_break = "%x +bp\r"; /* set a breakpoint */
+  mon2000_cmds.clr_break = "%x -bp\r"; /* clear a breakpoint */
+  mon2000_cmds.clr_all_break = "bpoff\r";      /* clear all breakpoints */
+  mon2000_cmds.fill = "%x %x %x fill\r";       /* fill (start length val) */
+  mon2000_cmds.setmem.cmdb = "%x 1 %x fill\r"; /* setmem.cmdb (addr, value) */
+  mon2000_cmds.setmem.cmdw = "%x 1 %x fillh\r";        /* setmem.cmdw (addr, value) */
+  mon2000_cmds.setmem.cmdl = "%x 1 %x fillw\r";        /* setmem.cmdl (addr, value) */
+  mon2000_cmds.setmem.cmdll = NULL;    /* setmem.cmdll (addr, value) */
+  mon2000_cmds.setmem.resp_delim = NULL;       /* setmem.resp_delim */
+  mon2000_cmds.setmem.term = NULL;     /* setmem.term */
+  mon2000_cmds.setmem.term_cmd = NULL; /* setmem.term_cmd */
+  mon2000_cmds.getmem.cmdb = "%x %x dump\r";   /* getmem.cmdb (addr, len) */
+  mon2000_cmds.getmem.cmdw = NULL;     /* getmem.cmdw (addr, len) */
+  mon2000_cmds.getmem.cmdl = NULL;     /* getmem.cmdl (addr, len) */
+  mon2000_cmds.getmem.cmdll = NULL;    /* getmem.cmdll (addr, len) */
+  mon2000_cmds.getmem.resp_delim = ": ";       /* getmem.resp_delim */
+  mon2000_cmds.getmem.term = NULL;     /* getmem.term */
+  mon2000_cmds.getmem.term_cmd = NULL; /* getmem.term_cmd */
+  mon2000_cmds.setreg.cmd = "%x to %%%s\r";    /* setreg.cmd (name, value) */
+  mon2000_cmds.setreg.resp_delim = NULL;       /* setreg.resp_delim */
+  mon2000_cmds.setreg.term = NULL;     /* setreg.term */
+  mon2000_cmds.setreg.term_cmd = NULL; /* setreg.term_cmd */
+  mon2000_cmds.getreg.cmd = NULL;      /* getreg.cmd (name) */
+  mon2000_cmds.getreg.resp_delim = NULL;       /* getreg.resp_delim */
+  mon2000_cmds.getreg.term = NULL;     /* getreg.term */
+  mon2000_cmds.getreg.term_cmd = NULL; /* getreg.term_cmd */
+  mon2000_cmds.dump_registers = ".reg\r";      /* dump_registers */
+  mon2000_cmds.register_pattern = "\\(\\w+\\) += \\([0-9a-fA-F]+\\b\\)";       /* register_pattern */
+  mon2000_cmds.supply_register = m32r_supply_register; /* supply_register */
+  mon2000_cmds.load_routine = NULL;    /* load_routine (defaults to SRECs) */
+  mon2000_cmds.load = NULL;    /* download command */
+  mon2000_cmds.loadresp = NULL;        /* load response */
+  mon2000_cmds.prompt = "Mon2000>";    /* monitor command prompt */
+  mon2000_cmds.line_term = "\r";       /* end-of-line terminator */
+  mon2000_cmds.cmd_end = NULL; /* optional command terminator */
+  mon2000_cmds.target = &mon2000_ops;  /* target operations */
+  mon2000_cmds.stopbits = SERIAL_1_STOPBITS;   /* number of stop bits */
+  mon2000_cmds.regnames = m32r_regnames;       /* registers names */
+  mon2000_cmds.magic = MONITOR_OPS_MAGIC;      /* magic */
+}                              /* init_mon2000_cmds */
+
+static void
+mon2000_open (char *args, int from_tty)
+{
+  monitor_open (args, &mon2000_cmds, from_tty);
+}
+
+/* Function: set_board_address
+   Tell the BootOne monitor what it's ethernet IP address is. */
+
+static void
+m32r_set_board_address (char *args, int from_tty)
+{
+  int resp_len;
+  char buf[1024];
+
+  if (args && *args)
+    {
+      monitor_printf ("ulip %s\n", args);
+      resp_len = monitor_expect_prompt (buf, sizeof (buf));
+      /* now parse the result for success */
+    }
+  else
+    error ("Requires argument (IP address for M32R-EVA board)");
+}
+
+/* Function: set_server_address
+   Tell the BootOne monitor what gdb's ethernet IP address is. */
+
+static void
+m32r_set_server_address (char *args, int from_tty)
+{
+  int resp_len;
+  char buf[1024];
+
+  if (args && *args)
+    {
+      monitor_printf ("uhip %s\n", args);
+      resp_len = monitor_expect_prompt (buf, sizeof (buf));
+      /* now parse the result for success */
+    }
+  else
+    error ("Requires argument (IP address of GDB's host computer)");
+}
+
+/* Function: set_download_path
+   Tell the BootOne monitor the default path for downloadable SREC files. */
+
+static void
+m32r_set_download_path (char *args, int from_tty)
+{
+  int resp_len;
+  char buf[1024];
+
+  if (args && *args)
+    {
+      monitor_printf ("up %s\n", args);
+      resp_len = monitor_expect_prompt (buf, sizeof (buf));
+      /* now parse the result for success */
+    }
+  else
+    error ("Requires argument (default path for downloadable SREC files)");
+}
+
+static void
+m32r_upload_command (char *args, int from_tty)
+{
+  bfd *abfd;
+  asection *s;
+  time_t start_time, end_time; /* for timing of download */
+  int resp_len, data_count = 0;
+  char buf[1024];
+  struct hostent *hostent;
+  struct in_addr inet_addr;
+
+  /* first check to see if there's an ethernet port! */
+  monitor_printf ("ust\r");
+  resp_len = monitor_expect_prompt (buf, sizeof (buf));
+  if (!strchr (buf, ':'))
+    error ("No ethernet connection!");
+
+  if (board_addr == 0)
+    {
+      /* scan second colon in the output from the "ust" command */
+      char *myIPaddress = strchr (strchr (buf, ':') + 1, ':') + 1;
+
+      while (isspace (*myIPaddress))
+       myIPaddress++;
+
+      if (!strncmp (myIPaddress, "0.0.", 4))   /* empty */
+       error
+         ("Please use 'set board-address' to set the M32R-EVA board's IP address.");
+      if (strchr (myIPaddress, '('))
+       *(strchr (myIPaddress, '(')) = '\0';    /* delete trailing junk */
+      board_addr = xstrdup (myIPaddress);
+    }
+  if (server_addr == 0)
+    {
+      buf[0] = 0;
+      gethostname (buf, sizeof (buf));
+      if (buf[0] != 0)
+       hostent = gethostbyname (buf);
+      if (hostent != 0)
+       {
+#if 1
+         memcpy (&inet_addr.s_addr, hostent->h_addr,
+                 sizeof (inet_addr.s_addr));
+         server_addr = (char *) inet_ntoa (inet_addr);
+#else
+         server_addr = (char *) inet_ntoa (hostent->h_addr);
+#endif
+       }
+      if (server_addr == 0)    /* failed? */
+       error
+         ("Need to know gdb host computer's IP address (use 'set server-address')");
+    }
+
+  if (args == 0 || args[0] == 0)       /* no args: upload the current file */
+    args = get_exec_file (1);
+
+  if (args[0] != '/' && download_path == 0)
+    {
+      if (current_directory)
+       download_path = xstrdup (current_directory);
+      else
+       error
+         ("Need to know default download path (use 'set download-path')");
+    }
+
+  start_time = time (NULL);
+  monitor_printf ("uhip %s\r", server_addr);
+  resp_len = monitor_expect_prompt (buf, sizeof (buf));        /* parse result? */
+  monitor_printf ("ulip %s\r", board_addr);
+  resp_len = monitor_expect_prompt (buf, sizeof (buf));        /* parse result? */
+  if (args[0] != '/')
+    monitor_printf ("up %s\r", download_path); /* use default path */
+  else
+    monitor_printf ("up\r");   /* rooted filename/path */
+  resp_len = monitor_expect_prompt (buf, sizeof (buf));        /* parse result? */
+
+  if (strrchr (args, '.') && !strcmp (strrchr (args, '.'), ".srec"))
+    monitor_printf ("ul %s\r", args);
+  else                         /* add ".srec" suffix */
+    monitor_printf ("ul %s.srec\r", args);
+  resp_len = monitor_expect_prompt (buf, sizeof (buf));        /* parse result? */
+
+  if (buf[0] == 0 || strstr (buf, "complete") == 0)
+    error
+      ("Upload file not found: %s.srec\nCheck IP addresses and download path.",
+       args);
+  else
+    printf_filtered (" -- Ethernet load complete.\n");
+
+  end_time = time (NULL);
+  abfd = bfd_openr (args, 0);
+  if (abfd != NULL)
+    {                          /* Download is done -- print section statistics */
+      if (bfd_check_format (abfd, bfd_object) == 0)
+       {
+         printf_filtered ("File is not an object file\n");
+       }
+      for (s = abfd->sections; s; s = s->next)
+       if (s->flags & SEC_LOAD)
+         {
+           bfd_size_type section_size = bfd_section_size (abfd, s);
+           bfd_vma section_base = bfd_section_lma (abfd, s);
+           unsigned int buffer;
+
+           data_count += section_size;
+
+           printf_filtered ("Loading section %s, size 0x%lx lma ",
+                            bfd_section_name (abfd, s), section_size);
+           print_address_numeric (section_base, 1, gdb_stdout);
+           printf_filtered ("\n");
+           gdb_flush (gdb_stdout);
+         }
+      /* Finally, make the PC point at the start address */
+      write_pc (bfd_get_start_address (abfd));
+      report_transfer_performance (data_count, start_time, end_time);
+      printf_filtered ("Start address 0x%lx\n", bfd_get_start_address (abfd));
+    }
+  inferior_ptid = null_ptid;   /* No process now */
+
+  /* This is necessary because many things were based on the PC at the
+     time that we attached to the monitor, which is no longer valid
+     now that we have loaded new code (and just changed the PC).
+     Another way to do this might be to call normal_stop, except that
+     the stack may not be valid, and things would get horribly
+     confused... */
+
+  clear_symtab_users ();
+}
+
+void
+_initialize_m32r_rom (void)
+{
+  /* Initialize m32r RevC monitor target */
+  init_m32r_cmds ();
+  init_monitor_ops (&m32r_ops);
+
+  m32r_ops.to_shortname = "m32r";
+  m32r_ops.to_longname = "m32r monitor";
+  m32r_ops.to_load = m32r_load_gen;    /* monitor lacks a download command */
+  m32r_ops.to_doc = "Debug via the m32r monitor.\n\
+Specify the serial device it is connected to (e.g. /dev/ttya).";
+  m32r_ops.to_open = m32r_open;
+  add_target (&m32r_ops);
+
+  /* Initialize mon2000 monitor target */
+  init_mon2000_cmds ();
+  init_monitor_ops (&mon2000_ops);
+
+  mon2000_ops.to_shortname = "mon2000";
+  mon2000_ops.to_longname = "Mon2000 monitor";
+  mon2000_ops.to_load = m32r_load_gen; /* monitor lacks a download command */
+  mon2000_ops.to_doc = "Debug via the Mon2000 monitor.\n\
+Specify the serial device it is connected to (e.g. /dev/ttya).";
+  mon2000_ops.to_open = mon2000_open;
+  add_target (&mon2000_ops);
+
+  add_show_from_set
+    (add_set_cmd ("download-path", class_obscure, var_string,
+                 (char *) &download_path,
+                 "Set the default path for downloadable SREC files.",
+                 &setlist), &showlist);
+
+  add_show_from_set
+    (add_set_cmd ("board-address", class_obscure, var_string,
+                 (char *) &board_addr,
+                 "Set IP address for M32R-EVA target board.",
+                 &setlist), &showlist);
+
+  add_show_from_set
+    (add_set_cmd ("server-address", class_obscure, var_string,
+                 (char *) &server_addr,
+                 "Set IP address for download server (GDB's host computer).",
+                 &setlist), &showlist);
+
+  add_com ("upload", class_obscure, m32r_upload_command,
+          "Upload the srec file via the monitor's Ethernet upload capability.");
+
+  add_com ("tload", class_obscure, m32r_load, "test upload command.");
+}
index d9be3eb84e6cb5e825390f122abdbd91603d4801..c7033ea17a3b9b7f8ac0ca757b4166bacbf5f48d 100644 (file)
-// OBSOLETE /****************************************************************************
-// OBSOLETE 
-// OBSOLETE            THIS SOFTWARE IS NOT COPYRIGHTED
-// OBSOLETE 
-// OBSOLETE    HP offers the following for use in the public domain.  HP makes no
-// OBSOLETE    warranty with regard to the software or it's performance and the
-// OBSOLETE    user accepts the software "AS IS" with all faults.
-// OBSOLETE 
-// OBSOLETE    HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
-// OBSOLETE    TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-// OBSOLETE    OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
-// OBSOLETE 
-// OBSOLETE ****************************************************************************/
-// OBSOLETE 
-// OBSOLETE /****************************************************************************
-// OBSOLETE  *  Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
-// OBSOLETE  *
-// OBSOLETE  *  Module name: remcom.c $
-// OBSOLETE  *  Revision: 1.34 $
-// OBSOLETE  *  Date: 91/03/09 12:29:49 $
-// OBSOLETE  *  Contributor:     Lake Stevens Instrument Division$
-// OBSOLETE  *
-// OBSOLETE  *  Description:     low level support for gdb debugger. $
-// OBSOLETE  *
-// OBSOLETE  *  Considerations:  only works on target hardware $
-// OBSOLETE  *
-// OBSOLETE  *  Written by:      Glenn Engel $
-// OBSOLETE  *  ModuleState:     Experimental $
-// OBSOLETE  *
-// OBSOLETE  *  NOTES:           See Below $
-// OBSOLETE  *
-// OBSOLETE  *  Modified for M32R by Michael Snyder, Cygnus Support.
-// OBSOLETE  *
-// OBSOLETE  *  To enable debugger support, two things need to happen.  One, a
-// OBSOLETE  *  call to set_debug_traps() is necessary in order to allow any breakpoints
-// OBSOLETE  *  or error conditions to be properly intercepted and reported to gdb.
-// OBSOLETE  *  Two, a breakpoint needs to be generated to begin communication.  This
-// OBSOLETE  *  is most easily accomplished by a call to breakpoint().  Breakpoint()
-// OBSOLETE  *  simulates a breakpoint by executing a trap #1.
-// OBSOLETE  *
-// OBSOLETE  *  The external function exceptionHandler() is
-// OBSOLETE  *  used to attach a specific handler to a specific M32R vector number.
-// OBSOLETE  *  It should use the same privilege level it runs at.  It should
-// OBSOLETE  *  install it as an interrupt gate so that interrupts are masked
-// OBSOLETE  *  while the handler runs.
-// OBSOLETE  *
-// OBSOLETE  *  Because gdb will sometimes write to the stack area to execute function
-// OBSOLETE  *  calls, this program cannot rely on using the supervisor stack so it
-// OBSOLETE  *  uses it's own stack area reserved in the int array remcomStack.
-// OBSOLETE  *
-// OBSOLETE  *************
-// OBSOLETE  *
-// OBSOLETE  *    The following gdb commands are supported:
-// OBSOLETE  *
-// OBSOLETE  * command          function                               Return value
-// OBSOLETE  *
-// OBSOLETE  *    g             return the value of the CPU registers  hex data or ENN
-// OBSOLETE  *    G             set the value of the CPU registers     OK or ENN
-// OBSOLETE  *
-// OBSOLETE  *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
-// OBSOLETE  *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
-// OBSOLETE  *    XAA..AA,LLLL: Write LLLL binary bytes at address     OK or ENN
-// OBSOLETE  *                  AA..AA
-// OBSOLETE  *
-// OBSOLETE  *    c             Resume at current address              SNN   ( signal NN)
-// OBSOLETE  *    cAA..AA       Continue at address AA..AA             SNN
-// OBSOLETE  *
-// OBSOLETE  *    s             Step one instruction                   SNN
-// OBSOLETE  *    sAA..AA       Step one instruction from AA..AA       SNN
-// OBSOLETE  *
-// OBSOLETE  *    k             kill
-// OBSOLETE  *
-// OBSOLETE  *    ?             What was the last sigval ?             SNN   (signal NN)
-// OBSOLETE  *
-// OBSOLETE  * All commands and responses are sent with a packet which includes a
-// OBSOLETE  * checksum.  A packet consists of
-// OBSOLETE  *
-// OBSOLETE  * $<packet info>#<checksum>.
-// OBSOLETE  *
-// OBSOLETE  * where
-// OBSOLETE  * <packet info> :: <characters representing the command or response>
-// OBSOLETE  * <checksum>    :: <two hex digits computed as modulo 256 sum of <packetinfo>>
-// OBSOLETE  *
-// OBSOLETE  * When a packet is received, it is first acknowledged with either '+' or '-'.
-// OBSOLETE  * '+' indicates a successful transfer.  '-' indicates a failed transfer.
-// OBSOLETE  *
-// OBSOLETE  * Example:
-// OBSOLETE  *
-// OBSOLETE  * Host:                  Reply:
-// OBSOLETE  * $m0,10#2a               +$00010203040506070809101112131415#42
-// OBSOLETE  *
-// OBSOLETE  ****************************************************************************/
-// OBSOLETE 
-// OBSOLETE 
-// OBSOLETE /************************************************************************
-// OBSOLETE  *
-// OBSOLETE  * external low-level support routines
-// OBSOLETE  */
-// OBSOLETE extern void putDebugChar();        /* write a single character      */
-// OBSOLETE extern int getDebugChar(); /* read and return a single char */
-// OBSOLETE extern void exceptionHandler();    /* assign an exception handler   */
-// OBSOLETE 
-// OBSOLETE /*****************************************************************************
-// OBSOLETE  * BUFMAX defines the maximum number of characters in inbound/outbound buffers
-// OBSOLETE  * at least NUMREGBYTES*2 are needed for register packets 
-// OBSOLETE  */
-// OBSOLETE #define BUFMAX 400
-// OBSOLETE 
-// OBSOLETE static char initialized;  /* boolean flag. != 0 means we've been initialized */
-// OBSOLETE 
-// OBSOLETE int     remote_debug;
-// OBSOLETE /*  debug >  0 prints ill-formed commands in valid packets & checksum errors */
-// OBSOLETE 
-// OBSOLETE static const unsigned char hexchars[]="0123456789abcdef";
-// OBSOLETE 
-// OBSOLETE #define NUMREGS 24
-// OBSOLETE 
-// OBSOLETE /* Number of bytes of registers.  */
-// OBSOLETE #define NUMREGBYTES (NUMREGS * 4)
-// OBSOLETE enum regnames { R0,  R1,  R2,  R3,  R4,  R5,  R6,   R7,
-// OBSOLETE            R8,  R9,  R10, R11, R12, R13, R14,  R15,
-// OBSOLETE            PSW, CBR, SPI, SPU, BPC, PC,  ACCL, ACCH };
-// OBSOLETE 
-// OBSOLETE enum SYS_calls {
-// OBSOLETE    SYS_null, 
-// OBSOLETE    SYS_exit,
-// OBSOLETE    SYS_open,
-// OBSOLETE    SYS_close,
-// OBSOLETE    SYS_read,
-// OBSOLETE    SYS_write,
-// OBSOLETE    SYS_lseek,
-// OBSOLETE    SYS_unlink,
-// OBSOLETE    SYS_getpid,
-// OBSOLETE    SYS_kill,
-// OBSOLETE    SYS_fstat,
-// OBSOLETE    SYS_sbrk,
-// OBSOLETE    SYS_fork,
-// OBSOLETE    SYS_execve,
-// OBSOLETE    SYS_wait4,
-// OBSOLETE    SYS_link,
-// OBSOLETE    SYS_chdir,
-// OBSOLETE    SYS_stat,
-// OBSOLETE    SYS_utime,
-// OBSOLETE    SYS_chown,
-// OBSOLETE    SYS_chmod,
-// OBSOLETE    SYS_time,
-// OBSOLETE    SYS_pipe };
-// OBSOLETE 
-// OBSOLETE static int registers[NUMREGS];
-// OBSOLETE 
-// OBSOLETE #define STACKSIZE 8096
-// OBSOLETE static unsigned char remcomInBuffer[BUFMAX];
-// OBSOLETE static unsigned char remcomOutBuffer[BUFMAX];
-// OBSOLETE static int  remcomStack[STACKSIZE/sizeof(int)];
-// OBSOLETE static int*  stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
-// OBSOLETE 
-// OBSOLETE static unsigned int save_vectors[18];      /* previous exception vectors */
-// OBSOLETE 
-// OBSOLETE /* Indicate to caller of mem2hex or hex2mem that there has been an error. */
-// OBSOLETE static volatile int mem_err = 0;
-// OBSOLETE 
-// OBSOLETE /* Store the vector number here (since GDB only gets the signal
-// OBSOLETE    number through the usual means, and that's not very specific).  */
-// OBSOLETE int gdb_m32r_vector = -1;
-// OBSOLETE 
-// OBSOLETE #if 0
-// OBSOLETE #include "syscall.h" /* for SYS_exit, SYS_write etc. */
-// OBSOLETE #endif
-// OBSOLETE 
-// OBSOLETE /* Global entry points:
-// OBSOLETE  */
-// OBSOLETE 
-// OBSOLETE extern void handle_exception(int);
-// OBSOLETE extern void set_debug_traps(void);
-// OBSOLETE extern void breakpoint(void);
-// OBSOLETE 
-// OBSOLETE /* Local functions:
-// OBSOLETE  */
-// OBSOLETE 
-// OBSOLETE static int  computeSignal(int);
-// OBSOLETE static void putpacket(unsigned char *);
-// OBSOLETE static unsigned char *getpacket(void);
-// OBSOLETE 
-// OBSOLETE static unsigned char *mem2hex(unsigned char *, unsigned char *, int, int);
-// OBSOLETE static unsigned char *hex2mem(unsigned char *, unsigned char *, int, int);
-// OBSOLETE static int  hexToInt(unsigned char **, int *);
-// OBSOLETE static unsigned char *bin2mem(unsigned char *, unsigned char *, int, int);
-// OBSOLETE static void stash_registers(void);
-// OBSOLETE static void restore_registers(void);
-// OBSOLETE static int  prepare_to_step(int);
-// OBSOLETE static int  finish_from_step(void);
-// OBSOLETE static unsigned long crc32 (unsigned char *, int, unsigned long);
-// OBSOLETE 
-// OBSOLETE static void gdb_error(char *, char *);
-// OBSOLETE static int  gdb_putchar(int), gdb_puts(char *), gdb_write(char *, int);
-// OBSOLETE 
-// OBSOLETE static unsigned char *strcpy (unsigned char *, const unsigned char *);
-// OBSOLETE static int   strlen (const unsigned char *);
-// OBSOLETE 
-// OBSOLETE /*
-// OBSOLETE  * This function does all command procesing for interfacing to gdb.
-// OBSOLETE  */
-// OBSOLETE 
-// OBSOLETE void 
-// OBSOLETE handle_exception(int exceptionVector)
-// OBSOLETE {
-// OBSOLETE   int    sigval, stepping;
-// OBSOLETE   int    addr, length, i;
-// OBSOLETE   unsigned char * ptr;
-// OBSOLETE   unsigned char   buf[16];
-// OBSOLETE   int binary;
-// OBSOLETE 
-// OBSOLETE   /* Do not call finish_from_step() if this is not a trap #1
-// OBSOLETE    * (breakpoint trap).  Without this check, the finish_from_step()
-// OBSOLETE    * might interpret a system call trap as a single step trap.  This
-// OBSOLETE    * can happen if: the stub receives 's' and exits, but an interrupt
-// OBSOLETE    * was pending; the interrupt is now handled and causes the stub to
-// OBSOLETE    * be reentered because some function makes a system call.  
-// OBSOLETE    */
-// OBSOLETE   if (exceptionVector == 1)        /* Trap exception? */
-// OBSOLETE     if (!finish_from_step())       /* Go see if stepping state needs update. */
-// OBSOLETE       return;              /* "false step": let the target continue */
-// OBSOLETE 
-// OBSOLETE   gdb_m32r_vector = exceptionVector;
-// OBSOLETE 
-// OBSOLETE   if (remote_debug)
-// OBSOLETE     {
-// OBSOLETE       mem2hex((unsigned char *) &exceptionVector, buf, 4, 0);
-// OBSOLETE       gdb_error("Handle exception %s, ", buf);
-// OBSOLETE       mem2hex((unsigned char *) &registers[PC], buf, 4, 0);
-// OBSOLETE       gdb_error("PC == 0x%s\n", buf);
-// OBSOLETE     }
-// OBSOLETE 
-// OBSOLETE   /* reply to host that an exception has occurred */
-// OBSOLETE   sigval = computeSignal( exceptionVector );
-// OBSOLETE 
-// OBSOLETE   ptr = remcomOutBuffer;
-// OBSOLETE  
-// OBSOLETE   *ptr++ = 'T';         /* notify gdb with signo, PC, FP and SP */
-// OBSOLETE   *ptr++ = hexchars[sigval >> 4];
-// OBSOLETE   *ptr++ = hexchars[sigval & 0xf];
-// OBSOLETE  
-// OBSOLETE   *ptr++ = hexchars[PC >> 4];
-// OBSOLETE   *ptr++ = hexchars[PC & 0xf];
-// OBSOLETE   *ptr++ = ':';
-// OBSOLETE   ptr = mem2hex((unsigned char *)&registers[PC], ptr, 4, 0);     /* PC */
-// OBSOLETE   *ptr++ = ';';
-// OBSOLETE  
-// OBSOLETE   *ptr++ = hexchars[R13 >> 4];
-// OBSOLETE   *ptr++ = hexchars[R13 & 0xf];
-// OBSOLETE   *ptr++ = ':';
-// OBSOLETE   ptr = mem2hex((unsigned char *)&registers[R13], ptr, 4, 0);    /* FP */
-// OBSOLETE   *ptr++ = ';';
-// OBSOLETE  
-// OBSOLETE   *ptr++ = hexchars[R15 >> 4];
-// OBSOLETE   *ptr++ = hexchars[R15 & 0xf];
-// OBSOLETE   *ptr++ = ':';
-// OBSOLETE   ptr = mem2hex((unsigned char *)&registers[R15], ptr, 4, 0);    /* SP */
-// OBSOLETE   *ptr++ = ';';
-// OBSOLETE   *ptr++ = 0;
-// OBSOLETE  
-// OBSOLETE   if (exceptionVector == 0)     /* simulated SYS call stuff */
-// OBSOLETE     {
-// OBSOLETE       mem2hex((unsigned char *) &registers[PC], buf, 4, 0);
-// OBSOLETE       switch (registers[R0]) {
-// OBSOLETE       case SYS_exit:
-// OBSOLETE    gdb_error("Target program has exited at %s\n", buf);
-// OBSOLETE    ptr = remcomOutBuffer;
-// OBSOLETE    *ptr++ = 'W';
-// OBSOLETE    sigval = registers[R1] & 0xff;
-// OBSOLETE    *ptr++ = hexchars[sigval >> 4];
-// OBSOLETE    *ptr++ = hexchars[sigval & 0xf];
-// OBSOLETE    *ptr++ = 0;
-// OBSOLETE    break;
-// OBSOLETE       case SYS_open:
-// OBSOLETE    gdb_error("Target attempts SYS_open call at %s\n", buf);
-// OBSOLETE    break;
-// OBSOLETE       case SYS_close:
-// OBSOLETE    gdb_error("Target attempts SYS_close call at %s\n", buf);
-// OBSOLETE    break;
-// OBSOLETE       case SYS_read:
-// OBSOLETE    gdb_error("Target attempts SYS_read call at %s\n", buf);
-// OBSOLETE    break;
-// OBSOLETE       case SYS_write:
-// OBSOLETE    if (registers[R1] == 1 ||       /* write to stdout  */
-// OBSOLETE        registers[R1] == 2)         /* write to stderr  */
-// OBSOLETE      {                             /* (we can do that) */
-// OBSOLETE        registers[R0] = gdb_write((void *) registers[R2], registers[R3]);
-// OBSOLETE        return;
-// OBSOLETE      }
-// OBSOLETE    else
-// OBSOLETE      gdb_error("Target attempts SYS_write call at %s\n", buf);
-// OBSOLETE    break;
-// OBSOLETE       case SYS_lseek:
-// OBSOLETE    gdb_error("Target attempts SYS_lseek call at %s\n", buf);
-// OBSOLETE    break;
-// OBSOLETE       case SYS_unlink:
-// OBSOLETE    gdb_error("Target attempts SYS_unlink call at %s\n", buf);
-// OBSOLETE    break;
-// OBSOLETE       case SYS_getpid:
-// OBSOLETE    gdb_error("Target attempts SYS_getpid call at %s\n", buf);
-// OBSOLETE    break;
-// OBSOLETE       case SYS_kill:
-// OBSOLETE    gdb_error("Target attempts SYS_kill call at %s\n", buf);
-// OBSOLETE    break;
-// OBSOLETE       case SYS_fstat:
-// OBSOLETE    gdb_error("Target attempts SYS_fstat call at %s\n", buf);
-// OBSOLETE    break;
-// OBSOLETE       default:
-// OBSOLETE    gdb_error("Target attempts unknown SYS call at %s\n", buf);
-// OBSOLETE    break;
-// OBSOLETE       }
-// OBSOLETE     }
-// OBSOLETE 
-// OBSOLETE   putpacket(remcomOutBuffer);
-// OBSOLETE 
-// OBSOLETE   stepping = 0;
-// OBSOLETE 
-// OBSOLETE   while (1==1) {
-// OBSOLETE     remcomOutBuffer[0] = 0;
-// OBSOLETE     ptr = getpacket();
-// OBSOLETE     binary = 0;
-// OBSOLETE     switch (*ptr++) {
-// OBSOLETE       default:     /* Unknown code.  Return an empty reply message. */
-// OBSOLETE    break;
-// OBSOLETE       case 'R':
-// OBSOLETE    if (hexToInt (&ptr, &addr))
-// OBSOLETE      registers[PC] = addr;
-// OBSOLETE    strcpy(remcomOutBuffer, "OK");
-// OBSOLETE    break;
-// OBSOLETE       case '!':
-// OBSOLETE    strcpy(remcomOutBuffer, "OK");
-// OBSOLETE    break;
-// OBSOLETE     case 'X': /* XAA..AA,LLLL:<binary data>#cs */
-// OBSOLETE       binary = 1;
-// OBSOLETE     case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
-// OBSOLETE       /* TRY TO READ '%x,%x:'.  IF SUCCEED, SET PTR = 0 */
-// OBSOLETE       {
-// OBSOLETE         if (hexToInt(&ptr,&addr))
-// OBSOLETE           if (*(ptr++) == ',')
-// OBSOLETE             if (hexToInt(&ptr,&length))
-// OBSOLETE               if (*(ptr++) == ':')
-// OBSOLETE                 {
-// OBSOLETE                   mem_err = 0;
-// OBSOLETE                   if (binary)
-// OBSOLETE                     bin2mem (ptr, (unsigned char *) addr, length, 1);
-// OBSOLETE                   else
-// OBSOLETE                     hex2mem(ptr, (unsigned char*) addr, length, 1);
-// OBSOLETE                   if (mem_err) {
-// OBSOLETE                     strcpy (remcomOutBuffer, "E03");
-// OBSOLETE                     gdb_error ("memory fault", "");
-// OBSOLETE                   } else {
-// OBSOLETE                     strcpy(remcomOutBuffer,"OK");
-// OBSOLETE                   }
-// OBSOLETE                   ptr = 0;
-// OBSOLETE                 }
-// OBSOLETE         if (ptr)
-// OBSOLETE           {
-// OBSOLETE             strcpy(remcomOutBuffer,"E02");
-// OBSOLETE           }
-// OBSOLETE       }
-// OBSOLETE    break;
-// OBSOLETE       case 'm': /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
-// OBSOLETE            /* TRY TO READ %x,%x.  IF SUCCEED, SET PTR = 0 */
-// OBSOLETE    if (hexToInt(&ptr,&addr))
-// OBSOLETE      if (*(ptr++) == ',')
-// OBSOLETE        if (hexToInt(&ptr,&length))
-// OBSOLETE          {
-// OBSOLETE            ptr = 0;
-// OBSOLETE            mem_err = 0;
-// OBSOLETE            mem2hex((unsigned char*) addr, remcomOutBuffer, length, 1);
-// OBSOLETE            if (mem_err) {
-// OBSOLETE              strcpy (remcomOutBuffer, "E03");
-// OBSOLETE              gdb_error ("memory fault", "");
-// OBSOLETE            }
-// OBSOLETE          }
-// OBSOLETE    if (ptr)
-// OBSOLETE      {
-// OBSOLETE        strcpy(remcomOutBuffer,"E01");
-// OBSOLETE      }
-// OBSOLETE    break;
-// OBSOLETE       case '?': 
-// OBSOLETE    remcomOutBuffer[0] = 'S';
-// OBSOLETE    remcomOutBuffer[1] =  hexchars[sigval >> 4];
-// OBSOLETE    remcomOutBuffer[2] =  hexchars[sigval % 16];
-// OBSOLETE    remcomOutBuffer[3] = 0;
-// OBSOLETE    break;
-// OBSOLETE       case 'd': 
-// OBSOLETE    remote_debug = !(remote_debug);  /* toggle debug flag */
-// OBSOLETE    break;
-// OBSOLETE       case 'g': /* return the value of the CPU registers */
-// OBSOLETE    mem2hex((unsigned char*) registers, remcomOutBuffer, NUMREGBYTES, 0);
-// OBSOLETE    break;
-// OBSOLETE       case 'P': /* set the value of a single CPU register - return OK */
-// OBSOLETE    {
-// OBSOLETE      int regno;
-// OBSOLETE 
-// OBSOLETE      if (hexToInt (&ptr, &regno) && *ptr++ == '=')
-// OBSOLETE        if (regno >= 0 && regno < NUMREGS)
-// OBSOLETE          {
-// OBSOLETE            int stackmode;
-// OBSOLETE 
-// OBSOLETE            hex2mem (ptr, (unsigned char *) &registers[regno], 4, 0);
-// OBSOLETE            /*
-// OBSOLETE             * Since we just changed a single CPU register, let's
-// OBSOLETE             * make sure to keep the several stack pointers consistant.
-// OBSOLETE             */
-// OBSOLETE            stackmode = registers[PSW] & 0x80;
-// OBSOLETE            if (regno == R15)       /* stack pointer changed */
-// OBSOLETE              {                     /* need to change SPI or SPU */
-// OBSOLETE                if (stackmode == 0)
-// OBSOLETE                  registers[SPI] = registers[R15];
-// OBSOLETE                else
-// OBSOLETE                  registers[SPU] = registers[R15];
-// OBSOLETE              }
-// OBSOLETE            else if (regno == SPU)  /* "user" stack pointer changed */
-// OBSOLETE              {
-// OBSOLETE                if (stackmode != 0) /* stack in user mode: copy SP */
-// OBSOLETE                  registers[R15] = registers[SPU];
-// OBSOLETE              }
-// OBSOLETE            else if (regno == SPI)  /* "interrupt" stack pointer changed */
-// OBSOLETE              {
-// OBSOLETE                if (stackmode == 0) /* stack in interrupt mode: copy SP */
-// OBSOLETE                  registers[R15] = registers[SPI];
-// OBSOLETE              }
-// OBSOLETE            else if (regno == PSW)  /* stack mode may have changed! */
-// OBSOLETE              {                     /* force SP to either SPU or SPI */
-// OBSOLETE                if (stackmode == 0) /* stack in user mode */
-// OBSOLETE                  registers[R15] = registers[SPI];
-// OBSOLETE                else                /* stack in interrupt mode */
-// OBSOLETE                  registers[R15] = registers[SPU];
-// OBSOLETE              }
-// OBSOLETE            strcpy (remcomOutBuffer, "OK");
-// OBSOLETE            break;
-// OBSOLETE          }
-// OBSOLETE      strcpy (remcomOutBuffer, "E01");
-// OBSOLETE      break;
-// OBSOLETE    }
-// OBSOLETE       case 'G': /* set the value of the CPU registers - return OK */
-// OBSOLETE    hex2mem(ptr, (unsigned char*) registers, NUMREGBYTES, 0);
-// OBSOLETE    strcpy(remcomOutBuffer,"OK");
-// OBSOLETE    break;
-// OBSOLETE       case 's': /* sAA..AA Step one instruction from AA..AA(optional) */
-// OBSOLETE    stepping = 1;
-// OBSOLETE       case 'c': /* cAA..AA Continue from address AA..AA(optional) */
-// OBSOLETE            /* try to read optional parameter, pc unchanged if no parm */
-// OBSOLETE    if (hexToInt(&ptr,&addr))
-// OBSOLETE      registers[ PC ] = addr;
-// OBSOLETE    
-// OBSOLETE    if (stepping)   /* single-stepping */
-// OBSOLETE      {
-// OBSOLETE        if (!prepare_to_step(0))    /* set up for single-step */
-// OBSOLETE          {
-// OBSOLETE            /* prepare_to_step has already emulated the target insn:
-// OBSOLETE               Send SIGTRAP to gdb, don't resume the target at all.  */
-// OBSOLETE            ptr = remcomOutBuffer;
-// OBSOLETE            *ptr++ = 'T';           /* Simulate stopping with SIGTRAP */
-// OBSOLETE            *ptr++ = '0';
-// OBSOLETE            *ptr++ = '5';
-// OBSOLETE 
-// OBSOLETE            *ptr++ = hexchars[PC >> 4];     /* send PC */
-// OBSOLETE            *ptr++ = hexchars[PC & 0xf];
-// OBSOLETE            *ptr++ = ':';
-// OBSOLETE            ptr = mem2hex((unsigned char *)&registers[PC], ptr, 4, 0);
-// OBSOLETE            *ptr++ = ';';
-// OBSOLETE 
-// OBSOLETE            *ptr++ = hexchars[R13 >> 4];    /* send FP */
-// OBSOLETE            *ptr++ = hexchars[R13 & 0xf];
-// OBSOLETE            *ptr++ = ':';
-// OBSOLETE            ptr = mem2hex((unsigned char *)&registers[R13], ptr, 4, 0);
-// OBSOLETE            *ptr++ = ';';
-// OBSOLETE 
-// OBSOLETE            *ptr++ = hexchars[R15 >> 4];    /* send SP */
-// OBSOLETE            *ptr++ = hexchars[R15 & 0xf];
-// OBSOLETE            *ptr++ = ':';
-// OBSOLETE            ptr = mem2hex((unsigned char *)&registers[R15], ptr, 4, 0);
-// OBSOLETE            *ptr++ = ';';
-// OBSOLETE            *ptr++ = 0;
-// OBSOLETE 
-// OBSOLETE            break;  
-// OBSOLETE          }
-// OBSOLETE      }
-// OBSOLETE    else    /* continuing, not single-stepping */
-// OBSOLETE      {
-// OBSOLETE        /* OK, about to do a "continue".  First check to see if the 
-// OBSOLETE           target pc is on an odd boundary (second instruction in the 
-// OBSOLETE           word).  If so, we must do a single-step first, because 
-// OBSOLETE           ya can't jump or return back to an odd boundary!  */
-// OBSOLETE        if ((registers[PC] & 2) != 0)
-// OBSOLETE          prepare_to_step(1);
-// OBSOLETE      }
-// OBSOLETE 
-// OBSOLETE    return;
-// OBSOLETE 
-// OBSOLETE       case 'D':    /* Detach */
-// OBSOLETE #if 0
-// OBSOLETE    /* I am interpreting this to mean, release the board from control 
-// OBSOLETE       by the remote stub.  To do this, I am restoring the original
-// OBSOLETE       (or at least previous) exception vectors.
-// OBSOLETE     */
-// OBSOLETE    for (i = 0; i < 18; i++)
-// OBSOLETE      exceptionHandler (i, save_vectors[i]);
-// OBSOLETE    putpacket ("OK");
-// OBSOLETE    return;         /* continue the inferior */
-// OBSOLETE #else
-// OBSOLETE    strcpy(remcomOutBuffer,"OK");
-// OBSOLETE    break;
-// OBSOLETE #endif
-// OBSOLETE     case 'q':
-// OBSOLETE       if (*ptr++ == 'C' &&
-// OBSOLETE      *ptr++ == 'R' &&
-// OBSOLETE      *ptr++ == 'C' &&
-// OBSOLETE      *ptr++ == ':')
-// OBSOLETE    {
-// OBSOLETE      unsigned long start, len, our_crc;
-// OBSOLETE 
-// OBSOLETE      if (hexToInt (&ptr, (int *) &start) &&
-// OBSOLETE          *ptr++ == ','                   &&
-// OBSOLETE          hexToInt (&ptr, (int *) &len))
-// OBSOLETE        {
-// OBSOLETE          remcomOutBuffer[0] = 'C';
-// OBSOLETE          our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
-// OBSOLETE          mem2hex ((char *) &our_crc, 
-// OBSOLETE                   &remcomOutBuffer[1], 
-// OBSOLETE                   sizeof (long), 
-// OBSOLETE                   0); 
-// OBSOLETE        } /* else do nothing */
-// OBSOLETE    } /* else do nothing */
-// OBSOLETE       break;
-// OBSOLETE 
-// OBSOLETE       case 'k': /* kill the program */
-// OBSOLETE    continue;
-// OBSOLETE       } /* switch */
-// OBSOLETE 
-// OBSOLETE     /* reply to the request */
-// OBSOLETE     putpacket(remcomOutBuffer);
-// OBSOLETE   }
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* qCRC support */
-// OBSOLETE 
-// OBSOLETE /* Table used by the crc32 function to calcuate the checksum. */
-// OBSOLETE static unsigned long crc32_table[256] = {0, 0};
-// OBSOLETE 
-// OBSOLETE static unsigned long
-// OBSOLETE crc32 (unsigned char *buf, int len, unsigned long crc)
-// OBSOLETE {
-// OBSOLETE   if (! crc32_table[1])
-// OBSOLETE     {
-// OBSOLETE       /* Initialize the CRC table and the decoding table. */
-// OBSOLETE       int i, j;
-// OBSOLETE       unsigned long c;
-// OBSOLETE 
-// OBSOLETE       for (i = 0; i < 256; i++)
-// OBSOLETE    {
-// OBSOLETE      for (c = i << 24, j = 8; j > 0; --j)
-// OBSOLETE        c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
-// OBSOLETE      crc32_table[i] = c;
-// OBSOLETE    }
-// OBSOLETE     }
-// OBSOLETE 
-// OBSOLETE   while (len--)
-// OBSOLETE     {
-// OBSOLETE       crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
-// OBSOLETE       buf++;
-// OBSOLETE     }
-// OBSOLETE   return crc;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static int 
-// OBSOLETE hex (unsigned char ch)
-// OBSOLETE {
-// OBSOLETE   if ((ch >= 'a') && (ch <= 'f')) return (ch-'a'+10);
-// OBSOLETE   if ((ch >= '0') && (ch <= '9')) return (ch-'0');
-// OBSOLETE   if ((ch >= 'A') && (ch <= 'F')) return (ch-'A'+10);
-// OBSOLETE   return (-1);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* scan for the sequence $<data>#<checksum>     */
-// OBSOLETE 
-// OBSOLETE unsigned char *
-// OBSOLETE getpacket (void)
-// OBSOLETE {
-// OBSOLETE   unsigned char *buffer = &remcomInBuffer[0];
-// OBSOLETE   unsigned char checksum;
-// OBSOLETE   unsigned char xmitcsum;
-// OBSOLETE   int count;
-// OBSOLETE   char ch;
-// OBSOLETE 
-// OBSOLETE   while (1)
-// OBSOLETE     {
-// OBSOLETE       /* wait around for the start character, ignore all other characters */
-// OBSOLETE       while ((ch = getDebugChar ()) != '$')
-// OBSOLETE    ;
-// OBSOLETE 
-// OBSOLETE retry:
-// OBSOLETE       checksum = 0;
-// OBSOLETE       xmitcsum = -1;
-// OBSOLETE       count = 0;
-// OBSOLETE 
-// OBSOLETE       /* now, read until a # or end of buffer is found */
-// OBSOLETE       while (count < BUFMAX)
-// OBSOLETE    {
-// OBSOLETE      ch = getDebugChar ();
-// OBSOLETE           if (ch == '$')
-// OBSOLETE        goto retry;
-// OBSOLETE      if (ch == '#')
-// OBSOLETE        break;
-// OBSOLETE      checksum = checksum + ch;
-// OBSOLETE      buffer[count] = ch;
-// OBSOLETE      count = count + 1;
-// OBSOLETE    }
-// OBSOLETE       buffer[count] = 0;
-// OBSOLETE 
-// OBSOLETE       if (ch == '#')
-// OBSOLETE    {
-// OBSOLETE      ch = getDebugChar ();
-// OBSOLETE      xmitcsum = hex (ch) << 4;
-// OBSOLETE      ch = getDebugChar ();
-// OBSOLETE      xmitcsum += hex (ch);
-// OBSOLETE 
-// OBSOLETE      if (checksum != xmitcsum)
-// OBSOLETE        {
-// OBSOLETE          if (remote_debug)
-// OBSOLETE            {
-// OBSOLETE              unsigned char buf[16];
-// OBSOLETE 
-// OBSOLETE              mem2hex((unsigned char *) &checksum, buf, 4, 0);
-// OBSOLETE              gdb_error("Bad checksum: my count = %s, ", buf);
-// OBSOLETE              mem2hex((unsigned char *) &xmitcsum, buf, 4, 0);
-// OBSOLETE              gdb_error("sent count = %s\n", buf);
-// OBSOLETE              gdb_error(" -- Bad buffer: \"%s\"\n", buffer); 
-// OBSOLETE            }
-// OBSOLETE          putDebugChar ('-');       /* failed checksum */
-// OBSOLETE        }
-// OBSOLETE      else
-// OBSOLETE        {
-// OBSOLETE          putDebugChar ('+');       /* successful transfer */
-// OBSOLETE 
-// OBSOLETE          /* if a sequence char is present, reply the sequence ID */
-// OBSOLETE          if (buffer[2] == ':')
-// OBSOLETE            {
-// OBSOLETE              putDebugChar (buffer[0]);
-// OBSOLETE              putDebugChar (buffer[1]);
-// OBSOLETE 
-// OBSOLETE              return &buffer[3];
-// OBSOLETE            }
-// OBSOLETE 
-// OBSOLETE          return &buffer[0];
-// OBSOLETE        }
-// OBSOLETE    }
-// OBSOLETE     }
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* send the packet in buffer.  */
-// OBSOLETE 
-// OBSOLETE static void 
-// OBSOLETE putpacket (unsigned char *buffer)
-// OBSOLETE {
-// OBSOLETE   unsigned char checksum;
-// OBSOLETE   int  count;
-// OBSOLETE   char ch;
-// OBSOLETE 
-// OBSOLETE   /*  $<packet info>#<checksum>. */
-// OBSOLETE   do {
-// OBSOLETE     putDebugChar('$');
-// OBSOLETE     checksum = 0;
-// OBSOLETE     count    = 0;
-// OBSOLETE 
-// OBSOLETE     while (ch=buffer[count]) {
-// OBSOLETE       putDebugChar(ch);
-// OBSOLETE       checksum += ch;
-// OBSOLETE       count += 1;
-// OBSOLETE     }
-// OBSOLETE     putDebugChar('#');
-// OBSOLETE     putDebugChar(hexchars[checksum >> 4]);
-// OBSOLETE     putDebugChar(hexchars[checksum % 16]);
-// OBSOLETE   } while (getDebugChar() != '+');
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Address of a routine to RTE to if we get a memory fault.  */
-// OBSOLETE 
-// OBSOLETE static void (*volatile mem_fault_routine)() = 0;
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE set_mem_err (void)
-// OBSOLETE {
-// OBSOLETE   mem_err = 1;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Check the address for safe access ranges.  As currently defined,
-// OBSOLETE    this routine will reject the "expansion bus" address range(s).
-// OBSOLETE    To make those ranges useable, someone must implement code to detect
-// OBSOLETE    whether there's anything connected to the expansion bus. */
-// OBSOLETE 
-// OBSOLETE static int
-// OBSOLETE mem_safe (unsigned char *addr)
-// OBSOLETE {
-// OBSOLETE #define BAD_RANGE_ONE_START        ((unsigned char *) 0x600000)
-// OBSOLETE #define BAD_RANGE_ONE_END  ((unsigned char *) 0xa00000)
-// OBSOLETE #define BAD_RANGE_TWO_START        ((unsigned char *) 0xff680000)
-// OBSOLETE #define BAD_RANGE_TWO_END  ((unsigned char *) 0xff800000)
-// OBSOLETE 
-// OBSOLETE   if (addr < BAD_RANGE_ONE_START)  return 1;       /* safe */
-// OBSOLETE   if (addr < BAD_RANGE_ONE_END)            return 0;       /* unsafe */
-// OBSOLETE   if (addr < BAD_RANGE_TWO_START)  return 1;       /* safe */
-// OBSOLETE   if (addr < BAD_RANGE_TWO_END)            return 0;       /* unsafe */
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* These are separate functions so that they are so short and sweet
-// OBSOLETE    that the compiler won't save any registers (if there is a fault
-// OBSOLETE    to mem_fault, they won't get restored, so there better not be any
-// OBSOLETE    saved).  */
-// OBSOLETE static int
-// OBSOLETE get_char (unsigned char *addr)
-// OBSOLETE {
-// OBSOLETE #if 1
-// OBSOLETE   if (mem_fault_routine && !mem_safe(addr))
-// OBSOLETE     {
-// OBSOLETE       mem_fault_routine ();
-// OBSOLETE       return 0;
-// OBSOLETE     }
-// OBSOLETE #endif
-// OBSOLETE   return *addr;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE set_char (unsigned char *addr, unsigned char val)
-// OBSOLETE {
-// OBSOLETE #if 1
-// OBSOLETE   if (mem_fault_routine && !mem_safe (addr))
-// OBSOLETE     {
-// OBSOLETE       mem_fault_routine ();
-// OBSOLETE       return;
-// OBSOLETE     }
-// OBSOLETE #endif
-// OBSOLETE   *addr = val;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Convert the memory pointed to by mem into hex, placing result in buf.
-// OBSOLETE    Return a pointer to the last char put in buf (null).
-// OBSOLETE    If MAY_FAULT is non-zero, then we should set mem_err in response to
-// OBSOLETE    a fault; if zero treat a fault like any other fault in the stub.  */
-// OBSOLETE 
-// OBSOLETE static unsigned char *
-// OBSOLETE mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
-// OBSOLETE {
-// OBSOLETE   int i;
-// OBSOLETE   unsigned char ch;
-// OBSOLETE 
-// OBSOLETE   if (may_fault)
-// OBSOLETE     mem_fault_routine = set_mem_err;
-// OBSOLETE   for (i=0;i<count;i++) {
-// OBSOLETE     ch = get_char (mem++);
-// OBSOLETE     if (may_fault && mem_err)
-// OBSOLETE       return (buf);
-// OBSOLETE     *buf++ = hexchars[ch >> 4];
-// OBSOLETE     *buf++ = hexchars[ch % 16];
-// OBSOLETE   }
-// OBSOLETE   *buf = 0;
-// OBSOLETE   if (may_fault)
-// OBSOLETE     mem_fault_routine = 0;
-// OBSOLETE   return(buf);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Convert the hex array pointed to by buf into binary to be placed in mem.
-// OBSOLETE    Return a pointer to the character AFTER the last byte written. */
-// OBSOLETE 
-// OBSOLETE static unsigned char* 
-// OBSOLETE hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
-// OBSOLETE {
-// OBSOLETE   int i;
-// OBSOLETE   unsigned char ch;
-// OBSOLETE 
-// OBSOLETE   if (may_fault)
-// OBSOLETE     mem_fault_routine = set_mem_err;
-// OBSOLETE   for (i=0;i<count;i++) {
-// OBSOLETE     ch = hex(*buf++) << 4;
-// OBSOLETE     ch = ch + hex(*buf++);
-// OBSOLETE     set_char (mem++, ch);
-// OBSOLETE     if (may_fault && mem_err)
-// OBSOLETE       return (mem);
-// OBSOLETE   }
-// OBSOLETE   if (may_fault)
-// OBSOLETE     mem_fault_routine = 0;
-// OBSOLETE   return(mem);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Convert the binary stream in BUF to memory.
-// OBSOLETE 
-// OBSOLETE    Gdb will escape $, #, and the escape char (0x7d).
-// OBSOLETE    COUNT is the total number of bytes to write into
-// OBSOLETE    memory. */
-// OBSOLETE static unsigned char *
-// OBSOLETE bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
-// OBSOLETE {
-// OBSOLETE   int i;
-// OBSOLETE   unsigned char ch;
-// OBSOLETE 
-// OBSOLETE   if (may_fault)
-// OBSOLETE     mem_fault_routine = set_mem_err;
-// OBSOLETE   for (i = 0; i < count; i++)
-// OBSOLETE     {
-// OBSOLETE       /* Check for any escaped characters. Be paranoid and
-// OBSOLETE          only unescape chars that should be escaped. */
-// OBSOLETE       if (*buf == 0x7d)
-// OBSOLETE         {
-// OBSOLETE           switch (*(buf+1))
-// OBSOLETE             {
-// OBSOLETE             case 0x3:  /* # */
-// OBSOLETE             case 0x4:  /* $ */
-// OBSOLETE             case 0x5d: /* escape char */
-// OBSOLETE               buf++;
-// OBSOLETE               *buf |= 0x20;
-// OBSOLETE               break;
-// OBSOLETE             default:
-// OBSOLETE               /* nothing */
-// OBSOLETE               break;
-// OBSOLETE             }
-// OBSOLETE         }
-// OBSOLETE 
-// OBSOLETE       set_char (mem++, *buf++);
-// OBSOLETE 
-// OBSOLETE       if (may_fault && mem_err)
-// OBSOLETE         return mem;
-// OBSOLETE     }
-// OBSOLETE 
-// OBSOLETE   if (may_fault)
-// OBSOLETE     mem_fault_routine = 0;
-// OBSOLETE   return mem;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* this function takes the m32r exception vector and attempts to
-// OBSOLETE    translate this number into a unix compatible signal value */
-// OBSOLETE 
-// OBSOLETE static int 
-// OBSOLETE computeSignal (int exceptionVector)
-// OBSOLETE {
-// OBSOLETE   int sigval;
-// OBSOLETE   switch (exceptionVector) {
-// OBSOLETE     case 0  : sigval = 23; break; /* I/O trap                    */
-// OBSOLETE     case 1  : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 2  : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 3  : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 4  : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 5  : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 6  : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 7  : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 8  : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 9  : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 10 : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 11 : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 12 : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 13 : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 14 : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 15 : sigval = 5;  break; /* breakpoint                  */
-// OBSOLETE     case 16 : sigval = 10; break; /* BUS ERROR (alignment)       */
-// OBSOLETE     case 17 : sigval = 2;  break; /* INTerrupt                   */
-// OBSOLETE     default : sigval = 7;  break; /* "software generated"        */
-// OBSOLETE   }
-// OBSOLETE   return (sigval);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /**********************************************/
-// OBSOLETE /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
-// OBSOLETE /* RETURN NUMBER OF CHARS PROCESSED           */
-// OBSOLETE /**********************************************/
-// OBSOLETE static int 
-// OBSOLETE hexToInt (unsigned char **ptr, int *intValue)
-// OBSOLETE {
-// OBSOLETE   int numChars = 0;
-// OBSOLETE   int hexValue;
-// OBSOLETE 
-// OBSOLETE   *intValue = 0;
-// OBSOLETE   while (**ptr)
-// OBSOLETE     {
-// OBSOLETE       hexValue = hex(**ptr);
-// OBSOLETE       if (hexValue >=0)
-// OBSOLETE         {
-// OBSOLETE      *intValue = (*intValue <<4) | hexValue;
-// OBSOLETE      numChars ++;
-// OBSOLETE         }
-// OBSOLETE       else
-// OBSOLETE    break;
-// OBSOLETE       (*ptr)++;
-// OBSOLETE     }
-// OBSOLETE   return (numChars);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /*
-// OBSOLETE   Table of branch instructions:
-// OBSOLETE   
-// OBSOLETE   10B6             RTE     return from trap or exception
-// OBSOLETE   1FCr             JMP     jump
-// OBSOLETE   1ECr             JL      jump and link
-// OBSOLETE   7Fxx             BRA     branch
-// OBSOLETE   FFxxxxxx BRA     branch (long)
-// OBSOLETE   B09rxxxx BNEZ    branch not-equal-zero
-// OBSOLETE   Br1rxxxx BNE     branch not-equal
-// OBSOLETE   7Dxx             BNC     branch not-condition
-// OBSOLETE   FDxxxxxx BNC     branch not-condition (long)
-// OBSOLETE   B0Arxxxx BLTZ    branch less-than-zero
-// OBSOLETE   B0Crxxxx BLEZ    branch less-equal-zero
-// OBSOLETE   7Exx             BL      branch and link
-// OBSOLETE   FExxxxxx BL      branch and link (long)
-// OBSOLETE   B0Drxxxx BGTZ    branch greater-than-zero
-// OBSOLETE   B0Brxxxx BGEZ    branch greater-equal-zero
-// OBSOLETE   B08rxxxx BEQZ    branch equal-zero
-// OBSOLETE   Br0rxxxx BEQ     branch equal
-// OBSOLETE   7Cxx             BC      branch condition
-// OBSOLETE   FCxxxxxx BC      branch condition (long)
-// OBSOLETE   */
-// OBSOLETE 
-// OBSOLETE static int 
-// OBSOLETE isShortBranch (unsigned char *instr)
-// OBSOLETE {
-// OBSOLETE   unsigned char instr0 = instr[0] & 0x7F;          /* mask off high bit */
-// OBSOLETE 
-// OBSOLETE   if (instr0 == 0x10 && instr[1] == 0xB6)  /* RTE */
-// OBSOLETE     return 1;              /* return from trap or exception */
-// OBSOLETE 
-// OBSOLETE   if (instr0 == 0x1E || instr0 == 0x1F)            /* JL or JMP */
-// OBSOLETE     if ((instr[1] & 0xF0) == 0xC0)
-// OBSOLETE       return 2;                                    /* jump thru a register */
-// OBSOLETE 
-// OBSOLETE   if (instr0 == 0x7C || instr0 == 0x7D ||  /* BC, BNC, BL, BRA */
-// OBSOLETE       instr0 == 0x7E || instr0 == 0x7F)
-// OBSOLETE     return 3;                                      /* eight bit PC offset */
-// OBSOLETE 
-// OBSOLETE   return 0;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static int
-// OBSOLETE isLongBranch (unsigned char *instr)
-// OBSOLETE {
-// OBSOLETE   if (instr[0] == 0xFC || instr[0] == 0xFD ||      /* BRA, BNC, BL, BC */
-// OBSOLETE       instr[0] == 0xFE || instr[0] == 0xFF)        /* 24 bit relative */
-// OBSOLETE     return 4;
-// OBSOLETE   if ((instr[0] & 0xF0) == 0xB0)           /* 16 bit relative */
-// OBSOLETE     {
-// OBSOLETE       if ((instr[1] & 0xF0) == 0x00 ||             /* BNE, BEQ */
-// OBSOLETE      (instr[1] & 0xF0) == 0x10)
-// OBSOLETE    return 5;
-// OBSOLETE       if (instr[0] == 0xB0)        /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
-// OBSOLETE    if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 || 
-// OBSOLETE        (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
-// OBSOLETE        (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
-// OBSOLETE      return 6;
-// OBSOLETE     }
-// OBSOLETE   return 0;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* if address is NOT on a 4-byte boundary, or high-bit of instr is zero, 
-// OBSOLETE    then it's a 2-byte instruction, else it's a 4-byte instruction.  */
-// OBSOLETE 
-// OBSOLETE #define INSTRUCTION_SIZE(addr) \
-// OBSOLETE     ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)
-// OBSOLETE 
-// OBSOLETE static int
-// OBSOLETE isBranch (unsigned char *instr)
-// OBSOLETE {
-// OBSOLETE   if (INSTRUCTION_SIZE(instr) == 2)
-// OBSOLETE     return isShortBranch(instr);
-// OBSOLETE   else
-// OBSOLETE     return isLongBranch(instr);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static int
-// OBSOLETE willBranch (unsigned char *instr, int branchCode)
-// OBSOLETE {
-// OBSOLETE   switch (branchCode) 
-// OBSOLETE     {
-// OBSOLETE     case 0:        return 0;       /* not a branch */
-// OBSOLETE     case 1:        return 1;       /* RTE */
-// OBSOLETE     case 2:        return 1;       /* JL or JMP    */
-// OBSOLETE     case 3:                        /* BC, BNC, BL, BRA (short) */
-// OBSOLETE     case 4:                        /* BC, BNC, BL, BRA (long) */
-// OBSOLETE       switch (instr[0] & 0x0F) 
-// OBSOLETE    {
-// OBSOLETE    case 0xC:               /* Branch if Condition Register */
-// OBSOLETE      return (registers[CBR] != 0);
-// OBSOLETE    case 0xD:               /* Branch if NOT Condition Register */
-// OBSOLETE      return (registers[CBR] == 0);
-// OBSOLETE    case 0xE:               /* Branch and Link */
-// OBSOLETE    case 0xF:               /* Branch (unconditional) */
-// OBSOLETE      return 1;
-// OBSOLETE    default:                /* oops? */
-// OBSOLETE      return 0;
-// OBSOLETE    }
-// OBSOLETE     case 5:                        /* BNE, BEQ */
-// OBSOLETE       switch (instr[1] & 0xF0) 
-// OBSOLETE    {
-// OBSOLETE    case 0x00:              /* Branch if r1 equal to r2 */
-// OBSOLETE      return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
-// OBSOLETE    case 0x10:              /* Branch if r1 NOT equal to r2 */
-// OBSOLETE      return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
-// OBSOLETE    default:                /* oops? */
-// OBSOLETE      return 0;
-// OBSOLETE    }
-// OBSOLETE     case 6:                        /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
-// OBSOLETE       switch (instr[1] & 0xF0) 
-// OBSOLETE    {
-// OBSOLETE    case 0x80:              /* Branch if reg equal to zero */
-// OBSOLETE      return (registers[instr[1] & 0x0F] == 0);
-// OBSOLETE    case 0x90:              /* Branch if reg NOT equal to zero */
-// OBSOLETE      return (registers[instr[1] & 0x0F] != 0);
-// OBSOLETE    case 0xA0:              /* Branch if reg less than zero */
-// OBSOLETE      return (registers[instr[1] & 0x0F] < 0);
-// OBSOLETE    case 0xB0:              /* Branch if reg greater or equal to zero */
-// OBSOLETE      return (registers[instr[1] & 0x0F] >= 0);
-// OBSOLETE    case 0xC0:              /* Branch if reg less than or equal to zero */
-// OBSOLETE      return (registers[instr[1] & 0x0F] <= 0);
-// OBSOLETE    case 0xD0:              /* Branch if reg greater than zero */
-// OBSOLETE      return (registers[instr[1] & 0x0F] > 0);
-// OBSOLETE    default:                /* oops? */
-// OBSOLETE      return 0;
-// OBSOLETE    }
-// OBSOLETE     default:                       /* oops? */
-// OBSOLETE       return 0;
-// OBSOLETE     }
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static int 
-// OBSOLETE branchDestination (unsigned char *instr, int branchCode)
-// OBSOLETE { 
-// OBSOLETE   switch (branchCode) { 
-// OBSOLETE   default: 
-// OBSOLETE   case 0:                                  /* not a branch */ 
-// OBSOLETE     return 0;
-// OBSOLETE   case 1:                                  /* RTE */ 
-// OBSOLETE     return registers[BPC] & ~3;            /* pop BPC into PC */
-// OBSOLETE   case 2:                                  /* JL or JMP */ 
-// OBSOLETE     return registers[instr[1] & 0x0F] & ~3;        /* jump thru a register */ 
-// OBSOLETE   case 3:          /* BC, BNC, BL, BRA (short, 8-bit relative offset) */ 
-// OBSOLETE     return (((int) instr) & ~3) + ((char) instr[1] << 2);
-// OBSOLETE   case 4:          /* BC, BNC, BL, BRA (long, 24-bit relative offset) */ 
-// OBSOLETE     return ((int) instr + 
-// OBSOLETE        ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << 2)); 
-// OBSOLETE   case 5:          /* BNE, BEQ (16-bit relative offset) */ 
-// OBSOLETE   case 6:          /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */ 
-// OBSOLETE     return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2)); 
-// OBSOLETE   }
-// OBSOLETE 
-// OBSOLETE   /* An explanatory note: in the last three return expressions, I have
-// OBSOLETE      cast the most-significant byte of the return offset to char.
-// OBSOLETE      What this accomplishes is sign extension.  If the other
-// OBSOLETE      less-significant bytes were signed as well, they would get sign
-// OBSOLETE      extended too and, if negative, their leading bits would clobber
-// OBSOLETE      the bits of the more-significant bytes ahead of them.  There are
-// OBSOLETE      other ways I could have done this, but sign extension from
-// OBSOLETE      odd-sized integers is always a pain. */
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE branchSideEffects (unsigned char *instr, int branchCode)
-// OBSOLETE {
-// OBSOLETE   switch (branchCode)
-// OBSOLETE     {
-// OBSOLETE     case 1:                        /* RTE */
-// OBSOLETE       return;                      /* I <THINK> this is already handled... */
-// OBSOLETE     case 2:                        /* JL (or JMP) */
-// OBSOLETE     case 3:                        /* BL (or BC, BNC, BRA) */
-// OBSOLETE     case 4:
-// OBSOLETE       if ((instr[0] & 0x0F) == 0x0E)               /* branch/jump and link */
-// OBSOLETE    registers[R14] = (registers[PC] & ~3) + 4;
-// OBSOLETE       return;
-// OBSOLETE     default:                       /* any other branch has no side effects */
-// OBSOLETE       return;
-// OBSOLETE     }
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static struct STEPPING_CONTEXT {
-// OBSOLETE   int stepping;                    /* true when we've started a single-step */
-// OBSOLETE   unsigned long  target_addr;      /* the instr we're trying to execute */
-// OBSOLETE   unsigned long  target_size;      /* the size of the target instr */
-// OBSOLETE   unsigned long  noop_addr;        /* where we've inserted a no-op, if any */
-// OBSOLETE   unsigned long  trap1_addr;       /* the trap following the target instr */
-// OBSOLETE   unsigned long  trap2_addr;       /* the trap at a branch destination, if any */
-// OBSOLETE   unsigned short noop_save;        /* instruction overwritten by our no-op */
-// OBSOLETE   unsigned short trap1_save;       /* instruction overwritten by trap1 */
-// OBSOLETE   unsigned short trap2_save;       /* instruction overwritten by trap2 */
-// OBSOLETE   unsigned short continue_p;       /* true if NOT returning to gdb after step */
-// OBSOLETE } stepping;
-// OBSOLETE 
-// OBSOLETE /* Function: prepare_to_step
-// OBSOLETE    Called from handle_exception to prepare the user program to single-step.
-// OBSOLETE    Places a trap instruction after the target instruction, with special 
-// OBSOLETE    extra handling for branch instructions and for instructions in the 
-// OBSOLETE    second half-word of a word.  
-// OBSOLETE 
-// OBSOLETE    Returns: True  if we should actually execute the instruction; 
-// OBSOLETE        False if we are going to emulate executing the instruction,
-// OBSOLETE        in which case we simply report to GDB that the instruction 
-// OBSOLETE        has already been executed.  */
-// OBSOLETE 
-// OBSOLETE #define TRAP1  0x10f1;     /* trap #1 instruction */
-// OBSOLETE #define NOOP   0x7000;  /* noop    instruction */
-// OBSOLETE 
-// OBSOLETE static unsigned short trap1 = TRAP1;
-// OBSOLETE static unsigned short noop  = NOOP;
-// OBSOLETE 
-// OBSOLETE static int
-// OBSOLETE prepare_to_step(continue_p)
-// OBSOLETE      int continue_p;       /* if this isn't REALLY a single-step (see below) */
-// OBSOLETE {
-// OBSOLETE   unsigned long pc = registers[PC];
-// OBSOLETE   int branchCode   = isBranch((unsigned char *) pc);
-// OBSOLETE   unsigned char *p;
-// OBSOLETE 
-// OBSOLETE   /* zero out the stepping context 
-// OBSOLETE      (paranoia -- it should already be zeroed) */
-// OBSOLETE   for (p = (unsigned char *) &stepping;
-// OBSOLETE        p < ((unsigned char *) &stepping) + sizeof(stepping);
-// OBSOLETE        p++)
-// OBSOLETE     *p = 0;
-// OBSOLETE 
-// OBSOLETE   if (branchCode != 0)                     /* next instruction is a branch */
-// OBSOLETE     {
-// OBSOLETE       branchSideEffects((unsigned char *) pc, branchCode);
-// OBSOLETE       if (willBranch((unsigned char *)pc, branchCode))
-// OBSOLETE    registers[PC] = branchDestination((unsigned char *) pc, branchCode);
-// OBSOLETE       else
-// OBSOLETE    registers[PC] = pc + INSTRUCTION_SIZE(pc);
-// OBSOLETE       return 0;                    /* branch "executed" -- just notify GDB */
-// OBSOLETE     }
-// OBSOLETE   else if (((int) pc & 2) != 0)            /* "second-slot" instruction */
-// OBSOLETE     {
-// OBSOLETE       /* insert no-op before pc */
-// OBSOLETE       stepping.noop_addr  =  pc - 2;
-// OBSOLETE       stepping.noop_save  = *(unsigned short *) stepping.noop_addr;
-// OBSOLETE       *(unsigned short *) stepping.noop_addr  = noop;
-// OBSOLETE       /* insert trap  after  pc */
-// OBSOLETE       stepping.trap1_addr =  pc + 2;
-// OBSOLETE       stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
-// OBSOLETE       *(unsigned short *) stepping.trap1_addr = trap1;
-// OBSOLETE     }
-// OBSOLETE   else                                     /* "first-slot" instruction */
-// OBSOLETE     {
-// OBSOLETE       /* insert trap  after  pc */
-// OBSOLETE       stepping.trap1_addr = pc + INSTRUCTION_SIZE(pc);     
-// OBSOLETE       stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
-// OBSOLETE       *(unsigned short *) stepping.trap1_addr = trap1;
-// OBSOLETE     }
-// OBSOLETE   /* "continue_p" means that we are actually doing a continue, and not 
-// OBSOLETE      being requested to single-step by GDB.  Sometimes we have to do
-// OBSOLETE      one single-step before continuing, because the PC is on a half-word
-// OBSOLETE      boundary.  There's no way to simply resume at such an address.  */
-// OBSOLETE   stepping.continue_p = continue_p;
-// OBSOLETE   stepping.stepping = 1;           /* starting a single-step */
-// OBSOLETE   return 1;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: finish_from_step
-// OBSOLETE    Called from handle_exception to finish up when the user program 
-// OBSOLETE    returns from a single-step.  Replaces the instructions that had
-// OBSOLETE    been overwritten by traps or no-ops, 
-// OBSOLETE 
-// OBSOLETE    Returns: True  if we should notify GDB that the target stopped.
-// OBSOLETE        False if we only single-stepped because we had to before we
-// OBSOLETE        could continue (ie. we were trying to continue at a 
-// OBSOLETE        half-word boundary).  In that case don't notify GDB:
-// OBSOLETE        just "continue continuing".  */
-// OBSOLETE 
-// OBSOLETE static int
-// OBSOLETE finish_from_step (void)
-// OBSOLETE {
-// OBSOLETE   if (stepping.stepping)   /* anything to do? */
-// OBSOLETE     {
-// OBSOLETE       int continue_p = stepping.continue_p;
-// OBSOLETE       unsigned char *p;
-// OBSOLETE 
-// OBSOLETE       if (stepping.noop_addr)      /* replace instr "under" our no-op */
-// OBSOLETE    *(unsigned short *) stepping.noop_addr  = stepping.noop_save;
-// OBSOLETE       if (stepping.trap1_addr)     /* replace instr "under" our trap  */
-// OBSOLETE    *(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
-// OBSOLETE       if (stepping.trap2_addr)  /* ditto our other trap, if any    */
-// OBSOLETE    *(unsigned short *) stepping.trap2_addr = stepping.trap2_save;
-// OBSOLETE 
-// OBSOLETE       for (p = (unsigned char *) &stepping;        /* zero out the stepping context */
-// OBSOLETE       p < ((unsigned char *) &stepping) + sizeof(stepping);
-// OBSOLETE       p++)
-// OBSOLETE    *p = 0;
-// OBSOLETE 
-// OBSOLETE       return !(continue_p);
-// OBSOLETE     }
-// OBSOLETE   else     /* we didn't single-step, therefore this must be a legitimate stop */
-// OBSOLETE     return 1;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE struct PSWreg {            /* separate out the bit flags in the PSW register */
-// OBSOLETE   int pad1 : 16;
-// OBSOLETE   int bsm  : 1;
-// OBSOLETE   int bie  : 1;
-// OBSOLETE   int pad2 : 5;
-// OBSOLETE   int bc   : 1;
-// OBSOLETE   int sm   : 1;
-// OBSOLETE   int ie   : 1;
-// OBSOLETE   int pad3 : 5;
-// OBSOLETE   int c    : 1;
-// OBSOLETE } *psw;
-// OBSOLETE 
-// OBSOLETE /* Upon entry the value for LR to save has been pushed.
-// OBSOLETE    We unpush that so that the value for the stack pointer saved is correct.
-// OBSOLETE    Upon entry, all other registers are assumed to have not been modified
-// OBSOLETE    since the interrupt/trap occured.  */
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE stash_registers:
-// OBSOLETE    push r0
-// OBSOLETE    push r1
-// OBSOLETE    seth r1, #shigh(registers)
-// OBSOLETE    add3 r1, r1, #low(registers)
-// OBSOLETE    pop r0          ; r1
-// OBSOLETE    st r0, @(4,r1)
-// OBSOLETE    pop r0          ; r0
-// OBSOLETE    st r0, @r1
-// OBSOLETE    addi r1, #4     ; only add 4 as subsequent saves are `pre inc'
-// OBSOLETE    st r2, @+r1
-// OBSOLETE    st r3, @+r1
-// OBSOLETE    st r4, @+r1
-// OBSOLETE    st r5, @+r1
-// OBSOLETE    st r6, @+r1
-// OBSOLETE    st r7, @+r1
-// OBSOLETE    st r8, @+r1
-// OBSOLETE    st r9, @+r1
-// OBSOLETE    st r10, @+r1
-// OBSOLETE    st r11, @+r1
-// OBSOLETE    st r12, @+r1
-// OBSOLETE    st r13, @+r1    ; fp
-// OBSOLETE    pop r0          ; lr (r14)
-// OBSOLETE    st r0, @+r1
-// OBSOLETE    st sp, @+r1     ; sp contains right value at this point
-// OBSOLETE    mvfc r0, cr0
-// OBSOLETE    st r0, @+r1     ; cr0 == PSW
-// OBSOLETE    mvfc r0, cr1
-// OBSOLETE    st r0, @+r1     ; cr1 == CBR
-// OBSOLETE    mvfc r0, cr2
-// OBSOLETE    st r0, @+r1     ; cr2 == SPI
-// OBSOLETE    mvfc r0, cr3
-// OBSOLETE    st r0, @+r1     ; cr3 == SPU
-// OBSOLETE    mvfc r0, cr6
-// OBSOLETE    st r0, @+r1     ; cr6 == BPC
-// OBSOLETE    st r0, @+r1     ; PC  == BPC
-// OBSOLETE    mvfaclo r0
-// OBSOLETE    st r0, @+r1     ; ACCL
-// OBSOLETE    mvfachi r0
-// OBSOLETE    st r0, @+r1     ; ACCH
-// OBSOLETE    jmp lr");
-// OBSOLETE 
-// OBSOLETE /* C routine to clean up what stash_registers did.
-// OBSOLETE    It is called after calling stash_registers.
-// OBSOLETE    This is separate from stash_registers as we want to do this in C
-// OBSOLETE    but doing stash_registers in C isn't straightforward.  */
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE cleanup_stash (void)
-// OBSOLETE {
-// OBSOLETE   psw = (struct PSWreg *) &registers[PSW]; /* fields of PSW register */
-// OBSOLETE   psw->sm = psw->bsm;              /* fix up pre-trap values of psw fields */
-// OBSOLETE   psw->ie = psw->bie;
-// OBSOLETE   psw->c  = psw->bc;
-// OBSOLETE   registers[CBR] = psw->bc;                /* fix up pre-trap "C" register */
-// OBSOLETE 
-// OBSOLETE #if 0 /* FIXME: Was in previous version.  Necessary?
-// OBSOLETE     (Remember that we use the "rte" insn to return from the
-// OBSOLETE     trap/interrupt so the values of bsm, bie, bc are important.  */
-// OBSOLETE   psw->bsm = psw->bie = psw->bc = 0;       /* zero post-trap values */
-// OBSOLETE #endif
-// OBSOLETE 
-// OBSOLETE   /* FIXME: Copied from previous version.  This can probably be deleted
-// OBSOLETE      since methinks stash_registers has already done this.  */
-// OBSOLETE   registers[PC] = registers[BPC];  /* pre-trap PC */
-// OBSOLETE 
-// OBSOLETE   /* FIXME: Copied from previous version.  Necessary?  */
-// OBSOLETE   if (psw->sm)                     /* copy R15 into (psw->sm ? SPU : SPI) */
-// OBSOLETE     registers[SPU] = registers[R15];
-// OBSOLETE   else
-// OBSOLETE     registers[SPI] = registers[R15];
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE restore_and_return:
-// OBSOLETE    seth r0, #shigh(registers+8)
-// OBSOLETE    add3 r0, r0, #low(registers+8)
-// OBSOLETE    ld r2, @r0+     ; restore r2
-// OBSOLETE    ld r3, @r0+     ; restore r3
-// OBSOLETE    ld r4, @r0+     ; restore r4
-// OBSOLETE    ld r5, @r0+     ; restore r5
-// OBSOLETE    ld r6, @r0+     ; restore r6
-// OBSOLETE    ld r7, @r0+     ; restore r7
-// OBSOLETE    ld r8, @r0+     ; restore r8
-// OBSOLETE    ld r9, @r0+     ; restore r9
-// OBSOLETE    ld r10, @r0+    ; restore r10
-// OBSOLETE    ld r11, @r0+    ; restore r11
-// OBSOLETE    ld r12, @r0+    ; restore r12
-// OBSOLETE    ld r13, @r0+    ; restore r13
-// OBSOLETE    ld r14, @r0+    ; restore r14
-// OBSOLETE    ld r15, @r0+    ; restore r15
-// OBSOLETE    addi r0, #4     ; don't restore PSW (rte will do it)
-// OBSOLETE    ld r1, @r0+     ; restore cr1 == CBR (no-op, because it's read only)
-// OBSOLETE    mvtc r1, cr1
-// OBSOLETE    ld r1, @r0+     ; restore cr2 == SPI
-// OBSOLETE    mvtc r1, cr2
-// OBSOLETE    ld r1, @r0+     ; restore cr3 == SPU
-// OBSOLETE    mvtc r1, cr3
-// OBSOLETE    addi r0, #4     ; skip BPC
-// OBSOLETE    ld r1, @r0+     ; restore cr6 (BPC) == PC
-// OBSOLETE    mvtc r1, cr6
-// OBSOLETE    ld r1, @r0+     ; restore ACCL
-// OBSOLETE    mvtaclo r1
-// OBSOLETE    ld r1, @r0+     ; restore ACCH
-// OBSOLETE    mvtachi r1
-// OBSOLETE    seth r0, #shigh(registers)
-// OBSOLETE    add3 r0, r0, #low(registers)
-// OBSOLETE    ld r1, @(4,r0)  ; restore r1
-// OBSOLETE    ld r0, @r0      ; restore r0
-// OBSOLETE    rte");
-// OBSOLETE 
-// OBSOLETE /* General trap handler, called after the registers have been stashed.
-// OBSOLETE    NUM is the trap/exception number.  */
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE process_exception (int num)
-// OBSOLETE {
-// OBSOLETE   cleanup_stash ();
-// OBSOLETE   asm volatile ("
-// OBSOLETE    seth r1, #shigh(stackPtr)
-// OBSOLETE    add3 r1, r1, #low(stackPtr)
-// OBSOLETE    ld r15, @r1             ; setup local stack (protect user stack)
-// OBSOLETE    mv r0, %0
-// OBSOLETE    bl handle_exception
-// OBSOLETE    bl restore_and_return"
-// OBSOLETE            : : "r" (num) : "r0", "r1");
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE void _catchException0 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException0:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #0
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException1 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException1:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    bl cleanup_stash
-// OBSOLETE    seth r1, #shigh(stackPtr)
-// OBSOLETE    add3 r1, r1, #low(stackPtr)
-// OBSOLETE    ld r15, @r1             ; setup local stack (protect user stack)
-// OBSOLETE    seth r1, #shigh(registers + 21*4) ; PC
-// OBSOLETE    add3 r1, r1, #low(registers + 21*4)
-// OBSOLETE    ld r0, @r1
-// OBSOLETE    addi r0, #-4            ; back up PC for breakpoint trap.
-// OBSOLETE    st r0, @r1              ; FIXME: what about bp in right slot?
-// OBSOLETE    ldi r0, #1
-// OBSOLETE    bl handle_exception
-// OBSOLETE    bl restore_and_return");
-// OBSOLETE 
-// OBSOLETE void _catchException2 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException2:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #2
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException3 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException3:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #3
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException4 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException4:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #4
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException5 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException5:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #5
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException6 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException6:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #6
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException7 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException7:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #7
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException8 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException8:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #8
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException9 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException9:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #9
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException10 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException10:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #10
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException11 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException11:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #11
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException12 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException12:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #12
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException13 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException13:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #13
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException14 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException14:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #14
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException15 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException15:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #15
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException16 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException16:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #16
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE void _catchException17 ();
-// OBSOLETE 
-// OBSOLETE asm ("
-// OBSOLETE _catchException17:
-// OBSOLETE    push lr
-// OBSOLETE    bl stash_registers
-// OBSOLETE    ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE    ldi r0, #17
-// OBSOLETE    bl process_exception");
-// OBSOLETE 
-// OBSOLETE 
-// OBSOLETE /* this function is used to set up exception handlers for tracing and
-// OBSOLETE    breakpoints */
-// OBSOLETE void 
-// OBSOLETE set_debug_traps (void)
-// OBSOLETE {
-// OBSOLETE   /*  extern void remcomHandler(); */
-// OBSOLETE   int i;
-// OBSOLETE 
-// OBSOLETE   for (i = 0; i < 18; i++)         /* keep a copy of old vectors */
-// OBSOLETE     if (save_vectors[i] == 0)              /* only copy them the first time */
-// OBSOLETE       save_vectors[i] = getExceptionHandler (i);
-// OBSOLETE 
-// OBSOLETE   stackPtr  = &remcomStack[STACKSIZE/sizeof(int) - 1];
-// OBSOLETE 
-// OBSOLETE   exceptionHandler (0, _catchException0);
-// OBSOLETE   exceptionHandler (1, _catchException1);
-// OBSOLETE   exceptionHandler (2, _catchException2);
-// OBSOLETE   exceptionHandler (3, _catchException3);
-// OBSOLETE   exceptionHandler (4, _catchException4);
-// OBSOLETE   exceptionHandler (5, _catchException5);
-// OBSOLETE   exceptionHandler (6, _catchException6);
-// OBSOLETE   exceptionHandler (7, _catchException7);
-// OBSOLETE   exceptionHandler (8, _catchException8);
-// OBSOLETE   exceptionHandler (9, _catchException9);
-// OBSOLETE   exceptionHandler (10, _catchException10);
-// OBSOLETE   exceptionHandler (11, _catchException11);
-// OBSOLETE   exceptionHandler (12, _catchException12);
-// OBSOLETE   exceptionHandler (13, _catchException13);
-// OBSOLETE   exceptionHandler (14, _catchException14);
-// OBSOLETE   exceptionHandler (15, _catchException15);
-// OBSOLETE   exceptionHandler (16, _catchException16);
-// OBSOLETE   /*  exceptionHandler (17, _catchException17); */
-// OBSOLETE 
-// OBSOLETE   initialized = 1;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* This function will generate a breakpoint exception.  It is used at the
-// OBSOLETE    beginning of a program to sync up with a debugger and can be used
-// OBSOLETE    otherwise as a quick means to stop program execution and "break" into
-// OBSOLETE    the debugger. */
-// OBSOLETE 
-// OBSOLETE #define BREAKPOINT() asm volatile ("       trap #2");
-// OBSOLETE 
-// OBSOLETE void 
-// OBSOLETE breakpoint (void)
-// OBSOLETE {
-// OBSOLETE   if (initialized)
-// OBSOLETE     BREAKPOINT();
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* STDOUT section:
-// OBSOLETE    Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
-// OBSOLETE    Functions: gdb_putchar(char ch)
-// OBSOLETE               gdb_puts(char *str)
-// OBSOLETE               gdb_write(char *str, int len)
-// OBSOLETE               gdb_error(char *format, char *parm)
-// OBSOLETE          */
-// OBSOLETE  
-// OBSOLETE /* Function: gdb_putchar(int)
-// OBSOLETE    Make gdb write a char to stdout.
-// OBSOLETE    Returns: the char */
-// OBSOLETE  
-// OBSOLETE static int
-// OBSOLETE gdb_putchar (int ch)
-// OBSOLETE {
-// OBSOLETE   char buf[4];
-// OBSOLETE  
-// OBSOLETE   buf[0] = 'O';
-// OBSOLETE   buf[1] = hexchars[ch >> 4];
-// OBSOLETE   buf[2] = hexchars[ch & 0x0F];
-// OBSOLETE   buf[3] = 0;
-// OBSOLETE   putpacket(buf);
-// OBSOLETE   return ch;
-// OBSOLETE }
-// OBSOLETE  
-// OBSOLETE /* Function: gdb_write(char *, int)
-// OBSOLETE    Make gdb write n bytes to stdout (not assumed to be null-terminated).
-// OBSOLETE    Returns: number of bytes written */
-// OBSOLETE  
-// OBSOLETE static int
-// OBSOLETE gdb_write (char *data, int len)
-// OBSOLETE {
-// OBSOLETE   char *buf, *cpy;
-// OBSOLETE   int i;
-// OBSOLETE  
-// OBSOLETE   buf = remcomOutBuffer;
-// OBSOLETE   buf[0] = 'O';
-// OBSOLETE   i = 0;
-// OBSOLETE   while (i < len)
-// OBSOLETE     {
-// OBSOLETE       for (cpy = buf+1; 
-// OBSOLETE       i < len && cpy < buf + sizeof(remcomOutBuffer) - 3; 
-// OBSOLETE       i++)
-// OBSOLETE    {
-// OBSOLETE      *cpy++ = hexchars[data[i] >> 4];
-// OBSOLETE      *cpy++ = hexchars[data[i] & 0x0F];
-// OBSOLETE    }
-// OBSOLETE       *cpy = 0;
-// OBSOLETE       putpacket(buf);
-// OBSOLETE     }
-// OBSOLETE   return len;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: gdb_puts(char *)
-// OBSOLETE    Make gdb write a null-terminated string to stdout.
-// OBSOLETE    Returns: the length of the string */
-// OBSOLETE  
-// OBSOLETE static int
-// OBSOLETE gdb_puts (char *str)
-// OBSOLETE {
-// OBSOLETE   return gdb_write(str, strlen(str));
-// OBSOLETE }
-// OBSOLETE  
-// OBSOLETE /* Function: gdb_error(char *, char *)
-// OBSOLETE    Send an error message to gdb's stdout.
-// OBSOLETE    First string may have 1 (one) optional "%s" in it, which
-// OBSOLETE    will cause the optional second string to be inserted.  */
-// OBSOLETE  
-// OBSOLETE static void
-// OBSOLETE gdb_error (char *format, char *parm)
-// OBSOLETE {
-// OBSOLETE   char buf[400], *cpy;
-// OBSOLETE   int len;
-// OBSOLETE  
-// OBSOLETE   if (remote_debug)
-// OBSOLETE     {
-// OBSOLETE       if (format && *format)
-// OBSOLETE    len = strlen(format);
-// OBSOLETE       else
-// OBSOLETE    return;             /* empty input */
-// OBSOLETE 
-// OBSOLETE       if (parm && *parm)
-// OBSOLETE    len += strlen(parm);
-// OBSOLETE  
-// OBSOLETE       for (cpy = buf; *format; )
-// OBSOLETE    {
-// OBSOLETE      if (format[0] == '%' && format[1] == 's') /* include second string */
-// OBSOLETE        {
-// OBSOLETE          format += 2;          /* advance two chars instead of just one */
-// OBSOLETE          while (parm && *parm)
-// OBSOLETE            *cpy++ = *parm++;
-// OBSOLETE        }
-// OBSOLETE      else
-// OBSOLETE        *cpy++ = *format++;
-// OBSOLETE    }
-// OBSOLETE       *cpy = '\0';
-// OBSOLETE       gdb_puts(buf);
-// OBSOLETE     }
-// OBSOLETE }
-// OBSOLETE  
-// OBSOLETE static unsigned char *
-// OBSOLETE strcpy (unsigned char *dest, const unsigned char *src)
-// OBSOLETE {
-// OBSOLETE   unsigned char *ret = dest;
-// OBSOLETE 
-// OBSOLETE   if (dest && src)
-// OBSOLETE     {
-// OBSOLETE       while (*src)
-// OBSOLETE    *dest++ = *src++;
-// OBSOLETE       *dest = 0;
-// OBSOLETE     }
-// OBSOLETE   return ret;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static int
-// OBSOLETE strlen (const unsigned char *src)
-// OBSOLETE {
-// OBSOLETE   int ret;
-// OBSOLETE 
-// OBSOLETE   for (ret = 0; *src; src++)
-// OBSOLETE     ret++;
-// OBSOLETE 
-// OBSOLETE   return ret;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE #if 0
-// OBSOLETE void exit (code)
-// OBSOLETE      int code;
-// OBSOLETE {
-// OBSOLETE   _exit (code);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE int atexit (void *p)
-// OBSOLETE {
-// OBSOLETE   return 0;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE void abort (void)
-// OBSOLETE {
-// OBSOLETE   _exit (1);
-// OBSOLETE }
-// OBSOLETE #endif
+/****************************************************************************
+
+               THIS SOFTWARE IS NOT COPYRIGHTED
+
+   HP offers the following for use in the public domain.  HP makes no
+   warranty with regard to the software or it's performance and the
+   user accepts the software "AS IS" with all faults.
+
+   HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
+   TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+
+****************************************************************************/
+
+/****************************************************************************
+ *  Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
+ *
+ *  Module name: remcom.c $
+ *  Revision: 1.34 $
+ *  Date: 91/03/09 12:29:49 $
+ *  Contributor:     Lake Stevens Instrument Division$
+ *
+ *  Description:     low level support for gdb debugger. $
+ *
+ *  Considerations:  only works on target hardware $
+ *
+ *  Written by:      Glenn Engel $
+ *  ModuleState:     Experimental $
+ *
+ *  NOTES:           See Below $
+ *
+ *  Modified for M32R by Michael Snyder, Cygnus Support.
+ *
+ *  To enable debugger support, two things need to happen.  One, a
+ *  call to set_debug_traps() is necessary in order to allow any breakpoints
+ *  or error conditions to be properly intercepted and reported to gdb.
+ *  Two, a breakpoint needs to be generated to begin communication.  This
+ *  is most easily accomplished by a call to breakpoint().  Breakpoint()
+ *  simulates a breakpoint by executing a trap #1.
+ *
+ *  The external function exceptionHandler() is
+ *  used to attach a specific handler to a specific M32R vector number.
+ *  It should use the same privilege level it runs at.  It should
+ *  install it as an interrupt gate so that interrupts are masked
+ *  while the handler runs.
+ *
+ *  Because gdb will sometimes write to the stack area to execute function
+ *  calls, this program cannot rely on using the supervisor stack so it
+ *  uses it's own stack area reserved in the int array remcomStack.
+ *
+ *************
+ *
+ *    The following gdb commands are supported:
+ *
+ * command          function                               Return value
+ *
+ *    g             return the value of the CPU registers  hex data or ENN
+ *    G             set the value of the CPU registers     OK or ENN
+ *
+ *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
+ *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
+ *    XAA..AA,LLLL: Write LLLL binary bytes at address     OK or ENN
+ *                  AA..AA
+ *
+ *    c             Resume at current address              SNN   ( signal NN)
+ *    cAA..AA       Continue at address AA..AA             SNN
+ *
+ *    s             Step one instruction                   SNN
+ *    sAA..AA       Step one instruction from AA..AA       SNN
+ *
+ *    k             kill
+ *
+ *    ?             What was the last sigval ?             SNN   (signal NN)
+ *
+ * All commands and responses are sent with a packet which includes a
+ * checksum.  A packet consists of
+ *
+ * $<packet info>#<checksum>.
+ *
+ * where
+ * <packet info> :: <characters representing the command or response>
+ * <checksum>    :: <two hex digits computed as modulo 256 sum of <packetinfo>>
+ *
+ * When a packet is received, it is first acknowledged with either '+' or '-'.
+ * '+' indicates a successful transfer.  '-' indicates a failed transfer.
+ *
+ * Example:
+ *
+ * Host:                  Reply:
+ * $m0,10#2a               +$00010203040506070809101112131415#42
+ *
+ ****************************************************************************/
+
+
+/************************************************************************
+ *
+ * external low-level support routines
+ */
+extern void putDebugChar ();   /* write a single character      */
+extern int getDebugChar ();    /* read and return a single char */
+extern void exceptionHandler ();       /* assign an exception handler   */
+
+/*****************************************************************************
+ * BUFMAX defines the maximum number of characters in inbound/outbound buffers
+ * at least NUMREGBYTES*2 are needed for register packets 
+ */
+#define BUFMAX 400
+
+static char initialized;       /* boolean flag. != 0 means we've been initialized */
+
+int remote_debug;
+/*  debug >  0 prints ill-formed commands in valid packets & checksum errors */
+
+static const unsigned char hexchars[] = "0123456789abcdef";
+
+#define NUMREGS 24
+
+/* Number of bytes of registers.  */
+#define NUMREGBYTES (NUMREGS * 4)
+enum regnames
+{ R0, R1, R2, R3, R4, R5, R6, R7,
+  R8, R9, R10, R11, R12, R13, R14, R15,
+  PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH
+};
+
+enum SYS_calls
+{
+  SYS_null,
+  SYS_exit,
+  SYS_open,
+  SYS_close,
+  SYS_read,
+  SYS_write,
+  SYS_lseek,
+  SYS_unlink,
+  SYS_getpid,
+  SYS_kill,
+  SYS_fstat,
+  SYS_sbrk,
+  SYS_fork,
+  SYS_execve,
+  SYS_wait4,
+  SYS_link,
+  SYS_chdir,
+  SYS_stat,
+  SYS_utime,
+  SYS_chown,
+  SYS_chmod,
+  SYS_time,
+  SYS_pipe
+};
+
+static int registers[NUMREGS];
+
+#define STACKSIZE 8096
+static unsigned char remcomInBuffer[BUFMAX];
+static unsigned char remcomOutBuffer[BUFMAX];
+static int remcomStack[STACKSIZE / sizeof (int)];
+static int *stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1];
+
+static unsigned int save_vectors[18];  /* previous exception vectors */
+
+/* Indicate to caller of mem2hex or hex2mem that there has been an error. */
+static volatile int mem_err = 0;
+
+/* Store the vector number here (since GDB only gets the signal
+   number through the usual means, and that's not very specific).  */
+int gdb_m32r_vector = -1;
+
+#if 0
+#include "syscall.h"           /* for SYS_exit, SYS_write etc. */
+#endif
+
+/* Global entry points:
+ */
+
+extern void handle_exception (int);
+extern void set_debug_traps (void);
+extern void breakpoint (void);
+
+/* Local functions:
+ */
+
+static int computeSignal (int);
+static void putpacket (unsigned char *);
+static unsigned char *getpacket (void);
+
+static unsigned char *mem2hex (unsigned char *, unsigned char *, int, int);
+static unsigned char *hex2mem (unsigned char *, unsigned char *, int, int);
+static int hexToInt (unsigned char **, int *);
+static unsigned char *bin2mem (unsigned char *, unsigned char *, int, int);
+static void stash_registers (void);
+static void restore_registers (void);
+static int prepare_to_step (int);
+static int finish_from_step (void);
+static unsigned long crc32 (unsigned char *, int, unsigned long);
+
+static void gdb_error (char *, char *);
+static int gdb_putchar (int), gdb_puts (char *), gdb_write (char *, int);
+
+static unsigned char *strcpy (unsigned char *, const unsigned char *);
+static int strlen (const unsigned char *);
+
+/*
+ * This function does all command procesing for interfacing to gdb.
+ */
+
+void
+handle_exception (int exceptionVector)
+{
+  int sigval, stepping;
+  int addr, length, i;
+  unsigned char *ptr;
+  unsigned char buf[16];
+  int binary;
+
+  if (!finish_from_step ())
+    return;                    /* "false step": let the target continue */
+
+  gdb_m32r_vector = exceptionVector;
+
+  if (remote_debug)
+    {
+      mem2hex ((unsigned char *) &exceptionVector, buf, 4, 0);
+      gdb_error ("Handle exception %s, ", buf);
+      mem2hex ((unsigned char *) &registers[PC], buf, 4, 0);
+      gdb_error ("PC == 0x%s\n", buf);
+    }
+
+  /* reply to host that an exception has occurred */
+  sigval = computeSignal (exceptionVector);
+
+  ptr = remcomOutBuffer;
+
+  *ptr++ = 'T';                        /* notify gdb with signo, PC, FP and SP */
+  *ptr++ = hexchars[sigval >> 4];
+  *ptr++ = hexchars[sigval & 0xf];
+
+  *ptr++ = hexchars[PC >> 4];
+  *ptr++ = hexchars[PC & 0xf];
+  *ptr++ = ':';
+  ptr = mem2hex ((unsigned char *) &registers[PC], ptr, 4, 0); /* PC */
+  *ptr++ = ';';
+
+  *ptr++ = hexchars[R13 >> 4];
+  *ptr++ = hexchars[R13 & 0xf];
+  *ptr++ = ':';
+  ptr = mem2hex ((unsigned char *) &registers[R13], ptr, 4, 0);        /* FP */
+  *ptr++ = ';';
+
+  *ptr++ = hexchars[R15 >> 4];
+  *ptr++ = hexchars[R15 & 0xf];
+  *ptr++ = ':';
+  ptr = mem2hex ((unsigned char *) &registers[R15], ptr, 4, 0);        /* SP */
+  *ptr++ = ';';
+  *ptr++ = 0;
+
+  if (exceptionVector == 0)    /* simulated SYS call stuff */
+    {
+      mem2hex ((unsigned char *) &registers[PC], buf, 4, 0);
+      switch (registers[R0])
+       {
+       case SYS_exit:
+         gdb_error ("Target program has exited at %s\n", buf);
+         ptr = remcomOutBuffer;
+         *ptr++ = 'W';
+         sigval = registers[R1] & 0xff;
+         *ptr++ = hexchars[sigval >> 4];
+         *ptr++ = hexchars[sigval & 0xf];
+         *ptr++ = 0;
+         break;
+       case SYS_open:
+         gdb_error ("Target attempts SYS_open call at %s\n", buf);
+         break;
+       case SYS_close:
+         gdb_error ("Target attempts SYS_close call at %s\n", buf);
+         break;
+       case SYS_read:
+         gdb_error ("Target attempts SYS_read call at %s\n", buf);
+         break;
+       case SYS_write:
+         if (registers[R1] == 1 ||     /* write to stdout  */
+             registers[R1] == 2)       /* write to stderr  */
+           {                   /* (we can do that) */
+             registers[R0] =
+               gdb_write ((void *) registers[R2], registers[R3]);
+             return;
+           }
+         else
+           gdb_error ("Target attempts SYS_write call at %s\n", buf);
+         break;
+       case SYS_lseek:
+         gdb_error ("Target attempts SYS_lseek call at %s\n", buf);
+         break;
+       case SYS_unlink:
+         gdb_error ("Target attempts SYS_unlink call at %s\n", buf);
+         break;
+       case SYS_getpid:
+         gdb_error ("Target attempts SYS_getpid call at %s\n", buf);
+         break;
+       case SYS_kill:
+         gdb_error ("Target attempts SYS_kill call at %s\n", buf);
+         break;
+       case SYS_fstat:
+         gdb_error ("Target attempts SYS_fstat call at %s\n", buf);
+         break;
+       default:
+         gdb_error ("Target attempts unknown SYS call at %s\n", buf);
+         break;
+       }
+    }
+
+  putpacket (remcomOutBuffer);
+
+  stepping = 0;
+
+  while (1 == 1)
+    {
+      remcomOutBuffer[0] = 0;
+      ptr = getpacket ();
+      binary = 0;
+      switch (*ptr++)
+       {
+       default:                /* Unknown code.  Return an empty reply message. */
+         break;
+       case 'R':
+         if (hexToInt (&ptr, &addr))
+           registers[PC] = addr;
+         strcpy (remcomOutBuffer, "OK");
+         break;
+       case '!':
+         strcpy (remcomOutBuffer, "OK");
+         break;
+       case 'X':               /* XAA..AA,LLLL:<binary data>#cs */
+         binary = 1;
+       case 'M':               /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
+         /* TRY TO READ '%x,%x:'.  IF SUCCEED, SET PTR = 0 */
+         {
+           if (hexToInt (&ptr, &addr))
+             if (*(ptr++) == ',')
+               if (hexToInt (&ptr, &length))
+                 if (*(ptr++) == ':')
+                   {
+                     mem_err = 0;
+                     if (binary)
+                       bin2mem (ptr, (unsigned char *) addr, length, 1);
+                     else
+                       hex2mem (ptr, (unsigned char *) addr, length, 1);
+                     if (mem_err)
+                       {
+                         strcpy (remcomOutBuffer, "E03");
+                         gdb_error ("memory fault", "");
+                       }
+                     else
+                       {
+                         strcpy (remcomOutBuffer, "OK");
+                       }
+                     ptr = 0;
+                   }
+           if (ptr)
+             {
+               strcpy (remcomOutBuffer, "E02");
+             }
+         }
+         break;
+       case 'm':               /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
+         /* TRY TO READ %x,%x.  IF SUCCEED, SET PTR = 0 */
+         if (hexToInt (&ptr, &addr))
+           if (*(ptr++) == ',')
+             if (hexToInt (&ptr, &length))
+               {
+                 ptr = 0;
+                 mem_err = 0;
+                 mem2hex ((unsigned char *) addr, remcomOutBuffer, length,
+                          1);
+                 if (mem_err)
+                   {
+                     strcpy (remcomOutBuffer, "E03");
+                     gdb_error ("memory fault", "");
+                   }
+               }
+         if (ptr)
+           {
+             strcpy (remcomOutBuffer, "E01");
+           }
+         break;
+       case '?':
+         remcomOutBuffer[0] = 'S';
+         remcomOutBuffer[1] = hexchars[sigval >> 4];
+         remcomOutBuffer[2] = hexchars[sigval % 16];
+         remcomOutBuffer[3] = 0;
+         break;
+       case 'd':
+         remote_debug = !(remote_debug);       /* toggle debug flag */
+         break;
+       case 'g':               /* return the value of the CPU registers */
+         mem2hex ((unsigned char *) registers, remcomOutBuffer, NUMREGBYTES,
+                  0);
+         break;
+       case 'P':               /* set the value of a single CPU register - return OK */
+         {
+           int regno;
+
+           if (hexToInt (&ptr, &regno) && *ptr++ == '=')
+             if (regno >= 0 && regno < NUMREGS)
+               {
+                 int stackmode;
+
+                 hex2mem (ptr, (unsigned char *) &registers[regno], 4, 0);
+                 /*
+                  * Since we just changed a single CPU register, let's
+                  * make sure to keep the several stack pointers consistant.
+                  */
+                 stackmode = registers[PSW] & 0x80;
+                 if (regno == R15)     /* stack pointer changed */
+                   {           /* need to change SPI or SPU */
+                     if (stackmode == 0)
+                       registers[SPI] = registers[R15];
+                     else
+                       registers[SPU] = registers[R15];
+                   }
+                 else if (regno == SPU)        /* "user" stack pointer changed */
+                   {
+                     if (stackmode != 0)       /* stack in user mode: copy SP */
+                       registers[R15] = registers[SPU];
+                   }
+                 else if (regno == SPI)        /* "interrupt" stack pointer changed */
+                   {
+                     if (stackmode == 0)       /* stack in interrupt mode: copy SP */
+                       registers[R15] = registers[SPI];
+                   }
+                 else if (regno == PSW)        /* stack mode may have changed! */
+                   {           /* force SP to either SPU or SPI */
+                     if (stackmode == 0)       /* stack in user mode */
+                       registers[R15] = registers[SPI];
+                     else      /* stack in interrupt mode */
+                       registers[R15] = registers[SPU];
+                   }
+                 strcpy (remcomOutBuffer, "OK");
+                 break;
+               }
+           strcpy (remcomOutBuffer, "E01");
+           break;
+         }
+       case 'G':               /* set the value of the CPU registers - return OK */
+         hex2mem (ptr, (unsigned char *) registers, NUMREGBYTES, 0);
+         strcpy (remcomOutBuffer, "OK");
+         break;
+       case 's':               /* sAA..AA      Step one instruction from AA..AA(optional) */
+         stepping = 1;
+       case 'c':               /* cAA..AA      Continue from address AA..AA(optional) */
+         /* try to read optional parameter, pc unchanged if no parm */
+         if (hexToInt (&ptr, &addr))
+           registers[PC] = addr;
+
+         if (stepping)         /* single-stepping */
+           {
+             if (!prepare_to_step (0)) /* set up for single-step */
+               {
+                 /* prepare_to_step has already emulated the target insn:
+                    Send SIGTRAP to gdb, don't resume the target at all.  */
+                 ptr = remcomOutBuffer;
+                 *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */
+                 *ptr++ = '0';
+                 *ptr++ = '5';
+
+                 *ptr++ = hexchars[PC >> 4];   /* send PC */
+                 *ptr++ = hexchars[PC & 0xf];
+                 *ptr++ = ':';
+                 ptr = mem2hex ((unsigned char *) &registers[PC], ptr, 4, 0);
+                 *ptr++ = ';';
+
+                 *ptr++ = hexchars[R13 >> 4];  /* send FP */
+                 *ptr++ = hexchars[R13 & 0xf];
+                 *ptr++ = ':';
+                 ptr =
+                   mem2hex ((unsigned char *) &registers[R13], ptr, 4, 0);
+                 *ptr++ = ';';
+
+                 *ptr++ = hexchars[R15 >> 4];  /* send SP */
+                 *ptr++ = hexchars[R15 & 0xf];
+                 *ptr++ = ':';
+                 ptr =
+                   mem2hex ((unsigned char *) &registers[R15], ptr, 4, 0);
+                 *ptr++ = ';';
+                 *ptr++ = 0;
+
+                 break;
+               }
+           }
+         else                  /* continuing, not single-stepping */
+           {
+             /* OK, about to do a "continue".  First check to see if the 
+                target pc is on an odd boundary (second instruction in the 
+                word).  If so, we must do a single-step first, because 
+                ya can't jump or return back to an odd boundary!  */
+             if ((registers[PC] & 2) != 0)
+               prepare_to_step (1);
+           }
+
+         return;
+
+       case 'D':               /* Detach */
+#if 0
+         /* I am interpreting this to mean, release the board from control 
+            by the remote stub.  To do this, I am restoring the original
+            (or at least previous) exception vectors.
+          */
+         for (i = 0; i < 18; i++)
+           exceptionHandler (i, save_vectors[i]);
+         putpacket ("OK");
+         return;               /* continue the inferior */
+#else
+         strcpy (remcomOutBuffer, "OK");
+         break;
+#endif
+       case 'q':
+         if (*ptr++ == 'C' &&
+             *ptr++ == 'R' && *ptr++ == 'C' && *ptr++ == ':')
+           {
+             unsigned long start, len, our_crc;
+
+             if (hexToInt (&ptr, (int *) &start) &&
+                 *ptr++ == ',' && hexToInt (&ptr, (int *) &len))
+               {
+                 remcomOutBuffer[0] = 'C';
+                 our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
+                 mem2hex ((char *) &our_crc,
+                          &remcomOutBuffer[1], sizeof (long), 0);
+               }               /* else do nothing */
+           }                   /* else do nothing */
+         break;
+
+       case 'k':               /* kill the program */
+         continue;
+       }                       /* switch */
+
+      /* reply to the request */
+      putpacket (remcomOutBuffer);
+    }
+}
+
+/* qCRC support */
+
+/* Table used by the crc32 function to calcuate the checksum. */
+static unsigned long crc32_table[256] = { 0, 0 };
+
+static unsigned long
+crc32 (unsigned char *buf, int len, unsigned long crc)
+{
+  if (!crc32_table[1])
+    {
+      /* Initialize the CRC table and the decoding table. */
+      int i, j;
+      unsigned long c;
+
+      for (i = 0; i < 256; i++)
+       {
+         for (c = i << 24, j = 8; j > 0; --j)
+           c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
+         crc32_table[i] = c;
+       }
+    }
+
+  while (len--)
+    {
+      crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
+      buf++;
+    }
+  return crc;
+}
+
+static int
+hex (unsigned char ch)
+{
+  if ((ch >= 'a') && (ch <= 'f'))
+    return (ch - 'a' + 10);
+  if ((ch >= '0') && (ch <= '9'))
+    return (ch - '0');
+  if ((ch >= 'A') && (ch <= 'F'))
+    return (ch - 'A' + 10);
+  return (-1);
+}
+
+/* scan for the sequence $<data>#<checksum>     */
+
+unsigned char *
+getpacket (void)
+{
+  unsigned char *buffer = &remcomInBuffer[0];
+  unsigned char checksum;
+  unsigned char xmitcsum;
+  int count;
+  char ch;
+
+  while (1)
+    {
+      /* wait around for the start character, ignore all other characters */
+      while ((ch = getDebugChar ()) != '$')
+       ;
+
+    retry:
+      checksum = 0;
+      xmitcsum = -1;
+      count = 0;
+
+      /* now, read until a # or end of buffer is found */
+      while (count < BUFMAX)
+       {
+         ch = getDebugChar ();
+         if (ch == '$')
+           goto retry;
+         if (ch == '#')
+           break;
+         checksum = checksum + ch;
+         buffer[count] = ch;
+         count = count + 1;
+       }
+      buffer[count] = 0;
+
+      if (ch == '#')
+       {
+         ch = getDebugChar ();
+         xmitcsum = hex (ch) << 4;
+         ch = getDebugChar ();
+         xmitcsum += hex (ch);
+
+         if (checksum != xmitcsum)
+           {
+             if (remote_debug)
+               {
+                 unsigned char buf[16];
+
+                 mem2hex ((unsigned char *) &checksum, buf, 4, 0);
+                 gdb_error ("Bad checksum: my count = %s, ", buf);
+                 mem2hex ((unsigned char *) &xmitcsum, buf, 4, 0);
+                 gdb_error ("sent count = %s\n", buf);
+                 gdb_error (" -- Bad buffer: \"%s\"\n", buffer);
+               }
+             putDebugChar ('-');       /* failed checksum */
+           }
+         else
+           {
+             putDebugChar ('+');       /* successful transfer */
+
+             /* if a sequence char is present, reply the sequence ID */
+             if (buffer[2] == ':')
+               {
+                 putDebugChar (buffer[0]);
+                 putDebugChar (buffer[1]);
+
+                 return &buffer[3];
+               }
+
+             return &buffer[0];
+           }
+       }
+    }
+}
+
+/* send the packet in buffer.  */
+
+static void
+putpacket (unsigned char *buffer)
+{
+  unsigned char checksum;
+  int count;
+  char ch;
+
+  /*  $<packet info>#<checksum>. */
+  do
+    {
+      putDebugChar ('$');
+      checksum = 0;
+      count = 0;
+
+      while (ch = buffer[count])
+       {
+         putDebugChar (ch);
+         checksum += ch;
+         count += 1;
+       }
+      putDebugChar ('#');
+      putDebugChar (hexchars[checksum >> 4]);
+      putDebugChar (hexchars[checksum % 16]);
+    }
+  while (getDebugChar () != '+');
+}
+
+/* Address of a routine to RTE to if we get a memory fault.  */
+
+static void (*volatile mem_fault_routine) () = 0;
+
+static void
+set_mem_err (void)
+{
+  mem_err = 1;
+}
+
+/* Check the address for safe access ranges.  As currently defined,
+   this routine will reject the "expansion bus" address range(s).
+   To make those ranges useable, someone must implement code to detect
+   whether there's anything connected to the expansion bus. */
+
+static int
+mem_safe (unsigned char *addr)
+{
+#define BAD_RANGE_ONE_START    ((unsigned char *) 0x600000)
+#define BAD_RANGE_ONE_END      ((unsigned char *) 0xa00000)
+#define BAD_RANGE_TWO_START    ((unsigned char *) 0xff680000)
+#define BAD_RANGE_TWO_END      ((unsigned char *) 0xff800000)
+
+  if (addr < BAD_RANGE_ONE_START)
+    return 1;                  /* safe */
+  if (addr < BAD_RANGE_ONE_END)
+    return 0;                  /* unsafe */
+  if (addr < BAD_RANGE_TWO_START)
+    return 1;                  /* safe */
+  if (addr < BAD_RANGE_TWO_END)
+    return 0;                  /* unsafe */
+}
+
+/* These are separate functions so that they are so short and sweet
+   that the compiler won't save any registers (if there is a fault
+   to mem_fault, they won't get restored, so there better not be any
+   saved).  */
+static int
+get_char (unsigned char *addr)
+{
+#if 1
+  if (mem_fault_routine && !mem_safe (addr))
+    {
+      mem_fault_routine ();
+      return 0;
+    }
+#endif
+  return *addr;
+}
+
+static void
+set_char (unsigned char *addr, unsigned char val)
+{
+#if 1
+  if (mem_fault_routine && !mem_safe (addr))
+    {
+      mem_fault_routine ();
+      return;
+    }
+#endif
+  *addr = val;
+}
+
+/* Convert the memory pointed to by mem into hex, placing result in buf.
+   Return a pointer to the last char put in buf (null).
+   If MAY_FAULT is non-zero, then we should set mem_err in response to
+   a fault; if zero treat a fault like any other fault in the stub.  */
+
+static unsigned char *
+mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
+{
+  int i;
+  unsigned char ch;
+
+  if (may_fault)
+    mem_fault_routine = set_mem_err;
+  for (i = 0; i < count; i++)
+    {
+      ch = get_char (mem++);
+      if (may_fault && mem_err)
+       return (buf);
+      *buf++ = hexchars[ch >> 4];
+      *buf++ = hexchars[ch % 16];
+    }
+  *buf = 0;
+  if (may_fault)
+    mem_fault_routine = 0;
+  return (buf);
+}
+
+/* Convert the hex array pointed to by buf into binary to be placed in mem.
+   Return a pointer to the character AFTER the last byte written. */
+
+static unsigned char *
+hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
+{
+  int i;
+  unsigned char ch;
+
+  if (may_fault)
+    mem_fault_routine = set_mem_err;
+  for (i = 0; i < count; i++)
+    {
+      ch = hex (*buf++) << 4;
+      ch = ch + hex (*buf++);
+      set_char (mem++, ch);
+      if (may_fault && mem_err)
+       return (mem);
+    }
+  if (may_fault)
+    mem_fault_routine = 0;
+  return (mem);
+}
+
+/* Convert the binary stream in BUF to memory.
+
+   Gdb will escape $, #, and the escape char (0x7d).
+   COUNT is the total number of bytes to write into
+   memory. */
+static unsigned char *
+bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
+{
+  int i;
+  unsigned char ch;
+
+  if (may_fault)
+    mem_fault_routine = set_mem_err;
+  for (i = 0; i < count; i++)
+    {
+      /* Check for any escaped characters. Be paranoid and
+         only unescape chars that should be escaped. */
+      if (*buf == 0x7d)
+       {
+         switch (*(buf + 1))
+           {
+           case 0x3:           /* # */
+           case 0x4:           /* $ */
+           case 0x5d:          /* escape char */
+             buf++;
+             *buf |= 0x20;
+             break;
+           default:
+             /* nothing */
+             break;
+           }
+       }
+
+      set_char (mem++, *buf++);
+
+      if (may_fault && mem_err)
+       return mem;
+    }
+
+  if (may_fault)
+    mem_fault_routine = 0;
+  return mem;
+}
+
+/* this function takes the m32r exception vector and attempts to
+   translate this number into a unix compatible signal value */
+
+static int
+computeSignal (int exceptionVector)
+{
+  int sigval;
+  switch (exceptionVector)
+    {
+    case 0:
+      sigval = 23;
+      break;                   /* I/O trap                    */
+    case 1:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 2:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 3:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 4:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 5:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 6:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 7:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 8:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 9:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 10:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 11:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 12:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 13:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 14:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 15:
+      sigval = 5;
+      break;                   /* breakpoint                  */
+    case 16:
+      sigval = 10;
+      break;                   /* BUS ERROR (alignment)       */
+    case 17:
+      sigval = 2;
+      break;                   /* INTerrupt                   */
+    default:
+      sigval = 7;
+      break;                   /* "software generated"        */
+    }
+  return (sigval);
+}
+
+/**********************************************/
+/* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
+/* RETURN NUMBER OF CHARS PROCESSED           */
+/**********************************************/
+static int
+hexToInt (unsigned char **ptr, int *intValue)
+{
+  int numChars = 0;
+  int hexValue;
+
+  *intValue = 0;
+  while (**ptr)
+    {
+      hexValue = hex (**ptr);
+      if (hexValue >= 0)
+       {
+         *intValue = (*intValue << 4) | hexValue;
+         numChars++;
+       }
+      else
+       break;
+      (*ptr)++;
+    }
+  return (numChars);
+}
+
+/*
+  Table of branch instructions:
+  
+  10B6         RTE     return from trap or exception
+  1FCr         JMP     jump
+  1ECr         JL      jump and link
+  7Fxx         BRA     branch
+  FFxxxxxx     BRA     branch (long)
+  B09rxxxx     BNEZ    branch not-equal-zero
+  Br1rxxxx     BNE     branch not-equal
+  7Dxx         BNC     branch not-condition
+  FDxxxxxx     BNC     branch not-condition (long)
+  B0Arxxxx     BLTZ    branch less-than-zero
+  B0Crxxxx     BLEZ    branch less-equal-zero
+  7Exx         BL      branch and link
+  FExxxxxx     BL      branch and link (long)
+  B0Drxxxx     BGTZ    branch greater-than-zero
+  B0Brxxxx     BGEZ    branch greater-equal-zero
+  B08rxxxx     BEQZ    branch equal-zero
+  Br0rxxxx     BEQ     branch equal
+  7Cxx         BC      branch condition
+  FCxxxxxx     BC      branch condition (long)
+  */
+
+static int
+isShortBranch (unsigned char *instr)
+{
+  unsigned char instr0 = instr[0] & 0x7F;      /* mask off high bit */
+
+  if (instr0 == 0x10 && instr[1] == 0xB6)      /* RTE */
+    return 1;                  /* return from trap or exception */
+
+  if (instr0 == 0x1E || instr0 == 0x1F)        /* JL or JMP */
+    if ((instr[1] & 0xF0) == 0xC0)
+      return 2;                        /* jump thru a register */
+
+  if (instr0 == 0x7C || instr0 == 0x7D ||      /* BC, BNC, BL, BRA */
+      instr0 == 0x7E || instr0 == 0x7F)
+    return 3;                  /* eight bit PC offset */
+
+  return 0;
+}
+
+static int
+isLongBranch (unsigned char *instr)
+{
+  if (instr[0] == 0xFC || instr[0] == 0xFD ||  /* BRA, BNC, BL, BC */
+      instr[0] == 0xFE || instr[0] == 0xFF)    /* 24 bit relative */
+    return 4;
+  if ((instr[0] & 0xF0) == 0xB0)       /* 16 bit relative */
+    {
+      if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */
+         (instr[1] & 0xF0) == 0x10)
+       return 5;
+      if (instr[0] == 0xB0)    /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
+       if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 ||
+           (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
+           (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
+         return 6;
+    }
+  return 0;
+}
+
+/* if address is NOT on a 4-byte boundary, or high-bit of instr is zero, 
+   then it's a 2-byte instruction, else it's a 4-byte instruction.  */
+
+#define INSTRUCTION_SIZE(addr) \
+    ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)
+
+static int
+isBranch (unsigned char *instr)
+{
+  if (INSTRUCTION_SIZE (instr) == 2)
+    return isShortBranch (instr);
+  else
+    return isLongBranch (instr);
+}
+
+static int
+willBranch (unsigned char *instr, int branchCode)
+{
+  switch (branchCode)
+    {
+    case 0:
+      return 0;                        /* not a branch */
+    case 1:
+      return 1;                        /* RTE */
+    case 2:
+      return 1;                        /* JL or JMP    */
+    case 3:                    /* BC, BNC, BL, BRA (short) */
+    case 4:                    /* BC, BNC, BL, BRA (long) */
+      switch (instr[0] & 0x0F)
+       {
+       case 0xC:               /* Branch if Condition Register */
+         return (registers[CBR] != 0);
+       case 0xD:               /* Branch if NOT Condition Register */
+         return (registers[CBR] == 0);
+       case 0xE:               /* Branch and Link */
+       case 0xF:               /* Branch (unconditional) */
+         return 1;
+       default:                /* oops? */
+         return 0;
+       }
+    case 5:                    /* BNE, BEQ */
+      switch (instr[1] & 0xF0)
+       {
+       case 0x00:              /* Branch if r1 equal to r2 */
+         return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
+       case 0x10:              /* Branch if r1 NOT equal to r2 */
+         return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
+       default:                /* oops? */
+         return 0;
+       }
+    case 6:                    /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
+      switch (instr[1] & 0xF0)
+       {
+       case 0x80:              /* Branch if reg equal to zero */
+         return (registers[instr[1] & 0x0F] == 0);
+       case 0x90:              /* Branch if reg NOT equal to zero */
+         return (registers[instr[1] & 0x0F] != 0);
+       case 0xA0:              /* Branch if reg less than zero */
+         return (registers[instr[1] & 0x0F] < 0);
+       case 0xB0:              /* Branch if reg greater or equal to zero */
+         return (registers[instr[1] & 0x0F] >= 0);
+       case 0xC0:              /* Branch if reg less than or equal to zero */
+         return (registers[instr[1] & 0x0F] <= 0);
+       case 0xD0:              /* Branch if reg greater than zero */
+         return (registers[instr[1] & 0x0F] > 0);
+       default:                /* oops? */
+         return 0;
+       }
+    default:                   /* oops? */
+      return 0;
+    }
+}
+
+static int
+branchDestination (unsigned char *instr, int branchCode)
+{
+  switch (branchCode)
+    {
+    default:
+    case 0:                    /* not a branch */
+      return 0;
+    case 1:                    /* RTE */
+      return registers[BPC] & ~3;      /* pop BPC into PC */
+    case 2:                    /* JL or JMP */
+      return registers[instr[1] & 0x0F] & ~3;  /* jump thru a register */
+    case 3:                    /* BC, BNC, BL, BRA (short, 8-bit relative offset) */
+      return (((int) instr) & ~3) + ((char) instr[1] << 2);
+    case 4:                    /* BC, BNC, BL, BRA (long, 24-bit relative offset) */
+      return ((int) instr +
+             ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) <<
+              2));
+    case 5:                    /* BNE, BEQ (16-bit relative offset) */
+    case 6:                    /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */
+      return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2));
+    }
+
+  /* An explanatory note: in the last three return expressions, I have
+     cast the most-significant byte of the return offset to char.
+     What this accomplishes is sign extension.  If the other
+     less-significant bytes were signed as well, they would get sign
+     extended too and, if negative, their leading bits would clobber
+     the bits of the more-significant bytes ahead of them.  There are
+     other ways I could have done this, but sign extension from
+     odd-sized integers is always a pain. */
+}
+
+static void
+branchSideEffects (unsigned char *instr, int branchCode)
+{
+  switch (branchCode)
+    {
+    case 1:                    /* RTE */
+      return;                  /* I <THINK> this is already handled... */
+    case 2:                    /* JL (or JMP) */
+    case 3:                    /* BL (or BC, BNC, BRA) */
+    case 4:
+      if ((instr[0] & 0x0F) == 0x0E)   /* branch/jump and link */
+       registers[R14] = (registers[PC] & ~3) + 4;
+      return;
+    default:                   /* any other branch has no side effects */
+      return;
+    }
+}
+
+static struct STEPPING_CONTEXT
+{
+  int stepping;                        /* true when we've started a single-step */
+  unsigned long target_addr;   /* the instr we're trying to execute */
+  unsigned long target_size;   /* the size of the target instr */
+  unsigned long noop_addr;     /* where we've inserted a no-op, if any */
+  unsigned long trap1_addr;    /* the trap following the target instr */
+  unsigned long trap2_addr;    /* the trap at a branch destination, if any */
+  unsigned short noop_save;    /* instruction overwritten by our no-op */
+  unsigned short trap1_save;   /* instruction overwritten by trap1 */
+  unsigned short trap2_save;   /* instruction overwritten by trap2 */
+  unsigned short continue_p;   /* true if NOT returning to gdb after step */
+} stepping;
+
+/* Function: prepare_to_step
+   Called from handle_exception to prepare the user program to single-step.
+   Places a trap instruction after the target instruction, with special 
+   extra handling for branch instructions and for instructions in the 
+   second half-word of a word.  
+
+   Returns: True  if we should actually execute the instruction; 
+           False if we are going to emulate executing the instruction,
+           in which case we simply report to GDB that the instruction 
+           has already been executed.  */
+
+#define TRAP1  0x10f1;         /* trap #1 instruction */
+#define NOOP   0x7000;         /* noop    instruction */
+
+static unsigned short trap1 = TRAP1;
+static unsigned short noop = NOOP;
+
+static int
+prepare_to_step (continue_p)
+     int continue_p;           /* if this isn't REALLY a single-step (see below) */
+{
+  unsigned long pc = registers[PC];
+  int branchCode = isBranch ((unsigned char *) pc);
+  unsigned char *p;
+
+  /* zero out the stepping context 
+     (paranoia -- it should already be zeroed) */
+  for (p = (unsigned char *) &stepping;
+       p < ((unsigned char *) &stepping) + sizeof (stepping); p++)
+    *p = 0;
+
+  if (branchCode != 0)         /* next instruction is a branch */
+    {
+      branchSideEffects ((unsigned char *) pc, branchCode);
+      if (willBranch ((unsigned char *) pc, branchCode))
+       registers[PC] = branchDestination ((unsigned char *) pc, branchCode);
+      else
+       registers[PC] = pc + INSTRUCTION_SIZE (pc);
+      return 0;                        /* branch "executed" -- just notify GDB */
+    }
+  else if (((int) pc & 2) != 0)        /* "second-slot" instruction */
+    {
+      /* insert no-op before pc */
+      stepping.noop_addr = pc - 2;
+      stepping.noop_save = *(unsigned short *) stepping.noop_addr;
+      *(unsigned short *) stepping.noop_addr = noop;
+      /* insert trap  after  pc */
+      stepping.trap1_addr = pc + 2;
+      stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
+      *(unsigned short *) stepping.trap1_addr = trap1;
+    }
+  else                         /* "first-slot" instruction */
+    {
+      /* insert trap  after  pc */
+      stepping.trap1_addr = pc + INSTRUCTION_SIZE (pc);
+      stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
+      *(unsigned short *) stepping.trap1_addr = trap1;
+    }
+  /* "continue_p" means that we are actually doing a continue, and not 
+     being requested to single-step by GDB.  Sometimes we have to do
+     one single-step before continuing, because the PC is on a half-word
+     boundary.  There's no way to simply resume at such an address.  */
+  stepping.continue_p = continue_p;
+  stepping.stepping = 1;       /* starting a single-step */
+  return 1;
+}
+
+/* Function: finish_from_step
+   Called from handle_exception to finish up when the user program 
+   returns from a single-step.  Replaces the instructions that had
+   been overwritten by traps or no-ops, 
+
+   Returns: True  if we should notify GDB that the target stopped.
+           False if we only single-stepped because we had to before we
+           could continue (ie. we were trying to continue at a 
+           half-word boundary).  In that case don't notify GDB:
+           just "continue continuing".  */
+
+static int
+finish_from_step (void)
+{
+  if (stepping.stepping)       /* anything to do? */
+    {
+      int continue_p = stepping.continue_p;
+      unsigned char *p;
+
+      if (stepping.noop_addr)  /* replace instr "under" our no-op */
+       *(unsigned short *) stepping.noop_addr = stepping.noop_save;
+      if (stepping.trap1_addr) /* replace instr "under" our trap  */
+       *(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
+      if (stepping.trap2_addr) /* ditto our other trap, if any    */
+       *(unsigned short *) stepping.trap2_addr = stepping.trap2_save;
+
+      for (p = (unsigned char *) &stepping;    /* zero out the stepping context */
+          p < ((unsigned char *) &stepping) + sizeof (stepping); p++)
+       *p = 0;
+
+      return !(continue_p);
+    }
+  else                         /* we didn't single-step, therefore this must be a legitimate stop */
+    return 1;
+}
+
+struct PSWreg
+{                              /* separate out the bit flags in the PSW register */
+  int pad1:16;
+  int bsm:1;
+  int bie:1;
+  int pad2:5;
+  int bc:1;
+  int sm:1;
+  int ie:1;
+  int pad3:5;
+  int c:1;
+} *psw;
+
+/* Upon entry the value for LR to save has been pushed.
+   We unpush that so that the value for the stack pointer saved is correct.
+   Upon entry, all other registers are assumed to have not been modified
+   since the interrupt/trap occured.  */
+
+asm ("\n\
+stash_registers:\n\
+       push r0\n\
+       push r1\n\
+       seth r1, #shigh(registers)\n\
+       add3 r1, r1, #low(registers)\n\
+       pop r0          ; r1\n\
+       st r0, @(4,r1)\n\
+       pop r0          ; r0\n\
+       st r0, @r1\n\
+       addi r1, #4     ; only add 4 as subsequent saves are `pre inc'\n\
+       st r2, @+r1\n\
+       st r3, @+r1\n\
+       st r4, @+r1\n\
+       st r5, @+r1\n\
+       st r6, @+r1\n\
+       st r7, @+r1\n\
+       st r8, @+r1\n\
+       st r9, @+r1\n\
+       st r10, @+r1\n\
+       st r11, @+r1\n\
+       st r12, @+r1\n\
+       st r13, @+r1    ; fp\n\
+       pop r0          ; lr (r14)\n\
+       st r0, @+r1\n\
+       st sp, @+r1     ; sp contains right value at this point\n\
+       mvfc r0, cr0\n\
+       st r0, @+r1     ; cr0 == PSW\n\
+       mvfc r0, cr1\n\
+       st r0, @+r1     ; cr1 == CBR\n\
+       mvfc r0, cr2\n\
+       st r0, @+r1     ; cr2 == SPI\n\
+       mvfc r0, cr3\n\
+       st r0, @+r1     ; cr3 == SPU\n\
+       mvfc r0, cr6\n\
+       st r0, @+r1     ; cr6 == BPC\n\
+       st r0, @+r1     ; PC  == BPC\n\
+       mvfaclo r0\n\
+       st r0, @+r1     ; ACCL\n\
+       mvfachi r0\n\
+       st r0, @+r1     ; ACCH\n\
+       jmp lr");
+
+/* C routine to clean up what stash_registers did.
+   It is called after calling stash_registers.
+   This is separate from stash_registers as we want to do this in C
+   but doing stash_registers in C isn't straightforward.  */
+
+static void
+cleanup_stash (void)
+{
+  psw = (struct PSWreg *) &registers[PSW];     /* fields of PSW register */
+  psw->sm = psw->bsm;          /* fix up pre-trap values of psw fields */
+  psw->ie = psw->bie;
+  psw->c = psw->bc;
+  registers[CBR] = psw->bc;    /* fix up pre-trap "C" register */
+
+#if 0                          /* FIXME: Was in previous version.  Necessary?
+                                  (Remember that we use the "rte" insn to return from the
+                                  trap/interrupt so the values of bsm, bie, bc are important.  */
+  psw->bsm = psw->bie = psw->bc = 0;   /* zero post-trap values */
+#endif
+
+  /* FIXME: Copied from previous version.  This can probably be deleted
+     since methinks stash_registers has already done this.  */
+  registers[PC] = registers[BPC];      /* pre-trap PC */
+
+  /* FIXME: Copied from previous version.  Necessary?  */
+  if (psw->sm)                 /* copy R15 into (psw->sm ? SPU : SPI) */
+    registers[SPU] = registers[R15];
+  else
+    registers[SPI] = registers[R15];
+}
+
+asm ("\n\
+restore_and_return:\n\
+       seth r0, #shigh(registers+8)\n\
+       add3 r0, r0, #low(registers+8)\n\
+       ld r2, @r0+     ; restore r2\n\
+       ld r3, @r0+     ; restore r3\n\
+       ld r4, @r0+     ; restore r4\n\
+       ld r5, @r0+     ; restore r5\n\
+       ld r6, @r0+     ; restore r6\n\
+       ld r7, @r0+     ; restore r7\n\
+       ld r8, @r0+     ; restore r8\n\
+       ld r9, @r0+     ; restore r9\n\
+       ld r10, @r0+    ; restore r10\n\
+       ld r11, @r0+    ; restore r11\n\
+       ld r12, @r0+    ; restore r12\n\
+       ld r13, @r0+    ; restore r13\n\
+       ld r14, @r0+    ; restore r14\n\
+       ld r15, @r0+    ; restore r15\n\
+       ld r1, @r0+     ; restore cr0 == PSW\n\
+       mvtc r1, cr0\n\
+       ld r1, @r0+     ; restore cr1 == CBR (no-op, because it's read only)\n\
+       mvtc r1, cr1\n\
+       ld r1, @r0+     ; restore cr2 == SPI\n\
+       mvtc r1, cr2\n\
+       ld r1, @r0+     ; restore cr3 == SPU\n\
+       mvtc r1, cr3\n\
+       addi r0, #4     ; skip BPC\n\
+       ld r1, @r0+     ; restore cr6 (BPC) == PC\n\
+       mvtc r1, cr6\n\
+       ld r1, @r0+     ; restore ACCL\n\
+       mvtaclo r1\n\
+       ld r1, @r0+     ; restore ACCH\n\
+       mvtachi r1\n\
+       seth r0, #shigh(registers)\n\
+       add3 r0, r0, #low(registers)\n\
+       ld r1, @(4,r0)  ; restore r1\n\
+       ld r0, @r0      ; restore r0\n\
+       rte");
+
+/* General trap handler, called after the registers have been stashed.
+   NUM is the trap/exception number.  */
+
+static void
+process_exception (int num)
+{
+  cleanup_stash ();
+  asm volatile ("\n\
+       seth r1, #shigh(stackPtr)\n\
+       add3 r1, r1, #low(stackPtr)\n\
+       ld r15, @r1             ; setup local stack (protect user stack)\n\
+       mv r0, %0\n\
+       bl handle_exception\n\
+       bl restore_and_return"::"r" (num):"r0", "r1");
+}
+
+void _catchException0 ();
+
+asm ("\n\
+_catchException0:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #0\n\
+       bl process_exception");
+
+void _catchException1 ();
+
+asm ("\n\
+_catchException1:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       bl cleanup_stash\n\
+       seth r1, #shigh(stackPtr)\n\
+       add3 r1, r1, #low(stackPtr)\n\
+       ld r15, @r1             ; setup local stack (protect user stack)\n\
+       seth r1, #shigh(registers + 21*4) ; PC\n\
+       add3 r1, r1, #low(registers + 21*4)\n\
+       ld r0, @r1\n\
+       addi r0, #-4            ; back up PC for breakpoint trap.\n\
+       st r0, @r1              ; FIXME: what about bp in right slot?\n\
+       ldi r0, #1\n\
+       bl handle_exception\n\
+       bl restore_and_return");
+
+void _catchException2 ();
+
+asm ("\n\
+_catchException2:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #2\n\
+       bl process_exception");
+
+void _catchException3 ();
+
+asm ("\n\
+_catchException3:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #3\n\
+       bl process_exception");
+
+void _catchException4 ();
+
+asm ("\n\
+_catchException4:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #4\n\
+       bl process_exception");
+
+void _catchException5 ();
+
+asm ("\n\
+_catchException5:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #5\n\
+       bl process_exception");
+
+void _catchException6 ();
+
+asm ("\n\
+_catchException6:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #6\n\
+       bl process_exception");
+
+void _catchException7 ();
+
+asm ("\n\
+_catchException7:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #7\n\
+       bl process_exception");
+
+void _catchException8 ();
+
+asm ("\n\
+_catchException8:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #8\n\
+       bl process_exception");
+
+void _catchException9 ();
+
+asm ("\n\
+_catchException9:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #9\n\
+       bl process_exception");
+
+void _catchException10 ();
+
+asm ("\n\
+_catchException10:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #10\n\
+       bl process_exception");
+
+void _catchException11 ();
+
+asm ("\n\
+_catchException11:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #11\n\
+       bl process_exception");
+
+void _catchException12 ();
+
+asm ("\n\
+_catchException12:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #12\n\
+       bl process_exception");
+
+void _catchException13 ();
+
+asm ("\n\
+_catchException13:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #13\n\
+       bl process_exception");
+
+void _catchException14 ();
+
+asm ("\n\
+_catchException14:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #14\n\
+       bl process_exception");
+
+void _catchException15 ();
+
+asm ("\n\
+_catchException15:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #15\n\
+       bl process_exception");
+
+void _catchException16 ();
+
+asm ("\n\
+_catchException16:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #16\n\
+       bl process_exception");
+
+void _catchException17 ();
+
+asm ("\n\
+_catchException17:\n\
+       push lr\n\
+       bl stash_registers\n\
+       ; Note that at this point the pushed value of `lr' has been popped\n\
+       ldi r0, #17\n\
+       bl process_exception");
+
+
+/* this function is used to set up exception handlers for tracing and
+   breakpoints */
+void
+set_debug_traps (void)
+{
+  /*  extern void remcomHandler(); */
+  int i;
+
+  for (i = 0; i < 18; i++)     /* keep a copy of old vectors */
+    if (save_vectors[i] == 0)  /* only copy them the first time */
+      save_vectors[i] = getExceptionHandler (i);
+
+  stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1];
+
+  exceptionHandler (0, _catchException0);
+  exceptionHandler (1, _catchException1);
+  exceptionHandler (2, _catchException2);
+  exceptionHandler (3, _catchException3);
+  exceptionHandler (4, _catchException4);
+  exceptionHandler (5, _catchException5);
+  exceptionHandler (6, _catchException6);
+  exceptionHandler (7, _catchException7);
+  exceptionHandler (8, _catchException8);
+  exceptionHandler (9, _catchException9);
+  exceptionHandler (10, _catchException10);
+  exceptionHandler (11, _catchException11);
+  exceptionHandler (12, _catchException12);
+  exceptionHandler (13, _catchException13);
+  exceptionHandler (14, _catchException14);
+  exceptionHandler (15, _catchException15);
+  exceptionHandler (16, _catchException16);
+  /*  exceptionHandler (17, _catchException17); */
+
+  initialized = 1;
+}
+
+/* This function will generate a breakpoint exception.  It is used at the
+   beginning of a program to sync up with a debugger and can be used
+   otherwise as a quick means to stop program execution and "break" into
+   the debugger. */
+
+#define BREAKPOINT() asm volatile ("   trap #2");
+
+void
+breakpoint (void)
+{
+  if (initialized)
+    BREAKPOINT ();
+}
+
+/* STDOUT section:
+   Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
+   Functions: gdb_putchar(char ch)
+              gdb_puts(char *str)
+              gdb_write(char *str, int len)
+              gdb_error(char *format, char *parm)
+             */
+
+/* Function: gdb_putchar(int)
+   Make gdb write a char to stdout.
+   Returns: the char */
+
+static int
+gdb_putchar (int ch)
+{
+  char buf[4];
+
+  buf[0] = 'O';
+  buf[1] = hexchars[ch >> 4];
+  buf[2] = hexchars[ch & 0x0F];
+  buf[3] = 0;
+  putpacket (buf);
+  return ch;
+}
+
+/* Function: gdb_write(char *, int)
+   Make gdb write n bytes to stdout (not assumed to be null-terminated).
+   Returns: number of bytes written */
+
+static int
+gdb_write (char *data, int len)
+{
+  char *buf, *cpy;
+  int i;
+
+  buf = remcomOutBuffer;
+  buf[0] = 'O';
+  i = 0;
+  while (i < len)
+    {
+      for (cpy = buf + 1;
+          i < len && cpy < buf + sizeof (remcomOutBuffer) - 3; i++)
+       {
+         *cpy++ = hexchars[data[i] >> 4];
+         *cpy++ = hexchars[data[i] & 0x0F];
+       }
+      *cpy = 0;
+      putpacket (buf);
+    }
+  return len;
+}
+
+/* Function: gdb_puts(char *)
+   Make gdb write a null-terminated string to stdout.
+   Returns: the length of the string */
+
+static int
+gdb_puts (char *str)
+{
+  return gdb_write (str, strlen (str));
+}
+
+/* Function: gdb_error(char *, char *)
+   Send an error message to gdb's stdout.
+   First string may have 1 (one) optional "%s" in it, which
+   will cause the optional second string to be inserted.  */
+
+static void
+gdb_error (char *format, char *parm)
+{
+  char buf[400], *cpy;
+  int len;
+
+  if (remote_debug)
+    {
+      if (format && *format)
+       len = strlen (format);
+      else
+       return;                 /* empty input */
+
+      if (parm && *parm)
+       len += strlen (parm);
+
+      for (cpy = buf; *format;)
+       {
+         if (format[0] == '%' && format[1] == 's')     /* include second string */
+           {
+             format += 2;      /* advance two chars instead of just one */
+             while (parm && *parm)
+               *cpy++ = *parm++;
+           }
+         else
+           *cpy++ = *format++;
+       }
+      *cpy = '\0';
+      gdb_puts (buf);
+    }
+}
+
+static unsigned char *
+strcpy (unsigned char *dest, const unsigned char *src)
+{
+  unsigned char *ret = dest;
+
+  if (dest && src)
+    {
+      while (*src)
+       *dest++ = *src++;
+      *dest = 0;
+    }
+  return ret;
+}
+
+static int
+strlen (const unsigned char *src)
+{
+  int ret;
+
+  for (ret = 0; *src; src++)
+    ret++;
+
+  return ret;
+}
+
+#if 0
+void
+exit (code)
+     int code;
+{
+  _exit (code);
+}
+
+int
+atexit (void *p)
+{
+  return 0;
+}
+
+void
+abort (void)
+{
+  _exit (1);
+}
+#endif
index 93edbf99a2da6dca99db33f77d5e60366473d7aa..a40f67d17d5b63df5aa3c66c2ac63fd2d838713d 100644 (file)
-// OBSOLETE /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
-// OBSOLETE 
-// OBSOLETE    Copyright 1996, 1998, 1999, 2000, 2001, 2003 Free Software
-// OBSOLETE    Foundation, Inc.
-// OBSOLETE 
-// OBSOLETE    This file is part of GDB.
-// OBSOLETE 
-// OBSOLETE    This program is free software; you can redistribute it and/or modify
-// OBSOLETE    it under the terms of the GNU General Public License as published by
-// OBSOLETE    the Free Software Foundation; either version 2 of the License, or
-// OBSOLETE    (at your option) any later version.
-// OBSOLETE 
-// OBSOLETE    This program is distributed in the hope that it will be useful,
-// OBSOLETE    but WITHOUT ANY WARRANTY; without even the implied warranty of
-// OBSOLETE    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-// OBSOLETE    GNU General Public License for more details.
-// OBSOLETE 
-// OBSOLETE    You should have received a copy of the GNU General Public License
-// OBSOLETE    along with this program; if not, write to the Free Software
-// OBSOLETE    Foundation, Inc., 59 Temple Place - Suite 330,
-// OBSOLETE    Boston, MA 02111-1307, USA.  */
-// OBSOLETE 
-// OBSOLETE #include "defs.h"
-// OBSOLETE #include "frame.h"
-// OBSOLETE #include "inferior.h"
-// OBSOLETE #include "target.h"
-// OBSOLETE #include "value.h"
-// OBSOLETE #include "bfd.h"
-// OBSOLETE #include "gdb_string.h"
-// OBSOLETE #include "gdbcore.h"
-// OBSOLETE #include "symfile.h"
-// OBSOLETE #include "regcache.h"
-// OBSOLETE 
-// OBSOLETE /* Function: m32r_use_struct_convention
-// OBSOLETE    Return nonzero if call_function should allocate stack space for a
-// OBSOLETE    struct return? */
-// OBSOLETE int
-// OBSOLETE m32r_use_struct_convention (int gcc_p, struct type *type)
-// OBSOLETE {
-// OBSOLETE   return (TYPE_LENGTH (type) > 8);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: frame_find_saved_regs
-// OBSOLETE    Return the frame_saved_regs structure for the frame.
-// OBSOLETE    Doesn't really work for dummy frames, but it does pass back
-// OBSOLETE    an empty frame_saved_regs, so I guess that's better than total failure */
-// OBSOLETE 
-// OBSOLETE void
-// OBSOLETE m32r_frame_find_saved_regs (struct frame_info *fi,
-// OBSOLETE                        struct frame_saved_regs *regaddr)
-// OBSOLETE {
-// OBSOLETE   memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Turn this on if you want to see just how much instruction decoding
-// OBSOLETE    if being done, its quite a lot
-// OBSOLETE  */
-// OBSOLETE #if 0
-// OBSOLETE static void
-// OBSOLETE dump_insn (char *commnt, CORE_ADDR pc, int insn)
-// OBSOLETE {
-// OBSOLETE   printf_filtered ("  %s %08x %08x ",
-// OBSOLETE               commnt, (unsigned int) pc, (unsigned int) insn);
-// OBSOLETE   TARGET_PRINT_INSN (pc, &tm_print_insn_info);
-// OBSOLETE   printf_filtered ("\n");
-// OBSOLETE }
-// OBSOLETE #define insn_debug(args) { printf_filtered args; }
-// OBSOLETE #else
-// OBSOLETE #define dump_insn(a,b,c) {}
-// OBSOLETE #define insn_debug(args) {}
-// OBSOLETE #endif
-// OBSOLETE 
-// OBSOLETE #define DEFAULT_SEARCH_LIMIT 44
-// OBSOLETE 
-// OBSOLETE /* Function: scan_prologue
-// OBSOLETE    This function decodes the target function prologue to determine
-// OBSOLETE    1) the size of the stack frame, and 2) which registers are saved on it.
-// OBSOLETE    It saves the offsets of saved regs in the frame_saved_regs argument,
-// OBSOLETE    and returns the frame size.  */
-// OBSOLETE 
-// OBSOLETE /*
-// OBSOLETE    The sequence it currently generates is:
-// OBSOLETE 
-// OBSOLETE    if (varargs function) { ddi sp,#n }
-// OBSOLETE    push registers
-// OBSOLETE    if (additional stack <= 256) {       addi sp,#-stack }
-// OBSOLETE    else if (additional stack < 65k) { add3 sp,sp,#-stack
-// OBSOLETE 
-// OBSOLETE    } else if (additional stack) {
-// OBSOLETE    seth sp,#(stack & 0xffff0000)
-// OBSOLETE    or3 sp,sp,#(stack & 0x0000ffff)
-// OBSOLETE    sub sp,r4
-// OBSOLETE    }
-// OBSOLETE    if (frame pointer) {
-// OBSOLETE    mv sp,fp
-// OBSOLETE    }
-// OBSOLETE 
-// OBSOLETE    These instructions are scheduled like everything else, so you should stop at
-// OBSOLETE    the first branch instruction.
-// OBSOLETE 
-// OBSOLETE  */
-// OBSOLETE 
-// OBSOLETE /* This is required by skip prologue and by m32r_init_extra_frame_info. 
-// OBSOLETE    The results of decoding a prologue should be cached because this
-// OBSOLETE    thrashing is getting nuts.
-// OBSOLETE    I am thinking of making a container class with two indexes, name and
-// OBSOLETE    address. It may be better to extend the symbol table.
-// OBSOLETE  */
-// OBSOLETE 
-// OBSOLETE static void
-// OBSOLETE decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr,   /* var parameter */
-// OBSOLETE             unsigned long *framelength, struct frame_info *fi,
-// OBSOLETE             struct frame_saved_regs *fsr)
-// OBSOLETE {
-// OBSOLETE   unsigned long framesize;
-// OBSOLETE   int insn;
-// OBSOLETE   int op1;
-// OBSOLETE   int maybe_one_more = 0;
-// OBSOLETE   CORE_ADDR after_prologue = 0;
-// OBSOLETE   CORE_ADDR after_stack_adjust = 0;
-// OBSOLETE   CORE_ADDR current_pc;
-// OBSOLETE 
-// OBSOLETE 
-// OBSOLETE   framesize = 0;
-// OBSOLETE   after_prologue = 0;
-// OBSOLETE   insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
-// OBSOLETE 
-// OBSOLETE   for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
-// OBSOLETE     {
-// OBSOLETE 
-// OBSOLETE       insn = read_memory_unsigned_integer (current_pc, 2);
-// OBSOLETE       dump_insn ("insn-1", current_pc, insn);      /* MTZ */
-// OBSOLETE 
-// OBSOLETE       /* If this is a 32 bit instruction, we dont want to examine its
-// OBSOLETE          immediate data as though it were an instruction */
-// OBSOLETE       if (current_pc & 0x02)
-// OBSOLETE    {                       /* Clear the parallel execution bit from 16 bit instruction */
-// OBSOLETE      if (maybe_one_more)
-// OBSOLETE        {                   /* The last instruction was a branch, usually terminates
-// OBSOLETE                               the series, but if this is a parallel instruction,
-// OBSOLETE                               it may be a stack framing instruction */
-// OBSOLETE          if (!(insn & 0x8000))
-// OBSOLETE            {
-// OBSOLETE              insn_debug (("Really done"));
-// OBSOLETE              break;        /* nope, we are really done */
-// OBSOLETE            }
-// OBSOLETE        }
-// OBSOLETE      insn &= 0x7fff;       /* decode this instruction further */
-// OBSOLETE    }
-// OBSOLETE       else
-// OBSOLETE    {
-// OBSOLETE      if (maybe_one_more)
-// OBSOLETE        break;              /* This isnt the one more */
-// OBSOLETE      if (insn & 0x8000)
-// OBSOLETE        {
-// OBSOLETE          insn_debug (("32 bit insn\n"));
-// OBSOLETE          if (current_pc == scan_limit)
-// OBSOLETE            scan_limit += 2;        /* extend the search */
-// OBSOLETE          current_pc += 2;  /* skip the immediate data */
-// OBSOLETE          if (insn == 0x8faf)       /* add3 sp, sp, xxxx */
-// OBSOLETE            /* add 16 bit sign-extended offset */
-// OBSOLETE            {
-// OBSOLETE              insn_debug (("stack increment\n"));
-// OBSOLETE              framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
-// OBSOLETE            }
-// OBSOLETE          else
-// OBSOLETE            {
-// OBSOLETE              if (((insn >> 8) == 0xe4) &&  /* ld24 r4, xxxxxx; sub sp, r4 */
-// OBSOLETE              read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
-// OBSOLETE                {           /* subtract 24 bit sign-extended negative-offset */
-// OBSOLETE                  dump_insn ("insn-2", current_pc + 2, insn);
-// OBSOLETE                  insn = read_memory_unsigned_integer (current_pc - 2, 4);
-// OBSOLETE                  dump_insn ("insn-3(l4)", current_pc - 2, insn);
-// OBSOLETE                  if (insn & 0x00800000)    /* sign extend */
-// OBSOLETE                    insn |= 0xff000000;     /* negative */
-// OBSOLETE                  else
-// OBSOLETE                    insn &= 0x00ffffff;     /* positive */
-// OBSOLETE                  framesize += insn;
-// OBSOLETE                }
-// OBSOLETE            }
-// OBSOLETE          after_prologue = current_pc;
-// OBSOLETE          continue;
-// OBSOLETE        }
-// OBSOLETE    }
-// OBSOLETE       op1 = insn & 0xf000; /* isolate just the first nibble */
-// OBSOLETE 
-// OBSOLETE       if ((insn & 0xf0ff) == 0x207f)
-// OBSOLETE    {                       /* st reg, @-sp */
-// OBSOLETE      int regno;
-// OBSOLETE      insn_debug (("push\n"));
-// OBSOLETE #if 0                              /* No, PUSH FP is not an indication that we will use a frame pointer. */
-// OBSOLETE      if (((insn & 0xffff) == 0x2d7f) && fi)
-// OBSOLETE        fi->using_frame_pointer = 1;
-// OBSOLETE #endif
-// OBSOLETE      framesize += 4;
-// OBSOLETE #if 0
-// OBSOLETE /* Why should we increase the scan limit, just because we did a push? 
-// OBSOLETE    And if there is a reason, surely we would only want to do it if we
-// OBSOLETE    had already reached the scan limit... */
-// OBSOLETE      if (current_pc == scan_limit)
-// OBSOLETE        scan_limit += 2;
-// OBSOLETE #endif
-// OBSOLETE      regno = ((insn >> 8) & 0xf);
-// OBSOLETE      if (fsr)              /* save_regs offset */
-// OBSOLETE        fsr->regs[regno] = framesize;
-// OBSOLETE      after_prologue = 0;
-// OBSOLETE      continue;
-// OBSOLETE    }
-// OBSOLETE       if ((insn >> 8) == 0x4f)     /* addi sp, xx */
-// OBSOLETE    /* add 8 bit sign-extended offset */
-// OBSOLETE    {
-// OBSOLETE      int stack_adjust = (char) (insn & 0xff);
-// OBSOLETE 
-// OBSOLETE      /* there are probably two of these stack adjustments:
-// OBSOLETE         1) A negative one in the prologue, and
-// OBSOLETE         2) A positive one in the epilogue.
-// OBSOLETE         We are only interested in the first one.  */
-// OBSOLETE 
-// OBSOLETE      if (stack_adjust < 0)
-// OBSOLETE        {
-// OBSOLETE          framesize -= stack_adjust;
-// OBSOLETE          after_prologue = 0;
-// OBSOLETE          /* A frameless function may have no "mv fp, sp".
-// OBSOLETE             In that case, this is the end of the prologue.  */
-// OBSOLETE          after_stack_adjust = current_pc + 2;
-// OBSOLETE        }
-// OBSOLETE      continue;
-// OBSOLETE    }
-// OBSOLETE       if (insn == 0x1d8f)
-// OBSOLETE    {                       /* mv fp, sp */
-// OBSOLETE      if (fi)
-// OBSOLETE        fi->using_frame_pointer = 1;        /* fp is now valid */
-// OBSOLETE      insn_debug (("done fp found\n"));
-// OBSOLETE      after_prologue = current_pc + 2;
-// OBSOLETE      break;                /* end of stack adjustments */
-// OBSOLETE    }
-// OBSOLETE       if (insn == 0x7000)  /* Nop looks like a branch, continue explicitly */
-// OBSOLETE    {
-// OBSOLETE      insn_debug (("nop\n"));
-// OBSOLETE      after_prologue = current_pc + 2;
-// OBSOLETE      continue;             /* nop occurs between pushes */
-// OBSOLETE    }
-// OBSOLETE       /* End of prolog if any of these are branch instructions */
-// OBSOLETE       if ((op1 == 0x7000)
-// OBSOLETE      || (op1 == 0xb000)
-// OBSOLETE      || (op1 == 0xf000))
-// OBSOLETE    {
-// OBSOLETE      after_prologue = current_pc;
-// OBSOLETE      insn_debug (("Done: branch\n"));
-// OBSOLETE      maybe_one_more = 1;
-// OBSOLETE      continue;
-// OBSOLETE    }
-// OBSOLETE       /* Some of the branch instructions are mixed with other types */
-// OBSOLETE       if (op1 == 0x1000)
-// OBSOLETE    {
-// OBSOLETE      int subop = insn & 0x0ff0;
-// OBSOLETE      if ((subop == 0x0ec0) || (subop == 0x0fc0))
-// OBSOLETE        {
-// OBSOLETE          insn_debug (("done: jmp\n"));
-// OBSOLETE          after_prologue = current_pc;
-// OBSOLETE          maybe_one_more = 1;
-// OBSOLETE          continue;         /* jmp , jl */
-// OBSOLETE        }
-// OBSOLETE    }
-// OBSOLETE     }
-// OBSOLETE 
-// OBSOLETE   if (current_pc >= scan_limit)
-// OBSOLETE     {
-// OBSOLETE       if (pl_endptr)
-// OBSOLETE    {
-// OBSOLETE #if 1
-// OBSOLETE      if (after_stack_adjust != 0)
-// OBSOLETE        /* We did not find a "mv fp,sp", but we DID find
-// OBSOLETE           a stack_adjust.  Is it safe to use that as the
-// OBSOLETE           end of the prologue?  I just don't know. */
-// OBSOLETE        {
-// OBSOLETE          *pl_endptr = after_stack_adjust;
-// OBSOLETE          if (framelength)
-// OBSOLETE            *framelength = framesize;
-// OBSOLETE        }
-// OBSOLETE      else
-// OBSOLETE #endif
-// OBSOLETE        /* We reached the end of the loop without finding the end
-// OBSOLETE           of the prologue.  No way to win -- we should report failure.  
-// OBSOLETE           The way we do that is to return the original start_pc.
-// OBSOLETE           GDB will set a breakpoint at the start of the function (etc.) */
-// OBSOLETE        *pl_endptr = start_pc;
-// OBSOLETE    }
-// OBSOLETE       return;
-// OBSOLETE     }
-// OBSOLETE   if (after_prologue == 0)
-// OBSOLETE     after_prologue = current_pc;
-// OBSOLETE 
-// OBSOLETE   insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
-// OBSOLETE   if (framelength)
-// OBSOLETE     *framelength = framesize;
-// OBSOLETE   if (pl_endptr)
-// OBSOLETE     *pl_endptr = after_prologue;
-// OBSOLETE }                          /*  decode_prologue */
-// OBSOLETE 
-// OBSOLETE /* Function: skip_prologue
-// OBSOLETE    Find end of function prologue */
-// OBSOLETE 
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_skip_prologue (CORE_ADDR pc)
-// OBSOLETE {
-// OBSOLETE   CORE_ADDR func_addr, func_end;
-// OBSOLETE   struct symtab_and_line sal;
-// OBSOLETE 
-// OBSOLETE   /* See what the symbol table says */
-// OBSOLETE 
-// OBSOLETE   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
-// OBSOLETE     {
-// OBSOLETE       sal = find_pc_line (func_addr, 0);
-// OBSOLETE 
-// OBSOLETE       if (sal.line != 0 && sal.end <= func_end)
-// OBSOLETE    {
-// OBSOLETE 
-// OBSOLETE      insn_debug (("BP after prologue %08x\n", sal.end));
-// OBSOLETE      func_end = sal.end;
-// OBSOLETE    }
-// OBSOLETE       else
-// OBSOLETE    /* Either there's no line info, or the line after the prologue is after
-// OBSOLETE       the end of the function.  In this case, there probably isn't a
-// OBSOLETE       prologue.  */
-// OBSOLETE    {
-// OBSOLETE      insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
-// OBSOLETE                   sal.line, sal.end, func_end));
-// OBSOLETE      func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
-// OBSOLETE    }
-// OBSOLETE     }
-// OBSOLETE   else
-// OBSOLETE     func_end = pc + DEFAULT_SEARCH_LIMIT;
-// OBSOLETE   decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
-// OBSOLETE   return sal.end;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE static unsigned long
-// OBSOLETE m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
-// OBSOLETE {
-// OBSOLETE   struct symtab_and_line sal;
-// OBSOLETE   CORE_ADDR prologue_start, prologue_end, current_pc;
-// OBSOLETE   unsigned long framesize = 0;
-// OBSOLETE 
-// OBSOLETE   /* this code essentially duplicates skip_prologue, 
-// OBSOLETE      but we need the start address below.  */
-// OBSOLETE 
-// OBSOLETE   if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
-// OBSOLETE     {
-// OBSOLETE       sal = find_pc_line (prologue_start, 0);
-// OBSOLETE 
-// OBSOLETE       if (sal.line == 0)   /* no line info, use current PC */
-// OBSOLETE    if (prologue_start == entry_point_address ())
-// OBSOLETE      return 0;
-// OBSOLETE     }
-// OBSOLETE   else
-// OBSOLETE     {
-// OBSOLETE       prologue_start = fi->pc;
-// OBSOLETE       prologue_end = prologue_start + 48;  /* We're in the boondocks: 
-// OBSOLETE                                               allow for 16 pushes, an add, 
-// OBSOLETE                                               and "mv fp,sp" */
-// OBSOLETE     }
-// OBSOLETE #if 0
-// OBSOLETE   prologue_end = min (prologue_end, fi->pc);
-// OBSOLETE #endif
-// OBSOLETE   insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
-// OBSOLETE           fi->pc, prologue_start, prologue_end));
-// OBSOLETE   prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
-// OBSOLETE   decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
-// OBSOLETE               fi, fsr);
-// OBSOLETE   return framesize;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: init_extra_frame_info
-// OBSOLETE    This function actually figures out the frame address for a given pc and
-// OBSOLETE    sp.  This is tricky on the m32r because we sometimes don't use an explicit
-// OBSOLETE    frame pointer, and the previous stack pointer isn't necessarily recorded
-// OBSOLETE    on the stack.  The only reliable way to get this info is to
-// OBSOLETE    examine the prologue.  */
-// OBSOLETE 
-// OBSOLETE void
-// OBSOLETE m32r_init_extra_frame_info (struct frame_info *fi)
-// OBSOLETE {
-// OBSOLETE   int reg;
-// OBSOLETE 
-// OBSOLETE   if (fi->next)
-// OBSOLETE     fi->pc = FRAME_SAVED_PC (fi->next);
-// OBSOLETE 
-// OBSOLETE   memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
-// OBSOLETE 
-// OBSOLETE   if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE     {
-// OBSOLETE       /* We need to setup fi->frame here because run_stack_dummy gets it wrong
-// OBSOLETE          by assuming it's always FP.  */
-// OBSOLETE       fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
-// OBSOLETE                                              SP_REGNUM);
-// OBSOLETE       fi->framesize = 0;
-// OBSOLETE       return;
-// OBSOLETE     }
-// OBSOLETE   else
-// OBSOLETE     {
-// OBSOLETE       fi->using_frame_pointer = 0;
-// OBSOLETE       fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
-// OBSOLETE 
-// OBSOLETE       if (!fi->next)
-// OBSOLETE    if (fi->using_frame_pointer)
-// OBSOLETE      {
-// OBSOLETE        fi->frame = read_register (FP_REGNUM);
-// OBSOLETE      }
-// OBSOLETE    else
-// OBSOLETE      fi->frame = read_register (SP_REGNUM);
-// OBSOLETE       else
-// OBSOLETE    /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
-// OBSOLETE    /* we have an FP */
-// OBSOLETE    if (fi->next->fsr.regs[FP_REGNUM] != 0)         /* caller saved our FP */
-// OBSOLETE      fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
-// OBSOLETE       for (reg = 0; reg < NUM_REGS; reg++)
-// OBSOLETE    if (fi->fsr.regs[reg] != 0)
-// OBSOLETE      fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
-// OBSOLETE     }
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: m32r_virtual_frame_pointer
-// OBSOLETE    Return the register that the function uses for a frame pointer, 
-// OBSOLETE    plus any necessary offset to be applied to the register before
-// OBSOLETE    any frame pointer offsets.  */
-// OBSOLETE 
-// OBSOLETE void
-// OBSOLETE m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
-// OBSOLETE {
-// OBSOLETE   struct frame_info *fi = deprecated_frame_xmalloc ();
-// OBSOLETE   struct cleanup *old_chain = make_cleanup (xfree, fi);
-// OBSOLETE 
-// OBSOLETE   /* Set up a dummy frame_info. */
-// OBSOLETE   fi->next = NULL;
-// OBSOLETE   fi->prev = NULL;
-// OBSOLETE   fi->frame = 0;
-// OBSOLETE   fi->pc = pc;
-// OBSOLETE 
-// OBSOLETE   /* Analyze the prolog and fill in the extra info.  */
-// OBSOLETE   m32r_init_extra_frame_info (fi);
-// OBSOLETE 
-// OBSOLETE   /* Results will tell us which type of frame it uses.  */
-// OBSOLETE   if (fi->using_frame_pointer)
-// OBSOLETE     {
-// OBSOLETE       *reg = FP_REGNUM;
-// OBSOLETE       *offset = 0;
-// OBSOLETE     }
-// OBSOLETE   else
-// OBSOLETE     {
-// OBSOLETE       *reg = SP_REGNUM;
-// OBSOLETE       *offset = 0;
-// OBSOLETE     }
-// OBSOLETE   do_cleanups (old_chain);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: find_callers_reg
-// OBSOLETE    Find REGNUM on the stack.  Otherwise, it's in an active register.  One thing
-// OBSOLETE    we might want to do here is to check REGNUM against the clobber mask, and
-// OBSOLETE    somehow flag it as invalid if it isn't saved on the stack somewhere.  This
-// OBSOLETE    would provide a graceful failure mode when trying to get the value of
-// OBSOLETE    caller-saves registers for an inner frame.  */
-// OBSOLETE 
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_find_callers_reg (struct frame_info *fi, int regnum)
-// OBSOLETE {
-// OBSOLETE   for (; fi; fi = fi->next)
-// OBSOLETE     if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE       return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
-// OBSOLETE     else if (fi->fsr.regs[regnum] != 0)
-// OBSOLETE       return read_memory_integer (fi->fsr.regs[regnum],
-// OBSOLETE                              REGISTER_RAW_SIZE (regnum));
-// OBSOLETE   return read_register (regnum);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: frame_chain Given a GDB frame, determine the address of
-// OBSOLETE    the calling function's frame.  This will be used to create a new
-// OBSOLETE    GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
-// OBSOLETE    DEPRECATED_INIT_FRAME_PC will be called for the new frame.  For
-// OBSOLETE    m32r, we save the frame size when we initialize the frame_info.  */
-// OBSOLETE 
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_frame_chain (struct frame_info *fi)
-// OBSOLETE {
-// OBSOLETE   CORE_ADDR fn_start, callers_pc, fp;
-// OBSOLETE 
-// OBSOLETE   /* is this a dummy frame? */
-// OBSOLETE   if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE     return fi->frame;              /* dummy frame same as caller's frame */
-// OBSOLETE 
-// OBSOLETE   /* is caller-of-this a dummy frame? */
-// OBSOLETE   callers_pc = FRAME_SAVED_PC (fi);        /* find out who called us: */
-// OBSOLETE   fp = m32r_find_callers_reg (fi, FP_REGNUM);
-// OBSOLETE   if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp))
-// OBSOLETE     return fp;                     /* dummy frame's frame may bear no relation to ours */
-// OBSOLETE 
-// OBSOLETE   if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
-// OBSOLETE     if (fn_start == entry_point_address ())
-// OBSOLETE       return 0;                    /* in _start fn, don't chain further */
-// OBSOLETE   if (fi->framesize == 0)
-// OBSOLETE     {
-// OBSOLETE       printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
-// OBSOLETE                   paddr (fi->frame),
-// OBSOLETE                   paddr (fi->pc));
-// OBSOLETE       return 0;
-// OBSOLETE     }
-// OBSOLETE   insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
-// OBSOLETE   return fi->frame + fi->framesize;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: push_return_address (pc)
-// OBSOLETE    Set up the return address for the inferior function call.
-// OBSOLETE    Necessary for targets that don't actually execute a JSR/BSR instruction 
-// OBSOLETE    (ie. when using an empty CALL_DUMMY) */
-// OBSOLETE 
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
-// OBSOLETE {
-// OBSOLETE   write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
-// OBSOLETE   return sp;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE 
-// OBSOLETE /* Function: pop_frame
-// OBSOLETE    Discard from the stack the innermost frame,
-// OBSOLETE    restoring all saved registers.  */
-// OBSOLETE 
-// OBSOLETE struct frame_info *
-// OBSOLETE m32r_pop_frame (struct frame_info *frame)
-// OBSOLETE {
-// OBSOLETE   int regnum;
-// OBSOLETE 
-// OBSOLETE   if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
-// OBSOLETE     generic_pop_dummy_frame ();
-// OBSOLETE   else
-// OBSOLETE     {
-// OBSOLETE       for (regnum = 0; regnum < NUM_REGS; regnum++)
-// OBSOLETE    if (frame->fsr.regs[regnum] != 0)
-// OBSOLETE      write_register (regnum,
-// OBSOLETE                      read_memory_integer (frame->fsr.regs[regnum], 4));
-// OBSOLETE 
-// OBSOLETE       write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
-// OBSOLETE       write_register (SP_REGNUM, read_register (FP_REGNUM));
-// OBSOLETE       if (read_register (PSW_REGNUM) & 0x80)
-// OBSOLETE    write_register (SPU_REGNUM, read_register (SP_REGNUM));
-// OBSOLETE       else
-// OBSOLETE    write_register (SPI_REGNUM, read_register (SP_REGNUM));
-// OBSOLETE     }
-// OBSOLETE   flush_cached_frames ();
-// OBSOLETE   return NULL;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: frame_saved_pc
-// OBSOLETE    Find the caller of this frame.  We do this by seeing if RP_REGNUM is saved
-// OBSOLETE    in the stack anywhere, otherwise we get it from the registers. */
-// OBSOLETE 
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_frame_saved_pc (struct frame_info *fi)
-// OBSOLETE {
-// OBSOLETE   if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE     return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
-// OBSOLETE   else
-// OBSOLETE     return m32r_find_callers_reg (fi, RP_REGNUM);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: push_arguments
-// OBSOLETE    Setup the function arguments for calling a function in the inferior.
-// OBSOLETE 
-// OBSOLETE    On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
-// OBSOLETE    which are dedicated for passing function arguments.  Up to the first 
-// OBSOLETE    four arguments (depending on size) may go into these registers.
-// OBSOLETE    The rest go on the stack.
-// OBSOLETE 
-// OBSOLETE    Arguments that are smaller than 4 bytes will still take up a whole
-// OBSOLETE    register or a whole 32-bit word on the stack, and will be
-// OBSOLETE    right-justified in the register or the stack word.  This includes
-// OBSOLETE    chars, shorts, and small aggregate types.
-// OBSOLETE 
-// OBSOLETE    Arguments of 8 bytes size are split between two registers, if 
-// OBSOLETE    available.  If only one register is available, the argument will 
-// OBSOLETE    be split between the register and the stack.  Otherwise it is
-// OBSOLETE    passed entirely on the stack.  Aggregate types with sizes between
-// OBSOLETE    4 and 8 bytes are passed entirely on the stack, and are left-justified
-// OBSOLETE    within the double-word (as opposed to aggregates smaller than 4 bytes
-// OBSOLETE    which are right-justified).
-// OBSOLETE 
-// OBSOLETE    Aggregates of greater than 8 bytes are first copied onto the stack, 
-// OBSOLETE    and then a pointer to the copy is passed in the place of the normal
-// OBSOLETE    argument (either in a register if available, or on the stack).
-// OBSOLETE 
-// OBSOLETE    Functions that must return an aggregate type can return it in the 
-// OBSOLETE    normal return value registers (R0 and R1) if its size is 8 bytes or
-// OBSOLETE    less.  For larger return values, the caller must allocate space for 
-// OBSOLETE    the callee to copy the return value to.  A pointer to this space is
-// OBSOLETE    passed as an implicit first argument, always in R0. */
-// OBSOLETE 
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
-// OBSOLETE                 unsigned char struct_return, CORE_ADDR struct_addr)
-// OBSOLETE {
-// OBSOLETE   int stack_offset, stack_alloc;
-// OBSOLETE   int argreg;
-// OBSOLETE   int argnum;
-// OBSOLETE   struct type *type;
-// OBSOLETE   CORE_ADDR regval;
-// OBSOLETE   char *val;
-// OBSOLETE   char valbuf[4];
-// OBSOLETE   int len;
-// OBSOLETE   int odd_sized_struct;
-// OBSOLETE 
-// OBSOLETE   /* first force sp to a 4-byte alignment */
-// OBSOLETE   sp = sp & ~3;
-// OBSOLETE 
-// OBSOLETE   argreg = ARG0_REGNUM;
-// OBSOLETE   /* The "struct return pointer" pseudo-argument goes in R0 */
-// OBSOLETE   if (struct_return)
-// OBSOLETE     write_register (argreg++, struct_addr);
-// OBSOLETE 
-// OBSOLETE   /* Now make sure there's space on the stack */
-// OBSOLETE   for (argnum = 0, stack_alloc = 0;
-// OBSOLETE        argnum < nargs; argnum++)
-// OBSOLETE     stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
-// OBSOLETE   sp -= stack_alloc;               /* make room on stack for args */
-// OBSOLETE 
-// OBSOLETE 
-// OBSOLETE   /* Now load as many as possible of the first arguments into
-// OBSOLETE      registers, and push the rest onto the stack.  There are 16 bytes
-// OBSOLETE      in four registers available.  Loop thru args from first to last.  */
-// OBSOLETE 
-// OBSOLETE   argreg = ARG0_REGNUM;
-// OBSOLETE   for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
-// OBSOLETE     {
-// OBSOLETE       type = VALUE_TYPE (args[argnum]);
-// OBSOLETE       len = TYPE_LENGTH (type);
-// OBSOLETE       memset (valbuf, 0, sizeof (valbuf));
-// OBSOLETE       if (len < 4)
-// OBSOLETE    {                       /* value gets right-justified in the register or stack word */
-// OBSOLETE      memcpy (valbuf + (4 - len),
-// OBSOLETE              (char *) VALUE_CONTENTS (args[argnum]), len);
-// OBSOLETE      val = valbuf;
-// OBSOLETE    }
-// OBSOLETE       else
-// OBSOLETE    val = (char *) VALUE_CONTENTS (args[argnum]);
-// OBSOLETE 
-// OBSOLETE       if (len > 4 && (len & 3) != 0)
-// OBSOLETE    odd_sized_struct = 1;   /* such structs go entirely on stack */
-// OBSOLETE       else
-// OBSOLETE    odd_sized_struct = 0;
-// OBSOLETE       while (len > 0)
-// OBSOLETE    {
-// OBSOLETE      if (argreg > ARGLAST_REGNUM || odd_sized_struct)
-// OBSOLETE        {                   /* must go on the stack */
-// OBSOLETE          write_memory (sp + stack_offset, val, 4);
-// OBSOLETE          stack_offset += 4;
-// OBSOLETE        }
-// OBSOLETE      /* NOTE WELL!!!!!  This is not an "else if" clause!!!
-// OBSOLETE         That's because some *&^%$ things get passed on the stack
-// OBSOLETE         AND in the registers!   */
-// OBSOLETE      if (argreg <= ARGLAST_REGNUM)
-// OBSOLETE        {                   /* there's room in a register */
-// OBSOLETE          regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
-// OBSOLETE          write_register (argreg++, regval);
-// OBSOLETE        }
-// OBSOLETE      /* Store the value 4 bytes at a time.  This means that things
-// OBSOLETE         larger than 4 bytes may go partly in registers and partly
-// OBSOLETE         on the stack.  */
-// OBSOLETE      len -= REGISTER_RAW_SIZE (argreg);
-// OBSOLETE      val += REGISTER_RAW_SIZE (argreg);
-// OBSOLETE    }
-// OBSOLETE     }
-// OBSOLETE   return sp;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE /* Function: fix_call_dummy 
-// OBSOLETE    If there is real CALL_DUMMY code (eg. on the stack), this function
-// OBSOLETE    has the responsability to insert the address of the actual code that
-// OBSOLETE    is the target of the target function call.  */
-// OBSOLETE 
-// OBSOLETE void
-// OBSOLETE m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
-// OBSOLETE                 struct value **args, struct type *type, int gcc_p)
-// OBSOLETE {
-// OBSOLETE   /* ld24 r8, <(imm24) fun> */
-// OBSOLETE   *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE 
-// OBSOLETE /* Function: m32r_write_sp
-// OBSOLETE    Because SP is really a read-only register that mirrors either SPU or SPI,
-// OBSOLETE    we must actually write one of those two as well, depending on PSW. */
-// OBSOLETE 
-// OBSOLETE void
-// OBSOLETE m32r_write_sp (CORE_ADDR val)
-// OBSOLETE {
-// OBSOLETE   unsigned long psw = read_register (PSW_REGNUM);
-// OBSOLETE 
-// OBSOLETE   if (psw & 0x80)          /* stack mode: user or interrupt */
-// OBSOLETE     write_register (SPU_REGNUM, val);
-// OBSOLETE   else
-// OBSOLETE     write_register (SPI_REGNUM, val);
-// OBSOLETE   write_register (SP_REGNUM, val);
-// OBSOLETE }
-// OBSOLETE 
-// OBSOLETE void
-// OBSOLETE _initialize_m32r_tdep (void)
-// OBSOLETE {
-// OBSOLETE   tm_print_insn = print_insn_m32r;
-// OBSOLETE }
+/* Target-dependent code for Renesas M32R, for GDB.
+
+   Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
+   Foundation, Inc.
+
+   This file is part of GDB.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2 of the License, or
+   (at your option) any later version.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with this program; if not, write to the Free Software
+   Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include "defs.h"
+#include "frame.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
+#include "symtab.h"
+#include "gdbtypes.h"
+#include "gdbcmd.h"
+#include "gdbcore.h"
+#include "gdb_string.h"
+#include "value.h"
+#include "inferior.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "language.h"
+#include "arch-utils.h"
+#include "regcache.h"
+#include "trad-frame.h"
+
+#include "gdb_assert.h"
+
+struct gdbarch_tdep
+{
+  /* gdbarch target dependent data here. Currently unused for M32R. */
+};
+
+/* m32r register names. */
+
+enum
+{
+  R0_REGNUM = 0,
+  R3_REGNUM = 3,
+  M32R_FP_REGNUM = 13,
+  LR_REGNUM = 14,
+  M32R_SP_REGNUM = 15,
+  PSW_REGNUM = 16,
+  M32R_PC_REGNUM = 21,
+  /* m32r calling convention. */
+  ARG1_REGNUM = R0_REGNUM,
+  ARGN_REGNUM = R3_REGNUM,
+  RET1_REGNUM = R0_REGNUM,
+};
+
+/* Local functions */
+
+extern void _initialize_m32r_tdep (void);
+
+static CORE_ADDR
+m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
+{
+  /* Align to the size of an instruction (so that they can safely be
+     pushed onto the stack.  */
+  return sp & ~3;
+}
+
+/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
+   EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc
+   and TYPE is the type (which is known to be struct, union or array).
+
+   The m32r returns anything less than 8 bytes in size in
+   registers. */
+
+static int
+m32r_use_struct_convention (int gcc_p, struct type *type)
+{
+  return (TYPE_LENGTH (type) > 8);
+}
+
+
+/* BREAKPOINT */
+#define M32R_BE_BREAKPOINT32 {0x10, 0xf1, 0x70, 0x00}
+#define M32R_LE_BREAKPOINT32 {0xf1, 0x10, 0x00, 0x70}
+#define M32R_BE_BREAKPOINT16 {0x10, 0xf1}
+#define M32R_LE_BREAKPOINT16 {0xf1, 0x10}
+
+static int
+m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
+{
+  int val;
+  unsigned char *bp;
+  int bplen;
+
+  bplen = (addr & 3) ? 2 : 4;
+
+  /* Save the memory contents.  */
+  val = target_read_memory (addr, contents_cache, bplen);
+  if (val != 0)
+    return val;                        /* return error */
+
+  /* Determine appropriate breakpoint contents and size for this address.  */
+  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+    {
+      if (((addr & 3) == 0) &&
+         ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
+       {
+         static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+         bp = insn;
+         bplen = sizeof (insn);
+       }
+      else
+       {
+         static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+         bp = insn;
+         bplen = sizeof (insn);
+       }
+    }
+  else
+    {                          /* little-endian */
+      if (((addr & 3) == 0) &&
+         ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
+       {
+         static unsigned char insn[] = M32R_LE_BREAKPOINT32;
+         bp = insn;
+         bplen = sizeof (insn);
+       }
+      else
+       {
+         static unsigned char insn[] = M32R_LE_BREAKPOINT16;
+         bp = insn;
+         bplen = sizeof (insn);
+       }
+    }
+
+  /* Write the breakpoint.  */
+  val = target_write_memory (addr, (char *) bp, bplen);
+  return val;
+}
+
+static int
+m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
+{
+  int val;
+  int bplen;
+
+  /* Determine appropriate breakpoint contents and size for this address.  */
+  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+    {
+      if (((addr & 3) == 0) &&
+         ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
+       {
+         static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+         bplen = sizeof (insn);
+       }
+      else
+       {
+         static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+         bplen = sizeof (insn);
+       }
+    }
+  else
+    {
+      /* little-endian */
+      if (((addr & 3) == 0) &&
+         ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
+       {
+         static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+         bplen = sizeof (insn);
+       }
+      else
+       {
+         static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+         bplen = sizeof (insn);
+       }
+    }
+
+  /* Write contents.  */
+  val = target_write_memory (addr, contents_cache, bplen);
+  return val;
+}
+
+static const unsigned char *
+m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
+{
+  unsigned char *bp;
+
+  /* Determine appropriate breakpoint.  */
+  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+    {
+      if ((*pcptr & 3) == 0)
+       {
+         static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+         bp = insn;
+         *lenptr = sizeof (insn);
+       }
+      else
+       {
+         static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+         bp = insn;
+         *lenptr = sizeof (insn);
+       }
+    }
+  else
+    {
+      if ((*pcptr & 3) == 0)
+       {
+         static unsigned char insn[] = M32R_LE_BREAKPOINT32;
+         bp = insn;
+         *lenptr = sizeof (insn);
+       }
+      else
+       {
+         static unsigned char insn[] = M32R_LE_BREAKPOINT16;
+         bp = insn;
+         *lenptr = sizeof (insn);
+       }
+    }
+
+  return bp;
+}
+
+
+char *m32r_register_names[] = {
+  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+  "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
+  "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
+  "evb"
+};
+
+static int
+m32r_num_regs (void)
+{
+  return (sizeof (m32r_register_names) / sizeof (m32r_register_names[0]));
+}
+
+static const char *
+m32r_register_name (int reg_nr)
+{
+  if (reg_nr < 0)
+    return NULL;
+  if (reg_nr >= m32r_num_regs ())
+    return NULL;
+  return m32r_register_names[reg_nr];
+}
+
+
+/* Return the GDB type object for the "standard" data type
+   of data in register N.  */
+
+static struct type *
+m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
+{
+  if (reg_nr == M32R_PC_REGNUM)
+    return builtin_type_void_func_ptr;
+  else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
+    return builtin_type_void_data_ptr;
+  else
+    return builtin_type_int32;
+}
+
+
+/* Write into appropriate registers a function return value
+   of type TYPE, given in virtual format.  
+
+   Things always get returned in RET1_REGNUM, RET2_REGNUM. */
+
+static void
+m32r_store_return_value (struct type *type, struct regcache *regcache,
+                        const void *valbuf)
+{
+  CORE_ADDR regval;
+  int len = TYPE_LENGTH (type);
+
+  regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
+  regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
+
+  if (len > 4)
+    {
+      regval = extract_unsigned_integer (valbuf + 4, len - 4);
+      regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
+    }
+}
+
+/* Extract from an array REGBUF containing the (raw) register state
+   the address in which a function should return its structure value,
+   as a CORE_ADDR (or an expression that can be used as one).  */
+
+static CORE_ADDR
+m32r_extract_struct_value_address (struct regcache *regcache)
+{
+  ULONGEST addr;
+  regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
+  return addr;
+}
+
+
+/* This is required by skip_prologue. The results of decoding a prologue
+   should be cached because this thrashing is getting nuts.  */
+
+static void
+decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
+                CORE_ADDR *pl_endptr)
+{
+  unsigned long framesize;
+  int insn;
+  int op1;
+  int maybe_one_more = 0;
+  CORE_ADDR after_prologue = 0;
+  CORE_ADDR after_stack_adjust = 0;
+  CORE_ADDR current_pc;
+
+  framesize = 0;
+  after_prologue = 0;
+
+  for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
+    {
+      insn = read_memory_unsigned_integer (current_pc, 2);
+
+      /* If this is a 32 bit instruction, we dont want to examine its
+         immediate data as though it were an instruction */
+      if (current_pc & 0x02)
+       {
+         /* Clear the parallel execution bit from 16 bit instruction */
+         if (maybe_one_more)
+           {
+             /* The last instruction was a branch, usually terminates
+                the series, but if this is a parallel instruction,
+                it may be a stack framing instruction */
+             if (!(insn & 0x8000))
+               {
+                 /* nope, we are really done */
+                 break;
+               }
+           }
+         /* decode this instruction further */
+         insn &= 0x7fff;
+       }
+      else
+       {
+         if (maybe_one_more)
+           break;              /* This isnt the one more */
+         if (insn & 0x8000)
+           {
+             if (current_pc == scan_limit)
+               scan_limit += 2;        /* extend the search */
+             current_pc += 2;  /* skip the immediate data */
+             if (insn == 0x8faf)       /* add3 sp, sp, xxxx */
+               /* add 16 bit sign-extended offset */
+               {
+                 framesize +=
+                   -((short) read_memory_unsigned_integer (current_pc, 2));
+               }
+             else
+               {
+                 if (((insn >> 8) == 0xe4) &&  /* ld24 r4, xxxxxx; sub sp, r4 */
+                     read_memory_unsigned_integer (current_pc + 2,
+                                                   2) == 0x0f24)
+                   /* subtract 24 bit sign-extended negative-offset */
+                   {
+                     insn = read_memory_unsigned_integer (current_pc - 2, 4);
+                     if (insn & 0x00800000)    /* sign extend */
+                       insn |= 0xff000000;     /* negative */
+                     else
+                       insn &= 0x00ffffff;     /* positive */
+                     framesize += insn;
+                   }
+               }
+             after_prologue = current_pc;
+             continue;
+           }
+       }
+      op1 = insn & 0xf000;     /* isolate just the first nibble */
+
+      if ((insn & 0xf0ff) == 0x207f)
+       {                       /* st reg, @-sp */
+         int regno;
+         framesize += 4;
+         regno = ((insn >> 8) & 0xf);
+         after_prologue = 0;
+         continue;
+       }
+      if ((insn >> 8) == 0x4f) /* addi sp, xx */
+       /* add 8 bit sign-extended offset */
+       {
+         int stack_adjust = (char) (insn & 0xff);
+
+         /* there are probably two of these stack adjustments:
+            1) A negative one in the prologue, and
+            2) A positive one in the epilogue.
+            We are only interested in the first one.  */
+
+         if (stack_adjust < 0)
+           {
+             framesize -= stack_adjust;
+             after_prologue = 0;
+             /* A frameless function may have no "mv fp, sp".
+                In that case, this is the end of the prologue.  */
+             after_stack_adjust = current_pc + 2;
+           }
+         continue;
+       }
+      if (insn == 0x1d8f)
+       {                       /* mv fp, sp */
+         after_prologue = current_pc + 2;
+         break;                /* end of stack adjustments */
+       }
+      /* Nop looks like a branch, continue explicitly */
+      if (insn == 0x7000)
+       {
+         after_prologue = current_pc + 2;
+         continue;             /* nop occurs between pushes */
+       }
+      /* End of prolog if any of these are branch instructions */
+      if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
+       {
+         after_prologue = current_pc;
+         maybe_one_more = 1;
+         continue;
+       }
+      /* Some of the branch instructions are mixed with other types */
+      if (op1 == 0x1000)
+       {
+         int subop = insn & 0x0ff0;
+         if ((subop == 0x0ec0) || (subop == 0x0fc0))
+           {
+             after_prologue = current_pc;
+             maybe_one_more = 1;
+             continue;         /* jmp , jl */
+           }
+       }
+    }
+
+  if (current_pc >= scan_limit)
+    {
+      if (pl_endptr)
+       {
+         if (after_stack_adjust != 0)
+           /* We did not find a "mv fp,sp", but we DID find
+              a stack_adjust.  Is it safe to use that as the
+              end of the prologue?  I just don't know. */
+           {
+             *pl_endptr = after_stack_adjust;
+           }
+         else
+           /* We reached the end of the loop without finding the end
+              of the prologue.  No way to win -- we should report failure.  
+              The way we do that is to return the original start_pc.
+              GDB will set a breakpoint at the start of the function (etc.) */
+           *pl_endptr = start_pc;
+       }
+      return;
+    }
+  if (after_prologue == 0)
+    after_prologue = current_pc;
+
+  if (pl_endptr)
+    *pl_endptr = after_prologue;
+}                              /*  decode_prologue */
+
+/* Function: skip_prologue
+   Find end of function prologue */
+
+#define DEFAULT_SEARCH_LIMIT 44
+
+CORE_ADDR
+m32r_skip_prologue (CORE_ADDR pc)
+{
+  CORE_ADDR func_addr, func_end;
+  struct symtab_and_line sal;
+
+  /* See what the symbol table says */
+
+  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
+    {
+      sal = find_pc_line (func_addr, 0);
+
+      if (sal.line != 0 && sal.end <= func_end)
+       {
+         func_end = sal.end;
+       }
+      else
+       /* Either there's no line info, or the line after the prologue is after
+          the end of the function.  In this case, there probably isn't a
+          prologue.  */
+       {
+         func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
+       }
+    }
+  else
+    func_end = pc + DEFAULT_SEARCH_LIMIT;
+  decode_prologue (pc, func_end, &sal.end);
+  return sal.end;
+}
+
+
+struct m32r_unwind_cache
+{
+  /* The previous frame's inner most stack address.  Used as this
+     frame ID's stack_addr.  */
+  CORE_ADDR prev_sp;
+  /* The frame's base, optionally used by the high-level debug info.  */
+  CORE_ADDR base;
+  int size;
+  /* How far the SP and r13 (FP) have been offset from the start of
+     the stack frame (as defined by the previous frame's stack
+     pointer).  */
+  LONGEST sp_offset;
+  LONGEST r13_offset;
+  int uses_frame;
+  /* Table indicating the location of each and every register.  */
+  struct trad_frame_saved_reg *saved_regs;
+};
+
+/* Put here the code to store, into fi->saved_regs, the addresses of
+   the saved registers of frame described by FRAME_INFO.  This
+   includes special registers such as pc and fp saved in special ways
+   in the stack frame.  sp is even more special: the address we return
+   for it IS the sp for the next frame. */
+
+static struct m32r_unwind_cache *
+m32r_frame_unwind_cache (struct frame_info *next_frame,
+                        void **this_prologue_cache)
+{
+  CORE_ADDR pc;
+  ULONGEST prev_sp;
+  ULONGEST this_base;
+  unsigned long op;
+  int i;
+  struct m32r_unwind_cache *info;
+
+  if ((*this_prologue_cache))
+    return (*this_prologue_cache);
+
+  info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
+  (*this_prologue_cache) = info;
+  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+
+  info->size = 0;
+  info->sp_offset = 0;
+
+  info->uses_frame = 0;
+  for (pc = frame_func_unwind (next_frame);
+       pc > 0 && pc < frame_pc_unwind (next_frame); pc += 2)
+    {
+      if ((pc & 2) == 0)
+       {
+         op = get_frame_memory_unsigned (next_frame, pc, 4);
+         if ((op & 0x80000000) == 0x80000000)
+           {
+             /* 32-bit instruction */
+             if ((op & 0xffff0000) == 0x8faf0000)
+               {
+                 /* add3 sp,sp,xxxx */
+                 short n = op & 0xffff;
+                 info->sp_offset += n;
+               }
+             else if (((op >> 8) == 0xe4) &&   /* ld24 r4, xxxxxx; sub sp, r4 */
+                      get_frame_memory_unsigned (next_frame, pc + 4,
+                                                 2) == 0x0f24)
+               {
+                 unsigned long n = op & 0xffffff;
+                 info->sp_offset += n;
+                 pc += 2;
+               }
+             else
+               break;
+
+             pc += 2;
+             continue;
+           }
+       }
+
+      /* 16-bit instructions */
+      op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
+      if ((op & 0xf0ff) == 0x207f)
+       {
+         /* st rn, @-sp */
+         int regno = ((op >> 8) & 0xf);
+         info->sp_offset -= 4;
+         info->saved_regs[regno].addr = info->sp_offset;
+       }
+      else if ((op & 0xff00) == 0x4f00)
+       {
+         /* addi sp, xx */
+         int n = (char) (op & 0xff);
+         info->sp_offset += n;
+       }
+      else if (op == 0x1d8f)
+       {
+         /* mv fp, sp */
+         info->uses_frame = 1;
+         info->r13_offset = info->sp_offset;
+       }
+      else if (op == 0x7000)
+       /* nop */
+       continue;
+      else
+       break;
+    }
+
+  info->size = -info->sp_offset;
+
+  /* Compute the previous frame's stack pointer (which is also the
+     frame's ID's stack address), and this frame's base pointer.  */
+  if (info->uses_frame)
+    {
+      /* The SP was moved to the FP.  This indicates that a new frame
+         was created.  Get THIS frame's FP value by unwinding it from
+         the next frame.  */
+      frame_unwind_unsigned_register (next_frame, M32R_FP_REGNUM, &this_base);
+      /* The FP points at the last saved register.  Adjust the FP back
+         to before the first saved register giving the SP.  */
+      prev_sp = this_base + info->size;
+    }
+  else
+    {
+      /* Assume that the FP is this frame's SP but with that pushed
+         stack space added back.  */
+      frame_unwind_unsigned_register (next_frame, M32R_SP_REGNUM, &this_base);
+      prev_sp = this_base + info->size;
+    }
+
+  /* Convert that SP/BASE into real addresses.  */
+  info->prev_sp = prev_sp;
+  info->base = this_base;
+
+  /* Adjust all the saved registers so that they contain addresses and
+     not offsets.  */
+  for (i = 0; i < NUM_REGS - 1; i++)
+    if (trad_frame_addr_p (info->saved_regs, i))
+      info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
+
+  /* The call instruction moves the caller's PC in the callee's LR.
+     Since this is an unwind, do the reverse.  Copy the location of LR
+     into PC (the address / regnum) so that a request for PC will be
+     converted into a request for the LR.  */
+  info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
+
+  /* The previous frame's SP needed to be computed.  Save the computed
+     value.  */
+  trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
+
+  return info;
+}
+
+static CORE_ADDR
+m32r_read_pc (ptid_t ptid)
+{
+  ptid_t save_ptid;
+  CORE_ADDR pc;
+
+  save_ptid = inferior_ptid;
+  inferior_ptid = ptid;
+  pc = (int) read_register (M32R_PC_REGNUM);
+  inferior_ptid = save_ptid;
+  return pc;
+}
+
+static void
+m32r_write_pc (CORE_ADDR val, ptid_t ptid)
+{
+  ptid_t save_ptid;
+
+  save_ptid = inferior_ptid;
+  inferior_ptid = ptid;
+  write_register (M32R_PC_REGNUM, val);
+  inferior_ptid = save_ptid;
+}
+
+static CORE_ADDR
+m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+  ULONGEST sp;
+  frame_unwind_unsigned_register (next_frame, M32R_SP_REGNUM, &sp);
+  return sp;
+}
+
+
+static CORE_ADDR
+m32r_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
+                     struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
+                     struct value **args, CORE_ADDR sp, int struct_return,
+                     CORE_ADDR struct_addr)
+{
+  int stack_offset, stack_alloc;
+  int argreg = ARG1_REGNUM;
+  int argnum;
+  struct type *type;
+  enum type_code typecode;
+  CORE_ADDR regval;
+  char *val;
+  char valbuf[MAX_REGISTER_SIZE];
+  int len;
+  int odd_sized_struct;
+
+  /* first force sp to a 4-byte alignment */
+  sp = sp & ~3;
+
+  /* Set the return address.  For the m32r, the return breakpoint is
+     always at BP_ADDR.  */
+  regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
+
+  /* If STRUCT_RETURN is true, then the struct return address (in
+     STRUCT_ADDR) will consume the first argument-passing register.
+     Both adjust the register count and store that value.  */
+  if (struct_return)
+    {
+      regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
+      argreg++;
+    }
+
+  /* Now make sure there's space on the stack */
+  for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
+    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
+  sp -= stack_alloc;           /* make room on stack for args */
+
+  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
+    {
+      type = VALUE_TYPE (args[argnum]);
+      typecode = TYPE_CODE (type);
+      len = TYPE_LENGTH (type);
+
+      memset (valbuf, 0, sizeof (valbuf));
+
+      /* Passes structures that do not fit in 2 registers by reference.  */
+      if (len > 8
+         && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
+       {
+         store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
+         typecode = TYPE_CODE_PTR;
+         len = 4;
+         val = valbuf;
+       }
+      else if (len < 4)
+       {
+         /* value gets right-justified in the register or stack word */
+         memcpy (valbuf + (REGISTER_RAW_SIZE (argreg) - len),
+                 (char *) VALUE_CONTENTS (args[argnum]), len);
+         val = valbuf;
+       }
+      else
+       val = (char *) VALUE_CONTENTS (args[argnum]);
+
+      while (len > 0)
+       {
+         if (argreg > ARGN_REGNUM)
+           {
+             /* must go on the stack */
+             write_memory (sp + stack_offset, val, 4);
+             stack_offset += 4;
+           }
+         else if (argreg <= ARGN_REGNUM)
+           {
+             /* there's room in a register */
+             regval =
+               extract_unsigned_integer (val, REGISTER_RAW_SIZE (argreg));
+             regcache_cooked_write_unsigned (regcache, argreg++, regval);
+           }
+
+         /* Store the value 4 bytes at a time.  This means that things
+            larger than 4 bytes may go partly in registers and partly
+            on the stack.  */
+         len -= REGISTER_RAW_SIZE (argreg);
+         val += REGISTER_RAW_SIZE (argreg);
+       }
+    }
+
+  /* Finally, update the SP register.  */
+  regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
+
+  return sp;
+}
+
+
+/* Given a return value in `regbuf' with a type `valtype', 
+   extract and copy its value into `valbuf'.  */
+
+static void
+m32r_extract_return_value (struct type *type, struct regcache *regcache,
+                          void *dst)
+{
+  bfd_byte *valbuf = dst;
+  int len = TYPE_LENGTH (type);
+  ULONGEST tmp;
+
+  /* By using store_unsigned_integer we avoid having to do
+     anything special for small big-endian values.  */
+  regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
+  store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
+
+  /* Ignore return values more than 8 bytes in size because the m32r
+     returns anything more than 8 bytes in the stack. */
+  if (len > 4)
+    {
+      regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
+      store_unsigned_integer (valbuf + len - 4, 4, tmp);
+    }
+}
+
+
+static CORE_ADDR
+m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+  ULONGEST pc;
+  frame_unwind_unsigned_register (next_frame, M32R_PC_REGNUM, &pc);
+  return pc;
+}
+
+/* Given a GDB frame, determine the address of the calling function's
+   frame.  This will be used to create a new GDB frame struct.  */
+
+static void
+m32r_frame_this_id (struct frame_info *next_frame,
+                   void **this_prologue_cache, struct frame_id *this_id)
+{
+  struct m32r_unwind_cache *info
+    = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
+  CORE_ADDR base;
+  CORE_ADDR func;
+  struct minimal_symbol *msym_stack;
+  struct frame_id id;
+
+  /* The FUNC is easy.  */
+  func = frame_func_unwind (next_frame);
+
+  /* This is meant to halt the backtrace at "_start".  Make sure we
+     don't halt it at a generic dummy frame. */
+  if (inside_entry_file (func))
+    return;
+
+  /* Check if the stack is empty.  */
+  msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
+  if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
+    return;
+
+  /* Hopefully the prologue analysis either correctly determined the
+     frame's base (which is the SP from the previous frame), or set
+     that base to "NULL".  */
+  base = info->prev_sp;
+  if (base == 0)
+    return;
+
+  id = frame_id_build (base, func);
+
+  /* Check that we're not going round in circles with the same frame
+     ID (but avoid applying the test to sentinel frames which do go
+     round in circles).  Can't use frame_id_eq() as that doesn't yet
+     compare the frame's PC value.  */
+  if (frame_relative_level (next_frame) >= 0
+      && get_frame_type (next_frame) != DUMMY_FRAME
+      && frame_id_eq (get_frame_id (next_frame), id))
+    return;
+
+  (*this_id) = id;
+}
+
+static void
+m32r_frame_prev_register (struct frame_info *next_frame,
+                         void **this_prologue_cache,
+                         int regnum, int *optimizedp,
+                         enum lval_type *lvalp, CORE_ADDR *addrp,
+                         int *realnump, void *bufferp)
+{
+  struct m32r_unwind_cache *info
+    = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
+  trad_frame_prev_register (next_frame, info->saved_regs, regnum,
+                           optimizedp, lvalp, addrp, realnump, bufferp);
+}
+
+static const struct frame_unwind m32r_frame_unwind = {
+  NORMAL_FRAME,
+  m32r_frame_this_id,
+  m32r_frame_prev_register
+};
+
+static const struct frame_unwind *
+m32r_frame_p (CORE_ADDR pc)
+{
+  return &m32r_frame_unwind;
+}
+
+static CORE_ADDR
+m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
+{
+  struct m32r_unwind_cache *info
+    = m32r_frame_unwind_cache (next_frame, this_cache);
+  return info->base;
+}
+
+static const struct frame_base m32r_frame_base = {
+  &m32r_frame_unwind,
+  m32r_frame_base_address,
+  m32r_frame_base_address,
+  m32r_frame_base_address
+};
+
+/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
+   dummy frame.  The frame ID's base needs to match the TOS value
+   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
+   breakpoint.  */
+
+static struct frame_id
+m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+  return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
+                        frame_pc_unwind (next_frame));
+}
+
+
+static gdbarch_init_ftype m32r_gdbarch_init;
+
+static struct gdbarch *
+m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+  struct gdbarch *gdbarch;
+  struct gdbarch_tdep *tdep;
+
+  /* If there is already a candidate, use it.  */
+  arches = gdbarch_list_lookup_by_info (arches, &info);
+  if (arches != NULL)
+    return arches->gdbarch;
+
+  /* Allocate space for the new architecture.  */
+  tdep = XMALLOC (struct gdbarch_tdep);
+  gdbarch = gdbarch_alloc (&info, tdep);
+
+  set_gdbarch_read_pc (gdbarch, m32r_read_pc);
+  set_gdbarch_write_pc (gdbarch, m32r_write_pc);
+  set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
+
+  set_gdbarch_num_regs (gdbarch, m32r_num_regs ());
+  set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
+  set_gdbarch_register_name (gdbarch, m32r_register_name);
+  set_gdbarch_register_type (gdbarch, m32r_register_type);
+
+  set_gdbarch_extract_return_value (gdbarch, m32r_extract_return_value);
+  set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
+  set_gdbarch_store_return_value (gdbarch, m32r_store_return_value);
+  set_gdbarch_extract_struct_value_address (gdbarch,
+                                           m32r_extract_struct_value_address);
+  set_gdbarch_use_struct_convention (gdbarch, m32r_use_struct_convention);
+
+  set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
+  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+  set_gdbarch_decr_pc_after_break (gdbarch, 0);
+  set_gdbarch_function_start_offset (gdbarch, 0);
+  set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
+  set_gdbarch_memory_insert_breakpoint (gdbarch,
+                                       m32r_memory_insert_breakpoint);
+  set_gdbarch_memory_remove_breakpoint (gdbarch,
+                                       m32r_memory_remove_breakpoint);
+
+  set_gdbarch_frame_args_skip (gdbarch, 0);
+  set_gdbarch_frameless_function_invocation (gdbarch,
+                                            frameless_look_for_prologue);
+
+  set_gdbarch_frame_align (gdbarch, m32r_frame_align);
+
+  frame_unwind_append_predicate (gdbarch, m32r_frame_p);
+  frame_base_set_default (gdbarch, &m32r_frame_base);
+
+  /* Methods for saving / extracting a dummy frame's ID.  The ID's
+     stack address must match the SP value returned by
+     PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
+  set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
+
+  /* Return the unwound PC value.  */
+  set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
+
+  set_gdbarch_print_insn (gdbarch, print_insn_m32r);
+
+  return gdbarch;
+}
+
+void
+_initialize_m32r_tdep (void)
+{
+  register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
+}