This stores the most common SPRs in the register file.
This includes CTR and LR and a not yet final list of others.
The register file is set to 64 entries for now. Specific types
are defined that can represent a GPR index (gpr_index_t) or
a GPR/SPR index (gspr_index_t) along with conversion functions
between the two.
On order to deal with some forms of branch updating both LR and
CTR, we introduced a delayed update of LR after a branch link.
Note: We currently stall the pipeline on such a delayed branch,
but we could avoid stalling fetch in that specific case as we
know we have a branch delay. We could also limit that to the
specific case where we need to update both CTR and LR.
This allows us to make bcreg, mtspr and mfspr pipelined. decode1
will automatically force the single issue flag on mfspr/mtspr to
a "slow" SPR.
[paulus@ozlabs.org - fix direction of decode2.stall_in]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
$(GHDL) -a $(GHDLFLAGS) $<
common.o: decode_types.o
-control.o: gpr_hazard.o cr_hazard.o
+control.o: gpr_hazard.o cr_hazard.o common.o
sim_jtag.o: sim_jtag_socket.o
core_tb.o: common.o wishbone_types.o core.o soc.o sim_jtag.o
core.o: common.o wishbone_types.o fetch1.o fetch2.o icache.o decode1.o decode2.o register_file.o cr_file.o execute1.o loadstore1.o dcache.o multiply.o writeback.o core_debug.o divider.o
constant SPR_HSPRG0 : spr_num_t := 304;
constant SPR_HSPRG1 : spr_num_t := 305;
+ -- GPR indices in the register file (GPR only)
+ subtype gpr_index_t is std_ulogic_vector(4 downto 0);
+
+ -- Extended GPR indice (can hold an SPR)
+ subtype gspr_index_t is std_ulogic_vector(5 downto 0);
+
-- Some SPRs are stored in the register file, they use the magic
-- GPR numbers above 31.
--
-- indicates if this is indeed a fast SPR. If clear, then
-- the SPR is not stored in the GPR file.
--
- function fast_spr_num(spr: spr_num_t) return std_ulogic_vector;
+ function fast_spr_num(spr: spr_num_t) return gspr_index_t;
+
+ -- Indices conversion functions
+ function gspr_to_gpr(i: gspr_index_t) return gpr_index_t;
+ function gpr_to_gspr(i: gpr_index_t) return gspr_index_t;
+ function gpr_or_spr_to_gspr(g: gpr_index_t; s: gspr_index_t) return gspr_index_t;
+ function is_fast_spr(s: gspr_index_t) return std_ulogic;
-- The XER is split: the common bits (CA, OV, SO, OV32 and CA32) are
-- in the CR file as a kind of CR extension (with a separate write
-- This needs to die...
type ctrl_t is record
- lr: std_ulogic_vector(63 downto 0);
- ctr: std_ulogic_vector(63 downto 0);
tb: std_ulogic_vector(63 downto 0);
end record;
stop_mark : std_ulogic;
nia: std_ulogic_vector(63 downto 0);
insn: std_ulogic_vector(31 downto 0);
+ ispr1: gspr_index_t; -- (G)SPR used for branch condition (CTR) or mfspr
+ ispr2: gspr_index_t; -- (G)SPR used for branch target (CTR, LR, TAR)
decode: decode_rom_t;
end record;
constant Decode1ToDecode2Init : Decode1ToDecode2Type := (valid => '0', stop_mark => '0', decode => decode_rom_init, others => (others => '0'));
valid: std_ulogic;
insn_type: insn_type_t;
nia: std_ulogic_vector(63 downto 0);
- write_reg: std_ulogic_vector(4 downto 0);
- read_reg1: std_ulogic_vector(4 downto 0);
- read_reg2: std_ulogic_vector(4 downto 0);
+ write_reg: gspr_index_t;
+ read_reg1: gspr_index_t;
+ read_reg2: gspr_index_t;
read_data1: std_ulogic_vector(63 downto 0);
read_data2: std_ulogic_vector(63 downto 0);
read_data3: std_ulogic_vector(63 downto 0);
type Decode2ToMultiplyType is record
valid: std_ulogic;
insn_type: insn_type_t;
- write_reg: std_ulogic_vector(4 downto 0);
+ write_reg: gpr_index_t;
data1: std_ulogic_vector(64 downto 0);
data2: std_ulogic_vector(64 downto 0);
rc: std_ulogic;
type Decode2ToDividerType is record
valid: std_ulogic;
- write_reg: std_ulogic_vector(4 downto 0);
+ write_reg: gpr_index_t;
dividend: std_ulogic_vector(63 downto 0);
divisor: std_ulogic_vector(63 downto 0);
is_signed: std_ulogic;
type Decode2ToRegisterFileType is record
read1_enable : std_ulogic;
- read1_reg : std_ulogic_vector(4 downto 0);
+ read1_reg : gspr_index_t;
read2_enable : std_ulogic;
- read2_reg : std_ulogic_vector(4 downto 0);
+ read2_reg : gspr_index_t;
read3_enable : std_ulogic;
- read3_reg : std_ulogic_vector(4 downto 0);
+ read3_reg : gpr_index_t;
end record;
type RegisterFileToDecode2Type is record
addr1 : std_ulogic_vector(63 downto 0);
addr2 : std_ulogic_vector(63 downto 0);
data : std_ulogic_vector(63 downto 0); -- data to write, unused for read
- write_reg : std_ulogic_vector(4 downto 0); -- read data goes to this register
+ write_reg : gpr_index_t;
length : std_ulogic_vector(3 downto 0);
byte_reverse : std_ulogic;
sign_extend : std_ulogic; -- do we need to sign extend?
update : std_ulogic; -- is this an update instruction?
- update_reg : std_ulogic_vector(4 downto 0); -- if so, the register to update
+ update_reg : gpr_index_t; -- if so, the register to update
xerc : xer_common_t;
end record;
constant Decode2ToLoadstore1Init : Decode2ToLoadstore1Type := (valid => '0', load => '0', byte_reverse => '0',
nc : std_ulogic;
addr : std_ulogic_vector(63 downto 0);
data : std_ulogic_vector(63 downto 0);
- write_reg : std_ulogic_vector(4 downto 0);
+ write_reg : gpr_index_t;
length : std_ulogic_vector(3 downto 0);
byte_reverse : std_ulogic;
sign_extend : std_ulogic;
update : std_ulogic;
- update_reg : std_ulogic_vector(4 downto 0);
+ update_reg : gpr_index_t;
xerc : xer_common_t;
end record;
type DcacheToWritebackType is record
valid : std_ulogic;
write_enable: std_ulogic;
- write_reg : std_ulogic_vector(4 downto 0);
+ write_reg : gpr_index_t;
write_data : std_ulogic_vector(63 downto 0);
write_len : std_ulogic_vector(3 downto 0);
write_shift : std_ulogic_vector(2 downto 0);
valid: std_ulogic;
rc : std_ulogic;
write_enable : std_ulogic;
- write_reg: std_ulogic_vector(4 downto 0);
+ write_reg: gspr_index_t;
write_data: std_ulogic_vector(63 downto 0);
write_len : std_ulogic_vector(3 downto 0);
write_cr_enable : std_ulogic;
valid: std_ulogic;
write_reg_enable : std_ulogic;
- write_reg_nr: std_ulogic_vector(4 downto 0);
+ write_reg_nr: gpr_index_t;
write_reg_data: std_ulogic_vector(63 downto 0);
write_xerc_enable : std_ulogic;
xerc : xer_common_t;
valid: std_ulogic;
write_reg_enable : std_ulogic;
- write_reg_nr: std_ulogic_vector(4 downto 0);
+ write_reg_nr: gpr_index_t;
write_reg_data: std_ulogic_vector(63 downto 0);
write_xerc_enable : std_ulogic;
xerc : xer_common_t;
others => (others => '0'));
type WritebackToRegisterFileType is record
- write_reg : std_ulogic_vector(4 downto 0);
+ write_reg : gspr_index_t;
write_data : std_ulogic_vector(63 downto 0);
write_enable : std_ulogic;
end record;
begin
return to_integer(unsigned(insn(15 downto 11) & insn(20 downto 16)));
end;
- function fast_spr_num(spr: spr_num_t) return std_ulogic_vector is
+ function fast_spr_num(spr: spr_num_t) return gspr_index_t is
variable n : integer range 0 to 31;
begin
case spr is
end case;
return "1" & std_ulogic_vector(to_unsigned(n, 5));
end;
+
+ function gspr_to_gpr(i: gspr_index_t) return gpr_index_t is
+ begin
+ return i(4 downto 0);
+ end;
+
+ function gpr_to_gspr(i: gpr_index_t) return gspr_index_t is
+ begin
+ return "0" & i;
+ end;
+
+ function gpr_or_spr_to_gspr(g: gpr_index_t; s: gspr_index_t) return gspr_index_t is
+ begin
+ if s(5) = '1' then
+ return s;
+ else
+ return gpr_to_gspr(g);
+ end if;
+ end;
+
+ function is_fast_spr(s: gspr_index_t) return std_ulogic is
+ begin
+ return s(5);
+ end;
end common;
library ieee;
use ieee.std_logic_1164.all;
+library work;
+use work.common.all;
+
entity control is
generic (
PIPELINE_DEPTH : natural := 2
complete_in : in std_ulogic;
valid_in : in std_ulogic;
flush_in : in std_ulogic;
+ stall_in : in std_ulogic;
sgl_pipe_in : in std_ulogic;
stop_mark_in : in std_ulogic;
gpr_write_valid_in : in std_ulogic;
- gpr_write_in : in std_ulogic_vector(4 downto 0);
+ gpr_write_in : in gspr_index_t;
gpr_a_read_valid_in : in std_ulogic;
- gpr_a_read_in : in std_ulogic_vector(4 downto 0);
+ gpr_a_read_in : in gspr_index_t;
gpr_b_read_valid_in : in std_ulogic;
- gpr_b_read_in : in std_ulogic_vector(4 downto 0);
+ gpr_b_read_in : in gspr_index_t;
gpr_c_read_valid_in : in std_ulogic;
- gpr_c_read_in : in std_ulogic_vector(4 downto 0);
+ gpr_c_read_in : in gpr_index_t;
cr_read_in : in std_ulogic;
cr_write_in : in std_ulogic;
)
port map (
clk => clk,
+ stall_in => stall_in,
gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write_in,
)
port map (
clk => clk,
+ stall_in => stall_in,
gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write_in,
)
port map (
clk => clk,
+ stall_in => stall_in,
gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write_in,
gpr_read_valid_in => gpr_c_read_valid_in,
- gpr_read_in => gpr_c_read_in,
+ gpr_read_in => "0" & gpr_c_read_in,
stall_out => stall_c_out
);
)
port map (
clk => clk,
+ stall_in => stall_in,
cr_read_in => cr_read_in,
cr_write_in => cr_write_valid,
v_int := r_int;
-- asynchronous
- valid_tmp := valid_in and not flush_in;
- stall_tmp := '0';
+ valid_tmp := valid_in and not flush_in and not stall_in;
+ stall_tmp := stall_in;
if complete_in = '1' then
v_int.outstanding := r_int.outstanding - 1;
signal icache_stall_out : std_ulogic;
signal fetch2_stall_in : std_ulogic;
signal decode1_stall_in : std_ulogic;
+ signal decode2_stall_in : std_ulogic;
signal decode2_stall_out : std_ulogic;
signal ex1_icache_inval: std_ulogic;
+ signal ex1_stall_out: std_ulogic;
signal flush: std_ulogic;
port map (
clk => clk,
rst => core_rst,
+ stall_in => decode2_stall_in,
stall_out => decode2_stall_out,
flush_in => flush,
complete_in => complete,
c_in => cr_file_to_decode2,
c_out => decode2_to_cr_file
);
+ decode2_stall_in <= ex1_stall_out;
register_file_0: entity work.register_file
generic map (
port map (
clk => clk,
flush_out => flush,
+ stall_out => ex1_stall_out,
e_in => decode2_to_execute1,
f_out => execute1_to_fetch1,
e_out => execute1_to_writeback,
PIPELINE_DEPTH : natural := 2
);
port(
- clk : in std_logic;
+ clk : in std_ulogic;
+ stall_in : in std_ulogic;
cr_read_in : in std_ulogic;
cr_write_in : in std_ulogic;
cr_hazard0: process(clk)
begin
if rising_edge(clk) then
- r <= rin;
+ if stall_in = '0' then
+ r <= rin;
+ end if;
end if;
end process;
28 => (ALU, OP_AND, NONE, CONST_UI, RS, RA, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', ONE, '0', '0'), -- andi.
29 => (ALU, OP_AND, NONE, CONST_UI_HI, RS, RA, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', ONE, '0', '0'), -- andis.
18 => (ALU, OP_B, NONE, CONST_LI, NONE, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '1', '0'), -- b
- 16 => (ALU, OP_BC, NONE, CONST_BD, NONE, NONE, '1', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '1', '0'), -- bc
+ 16 => (ALU, OP_BC, SPR, CONST_BD, NONE, SPR , '1', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '1', '0'), -- bc
11 => (ALU, OP_CMP, RA, CONST_SI, NONE, NONE, '0', '1', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0'), -- cmpi
10 => (ALU, OP_CMPL, RA, CONST_UI, NONE, NONE, '0', '1', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0'), -- cmpli
34 => (LDST, OP_LOAD, RA_OR_ZERO, CONST_SI, NONE, RT, '0', '0', '0', '0', ZERO, '0', is1B, '0', '0', '0', '0', '0', '0', NONE, '0', '1'), -- lbz
-- addpcis not implemented yet
2#001# => (ALU, OP_ILLEGAL, NONE, NONE, NONE, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'),
-- bclr, bcctr, bctar
- 2#100# => (ALU, OP_BCREG, NONE, NONE, NONE, NONE, '1', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '1', '1'),
+ 2#100# => (ALU, OP_BCREG, SPR, SPR, NONE, SPR, '1', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '1', '0'),
-- isync
2#111# => (ALU, OP_ISYNC, NONE, NONE, NONE, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'),
others => illegal_inst
-- 2#1000000000# mcrxr
-- 2#1001000000# mcrxrx
2#0000010011# => (ALU, OP_MFCR, NONE, NONE, NONE, RT, '1', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0'), -- mfcr/mfocrf
- 2#0101010011# => (ALU, OP_MFSPR, NONE, NONE, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'), -- mfspr
+ 2#0101010011# => (ALU, OP_MFSPR, SPR, NONE, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0'), -- mfspr
2#0100001001# => (DIV, OP_MOD, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'), -- modud
2#0100001011# => (DIV, OP_MOD, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'), -- moduw
2#1100001001# => (DIV, OP_MOD, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'), -- modsd
2#1100001011# => (DIV, OP_MOD, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'), -- modsw
2#0010010000# => (ALU, OP_MTCRF, NONE, NONE, RS, NONE, '0', '1', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0'), -- mtcrf/mtocrf
- 2#0111010011# => (ALU, OP_MTSPR, NONE, NONE, RS, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1'), -- mtspr
+ 2#0111010011# => (ALU, OP_MTSPR, NONE, NONE, RS, SPR, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0'), -- mtspr
2#0001001001# => (MUL, OP_MUL_H64, RA, RB, NONE, RT, '0', '1', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '1', RC, '0', '1'), -- mulhd
2#0000001001# => (MUL, OP_MUL_H64, RA, RB, NONE, RT, '0', '1', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '1'), -- mulhdu
2#0001001011# => (MUL, OP_MUL_H32, RA, RB, NONE, RT, '0', '1', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '1', RC, '0', '1'), -- mulhw
v.nia := f_in.nia;
v.insn := f_in.insn;
v.stop_mark := f_in.stop_mark;
+ v.ispr1 := (others => '0');
+ v.ispr2 := (others => '0');
if f_in.valid = '1' then
report "Decode insn " & to_hstring(f_in.insn) & " at " & to_hstring(f_in.nia);
v.decode := major_decode_rom_array(to_integer(majorop));
end if;
+ -- Set ISPR1/ISPR2 when needed
+ if v.decode.insn_type = OP_BC or v.decode.insn_type = OP_BCREG then
+ -- Branch uses CTR as condition when BO(2) is 0. This is
+ -- also used to indicate that CTR is modified (they go
+ -- together).
+ --
+ if f_in.insn(23) = '0' then
+ v.ispr1 := fast_spr_num(SPR_CTR);
+ end if;
+
+ -- Branch source register is an SPR
+ if v.decode.insn_type = OP_BCREG then
+ -- TODO: Add TAR
+ if f_in.insn(10) = '0' then
+ v.ispr2 := fast_spr_num(SPR_LR);
+ else
+ v.ispr2 := fast_spr_num(SPR_CTR);
+ end if;
+ end if;
+ elsif v.decode.insn_type = OP_MFSPR or v.decode.insn_type = OP_MTSPR then
+ v.ispr1 := fast_spr_num(decode_spr_num(f_in.insn));
+ -- Make slow SPRs single issue
+ if is_fast_spr(v.ispr1) = '0' then
+ v.decode.sgl_pipe := '1';
+ end if;
+ end if;
+
if flush_in = '1' then
v.valid := '0';
end if;
rst : in std_ulogic;
complete_in : in std_ulogic;
+ stall_in : in std_ulogic;
stall_out : out std_ulogic;
stopped_out : out std_ulogic;
type decode_input_reg_t is record
reg_valid : std_ulogic;
- reg : std_ulogic_vector(4 downto 0);
+ reg : gspr_index_t;
data : std_ulogic_vector(63 downto 0);
end record;
+ type decode_output_reg_t is record
+ reg_valid : std_ulogic;
+ reg : gspr_index_t;
+ end record;
+
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
- reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
+ reg_data : std_ulogic_vector(63 downto 0);
+ ispr : gspr_index_t) return decode_input_reg_t is
variable is_reg : std_ulogic;
begin
is_reg := '0' when insn_ra(insn_in) = "00000" else '1';
if t = RA or (t = RA_OR_ZERO and insn_ra(insn_in) /= "00000") then
- --return (is_reg, insn_ra(insn_in), reg_data);
- return ('1', insn_ra(insn_in), reg_data);
+ assert is_fast_spr(ispr) = '0' report "Decode A says GPR but ISPR says SPR:" &
+ to_hstring(ispr) severity failure;
+ return ('1', gpr_to_gspr(insn_ra(insn_in)), reg_data);
+ elsif t = SPR then
+ -- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
+ -- If it's all 0, we don't treat it as a dependency as slow SPRs
+ -- operations are single issue.
+ --
+ assert is_fast_spr(ispr) = '1' or ispr = "000000"
+ report "Decode A says SPR but ISPR is invalid:" &
+ to_hstring(ispr) severity failure;
+ return (is_fast_spr(ispr), ispr, reg_data);
else
return ('0', (others => '0'), (others => '0'));
end if;
end;
function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
- reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
+ reg_data : std_ulogic_vector(63 downto 0);
+ ispr : gspr_index_t) return decode_input_reg_t is
begin
case t is
when RB =>
- return ('1', insn_rb(insn_in), reg_data);
+ assert is_fast_spr(ispr) = '0' report "Decode B says GPR but ISPR says SPR:" &
+ to_hstring(ispr) severity failure;
+ return ('1', gpr_to_gspr(insn_rb(insn_in)), reg_data);
when CONST_UI =>
return ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64)));
when CONST_SI =>
return ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11));
when CONST_SH32 =>
return ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11));
+ when SPR =>
+ -- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
+ -- If it's all 0, we don't treat it as a dependency as slow SPRs
+ -- operations are single issue.
+ assert is_fast_spr(ispr) = '1' or ispr = "000000"
+ report "Decode B says SPR but ISPR is invalid:" &
+ to_hstring(ispr) severity failure;
+ return (is_fast_spr(ispr), ispr, reg_data);
when NONE =>
return ('0', (others => '0'), (others => '0'));
end case;
begin
case t is
when RS =>
- return ('1', insn_rs(insn_in), reg_data);
+ return ('1', gpr_to_gspr(insn_rs(insn_in)), reg_data);
when NONE =>
return ('0', (others => '0'), (others => '0'));
end case;
end;
- function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
+ function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
+ ispr : gspr_index_t) return decode_output_reg_t is
begin
case t is
when RT =>
- return insn_rt(insn_in);
+ return ('1', gpr_to_gspr(insn_rt(insn_in)));
when RA =>
- return insn_ra(insn_in);
+ return ('1', gpr_to_gspr(insn_ra(insn_in)));
+ when SPR =>
+ -- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
+ -- If it's all 0, we don't treat it as a dependency as slow SPRs
+ -- operations are single issue.
+ assert is_fast_spr(ispr) = '1' or ispr = "000000"
+ report "Decode B says SPR but ISPR is invalid:" &
+ to_hstring(ispr) severity failure;
+ return (is_fast_spr(ispr), ispr);
when NONE =>
- return "00000";
+ return ('0', "000000");
end case;
end;
signal control_sgl_pipe : std_logic;
signal gpr_write_valid : std_ulogic;
- signal gpr_write : std_ulogic_vector(4 downto 0);
+ signal gpr_write : gspr_index_t;
signal gpr_a_read_valid : std_ulogic;
- signal gpr_a_read : std_ulogic_vector(4 downto 0);
+ signal gpr_a_read :gspr_index_t;
signal gpr_b_read_valid : std_ulogic;
- signal gpr_b_read : std_ulogic_vector(4 downto 0);
+ signal gpr_b_read : gspr_index_t;
signal gpr_c_read_valid : std_ulogic;
- signal gpr_c_read : std_ulogic_vector(4 downto 0);
+ signal gpr_c_read : gpr_index_t;
signal cr_write_valid : std_ulogic;
begin
complete_in => complete_in,
valid_in => control_valid_in,
+ stall_in => stall_in,
flush_in => flush_in,
sgl_pipe_in => control_sgl_pipe,
stop_mark_in => d_in.stop_mark,
end if;
end process;
- r_out.read1_reg <= insn_ra(d_in.insn);
- r_out.read2_reg <= insn_rb(d_in.insn);
+ r_out.read1_reg <= gpr_or_spr_to_gspr(insn_ra(d_in.insn), d_in.ispr1);
+ r_out.read2_reg <= gpr_or_spr_to_gspr(insn_rb(d_in.insn), d_in.ispr2);
r_out.read3_reg <= insn_rs(d_in.insn);
c_out.read <= d_in.decode.input_cr;
variable decoded_reg_a : decode_input_reg_t;
variable decoded_reg_b : decode_input_reg_t;
variable decoded_reg_c : decode_input_reg_t;
+ variable decoded_reg_o : decode_output_reg_t;
variable signed_division: std_ulogic;
variable length : std_ulogic_vector(3 downto 0);
begin
--v.e.input_cr := d_in.decode.input_cr;
--v.m.input_cr := d_in.decode.input_cr;
--v.e.output_cr := d_in.decode.output_cr;
-
- decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data);
- decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data);
+
+ decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data, d_in.ispr1);
+ decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data, d_in.ispr2);
decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data);
+ decoded_reg_o := decode_output_reg (d_in.decode.output_reg_a, d_in.insn, d_in.ispr1);
r_out.read1_enable <= decoded_reg_a.reg_valid;
r_out.read2_enable <= decoded_reg_b.reg_valid;
v.e.read_reg2 := decoded_reg_b.reg;
v.e.read_data2 := decoded_reg_b.data;
v.e.read_data3 := decoded_reg_c.data;
- v.e.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
+ v.e.write_reg := decoded_reg_o.reg;
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
v.e.oe := decode_oe(d_in.decode.rc, d_in.insn);
v.e.cr := c_in.read_cr_data;
v.m.insn_type := d_in.decode.insn_type;
mul_a := decoded_reg_a.data;
mul_b := decoded_reg_b.data;
- v.m.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
+ v.m.write_reg := gspr_to_gpr(decoded_reg_o.reg);
v.m.rc := decode_rc(d_in.decode.rc, d_in.insn);
v.m.xerc := c_in.read_xerc_data;
if v.m.insn_type = OP_MUL_L64 then
-- s = 1 for signed, 0 for unsigned (for div*)
-- t = 1 for 32-bit, 0 for 64-bit
-- r = RC bit (record condition code)
- v.d.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
+ v.d.write_reg := gspr_to_gpr(decoded_reg_o.reg);
v.d.is_modulus := not d_in.insn(8);
v.d.is_32bit := d_in.insn(2);
if d_in.insn(8) = '1' then
v.d.oe := decode_oe(d_in.decode.rc, d_in.insn);
-- load/store unit
- v.l.update_reg := decoded_reg_a.reg;
+ v.l.update_reg := gspr_to_gpr(decoded_reg_a.reg);
v.l.addr1 := decoded_reg_a.data;
v.l.addr2 := decoded_reg_b.data;
v.l.data := decoded_reg_c.data;
- v.l.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
+ v.l.write_reg := gspr_to_gpr(decoded_reg_o.reg);
if d_in.decode.insn_type = OP_LOAD then
v.l.load := '1';
control_valid_in <= d_in.valid;
control_sgl_pipe <= d_in.decode.sgl_pipe;
- gpr_write_valid <= '1' when d_in.decode.output_reg_a /= NONE else '0';
- gpr_write <= decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
+ gpr_write_valid <= decoded_reg_o.reg_valid;
+ gpr_write <= decoded_reg_o.reg;
gpr_a_read_valid <= decoded_reg_a.reg_valid;
gpr_a_read <= decoded_reg_a.reg;
gpr_b_read <= decoded_reg_b.reg;
gpr_c_read_valid <= decoded_reg_c.reg_valid;
- gpr_c_read <= decoded_reg_c.reg;
+ gpr_c_read <= gspr_to_gpr(decoded_reg_c.reg);
cr_write_valid <= d_in.decode.output_cr or decode_rc(d_in.decode.rc, d_in.insn);
OP_TWI, OP_XOR, OP_SIM_CONFIG
);
- type input_reg_a_t is (NONE, RA, RA_OR_ZERO);
- type input_reg_b_t is (NONE, RB, CONST_UI, CONST_SI, CONST_SI_HI, CONST_UI_HI, CONST_LI, CONST_BD, CONST_DS, CONST_M1, CONST_SH, CONST_SH32);
+ type input_reg_a_t is (NONE, RA, RA_OR_ZERO, SPR);
+ type input_reg_b_t is (NONE, RB, CONST_UI, CONST_SI, CONST_SI_HI, CONST_UI_HI, CONST_LI, CONST_BD, CONST_DS, CONST_M1, CONST_SH, CONST_SH32, SPR);
type input_reg_c_t is (NONE, RS);
- type output_reg_a_t is (NONE, RT, RA);
+ type output_reg_a_t is (NONE, RT, RA, SPR);
type rc_t is (NONE, ONE, RC);
type carry_in_t is (ZERO, CA, ONE);
entity execute1 is
port (
- clk : in std_logic;
+ clk : in std_ulogic;
-- asynchronous
flush_out : out std_ulogic;
+ stall_out : out std_ulogic;
e_in : in Decode2ToExecute1Type;
architecture behaviour of execute1 is
type reg_type is record
e : Execute1ToWritebackType;
+ lr_update : std_ulogic;
+ next_lr : std_ulogic_vector(63 downto 0);
end record;
signal r, rin : reg_type;
if rising_edge(clk) then
r <= rin;
ctrl <= ctrl_tmp;
+ assert not (r.lr_update = '1' and e_in.valid = '1')
+ report "LR update collision with valid in EX1"
+ severity failure;
+ if r.lr_update = '1' then
+ report "LR update to " & to_hstring(r.next_lr);
+ end if;
end if;
end process;
v.e.xerc := e_in.xerc;
end if;
+ v.lr_update := '0';
+
ctrl_tmp <= ctrl;
-- FIXME: run at 512MHz not core freq
ctrl_tmp.tb <= std_ulogic_vector(unsigned(ctrl.tb) + 1);
terminate_out <= '0';
icache_inval <= '0';
+ stall_out <= '0';
f_out <= Execute1ToFetch1TypeInit;
-- Next insn adder used in a couple of places
f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(e_in.read_data2));
end if;
when OP_BC =>
+ -- read_data1 is CTR
bo := insn_bo(e_in.insn);
bi := insn_bi(e_in.insn);
if bo(4-2) = '0' then
- ctrl_tmp.ctr <= std_ulogic_vector(unsigned(ctrl.ctr) - 1);
+ result := std_ulogic_vector(unsigned(e_in.read_data1) - 1);
+ result_en := '1';
+ v.e.write_reg := fast_spr_num(SPR_CTR);
end if;
- if ppc_bc_taken(bo, bi, e_in.cr, ctrl.ctr) = 1 then
+ if ppc_bc_taken(bo, bi, e_in.cr, e_in.read_data1) = 1 then
f_out.redirect <= '1';
if (insn_aa(e_in.insn)) then
f_out.redirect_nia <= std_ulogic_vector(signed(e_in.read_data2));
end if;
end if;
when OP_BCREG =>
- -- bits 10 and 6 distinguish between bclr, bcctr and bctar
+ -- read_data1 is CTR
+ -- read_data2 is target register (CTR, LR or TAR)
bo := insn_bo(e_in.insn);
bi := insn_bi(e_in.insn);
if bo(4-2) = '0' and e_in.insn(10) = '0' then
- ctrl_tmp.ctr <= std_ulogic_vector(unsigned(ctrl.ctr) - 1);
+ result := std_ulogic_vector(unsigned(e_in.read_data1) - 1);
+ result_en := '1';
+ v.e.write_reg := fast_spr_num(SPR_CTR);
end if;
- if ppc_bc_taken(bo, bi, e_in.cr, ctrl.ctr) = 1 then
+ if ppc_bc_taken(bo, bi, e_in.cr, e_in.read_data1) = 1 then
f_out.redirect <= '1';
- if e_in.insn(10) = '0' then
- f_out.redirect_nia <= ctrl.lr(63 downto 2) & "00";
- else
- f_out.redirect_nia <= ctrl.ctr(63 downto 2) & "00";
- end if;
+ f_out.redirect_nia <= e_in.read_data2(63 downto 2) & "00";
end if;
when OP_CMPB =>
result := ppc_cmpb(e_in.read_data3, e_in.read_data2);
v.e.write_cr_data(hi downto lo) := newcrf;
end loop;
when OP_MFSPR =>
- case decode_spr_num(e_in.insn) is
- when SPR_XER =>
- result := ( 63-32 => v.e.xerc.so,
- 63-33 => v.e.xerc.ov,
- 63-34 => v.e.xerc.ca,
- 63-44 => v.e.xerc.ov32,
- 63-45 => v.e.xerc.ca32,
- others => '0');
- when SPR_CTR =>
- result := ctrl.ctr;
- when SPR_LR =>
- result := ctrl.lr;
- when SPR_TB =>
- result := ctrl.tb;
- when others =>
- result := (others => '0');
- end case;
+ if is_fast_spr(e_in.read_reg1) then
+ result := e_in.read_data1;
+ if decode_spr_num(e_in.insn) = SPR_XER then
+ result(63-32) := v.e.xerc.so;
+ result(63-33) := v.e.xerc.ov;
+ result(63-34) := v.e.xerc.ca;
+ result(63-35 downto 63-43) := "000000000";
+ result(63-44) := v.e.xerc.ov32;
+ result(63-45) := v.e.xerc.ca32;
+ end if;
+ else
+ case decode_spr_num(e_in.insn) is
+ when SPR_TB =>
+ result := ctrl.tb;
+ when others =>
+ result := (others => '0');
+ end case;
+ end if;
result_en := '1';
when OP_MFCR =>
if e_in.insn(20) = '0' then
end if;
v.e.write_cr_data := e_in.read_data3(31 downto 0);
when OP_MTSPR =>
- case decode_spr_num(e_in.insn) is
- when SPR_XER =>
- v.e.xerc.so := e_in.read_data3(63-32);
- v.e.xerc.ov := e_in.read_data3(63-33);
- v.e.xerc.ca := e_in.read_data3(63-34);
- v.e.xerc.ov32 := e_in.read_data3(63-44);
- v.e.xerc.ca32 := e_in.read_data3(63-45);
- v.e.write_xerc_enable := '1';
- when SPR_CTR =>
- ctrl_tmp.ctr <= e_in.read_data3;
- when SPR_LR =>
- ctrl_tmp.lr <= e_in.read_data3;
- when others =>
- end case;
+ report "MTSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
+ "=" & to_hstring(e_in.read_data3);
+ if is_fast_spr(e_in.write_reg) then
+ result := e_in.read_data3;
+ result_en := '1';
+ if decode_spr_num(e_in.insn) = SPR_XER then
+ v.e.xerc.so := e_in.read_data3(63-32);
+ v.e.xerc.ov := e_in.read_data3(63-33);
+ v.e.xerc.ca := e_in.read_data3(63-34);
+ v.e.xerc.ov32 := e_in.read_data3(63-44);
+ v.e.xerc.ca32 := e_in.read_data3(63-45);
+ v.e.write_xerc_enable := '1';
+ end if;
+ else
+-- TODO: Implement slow SPRs
+-- case decode_spr_num(e_in.insn) is
+-- when others =>
+-- end case;
+ end if;
when OP_POPCNTB =>
result := ppc_popcntb(e_in.read_data3);
result_en := '1';
report "illegal";
end case;
+ -- Update LR on the next cycle after a branch link
+ --
+ -- WARNING: The LR update isn't tracked by our hazard tracker. This
+ -- will work (well I hope) because it only happens on branches
+ -- which will flush all decoded instructions. By the time
+ -- fetch catches up, we'll have the new LR. This will
+ -- *not* work properly however if we have a branch predictor,
+ -- in which case the solution would probably be to keep a
+ -- local cache of the updated LR in execute1 (flushed on
+ -- exceptions) that is used instead of the value from
+ -- decode when its content is valid.
if e_in.lr = '1' then
- ctrl_tmp.lr <= next_nia;
+ v.lr_update := '1';
+ v.next_lr := next_nia;
+ v.e.valid := '0';
+ report "Delayed LR update to " & to_hstring(next_nia);
+ stall_out <= '1';
end if;
-
+ elsif r.lr_update = '1' then
+ result_en := '1';
+ result := r.next_lr;
+ v.e.write_reg := fast_spr_num(SPR_LR);
+ v.e.write_len := x"8";
+ v.e.sign_extend := '0';
+ v.e.valid := '1';
end if;
v.e.write_data := result;
v.e.write_enable := result_en;
- v.e.rc := e_in.rc;
+ v.e.rc := e_in.rc and e_in.valid;
-- Update registers
rin <= v;
PIPELINE_DEPTH : natural := 2
);
port(
- clk : in std_logic;
+ clk : in std_ulogic;
+ stall_in : in std_ulogic;
gpr_write_valid_in : in std_ulogic;
- gpr_write_in : in std_ulogic_vector(4 downto 0);
+ gpr_write_in : in std_ulogic_vector(5 downto 0);
gpr_read_valid_in : in std_ulogic;
- gpr_read_in : in std_ulogic_vector(4 downto 0);
+ gpr_read_in : in std_ulogic_vector(5 downto 0);
stall_out : out std_ulogic
);
architecture behaviour of gpr_hazard is
type pipeline_entry_type is record
valid : std_ulogic;
- gpr : std_ulogic_vector(4 downto 0);
+ gpr : std_ulogic_vector(5 downto 0);
end record;
constant pipeline_entry_init : pipeline_entry_type := (valid => '0', gpr => (others => '0'));
gpr_hazard0: process(clk)
begin
if rising_edge(clk) then
- r <= rin;
+ if stall_in = '0' then
+ r <= rin;
+ end if;
end if;
end process;
function ppc_divwu (ra, rb: std_ulogic_vector(63 downto 0)) return std_ulogic_vector;
function ppc_bc_taken(bo, bi: std_ulogic_vector(4 downto 0); cr: std_ulogic_vector(31 downto 0); ctr: std_ulogic_vector(63 downto 0)) return integer;
- function ppc_bcctr_taken(bo, bi: std_ulogic_vector(4 downto 0); cr: std_ulogic_vector(31 downto 0)) return integer;
end package ppc_fx_insns;
package body ppc_fx_insns is
return ret;
end;
- function ppc_bcctr_taken(bo, bi: std_ulogic_vector(4 downto 0); cr: std_ulogic_vector(31 downto 0)) return integer is
- variable crfield: integer;
- variable crbit_match: std_ulogic;
- variable cond_ok: std_ulogic;
- variable ret: integer;
- begin
- crfield := to_integer(unsigned(bi));
- -- BE bit numbering
- crbit_match := '1' when cr(31-crfield) = bo(4-1) else '0';
- cond_ok := bo(4-0) or crbit_match;
- if cond_ok = '1' then
- ret := 1;
- else
- ret := 0;
- end if;
- return ret;
- end;
end package body ppc_fx_insns;
end entity register_file;
architecture behaviour of register_file is
- type regfile is array(0 to 31) of std_ulogic_vector(63 downto 0);
+ type regfile is array(0 to 63) of std_ulogic_vector(63 downto 0);
signal registers : regfile := (others => (others => '0'));
begin
-- synchronous writes
if rising_edge(clk) then
if w_in.write_enable = '1' then
assert not(is_x(w_in.write_data)) and not(is_x(w_in.write_reg)) severity failure;
- report "Writing GPR " & to_hstring(w_in.write_reg) & " " & to_hstring(w_in.write_data);
+ if w_in.write_reg(5) = '0' then
+ report "Writing GPR " & to_hstring(w_in.write_reg) & " " & to_hstring(w_in.write_data);
+ else
+ report "Writing GSPR " & to_hstring(w_in.write_reg) & " " & to_hstring(w_in.write_data);
+ end if;
registers(to_integer(unsigned(w_in.write_reg))) <= w_in.write_data;
end if;
end if;
end if;
d_out.read1_data <= registers(to_integer(unsigned(d_in.read1_reg)));
d_out.read2_data <= registers(to_integer(unsigned(d_in.read2_reg)));
- d_out.read3_data <= registers(to_integer(unsigned(d_in.read3_reg)));
+ d_out.read3_data <= registers(to_integer(unsigned(gpr_to_gspr(d_in.read3_reg))));
-- Forward any written data
if w_in.write_enable = '1' then
if d_in.read2_reg = w_in.write_reg then
d_out.read2_data <= w_in.write_data;
end if;
- if d_in.read3_reg = w_in.write_reg then
+ if gpr_to_gspr(d_in.read3_reg) = w_in.write_reg then
d_out.read3_data <= w_in.write_data;
end if;
end if;
end if;
if l_in.write_enable = '1' then
- w_out.write_reg <= l_in.write_reg;
+ w_out.write_reg <= gpr_to_gspr(l_in.write_reg);
data_in <= l_in.write_data;
data_len <= unsigned(l_in.write_len);
byte_offset <= unsigned(l_in.write_shift);
if m_in.write_reg_enable = '1' then
w_out.write_enable <= '1';
- w_out.write_reg <= m_in.write_reg_nr;
+ w_out.write_reg <= gpr_to_gspr(m_in.write_reg_nr);
data_in <= m_in.write_reg_data;
rc <= m_in.rc;
xe := m_in.xerc;
if d_in.write_reg_enable = '1' then
w_out.write_enable <= '1';
- w_out.write_reg <= d_in.write_reg_nr;
+ w_out.write_reg <= gpr_to_gspr(d_in.write_reg_nr);
data_in <= d_in.write_reg_data;
rc <= d_in.rc;
xe := d_in.xerc;