--- /dev/null
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2020 Marcelina Kościelnicka <mwk@0x04.net>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+#include "kernel/yosys.h"
+#include "kernel/sigtools.h"
+
+USING_YOSYS_NAMESPACE
+PRIVATE_NAMESPACE_BEGIN
+
+enum FfType {
+ FF_DFF,
+ FF_DFFE,
+ FF_ADFF0,
+ FF_ADFF1,
+ FF_ADFFE0,
+ FF_ADFFE1,
+ FF_DFFSR,
+ FF_DFFSRE,
+ FF_SDFF0,
+ FF_SDFF1,
+ FF_SDFFE0,
+ FF_SDFFE1,
+ FF_SDFFCE0,
+ FF_SDFFCE1,
+ FF_SR,
+ FF_DLATCH,
+ FF_ADLATCH0,
+ FF_ADLATCH1,
+ FF_DLATCHSR,
+ NUM_FFTYPES,
+};
+
+enum FfNeg {
+ NEG_R = 0x1,
+ NEG_S = 0x2,
+ NEG_E = 0x4,
+ NEG_C = 0x8,
+ NUM_NEG = 0x10,
+};
+
+enum FfInit {
+ INIT_X = 0x1,
+ INIT_0 = 0x2,
+ INIT_1 = 0x4,
+};
+
+struct DffLegalizePass : public Pass {
+ DffLegalizePass() : Pass("dfflegalize", "convert FFs to types supported by the target") { }
+ void help() override
+ {
+ // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
+ log("\n");
+ log(" dfflegalize [options] [selection]\n");
+ log("\n");
+ log("Converts FFs to types supported by the target.\n");
+ log("\n");
+ log(" -cell <cell_type_pattern> <init_values>\n");
+ log(" specifies a supported group of FF cells. <cell_type_pattern>\n");
+ log(" is a yosys internal fine cell name, where ? characters can be\n");
+ log(" as a wildcard matching any character. <init_values> specifies\n");
+ log(" which initialization values these FF cells can support, and can\n");
+ log(" be one of:\n");
+ log("\n");
+ log(" - x (no init value supported)\n");
+ log(" - 0\n");
+ log(" - 1\n");
+ log(" - r (init value has to match reset value, only for some FF types)\n");
+ log(" - 01 (both 0 and 1 supported).\n");
+ log("\n");
+ log(" -mince <num>\n");
+ log(" specifies a minimum number of FFs that should be using any given\n");
+ log(" clock enable signal. If a clock enable signal doesn't meet this\n");
+ log(" threshold, it is unmapped into soft logic.\n");
+ log("\n");
+ log(" -minsrst <num>\n");
+ log(" specifies a minimum number of FFs that should be using any given\n");
+ log(" sync set/reset signal. If a sync set/reset signal doesn't meet this\n");
+ log(" threshold, it is unmapped into soft logic.\n");
+ log("\n");
+ log("The following cells are supported by this pass (ie. will be ingested,\n");
+ log("and can be specified as allowed targets):\n");
+ log("\n");
+ log("- $_DFF_[NP]_\n");
+ log("- $_DFFE_[NP][NP]_\n");
+ log("- $_DFF_[NP][NP][01]_\n");
+ log("- $_DFFE_[NP][NP][01][NP]_\n");
+ log("- $_DFFSR_[NP][NP][NP]_\n");
+ log("- $_DFFSRE_[NP][NP][NP][NP]_\n");
+ log("- $_SDFF_[NP][NP][01]_\n");
+ log("- $_SDFFE_[NP][NP][01][NP]_\n");
+ log("- $_SDFFCE_[NP][NP][01][NP]_\n");
+ log("- $_SR_[NP][NP]_\n");
+ log("- $_DLATCH_[NP]_\n");
+ log("- $_DLATCH_[NP][NP][01]_\n");
+ log("- $_DLATCHSR_[NP][NP][NP]_\n");
+ log("\n");
+ log("The following transformations are performed by this pass:");
+ log("");
+ log("- upconversion from a less capable cell to a more capable cell, if the less");
+ log(" capable cell is not supported (eg. dff -> dffe, or adff -> dffsr)");
+ log("");
+ log("- unmapping FFs with clock enable (due to unsupported cell type or -mince)");
+ log("");
+ log("- unmapping FFs with sync reset (due to unsupported cell type or -minsrst)");
+ log("");
+ log("- adding inverters on the control pins (due to unsupported polarity)");
+ log("");
+ log("- adding inverters on the D and Q pins and inverting the init/reset values\n");
+ log(" (due to unsupported init or reset value)");
+ log("");
+ log("- converting sr into adlatch (by tying D to 1 and using E as set input)");
+ log("");
+ log("- emulating unsupported dffsr cell by adff + adff + sr + mux");
+ log("");
+ log("- emulating unsupported dlatchsr cell by adlatch + adlatch + sr + mux");
+ log("");
+ log("- emulating adff when the (reset, init) value combination is unsupported by\n");
+ log(" dff + adff + dlatch + mux");
+ log("");
+ log("- emulating adlatch when the (reset, init) value combination is unsupported by\n");
+ log("- dlatch + adlatch + dlatch + mux");
+ log("");
+ log("If the pass is unable to realize a given cell type (eg. adff when only plain dff");
+ log("is available), an error is raised.");
+ }
+
+ // Table of all supported cell types.
+ // First index in the array is one of the FF_* values, second
+ // index is the set of negative-polarity inputs (OR of NEG_*
+ // values), and the value is the set of supported init values
+ // (OR of INIT_* values).
+ int supported_cells_neg[NUM_FFTYPES][NUM_NEG];
+ // Aggregated table ignoring signal polarity.
+ int supported_cells[NUM_FFTYPES];
+ // Aggregated for all *dff* cells.
+ int supported_dff;
+ // Aggregated for all dffsr* cells.
+ int supported_dffsr;
+ // Aggregated for all adff* cells.
+ int supported_adff0;
+ int supported_adff1;
+ // Aggregated for all sdff* cells.
+ int supported_sdff0;
+ int supported_sdff1;
+ // Aggregated for all ways to obtain a SR latch.
+ int supported_sr;
+ // Aggregated for all *dlatch* cells.
+ int supported_dlatch;
+
+ int mince;
+ int minsrst;
+
+ dict<SigBit, int> ce_used;
+ dict<SigBit, int> srst_used;
+
+ SigMap sigmap;
+ dict<SigBit, std::pair<State,SigBit>> initbits;
+
+ int flip_initmask(int mask) {
+ int res = mask & INIT_X;
+ if (mask & INIT_0)
+ res |= INIT_1;
+ if (mask & INIT_1)
+ res |= INIT_0;
+ return res;
+ }
+
+ void handle_ff(Cell *cell) {
+ std::string type_str = cell->type.str();
+
+ FfType ff_type;
+ int ff_neg = 0;
+ SigSpec sig_d;
+ SigSpec sig_q;
+ SigSpec sig_c;
+ SigSpec sig_e;
+ SigSpec sig_r;
+ SigSpec sig_s;
+ bool has_srst = false;
+
+ if (cell->hasPort(ID::D))
+ sig_d = cell->getPort(ID::D);
+ if (cell->hasPort(ID::Q))
+ sig_q = cell->getPort(ID::Q);
+ if (cell->hasPort(ID::C))
+ sig_c = cell->getPort(ID::C);
+ if (cell->hasPort(ID::E))
+ sig_e = cell->getPort(ID::E);
+ if (cell->hasPort(ID::R))
+ sig_r = cell->getPort(ID::R);
+ if (cell->hasPort(ID::S))
+ sig_s = cell->getPort(ID::S);
+
+ if (type_str.substr(0, 5) == "$_SR_") {
+ ff_type = FF_SR;
+ if (type_str[5] == 'N')
+ ff_neg |= NEG_S;
+ if (type_str[6] == 'N')
+ ff_neg |= NEG_R;
+ } else if (type_str.substr(0, 6) == "$_DFF_" && type_str.size() == 8) {
+ ff_type = FF_DFF;
+ if (type_str[6] == 'N')
+ ff_neg |= NEG_C;
+ } else if (type_str.substr(0, 7) == "$_DFFE_" && type_str.size() == 10) {
+ ff_type = FF_DFFE;
+ if (type_str[7] == 'N')
+ ff_neg |= NEG_C;
+ if (type_str[8] == 'N')
+ ff_neg |= NEG_E;
+ } else if (type_str.substr(0, 6) == "$_DFF_" && type_str.size() == 10) {
+ ff_type = type_str[8] == '1' ? FF_ADFF1 : FF_ADFF0;
+ if (type_str[6] == 'N')
+ ff_neg |= NEG_C;
+ if (type_str[7] == 'N')
+ ff_neg |= NEG_R;
+ } else if (type_str.substr(0, 7) == "$_DFFE_" && type_str.size() == 12) {
+ ff_type = type_str[9] == '1' ? FF_ADFFE1 : FF_ADFFE0;
+ if (type_str[7] == 'N')
+ ff_neg |= NEG_C;
+ if (type_str[8] == 'N')
+ ff_neg |= NEG_R;
+ if (type_str[10] == 'N')
+ ff_neg |= NEG_E;
+ } else if (type_str.substr(0, 8) == "$_DFFSR_" && type_str.size() == 12) {
+ ff_type = FF_DFFSR;
+ if (type_str[8] == 'N')
+ ff_neg |= NEG_C;
+ if (type_str[9] == 'N')
+ ff_neg |= NEG_S;
+ if (type_str[10] == 'N')
+ ff_neg |= NEG_R;
+ } else if (type_str.substr(0, 9) == "$_DFFSRE_" && type_str.size() == 14) {
+ ff_type = FF_DFFSRE;
+ if (type_str[9] == 'N')
+ ff_neg |= NEG_C;
+ if (type_str[10] == 'N')
+ ff_neg |= NEG_S;
+ if (type_str[11] == 'N')
+ ff_neg |= NEG_R;
+ if (type_str[12] == 'N')
+ ff_neg |= NEG_E;
+ } else if (type_str.substr(0, 7) == "$_SDFF_" && type_str.size() == 11) {
+ ff_type = type_str[9] == '1' ? FF_SDFF1 : FF_SDFF0;
+ if (type_str[7] == 'N')
+ ff_neg |= NEG_C;
+ if (type_str[8] == 'N')
+ ff_neg |= NEG_R;
+ has_srst = true;
+ } else if (type_str.substr(0, 8) == "$_SDFFE_" && type_str.size() == 13) {
+ ff_type = type_str[10] == '1' ? FF_SDFFE1 : FF_SDFFE0;
+ if (type_str[8] == 'N')
+ ff_neg |= NEG_C;
+ if (type_str[9] == 'N')
+ ff_neg |= NEG_R;
+ if (type_str[11] == 'N')
+ ff_neg |= NEG_E;
+ has_srst = true;
+ } else if (type_str.substr(0, 9) == "$_SDFFCE_" && type_str.size() == 14) {
+ ff_type = type_str[11] == '1' ? FF_SDFFCE1 : FF_SDFFCE0;
+ if (type_str[9] == 'N')
+ ff_neg |= NEG_C;
+ if (type_str[10] == 'N')
+ ff_neg |= NEG_R;
+ if (type_str[12] == 'N')
+ ff_neg |= NEG_E;
+ has_srst = true;
+ } else if (type_str.substr(0, 9) == "$_DLATCH_" && type_str.size() == 11) {
+ ff_type = FF_DLATCH;
+ if (type_str[9] == 'N')
+ ff_neg |= NEG_E;
+ } else if (type_str.substr(0, 9) == "$_DLATCH_" && type_str.size() == 13) {
+ ff_type = type_str[11] == '1' ? FF_ADLATCH1 : FF_ADLATCH0;
+ if (type_str[9] == 'N')
+ ff_neg |= NEG_E;
+ if (type_str[10] == 'N')
+ ff_neg |= NEG_R;
+ } else if (type_str.substr(0, 11) == "$_DLATCHSR_" && type_str.size() == 15) {
+ ff_type = FF_DLATCHSR;
+ if (type_str[11] == 'N')
+ ff_neg |= NEG_E;
+ if (type_str[12] == 'N')
+ ff_neg |= NEG_S;
+ if (type_str[13] == 'N')
+ ff_neg |= NEG_R;
+ } else {
+ log_warning("Ignoring unknown ff type %s [%s.%s].\n", log_id(cell->type), log_id(cell->module->name), log_id(cell->name));
+ return;
+ }
+
+ State initval = State::Sx;
+ SigBit initbit;
+ if (GetSize(sig_q) > 0 && initbits.count(sigmap(sig_q[0]))) {
+ const auto &d = initbits.at(sigmap(sig_q[0]));
+ initval = d.first;
+ initbit = d.second;
+ }
+
+ FfInit initmask = INIT_X;
+ if (initval == State::S0)
+ initmask = INIT_0;
+ else if (initval == State::S1)
+ initmask = INIT_1;
+ const char *reason;
+
+ bool kill_ce = mince && GetSize(sig_c) && GetSize(sig_e) && sig_e[0].wire && ce_used[sig_e[0]] < mince;
+ bool kill_srst = minsrst && has_srst && sig_r[0].wire && srst_used[sig_r[0]] < minsrst;
+
+ while (!(supported_cells[ff_type] & initmask) || kill_ce || kill_srst) {
+ // Well, cell is not directly supported. Decide how to deal with it.
+
+ if (ff_type == FF_DFF || ff_type == FF_DFFE) {
+ if (kill_ce) {
+ ff_type = FF_DFF;
+ goto unmap_enable;
+ }
+ if (!(supported_dff & initmask)) {
+ // This init value is not supported at all...
+ if (supported_dff & flip_initmask(initmask)) {
+ // The other one is, though. Negate D, Q, and init.
+flip_dqi:
+ if (initval == State::S0) {
+ initval = State::S1;
+ initmask = INIT_1;
+ } else if (initval == State::S1) {
+ initval = State::S0;
+ initmask = INIT_0;
+ }
+ if (ff_type != FF_SR)
+ sig_d = cell->module->NotGate(NEW_ID, sig_d[0]);
+ SigBit new_q = SigSpec(cell->module->addWire(NEW_ID))[0];
+ cell->module->addNotGate(NEW_ID, new_q, sig_q[0]);
+ if (initbit.wire) {
+ initbit.wire->attributes.at(ID::init)[initbit.offset] = State::Sx;
+ initbit = new_q;
+ new_q.wire->attributes[ID::init] = initval;
+ initbits[new_q] = std::make_pair(initval, new_q);
+ }
+ sig_q = new_q;
+ continue;
+ }
+ if (!supported_dff)
+ reason = "dffs are not supported";
+ else
+ reason = "initialized dffs are not supported";
+ goto error;
+ }
+
+ // Some DFF is supported with this init val. Just pick a type.
+ if (ff_type == FF_DFF) {
+ // Try adding a set or reset pin.
+ for (auto new_type: {FF_ADFF0, FF_ADFF1, FF_SDFF0, FF_SDFF1})
+ if (supported_cells[new_type] & initmask) {
+ ff_type = new_type;
+ sig_r = State::S0;
+ goto cell_ok;
+ }
+ // Try adding both.
+ if (supported_cells[FF_DFFSR] & initmask) {
+ ff_type = FF_DFFSR;
+ sig_r = State::S0;
+ sig_s = State::S0;
+ break;
+ }
+ // Nope. Will need to add enable and go the DFFE route.
+ sig_e = State::S1;
+ if (supported_cells[FF_DFFE] & initmask) {
+ ff_type = FF_DFFE;
+ break;
+ }
+ }
+ // Try adding a set or reset pin.
+ for (auto new_type: {FF_SDFFE0, FF_SDFFE1, FF_SDFFCE0, FF_SDFFCE1, FF_ADFFE0, FF_ADFFE1})
+ if (supported_cells[new_type] & initmask) {
+ ff_type = new_type;
+ sig_r = State::S0;
+ goto cell_ok;
+ }
+ // Try adding both.
+ if (supported_cells[FF_DFFSRE] & initmask) {
+ ff_type = FF_DFFSRE;
+ sig_r = State::S0;
+ sig_s = State::S0;
+ break;
+ }
+
+ // Seems that no DFFs with enable are supported.
+ // The enable input needs to be unmapped.
+ // This should not be reached if we started from plain DFF.
+ log_assert(ff_type == FF_DFFE);
+ ff_type = FF_DFF;
+unmap_enable:
+ if (ff_neg & NEG_E)
+ sig_d = cell->module->MuxGate(NEW_ID, sig_d[0], sig_q[0], sig_e[0]);
+ else
+ sig_d = cell->module->MuxGate(NEW_ID, sig_q[0], sig_d[0], sig_e[0]);
+ ff_neg &= ~NEG_E;
+ sig_e = SigSpec();
+ kill_ce = false;
+ // Now try again as plain DFF.
+ continue;
+ } else if (ff_type == FF_ADFF0 || ff_type == FF_ADFF1 || ff_type == FF_ADFFE0 || ff_type == FF_ADFFE1) {
+ bool has_set = ff_type == FF_ADFF1 || ff_type == FF_ADFFE1;
+ bool has_en = ff_type == FF_ADFFE0 || ff_type == FF_ADFFE1;
+ if (kill_ce) {
+ ff_type = has_set ? FF_ADFF1 : FF_ADFF0;
+ goto unmap_enable;
+ }
+ if (!has_en && (supported_cells[has_set ? FF_ADFFE1 : FF_ADFFE0] & initmask)) {
+ // Just add enable.
+ sig_e = State::S1;
+ ff_type = has_set ? FF_ADFFE1 : FF_ADFFE0;
+ break;
+ }
+ if (supported_dffsr & initmask) {
+ // Throw in a set/reset, retry in DFFSR/DFFSRE branch.
+ if (has_set) {
+ sig_s = sig_r;
+ sig_r = State::S0;
+ if (ff_neg & NEG_R) {
+ ff_neg &= ~NEG_R;
+ ff_neg |= NEG_S;
+ }
+ } else {
+ sig_s = State::S0;
+ }
+ if (has_en)
+ ff_type = FF_DFFSRE;
+ else
+ ff_type = FF_DFFSR;
+ continue;
+ }
+ if (has_en && (supported_cells[has_set ? FF_ADFF1 : FF_ADFF0] & initmask)) {
+ // Unmap enable.
+ ff_type = has_set ? FF_ADFF1 : FF_ADFF0;
+ goto unmap_enable;
+ }
+ log_assert(!((has_set ? supported_adff1 : supported_adff0) & initmask));
+ // Alright, so this particular combination of initval and
+ // resetval is not natively supported. First, try flipping
+ // them both to see whether this helps.
+ int flipmask = flip_initmask(initmask);
+ if ((has_set ? supported_adff0 : supported_adff1) & flipmask) {
+ // Checks out, do it.
+ ff_type = has_en ? (has_set ? FF_ADFFE0 : FF_ADFFE1) : (has_set ? FF_ADFF0 : FF_ADFF1);
+ goto flip_dqi;
+ }
+
+ if (!supported_adff0 && !supported_adff1) {
+ reason = "dffs with async set or reset are not supported";
+ goto error;
+ }
+ if (!(supported_dff & ~INIT_X)) {
+ reason = "initialized dffs are not supported";
+ goto error;
+ }
+ // If we got here, initialized dff is supported, but not this
+ // particular reset+init combination (nor its negation).
+ // The only hope left is breaking down to adff + dff + dlatch + mux.
+ if (!(supported_dlatch & ~INIT_X)) {
+ reason = "unsupported initial value and async reset value combination";
+ goto error;
+ }
+
+ // If we have to unmap enable anyway, do it before breakdown.
+ if (has_en && !supported_cells[FF_ADFFE0] && !supported_cells[FF_ADFFE1]) {
+ ff_type = has_set ? FF_ADFF1 : FF_ADFF0;
+ goto unmap_enable;
+ }
+
+ log_warning("Emulating mismatched async reset and init with several FFs and a mux for %s.%s\n", log_id(cell->module->name), log_id(cell->name));
+ if (initbit.wire)
+ initbit.wire->attributes.at(ID::init)[initbit.offset] = State::Sx;
+ Wire *adff_q = cell->module->addWire(NEW_ID);
+ Wire *dff_q = cell->module->addWire(NEW_ID);
+ Wire *sel_q = cell->module->addWire(NEW_ID);
+ dff_q->attributes[ID::init] = initval;
+ initbits[SigBit(dff_q, 0)] = std::make_pair(initval, SigBit(dff_q, 0));
+ sel_q->attributes[ID::init] = State::S0;
+ initbits[SigBit(sel_q, 0)] = std::make_pair(State::S0, SigBit(sel_q, 0));
+ Cell *cell_dff;
+ Cell *cell_adff;
+ Cell *cell_sel;
+ if (!has_en) {
+ cell_dff = cell->module->addDffGate(NEW_ID, sig_c, sig_d, dff_q, !(ff_neg & NEG_C));
+ cell_adff = cell->module->addAdffGate(NEW_ID, sig_c, sig_r, sig_d, adff_q, has_set, !(ff_neg & NEG_C), !(ff_neg & NEG_R));
+ } else {
+ cell_dff = cell->module->addDffeGate(NEW_ID, sig_c, sig_e, sig_d, dff_q, !(ff_neg & NEG_C), !(ff_neg & NEG_E));
+ cell_adff = cell->module->addAdffeGate(NEW_ID, sig_c, sig_e, sig_r, sig_d, adff_q, has_set, !(ff_neg & NEG_C), !(ff_neg & NEG_E), !(ff_neg & NEG_R));
+ }
+ cell_sel = cell->module->addDlatchGate(NEW_ID, sig_r, State::S1, sel_q, !(ff_neg & NEG_R));
+ cell->module->addMuxGate(NEW_ID, dff_q, adff_q, sel_q, sig_q);
+
+ // Bye, cell.
+ cell->module->remove(cell);
+ handle_ff(cell_dff);
+ handle_ff(cell_adff);
+ handle_ff(cell_sel);
+ return;
+ } else if (ff_type == FF_DFFSR || ff_type == FF_DFFSRE) {
+ if (kill_ce) {
+ ff_type = FF_DFFSR;
+ goto unmap_enable;
+ }
+ // First, see if mapping/unmapping enable will help.
+ if (supported_cells[FF_DFFSRE] & initmask) {
+ ff_type = FF_DFFSRE;
+ sig_e = State::S1;
+ break;
+ }
+ if (supported_cells[FF_DFFSR] & initmask) {
+ ff_type = FF_DFFSR;
+ goto unmap_enable;
+ }
+ if (supported_dffsr & flip_initmask(initmask)) {
+flip_dqisr:;
+ log_warning("Flipping D/Q/init and inseerting set/reset fixup to handle init value on %s.%s [%s]\n", log_id(cell->module->name), log_id(cell->name), log_id(cell->type));
+ SigSpec new_r;
+ bool neg_r = (ff_neg & NEG_R);
+ bool neg_s = (ff_neg & NEG_S);
+ if (!(ff_neg & NEG_S)) {
+ if (!(ff_neg & NEG_R))
+ new_r = cell->module->AndnotGate(NEW_ID, sig_s, sig_r);
+ else
+ new_r = cell->module->AndGate(NEW_ID, sig_s, sig_r);
+ } else {
+ if (!(ff_neg & NEG_R))
+ new_r = cell->module->OrGate(NEW_ID, sig_s, sig_r);
+ else
+ new_r = cell->module->OrnotGate(NEW_ID, sig_s, sig_r);
+ }
+ ff_neg &= ~(NEG_R | NEG_S);
+ if (neg_r)
+ ff_neg |= NEG_S;
+ if (neg_s)
+ ff_neg |= NEG_R;
+ sig_s = sig_r;
+ sig_r = new_r;
+ goto flip_dqi;
+ }
+ // No native DFFSR. However, if we can conjure
+ // a SR latch and ADFF, it can still be emulated.
+ int flipmask = flip_initmask(initmask);
+ bool init0 = true;
+ bool init1 = true;
+ State initsel = State::Sx;
+ if (((supported_adff0 & initmask) || (supported_adff1 & flipmask)) && ((supported_adff1 & initmask) || (supported_adff0 & flipmask)) && supported_sr) {
+ // OK
+ } else if (((supported_adff0 & initmask) || (supported_adff1 & flipmask)) && (supported_sr & INIT_0)) {
+ init1 = false;
+ initsel = State::S0;
+ } else if (((supported_adff1 & initmask) || (supported_adff0 & flipmask)) && (supported_sr & INIT_1)) {
+ init0 = false;
+ initsel = State::S1;
+ } else if (((supported_adff0 & initmask) || (supported_adff1 & flipmask)) && (supported_sr & INIT_1)) {
+ init1 = false;
+ initsel = State::S0;
+ } else if (((supported_adff1 & initmask) || (supported_adff0 & flipmask)) && (supported_sr & INIT_0)) {
+ init0 = false;
+ initsel = State::S1;
+ } else {
+ if (!supported_dffsr)
+ reason = "dffs with async set and reset are not supported";
+ else
+ reason = "initialized dffs with async set and reset are not supported";
+ goto error;
+ }
+
+ // If we have to unmap enable anyway, do it before breakdown.
+ if (ff_type == FF_DFFSRE && !supported_cells[FF_ADFFE0] && !supported_cells[FF_ADFFE1]) {
+ ff_type = FF_DFFSR;
+ goto unmap_enable;
+ }
+
+ log_warning("Emulating async set + reset with several FFs and a mux for %s.%s\n", log_id(cell->module->name), log_id(cell->name));
+ if (initbit.wire)
+ initbit.wire->attributes.at(ID::init)[initbit.offset] = State::Sx;
+ Wire *adff0_q = cell->module->addWire(NEW_ID);
+ Wire *adff1_q = cell->module->addWire(NEW_ID);
+ Wire *sel_q = cell->module->addWire(NEW_ID);
+ if (init0) {
+ adff0_q->attributes[ID::init] = initval;
+ initbits[SigBit(adff0_q, 0)] = std::make_pair(initval, SigBit(adff0_q, 0));
+ }
+ if (init1) {
+ adff1_q->attributes[ID::init] = initval;
+ initbits[SigBit(adff1_q, 0)] = std::make_pair(initval, SigBit(adff1_q, 0));
+ }
+ sel_q->attributes[ID::init] = initsel;
+ initbits[SigBit(sel_q, 0)] = std::make_pair(initsel, SigBit(sel_q, 0));
+ Cell *cell_adff0;
+ Cell *cell_adff1;
+ Cell *cell_sel;
+ if (ff_type == FF_DFFSR) {
+ cell_adff0 = cell->module->addAdffGate(NEW_ID, sig_c, sig_r, sig_d, adff0_q, false, !(ff_neg & NEG_C), !(ff_neg & NEG_R));
+ cell_adff1 = cell->module->addAdffGate(NEW_ID, sig_c, sig_s, sig_d, adff1_q, true, !(ff_neg & NEG_C), !(ff_neg & NEG_S));
+ } else {
+ cell_adff0 = cell->module->addAdffeGate(NEW_ID, sig_c, sig_e, sig_r, sig_d, adff0_q, false, !(ff_neg & NEG_C), !(ff_neg & NEG_E), !(ff_neg & NEG_R));
+ cell_adff1 = cell->module->addAdffeGate(NEW_ID, sig_c, sig_e, sig_s, sig_d, adff1_q, true, !(ff_neg & NEG_C), !(ff_neg & NEG_E), !(ff_neg & NEG_S));
+ }
+ cell_sel = cell->module->addSrGate(NEW_ID, sig_s, sig_r, sel_q, !(ff_neg & NEG_S), !(ff_neg & NEG_R));
+ cell->module->addMuxGate(NEW_ID, adff0_q, adff1_q, sel_q, sig_q);
+
+ // Bye, cell.
+ cell->module->remove(cell);
+ handle_ff(cell_adff0);
+ handle_ff(cell_adff1);
+ handle_ff(cell_sel);
+ return;
+ } else if (ff_type == FF_SR) {
+ if (supported_cells[FF_ADLATCH0] & initmask || supported_cells[FF_ADLATCH1] & flip_initmask(initmask)) {
+ // Convert to ADLATCH0. May get converted to ADLATCH1.
+ ff_type = FF_ADLATCH0;
+ sig_e = sig_s;
+ sig_d = State::S1;
+ if (ff_neg & NEG_S) {
+ ff_neg &= ~NEG_S;
+ ff_neg |= NEG_E;
+ }
+ continue;
+ } else if (supported_cells[FF_DLATCHSR] & initmask) {
+ // Upgrade to DLATCHSR.
+ ff_type = FF_DLATCHSR;
+ sig_e = State::S0;
+ sig_d = State::Sx;
+ break;
+ } else if (supported_dffsr & initmask) {
+ // Upgrade to DFFSR. May get further upgraded to DFFSRE.
+ ff_type = FF_DFFSR;
+ sig_c = State::S0;
+ sig_d = State::Sx;
+ continue;
+ } else if (supported_sr & flip_initmask(initmask)) {
+ goto flip_dqisr;
+ } else {
+ if (!supported_sr)
+ reason = "sr latches are not supported";
+ else
+ reason = "initialized sr latches are not supported";
+ goto error;
+ }
+ } else if (ff_type == FF_DLATCH) {
+ if (!(supported_dlatch & initmask)) {
+ // This init value is not supported at all...
+ if (supported_dlatch & flip_initmask(initmask))
+ goto flip_dqi;
+ if (!supported_dlatch)
+ reason = "dlatch are not supported";
+ else
+ reason = "initialized dlatch are not supported";
+ goto error;
+ }
+
+ // Some DLATCH is supported with this init val. Just pick a type.
+ if (supported_cells[FF_ADLATCH0] & initmask) {
+ ff_type = FF_ADLATCH0;
+ sig_r = State::S0;
+ break;
+ }
+ if (supported_cells[FF_ADLATCH1] & initmask) {
+ ff_type = FF_ADLATCH1;
+ sig_r = State::S0;
+ break;
+ }
+ if (supported_cells[FF_DLATCHSR] & initmask) {
+ ff_type = FF_DLATCHSR;
+ sig_r = State::S0;
+ sig_s = State::S0;
+ break;
+ }
+ log_assert(0);
+ } else if (ff_type == FF_ADLATCH0 || ff_type == FF_ADLATCH1) {
+ if (supported_cells[FF_DLATCHSR] & initmask) {
+ if (ff_type == FF_ADLATCH1) {
+ sig_s = sig_r;
+ sig_r = State::S0;
+ if (ff_neg & NEG_R) {
+ ff_neg &= ~NEG_R;
+ ff_neg |= NEG_S;
+ }
+ } else {
+ sig_s = State::S0;
+ }
+ ff_type = FF_DLATCHSR;
+ break;
+ }
+ FfType flip_type = ff_type == FF_ADLATCH0 ? FF_ADLATCH1 : FF_ADLATCH0;
+ if ((supported_cells[flip_type] | supported_cells[FF_DLATCHSR]) & flip_initmask(initmask)) {
+ ff_type = flip_type;
+ goto flip_dqi;
+ }
+
+ if (!supported_cells[FF_ADLATCH0] && !supported_cells[FF_ADLATCH1] && !supported_cells[FF_DLATCHSR]) {
+ reason = "dlatch with async set or reset are not supported";
+ goto error;
+ }
+ if (!(supported_dlatch & ~INIT_X)) {
+ reason = "initialized dlatch are not supported";
+ goto error;
+ }
+
+ if (!(supported_dlatch & ~INIT_X)) {
+ reason = "initialized dlatch are not supported";
+ goto error;
+ }
+ // If we got here, initialized dlatch is supported, but not this
+ // particular reset+init combination (nor its negation).
+ // The only hope left is breaking down to adff + dff + dlatch + mux.
+
+ log_warning("Emulating mismatched async reset and init with several latches and a mux for %s.%s\n", log_id(cell->module->name), log_id(cell->name));
+ if (initbit.wire)
+ initbit.wire->attributes.at(ID::init)[initbit.offset] = State::Sx;
+ Wire *adlatch_q = cell->module->addWire(NEW_ID);
+ Wire *dlatch_q = cell->module->addWire(NEW_ID);
+ Wire *sel_q = cell->module->addWire(NEW_ID);
+ dlatch_q->attributes[ID::init] = initval;
+ initbits[SigBit(dlatch_q, 0)] = std::make_pair(initval, SigBit(dlatch_q, 0));
+ sel_q->attributes[ID::init] = State::S0;
+ initbits[SigBit(sel_q, 0)] = std::make_pair(State::S0, SigBit(sel_q, 0));
+ Cell *cell_dlatch;
+ Cell *cell_adlatch;
+ Cell *cell_sel;
+ cell_dlatch = cell->module->addDlatchGate(NEW_ID, sig_e, sig_d, dlatch_q, !(ff_neg & NEG_E));
+ cell_adlatch = cell->module->addAdlatchGate(NEW_ID, sig_e, sig_r, sig_d, adlatch_q, ff_type == FF_ADLATCH1, !(ff_neg & NEG_E), !(ff_neg & NEG_R));
+ cell_sel = cell->module->addDlatchGate(NEW_ID, sig_r, State::S1, sel_q, !(ff_neg & NEG_R));
+ cell->module->addMuxGate(NEW_ID, dlatch_q, adlatch_q, sel_q, sig_q);
+
+ // Bye, cell.
+ cell->module->remove(cell);
+ handle_ff(cell_dlatch);
+ handle_ff(cell_adlatch);
+ handle_ff(cell_sel);
+ return;
+ } else if (ff_type == FF_DLATCHSR) {
+ if (supported_cells[FF_DLATCHSR] & flip_initmask(initmask)) {
+ goto flip_dqisr;
+ }
+ // No native DFFSR. However, if we can conjure
+ // a SR latch and ADFF, it can still be emulated.
+ int flipmask = flip_initmask(initmask);
+ bool init0 = true;
+ bool init1 = true;
+ State initsel = State::Sx;
+ if (((supported_cells[FF_ADLATCH0] & initmask) || (supported_cells[FF_ADLATCH1] & flipmask)) && ((supported_cells[FF_ADLATCH1] & initmask) || (supported_cells[FF_ADLATCH0] & flipmask)) && supported_sr) {
+ // OK
+ } else if (((supported_cells[FF_ADLATCH0] & initmask) || (supported_cells[FF_ADLATCH1] & flipmask)) && (supported_sr & INIT_0)) {
+ init1 = false;
+ initsel = State::S0;
+ } else if (((supported_cells[FF_ADLATCH1] & initmask) || (supported_cells[FF_ADLATCH0] & flipmask)) && (supported_sr & INIT_1)) {
+ init0 = false;
+ initsel = State::S1;
+ } else if (((supported_cells[FF_ADLATCH0] & initmask) || (supported_cells[FF_ADLATCH1] & flipmask)) && (supported_sr & INIT_1)) {
+ init1 = false;
+ initsel = State::S0;
+ } else if (((supported_cells[FF_ADLATCH1] & initmask) || (supported_cells[FF_ADLATCH0] & flipmask)) && (supported_sr & INIT_0)) {
+ init0 = false;
+ initsel = State::S1;
+ } else {
+ if (!supported_cells[FF_DLATCHSR])
+ reason = "dlatch with async set and reset are not supported";
+ else
+ reason = "initialized dlatch with async set and reset are not supported";
+ goto error;
+ }
+
+ log_warning("Emulating async set + reset with several latches and a mux for %s.%s\n", log_id(cell->module->name), log_id(cell->name));
+ if (initbit.wire)
+ initbit.wire->attributes.at(ID::init)[initbit.offset] = State::Sx;
+ Wire *adlatch0_q = cell->module->addWire(NEW_ID);
+ Wire *adlatch1_q = cell->module->addWire(NEW_ID);
+ Wire *sel_q = cell->module->addWire(NEW_ID);
+ if (init0) {
+ adlatch0_q->attributes[ID::init] = initval;
+ initbits[SigBit(adlatch0_q, 0)] = std::make_pair(initval, SigBit(adlatch0_q, 0));
+ }
+ if (init1) {
+ adlatch1_q->attributes[ID::init] = initval;
+ initbits[SigBit(adlatch1_q, 0)] = std::make_pair(initval, SigBit(adlatch1_q, 0));
+ }
+ sel_q->attributes[ID::init] = initsel;
+ initbits[SigBit(sel_q, 0)] = std::make_pair(initsel, SigBit(sel_q, 0));
+ Cell *cell_adlatch0;
+ Cell *cell_adlatch1;
+ Cell *cell_sel;
+ cell_adlatch0 = cell->module->addAdlatchGate(NEW_ID, sig_e, sig_r, sig_d, adlatch0_q, false, !(ff_neg & NEG_E), !(ff_neg & NEG_R));
+ cell_adlatch1 = cell->module->addAdlatchGate(NEW_ID, sig_e, sig_s, sig_d, adlatch1_q, true, !(ff_neg & NEG_E), !(ff_neg & NEG_S));
+ cell_sel = cell->module->addSrGate(NEW_ID, sig_s, sig_r, sel_q, !(ff_neg & NEG_S), !(ff_neg & NEG_R));
+ cell->module->addMuxGate(NEW_ID, adlatch0_q, adlatch1_q, sel_q, sig_q);
+
+ // Bye, cell.
+ cell->module->remove(cell);
+ handle_ff(cell_adlatch0);
+ handle_ff(cell_adlatch1);
+ handle_ff(cell_sel);
+ return;
+ } else if (ff_type == FF_SDFF0 || ff_type == FF_SDFF1 || ff_type == FF_SDFFE0 || ff_type == FF_SDFFE1 || ff_type == FF_SDFFCE0 || ff_type == FF_SDFFCE1) {
+ bool has_set = ff_type == FF_SDFF1 || ff_type == FF_SDFFE1 || ff_type == FF_SDFFCE1;
+ bool has_en = ff_type == FF_SDFFE0 || ff_type == FF_SDFFE1;
+ bool has_ce = ff_type == FF_SDFFCE0 || ff_type == FF_SDFFCE1;
+
+ if (has_en) {
+ if (kill_ce || kill_srst) {
+ ff_type = has_set ? FF_SDFF1 : FF_SDFF0;
+ goto unmap_enable;
+ }
+ } else if (has_ce) {
+ if (kill_ce || kill_srst)
+ goto unmap_srst;
+ } else {
+ log_assert(!kill_ce);
+ if (kill_srst)
+ goto unmap_srst;
+ }
+
+ if (!has_ce) {
+ if (!has_en && (supported_cells[has_set ? FF_SDFFE1 : FF_SDFFE0] & initmask)) {
+ // Just add enable.
+ sig_e = State::S1;
+ ff_type = has_set ? FF_SDFFE1 : FF_SDFFE0;
+ break;
+ }
+ if (!has_en && (supported_cells[has_set ? FF_SDFFCE1 : FF_SDFFCE0] & initmask)) {
+ // Just add enable.
+ sig_e = State::S1;
+ ff_type = has_set ? FF_SDFFCE1 : FF_SDFFCE0;
+ break;
+ }
+ if (has_en && (supported_cells[has_set ? FF_SDFFCE1 : FF_SDFFCE0] & initmask)) {
+ // Convert sdffe to sdffce
+ if (!(ff_neg & NEG_E)) {
+ if (!(ff_neg & NEG_R))
+ sig_e = cell->module->OrGate(NEW_ID, sig_e, sig_r);
+ else
+ sig_e = cell->module->OrnotGate(NEW_ID, sig_e, sig_r);
+ } else {
+ if (!(ff_neg & NEG_R))
+ sig_e = cell->module->AndnotGate(NEW_ID, sig_e, sig_r);
+ else
+ sig_e = cell->module->AndGate(NEW_ID, sig_e, sig_r);
+ }
+ ff_type = has_set ? FF_SDFFCE1 : FF_SDFFCE0;
+ break;
+ }
+ if (has_en && (supported_cells[has_set ? FF_SDFF1 : FF_SDFF0] & initmask)) {
+ // Unmap enable.
+ ff_type = has_set ? FF_SDFF1 : FF_SDFF0;
+ goto unmap_enable;
+ }
+ log_assert(!((has_set ? supported_sdff1 : supported_sdff0) & initmask));
+ } else {
+ if ((has_set ? supported_sdff1 : supported_sdff0) & initmask) {
+ // Convert sdffce to sdffe, which may be further converted to sdff.
+ if (!(ff_neg & NEG_R)) {
+ if (!(ff_neg & NEG_E))
+ sig_r = cell->module->AndGate(NEW_ID, sig_r, sig_e);
+ else
+ sig_r = cell->module->AndnotGate(NEW_ID, sig_r, sig_e);
+ } else {
+ if (!(ff_neg & NEG_E))
+ sig_r = cell->module->OrnotGate(NEW_ID, sig_r, sig_e);
+ else
+ sig_r = cell->module->OrGate(NEW_ID, sig_r, sig_e);
+ }
+ ff_type = has_set ? FF_SDFFE1 : FF_SDFFE0;
+ continue;
+ }
+ }
+ // Alright, so this particular combination of initval and
+ // resetval is not natively supported. First, try flipping
+ // them both to see whether this helps.
+ if ((has_set ? supported_sdff0 : supported_sdff1) & flip_initmask(initmask)) {
+ // Checks out, do it.
+ ff_type = has_ce ? (has_set ? FF_SDFFCE0 : FF_SDFFCE1) : has_en ? (has_set ? FF_SDFFE0 : FF_SDFFE1) : (has_set ? FF_SDFF0 : FF_SDFF1);
+ goto flip_dqi;
+ }
+
+ // Nope. No way to get SDFF* of the right kind, so unmap it.
+ // For SDFFE, the enable has to be unmapped first.
+ if (has_en) {
+ ff_type = has_set ? FF_SDFF1 : FF_SDFF0;
+ goto unmap_enable;
+ }
+unmap_srst:
+ if (has_ce)
+ ff_type = FF_DFFE;
+ else
+ ff_type = FF_DFF;
+ if (ff_neg & NEG_R)
+ sig_d = cell->module->MuxGate(NEW_ID, has_set ? State::S1 : State::S0, sig_d[0], sig_r[0]);
+ else
+ sig_d = cell->module->MuxGate(NEW_ID, sig_d[0], has_set ? State::S1 : State::S0, sig_r[0]);
+ ff_neg &= ~NEG_R;
+ sig_r = SigSpec();
+ kill_srst = false;
+ continue;
+ } else {
+ log_assert(0);
+ }
+ }
+cell_ok:
+
+ if (!(supported_cells_neg[ff_type][ff_neg] & initmask)) {
+ // Cell is supported, but not with those polarities.
+ // Will need to add some inverters.
+
+ // Find the smallest value that xored with the neg mask
+ // results in a supported one — this results in preferentially
+ // inverting resets before clocks, etc.
+ int xneg;
+ for (xneg = 0; xneg < NUM_NEG; xneg++)
+ if (supported_cells_neg[ff_type][ff_neg ^ xneg] & initmask)
+ break;
+ log_assert(xneg < NUM_NEG);
+ if (xneg & NEG_R)
+ sig_r = cell->module->NotGate(NEW_ID, sig_r[0]);
+ if (xneg & NEG_S)
+ sig_s = cell->module->NotGate(NEW_ID, sig_s[0]);
+ if (xneg & NEG_E)
+ sig_e = cell->module->NotGate(NEW_ID, sig_e[0]);
+ if (xneg & NEG_C)
+ sig_c = cell->module->NotGate(NEW_ID, sig_c[0]);
+ ff_neg ^= xneg;
+ }
+
+ cell->unsetPort(ID::D);
+ cell->unsetPort(ID::Q);
+ cell->unsetPort(ID::C);
+ cell->unsetPort(ID::E);
+ cell->unsetPort(ID::S);
+ cell->unsetPort(ID::R);
+ switch (ff_type) {
+ case FF_DFF:
+ cell->type = IdString(stringf("$_DFF_%c_",
+ (ff_neg & NEG_C) ? 'N' : 'P'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::C, sig_c);
+ break;
+ case FF_DFFE:
+ cell->type = IdString(stringf("$_DFFE_%c%c_",
+ (ff_neg & NEG_C) ? 'N' : 'P',
+ (ff_neg & NEG_E) ? 'N' : 'P'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::C, sig_c);
+ cell->setPort(ID::E, sig_e);
+ break;
+ case FF_ADFF0:
+ case FF_ADFF1:
+ cell->type = IdString(stringf("$_DFF_%c%c%c_",
+ (ff_neg & NEG_C) ? 'N' : 'P',
+ (ff_neg & NEG_R) ? 'N' : 'P',
+ (ff_type == FF_ADFF1) ? '1' : '0'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::C, sig_c);
+ cell->setPort(ID::R, sig_r);
+ break;
+ case FF_ADFFE0:
+ case FF_ADFFE1:
+ cell->type = IdString(stringf("$_DFFE_%c%c%c%c_",
+ (ff_neg & NEG_C) ? 'N' : 'P',
+ (ff_neg & NEG_R) ? 'N' : 'P',
+ (ff_type == FF_ADFFE1) ? '1' : '0',
+ (ff_neg & NEG_E) ? 'N' : 'P'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::C, sig_c);
+ cell->setPort(ID::E, sig_e);
+ cell->setPort(ID::R, sig_r);
+ break;
+ case FF_DFFSR:
+ cell->type = IdString(stringf("$_DFFSR_%c%c%c_",
+ (ff_neg & NEG_C) ? 'N' : 'P',
+ (ff_neg & NEG_S) ? 'N' : 'P',
+ (ff_neg & NEG_R) ? 'N' : 'P'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::C, sig_c);
+ cell->setPort(ID::S, sig_s);
+ cell->setPort(ID::R, sig_r);
+ break;
+ case FF_DFFSRE:
+ cell->type = IdString(stringf("$_DFFSRE_%c%c%c%c_",
+ (ff_neg & NEG_C) ? 'N' : 'P',
+ (ff_neg & NEG_S) ? 'N' : 'P',
+ (ff_neg & NEG_R) ? 'N' : 'P',
+ (ff_neg & NEG_E) ? 'N' : 'P'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::C, sig_c);
+ cell->setPort(ID::E, sig_e);
+ cell->setPort(ID::S, sig_s);
+ cell->setPort(ID::R, sig_r);
+ break;
+ case FF_SDFF0:
+ case FF_SDFF1:
+ cell->type = IdString(stringf("$_SDFF_%c%c%c_",
+ (ff_neg & NEG_C) ? 'N' : 'P',
+ (ff_neg & NEG_R) ? 'N' : 'P',
+ (ff_type == FF_SDFF1) ? '1' : '0'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::C, sig_c);
+ cell->setPort(ID::R, sig_r);
+ break;
+ case FF_SDFFE0:
+ case FF_SDFFE1:
+ cell->type = IdString(stringf("$_SDFFE_%c%c%c%c_",
+ (ff_neg & NEG_C) ? 'N' : 'P',
+ (ff_neg & NEG_R) ? 'N' : 'P',
+ (ff_type == FF_SDFFE1) ? '1' : '0',
+ (ff_neg & NEG_E) ? 'N' : 'P'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::C, sig_c);
+ cell->setPort(ID::E, sig_e);
+ cell->setPort(ID::R, sig_r);
+ break;
+ case FF_SDFFCE0:
+ case FF_SDFFCE1:
+ cell->type = IdString(stringf("$_SDFFCE_%c%c%c%c_",
+ (ff_neg & NEG_C) ? 'N' : 'P',
+ (ff_neg & NEG_R) ? 'N' : 'P',
+ (ff_type == FF_SDFFCE1) ? '1' : '0',
+ (ff_neg & NEG_E) ? 'N' : 'P'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::C, sig_c);
+ cell->setPort(ID::E, sig_e);
+ cell->setPort(ID::R, sig_r);
+ break;
+ case FF_DLATCH:
+ cell->type = IdString(stringf("$_DLATCH_%c_",
+ (ff_neg & NEG_E) ? 'N' : 'P'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::E, sig_e);
+ break;
+ case FF_ADLATCH0:
+ case FF_ADLATCH1:
+ cell->type = IdString(stringf("$_DLATCH_%c%c%c_",
+ (ff_neg & NEG_E) ? 'N' : 'P',
+ (ff_neg & NEG_R) ? 'N' : 'P',
+ (ff_type == FF_ADLATCH1) ? '1' : '0'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::E, sig_e);
+ cell->setPort(ID::R, sig_r);
+ break;
+ case FF_DLATCHSR:
+ cell->type = IdString(stringf("$_DLATCHSR_%c%c%c_",
+ (ff_neg & NEG_E) ? 'N' : 'P',
+ (ff_neg & NEG_S) ? 'N' : 'P',
+ (ff_neg & NEG_R) ? 'N' : 'P'
+ ));
+ cell->setPort(ID::D, sig_d);
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::E, sig_e);
+ cell->setPort(ID::S, sig_s);
+ cell->setPort(ID::R, sig_r);
+ break;
+ case FF_SR:
+ cell->type = IdString(stringf("$_SR_%c%c_",
+ (ff_neg & NEG_S) ? 'N' : 'P',
+ (ff_neg & NEG_R) ? 'N' : 'P'
+ ));
+ cell->setPort(ID::Q, sig_q);
+ cell->setPort(ID::S, sig_s);
+ cell->setPort(ID::R, sig_r);
+ break;
+ default:
+ log_assert(0);
+ }
+ return;
+
+error:
+ log_error("FF %s.%s (type %s) cannot be legalized: %s\n", log_id(cell->module->name), log_id(cell->name), log_id(cell->type), reason);
+ }
+
+ void execute(std::vector<std::string> args, RTLIL::Design *design) override
+ {
+
+ log_header(design, "Executing DFFLEGALIZE pass (convert FFs to types supported by the target).\n");
+
+ for (int i = 0; i < NUM_FFTYPES; i++) {
+ for (int j = 0; j < NUM_NEG; j++)
+ supported_cells_neg[i][j] = 0;
+ supported_cells[i] = 0;
+ }
+ mince = 0;
+ minsrst = 0;
+
+ size_t argidx;
+ for (argidx = 1; argidx < args.size(); argidx++)
+ {
+ if (args[argidx] == "-cell" && argidx + 2 < args.size()) {
+ std::string celltype = args[++argidx];
+ std::string inittype = args[++argidx];
+ enum FfType ff_type[2] = {NUM_FFTYPES, NUM_FFTYPES};
+ char pol_c = 0;
+ char pol_e = 0;
+ char pol_s = 0;
+ char pol_r = 0;
+ char srval = 0;
+ if (celltype.substr(0, 5) == "$_SR_" && celltype.size() == 8 && celltype[7] == '_') {
+ ff_type[0] = FF_SR;
+ pol_s = celltype[5];
+ pol_r = celltype[6];
+ } else if (celltype.substr(0, 6) == "$_DFF_" && celltype.size() == 8 && celltype[7] == '_') {
+ ff_type[0] = FF_DFF;
+ pol_c = celltype[6];
+ } else if (celltype.substr(0, 7) == "$_DFFE_" && celltype.size() == 10 && celltype[9] == '_') {
+ ff_type[0] = FF_DFFE;
+ pol_c = celltype[7];
+ pol_e = celltype[8];
+ } else if (celltype.substr(0, 6) == "$_DFF_" && celltype.size() == 10 && celltype[9] == '_') {
+ ff_type[0] = FF_ADFF0;
+ ff_type[1] = FF_ADFF1;
+ pol_c = celltype[6];
+ pol_r = celltype[7];
+ srval = celltype[8];
+ } else if (celltype.substr(0, 7) == "$_DFFE_" && celltype.size() == 12 && celltype[11] == '_') {
+ ff_type[0] = FF_ADFFE0;
+ ff_type[1] = FF_ADFFE1;
+ pol_c = celltype[7];
+ pol_r = celltype[8];
+ srval = celltype[9];
+ pol_e = celltype[10];
+ } else if (celltype.substr(0, 8) == "$_DFFSR_" && celltype.size() == 12 && celltype[11] == '_') {
+ ff_type[0] = FF_DFFSR;
+ pol_c = celltype[8];
+ pol_s = celltype[9];
+ pol_r = celltype[10];
+ } else if (celltype.substr(0, 9) == "$_DFFSRE_" && celltype.size() == 14 && celltype[13] == '_') {
+ ff_type[0] = FF_DFFSRE;
+ pol_c = celltype[9];
+ pol_s = celltype[10];
+ pol_r = celltype[11];
+ pol_e = celltype[12];
+ } else if (celltype.substr(0, 7) == "$_SDFF_" && celltype.size() == 11 && celltype[10] == '_') {
+ ff_type[0] = FF_SDFF0;
+ ff_type[1] = FF_SDFF1;
+ pol_c = celltype[7];
+ pol_r = celltype[8];
+ srval = celltype[9];
+ } else if (celltype.substr(0, 8) == "$_SDFFE_" && celltype.size() == 13 && celltype[12] == '_') {
+ ff_type[0] = FF_SDFFE0;
+ ff_type[1] = FF_SDFFE1;
+ pol_c = celltype[8];
+ pol_r = celltype[9];
+ srval = celltype[10];
+ pol_e = celltype[11];
+ } else if (celltype.substr(0, 9) == "$_SDFFCE_" && celltype.size() == 14 && celltype[13] == '_') {
+ ff_type[0] = FF_SDFFCE0;
+ ff_type[1] = FF_SDFFCE1;
+ pol_c = celltype[9];
+ pol_r = celltype[10];
+ srval = celltype[11];
+ pol_e = celltype[12];
+ } else if (celltype.substr(0, 9) == "$_DLATCH_" && celltype.size() == 11 && celltype[10] == '_') {
+ ff_type[0] = FF_DLATCH;
+ pol_e = celltype[9];
+ } else if (celltype.substr(0, 9) == "$_DLATCH_" && celltype.size() == 13 && celltype[12] == '_') {
+ ff_type[0] = FF_ADLATCH0;
+ ff_type[1] = FF_ADLATCH1;
+ pol_e = celltype[9];
+ pol_r = celltype[10];
+ srval = celltype[11];
+ } else if (celltype.substr(0, 11) == "$_DLATCHSR_" && celltype.size() == 15 && celltype[14] == '_') {
+ ff_type[0] = FF_DLATCHSR;
+ pol_e = celltype[11];
+ pol_s = celltype[12];
+ pol_r = celltype[13];
+ } else {
+unrecognized:
+ log_error("unrecognized cell type %s.\n", celltype.c_str());
+ }
+ int mask = 0;
+ int match = 0;
+ for (auto pair : {
+ std::make_pair(pol_c, NEG_C),
+ std::make_pair(pol_e, NEG_E),
+ std::make_pair(pol_s, NEG_S),
+ std::make_pair(pol_r, NEG_R),
+ }) {
+ if (pair.first == 'N') {
+ mask |= pair.second;
+ match |= pair.second;
+ } else if (pair.first == 'P' || pair.first == 0) {
+ mask |= pair.second;
+ } else if (pair.first != '?') {
+ goto unrecognized;
+ }
+ }
+ if (srval == '0') {
+ ff_type[1] = NUM_FFTYPES;
+ } else if (srval == '1') {
+ ff_type[0] = NUM_FFTYPES;
+ } else if (srval != 0 && srval != '?') {
+ goto unrecognized;
+ }
+ for (int i = 0; i < 2; i++) {
+ if (ff_type[i] == NUM_FFTYPES)
+ continue;
+ int initmask;
+ if (inittype == "x") {
+ initmask = INIT_X;
+ } else if (inittype == "0") {
+ initmask = INIT_X | INIT_0;
+ } else if (inittype == "1") {
+ initmask = INIT_X | INIT_1;
+ } else if (inittype == "r") {
+ if (srval == 0)
+ log_error("init type r not valid for cell type %s.\n", celltype.c_str());
+ if (i == 0)
+ initmask = INIT_X | INIT_0;
+ else
+ initmask = INIT_X | INIT_1;
+ } else if (inittype == "01") {
+ initmask = INIT_X | INIT_0 | INIT_1;
+ } else {
+ log_error("unrecognized init type %s for cell type %s.\n", inittype.c_str(), celltype.c_str());
+ }
+ for (int neg = 0; neg < NUM_NEG; neg++)
+ if ((neg & mask) == match)
+ supported_cells_neg[ff_type[i]][neg] |= initmask;
+ supported_cells[ff_type[i]] |= initmask;
+ }
+ continue;
+ } else if (args[argidx] == "-mince" && argidx + 1 < args.size()) {
+ mince = atoi(args[++argidx].c_str());
+ continue;
+ } else if (args[argidx] == "-minsrst" && argidx + 1 < args.size()) {
+ minsrst = atoi(args[++argidx].c_str());
+ continue;
+ }
+ break;
+ }
+ extra_args(args, argidx, design);
+ supported_dffsr = supported_cells[FF_DFFSR] | supported_cells[FF_DFFSRE];
+ supported_adff0 = supported_cells[FF_ADFF0] | supported_cells[FF_ADFFE0] | supported_dffsr;
+ supported_adff1 = supported_cells[FF_ADFF1] | supported_cells[FF_ADFFE1] | supported_dffsr;
+ supported_sdff0 = supported_cells[FF_SDFF0] | supported_cells[FF_SDFFE0] | supported_cells[FF_SDFFCE0];
+ supported_sdff1 = supported_cells[FF_SDFF1] | supported_cells[FF_SDFFE1] | supported_cells[FF_SDFFCE1];
+ supported_dff = supported_cells[FF_DFF] | supported_cells[FF_DFFE] | supported_dffsr | supported_adff0 | supported_adff1 | supported_sdff0 | supported_sdff1;
+ supported_sr = supported_dffsr | supported_cells[FF_DLATCHSR] | supported_cells[FF_SR] | supported_cells[FF_ADLATCH0] | flip_initmask(supported_cells[FF_ADLATCH1]);
+ supported_dlatch = supported_cells[FF_DLATCH] | supported_cells[FF_ADLATCH0] | supported_cells[FF_ADLATCH1] | supported_cells[FF_DLATCHSR];
+
+ for (auto module : design->selected_modules())
+ {
+ sigmap.set(module);
+ initbits.clear();
+
+ for (auto wire : module->selected_wires())
+ {
+ if (wire->attributes.count(ID::init) == 0)
+ continue;
+
+ SigSpec wirebits = sigmap(wire);
+ Const initval = wire->attributes.at(ID::init);
+
+ for (int i = 0; i < GetSize(wirebits) && i < GetSize(initval); i++)
+ {
+ SigBit bit = wirebits[i];
+ State val = initval[i];
+
+ if (val != State::S0 && val != State::S1 && bit.wire != nullptr)
+ continue;
+
+ if (initbits.count(bit)) {
+ if (initbits.at(bit).first != val)
+ log_error("Conflicting init values for signal %s (%s = %s != %s).\n",
+ log_signal(bit), log_signal(SigBit(wire, i)),
+ log_signal(val), log_signal(initbits.at(bit).first));
+ continue;
+ }
+
+ initbits[bit] = std::make_pair(val,SigBit(wire,i));
+ }
+ }
+
+ if (mince || minsrst) {
+ ce_used.clear();
+ srst_used.clear();
+
+ for (auto cell : module->cells()) {
+ if (!RTLIL::builtin_ff_cell_types().count(cell->type))
+ continue;
+
+ if (cell->hasPort(ID::C) && cell->hasPort(ID::E)) {
+ SigSpec sig = cell->getPort(ID::E);
+ // Do not count const enable signals.
+ if (GetSize(sig) == 1 && sig[0].wire)
+ ce_used[sig[0]]++;
+ }
+ if (cell->type.str().substr(0, 6) == "$_SDFF") {
+ SigSpec sig = cell->getPort(ID::R);
+ // Do not count const srst signals.
+ if (GetSize(sig) == 1 && sig[0].wire)
+ srst_used[sig[0]]++;
+ }
+ }
+ }
+
+ // First gather FF cells, then iterate over them later.
+ // We may need to split an FF into several cells.
+ std::vector<Cell *> ff_cells;
+
+ for (auto cell : module->selected_cells())
+ {
+ // Early exit for non-FFs.
+ if (!RTLIL::builtin_ff_cell_types().count(cell->type))
+ continue;
+
+ ff_cells.push_back(cell);
+ }
+
+ for (auto cell: ff_cells)
+ handle_ff(cell);
+ }
+
+ sigmap.clear();
+ initbits.clear();
+ ce_used.clear();
+ srst_used.clear();
+ }
+} DffLegalizePass;
+
+PRIVATE_NAMESPACE_END