{
gfc_expr *result, *a, *b, *c;
- result = gfc_get_constant_expr (matrix_a->ts.type, matrix_a->ts.kind,
- &matrix_a->where);
- init_result_expr (result, 0, NULL);
+ /* Set result to an INTEGER(1) 0 for numeric types and .false. for
+ LOGICAL. Mixed-mode math in the loop will promote result to the
+ correct type and kind. */
+ if (matrix_a->ts.type == BT_LOGICAL)
+ result = gfc_get_logical_expr (gfc_default_logical_kind, NULL, false);
+ else
+ result = gfc_get_int_expr (1, NULL, 0);
+ result->where = matrix_a->where;
a = gfc_constructor_lookup_expr (matrix_a->value.constructor, offset_a);
b = gfc_constructor_lookup_expr (matrix_b->value.constructor, offset_b);
gfc_expr*
gfc_simplify_dot_product (gfc_expr *vector_a, gfc_expr *vector_b)
{
-
- gfc_expr temp;
+ /* If vector_a is a zero-sized array, the result is 0 for INTEGER,
+ REAL, and COMPLEX types and .false. for LOGICAL. */
+ if (vector_a->shape && mpz_get_si (vector_a->shape[0]) == 0)
+ {
+ if (vector_a->ts.type == BT_LOGICAL)
+ return gfc_get_logical_expr (gfc_default_logical_kind, NULL, false);
+ else
+ return gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
+ }
if (!is_constant_array_expr (vector_a)
|| !is_constant_array_expr (vector_b))
return NULL;
- gcc_assert (vector_a->rank == 1);
- gcc_assert (vector_b->rank == 1);
-
- temp.expr_type = EXPR_OP;
- gfc_clear_ts (&temp.ts);
- temp.value.op.op = INTRINSIC_NONE;
- temp.value.op.op1 = vector_a;
- temp.value.op.op2 = vector_b;
- gfc_type_convert_binary (&temp, 1);
-
return compute_dot_product (vector_a, 1, 0, vector_b, 1, 0, true);
}
--- /dev/null
+! { dg-do run }
+! PR fortran/83998
+program p
+ integer, parameter :: a(0) = 1
+ real, parameter :: b(0) = 1
+ complex, parameter :: c(0) = 1
+ logical, parameter :: d(0) = .true.
+ if (dot_product(a,a) /= 0) call abort
+ if (dot_product(b,b) /= 0) call abort
+ if (dot_product(c,c) /= 0) call abort
+ if (dot_product(d,d) .neqv. .false.) call abort
+end
+