Tutorial part 2: Creating a trivial machine code function
+* Error-handling::
* Options::
* Full example::
* Lifetime-management::
* Thread-safety::
-* Error-handling::
+* Error-handling: Error-handling<2>.
* Debugging::
* Options: Options<2>.
@noindent
+Once we're done with the code, we can release the result:
+
+@example
+gcc_jit_result_release (result);
+@end example
+
+@noindent
+
+We can't call @code{square} anymore once we've released @code{result}.
+
@menu
+* Error-handling::
* Options::
* Full example::
@end menu
-@node Options,Full example,,Tutorial part 2 Creating a trivial machine code function
-@anchor{intro/tutorial02 options}@anchor{18}
+@node Error-handling,Options,,Tutorial part 2 Creating a trivial machine code function
+@anchor{intro/tutorial02 error-handling}@anchor{18}
+@subsection Error-handling
+
+
+Various kinds of errors are possible when using the API, such as
+mismatched types in an assignment. You can only compile and get code
+from a context if no errors occur.
+
+Errors are printed on stderr; they typically contain the name of the API
+entrypoint where the error occurred, and pertinent information on the
+problem:
+
+@example
+./buggy-program: error: gcc_jit_block_add_assignment: mismatching types: assignment to i (type: int) from "hello world" (type: const char *)
+@end example
+
+@noindent
+
+The API is designed to cope with errors without crashing, so you can get
+away with having a single error-handling check in your code:
+
+@example
+void *fn_ptr = gcc_jit_result_get_code (result, "square");
+if (!fn_ptr)
+ @{
+ fprintf (stderr, "NULL fn_ptr");
+ goto error;
+ @}
+@end example
+
+@noindent
+
+For more information, see the @pxref{19,,error-handling guide}
+within the Topic eference.
+
+@node Options,Full example,Error-handling,Tutorial part 2 Creating a trivial machine code function
+@anchor{intro/tutorial02 options}@anchor{1a}
@subsection Options
To get more information on what's going on, you can set debugging flags
-on the context using @pxref{19,,gcc_jit_context_set_bool_option()}.
+on the context using @pxref{1b,,gcc_jit_context_set_bool_option()}.
@c (I'm deliberately not mentioning
@c :c:macro:`GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE` here since I think
@c it's probably more of use to implementors than to users)
-Setting @pxref{1a,,GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE} will dump a
+Setting @pxref{1c,,GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE} will dump a
C-like representation to stderr when you compile (GCC's "GIMPLE"
representation):
@noindent
We can see the generated machine code in assembler form (on stderr) by
-setting @pxref{1b,,GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE} on the context
+setting @pxref{1d,,GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE} on the context
before compiling:
@example
By default, no optimizations are performed, the equivalent of GCC's
@cite{-O0} option. We can turn things up to e.g. @cite{-O3} by calling
-@pxref{1c,,gcc_jit_context_set_int_option()} with
-@pxref{1d,,GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL}:
+@pxref{1e,,gcc_jit_context_set_int_option()} with
+@pxref{1f,,GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL}:
@example
gcc_jit_context_set_int_option (
Naturally this has only a small effect on such a trivial function.
@node Full example,,Options,Tutorial part 2 Creating a trivial machine code function
-@anchor{intro/tutorial02 full-example}@anchor{1e}
+@anchor{intro/tutorial02 full-example}@anchor{20}
@subsection Full example
@c <http://www.gnu.org/licenses/>.
@node Tutorial part 3 Loops and variables,Tutorial part 4 Adding JIT-compilation to a toy interpreter,Tutorial part 2 Creating a trivial machine code function,Tutorial
-@anchor{intro/tutorial03 tutorial-part-3-loops-and-variables}@anchor{1f}@anchor{intro/tutorial03 doc}@anchor{20}
+@anchor{intro/tutorial03 tutorial-part-3-loops-and-variables}@anchor{21}@anchor{intro/tutorial03 doc}@anchor{22}
@section Tutorial part 3: Loops and variables
@end menu
@node Expressions lvalues and rvalues,Control flow,,Tutorial part 3 Loops and variables
-@anchor{intro/tutorial03 expressions-lvalues-and-rvalues}@anchor{21}
+@anchor{intro/tutorial03 expressions-lvalues-and-rvalues}@anchor{23}
@subsection Expressions: lvalues and rvalues
@emph{to} a storage area (such as a variable). It has a specific
@pxref{a,,gcc_jit_type *}.
-Anothe important class is @pxref{22,,gcc_jit_lvalue *}.
-A @pxref{22,,gcc_jit_lvalue *}. is something that can of the @emph{left}-hand
+Anothe important class is @pxref{24,,gcc_jit_lvalue *}.
+A @pxref{24,,gcc_jit_lvalue *}. is something that can of the @emph{left}-hand
side of an assignment: a storage area (such as a variable).
In other words, every assignment can be thought of as:
@noindent
-Note that @pxref{22,,gcc_jit_lvalue *} is a subclass of
+Note that @pxref{24,,gcc_jit_lvalue *} is a subclass of
@pxref{13,,gcc_jit_rvalue *}, where in an assignment of the form:
@example
which is a @pxref{13,,gcc_jit_rvalue *}, and the various function
parameters: @cite{param_i} and @cite{param_n}, instances of
-@pxref{23,,gcc_jit_param *}, which is a subclass of
-@pxref{22,,gcc_jit_lvalue *} (and, in turn, of @pxref{13,,gcc_jit_rvalue *}):
+@pxref{25,,gcc_jit_param *}, which is a subclass of
+@pxref{24,,gcc_jit_lvalue *} (and, in turn, of @pxref{13,,gcc_jit_rvalue *}):
we can both read from and write to function parameters within the
body of a function.
Our new example has a couple of local variables. We create them by
-calling @pxref{24,,gcc_jit_function_new_local()}, supplying a type and a
+calling @pxref{26,,gcc_jit_function_new_local()}, supplying a type and a
name:
@example
@noindent
-These are instances of @pxref{22,,gcc_jit_lvalue *} - they can be read from
+These are instances of @pxref{24,,gcc_jit_lvalue *} - they can be read from
and written to.
Note that there is no precanned way to create @emph{and} initialize a variable
an assignment of @cite{0} to @cite{local_i} at the beginning of the function.
@node Control flow,Visualizing the control flow graph,Expressions lvalues and rvalues,Tutorial part 3 Loops and variables
-@anchor{intro/tutorial03 control-flow}@anchor{25}
+@anchor{intro/tutorial03 control-flow}@anchor{27}
@subsection Control flow
after the loop terminates (@cite{return sum})
@end enumerate
-so we create these as @pxref{26,,gcc_jit_block *} instances within the
-@pxref{27,,gcc_jit_function *}:
+so we create these as @pxref{28,,gcc_jit_block *} instances within the
+@pxref{29,,gcc_jit_function *}:
@example
gcc_jit_block *b_initial =
The entry block @cite{b_initial} consists of initializations followed by a jump
to the conditional. We assign @cite{0} to @cite{i} and to @cite{sum}, using
-@pxref{28,,gcc_jit_block_add_assignment()} to add
-an assignment statement, and using @pxref{29,,gcc_jit_context_zero()} to get
+@pxref{2a,,gcc_jit_block_add_assignment()} to add
+an assignment statement, and using @pxref{2b,,gcc_jit_context_zero()} to get
the constant value @cite{0} for the relevant type for the right-hand side of
the assignment:
C example. It contains a single statement: a conditional, which jumps to
one of two destination blocks depending on a boolean
@pxref{13,,gcc_jit_rvalue *}, in this case the comparison of @cite{i} and @cite{n}.
-We build the comparison using @pxref{2a,,gcc_jit_context_new_comparison()}:
+We build the comparison using @pxref{2c,,gcc_jit_context_new_comparison()}:
@example
gcc_jit_rvalue *guard =
@noindent
and can then use this to add @cite{b_loop_cond}'s sole statement, via
-@pxref{2b,,gcc_jit_block_end_with_conditional()}:
+@pxref{2d,,gcc_jit_block_end_with_conditional()}:
@example
gcc_jit_block_end_with_conditional (b_loop_cond, NULL, guard);
The C statement @cite{sum += i * i;} is an assignment operation, where an
lvalue is modified "in-place". We use
-@pxref{2c,,gcc_jit_block_add_assignment_op()} to handle these operations:
+@pxref{2e,,gcc_jit_block_add_assignment_op()} to handle these operations:
@example
/* sum += i * i */
@noindent
The @cite{i++} can be thought of as @cite{i += 1}, and can thus be handled in
-a similar way. We use @pxref{2d,,gcc_jit_context_one()} to get the constant
+a similar way. We use @pxref{2f,,gcc_jit_context_one()} to get the constant
value @cite{1} (for the relevant type) for the right-hand side
of the assignment.
@cartouche
@quotation Note
For numeric constants other than 0 or 1, we could use
-@pxref{2e,,gcc_jit_context_new_rvalue_from_int()} and
-@pxref{2f,,gcc_jit_context_new_rvalue_from_double()}.
+@pxref{30,,gcc_jit_context_new_rvalue_from_int()} and
+@pxref{31,,gcc_jit_context_new_rvalue_from_double()}.
@end quotation
@end cartouche
@noindent
@node Visualizing the control flow graph,Full example<2>,Control flow,Tutorial part 3 Loops and variables
-@anchor{intro/tutorial03 visualizing-the-control-flow-graph}@anchor{30}
+@anchor{intro/tutorial03 visualizing-the-control-flow-graph}@anchor{32}
@subsection Visualizing the control flow graph
You can see the control flow graph of a function using
-@pxref{31,,gcc_jit_function_dump_to_dot()}:
+@pxref{33,,gcc_jit_function_dump_to_dot()}:
@example
gcc_jit_function_dump_to_dot (func, "/tmp/sum-of-squares.dot");
@end quotation
@node Full example<2>,,Visualizing the control flow graph,Tutorial part 3 Loops and variables
-@anchor{intro/tutorial03 full-example}@anchor{32}
+@anchor{intro/tutorial03 full-example}@anchor{34}
@subsection Full example
@c <http://www.gnu.org/licenses/>.
@node Tutorial part 4 Adding JIT-compilation to a toy interpreter,,Tutorial part 3 Loops and variables,Tutorial
-@anchor{intro/tutorial04 tutorial-part-4-adding-jit-compilation-to-a-toy-interpreter}@anchor{33}@anchor{intro/tutorial04 doc}@anchor{34}
+@anchor{intro/tutorial04 tutorial-part-4-adding-jit-compilation-to-a-toy-interpreter}@anchor{35}@anchor{intro/tutorial04 doc}@anchor{36}
@section Tutorial part 4: Adding JIT-compilation to a toy interpreter
@end menu
@node Our toy interpreter,Compiling to machine code,,Tutorial part 4 Adding JIT-compilation to a toy interpreter
-@anchor{intro/tutorial04 our-toy-interpreter}@anchor{35}
+@anchor{intro/tutorial04 our-toy-interpreter}@anchor{37}
@subsection Our toy interpreter
@end quotation
@node Compiling to machine code,Setting things up,Our toy interpreter,Tutorial part 4 Adding JIT-compilation to a toy interpreter
-@anchor{intro/tutorial04 compiling-to-machine-code}@anchor{36}
+@anchor{intro/tutorial04 compiling-to-machine-code}@anchor{38}
@subsection Compiling to machine code
The lifetime of the code is tied to that of a @pxref{16,,gcc_jit_result *}.
We'll handle this by bundling them up in a structure, so that we can
-clean them up together by calling @pxref{37,,gcc_jit_result_release()}:
+clean them up together by calling @pxref{39,,gcc_jit_result_release()}:
@quotation
@end quotation
@node Setting things up,Populating the function,Compiling to machine code,Tutorial part 4 Adding JIT-compilation to a toy interpreter
-@anchor{intro/tutorial04 setting-things-up}@anchor{38}
+@anchor{intro/tutorial04 setting-things-up}@anchor{3a}
@subsection Setting things up
@end quotation
We will support single-stepping through the generated code in the
-debugger, so we need to create @pxref{39,,gcc_jit_location} instances, one
+debugger, so we need to create @pxref{3b,,gcc_jit_location} instances, one
per operation in the source code. These will reference the lines of
e.g. @code{factorial.toy}.
@end quotation
@node Populating the function,Verifying the control flow graph,Setting things up,Tutorial part 4 Adding JIT-compilation to a toy interpreter
-@anchor{intro/tutorial04 populating-the-function}@anchor{3a}
+@anchor{intro/tutorial04 populating-the-function}@anchor{3c}
@subsection Populating the function
uninitialized.
To track this kind of thing down, we can use
-@pxref{3b,,gcc_jit_block_add_comment()} to add descriptive comments
+@pxref{3d,,gcc_jit_block_add_comment()} to add descriptive comments
to the internal representation. This is invaluable when looking through
the generated IR for, say @code{factorial}:
This is analogous to simply incrementing the program counter.
@node Verifying the control flow graph,Compiling the context,Populating the function,Tutorial part 4 Adding JIT-compilation to a toy interpreter
-@anchor{intro/tutorial04 verifying-the-control-flow-graph}@anchor{3c}
+@anchor{intro/tutorial04 verifying-the-control-flow-graph}@anchor{3e}
@subsection Verifying the control flow graph
Having finished looping over the blocks, the context is complete.
As before, we can verify that the control flow and statements are sane by
-using @pxref{31,,gcc_jit_function_dump_to_dot()}:
+using @pxref{33,,gcc_jit_function_dump_to_dot()}:
@example
gcc_jit_function_dump_to_dot (state.fn, "/tmp/factorial.dot");
@end quotation
@node Compiling the context,Single-stepping through the generated code,Verifying the control flow graph,Tutorial part 4 Adding JIT-compilation to a toy interpreter
-@anchor{intro/tutorial04 compiling-the-context}@anchor{3d}
+@anchor{intro/tutorial04 compiling-the-context}@anchor{3f}
@subsection Compiling the context
@end quotation
@node Single-stepping through the generated code,Examining the generated code,Compiling the context,Tutorial part 4 Adding JIT-compilation to a toy interpreter
-@anchor{intro/tutorial04 single-stepping-through-the-generated-code}@anchor{3e}
+@anchor{intro/tutorial04 single-stepping-through-the-generated-code}@anchor{40}
@subsection Single-stepping through the generated code
@item
Set up source code locations for our statements, so that we can
meaningfully step through the code. We did this above by
-calling @pxref{3f,,gcc_jit_context_new_location()} and using the
+calling @pxref{41,,gcc_jit_context_new_location()} and using the
results.
@item
Enable the generation of debugging information, by setting
-@pxref{40,,GCC_JIT_BOOL_OPTION_DEBUGINFO} on the
+@pxref{42,,GCC_JIT_BOOL_OPTION_DEBUGINFO} on the
@pxref{8,,gcc_jit_context} via
-@pxref{19,,gcc_jit_context_set_bool_option()}:
+@pxref{1b,,gcc_jit_context_set_bool_option()}:
@example
gcc_jit_context_set_bool_option (
@end cartouche
@node Examining the generated code,Putting it all together,Single-stepping through the generated code,Tutorial part 4 Adding JIT-compilation to a toy interpreter
-@anchor{intro/tutorial04 examining-the-generated-code}@anchor{41}
+@anchor{intro/tutorial04 examining-the-generated-code}@anchor{43}
@subsection Examining the generated code
How good is the optimized code?
We can turn up optimizations, by calling
-@pxref{1c,,gcc_jit_context_set_int_option()} with
-@pxref{1d,,GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL}:
+@pxref{1e,,gcc_jit_context_set_int_option()} with
+@pxref{1f,,GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL}:
@example
gcc_jit_context_set_int_option (
recursive call (in favor of an iteration).
@node Putting it all together,Behind the curtain How does our code get optimized?,Examining the generated code,Tutorial part 4 Adding JIT-compilation to a toy interpreter
-@anchor{intro/tutorial04 putting-it-all-together}@anchor{42}
+@anchor{intro/tutorial04 putting-it-all-together}@anchor{44}
@subsection Putting it all together
@noindent
@node Behind the curtain How does our code get optimized?,,Putting it all together,Tutorial part 4 Adding JIT-compilation to a toy interpreter
-@anchor{intro/tutorial04 behind-the-curtain-how-does-our-code-get-optimized}@anchor{43}
+@anchor{intro/tutorial04 behind-the-curtain-how-does-our-code-get-optimized}@anchor{45}
@subsection Behind the curtain: How does our code get optimized?
@noindent
We can perhaps better see the code by turning off
-@pxref{40,,GCC_JIT_BOOL_OPTION_DEBUGINFO} to suppress all those @code{DEBUG}
+@pxref{42,,GCC_JIT_BOOL_OPTION_DEBUGINFO} to suppress all those @code{DEBUG}
statements, giving:
@example
@noindent
-Note in the above how all the @pxref{26,,gcc_jit_block} instances we
+Note in the above how all the @pxref{28,,gcc_jit_block} instances we
created have been consolidated into just 3 blocks in GCC's internal
representation: @code{initial}, @code{instr4} and @code{instr9}.
@end menu
@node Optimizing away stack manipulation,Elimination of tail recursion,,Behind the curtain How does our code get optimized?
-@anchor{intro/tutorial04 optimizing-away-stack-manipulation}@anchor{44}
+@anchor{intro/tutorial04 optimizing-away-stack-manipulation}@anchor{46}
@subsubsection Optimizing away stack manipulation
@noindent
@node Elimination of tail recursion,,Optimizing away stack manipulation,Behind the curtain How does our code get optimized?
-@anchor{intro/tutorial04 elimination-of-tail-recursion}@anchor{45}
+@anchor{intro/tutorial04 elimination-of-tail-recursion}@anchor{47}
@subsubsection Elimination of tail recursion
@c <http://www.gnu.org/licenses/>.
@node Topic Reference,Internals,Tutorial,Top
-@anchor{topics/index doc}@anchor{46}@anchor{topics/index topic-reference}@anchor{47}
+@anchor{topics/index doc}@anchor{48}@anchor{topics/index topic-reference}@anchor{49}
@chapter Topic Reference
* Lifetime-management::
* Thread-safety::
-* Error-handling::
+* Error-handling: Error-handling<2>.
* Debugging::
* Options: Options<2>.
@node Compilation contexts,Objects,,Topic Reference
-@anchor{topics/contexts compilation-contexts}@anchor{48}@anchor{topics/contexts doc}@anchor{49}
+@anchor{topics/contexts compilation-contexts}@anchor{4a}@anchor{topics/contexts doc}@anchor{4b}
@section Compilation contexts
@menu
* Lifetime-management::
* Thread-safety::
-* Error-handling::
+* Error-handling: Error-handling<2>.
* Debugging::
* Options: Options<2>.
@end menu
@node Lifetime-management,Thread-safety,,Compilation contexts
-@anchor{topics/contexts lifetime-management}@anchor{4a}
+@anchor{topics/contexts lifetime-management}@anchor{4c}
@subsection Lifetime-management
@end deffn
@geindex gcc_jit_context_new_child_context (C function)
-@anchor{topics/contexts gcc_jit_context_new_child_context}@anchor{4b}
+@anchor{topics/contexts gcc_jit_context_new_child_context}@anchor{4d}
@deffn {C Function} gcc_jit_context * gcc_jit_context_new_child_context (gcc_jit_context@w{ }*parent_ctxt)
Given an existing JIT context, create a child context.
there will likely be a performance hit for such nesting.
@end deffn
-@node Thread-safety,Error-handling,Lifetime-management,Compilation contexts
-@anchor{topics/contexts thread-safety}@anchor{4c}
+@node Thread-safety,Error-handling<2>,Lifetime-management,Compilation contexts
+@anchor{topics/contexts thread-safety}@anchor{4e}
@subsection Thread-safety
only one thread may use a given context at once, but multiple threads
could each have their own contexts without needing locks.
-Contexts created via @pxref{4b,,gcc_jit_context_new_child_context()} are
+Contexts created via @pxref{4d,,gcc_jit_context_new_child_context()} are
related to their parent context. They can be partitioned by their
ultimate ancestor into independent "family trees". Only one thread
within a process may use a given "family tree" of such contexts at once,
and if you're using multiple threads you should provide your own locking
around entire such context partitions.
-@node Error-handling,Debugging,Thread-safety,Compilation contexts
-@anchor{topics/contexts error-handling}@anchor{4d}
+@node Error-handling<2>,Debugging,Thread-safety,Compilation contexts
+@anchor{topics/contexts error-handling}@anchor{19}@anchor{topics/contexts id1}@anchor{4f}
@subsection Error-handling
-You can only compile and get code from a context if no errors occur.
-
-In general, if an error occurs when using an API entrypoint, it returns
-NULL. You don't have to check everywhere for NULL results, since the
-API gracefully handles a NULL being passed in for any argument.
+Various kinds of errors are possible when using the API, such as
+mismatched types in an assignment. You can only compile and get code from
+a context if no errors occur.
Errors are printed on stderr and can be queried using
-@pxref{4e,,gcc_jit_context_get_first_error()}.
+@pxref{50,,gcc_jit_context_get_first_error()}.
+
+They typically contain the name of the API entrypoint where the error
+occurred, and pertinent information on the problem:
+
+@example
+./buggy-program: error: gcc_jit_block_add_assignment: mismatching types: assignment to i (type: int) from "hello world" (type: const char *)
+@end example
+
+@noindent
+
+In general, if an error occurs when using an API entrypoint, the
+entrypoint returns NULL. You don't have to check everywhere for NULL
+results, since the API handles a NULL being passed in for any
+argument by issuing another error. This typically leads to a cascade of
+followup error messages, but is safe (albeit verbose).
@geindex gcc_jit_context_get_first_error (C function)
-@anchor{topics/contexts gcc_jit_context_get_first_error}@anchor{4e}
+@anchor{topics/contexts gcc_jit_context_get_first_error}@anchor{50}
@deffn {C Function} const char * gcc_jit_context_get_first_error (gcc_jit_context@w{ }*ctxt)
Returns the first error message that occurred on the context.
If no errors occurred, this will be NULL.
@end deffn
-@node Debugging,Options<2>,Error-handling,Compilation contexts
-@anchor{topics/contexts debugging}@anchor{4f}
+@node Debugging,Options<2>,Error-handling<2>,Compilation contexts
+@anchor{topics/contexts debugging}@anchor{51}
@subsection Debugging
@geindex gcc_jit_context_dump_to_file (C function)
-@anchor{topics/contexts gcc_jit_context_dump_to_file}@anchor{50}
+@anchor{topics/contexts gcc_jit_context_dump_to_file}@anchor{52}
@deffn {C Function} void gcc_jit_context_dump_to_file (gcc_jit_context@w{ }*ctxt, const char@w{ }*path, int@w{ }update_locations)
To help with debugging: dump a C-like representation to the given path,
describing what's been set up on the context.
-If "update_locations" is true, then also set up @pxref{39,,gcc_jit_location}
+If "update_locations" is true, then also set up @pxref{3b,,gcc_jit_location}
information throughout the context, pointing at the dump file as if it
were a source file. This may be of use in conjunction with
-@pxref{40,,GCC_JIT_BOOL_OPTION_DEBUGINFO} to allow stepping through the
+@pxref{42,,GCC_JIT_BOOL_OPTION_DEBUGINFO} to allow stepping through the
code in a debugger.
@end deffn
@node Options<2>,,Debugging,Compilation contexts
-@anchor{topics/contexts options}@anchor{51}
+@anchor{topics/contexts options}@anchor{53}
@subsection Options
@end menu
@node String Options,Boolean options,,Options<2>
-@anchor{topics/contexts string-options}@anchor{52}
+@anchor{topics/contexts string-options}@anchor{54}
@subsubsection String Options
@geindex gcc_jit_context_set_str_option (C function)
-@anchor{topics/contexts gcc_jit_context_set_str_option}@anchor{53}
+@anchor{topics/contexts gcc_jit_context_set_str_option}@anchor{55}
@deffn {C Function} void gcc_jit_context_set_str_option (gcc_jit_context@w{ }*ctxt, enum gcc_jit_str_option@w{ }opt, const char@w{ }*value)
Set a string option of the context.
@geindex gcc_jit_str_option (C type)
-@anchor{topics/contexts gcc_jit_str_option}@anchor{54}
+@anchor{topics/contexts gcc_jit_str_option}@anchor{56}
@deffn {C Type} enum gcc_jit_str_option
@end deffn
There is currently just one string option:
@geindex GCC_JIT_STR_OPTION_PROGNAME (C macro)
-@anchor{topics/contexts GCC_JIT_STR_OPTION_PROGNAME}@anchor{55}
+@anchor{topics/contexts GCC_JIT_STR_OPTION_PROGNAME}@anchor{57}
@deffn {C Macro} GCC_JIT_STR_OPTION_PROGNAME
The name of the program, for use as a prefix when printing error
@end deffn
@node Boolean options,Integer options,String Options,Options<2>
-@anchor{topics/contexts boolean-options}@anchor{56}
+@anchor{topics/contexts boolean-options}@anchor{58}
@subsubsection Boolean options
@geindex gcc_jit_context_set_bool_option (C function)
-@anchor{topics/contexts gcc_jit_context_set_bool_option}@anchor{19}
+@anchor{topics/contexts gcc_jit_context_set_bool_option}@anchor{1b}
@deffn {C Function} void gcc_jit_context_set_bool_option (gcc_jit_context@w{ }*ctxt, enum gcc_jit_bool_option@w{ }opt, int@w{ }value)
Set a boolean option of the context.
Zero is "false" (the default), non-zero is "true".
@geindex gcc_jit_bool_option (C type)
-@anchor{topics/contexts gcc_jit_bool_option}@anchor{57}
+@anchor{topics/contexts gcc_jit_bool_option}@anchor{59}
@deffn {C Type} enum gcc_jit_bool_option
@end deffn
@geindex GCC_JIT_BOOL_OPTION_DEBUGINFO (C macro)
-@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DEBUGINFO}@anchor{40}
+@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DEBUGINFO}@anchor{42}
@deffn {C Macro} GCC_JIT_BOOL_OPTION_DEBUGINFO
If true, @pxref{15,,gcc_jit_context_compile()} will attempt to do the right
Note that you can't step through code unless you set up source
location information for the code (by creating and passing in
-@pxref{39,,gcc_jit_location} instances).
+@pxref{3b,,gcc_jit_location} instances).
@end deffn
@geindex GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE (C macro)
-@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE}@anchor{58}
+@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE}@anchor{5a}
@deffn {C Macro} GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE
If true, @pxref{15,,gcc_jit_context_compile()} will dump its initial
@end deffn
@geindex GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE (C macro)
-@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE}@anchor{1a}
+@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE}@anchor{1c}
@deffn {C Macro} GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE
If true, @pxref{15,,gcc_jit_context_compile()} will dump the "gimple"
@end deffn
@geindex GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE (C macro)
-@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE}@anchor{1b}
+@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE}@anchor{1d}
@deffn {C Macro} GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE
If true, @pxref{15,,gcc_jit_context_compile()} will dump the final
@end deffn
@geindex GCC_JIT_BOOL_OPTION_DUMP_SUMMARY (C macro)
-@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DUMP_SUMMARY}@anchor{59}
+@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DUMP_SUMMARY}@anchor{5b}
@deffn {C Macro} GCC_JIT_BOOL_OPTION_DUMP_SUMMARY
If true, @pxref{15,,gcc_jit_context_compile()} will print information to stderr
@end deffn
@geindex GCC_JIT_BOOL_OPTION_DUMP_EVERYTHING (C macro)
-@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DUMP_EVERYTHING}@anchor{5a}
+@anchor{topics/contexts GCC_JIT_BOOL_OPTION_DUMP_EVERYTHING}@anchor{5c}
@deffn {C Macro} GCC_JIT_BOOL_OPTION_DUMP_EVERYTHING
If true, @pxref{15,,gcc_jit_context_compile()} will dump copious
amount of information on what it's doing to various
files within a temporary directory. Use
-@pxref{5b,,GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES} (see below) to
+@pxref{5d,,GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES} (see below) to
see the results. The files are intended to be human-readable,
but the exact files and their formats are subject to change.
@end deffn
@geindex GCC_JIT_BOOL_OPTION_SELFCHECK_GC (C macro)
-@anchor{topics/contexts GCC_JIT_BOOL_OPTION_SELFCHECK_GC}@anchor{5c}
+@anchor{topics/contexts GCC_JIT_BOOL_OPTION_SELFCHECK_GC}@anchor{5e}
@deffn {C Macro} GCC_JIT_BOOL_OPTION_SELFCHECK_GC
If true, libgccjit will aggressively run its garbage collector, to
@end deffn
@geindex GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES (C macro)
-@anchor{topics/contexts GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES}@anchor{5b}
+@anchor{topics/contexts GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES}@anchor{5d}
@deffn {C Macro} GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES
If true, the @pxref{8,,gcc_jit_context} will not clean up intermediate files
@end deffn
@node Integer options,,Boolean options,Options<2>
-@anchor{topics/contexts integer-options}@anchor{5d}
+@anchor{topics/contexts integer-options}@anchor{5f}
@subsubsection Integer options
@geindex gcc_jit_context_set_int_option (C function)
-@anchor{topics/contexts gcc_jit_context_set_int_option}@anchor{1c}
+@anchor{topics/contexts gcc_jit_context_set_int_option}@anchor{1e}
@deffn {C Function} void gcc_jit_context_set_int_option (gcc_jit_context@w{ }*ctxt, enum gcc_jit_int_option@w{ }opt, int@w{ }value)
Set an integer option of the context.
@geindex gcc_jit_int_option (C type)
-@anchor{topics/contexts gcc_jit_int_option}@anchor{5e}
+@anchor{topics/contexts gcc_jit_int_option}@anchor{60}
@deffn {C Type} enum gcc_jit_int_option
@end deffn
There is currently just one integer option:
@geindex GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL (C macro)
-@anchor{topics/contexts GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL}@anchor{1d}
+@anchor{topics/contexts GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL}@anchor{1f}
@deffn {C Macro} GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL
How much to optimize the code.
@c <http://www.gnu.org/licenses/>.
@node Objects,Types,Compilation contexts,Topic Reference
-@anchor{topics/objects objects}@anchor{5f}@anchor{topics/objects doc}@anchor{60}
+@anchor{topics/objects objects}@anchor{61}@anchor{topics/objects doc}@anchor{62}
@section Objects
The object "base class" has the following operations:
@geindex gcc_jit_object_get_context (C function)
-@anchor{topics/objects gcc_jit_object_get_context}@anchor{61}
+@anchor{topics/objects gcc_jit_object_get_context}@anchor{63}
@deffn {C Function} gcc_jit_context *gcc_jit_object_get_context (gcc_jit_object@w{ }*obj)
Which context is "obj" within?
@c <http://www.gnu.org/licenses/>.
@node Types,Expressions,Objects,Topic Reference
-@anchor{topics/types doc}@anchor{62}@anchor{topics/types types}@anchor{63}
+@anchor{topics/types doc}@anchor{64}@anchor{topics/types types}@anchor{65}
@section Types
@item
derived types can be accessed by using functions such as
-@pxref{64,,gcc_jit_type_get_pointer()} and @pxref{65,,gcc_jit_type_get_const()}:
+@pxref{66,,gcc_jit_type_get_pointer()} and @pxref{67,,gcc_jit_type_get_const()}:
@example
gcc_jit_type *const_int_star = gcc_jit_type_get_pointer (gcc_jit_type_get_const (int_type));
@end menu
@node Standard types,Pointers const and volatile,,Types
-@anchor{topics/types standard-types}@anchor{66}
+@anchor{topics/types standard-types}@anchor{68}
@subsection Standard types
@end deffn
@geindex gcc_jit_context_get_int_type (C function)
-@anchor{topics/types gcc_jit_context_get_int_type}@anchor{67}
+@anchor{topics/types gcc_jit_context_get_int_type}@anchor{69}
@deffn {C Function} gcc_jit_type * gcc_jit_context_get_int_type (gcc_jit_context@w{ }*ctxt, int@w{ }num_bytes, int@w{ }is_signed)
Access the integer type of the given size.
@end deffn
@node Pointers const and volatile,Structures and unions,Standard types,Types
-@anchor{topics/types pointers-const-and-volatile}@anchor{68}
+@anchor{topics/types pointers-const-and-volatile}@anchor{6a}
@subsection Pointers, @cite{const}, and @cite{volatile}
@geindex gcc_jit_type_get_pointer (C function)
-@anchor{topics/types gcc_jit_type_get_pointer}@anchor{64}
+@anchor{topics/types gcc_jit_type_get_pointer}@anchor{66}
@deffn {C Function} gcc_jit_type *gcc_jit_type_get_pointer (gcc_jit_type@w{ }*type)
Given type "T", get type "T*".
@end deffn
@geindex gcc_jit_type_get_const (C function)
-@anchor{topics/types gcc_jit_type_get_const}@anchor{65}
+@anchor{topics/types gcc_jit_type_get_const}@anchor{67}
@deffn {C Function} gcc_jit_type *gcc_jit_type_get_const (gcc_jit_type@w{ }*type)
Given type "T", get type "const T".
@end deffn
@geindex gcc_jit_type_get_volatile (C function)
-@anchor{topics/types gcc_jit_type_get_volatile}@anchor{69}
+@anchor{topics/types gcc_jit_type_get_volatile}@anchor{6b}
@deffn {C Function} gcc_jit_type *gcc_jit_type_get_volatile (gcc_jit_type@w{ }*type)
Given type "T", get type "volatile T".
@end deffn
@geindex gcc_jit_context_new_array_type (C function)
-@anchor{topics/types gcc_jit_context_new_array_type}@anchor{6a}
+@anchor{topics/types gcc_jit_context_new_array_type}@anchor{6c}
@deffn {C Function} gcc_jit_type * gcc_jit_context_new_array_type (gcc_jit_context@w{ }*ctxt, gcc_jit_location@w{ }*loc, gcc_jit_type@w{ }*element_type, int@w{ }num_elements)
Given type "T", get type "T[N]" (for a constant N).
@end deffn
@node Structures and unions,,Pointers const and volatile,Types
-@anchor{topics/types structures-and-unions}@anchor{6b}
+@anchor{topics/types structures-and-unions}@anchor{6d}
@subsection Structures and unions
@geindex gcc_jit_struct (C type)
-@anchor{topics/types gcc_jit_struct}@anchor{6c}
+@anchor{topics/types gcc_jit_struct}@anchor{6e}
@deffn {C Type} gcc_jit_struct
@end deffn
A compound type analagous to a C @cite{struct}.
@geindex gcc_jit_field (C type)
-@anchor{topics/types gcc_jit_field}@anchor{6d}
+@anchor{topics/types gcc_jit_field}@anchor{6f}
@deffn {C Type} gcc_jit_field
@end deffn
-A field within a @pxref{6c,,gcc_jit_struct}.
+A field within a @pxref{6e,,gcc_jit_struct}.
-You can model C @cite{struct} types by creating @pxref{6c,,gcc_jit_struct *} and
-@pxref{6d,,gcc_jit_field} instances, in either order:
+You can model C @cite{struct} types by creating @pxref{6e,,gcc_jit_struct *} and
+@pxref{6f,,gcc_jit_field} instances, in either order:
@itemize *
@end itemize
@geindex gcc_jit_context_new_field (C function)
-@anchor{topics/types gcc_jit_context_new_field}@anchor{6e}
+@anchor{topics/types gcc_jit_context_new_field}@anchor{70}
@deffn {C Function} gcc_jit_field * gcc_jit_context_new_field (gcc_jit_context@w{ }*ctxt, gcc_jit_location@w{ }*loc, gcc_jit_type@w{ }*type, const char@w{ }*name)
Construct a new field, with the given type and name.
@end deffn
@geindex gcc_jit_field_as_object (C function)
-@anchor{topics/types gcc_jit_field_as_object}@anchor{6f}
+@anchor{topics/types gcc_jit_field_as_object}@anchor{71}
@deffn {C Function} gcc_jit_object * gcc_jit_field_as_object (gcc_jit_field@w{ }*field)
Upcast from field to object.
@end deffn
@geindex gcc_jit_context_new_struct_type (C function)
-@anchor{topics/types gcc_jit_context_new_struct_type}@anchor{70}
+@anchor{topics/types gcc_jit_context_new_struct_type}@anchor{72}
@deffn {C Function} gcc_jit_struct *gcc_jit_context_new_struct_type (gcc_jit_context@w{ }*ctxt, gcc_jit_location@w{ }*loc, const char@w{ }*name, int@w{ }num_fields, gcc_jit_field@w{ }**fields)
@quotation
@end deffn
@geindex gcc_jit_context_new_opaque_struct (C function)
-@anchor{topics/types gcc_jit_context_new_opaque_struct}@anchor{71}
+@anchor{topics/types gcc_jit_context_new_opaque_struct}@anchor{73}
@deffn {C Function} gcc_jit_struct * gcc_jit_context_new_opaque_struct (gcc_jit_context@w{ }*ctxt, gcc_jit_location@w{ }*loc, const char@w{ }*name)
Construct a new struct type, with the given name, but without
specifying the fields. The fields can be omitted (in which case the
size of the struct is not known), or later specified using
-@pxref{72,,gcc_jit_struct_set_fields()}.
+@pxref{74,,gcc_jit_struct_set_fields()}.
@end deffn
@geindex gcc_jit_struct_as_type (C function)
-@anchor{topics/types gcc_jit_struct_as_type}@anchor{73}
+@anchor{topics/types gcc_jit_struct_as_type}@anchor{75}
@deffn {C Function} gcc_jit_type * gcc_jit_struct_as_type (gcc_jit_struct@w{ }*struct_type)
Upcast from struct to type.
@end deffn
@geindex gcc_jit_struct_set_fields (C function)
-@anchor{topics/types gcc_jit_struct_set_fields}@anchor{72}
+@anchor{topics/types gcc_jit_struct_set_fields}@anchor{74}
@deffn {C Function} void gcc_jit_struct_set_fields (gcc_jit_struct@w{ }*struct_type, gcc_jit_location@w{ }*loc, int@w{ }num_fields, gcc_jit_field@w{ }**fields)
Populate the fields of a formerly-opaque struct type.
@c <http://www.gnu.org/licenses/>.
@node Expressions,Creating and using functions,Types,Topic Reference
-@anchor{topics/expressions expressions}@anchor{74}@anchor{topics/expressions doc}@anchor{75}
+@anchor{topics/expressions expressions}@anchor{76}@anchor{topics/expressions doc}@anchor{77}
@section Expressions
@node Rvalues,Lvalues,,Expressions
-@anchor{topics/expressions rvalues}@anchor{76}
+@anchor{topics/expressions rvalues}@anchor{78}
@subsection Rvalues
that types match up correctly (otherwise the context will emit an error).
@geindex gcc_jit_rvalue_get_type (C function)
-@anchor{topics/expressions gcc_jit_rvalue_get_type}@anchor{77}
+@anchor{topics/expressions gcc_jit_rvalue_get_type}@anchor{79}
@deffn {C Function} gcc_jit_type *gcc_jit_rvalue_get_type (gcc_jit_rvalue@w{ }*rvalue)
Get the type of this rvalue.
@end menu
@node Simple expressions,Unary Operations,,Rvalues
-@anchor{topics/expressions simple-expressions}@anchor{78}
+@anchor{topics/expressions simple-expressions}@anchor{7a}
@subsubsection Simple expressions
@geindex gcc_jit_context_new_rvalue_from_int (C function)
-@anchor{topics/expressions gcc_jit_context_new_rvalue_from_int}@anchor{2e}
+@anchor{topics/expressions gcc_jit_context_new_rvalue_from_int}@anchor{30}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_context_new_rvalue_from_int (gcc_jit_context@w{ }*ctxt, gcc_jit_type@w{ }*numeric_type, int@w{ }value)
Given a numeric type (integer or floating point), build an rvalue for
@end deffn
@geindex gcc_jit_context_zero (C function)
-@anchor{topics/expressions gcc_jit_context_zero}@anchor{29}
+@anchor{topics/expressions gcc_jit_context_zero}@anchor{2b}
@deffn {C Function} gcc_jit_rvalue *gcc_jit_context_zero (gcc_jit_context@w{ }*ctxt, gcc_jit_type@w{ }*numeric_type)
Given a numeric type (integer or floating point), get the rvalue for
@end deffn
@geindex gcc_jit_context_one (C function)
-@anchor{topics/expressions gcc_jit_context_one}@anchor{2d}
+@anchor{topics/expressions gcc_jit_context_one}@anchor{2f}
@deffn {C Function} gcc_jit_rvalue *gcc_jit_context_one (gcc_jit_context@w{ }*ctxt, gcc_jit_type@w{ }*numeric_type)
Given a numeric type (integer or floating point), get the rvalue for
@end deffn
@geindex gcc_jit_context_new_rvalue_from_double (C function)
-@anchor{topics/expressions gcc_jit_context_new_rvalue_from_double}@anchor{2f}
+@anchor{topics/expressions gcc_jit_context_new_rvalue_from_double}@anchor{31}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_context_new_rvalue_from_double (gcc_jit_context@w{ }*ctxt, gcc_jit_type@w{ }*numeric_type, double@w{ }value)
Given a numeric type (integer or floating point), build an rvalue for
@end deffn
@geindex gcc_jit_context_new_rvalue_from_ptr (C function)
-@anchor{topics/expressions gcc_jit_context_new_rvalue_from_ptr}@anchor{79}
+@anchor{topics/expressions gcc_jit_context_new_rvalue_from_ptr}@anchor{7b}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_context_new_rvalue_from_ptr (gcc_jit_context@w{ }*ctxt, gcc_jit_type@w{ }*pointer_type, void@w{ }*value)
Given a pointer type, build an rvalue for the given address.
@end deffn
@geindex gcc_jit_context_null (C function)
-@anchor{topics/expressions gcc_jit_context_null}@anchor{7a}
+@anchor{topics/expressions gcc_jit_context_null}@anchor{7c}
@deffn {C Function} gcc_jit_rvalue *gcc_jit_context_null (gcc_jit_context@w{ }*ctxt, gcc_jit_type@w{ }*pointer_type)
Given a pointer type, build an rvalue for @code{NULL}. Essentially this
@end deffn
@geindex gcc_jit_context_new_string_literal (C function)
-@anchor{topics/expressions gcc_jit_context_new_string_literal}@anchor{7b}
+@anchor{topics/expressions gcc_jit_context_new_string_literal}@anchor{7d}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_context_new_string_literal (gcc_jit_context@w{ }*ctxt, const char@w{ }*value)
Generate an rvalue for the given NIL-terminated string, of type
@end deffn
@node Unary Operations,Binary Operations,Simple expressions,Rvalues
-@anchor{topics/expressions unary-operations}@anchor{7c}
+@anchor{topics/expressions unary-operations}@anchor{7e}
@subsubsection Unary Operations
@geindex gcc_jit_context_new_unary_op (C function)
-@anchor{topics/expressions gcc_jit_context_new_unary_op}@anchor{7d}
+@anchor{topics/expressions gcc_jit_context_new_unary_op}@anchor{7f}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_context_new_unary_op (gcc_jit_context@w{ }*ctxt, gcc_jit_location@w{ }*loc, enum gcc_jit_unary_op@w{ }op, gcc_jit_type@w{ }*result_type, gcc_jit_rvalue@w{ }*rvalue)
Build a unary operation out of an input rvalue.
@end deffn
@geindex gcc_jit_unary_op (C type)
-@anchor{topics/expressions gcc_jit_unary_op}@anchor{7e}
+@anchor{topics/expressions gcc_jit_unary_op}@anchor{80}
@deffn {C Type} enum gcc_jit_unary_op
@end deffn
@item
-@pxref{7f,,GCC_JIT_UNARY_OP_MINUS}
+@pxref{81,,GCC_JIT_UNARY_OP_MINUS}
@tab
@item
-@pxref{80,,GCC_JIT_UNARY_OP_BITWISE_NEGATE}
+@pxref{82,,GCC_JIT_UNARY_OP_BITWISE_NEGATE}
@tab
@item
-@pxref{81,,GCC_JIT_UNARY_OP_LOGICAL_NEGATE}
+@pxref{83,,GCC_JIT_UNARY_OP_LOGICAL_NEGATE}
@tab
@geindex GCC_JIT_UNARY_OP_MINUS (C macro)
-@anchor{topics/expressions GCC_JIT_UNARY_OP_MINUS}@anchor{7f}
+@anchor{topics/expressions GCC_JIT_UNARY_OP_MINUS}@anchor{81}
@deffn {C Macro} GCC_JIT_UNARY_OP_MINUS
Negate an arithmetic value; analogous to:
@end deffn
@geindex GCC_JIT_UNARY_OP_BITWISE_NEGATE (C macro)
-@anchor{topics/expressions GCC_JIT_UNARY_OP_BITWISE_NEGATE}@anchor{80}
+@anchor{topics/expressions GCC_JIT_UNARY_OP_BITWISE_NEGATE}@anchor{82}
@deffn {C Macro} GCC_JIT_UNARY_OP_BITWISE_NEGATE
Bitwise negation of an integer value (one's complement); analogous
@end deffn
@geindex GCC_JIT_UNARY_OP_LOGICAL_NEGATE (C macro)
-@anchor{topics/expressions GCC_JIT_UNARY_OP_LOGICAL_NEGATE}@anchor{81}
+@anchor{topics/expressions GCC_JIT_UNARY_OP_LOGICAL_NEGATE}@anchor{83}
@deffn {C Macro} GCC_JIT_UNARY_OP_LOGICAL_NEGATE
Logical negation of an arithmetic or pointer value; analogous to:
@end deffn
@node Binary Operations,Comparisons,Unary Operations,Rvalues
-@anchor{topics/expressions binary-operations}@anchor{82}
+@anchor{topics/expressions binary-operations}@anchor{84}
@subsubsection Binary Operations
@end deffn
@geindex gcc_jit_binary_op (C type)
-@anchor{topics/expressions gcc_jit_binary_op}@anchor{83}
+@anchor{topics/expressions gcc_jit_binary_op}@anchor{85}
@deffn {C Type} enum gcc_jit_binary_op
@end deffn
@item
-@pxref{84,,GCC_JIT_BINARY_OP_PLUS}
+@pxref{86,,GCC_JIT_BINARY_OP_PLUS}
@tab
@item
-@pxref{85,,GCC_JIT_BINARY_OP_MULT}
+@pxref{87,,GCC_JIT_BINARY_OP_MULT}
@tab
@item
-@pxref{86,,GCC_JIT_BINARY_OP_DIVIDE}
+@pxref{88,,GCC_JIT_BINARY_OP_DIVIDE}
@tab
@item
-@pxref{87,,GCC_JIT_BINARY_OP_MODULO}
+@pxref{89,,GCC_JIT_BINARY_OP_MODULO}
@tab
@item
-@pxref{88,,GCC_JIT_BINARY_OP_BITWISE_AND}
+@pxref{8a,,GCC_JIT_BINARY_OP_BITWISE_AND}
@tab
@item
-@pxref{89,,GCC_JIT_BINARY_OP_BITWISE_XOR}
+@pxref{8b,,GCC_JIT_BINARY_OP_BITWISE_XOR}
@tab
@item
-@pxref{8a,,GCC_JIT_BINARY_OP_BITWISE_OR}
+@pxref{8c,,GCC_JIT_BINARY_OP_BITWISE_OR}
@tab
@item
-@pxref{8b,,GCC_JIT_BINARY_OP_LOGICAL_AND}
+@pxref{8d,,GCC_JIT_BINARY_OP_LOGICAL_AND}
@tab
@item
-@pxref{8c,,GCC_JIT_BINARY_OP_LOGICAL_OR}
+@pxref{8e,,GCC_JIT_BINARY_OP_LOGICAL_OR}
@tab
@item
-@pxref{8d,,GCC_JIT_BINARY_OP_LSHIFT}
+@pxref{8f,,GCC_JIT_BINARY_OP_LSHIFT}
@tab
@item
-@pxref{8e,,GCC_JIT_BINARY_OP_RSHIFT}
+@pxref{90,,GCC_JIT_BINARY_OP_RSHIFT}
@tab
@geindex GCC_JIT_BINARY_OP_PLUS (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_PLUS}@anchor{84}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_PLUS}@anchor{86}
@deffn {C Macro} GCC_JIT_BINARY_OP_PLUS
Addition of arithmetic values; analogous to:
in C.
-For pointer addition, use @pxref{8f,,gcc_jit_context_new_array_access()}.
+For pointer addition, use @pxref{91,,gcc_jit_context_new_array_access()}.
@end deffn
@end deffn
@geindex GCC_JIT_BINARY_OP_MULT (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_MULT}@anchor{85}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_MULT}@anchor{87}
@deffn {C Macro} GCC_JIT_BINARY_OP_MULT
Multiplication of a pair of arithmetic values; analogous to:
@end deffn
@geindex GCC_JIT_BINARY_OP_DIVIDE (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_DIVIDE}@anchor{86}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_DIVIDE}@anchor{88}
@deffn {C Macro} GCC_JIT_BINARY_OP_DIVIDE
Quotient of division of arithmetic values; analogous to:
@end deffn
@geindex GCC_JIT_BINARY_OP_MODULO (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_MODULO}@anchor{87}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_MODULO}@anchor{89}
@deffn {C Macro} GCC_JIT_BINARY_OP_MODULO
Remainder of division of arithmetic values; analogous to:
@end deffn
@geindex GCC_JIT_BINARY_OP_BITWISE_AND (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_BITWISE_AND}@anchor{88}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_BITWISE_AND}@anchor{8a}
@deffn {C Macro} GCC_JIT_BINARY_OP_BITWISE_AND
Bitwise AND; analogous to:
@end deffn
@geindex GCC_JIT_BINARY_OP_BITWISE_XOR (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_BITWISE_XOR}@anchor{89}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_BITWISE_XOR}@anchor{8b}
@deffn {C Macro} GCC_JIT_BINARY_OP_BITWISE_XOR
Bitwise exclusive OR; analogous to:
@end deffn
@geindex GCC_JIT_BINARY_OP_BITWISE_OR (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_BITWISE_OR}@anchor{8a}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_BITWISE_OR}@anchor{8c}
@deffn {C Macro} GCC_JIT_BINARY_OP_BITWISE_OR
Bitwise inclusive OR; analogous to:
@end deffn
@geindex GCC_JIT_BINARY_OP_LOGICAL_AND (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_LOGICAL_AND}@anchor{8b}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_LOGICAL_AND}@anchor{8d}
@deffn {C Macro} GCC_JIT_BINARY_OP_LOGICAL_AND
Logical AND; analogous to:
@end deffn
@geindex GCC_JIT_BINARY_OP_LOGICAL_OR (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_LOGICAL_OR}@anchor{8c}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_LOGICAL_OR}@anchor{8e}
@deffn {C Macro} GCC_JIT_BINARY_OP_LOGICAL_OR
Logical OR; analogous to:
@end deffn
@geindex GCC_JIT_BINARY_OP_LSHIFT (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_LSHIFT}@anchor{8d}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_LSHIFT}@anchor{8f}
@deffn {C Macro} GCC_JIT_BINARY_OP_LSHIFT
Left shift; analogous to:
@end deffn
@geindex GCC_JIT_BINARY_OP_RSHIFT (C macro)
-@anchor{topics/expressions GCC_JIT_BINARY_OP_RSHIFT}@anchor{8e}
+@anchor{topics/expressions GCC_JIT_BINARY_OP_RSHIFT}@anchor{90}
@deffn {C Macro} GCC_JIT_BINARY_OP_RSHIFT
Right shift; analogous to:
@end deffn
@node Comparisons,Function calls,Binary Operations,Rvalues
-@anchor{topics/expressions comparisons}@anchor{90}
+@anchor{topics/expressions comparisons}@anchor{92}
@subsubsection Comparisons
@geindex gcc_jit_context_new_comparison (C function)
-@anchor{topics/expressions gcc_jit_context_new_comparison}@anchor{2a}
+@anchor{topics/expressions gcc_jit_context_new_comparison}@anchor{2c}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_context_new_comparison (gcc_jit_context@w{ }*ctxt, gcc_jit_location@w{ }*loc, enum gcc_jit_comparison@w{ }op, gcc_jit_rvalue@w{ }*a, gcc_jit_rvalue@w{ }*b)
Build a boolean rvalue out of the comparison of two other rvalues.
@end deffn
@geindex gcc_jit_comparison (C type)
-@anchor{topics/expressions gcc_jit_comparison}@anchor{91}
+@anchor{topics/expressions gcc_jit_comparison}@anchor{93}
@deffn {C Type} enum gcc_jit_comparison
@end deffn
@node Function calls,Type-coercion,Comparisons,Rvalues
-@anchor{topics/expressions function-calls}@anchor{92}
+@anchor{topics/expressions function-calls}@anchor{94}
@subsubsection Function calls
@geindex gcc_jit_context_new_call (C function)
-@anchor{topics/expressions gcc_jit_context_new_call}@anchor{93}
+@anchor{topics/expressions gcc_jit_context_new_call}@anchor{95}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_context_new_call (gcc_jit_context@w{ }*ctxt, gcc_jit_location@w{ }*loc, gcc_jit_function@w{ }*func, int@w{ }numargs, gcc_jit_rvalue@w{ }**args)
Given a function and the given table of argument rvalues, construct a
@cartouche
@quotation Note
-@pxref{93,,gcc_jit_context_new_call()} merely builds a
+@pxref{95,,gcc_jit_context_new_call()} merely builds a
@pxref{13,,gcc_jit_rvalue} i.e. an expression that can be evaluated,
perhaps as part of a more complicated expression.
The call @emph{won't} happen unless you add a statement to a function
For example, if you want to call a function and discard the result
(or to call a function with @code{void} return type), use
-@pxref{94,,gcc_jit_block_add_eval()}:
+@pxref{96,,gcc_jit_block_add_eval()}:
@example
/* Add "(void)printf (arg0, arg1);". */
@end deffn
@node Type-coercion,,Function calls,Rvalues
-@anchor{topics/expressions type-coercion}@anchor{95}
+@anchor{topics/expressions type-coercion}@anchor{97}
@subsubsection Type-coercion
@geindex gcc_jit_context_new_cast (C function)
-@anchor{topics/expressions gcc_jit_context_new_cast}@anchor{96}
+@anchor{topics/expressions gcc_jit_context_new_cast}@anchor{98}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_context_new_cast (gcc_jit_context@w{ }*ctxt, gcc_jit_location@w{ }*loc, gcc_jit_rvalue@w{ }*rvalue, gcc_jit_type@w{ }*type)
Given an rvalue of T, construct another rvalue of another type.
@end deffn
@node Lvalues,Working with pointers structs and unions,Rvalues,Expressions
-@anchor{topics/expressions lvalues}@anchor{97}
+@anchor{topics/expressions lvalues}@anchor{99}
@subsection Lvalues
@geindex gcc_jit_lvalue (C type)
-@anchor{topics/expressions gcc_jit_lvalue}@anchor{22}
+@anchor{topics/expressions gcc_jit_lvalue}@anchor{24}
@deffn {C Type} gcc_jit_lvalue
@end deffn
where the rvalue is computed by reading from the storage area.
@geindex gcc_jit_lvalue_as_object (C function)
-@anchor{topics/expressions gcc_jit_lvalue_as_object}@anchor{98}
+@anchor{topics/expressions gcc_jit_lvalue_as_object}@anchor{9a}
@deffn {C Function} gcc_jit_object * gcc_jit_lvalue_as_object (gcc_jit_lvalue@w{ }*lvalue)
Upcast an lvalue to be an object.
@end deffn
@geindex gcc_jit_lvalue_as_rvalue (C function)
-@anchor{topics/expressions gcc_jit_lvalue_as_rvalue}@anchor{99}
+@anchor{topics/expressions gcc_jit_lvalue_as_rvalue}@anchor{9b}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_lvalue_as_rvalue (gcc_jit_lvalue@w{ }*lvalue)
Upcast an lvalue to be an rvalue.
@end deffn
@geindex gcc_jit_lvalue_get_address (C function)
-@anchor{topics/expressions gcc_jit_lvalue_get_address}@anchor{9a}
+@anchor{topics/expressions gcc_jit_lvalue_get_address}@anchor{9c}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_lvalue_get_address (gcc_jit_lvalue@w{ }*lvalue, gcc_jit_location@w{ }*loc)
Take the address of an lvalue; analogous to:
@end menu
@node Global variables,,,Lvalues
-@anchor{topics/expressions global-variables}@anchor{9b}
+@anchor{topics/expressions global-variables}@anchor{9d}
@subsubsection Global variables
@geindex gcc_jit_context_new_global (C function)
-@anchor{topics/expressions gcc_jit_context_new_global}@anchor{9c}
+@anchor{topics/expressions gcc_jit_context_new_global}@anchor{9e}
@deffn {C Function} gcc_jit_lvalue * gcc_jit_context_new_global (gcc_jit_context@w{ }*ctxt, gcc_jit_location@w{ }*loc, gcc_jit_type@w{ }*type, const char@w{ }*name)
Add a new global variable of the given type and name to the context.
@end deffn
@node Working with pointers structs and unions,,Lvalues,Expressions
-@anchor{topics/expressions working-with-pointers-structs-and-unions}@anchor{9d}
+@anchor{topics/expressions working-with-pointers-structs-and-unions}@anchor{9f}
@subsection Working with pointers, structs and unions
@geindex gcc_jit_rvalue_dereference (C function)
-@anchor{topics/expressions gcc_jit_rvalue_dereference}@anchor{9e}
+@anchor{topics/expressions gcc_jit_rvalue_dereference}@anchor{a0}
@deffn {C Function} gcc_jit_lvalue * gcc_jit_rvalue_dereference (gcc_jit_rvalue@w{ }*rvalue, gcc_jit_location@w{ }*loc)
Given an rvalue of pointer type @code{T *}, dereferencing the pointer,
Field access is provided separately for both lvalues and rvalues.
@geindex gcc_jit_lvalue_access_field (C function)
-@anchor{topics/expressions gcc_jit_lvalue_access_field}@anchor{9f}
+@anchor{topics/expressions gcc_jit_lvalue_access_field}@anchor{a1}
@deffn {C Function} gcc_jit_lvalue * gcc_jit_lvalue_access_field (gcc_jit_lvalue@w{ }*struct_, gcc_jit_location@w{ }*loc, gcc_jit_field@w{ }*field)
Given an lvalue of struct or union type, access the given field,
@end deffn
@geindex gcc_jit_rvalue_access_field (C function)
-@anchor{topics/expressions gcc_jit_rvalue_access_field}@anchor{a0}
+@anchor{topics/expressions gcc_jit_rvalue_access_field}@anchor{a2}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_rvalue_access_field (gcc_jit_rvalue@w{ }*struct_, gcc_jit_location@w{ }*loc, gcc_jit_field@w{ }*field)
Given an rvalue of struct or union type, access the given field
@end deffn
@geindex gcc_jit_rvalue_dereference_field (C function)
-@anchor{topics/expressions gcc_jit_rvalue_dereference_field}@anchor{a1}
+@anchor{topics/expressions gcc_jit_rvalue_dereference_field}@anchor{a3}
@deffn {C Function} gcc_jit_lvalue * gcc_jit_rvalue_dereference_field (gcc_jit_rvalue@w{ }*ptr, gcc_jit_location@w{ }*loc, gcc_jit_field@w{ }*field)
Given an rvalue of pointer type @code{T *} where T is of struct or union
@end deffn
@geindex gcc_jit_context_new_array_access (C function)
-@anchor{topics/expressions gcc_jit_context_new_array_access}@anchor{8f}
+@anchor{topics/expressions gcc_jit_context_new_array_access}@anchor{91}
@deffn {C Function} gcc_jit_lvalue * gcc_jit_context_new_array_access (gcc_jit_context@w{ }*ctxt, gcc_jit_location@w{ }*loc, gcc_jit_rvalue@w{ }*ptr, gcc_jit_rvalue@w{ }*index)
Given an rvalue of pointer type @code{T *}, get at the element @cite{T} at
@c <http://www.gnu.org/licenses/>.
@node Creating and using functions,Source Locations,Expressions,Topic Reference
-@anchor{topics/functions doc}@anchor{a2}@anchor{topics/functions creating-and-using-functions}@anchor{a3}
+@anchor{topics/functions doc}@anchor{a4}@anchor{topics/functions creating-and-using-functions}@anchor{a5}
@section Creating and using functions
@end menu
@node Params,Functions,,Creating and using functions
-@anchor{topics/functions params}@anchor{a4}
+@anchor{topics/functions params}@anchor{a6}
@subsection Params
@geindex gcc_jit_param (C type)
-@anchor{topics/functions gcc_jit_param}@anchor{23}
+@anchor{topics/functions gcc_jit_param}@anchor{25}
@deffn {C Type} gcc_jit_param
A @cite{gcc_jit_param} represents a parameter to a function.
following upcasts are available:
@geindex gcc_jit_param_as_lvalue (C function)
-@anchor{topics/functions gcc_jit_param_as_lvalue}@anchor{a5}
+@anchor{topics/functions gcc_jit_param_as_lvalue}@anchor{a7}
@deffn {C Function} gcc_jit_lvalue * gcc_jit_param_as_lvalue (gcc_jit_param@w{ }*param)
Upcasting from param to lvalue.
@end deffn
@geindex gcc_jit_param_as_rvalue (C function)
-@anchor{topics/functions gcc_jit_param_as_rvalue}@anchor{a6}
+@anchor{topics/functions gcc_jit_param_as_rvalue}@anchor{a8}
@deffn {C Function} gcc_jit_rvalue * gcc_jit_param_as_rvalue (gcc_jit_param@w{ }*param)
Upcasting from param to rvalue.
@end deffn
@geindex gcc_jit_param_as_object (C function)
-@anchor{topics/functions gcc_jit_param_as_object}@anchor{a7}
+@anchor{topics/functions gcc_jit_param_as_object}@anchor{a9}
@deffn {C Function} gcc_jit_object * gcc_jit_param_as_object (gcc_jit_param@w{ }*param)
Upcasting from param to object.
@end deffn
@node Functions,Blocks,Params,Creating and using functions
-@anchor{topics/functions functions}@anchor{a8}
+@anchor{topics/functions functions}@anchor{aa}
@subsection Functions
@geindex gcc_jit_function (C type)
-@anchor{topics/functions gcc_jit_function}@anchor{27}
+@anchor{topics/functions gcc_jit_function}@anchor{29}
@deffn {C Type} gcc_jit_function
A @cite{gcc_jit_function} represents a function - either one that we're
Create a gcc_jit_function with the given name and parameters.
@geindex gcc_jit_function_kind (C type)
-@anchor{topics/functions gcc_jit_function_kind}@anchor{a9}
+@anchor{topics/functions gcc_jit_function_kind}@anchor{ab}
@deffn {C Type} enum gcc_jit_function_kind
@end deffn
@quotation
@geindex GCC_JIT_FUNCTION_EXPORTED (C macro)
-@anchor{topics/functions GCC_JIT_FUNCTION_EXPORTED}@anchor{aa}
+@anchor{topics/functions GCC_JIT_FUNCTION_EXPORTED}@anchor{ac}
@deffn {C Macro} GCC_JIT_FUNCTION_EXPORTED
Function is defined by the client code and visible
@end deffn
@geindex GCC_JIT_FUNCTION_INTERNAL (C macro)
-@anchor{topics/functions GCC_JIT_FUNCTION_INTERNAL}@anchor{ab}
+@anchor{topics/functions GCC_JIT_FUNCTION_INTERNAL}@anchor{ad}
@deffn {C Macro} GCC_JIT_FUNCTION_INTERNAL
Function is defined by the client code, but is invisible
@end deffn
@geindex GCC_JIT_FUNCTION_IMPORTED (C macro)
-@anchor{topics/functions GCC_JIT_FUNCTION_IMPORTED}@anchor{ac}
+@anchor{topics/functions GCC_JIT_FUNCTION_IMPORTED}@anchor{ae}
@deffn {C Macro} GCC_JIT_FUNCTION_IMPORTED
Function is not defined by the client code; we're merely
@end deffn
@geindex GCC_JIT_FUNCTION_ALWAYS_INLINE (C macro)
-@anchor{topics/functions GCC_JIT_FUNCTION_ALWAYS_INLINE}@anchor{ad}
+@anchor{topics/functions GCC_JIT_FUNCTION_ALWAYS_INLINE}@anchor{af}
@deffn {C Macro} GCC_JIT_FUNCTION_ALWAYS_INLINE
Function is only ever inlined into other functions, and is
@end deffn
@geindex gcc_jit_context_get_builtin_function (C function)
-@anchor{topics/functions gcc_jit_context_get_builtin_function}@anchor{ae}
+@anchor{topics/functions gcc_jit_context_get_builtin_function}@anchor{b0}
@deffn {C Function} gcc_jit_function *gcc_jit_context_get_builtin_function (gcc_jit_context@w{ }*ctxt, const char@w{ }*name)
@end deffn
@geindex gcc_jit_function_as_object (C function)
-@anchor{topics/functions gcc_jit_function_as_object}@anchor{af}
+@anchor{topics/functions gcc_jit_function_as_object}@anchor{b1}
@deffn {C Function} gcc_jit_object * gcc_jit_function_as_object (gcc_jit_function@w{ }*func)
Upcasting from function to object.
@end deffn
@geindex gcc_jit_function_get_param (C function)
-@anchor{topics/functions gcc_jit_function_get_param}@anchor{b0}
+@anchor{topics/functions gcc_jit_function_get_param}@anchor{b2}
@deffn {C Function} gcc_jit_param * gcc_jit_function_get_param (gcc_jit_function@w{ }*func, int@w{ }index)
Get the param of the given index (0-based).
@end deffn
@geindex gcc_jit_function_dump_to_dot (C function)
-@anchor{topics/functions gcc_jit_function_dump_to_dot}@anchor{31}
+@anchor{topics/functions gcc_jit_function_dump_to_dot}@anchor{33}
@deffn {C Function} void gcc_jit_function_dump_to_dot (gcc_jit_function@w{ }*func, const char@w{ }*path)
Emit the function in graphviz format to the given path.
@end deffn
@geindex gcc_jit_function_new_local (C function)
-@anchor{topics/functions gcc_jit_function_new_local}@anchor{24}
+@anchor{topics/functions gcc_jit_function_new_local}@anchor{26}
@deffn {C Function} gcc_jit_lvalue * gcc_jit_function_new_local (gcc_jit_function@w{ }*func, gcc_jit_location@w{ }*loc, gcc_jit_type@w{ }*type, const char@w{ }*name)
Create a new local variable within the function, of the given type and
@end deffn
@node Blocks,Statements,Functions,Creating and using functions
-@anchor{topics/functions blocks}@anchor{b1}
+@anchor{topics/functions blocks}@anchor{b3}
@subsection Blocks
@geindex gcc_jit_block (C type)
-@anchor{topics/functions gcc_jit_block}@anchor{26}
+@anchor{topics/functions gcc_jit_block}@anchor{28}
@deffn {C Type} gcc_jit_block
A @cite{gcc_jit_block} represents a basic block within a function i.e. a
@end deffn
@geindex gcc_jit_function_new_block (C function)
-@anchor{topics/functions gcc_jit_function_new_block}@anchor{b2}
+@anchor{topics/functions gcc_jit_function_new_block}@anchor{b4}
@deffn {C Function} gcc_jit_block * gcc_jit_function_new_block (gcc_jit_function@w{ }*func, const char@w{ }*name)
Create a basic block of the given name. The name may be NULL, but
@end deffn
@geindex gcc_jit_block_as_object (C function)
-@anchor{topics/functions gcc_jit_block_as_object}@anchor{b3}
+@anchor{topics/functions gcc_jit_block_as_object}@anchor{b5}
@deffn {C Function} gcc_jit_object * gcc_jit_block_as_object (gcc_jit_block@w{ }*block)
Upcast from block to object.
@end deffn
@geindex gcc_jit_block_get_function (C function)
-@anchor{topics/functions gcc_jit_block_get_function}@anchor{b4}
+@anchor{topics/functions gcc_jit_block_get_function}@anchor{b6}
@deffn {C Function} gcc_jit_function * gcc_jit_block_get_function (gcc_jit_block@w{ }*block)
Which function is this block within?
@end deffn
@node Statements,,Blocks,Creating and using functions
-@anchor{topics/functions statements}@anchor{b5}
+@anchor{topics/functions statements}@anchor{b7}
@subsection Statements
@geindex gcc_jit_block_add_eval (C function)
-@anchor{topics/functions gcc_jit_block_add_eval}@anchor{94}
+@anchor{topics/functions gcc_jit_block_add_eval}@anchor{96}
@deffn {C Function} void gcc_jit_block_add_eval (gcc_jit_block@w{ }*block, gcc_jit_location@w{ }*loc, gcc_jit_rvalue@w{ }*rvalue)
Add evaluation of an rvalue, discarding the result
@end deffn
@geindex gcc_jit_block_add_assignment (C function)
-@anchor{topics/functions gcc_jit_block_add_assignment}@anchor{28}
+@anchor{topics/functions gcc_jit_block_add_assignment}@anchor{2a}
@deffn {C Function} void gcc_jit_block_add_assignment (gcc_jit_block@w{ }*block, gcc_jit_location@w{ }*loc, gcc_jit_lvalue@w{ }*lvalue, gcc_jit_rvalue@w{ }*rvalue)
Add evaluation of an rvalue, assigning the result to the given
@end deffn
@geindex gcc_jit_block_add_assignment_op (C function)
-@anchor{topics/functions gcc_jit_block_add_assignment_op}@anchor{2c}
+@anchor{topics/functions gcc_jit_block_add_assignment_op}@anchor{2e}
@deffn {C Function} void gcc_jit_block_add_assignment_op (gcc_jit_block@w{ }*block, gcc_jit_location@w{ }*loc, gcc_jit_lvalue@w{ }*lvalue, enum gcc_jit_binary_op@w{ }op, gcc_jit_rvalue@w{ }*rvalue)
Add evaluation of an rvalue, using the result to modify an
@end deffn
@geindex gcc_jit_block_add_comment (C function)
-@anchor{topics/functions gcc_jit_block_add_comment}@anchor{3b}
+@anchor{topics/functions gcc_jit_block_add_comment}@anchor{3d}
@deffn {C Function} void gcc_jit_block_add_comment (gcc_jit_block@w{ }*block, gcc_jit_location@w{ }*loc, const char@w{ }*text)
Add a no-op textual comment to the internal representation of the
code. It will be optimized away, but will be visible in the dumps
-seen via @pxref{58,,GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE}
-and @pxref{1a,,GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE},
+seen via @pxref{5a,,GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE}
+and @pxref{1c,,GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE},
and thus may be of use when debugging how your project's internal
representation gets converted to the libgccjit IR.
@end deffn
@geindex gcc_jit_block_end_with_conditional (C function)
-@anchor{topics/functions gcc_jit_block_end_with_conditional}@anchor{2b}
+@anchor{topics/functions gcc_jit_block_end_with_conditional}@anchor{2d}
@deffn {C Function} void gcc_jit_block_end_with_conditional (gcc_jit_block@w{ }*block, gcc_jit_location@w{ }*loc, gcc_jit_rvalue@w{ }*boolval, gcc_jit_block@w{ }*on_true, gcc_jit_block@w{ }*on_false)
Terminate a block by adding evaluation of an rvalue, branching on the
@end deffn
@geindex gcc_jit_block_end_with_jump (C function)
-@anchor{topics/functions gcc_jit_block_end_with_jump}@anchor{b6}
+@anchor{topics/functions gcc_jit_block_end_with_jump}@anchor{b8}
@deffn {C Function} void gcc_jit_block_end_with_jump (gcc_jit_block@w{ }*block, gcc_jit_location@w{ }*loc, gcc_jit_block@w{ }*target)
Terminate a block by adding a jump to the given target block.
@end deffn
@geindex gcc_jit_block_end_with_return (C function)
-@anchor{topics/functions gcc_jit_block_end_with_return}@anchor{b7}
+@anchor{topics/functions gcc_jit_block_end_with_return}@anchor{b9}
@deffn {C Function} void gcc_jit_block_end_with_return (gcc_jit_block@w{ }*block, gcc_jit_location@w{ }*loc, gcc_jit_rvalue@w{ }*rvalue)
Terminate a block by adding evaluation of an rvalue, returning the value.
@end deffn
@geindex gcc_jit_block_end_with_void_return (C function)
-@anchor{topics/functions gcc_jit_block_end_with_void_return}@anchor{b8}
+@anchor{topics/functions gcc_jit_block_end_with_void_return}@anchor{ba}
@deffn {C Function} void gcc_jit_block_end_with_void_return (gcc_jit_block@w{ }*block, gcc_jit_location@w{ }*loc)
Terminate a block by adding a valueless return, for use within a function
@c <http://www.gnu.org/licenses/>.
@node Source Locations,Compilation results,Creating and using functions,Topic Reference
-@anchor{topics/locations source-locations}@anchor{b9}@anchor{topics/locations doc}@anchor{ba}
+@anchor{topics/locations source-locations}@anchor{bb}@anchor{topics/locations doc}@anchor{bc}
@section Source Locations
@geindex gcc_jit_location (C type)
-@anchor{topics/locations gcc_jit_location}@anchor{39}
+@anchor{topics/locations gcc_jit_location}@anchor{3b}
@deffn {C Type} gcc_jit_location
A @cite{gcc_jit_location} encapsulates a source code location, so that
@cite{gcc_jit_location} instances are optional: you can always pass NULL to
any API entrypoint accepting one.
-You can construct them using @pxref{3f,,gcc_jit_context_new_location()}.
+You can construct them using @pxref{41,,gcc_jit_context_new_location()}.
-You need to enable @pxref{40,,GCC_JIT_BOOL_OPTION_DEBUGINFO} on the
+You need to enable @pxref{42,,GCC_JIT_BOOL_OPTION_DEBUGINFO} on the
@pxref{8,,gcc_jit_context} for these locations to actually be usable by
the debugger:
@end deffn
@geindex gcc_jit_context_new_location (C function)
-@anchor{topics/locations gcc_jit_context_new_location}@anchor{3f}
+@anchor{topics/locations gcc_jit_context_new_location}@anchor{41}
@deffn {C Function} gcc_jit_location * gcc_jit_context_new_location (gcc_jit_context@w{ }*ctxt, const char@w{ }*filename, int@w{ }line, int@w{ }column)
Create a @cite{gcc_jit_location} instance representing the given source
@end menu
@node Faking it,,,Source Locations
-@anchor{topics/locations faking-it}@anchor{bb}
+@anchor{topics/locations faking-it}@anchor{bd}
@subsection Faking it
If you don't have source code for your internal representation, but need
to debug, you can generate a C-like representation of the functions in
-your context using @pxref{50,,gcc_jit_context_dump_to_file()}:
+your context using @pxref{52,,gcc_jit_context_dump_to_file()}:
@example
gcc_jit_context_dump_to_file (ctxt, "/tmp/something.c",
@c <http://www.gnu.org/licenses/>.
@node Compilation results,,Source Locations,Topic Reference
-@anchor{topics/results compilation-results}@anchor{bc}@anchor{topics/results doc}@anchor{bd}
+@anchor{topics/results compilation-results}@anchor{be}@anchor{topics/results doc}@anchor{bf}
@section Compilation results
@end deffn
@geindex gcc_jit_result_release (C function)
-@anchor{topics/results gcc_jit_result_release}@anchor{37}
+@anchor{topics/results gcc_jit_result_release}@anchor{39}
@deffn {C Function} void gcc_jit_result_release (gcc_jit_result@w{ }*result)
Once we're done with the code, this unloads the built .so file.
@c <http://www.gnu.org/licenses/>.
@node Internals,Indices and tables,Topic Reference,Top
-@anchor{internals/index internals}@anchor{be}@anchor{internals/index doc}@anchor{bf}
+@anchor{internals/index internals}@anchor{c0}@anchor{internals/index doc}@anchor{c1}
@chapter Internals
@end menu
@node Working on the JIT library,Running the test suite,,Internals
-@anchor{internals/index working-on-the-jit-library}@anchor{c0}
+@anchor{internals/index working-on-the-jit-library}@anchor{c2}
@section Working on the JIT library
Here's what those configuration options mean:
@geindex command line option; --enable-host-shared
-@anchor{internals/index cmdoption--enable-host-shared}@anchor{c1}
+@anchor{internals/index cmdoption--enable-host-shared}@anchor{c3}
@deffn {Option} --enable-host-shared
Configuring with this option means that the compiler is built as
@end deffn
@geindex command line option; --enable-languages=jit
-@anchor{internals/index cmdoption--enable-languages}@anchor{c2}
+@anchor{internals/index cmdoption--enable-languages}@anchor{c4}
@deffn {Option} --enable-languages=jit
This specifies which frontends to build. The JIT library looks like
@end deffn
@geindex command line option; --disable-bootstrap
-@anchor{internals/index cmdoption--disable-bootstrap}@anchor{c3}
+@anchor{internals/index cmdoption--disable-bootstrap}@anchor{c5}
@deffn {Option} --disable-bootstrap
For hacking on the "jit" subdirectory, performing a full
@end deffn
@geindex command line option; --enable-checking=release
-@anchor{internals/index cmdoption--enable-checking}@anchor{c4}
+@anchor{internals/index cmdoption--enable-checking}@anchor{c6}
@deffn {Option} --enable-checking=release
The compile can perform extensive self-checking as it runs, useful when
@end deffn
@node Running the test suite,Environment variables,Working on the JIT library,Internals
-@anchor{internals/index running-the-test-suite}@anchor{c5}
+@anchor{internals/index running-the-test-suite}@anchor{c7}
@section Running the test suite
@noindent
@node Environment variables,Overview of code structure,Running the test suite,Internals
-@anchor{internals/index environment-variables}@anchor{c6}
+@anchor{internals/index environment-variables}@anchor{c8}
@section Environment variables
environment variables need to be set up:
@geindex environment variable; LD_LIBRARY_PATH
-@anchor{internals/index envvar-LD_LIBRARY_PATH}@anchor{c7}
+@anchor{internals/index envvar-LD_LIBRARY_PATH}@anchor{c9}
@deffn {Environment Variable} LD_LIBRARY_PATH
@quotation
@end deffn
@geindex environment variable; PATH
-@anchor{internals/index envvar-PATH}@anchor{c8}
+@anchor{internals/index envvar-PATH}@anchor{ca}
@deffn {Environment Variable} PATH
The library uses a driver executable for converting from .s assembler
@end deffn
@geindex environment variable; LIBRARY_PATH
-@anchor{internals/index envvar-LIBRARY_PATH}@anchor{c9}
+@anchor{internals/index envvar-LIBRARY_PATH}@anchor{cb}
@deffn {Environment Variable} LIBRARY_PATH
The driver executable invokes the linker, and the latter needs to locate
@noindent
@node Overview of code structure,,Environment variables,Internals
-@anchor{internals/index overview-of-code-structure}@anchor{ca}
+@anchor{internals/index overview-of-code-structure}@anchor{cc}
@section Overview of code structure
production yet.
@node Indices and tables,Index,Internals,Top
-@anchor{index indices-and-tables}@anchor{cb}
+@anchor{index indices-and-tables}@anchor{cd}
@unnumbered Indices and tables