+2016-10-25 Fritz Reese <fritzoreese@gmail.com>
+
+ * gfortran.texi: Document.
+ * resolve.c (logical_to_bitwise): New function.
+ * resolve.c (resolve_operator): Wrap operands with logical_to_bitwise.
+
2016-10-25 Andre Vehreschild <vehre@gcc.gnu.org>
PR fortran/72770
* TYPE as an alias for PRINT::
* %LOC as an rvalue::
* .XOR. operator::
+* Bitwise logical operators::
@end menu
@node Old-style kind specifications
for compatibility with legacy code. @code{.XOR.} is equivalent to
@code{.NEQV.}. That is, the output is true if and only if the inputs differ.
+@node Bitwise logical operators
+@subsection Bitwise logical operators
+@cindex logical, bitwise
+
+With @option{-fdec}, GNU Fortran relaxes the type constraints on
+logical operators to allow integer operands, and performs the corresponding
+bitwise operation instead. This flag is for compatibility only, and should be
+avoided in new code. Consider:
+
+@smallexample
+ INTEGER :: i, j
+ i = z'33'
+ j = z'cc'
+ print *, i .AND. j
+@end smallexample
+
+In this example, compiled with @option{-fdec}, GNU Fortran will
+replace the @code{.AND.} operation with a call to the intrinsic
+@code{@ref{IAND}} function, yielding the bitwise-and of @code{i} and @code{j}.
+
+Note that this conversion will occur if at least one operand is of integral
+type. As a result, a logical operand will be converted to an integer when the
+other operand is an integer in a logical operation. In this case,
+@code{.TRUE.} is converted to @code{1} and @code{.FALSE.} to @code{0}.
+
+Here is the mapping of logical operator to bitwise intrinsic used with
+@option{-fdec}:
+
+@multitable @columnfractions .25 .25 .5
+@headitem Operator @tab Intrinsic @tab Bitwise operation
+@item @code{.NOT.} @tab @code{@ref{NOT}} @tab complement
+@item @code{.AND.} @tab @code{@ref{IAND}} @tab intersection
+@item @code{.OR.} @tab @code{@ref{IOR}} @tab union
+@item @code{.NEQV.} @tab @code{@ref{IEOR}} @tab exclusive or
+@item @code{.EQV.} @tab @code{@ref{NOT}(@ref{IEOR})} @tab complement of exclusive or
+@end multitable
+
@node Extensions not implemented in GNU Fortran
@section Extensions not implemented in GNU Fortran
return t;
}
+/* Convert a logical operator to the corresponding bitwise intrinsic call.
+ For example A .AND. B becomes IAND(A, B). */
+static gfc_expr *
+logical_to_bitwise (gfc_expr *e)
+{
+ gfc_expr *tmp, *op1, *op2;
+ gfc_isym_id isym;
+ gfc_actual_arglist *args = NULL;
+
+ gcc_assert (e->expr_type == EXPR_OP);
+
+ isym = GFC_ISYM_NONE;
+ op1 = e->value.op.op1;
+ op2 = e->value.op.op2;
+
+ switch (e->value.op.op)
+ {
+ case INTRINSIC_NOT:
+ isym = GFC_ISYM_NOT;
+ break;
+ case INTRINSIC_AND:
+ isym = GFC_ISYM_IAND;
+ break;
+ case INTRINSIC_OR:
+ isym = GFC_ISYM_IOR;
+ break;
+ case INTRINSIC_NEQV:
+ isym = GFC_ISYM_IEOR;
+ break;
+ case INTRINSIC_EQV:
+ /* "Bitwise eqv" is just the complement of NEQV === IEOR.
+ Change the old expression to NEQV, which will get replaced by IEOR,
+ and wrap it in NOT. */
+ tmp = gfc_copy_expr (e);
+ tmp->value.op.op = INTRINSIC_NEQV;
+ tmp = logical_to_bitwise (tmp);
+ isym = GFC_ISYM_NOT;
+ op1 = tmp;
+ op2 = NULL;
+ break;
+ default:
+ gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
+ }
+
+ /* Inherit the original operation's operands as arguments. */
+ args = gfc_get_actual_arglist ();
+ args->expr = op1;
+ if (op2)
+ {
+ args->next = gfc_get_actual_arglist ();
+ args->next->expr = op2;
+ }
+
+ /* Convert the expression to a function call. */
+ e->expr_type = EXPR_FUNCTION;
+ e->value.function.actual = args;
+ e->value.function.isym = gfc_intrinsic_function_by_id (isym);
+ e->value.function.name = e->value.function.isym->name;
+ e->value.function.esym = NULL;
+
+ /* Make up a pre-resolved function call symtree if we need to. */
+ if (!e->symtree || !e->symtree->n.sym)
+ {
+ gfc_symbol *sym;
+ gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
+ sym = e->symtree->n.sym;
+ sym->result = sym;
+ sym->attr.flavor = FL_PROCEDURE;
+ sym->attr.function = 1;
+ sym->attr.elemental = 1;
+ sym->attr.pure = 1;
+ sym->attr.referenced = 1;
+ gfc_intrinsic_symbol (sym);
+ gfc_commit_symbol (sym);
+ }
+
+ args->name = e->value.function.isym->formal->name;
+ if (e->value.function.isym->formal->next)
+ args->next->name = e->value.function.isym->formal->next->name;
+
+ return e;
+}
/* Resolve an operator expression node. This can involve replacing the
operation with a user defined function call. */
break;
}
+ /* Logical ops on integers become bitwise ops with -fdec. */
+ else if (flag_dec
+ && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
+ {
+ e->ts.type = BT_INTEGER;
+ e->ts.kind = gfc_kind_max (op1, op2);
+ if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
+ gfc_convert_type (op1, &e->ts, 1);
+ if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
+ gfc_convert_type (op2, &e->ts, 1);
+ e = logical_to_bitwise (e);
+ return resolve_function (e);
+ }
+
sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
gfc_typename (&op2->ts));
goto bad_op;
case INTRINSIC_NOT:
+ /* Logical ops on integers become bitwise ops with -fdec. */
+ if (flag_dec && op1->ts.type == BT_INTEGER)
+ {
+ e->ts.type = BT_INTEGER;
+ e->ts.kind = op1->ts.kind;
+ e = logical_to_bitwise (e);
+ return resolve_function (e);
+ }
+
if (op1->ts.type == BT_LOGICAL)
{
e->ts.type = BT_LOGICAL;
+2016-10-25 Fritz Reese <fritzoreese@gmail.com>
+
+ * gfortran.dg/dec_bitwise_ops_1.f90: New test.
+ * gfortran.dg/dec_bitwise_ops_2.f90: New test.
+
2016-10-25 Eric Botcazou <ebotcazou@adacore.com>
* gnat.dg/opt59.adb: New test.
--- /dev/null
+! { dg-do run }
+! { dg-options "-fdec" }
+!
+! Runtime tests to verify logical-to-bitwise operations perform as expected
+! with -fdec.
+!
+
+subroutine assert(expected, actual, str)
+ implicit none
+ character(*), intent(in) :: str
+ integer, intent(in) :: expected, actual
+ if (actual .ne. expected) then
+ write (*, '(A,I4,I4)') str, expected, actual
+ call abort()
+ endif
+end subroutine
+
+implicit none
+
+integer expected, expected_expr
+integer output_vars, output_const, output_expr
+integer op1, op2, mult
+
+mult = 3
+op1 = 3
+op2 = 5
+
+!!!! AND -> IAND
+
+expected = IAND(op1, op2)
+expected_expr = mult*expected
+
+output_const = 3 .AND. 5
+output_vars = op1 .AND. op2
+output_expr = mult * (op1 .AND. op2)
+
+call assert(expected, output_vars, "( ) and")
+call assert(expected, output_const, "(c) and")
+call assert(expected_expr, output_expr, "(x) and")
+
+!!!! EQV -> NOT IEOR
+
+expected = NOT(IEOR(op1, op2))
+expected_expr = mult*expected
+
+output_const = 3 .EQV. 5
+output_vars = op1 .EQV. op2
+output_expr = mult * (op1 .EQV. op2)
+
+call assert(expected, output_vars, "( ) EQV")
+call assert(expected, output_const, "(c) EQV")
+call assert(expected_expr, output_expr, "(x) EQV")
+
+!!!! NEQV -> IEOR
+
+expected = IEOR(op1, op2)
+expected_expr = mult*expected
+
+output_const = 3 .NEQV. 5
+output_vars = op1 .NEQV. op2
+output_expr = mult * (op1 .NEQV. op2)
+
+call assert(expected, output_vars, "( ) NEQV")
+call assert(expected, output_const, "(c) NEQV")
+call assert(expected_expr, output_expr, "(x) NEQV")
+
+!!!! NOT -> NOT
+
+expected = NOT(op2)
+expected_expr = mult*expected
+
+output_const = .NOT. 5
+output_vars = .NOT. op2
+output_expr = mult * (.NOT. op2)
+
+call assert(expected, output_vars, "( ) NOT")
+call assert(expected, output_const, "(c) NOT")
+call assert(expected_expr, output_expr, "(x) NOT")
+
+!!!! OR -> IOR
+
+expected = IOR(op1, op2)
+expected_expr = mult*expected
+
+output_const = 3 .OR. 5
+output_vars = op1 .OR. op2
+output_expr = mult * (op1 .OR. op2)
+
+call assert(expected, output_vars, "( ) OR")
+call assert(expected, output_const, "(c) OR")
+call assert(expected_expr, output_expr, "(x) OR")
+
+!!!! XOR -> IEOR, not to be confused with .XOR.
+
+expected = IEOR(op1, op2)
+expected_expr = mult*expected
+
+output_const = 3 .XOR. 5
+output_vars = op1 .XOR. op2
+output_expr = mult * (op1 .XOR. op2)
+
+call assert(expected, output_vars, "( ) XOR")
+call assert(expected, output_const, "(c) XOR")
+call assert(expected_expr, output_expr, "(x) XOR")
+
+end
--- /dev/null
+! { dg-do run }
+! { dg-options "-fdec" }
+!
+! Runtime tests to verify bitwise ops perform appropriate conversions
+! with -fdec.
+!
+
+subroutine assert(expected, actual, str)
+ implicit none
+ character(*), intent(in) :: str
+ integer, intent(in) :: expected, actual(9)
+ integer :: i
+ do i=1,9
+ if (expected .ne. actual(i)) then
+ write (*, '(A,I8,I8)') str, expected, actual(i)
+ call abort()
+ endif
+ enddo
+end subroutine
+
+implicit none
+
+logical(1), volatile :: op1_1l
+integer(1), volatile :: op1_1, op2_1
+
+logical(2), volatile :: op1_2l
+integer(2), volatile :: op1_2, op2_2
+
+logical(4), volatile :: op1_4l
+integer(4), volatile :: op1_4, op2_4
+
+integer, volatile :: expect, outs(9)
+
+
+op1_1l = .true.
+op1_2l = .true.
+op1_4l = .true.
+op1_1 = 117_1
+op1_2 = 117_2
+op1_4 = 117_4
+op2_1 = 49_1
+op2_2 = 49_2
+op2_4 = 49_4
+
+!!! Explicit integer operands
+
+expect = IAND(op1_1, op2_1)
+outs(1) = op1_1 .AND. op2_1
+outs(2) = op1_1 .AND. op2_2
+outs(3) = op1_1 .AND. op2_4
+outs(4) = op1_2 .AND. op2_1
+outs(5) = op1_2 .AND. op2_2
+outs(6) = op1_2 .AND. op2_4
+outs(7) = op1_4 .AND. op2_1
+outs(8) = op1_4 .AND. op2_2
+outs(9) = op1_4 .AND. op2_4
+call assert(expect, outs, "AND")
+
+expect = IOR(op1_1, op2_1)
+outs(1) = op1_1 .OR. op2_1
+outs(2) = op1_1 .OR. op2_2
+outs(3) = op1_1 .OR. op2_4
+outs(4) = op1_2 .OR. op2_1
+outs(5) = op1_2 .OR. op2_2
+outs(6) = op1_2 .OR. op2_4
+outs(7) = op1_4 .OR. op2_1
+outs(8) = op1_4 .OR. op2_2
+outs(9) = op1_4 .OR. op2_4
+
+call assert(expect, outs, "OR")
+
+expect = NOT(IEOR(op1_1, op2_1))
+outs(1) = op1_1 .EQV. op2_1
+outs(2) = op1_1 .EQV. op2_2
+outs(3) = op1_1 .EQV. op2_4
+outs(4) = op1_2 .EQV. op2_1
+outs(5) = op1_2 .EQV. op2_2
+outs(6) = op1_2 .EQV. op2_4
+outs(7) = op1_4 .EQV. op2_1
+outs(8) = op1_4 .EQV. op2_2
+outs(9) = op1_4 .EQV. op2_4
+
+call assert(expect, outs, "EQV")
+
+expect = IEOR(op1_1, op2_1)
+outs(1) = op1_1 .NEQV. op2_1
+outs(2) = op1_1 .NEQV. op2_2
+outs(3) = op1_1 .NEQV. op2_4
+outs(4) = op1_2 .NEQV. op2_1
+outs(5) = op1_2 .NEQV. op2_2
+outs(6) = op1_2 .NEQV. op2_4
+outs(7) = op1_4 .NEQV. op2_1
+outs(8) = op1_4 .NEQV. op2_2
+outs(9) = op1_4 .NEQV. op2_4
+
+call assert(expect, outs, "NEQV")
+
+!!! Logical -> Integer operand conversions
+op1_1 = op1_1l
+op1_2 = op1_2l
+op1_4 = op1_4l
+
+expect = IAND(op1_1, op2_1)
+outs(1) = op1_1l .AND. op2_1 ! implicit conversions
+outs(2) = op1_1l .AND. op2_2
+outs(3) = op1_1l .AND. op2_4
+outs(4) = op1_2l .AND. op2_1
+outs(5) = op1_2l .AND. op2_2
+outs(6) = op1_2l .AND. op2_4
+outs(7) = op1_4l .AND. op2_1
+outs(8) = op1_4l .AND. op2_2
+outs(9) = op1_4l .AND. op2_4
+call assert(expect, outs, "AND")
+
+expect = IOR(op1_1, op2_1)
+outs(1) = op1_1l .OR. op2_1 ! implicit conversions
+outs(2) = op1_1l .OR. op2_2
+outs(3) = op1_1l .OR. op2_4
+outs(4) = op1_2l .OR. op2_1
+outs(5) = op1_2l .OR. op2_2
+outs(6) = op1_2l .OR. op2_4
+outs(7) = op1_4l .OR. op2_1
+outs(8) = op1_4l .OR. op2_2
+outs(9) = op1_4l .OR. op2_4
+
+call assert(expect, outs, "OR")
+
+expect = NOT(IEOR(op1_1, op2_1))
+outs(1) = op1_1l .EQV. op2_1 ! implicit conversions
+outs(2) = op1_1l .EQV. op2_2
+outs(3) = op1_1l .EQV. op2_4
+outs(4) = op1_2l .EQV. op2_1
+outs(5) = op1_2l .EQV. op2_2
+outs(6) = op1_2l .EQV. op2_4
+outs(7) = op1_4l .EQV. op2_1
+outs(8) = op1_4l .EQV. op2_2
+outs(9) = op1_4l .EQV. op2_4
+
+call assert(expect, outs, "EQV")
+
+expect = IEOR(op1_1, op2_1)
+outs(1) = op1_1l .NEQV. op2_1 ! implicit conversions
+outs(2) = op1_1l .NEQV. op2_2
+outs(3) = op1_1l .NEQV. op2_4
+outs(4) = op1_2l .NEQV. op2_1
+outs(5) = op1_2l .NEQV. op2_2
+outs(6) = op1_2l .NEQV. op2_4
+outs(7) = op1_4l .NEQV. op2_1
+outs(8) = op1_4l .NEQV. op2_2
+outs(9) = op1_4l .NEQV. op2_4
+
+call assert(expect, outs, "NEQV")
+
+
+end