2#11000# => (FPU, OP_FPOP, NONE, FRB, NONE, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', RC, '0', '0'), -- fres
2#11001# => (FPU, OP_FPOP, FRA, NONE, FRC, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', RC, '0', '0'), -- fmuls
2#11010# => (FPU, OP_FPOP, NONE, FRB, NONE, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', RC, '0', '0'), -- frsqrtes
+ 2#11100# => (FPU, OP_FPOP, FRA, FRB, FRC, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', RC, '0', '0'), -- fmsubs
+ 2#11101# => (FPU, OP_FPOP, FRA, FRB, FRC, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', RC, '0', '0'), -- fmadds
+ 2#11110# => (FPU, OP_FPOP, FRA, FRB, FRC, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', RC, '0', '0'), -- fnmsubs
+ 2#11111# => (FPU, OP_FPOP, FRA, FRB, FRC, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', RC, '0', '0'), -- fnmadds
others => illegal_inst
);
2#1000# => (FPU, OP_FPOP, NONE, FRB, NONE, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '0'), -- fre
2#1001# => (FPU, OP_FPOP, FRA, NONE, FRC, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '0'), -- fmul
2#1010# => (FPU, OP_FPOP, NONE, FRB, NONE, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '0'), -- frsqrte
+ 2#1100# => (FPU, OP_FPOP, FRA, FRB, FRC, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '0'), -- fmsub
+ 2#1101# => (FPU, OP_FPOP, FRA, FRB, FRC, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '0'), -- fmadd
+ 2#1110# => (FPU, OP_FPOP, FRA, FRB, FRC, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '0'), -- fnmsub
+ 2#1111# => (FPU, OP_FPOP, FRA, FRB, FRC, FRT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '0'), -- fnmadd
others => illegal_inst
);
DO_FMR, DO_FMRG, DO_FCMP, DO_FTDIV, DO_FTSQRT,
DO_FCFID, DO_FCTI,
DO_FRSP, DO_FRI,
- DO_FADD, DO_FMUL, DO_FDIV, DO_FSQRT,
+ DO_FADD, DO_FMUL, DO_FDIV, DO_FSQRT, DO_FMADD,
DO_FRE, DO_FRSQRTE,
DO_FSEL,
FRI_1,
ADD_SHIFT, ADD_2, ADD_3,
CMP_1, CMP_2,
MULT_1,
+ FMADD_1, FMADD_2, FMADD_3,
+ FMADD_4, FMADD_5, FMADD_6,
LOOKUP,
DIV_2, DIV_3, DIV_4, DIV_5, DIV_6,
FRE_1,
b : fpu_reg_type;
c : fpu_reg_type;
r : std_ulogic_vector(63 downto 0); -- 10.54 format
+ s : std_ulogic_vector(55 downto 0); -- extended fraction
x : std_ulogic;
p : std_ulogic_vector(63 downto 0); -- 8.56 format
y : std_ulogic_vector(63 downto 0); -- 8.56 format
round_mode : std_ulogic_vector(2 downto 0);
is_subtract : std_ulogic;
exp_cmp : std_ulogic;
+ madd_cmp : std_ulogic;
add_bsmall : std_ulogic;
is_multiply : std_ulogic;
is_sqrt : std_ulogic;
signal opsel_a : std_ulogic_vector(1 downto 0);
signal opsel_b : std_ulogic_vector(1 downto 0);
signal opsel_r : std_ulogic_vector(1 downto 0);
+ signal opsel_s : std_ulogic_vector(1 downto 0);
signal opsel_ainv : std_ulogic;
signal opsel_amask : std_ulogic;
signal opsel_binv : std_ulogic;
signal lost_bits : std_ulogic;
signal r_hi_nz : std_ulogic;
signal r_lo_nz : std_ulogic;
+ signal s_nz : std_ulogic;
signal misc_sel : std_ulogic_vector(3 downto 0);
signal f_to_multiply : MultiplyInputType;
signal multiply_to_f : MultiplyOutputType;
constant RES_MULT : std_ulogic_vector(1 downto 0) := "10";
constant RES_MISC : std_ulogic_vector(1 downto 0) := "11";
+ constant S_ZERO : std_ulogic_vector(1 downto 0) := "00";
+ constant S_NEG : std_ulogic_vector(1 downto 0) := "01";
+ constant S_SHIFT : std_ulogic_vector(1 downto 0) := "10";
+ constant S_MULT : std_ulogic_vector(1 downto 0) := "11";
+
-- msel values
constant MUL1_A : std_ulogic_vector(1 downto 0) := "00";
constant MUL1_B : std_ulogic_vector(1 downto 0) := "01";
constant MUL2_P : std_ulogic_vector(1 downto 0) := "10";
constant MUL2_R : std_ulogic_vector(1 downto 0) := "11";
- constant MULADD_ZERO : std_ulogic_vector(1 downto 0) := "00";
+ constant MULADD_ZERO : std_ulogic_vector(1 downto 0) := "00";
constant MULADD_CONST : std_ulogic_vector(1 downto 0) := "01";
constant MULADD_A : std_ulogic_vector(1 downto 0) := "10";
+ constant MULADD_RS : std_ulogic_vector(1 downto 0) := "11";
-- Inverse lookup table, indexed by the top 8 fraction bits
-- The first 256 entries are the reciprocal (1/x) lookup table,
variable need_check : std_ulogic;
variable msb : std_ulogic;
variable is_add : std_ulogic;
- variable qnan_result : std_ulogic;
variable longmask : std_ulogic;
variable set_a : std_ulogic;
variable set_b : std_ulogic;
variable set_c : std_ulogic;
- variable px_nz : std_ulogic;
- variable maddend : std_ulogic_vector(127 downto 0);
variable set_y : std_ulogic;
+ variable set_s : std_ulogic;
+ variable qnan_result : std_ulogic;
+ variable px_nz : std_ulogic;
variable pcmpb_eq : std_ulogic;
variable pcmpb_lt : std_ulogic;
variable pshift : std_ulogic;
variable renorm_sqrt : std_ulogic;
variable sqrt_exp : signed(EXP_BITS-1 downto 0);
variable shiftin : std_ulogic;
+ variable mulexp : signed(EXP_BITS-1 downto 0);
+ variable maddend : std_ulogic_vector(127 downto 0);
begin
v := r;
illegal := '0';
if adec.exponent > bdec.exponent then
v.exp_cmp := '1';
end if;
+ v.madd_cmp := '0';
+ if (adec.exponent + cdec.exponent + 1) >= bdec.exponent then
+ v.madd_cmp := '1';
+ end if;
end if;
r_hi_nz <= or (r.r(55 downto 31));
r_lo_nz <= or (r.r(30 downto 2));
+ s_nz <= or (r.s);
if r.single_prec = '0' then
if r.doing_ftdiv(1) = '0' then
opsel_b <= BIN_ZERO;
opsel_binv <= '0';
opsel_r <= RES_SUM;
+ opsel_s <= S_ZERO;
carry_in <= '0';
misc_sel <= "0000";
fpscr_mask := (others => '1');
set_a := '0';
set_b := '0';
set_c := '0';
+ set_s := '0';
f_to_multiply.is_32bit <= '0';
f_to_multiply.valid <= '0';
msel_1 <= MUL1_A;
when "11010" =>
v.is_sqrt := '1';
v.state := DO_FRSQRTE;
+ when "11100" | "11101" | "11110" | "11111" =>
+ v.state := DO_FMADD;
when others =>
illegal := '1';
end case;
end if;
v.x := '0';
v.old_exc := r.fpscr(FPSCR_VX downto FPSCR_XX);
+ set_s := '1';
when DO_MCRFS =>
j := to_integer(unsigned(insn_bfa(r.insn)));
arith_done := '1';
end case;
+ when DO_FMADD =>
+ -- fmadd, fmsub, fnmadd, fnmsub
+ opsel_a <= AIN_A;
+ v.result_sign := r.a.negative;
+ v.result_class := r.a.class;
+ v.result_exp := r.a.exponent;
+ v.fpscr(FPSCR_FR) := '0';
+ v.fpscr(FPSCR_FI) := '0';
+ is_add := r.a.negative xor r.c.negative xor r.b.negative xor r.insn(1);
+ if r.a.class = FINITE and r.c.class = FINITE and
+ (r.b.class = FINITE or r.b.class = ZERO) then
+ v.is_subtract := not is_add;
+ mulexp := r.a.exponent + r.c.exponent;
+ v.result_exp := mulexp;
+ opsel_a <= AIN_B;
+ -- Make sure A and C are normalized
+ if r.a.mantissa(54) = '0' then
+ opsel_a <= AIN_A;
+ v.state := RENORM_A;
+ elsif r.c.mantissa(54) = '0' then
+ opsel_a <= AIN_C;
+ v.state := RENORM_C;
+ elsif r.b.class = ZERO then
+ -- no addend, degenerates to multiply
+ v.result_sign := r.a.negative xor r.c.negative xor r.insn(2);
+ f_to_multiply.valid <= '1';
+ v.is_multiply := '1';
+ v.state := MULT_1;
+ elsif r.madd_cmp = '0' then
+ -- addend is bigger, do multiply first
+ v.result_sign := not (r.b.negative xor r.insn(1) xor r.insn(2));
+ f_to_multiply.valid <= '1';
+ v.state := FMADD_1;
+ else
+ -- product is bigger, shift B right and use it as the
+ -- addend to the multiplier
+ v.shift := r.b.exponent - mulexp + to_signed(64, EXP_BITS);
+ -- for subtract, multiplier does B - A * C
+ v.result_sign := not (r.a.negative xor r.c.negative xor r.insn(2) xor is_add);
+ v.result_exp := r.b.exponent;
+ v.state := FMADD_2;
+ end if;
+ else
+ if (r.a.class = NAN and r.a.mantissa(53) = '0') or
+ (r.b.class = NAN and r.b.mantissa(53) = '0') or
+ (r.c.class = NAN and r.c.mantissa(53) = '0') then
+ -- Signalling NAN
+ v.fpscr(FPSCR_VXSNAN) := '1';
+ invalid := '1';
+ end if;
+ if r.a.class = NAN then
+ -- nothing to do, result is A
+ elsif r.b.class = NAN then
+ -- result is B
+ v.result_class := NAN;
+ v.result_sign := r.b.negative;
+ opsel_a <= AIN_B;
+ elsif r.c.class = NAN then
+ -- result is C
+ v.result_class := NAN;
+ v.result_sign := r.c.negative;
+ opsel_a <= AIN_C;
+ elsif (r.a.class = ZERO and r.c.class = INFINITY) or
+ (r.a.class = INFINITY and r.c.class = ZERO) then
+ -- invalid operation, construct QNaN
+ v.fpscr(FPSCR_VXIMZ) := '1';
+ qnan_result := '1';
+ elsif r.a.class = INFINITY or r.c.class = INFINITY then
+ if r.b.class = INFINITY and is_add = '0' then
+ -- invalid operation, construct QNaN
+ v.fpscr(FPSCR_VXISI) := '1';
+ qnan_result := '1';
+ else
+ -- result is infinity
+ v.result_class := INFINITY;
+ v.result_sign := r.a.negative xor r.c.negative xor r.insn(2);
+ end if;
+ else
+ -- Here A is zero, C is zero, or B is infinity
+ -- Result is +/-B in all of those cases
+ v.result_class := r.b.class;
+ v.result_exp := r.b.exponent;
+ if v.result_class /= ZERO or is_add = '1' then
+ v.result_sign := not (r.b.negative xor r.insn(1) xor r.insn(2));
+ else
+ -- have to be careful about rule for 0 - 0 result sign
+ v.result_sign := (r.round_mode(1) and r.round_mode(0)) xor r.insn(2);
+ end if;
+ opsel_a <= AIN_B;
+ end if;
+ arith_done := '1';
+ end if;
+
when RENORM_A =>
renormalize := '1';
v.state := RENORM_A2;
if r.insn(4) = '1' then
opsel_a <= AIN_C;
if r.c.mantissa(54) = '1' then
- v.first := '1';
- v.state := MULT_1;
+ if r.insn(3) = '0' or r.b.class = ZERO then
+ v.first := '1';
+ v.state := MULT_1;
+ else
+ v.madd_cmp := '0';
+ if new_exp + 1 >= r.b.exponent then
+ v.madd_cmp := '1';
+ end if;
+ v.state := DO_FMADD;
+ end if;
else
v.state := RENORM_C;
end if;
when RENORM_C2 =>
set_c := '1';
v.result_exp := new_exp;
- v.first := '1';
- v.state := MULT_1;
+ if r.insn(3) = '0' or r.b.class = ZERO then
+ v.first := '1';
+ v.state := MULT_1;
+ else
+ v.madd_cmp := '0';
+ if new_exp + 1 >= r.b.exponent then
+ v.madd_cmp := '1';
+ end if;
+ v.state := DO_FMADD;
+ end if;
when ADD_SHIFT =>
opsel_r <= RES_SHIFT;
+ v.x := s_nz;
set_x := '1';
longmask := '0';
v.state := ADD_2;
v.state := FINISH;
end if;
+ when FMADD_1 =>
+ -- Addend is bigger here
+ v.result_sign := not (r.b.negative xor r.insn(1) xor r.insn(2));
+ -- note v.shift is at most -2 here
+ v.shift := r.result_exp - r.b.exponent;
+ opsel_r <= RES_MULT;
+ opsel_s <= S_MULT;
+ set_s := '1';
+ f_to_multiply.valid <= r.first;
+ if multiply_to_f.valid = '1' then
+ v.state := ADD_SHIFT;
+ end if;
+
+ when FMADD_2 =>
+ -- Product is potentially bigger here
+ set_s := '1';
+ opsel_s <= S_SHIFT;
+ v.shift := r.shift - to_signed(64, EXP_BITS);
+ v.state := FMADD_3;
+
+ when FMADD_3 =>
+ opsel_r <= RES_SHIFT;
+ v.first := '1';
+ v.state := FMADD_4;
+
+ when FMADD_4 =>
+ msel_add <= MULADD_RS;
+ f_to_multiply.valid <= r.first;
+ msel_inv <= r.is_subtract;
+ opsel_r <= RES_MULT;
+ opsel_s <= S_MULT;
+ set_s := '1';
+ v.shift := to_signed(56, EXP_BITS);
+ if multiply_to_f.valid = '1' then
+ if multiply_to_f.result(121) = '1' then
+ v.state := FMADD_5;
+ else
+ v.state := FMADD_6;
+ end if;
+ end if;
+
+ when FMADD_5 =>
+ -- negate R:S:X
+ v.result_sign := not r.result_sign;
+ opsel_ainv <= '1';
+ carry_in <= not (s_nz or r.x);
+ opsel_s <= S_NEG;
+ set_s := '1';
+ v.shift := to_signed(56, EXP_BITS);
+ v.state := FMADD_6;
+
+ when FMADD_6 =>
+ if (r.r(56) or r_hi_nz or r_lo_nz or r.r(1) or r.r(0)) = '0' then
+ if s_nz = '0' then
+ -- must be a subtraction, and r.x must be zero
+ v.result_class := ZERO;
+ v.result_sign := r.round_mode(1) and r.round_mode(0);
+ arith_done := '1';
+ else
+ -- R is all zeroes but there are non-zero bits in S
+ -- so shift them into R and set S to 0
+ opsel_r <= RES_SHIFT;
+ set_s := '1';
+ -- stay in state FMADD_6
+ end if;
+ elsif r.r(56 downto 54) = "001" then
+ v.state := FINISH;
+ else
+ renormalize := '1';
+ v.state := NORMALIZE;
+ end if;
+
when LOOKUP =>
opsel_a <= AIN_B;
-- wait one cycle for inverse_table[B] lookup
when MULADD_A =>
-- addend is A in 16.112 format
maddend(121 downto 58) := r.a.mantissa;
+ when MULADD_RS =>
+ -- addend is concatenation of R and S in 16.112 format
+ maddend := "000000" & r.r & r.s & "00";
when others =>
end case;
if msel_inv = '1' then
end if;
in_b <= in_b0;
if r.shift >= to_signed(-64, EXP_BITS) and r.shift <= to_signed(63, EXP_BITS) then
- shift_res := shifter_64(r.r & shiftin & 55x"00000000000000",
+ shift_res := shifter_64(r.r & (shiftin or r.s(55)) & r.s(54 downto 0),
std_ulogic_vector(r.shift(6 downto 0)));
else
shift_res := (others => '0');
result <= misc;
end case;
v.r := result;
+ if set_s = '1' then
+ case opsel_s is
+ when S_NEG =>
+ v.s := std_ulogic_vector(unsigned(not r.s) + (not r.x));
+ when S_MULT =>
+ v.s := multiply_to_f.result(57 downto 2);
+ when S_SHIFT =>
+ v.s := shift_res(63 downto 8);
+ if shift_res(7 downto 0) /= x"00" then
+ v.x := '1';
+ end if;
+ when others =>
+ v.s := (others => '0');
+ end case;
+ end if;
if set_a = '1' then
v.a.exponent := new_exp;
return trapit(0, test22);
}
+struct fmavals {
+ unsigned long ra;
+ unsigned long rc;
+ unsigned long rb;
+ unsigned long fma;
+ unsigned long fms;
+ unsigned long nfma;
+ unsigned long nfms;
+} fmavals[] = {
+ { 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
+ 0x0000000000000000, 0x0000000000000000, 0x8000000000000000, 0x8000000000000000 },
+ { 0x0000000000000000, 0x7ffc000000000000, 0x0000000000000000,
+ 0x7ffc000000000000, 0x7ffc000000000000, 0x7ffc000000000000, 0x7ffc000000000000 },
+ { 0x0000000000000000, 0x7ffc000000000000, 0x7ffb000000000000,
+ 0x7ffb000000000000, 0x7ffb000000000000, 0x7ffb000000000000, 0x7ffb000000000000 },
+ { 0x7ffa000000000000, 0x7ffc000000000000, 0x7ffb000000000000,
+ 0x7ffa000000000000, 0x7ffa000000000000, 0x7ffa000000000000, 0x7ffa000000000000 },
+ { 0x3ff0000000000000, 0x8000000000000000, 0x678123456789abcd,
+ 0x678123456789abcd, 0xe78123456789abcd, 0xe78123456789abcd, 0x678123456789abcd },
+ { 0x3ff0000000000000, 0xbff0000000000000, 0x678123456789abcd,
+ 0x678123456789abcd, 0xe78123456789abcd, 0xe78123456789abcd, 0x678123456789abcd },
+ { 0x7ff0000000000000, 0xbff0000000000000, 0x678123456789abcd,
+ 0xfff0000000000000, 0xfff0000000000000, 0x7ff0000000000000, 0x7ff0000000000000 },
+ { 0x7ff0000000000000, 0x0000000000000000, 0x678123456789abcd,
+ 0x7ff8000000000000, 0x7ff8000000000000, 0x7ff8000000000000, 0x7ff8000000000000 },
+ { 0x3ff0000000000000, 0x3ff0000000000000, 0x3ff0000020000000,
+ 0x4000000010000000, 0xbe80000000000000, 0xc000000010000000, 0x3e80000000000000 },
+ { 0x3ff0000000000001, 0x3ff0000000000001, 0x3ff0000000000000,
+ 0x4000000000000001, 0x3cc0000000000000, 0xc000000000000001, 0xbcc0000000000000 },
+ { 0x3ff0000000000003, 0x3ff0000000000002, 0x3ff0000000000000,
+ 0x4000000000000002, 0x3cd4000000000002, 0xc000000000000002, 0xbcd4000000000002 },
+ { 0x3006a09e667f3bcc, 0x4006a09e667f3bcd, 0xb020000000000000,
+ 0xaca765753908cd20, 0x3030000000000000, 0x2ca765753908cd20, 0xb030000000000000 },
+ { 0x3006a09e667f3bcd, 0x4006a09e667f3bcd, 0xb020000000000000,
+ 0x2cd3b3efbf5e2229, 0x3030000000000000, 0xacd3b3efbf5e2229, 0xb030000000000000 },
+ { 0x3006a09e667f3bcc, 0x4006a09e667f3bcd, 0xb060003450000000,
+ 0xb05e0068a0000000, 0x3061003450000000, 0x305e0068a0000000, 0xb061003450000000 },
+};
+
+int test23(long arg)
+{
+ long i;
+ unsigned long results[4];
+ struct fmavals *vp = fmavals;
+
+ set_fpscr(FPS_RN_NEAR);
+ for (i = 0; i < sizeof(fmavals) / sizeof(fmavals[0]); ++i, ++vp) {
+ asm("lfd 6,0(%0); lfd 7,8(%0); lfd 8,16(%0); fmadd 0,6,7,8; stfd 0,0(%1)"
+ : : "b" (&vp->ra), "b" (results) : "memory");
+ asm("fmsub 1,6,7,8; fnmadd 2,6,7,8; fnmsub 3,6,7,8; stfd 1,8(%0); stfd 2,16(%0); stfd 3,24(%0)"
+ : : "b" (results) : "memory");
+ if (results[0] != vp->fma || results[1] != vp->fms ||
+ results[2] != vp->nfma || results[3] != vp->nfms) {
+ print_hex(i, 2, " ");
+ print_hex(results[0], 16, " ");
+ print_hex(results[1], 16, " ");
+ print_hex(results[2], 16, " ");
+ print_hex(results[3], 16, "\r\n");
+ return i + 1;
+ }
+ }
+ return 0;
+}
+
+int fpu_test_23(void)
+{
+ enable_fp();
+ return trapit(0, test23);
+}
+
int fail = 0;
void do_test(int num, int (*test)(void))
do_test(20, fpu_test_20);
do_test(21, fpu_test_21);
do_test(22, fpu_test_22);
+ do_test(23, fpu_test_23);
return fail;
}
test 20:PASS\r
test 21:PASS\r
test 22:PASS\r
+test 23:PASS\r