return srcRew;
}
+Node TheoryProofStepBuffer::factorReorderElimDoubleNeg(Node n)
+{
+ if (n.getKind() != kind::OR)
+ {
+ return elimDoubleNegLit(n);
+ }
+ NodeManager* nm = NodeManager::currentNM();
+ std::vector<Node> children{n.begin(), n.end()};
+ std::vector<Node> childrenEqs;
+ // eliminate double neg for each lit. Do it first because it may expose
+ // duplicates
+ bool hasDoubleNeg = false;
+ for (unsigned i = 0; i < children.size(); ++i)
+ {
+ if (children[i].getKind() == kind::NOT
+ && children[i][0].getKind() == kind::NOT)
+ {
+ hasDoubleNeg = true;
+ childrenEqs.push_back(children[i].eqNode(children[i][0][0]));
+ addStep(PfRule::MACRO_SR_PRED_INTRO,
+ {},
+ {childrenEqs.back()},
+ childrenEqs.back());
+ // update child
+ children[i] = children[i][0][0];
+ }
+ else
+ {
+ childrenEqs.push_back(children[i].eqNode(children[i]));
+ addStep(PfRule::REFL, {}, {children[i]}, childrenEqs.back());
+ }
+ }
+ if (hasDoubleNeg)
+ {
+ Node oldn = n;
+ n = nm->mkNode(kind::OR, children);
+ // Create a congruence step to justify replacement of each doubly negated
+ // literal. This is done to avoid having to use MACRO_SR_PRED_TRANSFORM
+ // from the old clause to the new one, which, under the standard rewriter,
+ // may not hold. An example is
+ //
+ // ---------------------------------------------------------------------
+ // (or (or (not x2) x1 x2) (not (not x2))) = (or (or (not x2) x1 x2) x2)
+ //
+ // which fails due to factoring not happening after flattening.
+ //
+ // Using congruence only the
+ //
+ // ------------------ MACRO_SR_PRED_INTRO
+ // (not (not t)) = t
+ //
+ // steps are added, which, since double negation is eliminated in a
+ // pre-rewrite in the Boolean rewriter, will always hold under the
+ // standard rewriter.
+ Node congEq = oldn.eqNode(n);
+ addStep(PfRule::CONG,
+ childrenEqs,
+ {ProofRuleChecker::mkKindNode(kind::OR)},
+ congEq);
+ // add an equality resolution step to derive normalize clause
+ addStep(PfRule::EQ_RESOLVE, {oldn, congEq}, {}, n);
+ }
+ children.clear();
+ // remove duplicates while keeping the order of children
+ std::unordered_set<TNode, TNodeHashFunction> clauseSet;
+ unsigned size = n.getNumChildren();
+ for (unsigned i = 0; i < size; ++i)
+ {
+ if (clauseSet.count(n[i]))
+ {
+ continue;
+ }
+ children.push_back(n[i]);
+ clauseSet.insert(n[i]);
+ }
+ // if factoring changed
+ if (children.size() < size)
+ {
+ Node factored = children.empty()
+ ? nm->mkConst<bool>(false)
+ : children.size() == 1 ? children[0]
+ : nm->mkNode(kind::OR, children);
+ // don't overwrite what already has a proof step to avoid cycles
+ addStep(PfRule::FACTORING, {n}, {}, factored);
+ n = factored;
+ }
+ // nothing to order
+ if (children.size() < 2)
+ {
+ return n;
+ }
+ // order
+ std::sort(children.begin(), children.end());
+ Node ordered = nm->mkNode(kind::OR, children);
+ // if ordering changed
+ if (ordered != n)
+ {
+ // don't overwrite what already has a proof step to avoid cycles
+ addStep(PfRule::REORDERING, {n}, {ordered}, ordered);
+ }
+ return ordered;
+}
+
+Node TheoryProofStepBuffer::elimDoubleNegLit(Node n)
+{
+ // eliminate double neg
+ if (n.getKind() == kind::NOT && n[0].getKind() == kind::NOT)
+ {
+ addStep(PfRule::MACRO_SR_PRED_TRANSFORM, {n}, {n[0][0]}, n[0][0]);
+ return n[0][0];
+ }
+ return n;
+}
+
} // namespace theory
} // namespace CVC4
MethodId ids = MethodId::SB_DEFAULT,
MethodId idr = MethodId::RW_REWRITE);
//---------------------------- end utilities builtin proof rules
+
+ //---------------------------- utility methods for normalizing clauses
+ /**
+ * Normalizes a non-unit clause (an OR node) according to factoring and
+ * reordering, i.e. removes duplicates and reorders literals (according to
+ * node ids). Moreover it eliminates double negations, which can be done also
+ * for unit clauses (a arbitrary Boolean node). All normalization steps are
+ * tracked via proof steps added to this proof step buffer.
+ *
+ * @param n the clause to be normalized
+ * @return the normalized clause node
+ */
+ Node factorReorderElimDoubleNeg(Node n);
+
+ /**
+ * Eliminates double negation of a literal if it has the form
+ * (not (not t))
+ * If the elimination happens, a step is added to this proof step buffer.
+ *
+ * @param n the node to have the top-level double negation eliminated
+ * @return the normalized clause node
+ */
+ Node elimDoubleNegLit(Node n);
};
} // namespace theory