// behaviour) with:
// (a) a special $__ABC_FF_ in front of the FD*'s output, indicating to abc9
// the location of its basic D-Q flop
-// (b) a special \$currQ connection that feeds back into the (combinatorial)
-// FD* cell to facilitate clock-enable behaviour -- note that \$currQ
-// isn't a real input port, it is one that is understood only by abc9
+// (b) a special TECHMAP_REPLACE_.$currQwire that will be used for feedback
+// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
module FDRE (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
- wire \$nextQ ;
+ wire $nextQ;
FDRE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_R_INVERTED)
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
);
- \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
endmodule
module FDRE_1 (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
- wire \$nextQ ;
+ wire $nextQ;
FDRE_1 #(
.INIT(|0),
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
);
- \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
endmodule
module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
- wire \$nextQ , \$currQ ;
+ wire $currQ, $nextQ;
FDCE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
);
- \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
- \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
+ \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
- wire \$nextQ , \$currQ ;
+ wire $nextQ, $currQ;
FDCE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
);
- \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
- \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
+ \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
- wire \$nextQ , \$currQ ;
+ wire $nextQ, $currQ;
FDPE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
);
- \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
- \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
+ \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
endmodule
module FDPE_1 (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
- wire \$nextQ , \$currQ ;
+ wire $nextQ, $currQ;
FDPE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
);
- \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
- \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
+ \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
endmodule
module FDSE (output reg Q, input C, CE, D, S);
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
- wire \$nextQ ;
+ wire $nextQ;
FDSE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_S_INVERTED(IS_S_INVERTED)
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
);
- \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
endmodule
module FDSE_1 (output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b0;
- wire \$nextQ ;
+ wire $nextQ;
FDSE_1 #(
.INIT(|0),
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
);
- \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
endmodule
module RAM32X1D (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (R == !IS_R_INVERTED) $nextQ = 1'b0; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
+ assign $currQ = Q;
generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) Q <= \$nextQ ;
- 1'b1: always @(negedge C) Q <= \$nextQ ;
+ 1'b0: always @(posedge C) Q <= $nextQ;
+ 1'b1: always @(negedge C) Q <= $nextQ;
endcase endgenerate
`endif
endmodule
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
- always @(negedge C) Q <= \$nextQ ;
+ assign $currQ = Q;
+ always @(negedge C) Q <= $nextQ;
`endif
endmodule
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
+ assign $currQ = Q;
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
- 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
- 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
- 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
- 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
+ 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
+ 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
+ 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
endcase endgenerate
`endif
endmodule
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (CE) Q <= D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
- always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ assign $currQ = Q;
+ always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= $nextQ;
`endif
endmodule
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
+ assign $currQ = Q;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
- 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
- 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
- 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
- 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
+ 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
+ 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
+ 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
endcase endgenerate
`endif
endmodule
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (CE) Q <= D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
- always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ assign $currQ = Q;
+ always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= $nextQ;
`endif
endmodule
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (S == !IS_S_INVERTED) $nextQ = 1'b1; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
+ assign $currQ = Q;
generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) Q <= \$nextQ ;
- 1'b1: always @(negedge C) Q <= \$nextQ ;
+ 1'b0: always @(posedge C) Q <= $nextQ;
+ 1'b1: always @(negedge C) Q <= $nextQ;
endcase endgenerate
`endif
endmodule
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (S) $nextQ = 1'b1; else if (CE) $nextQ = D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
- always @(negedge C) Q <= \$nextQ ;
+ assign $currQ = Q;
+ always @(negedge C) Q <= $nextQ;
`endif
endmodule