--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <param name="number_of_cores" value="2"/>
+ <param name="number_of_L1Directories" value="2"/>
+ <param name="number_of_L2Directories" value="0"/>
+ <param name="number_of_L2s" value="0"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="Private_L2" value="0"/><!--1 Private, 0 shared/coherent -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="40"/><!-- nm -->
+ <param name="target_core_clockrate" value="2000"/><!--MHz -->
+ <param name="temperature" value="380"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="1"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="1"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when approperiate -->
+ <param name="Embedded" value="1"/><!-- Embedded processor like ARM or general purpose processors? -->
+ <param name="machine_bits" value="32"/>
+ <param name="virtual_address_width" value="32"/>
+ <param name="physical_address_width" value="32"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="2000"/>
+ <!-- for cores with unknow timing, set to 0 to force off the opt flag -->
+ <param name="opt_local" value="1"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="7"/>
+ <param name="x86" value="0"/>
+ <param name="micro_opcode_width" value="8"/>
+ <param name="machine_type" value="0"/>
+ <!-- inorder/OoO; 1 inorder; 0 OOO-->
+ <param name="number_hardware_threads" value="1"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="2"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="2"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="4"/>
+ <param name="peak_issue_width" value="7"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="4"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="1"/>
+ <param name="prediction_width" value="1"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="8,8"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="3"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="1"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="1"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="32"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="20"/>
+ <param name="fp_instruction_window_size" value="15"/>
+ <!-- Numbers need to be confirmed -->
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="0"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="32"/>
+ <param name="archi_Regs_FRF_size" value="32"/>
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="64"/>
+ <param name="phy_Regs_FRF_size" value="64"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="0"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="4"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="0"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="1"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="32"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="400000"/>
+ <stat name="int_instructions" value="200000"/>
+ <stat name="fp_instructions" value="100000"/>
+ <stat name="branch_instructions" value="100000"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="0"/>
+ <stat name="store_instructions" value="50000"/>
+ <stat name="committed_instructions" value="400000"/>
+ <stat name="committed_int_instructions" value="200000"/>
+ <stat name="committed_fp_instructions" value="100000"/>
+ <stat name="pipeline_duty_cycle" value="1"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="400000"/>
+ <stat name="ROB_writes" value="400000"/>
+ <!-- RAT accesses -->
+ <stat name="rename_reads" value="800000"/> <!--lookup in renaming logic -->
+ <stat name="rename_writes" value="400000"/><!--update dest regs. renaming logic -->
+ <stat name="fp_rename_reads" value="200000"/>
+ <stat name="fp_rename_writes" value="100000"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="400000"/>
+ <stat name="inst_window_writes" value="400000"/>
+ <stat name="inst_window_wakeup_accesses" value="800000"/>
+ <stat name="fp_inst_window_reads" value="200000"/>
+ <stat name="fp_inst_window_writes" value="200000"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="400000"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="600000"/>
+ <stat name="float_regfile_reads" value="100000"/>
+ <stat name="int_regfile_writes" value="300000"/>
+ <stat name="float_regfile_writes" value="50000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="300000"/>
+ <stat name="fpu_accesses" value="100000"/>
+ <stat name="mul_accesses" value="200000"/>
+ <stat name="cdb_alu_accesses" value="300000"/>
+ <stat name="cdb_mul_accesses" value="200000"/>
+ <stat name="cdb_fpu_accesses" value="100000"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="1"/>
+ <stat name="LSU_duty_cycle" value="0.5"/>
+ <stat name="MemManU_I_duty_cycle" value="1"/>
+ <stat name="MemManU_D_duty_cycle" value="0.5"/>
+ <stat name="ALU_duty_cycle" value="1"/>
+ <stat name="MUL_duty_cycle" value="0.3"/>
+ <stat name="FPU_duty_cycle" value="0.3"/>
+ <stat name="ALU_cdb_duty_cycle" value="1"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.3"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.3"/>
+ <param name="number_of_BPT" value="2"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="1024"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="32768,8,4,1,10,10,32,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy, -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="4, 4, 4,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="64"/><!--dual threads-->
+ <stat name="total_accesses" value="400000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="32768,8,4,1, 10,10, 32,1 "/>
+ <param name="buffer_sizes" value="4, 4, 4, 4"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <param name="number_of_BTB" value="2"/>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="2048,4,2, 2, 1,3"/> <!--should be 4096 + 1024 -->
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <stat name="read_accesses" value="400000"/> <!--See IFU code for guideline -->
+ <stat name="write_accesses" value="0"/>
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="2048,1,0,1, 4, 4, 8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="2000"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ <stat name="duty_cycle" value="0.1"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="1"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="1048576,16,16,1,2, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="2000"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="1048576,32, 8, 8, 8, 23, 32, 1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="2000"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="16777216,64,16, 16, 16, 100,1"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="clockrate" value="800"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="11824"/>
+ <stat name="write_accesses" value="11276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="2000"/>
+ <param name="type" value="0"/>
+ <!--0:bus, 1:NoC , for bus no matter how many nodes sharing the bus
+ at each time only one node can send req -->
+ <param name="horizontal_nodes" value="1"/>
+ <param name="vertical_nodes" value="1"/>
+ <param name="has_global_link" value="0"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="1"/>
+ <param name="output_ports" value="1"/>
+ <!-- For bus the I/O ports should be 1 -->
+ <param name="flit_bits" value="128"/>
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip.
+ chip_coverage <=1 -->
+ <param name="link_routing_over_percentage" value="0.5"/>
+ <!-- Links can route over other components or occupy whole area.
+ by default, 50% of the NoC global links routes over other
+ components -->
+ <stat name="total_accesses" value="100000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="1"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="mc_clock" value="400"/><!--MHz-->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="llc_line_length" value="64"/><!--B-->
+ <param name="number_mcs" value="0"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="2"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="66666"/>
+ <stat name="memory_reads" value="33333"/>
+ <stat name="memory_writes" value="33333"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ </component>
+</component>
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <!--Duty cycles in this file are set according to "ARM MPcore
+ ARchitecture performance Enhancement" in MPF Japan 2008 -->
+ <param name="number_of_cores" value="2"/>
+ <param name="number_of_L1Directories" value="2"/>
+ <param name="number_of_L2Directories" value="0"/>
+ <param name="number_of_L2s" value="0"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="Private_L2" value="0"/><!--1 Private, 0 shared/coherent -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="22"/><!-- nm -->
+ <param name="target_core_clockrate" value="2000"/><!--MHz -->
+ <param name="temperature" value="340"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="1"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="2"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when approperiate -->
+ <param name="Embedded" value="1"/><!-- Embedded processor like ARM or general purpose processors? -->
+ <param name="opt_clockrate" value="1"/>
+ <param name="machine_bits" value="32"/>
+ <param name="virtual_address_width" value="32"/>
+ <param name="physical_address_width" value="32"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="2000"/>
+ <!-- for cores with unknow timing, set to 0 to force off the opt flag -->
+ <param name="opt_local" value="1"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="7"/>
+ <param name="x86" value="0"/>
+ <param name="micro_opcode_width" value="8"/>
+ <param name="machine_type" value="0"/>
+ <!-- inorder/OoO; 1 inorder; 0 OOO-->
+ <param name="number_hardware_threads" value="1"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="2"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="2"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="4"/>
+ <param name="peak_issue_width" value="7"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="4"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="1"/>
+ <param name="prediction_width" value="1"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="8,8"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="3"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="1"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="1"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="32"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="20"/>
+ <param name="fp_instruction_window_size" value="15"/>
+ <!-- Numbers need to be confirmed -->
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="0"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="32"/>
+ <param name="archi_Regs_FRF_size" value="32"/>
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="64"/>
+ <param name="phy_Regs_FRF_size" value="64"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="0"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="4"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="0"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="1"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="4"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="400000"/>
+ <stat name="int_instructions" value="200000"/>
+ <stat name="fp_instructions" value="100000"/>
+ <stat name="branch_instructions" value="100000"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="0"/>
+ <stat name="store_instructions" value="50000"/>
+ <stat name="committed_instructions" value="400000"/>
+ <stat name="committed_int_instructions" value="200000"/>
+ <stat name="committed_fp_instructions" value="100000"/>
+ <stat name="pipeline_duty_cycle" value="1"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="400000"/>
+ <stat name="ROB_writes" value="400000"/>
+ <!-- RAT accesses -->
+ <stat name="rename_reads" value="800000"/> <!--lookup in renaming logic -->
+ <stat name="rename_writes" value="400000"/><!--update dest regs. renaming logic -->
+ <stat name="fp_rename_reads" value="200000"/>
+ <stat name="fp_rename_writes" value="100000"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="400000"/>
+ <stat name="inst_window_writes" value="400000"/>
+ <stat name="inst_window_wakeup_accesses" value="800000"/>
+ <stat name="fp_inst_window_reads" value="200000"/>
+ <stat name="fp_inst_window_writes" value="200000"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="400000"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="600000"/>
+ <stat name="float_regfile_reads" value="100000"/>
+ <stat name="int_regfile_writes" value="300000"/>
+ <stat name="float_regfile_writes" value="50000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="300000"/>
+ <stat name="fpu_accesses" value="100000"/>
+ <stat name="mul_accesses" value="200000"/>
+ <stat name="cdb_alu_accesses" value="300000"/>
+ <stat name="cdb_mul_accesses" value="200000"/>
+ <stat name="cdb_fpu_accesses" value="100000"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="0.9"/>
+ <stat name="BR_duty_cycle" value="0.72"/><!--branch-->
+ <stat name="LSU_duty_cycle" value="0.71"/>
+ <stat name="MemManU_I_duty_cycle" value="0.9"/>
+ <stat name="MemManU_D_duty_cycle" value="0.71"/>
+ <stat name="ALU_duty_cycle" value="0.76"/>
+ <!-- (.78*2+.71)/3 -->
+ <stat name="MUL_duty_cycle" value="0.82"/>
+ <stat name="FPU_duty_cycle" value="0.0"/>
+ <stat name="ALU_cdb_duty_cycle" value="0.76"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.82"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.0"/>
+ <param name="number_of_BPT" value="2"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="4"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="32768,8,4,1,10,10,32,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy, -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="4, 4, 4,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="64"/><!--dual threads-->
+ <stat name="total_accesses" value="400000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="32768,8,4,1, 10,10, 32,1 "/>
+ <param name="buffer_sizes" value="4, 4, 4, 4"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <param name="number_of_BTB" value="2"/>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="4096,4,2, 2, 1,1"/>
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <stat name="read_accesses" value="400000"/> <!--See IFU code for guideline -->
+ <stat name="write_accesses" value="0"/>
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="2048,1,0,1, 4, 4, 8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="2000"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="2"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ <stat name="duty_cycle" value="0.1"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="1"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="1048576,16,16,1,2, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ <stat name="duty_cycle" value="0.1"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="1048576,32, 8, 8, 8, 23, 32, 1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="3400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="16777216,64,16, 16, 16, 100,1"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="clockrate" value="800"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="11824"/>
+ <stat name="write_accesses" value="11276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="2000"/>
+ <param name="type" value="0"/>
+ <!--0:bus, 1:NoC , for bus no matter how many nodes sharing the bus
+ at each time only one node can send req -->
+ <param name="horizontal_nodes" value="1"/>
+ <param name="vertical_nodes" value="1"/>
+ <param name="has_global_link" value="0"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="1"/>
+ <param name="output_ports" value="1"/>
+ <!-- For bus the I/O ports should be 1 -->
+ <param name="flit_bits" value="64"/>
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip.
+ chip_coverage <=1 -->
+ <param name="link_routing_over_percentage" value="0.5"/>
+ <!-- Links can route over other components or occupy whole area.
+ by default, 50% of the NoC global links routes over other
+ components -->
+ <stat name="total_accesses" value="100000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="0.2"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="mc_clock" value="400"/><!--MHz-->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="block_size" value="64"/><!--(B) the block size of last level cache, which is the unit for one memory burst transfer -->
+ <param name="number_mcs" value="1"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="0"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="66666"/>
+ <stat name="memory_reads" value="33333"/>
+ <stat name="memory_writes" value="33333"/>
+ <param name="withPHY" value="1"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.niu" name="niu">
+ <!-- On chip 10Gb Ethernet NIC, including XAUI Phy and MAC controller -->
+ <!-- For a minimum IP packet size of 84B at 10Gb/s, a new packet arrives every 67.2ns.
+ the low bound of clock rate of a 10Gb MAC is 150Mhz -->
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="1"/> <!-- unlike PCIe and memory controllers, each Ethernet controller only have one port -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- ratio of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual nic, instead, it takes the total accesses and calculate
+ the average power per nic or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.pcie" name="pcie">
+ <!-- On chip PCIe controller, including Phy-->
+ <!-- For a minimum PCIe packet size of 84B at 8Gb/s per lane (PCIe 3.0), a new packet arrives every 84ns.
+ the low bound of clock rate of a PCIe per lane logic is 120Mhz -->
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="1"/>
+ <param name="num_channels" value="8"/> <!-- 2 ,4 ,8 ,16 ,32 -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual pcie controllers, instead, it takes the total accesses and calculate
+ the average power per pcie controller or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.flashc" name="flashc">
+ <param name="number_flashcs" value="1"/>
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="peak_transfer_rate" value="200"/><!--Per controller sustainable reak rate MB/S -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual flash controller, instead, it takes the total accesses and calculate
+ the average power per fc or per channel. This is sufficent for most application -->
+ </component>
+<!--**********************************************************************-->
+
+ </component>
+</component>
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <!--Duty cycles in this file are set according to "ARM MPcore
+ ARchitecture performance Enhancement" in MPF Japan 2008 -->
+ <param name="number_of_cores" value="2"/>
+ <param name="number_of_L1Directories" value="2"/>
+ <param name="number_of_L2Directories" value="0"/>
+ <param name="number_of_L2s" value="0"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="Private_L2" value="0"/><!--1 Private, 0 shared/coherent -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="32"/><!-- nm -->
+ <param name="target_core_clockrate" value="800"/><!--MHz -->
+ <param name="temperature" value="340"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="1"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="2"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when approperiate -->
+ <param name="Embedded" value="1"/><!-- Embedded processor like ARM or general purpose processors? -->
+ <param name="opt_clockrate" value="0"/>
+ <param name="machine_bits" value="32"/>
+ <param name="virtual_address_width" value="32"/>
+ <param name="physical_address_width" value="32"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="800"/>
+ <!-- for cores with unknow timing, set to 0 to force off the opt flag -->
+ <param name="opt_local" value="1"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="7"/>
+ <param name="x86" value="0"/>
+ <param name="micro_opcode_width" value="8"/>
+ <param name="machine_type" value="0"/>
+ <!-- inorder/OoO; 1 inorder; 0 OOO-->
+ <param name="number_hardware_threads" value="1"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="2"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="2"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="4"/>
+ <param name="peak_issue_width" value="7"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="4"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="1"/>
+ <param name="prediction_width" value="1"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="8,8"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="3"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="1"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="1"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="32"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="20"/>
+ <param name="fp_instruction_window_size" value="15"/>
+ <!-- Numbers need to be confirmed -->
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="0"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="32"/>
+ <param name="archi_Regs_FRF_size" value="32"/>
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="64"/>
+ <param name="phy_Regs_FRF_size" value="64"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="0"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="4"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="0"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="1"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="4"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="400000"/>
+ <stat name="int_instructions" value="200000"/>
+ <stat name="fp_instructions" value="100000"/>
+ <stat name="branch_instructions" value="100000"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="0"/>
+ <stat name="store_instructions" value="50000"/>
+ <stat name="committed_instructions" value="400000"/>
+ <stat name="committed_int_instructions" value="200000"/>
+ <stat name="committed_fp_instructions" value="100000"/>
+ <stat name="pipeline_duty_cycle" value="1"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="400000"/>
+ <stat name="ROB_writes" value="400000"/>
+ <!-- RAT accesses -->
+ <stat name="rename_reads" value="800000"/> <!--lookup in renaming logic -->
+ <stat name="rename_writes" value="400000"/><!--update dest regs. renaming logic -->
+ <stat name="fp_rename_reads" value="200000"/>
+ <stat name="fp_rename_writes" value="100000"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="400000"/>
+ <stat name="inst_window_writes" value="400000"/>
+ <stat name="inst_window_wakeup_accesses" value="800000"/>
+ <stat name="fp_inst_window_reads" value="200000"/>
+ <stat name="fp_inst_window_writes" value="200000"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="400000"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="600000"/>
+ <stat name="float_regfile_reads" value="100000"/>
+ <stat name="int_regfile_writes" value="300000"/>
+ <stat name="float_regfile_writes" value="50000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="300000"/>
+ <stat name="fpu_accesses" value="100000"/>
+ <stat name="mul_accesses" value="200000"/>
+ <stat name="cdb_alu_accesses" value="300000"/>
+ <stat name="cdb_mul_accesses" value="200000"/>
+ <stat name="cdb_fpu_accesses" value="100000"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="0.9"/>
+ <stat name="BR_duty_cycle" value="0.72"/><!--branch-->
+ <stat name="LSU_duty_cycle" value="0.71"/>
+ <stat name="MemManU_I_duty_cycle" value="0.9"/>
+ <stat name="MemManU_D_duty_cycle" value="0.71"/>
+ <stat name="ALU_duty_cycle" value="0.76"/>
+ <!-- (.78*2+.71)/3 -->
+ <stat name="MUL_duty_cycle" value="0.82"/>
+ <stat name="FPU_duty_cycle" value="0.0"/>
+ <stat name="ALU_cdb_duty_cycle" value="0.76"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.82"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.0"/>
+ <param name="number_of_BPT" value="2"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="4"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="32768,8,4,1,10,10,32,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy, -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="4, 4, 4,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="64"/><!--dual threads-->
+ <stat name="total_accesses" value="400000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="32768,8,4,1, 10,10, 32,1 "/>
+ <param name="buffer_sizes" value="4, 4, 4, 4"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <param name="number_of_BTB" value="2"/>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="4096,4,2, 2, 1,1"/>
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <stat name="read_accesses" value="400000"/> <!--See IFU code for guideline -->
+ <stat name="write_accesses" value="0"/>
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="2048,1,0,1, 4, 4, 8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="800"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="2"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ <stat name="duty_cycle" value="0.1"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="1"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="1048576,16,16,1,2, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ <stat name="duty_cycle" value="0.1"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="1048576,32, 8, 8, 8, 23, 32, 1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="3400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="16777216,64,16, 16, 16, 100,1"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="clockrate" value="800"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="11824"/>
+ <stat name="write_accesses" value="11276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="800"/>
+ <param name="type" value="0"/>
+ <!--0:bus, 1:NoC , for bus no matter how many nodes sharing the bus
+ at each time only one node can send req -->
+ <param name="horizontal_nodes" value="1"/>
+ <param name="vertical_nodes" value="1"/>
+ <param name="has_global_link" value="0"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="1"/>
+ <param name="output_ports" value="1"/>
+ <!-- For bus the I/O ports should be 1 -->
+ <param name="flit_bits" value="64"/>
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip.
+ chip_coverage <=1 -->
+ <param name="link_routing_over_percentage" value="0.5"/>
+ <!-- Links can route over other components or occupy whole area.
+ by default, 50% of the NoC global links routes over other
+ components -->
+ <stat name="total_accesses" value="100000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="0.2"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="mc_clock" value="400"/><!--MHz-->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="block_size" value="64"/><!--(B) the block size of last level cache, which is the unit for one memory burst transfer -->
+ <param name="number_mcs" value="0"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="0"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="66666"/>
+ <stat name="memory_reads" value="33333"/>
+ <stat name="memory_writes" value="33333"/>
+ <param name="withPHY" value="1"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.niu" name="niu">
+ <!-- On chip 10Gb Ethernet NIC, including XAUI Phy and MAC controller -->
+ <!-- For a minimum IP packet size of 84B at 10Gb/s, a new packet arrives every 67.2ns.
+ the low bound of clock rate of a 10Gb MAC is 150Mhz -->
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/> <!-- unlike PCIe and memory controllers, each Ethernet controller only have one port -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- ratio of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual nic, instead, it takes the total accesses and calculate
+ the average power per nic or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.pcie" name="pcie">
+ <!-- On chip PCIe controller, including Phy-->
+ <!-- For a minimum PCIe packet size of 84B at 8Gb/s per lane (PCIe 3.0), a new packet arrives every 84ns.
+ the low bound of clock rate of a PCIe per lane logic is 120Mhz -->
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/>
+ <param name="num_channels" value="8"/> <!-- 2 ,4 ,8 ,16 ,32 -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual pcie controllers, instead, it takes the total accesses and calculate
+ the average power per pcie controller or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.flashc" name="flashc">
+ <param name="number_flashcs" value="0"/>
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="peak_transfer_rate" value="200"/><!--Per controller sustainable reak rate MB/S -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual flash controller, instead, it takes the total accesses and calculate
+ the average power per fc or per channel. This is sufficent for most application -->
+ </component>
+<!--**********************************************************************-->
+
+ </component>
+</component>
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <param name="number_of_cores" value="1"/>
+ <param name="number_of_L1Directories" value="0"/>
+ <param name="number_of_L2Directories" value="1"/>
+ <param name="number_of_L2s" value="1"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="Private_L2" value="0"/><!--1 Private, 0 shared/coherent -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="90"/><!-- nm -->
+ <param name="target_core_clockrate" value="1200"/><!--MHz -->
+ <param name="temperature" value="380"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="0"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="0"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="0"/><!-- 0 no use; 1 use when approperiate -->
+ <param name="machine_bits" value="64"/>
+ <param name="virtual_address_width" value="64"/>
+ <param name="physical_address_width" value="52"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="1200"/>
+ <!-- for cores with unknow timing, set to 0 to force off the opt flag -->
+ <param name="opt_local" value="1"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="7"/>
+ <param name="x86" value="0"/>
+ <param name="micro_opcode_width" value="8"/>
+ <param name="machine_type" value="0"/>
+ <!-- inorder/OoO; 1 inorder; 0 OOO-->
+ <param name="number_hardware_threads" value="1"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="4"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="4"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="4"/>
+ <param name="peak_issue_width" value="6"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="4"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="2"/>
+ <param name="prediction_width" value="1"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="7,7"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="4"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="0"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="1"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="32"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="20"/>
+ <param name="fp_instruction_window_size" value="15"/>
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="80"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="32"/>
+ <param name="archi_Regs_FRF_size" value="32"/>
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="80"/>
+ <param name="phy_Regs_FRF_size" value="72"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="1"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="0"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="32"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="32"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="2"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="32"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="400000"/>
+ <stat name="int_instructions" value="200000"/>
+ <stat name="fp_instructions" value="100000"/>
+ <stat name="branch_instructions" value="100000"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="0"/>
+ <stat name="store_instructions" value="50000"/>
+ <stat name="committed_instructions" value="400000"/>
+ <stat name="committed_int_instructions" value="200000"/>
+ <stat name="committed_fp_instructions" value="100000"/>
+ <stat name="pipeline_duty_cycle" value="1"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="400000"/>
+ <stat name="ROB_writes" value="400000"/>
+ <!-- RAT accesses -->
+ <stat name="rename_reads" value="800000"/> <!--lookup in renaming logic -->
+ <stat name="rename_writes" value="400000"/><!--update dest regs. renaming logic -->
+ <stat name="fp_rename_reads" value="200000"/>
+ <stat name="fp_rename_writes" value="100000"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="400000"/>
+ <stat name="inst_window_writes" value="400000"/>
+ <stat name="inst_window_wakeup_accesses" value="800000"/>
+ <stat name="fp_inst_window_reads" value="200000"/>
+ <stat name="fp_inst_window_writes" value="200000"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="400000"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="600000"/>
+ <stat name="float_regfile_reads" value="100000"/>
+ <stat name="int_regfile_writes" value="300000"/>
+ <stat name="float_regfile_writes" value="50000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="300000"/>
+ <stat name="fpu_accesses" value="100000"/>
+ <stat name="mul_accesses" value="200000"/>
+ <stat name="cdb_alu_accesses" value="300000"/>
+ <stat name="cdb_mul_accesses" value="200000"/>
+ <stat name="cdb_fpu_accesses" value="100000"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="1"/>
+ <stat name="LSU_duty_cycle" value="1"/>
+ <stat name="MemManU_I_duty_cycle" value="1"/>
+ <stat name="MemManU_D_duty_cycle" value="1"/>
+ <stat name="ALU_duty_cycle" value="1"/>
+ <stat name="MUL_duty_cycle" value="0.3"/>
+ <stat name="FPU_duty_cycle" value="1"/>
+ <stat name="ALU_cdb_duty_cycle" value="1"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.3"/>
+ <stat name="FPU_cdb_duty_cycle" value="1"/>
+ <param name="number_of_BPT" value="2"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="1024"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="128"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="65536,16,2,1,1,2,16,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy, -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="16, 16, 16,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="128"/><!--dual threads-->
+ <stat name="total_accesses" value="400000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="65536,16,2,1,1,3,16,0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <param name="number_of_BTB" value="2"/>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="6144,4,2,1, 1,3"/> <!--48Kbits -->
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <stat name="read_accesses" value="400000"/> <!--See IFU code for guideline -->
+ <stat name="write_accesses" value="0"/>
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="4096,2,0,1,100,100, 8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="512,4,0,1,1, 1"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="1200"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="1835008,16, 8, 16, 32, 32, 12, 1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="1200"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="16777216,64,16, 16, 16, 100,1"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="clockrate" value="850"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="11824"/>
+ <stat name="write_accesses" value="11276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="1200"/>
+ <param name="type" value="1"/>
+ <!--0:bus, 1:NoC , for bus no matter how many nodes sharing the bus
+ at each time only one node can send req -->
+ <param name="horizontal_nodes" value="1"/>
+ <param name="vertical_nodes" value="1"/>
+ <param name="has_global_link" value="1"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="8"/>
+ <param name="output_ports" value="7"/>
+ <!-- For bus the I/O ports should be 1 -->
+ <param name="virtual_channel_per_port" value="2"/>
+ <param name="input_buffer_entries_per_vc" value="128"/>
+ <param name="flit_bits" value="40"/>
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip.
+ chip_coverage <=1 -->
+ <param name="link_routing_over_percentage" value="1.0"/>
+ <!-- Links can route over other components or occupy whole area.
+ by default, 50% of the NoC global links routes over other
+ components -->
+ <stat name="total_accesses" value="100000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="1"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="180"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="mc_clock" value="800"/><!--MHz-->
+ <param name="peak_transfer_rate" value="1600"/><!--MB/S-->
+ <param name="block_size" value="16"/><!--B-->
+ <param name="number_mcs" value="2"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="2"/>
+ <param name="number_ranks" value="2"/>
+ <param name="withPHY" value="0"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="32"/>
+ <param name="addressbus_width" value="32"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="6666"/>
+ <stat name="memory_reads" value="3333"/>
+ <stat name="memory_writes" value="3333"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.niu" name="niu">
+ <!-- On chip 10Gb Ethernet NIC, including XAUI Phy and MAC controller -->
+ <!-- For a minimum IP packet size of 84B at 10Gb/s, a new packet arrives every 67.2ns.
+ the low bound of clock rate of a 10Gb MAC is 150Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/> <!-- unlike PCIe and memory controllers, each Ethernet controller only have one port -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- ratio of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual nic, instead, it takes the total accesses and calculate
+ the average power per nic or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.pcie" name="pcie">
+ <!-- On chip PCIe controller, including Phy-->
+ <!-- For a minimum PCIe packet size of 84B at 8Gb/s per lane (PCIe 3.0), a new packet arrives every 84ns.
+ the low bound of clock rate of a PCIe per lane logic is 120Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/>
+ <param name="num_channels" value="8"/> <!-- 2 ,4 ,8 ,16 ,32 -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual pcie controllers, instead, it takes the total accesses and calculate
+ the average power per pcie controller or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.flashc" name="flashc">
+ <param name="number_flashcs" value="0"/>
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="peak_transfer_rate" value="200"/><!--Per controller sustainable reak rate MB/S -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual flash controller, instead, it takes the total accesses and calculate
+ the average power per fc or per channel. This is sufficent for most application -->
+ </component>
+<!--**********************************************************************-->
+
+ </component>
+</component>
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <param name="number_of_cores" value="8"/>
+ <param name="number_of_L1Directories" value="4"/>
+ <param name="number_of_L2Directories" value="0"/>
+ <param name="number_of_L2s" value="4"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="90"/><!-- nm -->
+ <param name="target_core_clockrate" value="1200"/><!--MHz -->
+ <param name="temperature" value="380"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="0"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="0"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when possible -->
+ <param name="machine_bits" value="64"/>
+ <param name="virtual_address_width" value="64"/>
+ <param name="physical_address_width" value="52"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="1200"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="9"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <param name="machine_type" value="1"/><!-- 1 inorder; 0 OOO-->
+ <!-- inorder/OoO -->
+ <param name="number_hardware_threads" value="4"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="1"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="1"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="1"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="1"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="1"/>
+ <param name="prediction_width" value="0"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="6,6"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="1"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="1"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="0.125"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="16"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="16"/>
+ <param name="fp_instruction_window_size" value="16"/>
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="80"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="32"/>
+ <param name="archi_Regs_FRF_size" value="32"/>
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="80"/>
+ <param name="phy_Regs_FRF_size" value="80"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="8"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="32"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="32"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="1"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="32"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="800000"/>
+ <stat name="int_instructions" value="600000"/>
+ <stat name="fp_instructions" value="20000"/>
+ <stat name="branch_instructions" value="0"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="100000"/>
+ <stat name="store_instructions" value="100000"/>
+ <stat name="committed_instructions" value="800000"/>
+ <stat name="committed_int_instructions" value="600000"/>
+ <stat name="committed_fp_instructions" value="20000"/>
+ <stat name="pipeline_duty_cycle" value="0.6"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="263886"/>
+ <stat name="ROB_writes" value="263886"/>
+ <!-- RAT accesses -->
+ <stat name="rename_accesses" value="263886"/>
+ <stat name="fp_rename_accesses" value="263886"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="263886"/>
+ <stat name="inst_window_writes" value="263886"/>
+ <stat name="inst_window_wakeup_accesses" value="263886"/>
+ <stat name="fp_inst_window_reads" value="263886"/>
+ <stat name="fp_inst_window_writes" value="263886"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="263886"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="1600000"/>
+ <stat name="float_regfile_reads" value="40000"/>
+ <stat name="int_regfile_writes" value="800000"/>
+ <stat name="float_regfile_writes" value="20000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="800000"/>
+ <stat name="fpu_accesses" value="10000"/>
+ <stat name="mul_accesses" value="100000"/>
+ <stat name="cdb_alu_accesses" value="1000000"/>
+ <stat name="cdb_mul_accesses" value="0"/>
+ <stat name="cdb_fpu_accesses" value="0"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="0.25"/>
+ <stat name="LSU_duty_cycle" value="0.25"/>
+ <stat name="MemManU_I_duty_cycle" value="1"/>
+ <stat name="MemManU_D_duty_cycle" value="0.25"/>
+ <stat name="ALU_duty_cycle" value="0.9"/>
+ <stat name="MUL_duty_cycle" value="0.5"/>
+ <stat name="FPU_duty_cycle" value="0.4"/>
+ <stat name="ALU_cdb_duty_cycle" value="0.9"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.5"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.4"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="1024"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="800000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="16384,32,4,1,1,3,8,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="16, 16, 16,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="8192,16,4,1,1,3,16,0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="8192,4,2,1, 1,3"/>
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="2048,1,0,1, 4, 4,8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="1200"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ <stat name="duty_cycle" value="0.45"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="1"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="1048576,16,16,1,2, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="1200"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ <stat name="duty_cycle" value="0.45"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="786432,64,16,1, 4,23, 64, 1"/>
+ <!-- consider 4-way bank interleaving for Niagara 1 -->
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="1200"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="0"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="write_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.5"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="1048576,64,16,1, 2,100, 64,1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.35"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="1200"/>
+ <param name="type" value="1"/>
+ <!-- 1 NoC, O bus -->
+ <param name="horizontal_nodes" value="2"/>
+ <param name="vertical_nodes" value="1"/>
+ <param name="has_global_link" value="0"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="8"/>
+ <param name="output_ports" value="5"/>
+ <param name="virtual_channel_per_port" value="1"/>
+ <!-- input buffer; in classic routers only input ports need buffers -->
+ <param name="flit_bits" value="136"/>
+ <param name="input_buffer_entries_per_vc" value="2"/><!--VCs within the same ports share input buffers whose size is propotional to the number of VCs-->
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip. chip_coverage <=1 -->
+ <stat name="total_accesses" value="360000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="0.6"/>
+ </component>
+
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="mc_clock" value="200"/><!--DIMM IO bus clock rate MHz DDR2-400 for Niagara 1-->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="block_size" value="64"/><!--B-->
+ <param name="number_mcs" value="4"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="2"/>
+ <param name="withPHY" value="0"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="33333"/>
+ <stat name="memory_reads" value="16667"/>
+ <stat name="memory_writes" value="16667"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.niu" name="niu">
+ <!-- On chip 10Gb Ethernet NIC, including XAUI Phy and MAC controller -->
+ <!-- For a minimum IP packet size of 84B at 10Gb/s, a new packet arrives every 67.2ns.
+ the low bound of clock rate of a 10Gb MAC is 150Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/> <!-- unlike PCIe and memory controllers, each Ethernet controller only have one port -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- ratio of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual nic, instead, it takes the total accesses and calculate
+ the average power per nic or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.pcie" name="pcie">
+ <!-- On chip PCIe controller, including Phy-->
+ <!-- For a minimum PCIe packet size of 84B at 8Gb/s per lane (PCIe 3.0), a new packet arrives every 84ns.
+ the low bound of clock rate of a PCIe per lane logic is 120Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/>
+ <param name="num_channels" value="8"/> <!-- 2 ,4 ,8 ,16 ,32 -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual pcie controllers, instead, it takes the total accesses and calculate
+ the average power per pcie controller or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.flashc" name="flashc">
+ <param name="number_flashcs" value="0"/>
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="peak_transfer_rate" value="200"/><!--Per controller sustainable reak rate MB/S -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual flash controller, instead, it takes the total accesses and calculate
+ the average power per fc or per channel. This is sufficent for most application -->
+ </component>
+<!--**********************************************************************-->
+
+ </component>
+</component>
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <param name="number_of_cores" value="64"/>
+ <param name="number_of_L1Directories" value="0"/>
+ <param name="number_of_L2Directories" value="0"/>
+ <param name="number_of_L2s" value="64"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="22"/><!-- nm -->
+ <param name="target_core_clockrate" value="3500"/><!--MHz -->
+ <param name="temperature" value="360"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="0"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="0"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when possible -->
+ <param name="machine_bits" value="64"/>
+ <param name="virtual_address_width" value="64"/>
+ <param name="physical_address_width" value="52"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="3500"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="9"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <param name="machine_type" value="1"/><!-- 1 inorder; 0 OOO-->
+ <!-- inorder/OoO -->
+ <param name="number_hardware_threads" value="4"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="1"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="1"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="1"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="1"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="1"/>
+ <param name="prediction_width" value="0"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="6,6"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="1"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="1"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="0.125"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="16"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="16"/>
+ <param name="fp_instruction_window_size" value="16"/>
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="80"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="32"/>
+ <param name="archi_Regs_FRF_size" value="32"/>
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="80"/>
+ <param name="phy_Regs_FRF_size" value="80"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="8"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="32"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="32"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="1"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="32"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="800000"/>
+ <stat name="int_instructions" value="600000"/>
+ <stat name="fp_instructions" value="20000"/>
+ <stat name="branch_instructions" value="0"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="100000"/>
+ <stat name="store_instructions" value="100000"/>
+ <stat name="committed_instructions" value="800000"/>
+ <stat name="committed_int_instructions" value="600000"/>
+ <stat name="committed_fp_instructions" value="20000"/>
+ <stat name="pipeline_duty_cycle" value="0.6"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="263886"/>
+ <stat name="ROB_writes" value="263886"/>
+ <!-- RAT accesses -->
+ <stat name="rename_accesses" value="263886"/>
+ <stat name="fp_rename_accesses" value="263886"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="263886"/>
+ <stat name="inst_window_writes" value="263886"/>
+ <stat name="inst_window_wakeup_accesses" value="263886"/>
+ <stat name="fp_inst_window_reads" value="263886"/>
+ <stat name="fp_inst_window_writes" value="263886"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="263886"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="1600000"/>
+ <stat name="float_regfile_reads" value="40000"/>
+ <stat name="int_regfile_writes" value="800000"/>
+ <stat name="float_regfile_writes" value="20000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="800000"/>
+ <stat name="fpu_accesses" value="10000"/>
+ <stat name="mul_accesses" value="100000"/>
+ <stat name="cdb_alu_accesses" value="1000000"/>
+ <stat name="cdb_mul_accesses" value="0"/>
+ <stat name="cdb_fpu_accesses" value="0"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="0.25"/>
+ <stat name="LSU_duty_cycle" value="0.25"/>
+ <stat name="MemManU_I_duty_cycle" value="1"/>
+ <stat name="MemManU_D_duty_cycle" value="0.25"/>
+ <stat name="ALU_duty_cycle" value="0.9"/>
+ <stat name="MUL_duty_cycle" value="0.5"/>
+ <stat name="FPU_duty_cycle" value="0.4"/>
+ <stat name="ALU_cdb_duty_cycle" value="0.9"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.5"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.4"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="1024"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="800000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="16384,32,4,1,1,3,8,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="16, 16, 16,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="8192,16,4,1,1,3,16,0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="8192,4,2,1, 1,3"/>
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="2048,1,0,1, 4, 4,8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ <stat name="duty_cycle" value="0.45"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="1"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="1048576,16,16,1,2, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ <stat name="duty_cycle" value="0.45"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="1048576,64,16,1, 4,23, 64, 1"/>
+ <!-- consider 4-way bank interleaving for Niagara 1 -->
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="0"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="write_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.5"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="1048576,64,16,1, 2,100, 64,1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.35"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="3500"/>
+ <param name="type" value="1"/>
+ <!-- 1 NoC, O bus -->
+ <param name="horizontal_nodes" value="8"/>
+ <param name="vertical_nodes" value="8"/>
+ <param name="has_global_link" value="1"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="5"/>
+ <param name="output_ports" value="5"/>
+ <param name="virtual_channel_per_port" value="1"/>
+ <!-- input buffer; in classic routers only input ports need buffers -->
+ <param name="flit_bits" value="256"/>
+ <param name="input_buffer_entries_per_vc" value="4"/><!--VCs within the same ports share input buffers whose size is propotional to the number of VCs-->
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip. chip_coverage <=1 -->
+ <stat name="total_accesses" value="360000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="0.1"/>
+ </component>
+
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="mc_clock" value="200"/><!--DIMM IO bus clock rate MHz DDR2-400 for Niagara 1-->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="llc_line_length" value="64"/><!--B-->
+ <param name="number_mcs" value="4"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="2"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="33333"/>
+ <stat name="memory_reads" value="16667"/>
+ <stat name="memory_writes" value="16667"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ </component>
+</component>
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <param name="number_of_cores" value="64"/>
+ <param name="number_of_L1Directories" value="0"/>
+ <param name="number_of_L2Directories" value="8"/>
+ <param name="number_of_L2s" value="64"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="22"/><!-- nm -->
+ <param name="target_core_clockrate" value="3500"/><!--MHz -->
+ <param name="temperature" value="360"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="0"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="0"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when possible -->
+ <param name="machine_bits" value="64"/>
+ <param name="virtual_address_width" value="64"/>
+ <param name="physical_address_width" value="52"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="3500"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="9"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <param name="machine_type" value="1"/><!-- 1 inorder; 0 OOO-->
+ <!-- inorder/OoO -->
+ <param name="number_hardware_threads" value="4"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="1"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="1"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="1"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="1"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="1"/>
+ <param name="prediction_width" value="0"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="6,6"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="1"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="1"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="0.125"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="16"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="16"/>
+ <param name="fp_instruction_window_size" value="16"/>
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="80"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="32"/>
+ <param name="archi_Regs_FRF_size" value="32"/>
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="80"/>
+ <param name="phy_Regs_FRF_size" value="80"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="8"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="32"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="32"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="1"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="32"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="800000"/>
+ <stat name="int_instructions" value="600000"/>
+ <stat name="fp_instructions" value="20000"/>
+ <stat name="branch_instructions" value="0"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="100000"/>
+ <stat name="store_instructions" value="100000"/>
+ <stat name="committed_instructions" value="800000"/>
+ <stat name="committed_int_instructions" value="600000"/>
+ <stat name="committed_fp_instructions" value="20000"/>
+ <stat name="pipeline_duty_cycle" value="0.6"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="263886"/>
+ <stat name="ROB_writes" value="263886"/>
+ <!-- RAT accesses -->
+ <stat name="rename_accesses" value="263886"/>
+ <stat name="fp_rename_accesses" value="263886"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="263886"/>
+ <stat name="inst_window_writes" value="263886"/>
+ <stat name="inst_window_wakeup_accesses" value="263886"/>
+ <stat name="fp_inst_window_reads" value="263886"/>
+ <stat name="fp_inst_window_writes" value="263886"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="263886"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="1600000"/>
+ <stat name="float_regfile_reads" value="40000"/>
+ <stat name="int_regfile_writes" value="800000"/>
+ <stat name="float_regfile_writes" value="20000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="800000"/>
+ <stat name="fpu_accesses" value="10000"/>
+ <stat name="mul_accesses" value="100000"/>
+ <stat name="cdb_alu_accesses" value="1000000"/>
+ <stat name="cdb_mul_accesses" value="0"/>
+ <stat name="cdb_fpu_accesses" value="0"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="0.25"/>
+ <stat name="LSU_duty_cycle" value="0.25"/>
+ <stat name="MemManU_I_duty_cycle" value="1"/>
+ <stat name="MemManU_D_duty_cycle" value="0.25"/>
+ <stat name="ALU_duty_cycle" value="0.9"/>
+ <stat name="MUL_duty_cycle" value="0.5"/>
+ <stat name="FPU_duty_cycle" value="0.4"/>
+ <stat name="ALU_cdb_duty_cycle" value="0.9"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.5"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.4"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="1024"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="800000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="16384,32,4,1,1,3,8,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="16, 16, 16,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="8192,16,4,1,1,3,16,0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="8192,4,2,1, 1,3"/>
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="2048,1,0,1, 4, 4,8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ <stat name="duty_cycle" value="0.45"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="1"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="1048576,9,16,1,2, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ <stat name="duty_cycle" value="0.45"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="1048576,64,16,1, 4,23, 64, 1"/>
+ <!-- consider 4-way bank interleaving for Niagara 1 -->
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="0"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="write_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.5"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="1048576,64,16,1, 2,100, 64,1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.35"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="3500"/>
+ <param name="type" value="1"/>
+ <!-- 1 NoC, O bus -->
+ <param name="horizontal_nodes" value="8"/>
+ <param name="vertical_nodes" value="8"/>
+ <param name="has_global_link" value="1"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="5"/>
+ <param name="output_ports" value="5"/>
+ <param name="virtual_channel_per_port" value="1"/>
+ <!-- input buffer; in classic routers only input ports need buffers -->
+ <param name="flit_bits" value="256"/>
+ <param name="input_buffer_entries_per_vc" value="4"/><!--VCs within the same ports share input buffers whose size is propotional to the number of VCs-->
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip. chip_coverage <=1 -->
+ <stat name="total_accesses" value="360000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="0.1"/>
+ </component>
+
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="mc_clock" value="200"/><!--DIMM IO bus clock rate MHz DDR2-400 for Niagara 1-->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="block_size" value="64"/><!--B-->
+ <param name="number_mcs" value="0"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="2"/>
+ <param name="withPHY" value="0"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="33333"/>
+ <stat name="memory_reads" value="16667"/>
+ <stat name="memory_writes" value="16667"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.niu" name="niu">
+ <!-- On chip 10Gb Ethernet NIC, including XAUI Phy and MAC controller -->
+ <!-- For a minimum IP packet size of 84B at 10Gb/s, a new packet arrives every 67.2ns.
+ the low bound of clock rate of a 10Gb MAC is 150Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/> <!-- unlike PCIe and memory controllers, each Ethernet controller only have one port -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- ratio of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual nic, instead, it takes the total accesses and calculate
+ the average power per nic or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.pcie" name="pcie">
+ <!-- On chip PCIe controller, including Phy-->
+ <!-- For a minimum PCIe packet size of 84B at 8Gb/s per lane (PCIe 3.0), a new packet arrives every 84ns.
+ the low bound of clock rate of a PCIe per lane logic is 120Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/>
+ <param name="num_channels" value="8"/> <!-- 2 ,4 ,8 ,16 ,32 -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual pcie controllers, instead, it takes the total accesses and calculate
+ the average power per pcie controller or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.flashc" name="flashc">
+ <param name="number_flashcs" value="0"/>
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="peak_transfer_rate" value="200"/><!--Per controller sustainable reak rate MB/S -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual flash controller, instead, it takes the total accesses and calculate
+ the average power per fc or per channel. This is sufficent for most application -->
+ </component>
+<!--**********************************************************************-->
+
+ </component>
+</component>
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <param name="number_of_cores" value="64"/>
+ <param name="number_of_L1Directories" value="0"/>
+ <param name="number_of_L2Directories" value="0"/>
+ <param name="number_of_L2s" value="64"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="22"/><!-- nm -->
+ <param name="target_core_clockrate" value="3500"/><!--MHz -->
+ <param name="temperature" value="360"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="0"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="0"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when possible -->
+ <param name="machine_bits" value="64"/>
+ <param name="virtual_address_width" value="64"/>
+ <param name="physical_address_width" value="52"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="3500"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="9"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <param name="machine_type" value="1"/><!-- 1 inorder; 0 OOO-->
+ <!-- inorder/OoO -->
+ <param name="number_hardware_threads" value="4"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="1"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="1"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="1"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="1"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="1"/>
+ <param name="prediction_width" value="0"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="6,6"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="1"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="1"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="0.125"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="16"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="16"/>
+ <param name="fp_instruction_window_size" value="16"/>
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="80"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="32"/>
+ <param name="archi_Regs_FRF_size" value="32"/>
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="80"/>
+ <param name="phy_Regs_FRF_size" value="80"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="8"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="32"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="32"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="1"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="32"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="800000"/>
+ <stat name="int_instructions" value="600000"/>
+ <stat name="fp_instructions" value="20000"/>
+ <stat name="branch_instructions" value="0"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="100000"/>
+ <stat name="store_instructions" value="100000"/>
+ <stat name="committed_instructions" value="800000"/>
+ <stat name="committed_int_instructions" value="600000"/>
+ <stat name="committed_fp_instructions" value="20000"/>
+ <stat name="pipeline_duty_cycle" value="0.6"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="263886"/>
+ <stat name="ROB_writes" value="263886"/>
+ <!-- RAT accesses -->
+ <stat name="rename_accesses" value="263886"/>
+ <stat name="fp_rename_accesses" value="263886"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="263886"/>
+ <stat name="inst_window_writes" value="263886"/>
+ <stat name="inst_window_wakeup_accesses" value="263886"/>
+ <stat name="fp_inst_window_reads" value="263886"/>
+ <stat name="fp_inst_window_writes" value="263886"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="263886"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="1600000"/>
+ <stat name="float_regfile_reads" value="40000"/>
+ <stat name="int_regfile_writes" value="800000"/>
+ <stat name="float_regfile_writes" value="20000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="800000"/>
+ <stat name="fpu_accesses" value="10000"/>
+ <stat name="mul_accesses" value="100000"/>
+ <stat name="cdb_alu_accesses" value="1000000"/>
+ <stat name="cdb_mul_accesses" value="0"/>
+ <stat name="cdb_fpu_accesses" value="0"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="0.25"/>
+ <stat name="LSU_duty_cycle" value="0.25"/>
+ <stat name="MemManU_I_duty_cycle" value="1"/>
+ <stat name="MemManU_D_duty_cycle" value="0.25"/>
+ <stat name="ALU_duty_cycle" value="0.9"/>
+ <stat name="MUL_duty_cycle" value="0.5"/>
+ <stat name="FPU_duty_cycle" value="0.4"/>
+ <stat name="ALU_cdb_duty_cycle" value="0.9"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.5"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.4"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="1024"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="800000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="16384,32,4,1,1,3,8,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="16, 16, 16,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="8192,16,4,1,1,3,16,0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="8192,4,2,1, 1,3"/>
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache, 2 static-cache bank -->
+ <param name="Dir_config" value="2048,1,0,1, 4, 4,8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ <stat name="duty_cycle" value="0.45"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache, 2 static-cache bank -->
+ <param name="Dir_config" value="8388608,9,0,1,100, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,8"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ <stat name="duty_cycle" value="0.45"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="merged_dir" value="1"/><!--if static bank tag is used as the directory -->
+ <param name="L2_config" value="1048576,64,16,1, 4,23, 64, 1"/>
+ <!-- consider 4-way bank interleaving for Niagara 1 -->
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="0"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="write_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.5"/>
+ <stat name="coherent_read_accesses" value="400000"/>
+ <stat name="coherent_write_accesses" value="0"/>
+ <stat name="coherent_read_misses" value="400000"/>
+ <stat name="coherent_write_misses" value="0"/>
+ <stat name="dir_duty_cycle" value="0.5"/>
+
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="1048576,64,16,1, 2,100, 64,1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.35"/>
+ <param name="Merged_dir" value="1"/><!--if static bank tag is used as the directory -->
+ <stat name="coherent_read_accesses" value="400000"/>
+ <stat name="coherent_write_accesses" value="0"/>
+ <stat name="coherent_read_misses" value="400000"/>
+ <stat name="coherent_write_misses" value="0"/>
+ <stat name="dir_duty_cycle" value="0.5"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="3500"/>
+ <param name="type" value="1"/>
+ <!-- 1 NoC, O bus -->
+ <param name="horizontal_nodes" value="8"/>
+ <param name="vertical_nodes" value="8"/>
+ <param name="has_global_link" value="1"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="5"/>
+ <param name="output_ports" value="5"/>
+ <param name="virtual_channel_per_port" value="1"/>
+ <!-- input buffer; in classic routers only input ports need buffers -->
+ <param name="flit_bits" value="256"/>
+ <param name="input_buffer_entries_per_vc" value="4"/><!--VCs within the same ports share input buffers whose size is propotional to the number of VCs-->
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip. chip_coverage <=1 -->
+ <stat name="total_accesses" value="360000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="0.1"/>
+ </component>
+
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="mc_clock" value="200"/><!--DIMM IO bus clock rate MHz DDR2-400 for Niagara 1-->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="block_size" value="64"/><!--B-->
+ <param name="number_mcs" value="0"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="2"/>
+ <param name="withPHY" value="0"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="33333"/>
+ <stat name="memory_reads" value="16667"/>
+ <stat name="memory_writes" value="16667"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.niu" name="niu">
+ <!-- On chip 10Gb Ethernet NIC, including XAUI Phy and MAC controller -->
+ <!-- For a minimum IP packet size of 84B at 10Gb/s, a new packet arrives every 67.2ns.
+ the low bound of clock rate of a 10Gb MAC is 150Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/> <!-- unlike PCIe and memory controllers, each Ethernet controller only have one port -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- ratio of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual nic, instead, it takes the total accesses and calculate
+ the average power per nic or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.pcie" name="pcie">
+ <!-- On chip PCIe controller, including Phy-->
+ <!-- For a minimum PCIe packet size of 84B at 8Gb/s per lane (PCIe 3.0), a new packet arrives every 84ns.
+ the low bound of clock rate of a PCIe per lane logic is 120Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/>
+ <param name="num_channels" value="8"/> <!-- 2 ,4 ,8 ,16 ,32 -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual pcie controllers, instead, it takes the total accesses and calculate
+ the average power per pcie controller or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.flashc" name="flashc">
+ <param name="number_flashcs" value="0"/>
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="peak_transfer_rate" value="200"/><!--Per controller sustainable reak rate MB/S -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual flash controller, instead, it takes the total accesses and calculate
+ the average power per fc or per channel. This is sufficent for most application -->
+ </component>
+<!--**********************************************************************-->
+
+ </component>
+</component>
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <param name="number_of_cores" value="64"/>
+ <param name="number_of_L1Directories" value="0"/>
+ <param name="number_of_L2Directories" value="1"/>
+ <param name="number_of_L2s" value="64"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="22"/><!-- nm -->
+ <param name="target_core_clockrate" value="3500"/><!--MHz -->
+ <param name="temperature" value="360"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="0"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="0"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when possible -->
+ <param name="machine_bits" value="64"/>
+ <param name="virtual_address_width" value="64"/>
+ <param name="physical_address_width" value="52"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="3500"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="9"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <param name="machine_type" value="1"/><!-- 1 inorder; 0 OOO-->
+ <!-- inorder/OoO -->
+ <param name="number_hardware_threads" value="4"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="1"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="1"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="1"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="1"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="1"/>
+ <param name="prediction_width" value="0"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="6,6"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="1"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="1"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="0.125"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="16"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="16"/>
+ <param name="fp_instruction_window_size" value="16"/>
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="80"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="32"/>
+ <param name="archi_Regs_FRF_size" value="32"/>
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="80"/>
+ <param name="phy_Regs_FRF_size" value="80"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="8"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="32"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="32"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="1"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="32"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="800000"/>
+ <stat name="int_instructions" value="600000"/>
+ <stat name="fp_instructions" value="20000"/>
+ <stat name="branch_instructions" value="0"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="100000"/>
+ <stat name="store_instructions" value="100000"/>
+ <stat name="committed_instructions" value="800000"/>
+ <stat name="committed_int_instructions" value="600000"/>
+ <stat name="committed_fp_instructions" value="20000"/>
+ <stat name="pipeline_duty_cycle" value="0.6"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="263886"/>
+ <stat name="ROB_writes" value="263886"/>
+ <!-- RAT accesses -->
+ <stat name="rename_accesses" value="263886"/>
+ <stat name="fp_rename_accesses" value="263886"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="263886"/>
+ <stat name="inst_window_writes" value="263886"/>
+ <stat name="inst_window_wakeup_accesses" value="263886"/>
+ <stat name="fp_inst_window_reads" value="263886"/>
+ <stat name="fp_inst_window_writes" value="263886"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="263886"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="1600000"/>
+ <stat name="float_regfile_reads" value="40000"/>
+ <stat name="int_regfile_writes" value="800000"/>
+ <stat name="float_regfile_writes" value="20000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="800000"/>
+ <stat name="fpu_accesses" value="10000"/>
+ <stat name="mul_accesses" value="100000"/>
+ <stat name="cdb_alu_accesses" value="1000000"/>
+ <stat name="cdb_mul_accesses" value="0"/>
+ <stat name="cdb_fpu_accesses" value="0"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="0.25"/>
+ <stat name="LSU_duty_cycle" value="0.25"/>
+ <stat name="MemManU_I_duty_cycle" value="1"/>
+ <stat name="MemManU_D_duty_cycle" value="0.25"/>
+ <stat name="ALU_duty_cycle" value="0.9"/>
+ <stat name="MUL_duty_cycle" value="0.5"/>
+ <stat name="FPU_duty_cycle" value="0.4"/>
+ <stat name="ALU_cdb_duty_cycle" value="0.9"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.5"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.4"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="1024"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="800000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="16384,32,4,1,1,3,8,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="16, 16, 16,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="8192,16,4,1,1,3,16,0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="8192,4,2,1, 1,3"/>
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache, 2 static-cache bank -->
+ <param name="Dir_config" value="2048,1,0,1, 4, 4,8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ <stat name="duty_cycle" value="0.45"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache, 2 static-cache bank -->
+ <param name="Dir_config" value="8388608,9,0,1,100, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="0,0,8"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ <stat name="duty_cycle" value="0.45"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="1048576,64,16,1, 4,23, 64, 1"/>
+ <param name="Merged_dir" value="1"/>
+ <!-- consider 4-way bank interleaving for Niagara 1 -->
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="0"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="write_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.5"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="1048576,64,16,1, 2,100, 64,1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="Merged_dir" value="1"/>
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.35"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="3500"/>
+ <param name="type" value="1"/>
+ <!-- 1 NoC, O bus -->
+ <param name="horizontal_nodes" value="8"/>
+ <param name="vertical_nodes" value="8"/>
+ <param name="has_global_link" value="1"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="5"/>
+ <param name="output_ports" value="5"/>
+ <param name="virtual_channel_per_port" value="1"/>
+ <!-- input buffer; in classic routers only input ports need buffers -->
+ <param name="flit_bits" value="256"/>
+ <param name="input_buffer_entries_per_vc" value="4"/><!--VCs within the same ports share input buffers whose size is propotional to the number of VCs-->
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip. chip_coverage <=1 -->
+ <stat name="total_accesses" value="360000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="0.1"/>
+ </component>
+
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="mc_clock" value="200"/><!--DIMM IO bus clock rate MHz DDR2-400 for Niagara 1-->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="block_size" value="64"/><!--B-->
+ <param name="number_mcs" value="0"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="2"/>
+ <param name="withPHY" value="0"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="33333"/>
+ <stat name="memory_reads" value="16667"/>
+ <stat name="memory_writes" value="16667"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.niu" name="niu">
+ <!-- On chip 10Gb Ethernet NIC, including XAUI Phy and MAC controller -->
+ <!-- For a minimum IP packet size of 84B at 10Gb/s, a new packet arrives every 67.2ns.
+ the low bound of clock rate of a 10Gb MAC is 150Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/> <!-- unlike PCIe and memory controllers, each Ethernet controller only have one port -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- ratio of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual nic, instead, it takes the total accesses and calculate
+ the average power per nic or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.pcie" name="pcie">
+ <!-- On chip PCIe controller, including Phy-->
+ <!-- For a minimum PCIe packet size of 84B at 8Gb/s per lane (PCIe 3.0), a new packet arrives every 84ns.
+ the low bound of clock rate of a PCIe per lane logic is 120Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/>
+ <param name="num_channels" value="8"/> <!-- 2 ,4 ,8 ,16 ,32 -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual pcie controllers, instead, it takes the total accesses and calculate
+ the average power per pcie controller or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.flashc" name="flashc">
+ <param name="number_flashcs" value="0"/>
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="peak_transfer_rate" value="200"/><!--Per controller sustainable reak rate MB/S -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual flash controller, instead, it takes the total accesses and calculate
+ the average power per fc or per channel. This is sufficent for most application -->
+ </component>
+<!--**********************************************************************-->
+ </component>
+</component>
\ No newline at end of file
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <param name="number_of_cores" value="8"/>
+ <param name="number_of_L1Directories" value="8"/>
+ <param name="number_of_L2Directories" value="0"/>
+ <param name="number_of_L2s" value="8"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="65"/><!-- nm -->
+ <param name="target_core_clockrate" value="1400"/><!--MHz -->
+ <param name="temperature" value="380"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="0"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="0"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when possible -->
+ <param name="machine_bits" value="64"/>
+ <param name="virtual_address_width" value="64"/>
+ <param name="physical_address_width" value="52"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="1400"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="9"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <param name="machine_type" value="1"/><!-- 1 inorder; 0 OOO-->
+ <!-- inorder/OoO -->
+ <param name="number_hardware_threads" value="4"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="1"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="1"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="1"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="1"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="1"/>
+ <param name="prediction_width" value="0"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="2,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="8,8"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="2"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="0"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="1"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="32"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="16"/>
+ <param name="fp_instruction_window_size" value="16"/>
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="80"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="32"/>
+ <param name="archi_Regs_FRF_size" value="32"/>
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="80"/>
+ <param name="phy_Regs_FRF_size" value="80"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="8"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="64"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="64"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="1"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="32"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="1600000"/>
+ <stat name="int_instructions" value="1200000"/>
+ <stat name="fp_instructions" value="40000"/>
+ <stat name="branch_instructions" value="0"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="200000"/>
+ <stat name="store_instructions" value="200000"/>
+ <stat name="committed_instructions" value="1600000"/>
+ <stat name="committed_int_instructions" value="1200000"/>
+ <stat name="committed_fp_instructions" value="40000"/>
+ <stat name="pipeline_duty_cycle" value="0.5"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="263886"/>
+ <stat name="ROB_writes" value="263886"/>
+ <!-- RAT accesses -->
+ <stat name="rename_accesses" value="263886"/>
+ <stat name="fp_rename_accesses" value="263886"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="263886"/>
+ <stat name="inst_window_writes" value="263886"/>
+ <stat name="inst_window_wakeup_accesses" value="263886"/>
+ <stat name="fp_inst_window_reads" value="263886"/>
+ <stat name="fp_inst_window_writes" value="263886"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="263886"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="3200000"/>
+ <stat name="float_regfile_reads" value="80000"/>
+ <stat name="int_regfile_writes" value="1600000"/>
+ <stat name="float_regfile_writes" value="40000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="1600000"/>
+ <stat name="fpu_accesses" value="10000"/>
+ <stat name="mul_accesses" value="100000"/>
+ <stat name="cdb_alu_accesses" value="1200000"/>
+ <stat name="cdb_mul_accesses" value="0"/>
+ <stat name="cdb_fpu_accesses" value="0"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="0.5"/>
+ <stat name="LSU_duty_cycle" value="0.25"/>
+ <stat name="MemManU_I_duty_cycle" value="0.5"/>
+ <stat name="MemManU_D_duty_cycle" value="0.25"/>
+ <stat name="ALU_duty_cycle" value="0.9"/>
+ <stat name="MUL_duty_cycle" value="0"/>
+ <stat name="FPU_duty_cycle" value="0.6"/>
+ <!--FPU also handles Mul/div -->
+ <stat name="ALU_cdb_duty_cycle" value="0.9"/>
+ <stat name="MUL_cdb_duty_cycle" value="0"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.6"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="1024"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="64"/>
+ <stat name="total_accesses" value="800000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="16384,32,8,1,1,7,8,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="16, 16, 16,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="128"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="8192,16,4,1, 1,3, 16,0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="8192,4,2,1, 1,3"/>
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="1024,2,0,1,1,1, 8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="1400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="1"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="1048576,16,16,1,2, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="1400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="524228,64,16,1, 8,23, 64,1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="1400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="400000"/>
+ <stat name="write_accesses" value="0"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="write_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="1048576,64,16,1, 2,100, 64, 1"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="clockrate" value="3500"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="0.35"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="1400"/>
+ <param name="horizontal_nodes" value="2"/>
+ <param name="vertical_nodes" value="1"/>
+ <param name="has_global_link" value="0"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="9"/>
+ <param name="output_ports" value="8"/>
+ <param name="virtual_channel_per_port" value="1"/>
+ <!-- input buffer; in classic routers only input ports need buffers -->
+ <param name="flit_bits" value="136"/>
+ <param name="input_buffer_entries_per_vc" value="16"/><!--VCs within the same ports share input buffers whose size is propotional to the number of VCs-->
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip. chip_coverage <=1 -->
+ <stat name="total_accesses" value="160000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="0.1"/>
+ </component>
+
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="mc_clock" value="400"/><!--MHz-->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="block_size" value="64"/><!--(B) the block size of last level cache, which is the unit for one memory burst transfer -->
+ <param name="number_mcs" value="4"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="2"/>
+ <param name="withPHY" value="0"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="66666"/>
+ <stat name="memory_reads" value="33333"/>
+ <stat name="memory_writes" value="33333"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.niu" name="niu">
+ <!-- On chip 10Gb Ethernet NIC, including XAUI Phy and MAC controller -->
+ <!-- For a minimum IP packet size of 84B at 10Gb/s, a new packet arrives every 67.2ns.
+ the low bound of clock rate of a 10Gb MAC is 150Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="2"/> <!-- unlike PCIe and memory controllers, each Ethernet controller only have one port -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- ratio of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual nic, instead, it takes the total accesses and calculate
+ the average power per nic or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.pcie" name="pcie">
+ <!-- On chip PCIe controller, including Phy-->
+ <!-- For a minimum PCIe packet size of 84B at 8Gb/s per lane (PCIe 3.0), a new packet arrives every 84ns.
+ the low bound of clock rate of a PCIe per lane logic is 120Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="1"/>
+ <param name="num_channels" value="8"/> <!-- 2 ,4 ,8 ,16 ,32 -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual pcie controllers, instead, it takes the total accesses and calculate
+ the average power per pcie controller or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.flashc" name="flashc">
+ <param name="number_flashcs" value="0"/>
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="peak_transfer_rate" value="200"/><!--Per controller sustainable reak rate MB/S -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual flash controller, instead, it takes the total accesses and calculate
+ the average power per fc or per channel. This is sufficent for most application -->
+ </component>
+<!--**********************************************************************-->
+
+ </component>
+</component>
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <param name="number_of_cores" value="2"/>
+ <param name="number_of_L1Directories" value="0"/>
+ <param name="number_of_L2Directories" value="0"/>
+ <param name="number_of_L2s" value="1"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="Private_L2" value="0"/><!--1 Private, 0 shared/coherent -->
+ <param name="number_of_L3s" value="0"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="45"/><!-- nm -->
+ <param name="target_core_clockrate" value="3700"/><!--MHz -->
+ <param name="temperature" value="380"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="2"/>
+ <param name="interconnect_projection_type" value="0"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="0"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when approperiate -->
+ <param name="machine_bits" value="64"/>
+ <param name="virtual_address_width" value="64"/>
+ <param name="physical_address_width" value="52"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="3700"/>
+ <!-- for cores with unknow timing, set to 0 to force off the opt flag -->
+ <param name="opt_local" value="1"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="16"/>
+ <param name="x86" value="1"/>
+ <param name="micro_opcode_width" value="8"/>
+ <param name="machine_type" value="0"/>
+ <!-- inorder/OoO; 1 inorder; 0 OOO-->
+ <param name="number_hardware_threads" value="1"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="4"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="4"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="4"/>
+ <param name="peak_issue_width" value="6"/><!--As shown in Wiki figure which has max 5 ports, store data/address is modeled
+ as a single port.-->
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="4"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="2"/>
+ <param name="prediction_width" value="1"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="14,14"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="6"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="1"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="2"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="32"/><!--Inst. + micro-op -->
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="1"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="32"/>
+ <param name="fp_instruction_window_size" value="32"/>
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="96"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="16"/><!-- X86-64 has 16GPR -->
+ <param name="archi_Regs_FRF_size" value="32"/><!-- MMX + XMM -->
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="256"/>
+ <param name="phy_Regs_FRF_size" value="256"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="0"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="96"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="48"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="2"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="64"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="400000"/>
+ <stat name="int_instructions" value="200000"/>
+ <stat name="fp_instructions" value="100000"/>
+ <stat name="branch_instructions" value="100000"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="0"/>
+ <stat name="store_instructions" value="50000"/>
+ <stat name="committed_instructions" value="400000"/>
+ <stat name="committed_int_instructions" value="200000"/>
+ <stat name="committed_fp_instructions" value="100000"/>
+ <stat name="pipeline_duty_cycle" value="1"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="400000"/>
+ <stat name="ROB_writes" value="400000"/>
+ <!-- RAT accesses -->
+ <stat name="rename_reads" value="800000"/> <!--lookup in renaming logic -->
+ <stat name="rename_writes" value="400000"/><!--update dest regs. renaming logic -->
+ <stat name="fp_rename_reads" value="200000"/>
+ <stat name="fp_rename_writes" value="100000"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="400000"/>
+ <stat name="inst_window_writes" value="400000"/>
+ <stat name="inst_window_wakeup_accesses" value="800000"/>
+ <stat name="fp_inst_window_reads" value="200000"/>
+ <stat name="fp_inst_window_writes" value="200000"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="400000"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="600000"/>
+ <stat name="float_regfile_reads" value="100000"/>
+ <stat name="int_regfile_writes" value="300000"/>
+ <stat name="float_regfile_writes" value="50000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="300000"/>
+ <stat name="fpu_accesses" value="100000"/>
+ <stat name="mul_accesses" value="200000"/>
+ <stat name="cdb_alu_accesses" value="300000"/>
+ <stat name="cdb_mul_accesses" value="200000"/>
+ <stat name="cdb_fpu_accesses" value="100000"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="1"/>
+ <stat name="LSU_duty_cycle" value="0.5"/>
+ <stat name="MemManU_I_duty_cycle" value="1"/>
+ <stat name="MemManU_D_duty_cycle" value="0.5"/>
+ <stat name="ALU_duty_cycle" value="1"/>
+ <stat name="MUL_duty_cycle" value="0.3"/>
+ <stat name="FPU_duty_cycle" value="0.3"/>
+ <stat name="ALU_cdb_duty_cycle" value="1"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.3"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.3"/>
+ <param name="number_of_BPT" value="2"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="1024"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="128"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="32768,32,8,1,4,4,32,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy, -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="16, 16, 16,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="256"/><!--dual threads-->
+ <stat name="total_accesses" value="400000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="32768,32,8,1, 4,6, 32,1 "/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <param name="number_of_BTB" value="2"/>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="5120,4,2,1, 1,3"/> <!--should be 4096 + 1024 -->
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <stat name="read_accesses" value="400000"/> <!--See IFU code for guideline -->
+ <stat name="write_accesses" value="0"/>
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="4096,2,0,1,100,100, 8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="1"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="1048576,16,16,1,2, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="6291456,64, 16, 8, 8, 23, 32, 1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="3700"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="16777216,64,16, 16, 16, 100,1"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="clockrate" value="850"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="11824"/>
+ <stat name="write_accesses" value="11276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="3400"/>
+ <param name="type" value="0"/>
+ <!--0:bus, 1:NoC , for bus no matter how many nodes sharing the bus
+ at each time only one node can send req -->
+ <param name="horizontal_nodes" value="1"/>
+ <param name="vertical_nodes" value="1"/>
+ <param name="has_global_link" value="0"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="1"/>
+ <param name="output_ports" value="1"/>
+ <!-- For bus the I/O ports should be 1 -->
+ <param name="flit_bits" value="256"/>
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip.
+ chip_coverage <=1 -->
+ <param name="link_routing_over_percentage" value="0.5"/>
+ <!-- Links can route over other components or occupy whole area.
+ by default, 50% of the NoC global links routes over other
+ components -->
+ <stat name="total_accesses" value="100000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="1"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="mc_clock" value="200"/><!--DIMM IO bus clock rate MHz DDR2-400 for Niagara 1-->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="block_size" value="64"/><!--B-->
+ <param name="number_mcs" value="0"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="2"/>
+ <param name="withPHY" value="0"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="33333"/>
+ <stat name="memory_reads" value="16667"/>
+ <stat name="memory_writes" value="16667"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.niu" name="niu">
+ <!-- On chip 10Gb Ethernet NIC, including XAUI Phy and MAC controller -->
+ <!-- For a minimum IP packet size of 84B at 10Gb/s, a new packet arrives every 67.2ns.
+ the low bound of clock rate of a 10Gb MAC is 150Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/> <!-- unlike PCIe and memory controllers, each Ethernet controller only have one port -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- ratio of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual nic, instead, it takes the total accesses and calculate
+ the average power per nic or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.pcie" name="pcie">
+ <!-- On chip PCIe controller, including Phy-->
+ <!-- For a minimum PCIe packet size of 84B at 8Gb/s per lane (PCIe 3.0), a new packet arrives every 84ns.
+ the low bound of clock rate of a PCIe per lane logic is 120Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/>
+ <param name="num_channels" value="8"/> <!-- 2 ,4 ,8 ,16 ,32 -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual pcie controllers, instead, it takes the total accesses and calculate
+ the average power per pcie controller or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.flashc" name="flashc">
+ <param name="number_flashcs" value="0"/>
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="peak_transfer_rate" value="200"/><!--Per controller sustainable reak rate MB/S -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual flash controller, instead, it takes the total accesses and calculate
+ the average power per fc or per channel. This is sufficent for most application -->
+ </component>
+<!--**********************************************************************-->
+
+ </component>
+</component>
+
--- /dev/null
+ __ __ ____ _ _____ ____ _
+| \/ | ___| _ \ / \|_ _| | __ ) ___| |_ __ _
+| |\/| |/ __| |_) / _ \ | | | _ \ / _ \ __|/ _` |
+| | | | (__| __/ ___ \| | | |_) | __/ |_| (_| |
+|_| |_|\___|_| /_/ \_\_| |____/ \___|\__|\__,_|
+
+McPAT: Multicore Power, Area, and Timing
+Current version 0.8Beta
+===============================
+
+McPAT is an architectural modeling tool for chip multiprocessors (CMP)
+The main focus of McPAT is accurate power and area
+modeling, and a target clock rate is used as a design constraint.
+McPAT performs automatic extensive search to find optimal designs
+that satisfy the target clock frequency.
+
+For complete documentation of the McPAT, please refer McPAT 1.0
+technical report and the following paper,
+"McPAT: An Integrated Power, Area, and Timing Modeling
+ Framework for Multicore and Manycore Architectures",
+that appears in MICRO 2009. Please cite the paper, if you use
+McPAT in your work. The bibtex entry is provided below for your convenience.
+
+ @inproceedings{mcpat:micro,
+ author = {Sheng Li and Jung Ho Ahn and Richard D. Strong and Jay B. Brockman and Dean M. Tullsen and Norman P. Jouppi},
+ title = "{McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures}",
+ booktitle = {MICRO 42: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture},
+ year = {2009},
+ pages = {469--480},
+ }
+
+Current McPAT is in its beta release.
+List of features of beta release
+===============================
+The following are the list of features supported by the tool.
+
+* Power, area, and timing models for CMPs with:
+ Inorder cores both single and multithreaded
+ OOO cores both single and multithreaded
+ Shared/coherent caches with directory hardware:
+ including directory cache, shadowed tag directory
+ and static bank mapped tag directory
+ Network-on-Chip
+ On-chip memory controllers
+
+* Internal models are based on real modern processors:
+ Inorder models are based on Sun Niagara family
+ OOO models are based on Intel P6 for reservation
+ station based OOO cores, and on Intel Netburst and
+ Alpha 21264 for physical register file based OOO cores.
+
+* Leakage power modeling considers both sub-threshold leakage
+ and gate leakage power. The impact of operating temperature
+ on both leakage power are considered. Longer channel devices
+ that can reduce leakage significantly with modest performance
+ penalty are also modeled.
+
+* McPAT supports automatic extensive search to find optimal designs
+ that satisfy the target clock frequency. The timing constraint
+ include both throughput and latency.
+
+* Interconnect model with different delay, power, and area
+ properties, as well as both the aggressive and conservative
+ interconnect projections on wire technologies.
+
+* All process specific values used by the McPAT are obtained
+ from ITRS and currently, the McPAT supports 90nm, 65nm, 45nm,
+ 32nm, and 22nm technology nodes. At 32nm and 22nm nodes, SOI
+ and DG devices are used. After 45nm, Hi-K metal gates are used.
+
+How to use the tool?
+====================
+
+McPAT takes input parameters from an XML-based interface,
+then it computes area and peak power of the
+Please note that the peak power is the absolute worst case power,
+which could be even higher than TDP.
+
+1. Steps to run McPAT:
+ -> define the target processor using inorder.xml or OOO.xml
+ -> run the "mcpat" binary:
+ ./mcpat -infile <*.xml> -print_level < level of detailed output>
+ ./mcpat -h (or mcpat --help) will show the quick help message.
+
+ Rather than being hardwired to certain simulators, McPAT
+ uses an XML-based interface to enable easy integration
+ with various performance simulators. Our collaborator,
+ Richard Strong, at University of California, San Diego,
+ designed an experimental parser for the M5 simulator, aiming for
+ streamlining the integration of McPAT and M5. Please check the M5
+ repository/ for the latest version of the parser.
+
+2. Optimize:
+ McPAT will try its best to satisfy the target clock rate.
+ When it cannot find a valid solution, it gives out warnings,
+ while still giving a solution that is closest to the timing
+ constraints and calculate power based on it. The optimization
+ will lead to larger power/area numbers for target higher clock
+ rate. McPAT also provides the option "-opt_for_clk" to turn on
+ ("-opt_for_clk 1") and off this strict optimization for the
+ timing constraint. When it is off, McPAT always optimize
+ component for ED^2P without worrying about meeting the
+ target clock frequency. By turning it off, the computation time
+ can be reduced, which suites for situations where target clock rate
+ is conservative.
+
+3. The output:
+ McPAT outputs results in a hierarchical manner. Increasing
+ the "-print_level" will show detailed results inside each
+ component. For each component, major parts are shown, and associated
+ pipeline registers/control logic are added up in total area/power of each
+ components. In general, McPAT does not model the area/overhead of the pad
+ frame used in a processor die.
+
+4. How to use the XML interface for McPAT
+ 4.1 Set up the parameters
+ Parameters of target designs need to be set in the *.xml file for
+ entries taged as "param". McPAT have very detailed parameter settings.
+ please remove the structure parameter from the file if you want
+ to use the default values. Otherwise, the parameters in the xml file
+ will override the default values.
+
+ 4.2 Pass the statistics
+ There are two options to get the correct stats: a) the performance
+ simulator can capture all the stats in detail and pass them to McPAT;
+ b). Performance simulator can only capture partial stats and pass
+ them to McPAT, while McPAT can reason about the complete stats using
+ the partial information and the configuration. Therefore, there are
+ some overlap for the stats.
+
+ 4.3 Interface XML file structures (PLEASE READ!)
+ The XML is hierarchical from processor level to micro-architecture
+ level. McPAT support both heterogeneous and homogeneous manycore processors.
+
+ 1). For heterogeneous processor setup, each component (core, NoC, cache,
+ and etc) must have its own instantiations (core0, core1, ..., coreN).
+ Each instantiation will have different parameters as well as its stats.
+ Thus, the XML file must have multiple "instantiation" of each type of
+ heterogeneous components and the corresponding hetero flags must be set
+ in the XML file. Then state in the XML should be the stats of "a" instantiation
+ (e.g. "a" cores). The reported runtime dynamic is of a single instantiation
+ (e.g. "a" cores). Since the stats for each (e.g. "a" cores) may be different,
+ we will see a whole list of (e.g. "a" cores) with different dynamic power,
+ and total power is just a sum of them.
+
+ 2). For homogeneous processors, the same method for heterogeneous can
+ also be used by treating all homogeneous instantiations as heterogeneous.
+ However, a preferred approach is to use a single representative for all
+ the same components (e.g. core0 to represent all cores) and set the
+ processor to have homogeneous components (e.g. <param name="homogeneous_cores
+ " value="1"/> ). Thus, the XML file only has one instantiation to represent
+ all others with the same architectural parameters. The corresponding homo
+ flags must be set in the XML file. Then, the stats in the XML should be
+ the aggregated stats of the sum of all instantiations (e.g. aggregated stats
+ of all cores). In the final results, McPAT will only report a single
+ instantiation of each type of component, and the reported runtime dynamic power
+ is the sum of all instantiations of the same type. This approach can run fast
+ and use much less memory.
+
+5. Guide for integrating McPAT into performance simulators and bypassing the XML interface
+ The detailed work flow of McPAT has two phases: the initialization phase and
+ the computation phase. Specifically, in order to start the initialization phase a
+ user specifies static configurations, including parameters at all three levels,
+ namely, architectural, circuit, and technology levels. During the initialization
+ phase, McPAT will generate the internal chip representation using the configurations
+ set by the user.
+ The computation phase of McPAT is called by McPAT or the performance simulator
+ during simulation to generate runtime power numbers. Before calling McPAT to
+ compute runtime power numbers, the performance simulator needs to pass the
+ statistics, namely, the activity factors of each individual components to McPAT
+ via the XML interface.
+ The initialization phase is very time-consuming, since it will repeat many
+ times until valid configurations are found or the possible configurations are
+ exhausted. To reduce the overhead, a user can let the simulator to call McPAT
+ directly for computation phase and only call initialization phase once at the
+ beginning of simulation. In this case, the XML interface file is bypassed,
+ please refer to processor.cc to see how the two phases are called.
+
+6. Sample input files:
+ This package provide sample XML files for validating target processors. Please find the
+ enclosed Niagara1.xml (for the Sun Niagara1 processor), Niagara2.xml (for the Sun Niagara2
+ processor), Alpha21364.xml (for the Alpha21364 processor), and Xeon.xml (for the Intel
+ Xeon Tulsa processor).
+
+ Special instructions for using Xeon.xml:
+ McPAT uses ITRS device types including HP, LSTP, and LOP. Although most
+ designs follow ITRS projections, there are designs with special technologies.
+ For example, the 65nm Xeon Tulsa processor uses 1.25 V rather than 1.1V
+ for the core voltage domain, which results in the changes in threshold voltage,
+ leakage current density, saturation current, and etc, besides the different
+ supply voltage. We use MASTAR to match the special technology as used in Xeon
+ core domain. Therefore, in order to generate accurate results of Xeon
+ Tulsa cores, users need to do make TAR=mcpatXeonCore and use the generated
+ special executable. The L3 cache and buses must be computed using standard
+ ITRS technology.
+
+
+====================
+McPAT is in its beginning stage. We are still improving
+the tool and refining the code. Please come back to its website
+for newer versions. If you have any comments,
+questions, or suggestions, please write to us.
+
+Version history and roadmap
+
+McPAT Alpha: released Sep. 2009 Experimental release
+McPAT Beta (0.6): released Nov. 2009 New code base and technology base
+McPAT Beta (0.7): released May. 2010 Added various new models,
+ including long channel devices, buses model; together
+ with bug fixes and extensive code optimization to reduce
+ memory usage.
+McPAT Beta (0.8): released Aug. 2010 Added various new models,
+ including on-chip 10Gb ethernet units, PCIe, and flash controllers.
+Next major release:
+McPAT 1.0: including advance power-saving states
+
+Future releases may include the modeling of embedded low-power
+processors as well as vector processors and GPGPUs.
+
+
+Sheng Li
+sheng.li@hp.com
+
+
+
+
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#include <cstdio>
+#include <string>
+
+#include "XML_Parse.h"
+#include "xmlParser.h"
+
+using namespace std;
+
+void ParseXML::parse(char* filepath)
+{
+ unsigned int i,j,k,m,n;
+ unsigned int NumofCom_4;
+ unsigned int itmp;
+ //Initialize all structures
+ ParseXML::initialize();
+
+ // this open and parse the XML file:
+ XMLNode xMainNode=XMLNode::openFileHelper(filepath,"component"); //the 'component' in the first layer
+
+ XMLNode xNode2=xMainNode.getChildNode("component"); // the 'component' in the second layer
+ //get all params in the second layer
+ itmp=xNode2.nChildNode("param");
+ for(i=0; i<itmp; i++)
+ {
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"number_of_cores")==0) {sys.number_of_cores=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"number_of_L1Directories")==0) {sys.number_of_L1Directories=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"number_of_L2Directories")==0) {sys.number_of_L2Directories=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"number_of_L2s")==0) {sys.number_of_L2s=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"Private_L2")==0) {sys.Private_L2=(bool)atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"number_of_L3s")==0) {sys.number_of_L3s=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"number_of_NoCs")==0) {sys.number_of_NoCs=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"number_of_dir_levels")==0) {sys.number_of_dir_levels=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"domain_size")==0) {sys.domain_size=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"first_level_dir")==0) {sys.first_level_dir=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"homogeneous_cores")==0) {sys.homogeneous_cores=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"core_tech_node")==0) {sys.core_tech_node=atof(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"target_core_clockrate")==0) {sys.target_core_clockrate=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"target_chip_area")==0) {sys.target_chip_area=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"temperature")==0) {sys.temperature=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"number_cache_levels")==0) {sys.number_cache_levels=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"L1_property")==0) {sys.L1_property =atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"L2_property")==0) {sys.L2_property =atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"homogeneous_L2s")==0) {sys.homogeneous_L2s=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"homogeneous_L1Directories")==0) {sys.homogeneous_L1Directories=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"homogeneous_L2Directories")==0) {sys.homogeneous_L2Directories=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"L3_property")==0) {sys.L3_property =atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"homogeneous_L3s")==0) {sys.homogeneous_L3s=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"homogeneous_ccs")==0) {sys.homogeneous_ccs=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"homogeneous_NoCs")==0) {sys.homogeneous_NoCs=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"Max_area_deviation")==0) {sys.Max_area_deviation=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"Max_power_deviation")==0) {sys.Max_power_deviation=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"device_type")==0) {sys.device_type=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"longer_channel_device")==0) {sys.longer_channel_device=(bool)atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"opt_dynamic_power")==0) {sys.opt_dynamic_power=(bool)atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"opt_lakage_power")==0) {sys.opt_lakage_power=(bool)atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"opt_clockrate")==0) {sys.opt_clockrate=(bool)atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"opt_area")==0) {sys.opt_area=(bool)atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"Embedded")==0) {sys.Embedded=(bool)atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"interconnect_projection_type")==0) {sys.interconnect_projection_type=atoi(xNode2.getChildNode("param",i).getAttribute("value"))==0?0:1;continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"machine_bits")==0) {sys.machine_bits=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"virtual_address_width")==0) {sys.virtual_address_width=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"physical_address_width")==0) {sys.physical_address_width=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ if (strcmp(xNode2.getChildNode("param",i).getAttribute("name"),"virtual_memory_page_size")==0) {sys.virtual_memory_page_size=atoi(xNode2.getChildNode("param",i).getAttribute("value"));continue;}
+ }
+
+// if (sys.Private_L2 && sys.number_of_cores!=sys.number_of_L2s)
+// {
+// cout<<"Private L2: Number of L2s must equal to Number of Cores"<<endl;
+// exit(0);
+// }
+
+ itmp=xNode2.nChildNode("stat");
+ for(i=0; i<itmp; i++)
+ {
+ if (strcmp(xNode2.getChildNode("stat",i).getAttribute("name"),"total_cycles")==0) {sys.total_cycles=atof(xNode2.getChildNode("stat",i).getAttribute("value"));continue;}
+
+ }
+
+ //get the number of components within the second layer
+ unsigned int NumofCom_3=xNode2.nChildNode("component");
+ XMLNode xNode3,xNode4; //define the third-layer(system.core0) and fourth-layer(system.core0.predictor) xnodes
+
+ string strtmp;
+ char chtmp[60];
+ char chtmp1[60];
+ chtmp1[0]='\0';
+ unsigned int OrderofComponents_3layer=0;
+ if (NumofCom_3>OrderofComponents_3layer)
+ {
+ //___________________________get all system.core0-n________________________________________________
+ if (sys.homogeneous_cores==1) OrderofComponents_3layer=0;
+ else OrderofComponents_3layer=sys.number_of_cores-1;
+ for (i=0; i<=OrderofComponents_3layer; i++)
+ {
+ xNode3=xNode2.getChildNode("component",i);
+ if (xNode3.isEmpty()==1) {
+ printf("The value of homogeneous_cores or number_of_cores is not correct!");
+ exit(0);
+ }
+ else{
+ if (strstr(xNode3.getAttribute("name"),"core")!=NULL)
+ {
+ { //For cpu0-cpui
+ //Get all params with system.core?
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ {
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"clock_rate")==0) {sys.core[i].clock_rate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"opt_local")==0) {sys.core[i].opt_local=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"x86")==0) {sys.core[i].x86=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"machine_bits")==0) {sys.core[i].machine_bits=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"virtual_address_width")==0) {sys.core[i].virtual_address_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"physical_address_width")==0) {sys.core[i].physical_address_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"instruction_length")==0) {sys.core[i].instruction_length=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"opcode_width")==0) {sys.core[i].opcode_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"micro_opcode_width")==0) {sys.core[i].micro_opcode_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"machine_type")==0) {sys.core[i].machine_type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"internal_datapath_width")==0) {sys.core[i].internal_datapath_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"number_hardware_threads")==0) {sys.core[i].number_hardware_threads=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"fetch_width")==0) {sys.core[i].fetch_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"number_instruction_fetch_ports")==0) {sys.core[i].number_instruction_fetch_ports=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"decode_width")==0) {sys.core[i].decode_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"issue_width")==0) {sys.core[i].issue_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"peak_issue_width")==0) {sys.core[i].peak_issue_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"commit_width")==0) {sys.core[i].commit_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"fp_issue_width")==0) {sys.core[i].fp_issue_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"prediction_width")==0) {sys.core[i].prediction_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"pipelines_per_core")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.core[i].pipelines_per_core[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.core[i].pipelines_per_core[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"pipeline_depth")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.core[i].pipeline_depth[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.core[i].pipeline_depth[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"FPU")==0) {strcpy(sys.core[i].FPU,xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"divider_multiplier")==0) {strcpy(sys.core[i].divider_multiplier,xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"ALU_per_core")==0) {sys.core[i].ALU_per_core=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"FPU_per_core")==0) {sys.core[i].FPU_per_core=atof(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"MUL_per_core")==0) {sys.core[i].MUL_per_core=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"instruction_buffer_size")==0) {sys.core[i].instruction_buffer_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"decoded_stream_buffer_size")==0) {sys.core[i].decoded_stream_buffer_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"instruction_window_scheme")==0) {sys.core[i].instruction_window_scheme =atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"instruction_window_size")==0) {sys.core[i].instruction_window_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"fp_instruction_window_size")==0) {sys.core[i].fp_instruction_window_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"ROB_size")==0) {sys.core[i].ROB_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"archi_Regs_IRF_size")==0) {sys.core[i].archi_Regs_IRF_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"archi_Regs_FRF_size")==0) {sys.core[i].archi_Regs_FRF_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"phy_Regs_IRF_size")==0) {sys.core[i].phy_Regs_IRF_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"phy_Regs_FRF_size")==0) {sys.core[i].phy_Regs_FRF_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"rename_scheme")==0) {sys.core[i].rename_scheme=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"register_windows_size")==0) {sys.core[i].register_windows_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"LSU_order")==0) {strcpy(sys.core[i].LSU_order,xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"store_buffer_size")==0) {sys.core[i].store_buffer_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"load_buffer_size")==0) {sys.core[i].load_buffer_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"memory_ports")==0) {sys.core[i].memory_ports=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"Dcache_dual_pump")==0) {strcpy(sys.core[i].Dcache_dual_pump,xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"RAS_size")==0) {sys.core[i].RAS_size=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ }
+ //Get all stats with system.core?
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ {
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_instructions")==0) {sys.core[i].total_instructions=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"int_instructions")==0) {sys.core[i].int_instructions=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"fp_instructions")==0) {sys.core[i].fp_instructions=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"branch_instructions")==0) {sys.core[i].branch_instructions=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"branch_mispredictions")==0) {sys.core[i].branch_mispredictions=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"committed_instructions")==0) {sys.core[i].committed_instructions=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"committed_int_instructions")==0) {sys.core[i].committed_int_instructions=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"committed_fp_instructions")==0) {sys.core[i].committed_fp_instructions=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"load_instructions")==0) {sys.core[i].load_instructions=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"store_instructions")==0) {sys.core[i].store_instructions=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_cycles")==0) {sys.core[i].total_cycles=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"idle_cycles")==0) {sys.core[i].idle_cycles=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"busy_cycles")==0) {sys.core[i].busy_cycles=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"instruction_buffer_reads")==0) {sys.core[i].instruction_buffer_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"instruction_buffer_write")==0) {sys.core[i].instruction_buffer_write=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"ROB_reads")==0) {sys.core[i].ROB_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"ROB_writes")==0) {sys.core[i].ROB_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"rename_reads")==0) {sys.core[i].rename_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"rename_writes")==0) {sys.core[i].rename_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"fp_rename_reads")==0) {sys.core[i].fp_rename_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"fp_rename_writes")==0) {sys.core[i].fp_rename_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"inst_window_reads")==0) {sys.core[i].inst_window_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"inst_window_writes")==0) {sys.core[i].inst_window_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"inst_window_wakeup_accesses")==0) {sys.core[i].inst_window_wakeup_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"inst_window_selections")==0) {sys.core[i].inst_window_selections=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"fp_inst_window_reads")==0) {sys.core[i].fp_inst_window_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"fp_inst_window_writes")==0) {sys.core[i].fp_inst_window_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"fp_inst_window_wakeup_accesses")==0) {sys.core[i].fp_inst_window_wakeup_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"archi_int_regfile_reads")==0) {sys.core[i].archi_int_regfile_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"archi_float_regfile_reads")==0) {sys.core[i].archi_float_regfile_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"phy_int_regfile_reads")==0) {sys.core[i].phy_int_regfile_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"phy_float_regfile_reads")==0) {sys.core[i].phy_float_regfile_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"phy_int_regfile_writes")==0) {sys.core[i].archi_int_regfile_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"phy_float_regfile_writes")==0) {sys.core[i].archi_float_regfile_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"archi_int_regfile_writes")==0) {sys.core[i].phy_int_regfile_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"archi_float_regfile_writes")==0) {sys.core[i].phy_float_regfile_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"int_regfile_reads")==0) {sys.core[i].int_regfile_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"float_regfile_reads")==0) {sys.core[i].float_regfile_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"int_regfile_writes")==0) {sys.core[i].int_regfile_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"float_regfile_writes")==0) {sys.core[i].float_regfile_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"windowed_reg_accesses")==0) {sys.core[i].windowed_reg_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"windowed_reg_transports")==0) {sys.core[i].windowed_reg_transports=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"function_calls")==0) {sys.core[i].function_calls=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"context_switches")==0) {sys.core[i].context_switches=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"ialu_accesses")==0) {sys.core[i].ialu_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"fpu_accesses")==0) {sys.core[i].fpu_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"mul_accesses")==0) {sys.core[i].mul_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"cdb_alu_accesses")==0) {sys.core[i].cdb_alu_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"cdb_mul_accesses")==0) {sys.core[i].cdb_mul_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"cdb_fpu_accesses")==0) {sys.core[i].cdb_fpu_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"load_buffer_reads")==0) {sys.core[i].load_buffer_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"load_buffer_writes")==0) {sys.core[i].load_buffer_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"load_buffer_cams")==0) {sys.core[i].load_buffer_cams=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"store_buffer_reads")==0) {sys.core[i].store_buffer_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"store_buffer_writes")==0) {sys.core[i].store_buffer_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"store_buffer_cams")==0) {sys.core[i].store_buffer_cams=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"store_buffer_forwards")==0) {sys.core[i].store_buffer_forwards=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"main_memory_access")==0) {sys.core[i].main_memory_access=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"main_memory_read")==0) {sys.core[i].main_memory_read=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"main_memory_write")==0) {sys.core[i].main_memory_write=atoi(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"pipeline_duty_cycle")==0) {sys.core[i].pipeline_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"IFU_duty_cycle")==0) {sys.core[i].IFU_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"BR_duty_cycle")==0) {sys.core[i].BR_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"LSU_duty_cycle")==0) {sys.core[i].LSU_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"MemManU_I_duty_cycle")==0) {sys.core[i].MemManU_I_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"MemManU_D_duty_cycle")==0) {sys.core[i].MemManU_D_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"ALU_duty_cycle")==0) {sys.core[i].ALU_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"MUL_duty_cycle")==0) {sys.core[i].MUL_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"FPU_duty_cycle")==0) {sys.core[i].FPU_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"ALU_cdb_duty_cycle")==0) {sys.core[i].ALU_cdb_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"MUL_cdb_duty_cycle")==0) {sys.core[i].MUL_cdb_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"FPU_cdb_duty_cycle")==0) {sys.core[i].FPU_cdb_duty_cycle=atoi(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ }
+ }
+
+ NumofCom_4=xNode3.nChildNode("component"); //get the number of components within the third layer
+ for(j=0; j<NumofCom_4; j++)
+ {
+ xNode4=xNode3.getChildNode("component",j);
+ if (strcmp(xNode4.getAttribute("name"),"PBT")==0)
+ { //find PBT
+ itmp=xNode4.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.core0.predictor--PBT
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"prediction_width")==0) {sys.core[i].predictor.prediction_width=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"prediction_scheme")==0) {strcpy(sys.core[i].predictor.prediction_scheme,xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"predictor_size")==0) {sys.core[i].predictor.predictor_size=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"predictor_entries")==0) {sys.core[i].predictor.predictor_entries=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"local_predictor_size")==0)
+ {
+ strtmp.assign(xNode4.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.core[i].predictor.local_predictor_size[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.core[i].predictor.local_predictor_size[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"local_predictor_entries")==0) {sys.core[i].predictor.local_predictor_entries=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"global_predictor_entries")==0) {sys.core[i].predictor.global_predictor_entries=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"global_predictor_bits")==0) {sys.core[i].predictor.global_predictor_bits=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"chooser_predictor_entries")==0) {sys.core[i].predictor.chooser_predictor_entries=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"chooser_predictor_bits")==0) {sys.core[i].predictor.chooser_predictor_bits=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ }
+ itmp=xNode4.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in system.core0.predictor--PBT
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"predictor_accesses")==0) sys.core[i].predictor.predictor_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));
+ }
+ }
+ if (strcmp(xNode4.getAttribute("name"),"itlb")==0)
+ {//find system.core0.itlb
+ itmp=xNode4.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.core0.itlb--itlb
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"number_entries")==0) sys.core[i].itlb.number_entries=atoi(xNode4.getChildNode("param",k).getAttribute("value"));
+ }
+ itmp=xNode4.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in itlb
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_hits")==0) {sys.core[i].itlb.total_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_accesses")==0) {sys.core[i].itlb.total_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_misses")==0) {sys.core[i].itlb.total_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"conflicts")==0) {sys.core[i].itlb.conflicts=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ }
+ }
+ if (strcmp(xNode4.getAttribute("name"),"icache")==0)
+ {//find system.core0.icache
+ itmp=xNode4.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.core0.icache--icache
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"icache_config")==0)
+ {
+ strtmp.assign(xNode4.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.core[i].icache.icache_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.core[i].icache.icache_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"buffer_sizes")==0)
+ {
+ strtmp.assign(xNode4.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.core[i].icache.buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.core[i].icache.buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ itmp=xNode4.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ {
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_accesses")==0) {sys.core[i].icache.total_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_accesses")==0) {sys.core[i].icache.read_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_misses")==0) {sys.core[i].icache.read_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"replacements")==0) {sys.core[i].icache.replacements=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_hits")==0) {sys.core[i].icache.read_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_hits")==0) {sys.core[i].icache.total_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_misses")==0) {sys.core[i].icache.total_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"miss_buffer_access")==0) {sys.core[i].icache.miss_buffer_access=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"fill_buffer_accesses")==0) {sys.core[i].icache.fill_buffer_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_accesses")==0) {sys.core[i].icache.prefetch_buffer_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_writes")==0) {sys.core[i].icache.prefetch_buffer_writes=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_reads")==0) {sys.core[i].icache.prefetch_buffer_reads=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_hits")==0) {sys.core[i].icache.prefetch_buffer_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"conflicts")==0) {sys.core[i].icache.conflicts=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ }
+ }
+ if (strcmp(xNode4.getAttribute("name"),"dtlb")==0)
+ {//find system.core0.dtlb
+ itmp=xNode4.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.core0.dtlb--dtlb
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"number_entries")==0) sys.core[i].dtlb.number_entries=atoi(xNode4.getChildNode("param",k).getAttribute("value"));
+ }
+ itmp=xNode4.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in dtlb
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_accesses")==0) {sys.core[i].dtlb.total_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_accesses")==0) {sys.core[i].dtlb.read_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"write_accesses")==0) {sys.core[i].dtlb.write_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_hits")==0) {sys.core[i].dtlb.read_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"write_hits")==0) {sys.core[i].dtlb.write_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_misses")==0) {sys.core[i].dtlb.read_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"write_misses")==0) {sys.core[i].dtlb.write_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_hits")==0) {sys.core[i].dtlb.total_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_misses")==0) {sys.core[i].dtlb.total_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"conflicts")==0) {sys.core[i].dtlb.conflicts=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+
+ }
+ }
+ if (strcmp(xNode4.getAttribute("name"),"dcache")==0)
+ {//find system.core0.dcache
+ itmp=xNode4.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.core0.dcache--dcache
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"dcache_config")==0)
+ {
+ strtmp.assign(xNode4.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.core[i].dcache.dcache_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.core[i].dcache.dcache_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"buffer_sizes")==0)
+ {
+ strtmp.assign(xNode4.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.core[i].dcache.buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.core[i].dcache.buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ itmp=xNode4.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in dcache
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_accesses")==0) {sys.core[i].dcache.total_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_accesses")==0) {sys.core[i].dcache.read_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"write_accesses")==0) {sys.core[i].dcache.write_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_hits")==0) {sys.core[i].dcache.total_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_misses")==0) {sys.core[i].dcache.total_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_hits")==0) {sys.core[i].dcache.read_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"write_hits")==0) {sys.core[i].dcache.write_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_misses")==0) {sys.core[i].dcache.read_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"write_misses")==0) {sys.core[i].dcache.write_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"replacements")==0) {sys.core[i].dcache.replacements=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"write_backs")==0) {sys.core[i].dcache.write_backs=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"miss_buffer_access")==0) {sys.core[i].dcache.miss_buffer_access=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"fill_buffer_accesses")==0) {sys.core[i].dcache.fill_buffer_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_accesses")==0) {sys.core[i].dcache.prefetch_buffer_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_writes")==0) {sys.core[i].dcache.prefetch_buffer_writes=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_reads")==0) {sys.core[i].dcache.prefetch_buffer_reads=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_hits")==0) {sys.core[i].dcache.prefetch_buffer_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"wbb_writes")==0) {sys.core[i].dcache.wbb_writes=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"wbb_reads")==0) {sys.core[i].dcache.wbb_reads=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"conflicts")==0) {sys.core[i].dcache.conflicts=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+
+ }
+ }
+ if (strcmp(xNode4.getAttribute("name"),"BTB")==0)
+ {//find system.core0.BTB
+ itmp=xNode4.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.core0.BTB--BTB
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"BTB_config")==0)
+ {
+ strtmp.assign(xNode4.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.core[i].BTB.BTB_config[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.core[i].BTB.BTB_config[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ itmp=xNode4.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in BTB
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_accesses")==0) {sys.core[i].BTB.total_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_accesses")==0) {sys.core[i].BTB.read_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"write_accesses")==0) {sys.core[i].BTB.write_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_hits")==0) {sys.core[i].BTB.total_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"total_misses")==0) {sys.core[i].BTB.total_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_hits")==0) {sys.core[i].BTB.read_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"write_hits")==0) {sys.core[i].BTB.write_hits=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"read_misses")==0) {sys.core[i].BTB.read_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"write_misses")==0) {sys.core[i].BTB.write_misses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"replacements")==0) {sys.core[i].BTB.replacements=atof(xNode4.getChildNode("stat",k).getAttribute("value"));continue;}
+ }
+ }
+ }
+ }
+ else {
+ printf("The value of homogeneous_cores or number_of_cores is not correct!");
+ exit(0);
+ }
+ }
+ }
+
+ //__________________________________________Get system.L1Directory0-n____________________________________________
+ int w,tmpOrderofComponents_3layer;
+ w=OrderofComponents_3layer+1;
+ tmpOrderofComponents_3layer=OrderofComponents_3layer;
+ if (sys.homogeneous_L1Directories==1) OrderofComponents_3layer=OrderofComponents_3layer+1;
+ else OrderofComponents_3layer=OrderofComponents_3layer+sys.number_of_L1Directories;
+
+ for (i=0; i<(OrderofComponents_3layer-tmpOrderofComponents_3layer); i++)
+ {
+ xNode3=xNode2.getChildNode("component",w);
+ if (xNode3.isEmpty()==1) {
+ printf("The value of homogeneous_L1Directories or number_of_L1Directories is not correct!");
+ exit(0);
+ }
+ else
+ {
+ if (strstr(xNode3.getAttribute("id"),"L1Directory")!=NULL)
+ {
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.L1Directory
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"Dir_config")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L1Directory[i].Dir_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L1Directory[i].Dir_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"buffer_sizes")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L1Directory[i].buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L1Directory[i].buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"clockrate")==0) {sys.L1Directory[i].clockrate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"ports")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L1Directory[i].ports[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L1Directory[i].ports[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"device_type")==0) {sys.L1Directory[i].device_type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"Directory_type")==0) {sys.L1Directory[i].Directory_type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"3D_stack")==0) {strcpy(sys.L1Directory[i].threeD_stack,xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ }
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in system.L2directorydirectory
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_accesses")==0) {sys.L1Directory[i].total_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"read_accesses")==0) {sys.L1Directory[i].read_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_accesses")==0) {sys.L1Directory[i].write_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"read_misses")==0) {sys.L1Directory[i].read_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_misses")==0) {sys.L1Directory[i].write_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"conflicts")==0) {sys.L1Directory[i].conflicts=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"duty_cycle")==0) {sys.L1Directory[i].duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ }
+ w=w+1;
+ }
+ else {
+ printf("The value of homogeneous_L1Directories or number_of_L1Directories is not correct!");
+ exit(0);
+ }
+ }
+ }
+
+ //__________________________________________Get system.L2Directory0-n____________________________________________
+ w=OrderofComponents_3layer+1;
+ tmpOrderofComponents_3layer=OrderofComponents_3layer;
+ if (sys.homogeneous_L2Directories==1) OrderofComponents_3layer=OrderofComponents_3layer+1;
+ else OrderofComponents_3layer=OrderofComponents_3layer+sys.number_of_L2Directories;
+
+ for (i=0; i<(OrderofComponents_3layer-tmpOrderofComponents_3layer); i++)
+ {
+ xNode3=xNode2.getChildNode("component",w);
+ if (xNode3.isEmpty()==1) {
+ printf("The value of homogeneous_L2Directories or number_of_L2Directories is not correct!");
+ exit(0);
+ }
+ else
+ {
+ if (strstr(xNode3.getAttribute("id"),"L2Directory")!=NULL)
+ {
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.L2Directory
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"Dir_config")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L2Directory[i].Dir_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L2Directory[i].Dir_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"buffer_sizes")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L2Directory[i].buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L2Directory[i].buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"clockrate")==0) {sys.L2Directory[i].clockrate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"Directory_type")==0) {sys.L2Directory[i].Directory_type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"ports")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L2Directory[i].ports[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L2Directory[i].ports[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"device_type")==0) {sys.L2Directory[i].device_type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"3D_stack")==0) {strcpy(sys.L2Directory[i].threeD_stack,xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ }
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in system.L2directorydirectory
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_accesses")==0) {sys.L2Directory[i].total_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"read_accesses")==0) {sys.L2Directory[i].read_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_accesses")==0) {sys.L2Directory[i].write_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"read_misses")==0) {sys.L2Directory[i].read_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_misses")==0) {sys.L2Directory[i].write_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"conflicts")==0) {sys.L2Directory[i].conflicts=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"duty_cycle")==0) {sys.L2Directory[i].duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+
+ }
+ w=w+1;
+ }
+ else {
+ printf("The value of homogeneous_L2Directories or number_of_L2Directories is not correct!");
+ exit(0);
+ }
+ }
+ }
+
+ //__________________________________________Get system.L2[0..n]____________________________________________
+ w=OrderofComponents_3layer+1;
+ tmpOrderofComponents_3layer=OrderofComponents_3layer;
+ if (sys.homogeneous_L2s==1) OrderofComponents_3layer=OrderofComponents_3layer+1;
+ else OrderofComponents_3layer=OrderofComponents_3layer+sys.number_of_L2s;
+
+ for (i=0; i<(OrderofComponents_3layer-tmpOrderofComponents_3layer); i++)
+ {
+ xNode3=xNode2.getChildNode("component",w);
+ if (xNode3.isEmpty()==1) {
+ printf("The value of homogeneous_L2s or number_of_L2s is not correct!");
+ exit(0);
+ }
+ else
+ {
+ if (strstr(xNode3.getAttribute("name"),"L2")!=NULL)
+ {
+ { //For L20-L2i
+ //Get all params with system.L2?
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ {
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"L2_config")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L2[i].L2_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L2[i].L2_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"clockrate")==0) {sys.L2[i].clockrate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"merged_dir")==0) {sys.L2[i].merged_dir=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"ports")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L2[i].ports[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L2[i].ports[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"device_type")==0) {sys.L2[i].device_type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"threeD_stack")==0) {strcpy(sys.L2[i].threeD_stack,(xNode3.getChildNode("param",k).getAttribute("value")));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"buffer_sizes")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L2[i].buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L2[i].buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ }
+ //Get all stats with system.L2?
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ {
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_accesses")==0) {sys.L2[i].total_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"read_accesses")==0) {sys.L2[i].read_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_accesses")==0) {sys.L2[i].write_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_hits")==0) {sys.L2[i].total_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_misses")==0) {sys.L2[i].total_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"read_hits")==0) {sys.L2[i].read_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_hits")==0) {sys.L2[i].write_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"read_misses")==0) {sys.L2[i].read_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_misses")==0) {sys.L2[i].write_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"replacements")==0) {sys.L2[i].replacements=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_backs")==0) {sys.L2[i].write_backs=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"miss_buffer_accesses")==0) {sys.L2[i].miss_buffer_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"fill_buffer_accesses")==0) {sys.L2[i].fill_buffer_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_accesses")==0) {sys.L2[i].prefetch_buffer_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_writes")==0) {sys.L2[i].prefetch_buffer_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_reads")==0) {sys.L2[i].prefetch_buffer_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_hits")==0) {sys.L2[i].prefetch_buffer_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"wbb_writes")==0) {sys.L2[i].wbb_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"wbb_reads")==0) {sys.L2[i].wbb_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"conflicts")==0) {sys.L2[i].conflicts=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"duty_cycle")==0) {sys.L2[i].duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_read_accesses")==0) {sys.L2[i].homenode_read_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_read_accesses")==0) {sys.L2[i].homenode_read_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_read_hits")==0) {sys.L2[i].homenode_read_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_write_hits")==0) {sys.L2[i].homenode_write_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_read_misses")==0) {sys.L2[i].homenode_read_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_write_misses")==0) {sys.L2[i].homenode_write_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"dir_duty_cycle")==0) {sys.L2[i].dir_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+
+ }
+ }
+ w=w+1;
+ }
+ else {
+ printf("The value of homogeneous_L2s or number_of_L2s is not correct!");
+ exit(0);
+ }
+ }
+ }
+ //__________________________________________Get system.L3[0..n]____________________________________________
+ w=OrderofComponents_3layer+1;
+ tmpOrderofComponents_3layer=OrderofComponents_3layer;
+ if (sys.homogeneous_L3s==1) OrderofComponents_3layer=OrderofComponents_3layer+1;
+ else OrderofComponents_3layer=OrderofComponents_3layer+sys.number_of_L3s;
+
+ for (i=0; i<(OrderofComponents_3layer-tmpOrderofComponents_3layer); i++)
+ {
+ xNode3=xNode2.getChildNode("component",w);
+ if (xNode3.isEmpty()==1) {
+ printf("The value of homogeneous_L3s or number_of_L3s is not correct!");
+ exit(0);
+ }
+ else
+ {
+ if (strstr(xNode3.getAttribute("name"),"L3")!=NULL)
+ {
+ { //For L30-L3i
+ //Get all params with system.L3?
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ {
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"L3_config")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L3[i].L3_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L3[i].L3_config[m]=atof(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"clockrate")==0) {sys.L3[i].clockrate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"merged_dir")==0) {sys.L3[i].merged_dir=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"ports")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L3[i].ports[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L3[i].ports[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"device_type")==0) {sys.L3[i].device_type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"threeD_stack")==0) {strcpy(sys.L3[i].threeD_stack,(xNode3.getChildNode("param",k).getAttribute("value")));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"buffer_sizes")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.L3[i].buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.L3[i].buffer_sizes[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ }
+ //Get all stats with system.L3?
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ {
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_accesses")==0) {sys.L3[i].total_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"read_accesses")==0) {sys.L3[i].read_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_accesses")==0) {sys.L3[i].write_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_hits")==0) {sys.L3[i].total_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_misses")==0) {sys.L3[i].total_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"read_hits")==0) {sys.L3[i].read_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_hits")==0) {sys.L3[i].write_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"read_misses")==0) {sys.L3[i].read_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_misses")==0) {sys.L3[i].write_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"replacements")==0) {sys.L3[i].replacements=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"write_backs")==0) {sys.L3[i].write_backs=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"miss_buffer_accesses")==0) {sys.L3[i].miss_buffer_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"fill_buffer_accesses")==0) {sys.L3[i].fill_buffer_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_accesses")==0) {sys.L3[i].prefetch_buffer_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_writes")==0) {sys.L3[i].prefetch_buffer_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_reads")==0) {sys.L3[i].prefetch_buffer_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"prefetch_buffer_hits")==0) {sys.L3[i].prefetch_buffer_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"wbb_writes")==0) {sys.L3[i].wbb_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"wbb_reads")==0) {sys.L3[i].wbb_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"conflicts")==0) {sys.L3[i].conflicts=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"duty_cycle")==0) {sys.L3[i].duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_read_accesses")==0) {sys.L3[i].homenode_read_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_read_accesses")==0) {sys.L3[i].homenode_read_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_read_hits")==0) {sys.L3[i].homenode_read_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_write_hits")==0) {sys.L3[i].homenode_write_hits=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_read_misses")==0) {sys.L3[i].homenode_read_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"homenode_write_misses")==0) {sys.L3[i].homenode_write_misses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"dir_duty_cycle")==0) {sys.L3[i].dir_duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+
+ }
+ }
+ w=w+1;
+ }
+ else {
+ printf("The value of homogeneous_L3s or number_of_L3s is not correct!");
+ exit(0);
+ }
+ }
+ }
+ //__________________________________________Get system.NoC[0..n]____________________________________________
+ w=OrderofComponents_3layer+1;
+ tmpOrderofComponents_3layer=OrderofComponents_3layer;
+ if (sys.homogeneous_NoCs==1) OrderofComponents_3layer=OrderofComponents_3layer+1;
+ else OrderofComponents_3layer=OrderofComponents_3layer+sys.number_of_NoCs;
+
+ for (i=0; i<(OrderofComponents_3layer-tmpOrderofComponents_3layer); i++)
+ {
+ xNode3=xNode2.getChildNode("component",w);
+ if (xNode3.isEmpty()==1) {
+ printf("The value of homogeneous_NoCs or number_of_NoCs is not correct!");
+ exit(0);
+ }
+ else
+ {
+ if (strstr(xNode3.getAttribute("name"),"noc")!=NULL)
+ {
+ { //For NoC0-NoCi
+ //Get all params with system.NoC?
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ {
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"clockrate")==0) {sys.NoC[i].clockrate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"type")==0) {sys.NoC[i].type=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"topology")==0) {strcpy(sys.NoC[i].topology,(xNode3.getChildNode("param",k).getAttribute("value")));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"horizontal_nodes")==0) {sys.NoC[i].horizontal_nodes=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"vertical_nodes")==0) {sys.NoC[i].vertical_nodes=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"has_global_link")==0) {sys.NoC[i].has_global_link=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"link_throughput")==0) {sys.NoC[i].link_throughput=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"link_latency")==0) {sys.NoC[i].link_latency=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"input_ports")==0) {sys.NoC[i].input_ports=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"output_ports")==0) {sys.NoC[i].output_ports=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"virtual_channel_per_port")==0) {sys.NoC[i].virtual_channel_per_port=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"flit_bits")==0) {sys.NoC[i].flit_bits=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"input_buffer_entries_per_vc")==0) {sys.NoC[i].input_buffer_entries_per_vc=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"dual_pump")==0) {sys.NoC[i].dual_pump=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"chip_coverage")==0) {sys.NoC[i].chip_coverage=atof(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"link_routing_over_percentage")==0) {sys.NoC[i].route_over_perc=atof(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"ports_of_input_buffer")==0)
+ {
+ strtmp.assign(xNode3.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.NoC[i].ports_of_input_buffer[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.NoC[i].ports_of_input_buffer[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ continue;
+ }
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"number_of_crossbars")==0) {sys.NoC[i].number_of_crossbars=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"crossbar_type")==0) {strcpy(sys.NoC[i].crossbar_type,(xNode3.getChildNode("param",k).getAttribute("value")));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"crosspoint_type")==0) {strcpy(sys.NoC[i].crosspoint_type,(xNode3.getChildNode("param",k).getAttribute("value")));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"arbiter_type")==0) {sys.NoC[i].arbiter_type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ }
+ NumofCom_4=xNode3.nChildNode("component"); //get the number of components within the third layer
+ for(j=0; j<NumofCom_4; j++)
+ {
+ xNode4=xNode3.getChildNode("component",j);
+ if (strcmp(xNode4.getAttribute("name"),"xbar0")==0)
+ { //find PBT
+ itmp=xNode4.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.XoC0.xbar0--xbar0
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"number_of_inputs_of_crossbars")==0) {sys.NoC[i].xbar0.number_of_inputs_of_crossbars=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"number_of_outputs_of_crossbars")==0) {sys.NoC[i].xbar0.number_of_outputs_of_crossbars=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"flit_bits")==0) {sys.NoC[i].xbar0.flit_bits=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"input_buffer_entries_per_port")==0) {sys.NoC[i].xbar0.input_buffer_entries_per_port=atoi(xNode4.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode4.getChildNode("param",k).getAttribute("name"),"ports_of_input_buffer")==0)
+ {
+ strtmp.assign(xNode4.getChildNode("param",k).getAttribute("value"));
+ m=0;
+ for(n=0; n<strtmp.length(); n++)
+ {
+ if (strtmp[n]!=',')
+ {
+ sprintf(chtmp,"%c",strtmp[n]);
+ strcat(chtmp1,chtmp);
+ }
+ else{
+ sys.NoC[i].xbar0.ports_of_input_buffer[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ sys.NoC[i].xbar0.ports_of_input_buffer[m]=atoi(chtmp1);
+ m++;
+ chtmp1[0]='\0';
+ }
+ }
+ itmp=xNode4.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in system.core0.predictor--PBT
+ if (strcmp(xNode4.getChildNode("stat",k).getAttribute("name"),"predictor_accesses")==0) sys.core[i].predictor.predictor_accesses=atof(xNode4.getChildNode("stat",k).getAttribute("value"));
+ }
+ }
+ }
+ //Get all stats with system.NoC?
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ {
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_accesses")==0) sys.NoC[i].total_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"duty_cycle")==0) sys.NoC[i].duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));
+ }
+ }
+ w=w+1;
+ }
+ }
+ }
+ //__________________________________________Get system.mem____________________________________________
+ if (OrderofComponents_3layer>0) OrderofComponents_3layer=OrderofComponents_3layer+1;
+ xNode3=xNode2.getChildNode("component",OrderofComponents_3layer);
+ if (xNode3.isEmpty()==1) {
+ printf("some value(s) of number_of_cores/number_of_L2s/number_of_L3s/number_of_NoCs is/are not correct!");
+ exit(0);
+ }
+ if (strstr(xNode3.getAttribute("id"),"system.mem")!=NULL)
+ {
+
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.mem
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"mem_tech_node")==0) {sys.mem.mem_tech_node=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"device_clock")==0) {sys.mem.device_clock=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"peak_transfer_rate")==0) {sys.mem.peak_transfer_rate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"capacity_per_channel")==0) {sys.mem.capacity_per_channel=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"number_ranks")==0) {sys.mem.number_ranks=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"num_banks_of_DRAM_chip")==0) {sys.mem.num_banks_of_DRAM_chip=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"Block_width_of_DRAM_chip")==0) {sys.mem.Block_width_of_DRAM_chip=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"output_width_of_DRAM_chip")==0) {sys.mem.output_width_of_DRAM_chip=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"page_size_of_DRAM_chip")==0) {sys.mem.page_size_of_DRAM_chip=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"burstlength_of_DRAM_chip")==0) {sys.mem.burstlength_of_DRAM_chip=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"internal_prefetch_of_DRAM_chip")==0) {sys.mem.internal_prefetch_of_DRAM_chip=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ }
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in system.mem
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"memory_accesses")==0) {sys.mem.memory_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"memory_reads")==0) {sys.mem.memory_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"memory_writes")==0) {sys.mem.memory_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ }
+ }
+ else{
+ printf("some value(s) of number_of_cores/number_of_L2s/number_of_L3s/number_of_NoCs is/are not correct!");
+ exit(0);
+ }
+ //__________________________________________Get system.mc____________________________________________
+ if (OrderofComponents_3layer>0) OrderofComponents_3layer=OrderofComponents_3layer+1;
+ xNode3=xNode2.getChildNode("component",OrderofComponents_3layer);
+ if (xNode3.isEmpty()==1) {
+ printf("some value(s) of number_of_cores/number_of_L2s/number_of_L3s/number_of_NoCs is/are not correct!");
+ exit(0);
+ }
+ if (strstr(xNode3.getAttribute("id"),"system.mc")!=NULL)
+ {
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.mem
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"mc_clock")==0) {sys.mc.mc_clock=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"block_size")==0) {sys.mc.llc_line_length=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"number_mcs")==0) {sys.mc.number_mcs=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"memory_channels_per_mc")==0) {sys.mc.memory_channels_per_mc=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"req_window_size_per_channel")==0) {sys.mc.req_window_size_per_channel=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"IO_buffer_size_per_channel")==0) {sys.mc.IO_buffer_size_per_channel=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"databus_width")==0) {sys.mc.databus_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"addressbus_width")==0) {sys.mc.addressbus_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"peak_transfer_rate")==0) {sys.mc.peak_transfer_rate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"number_ranks")==0) {sys.mc.number_ranks=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"LVDS")==0) {sys.mc.LVDS=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"type")==0) {sys.mc.type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"withPHY")==0) {sys.mc.withPHY=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+
+ }
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in system.mendirectory
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"memory_accesses")==0) {sys.mc.memory_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"memory_reads")==0) {sys.mc.memory_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"memory_writes")==0) {sys.mc.memory_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ }
+ }
+ else{
+ printf("some value(s) of number_of_cores/number_of_L2s/number_of_L3s/number_of_NoCs is/are not correct!");
+ exit(0);
+ }
+ //__________________________________________Get system.niu____________________________________________
+ if (OrderofComponents_3layer>0) OrderofComponents_3layer=OrderofComponents_3layer+1;
+ xNode3=xNode2.getChildNode("component",OrderofComponents_3layer);
+ if (xNode3.isEmpty()==1) {
+ printf("some value(s) of number_of_cores/number_of_L2s/number_of_L3s/number_of_NoCs is/are not correct!");
+ exit(0);
+ }
+ if (strstr(xNode3.getAttribute("id"),"system.niu")!=NULL)
+ {
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.mem
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"clockrate")==0) {sys.niu.clockrate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"number_units")==0) {sys.niu.number_units=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"type")==0) {sys.niu.type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ }
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in system.mendirectory
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"duty_cycle")==0) {sys.niu.duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_load_perc")==0) {sys.niu.total_load_perc=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ }
+ }
+ else{
+ printf("some value(s) of number_of_cores/number_of_L2s/number_of_L3s/number_of_NoCs is/are not correct!");
+ exit(0);
+ }
+
+ //__________________________________________Get system.pcie____________________________________________
+ if (OrderofComponents_3layer>0) OrderofComponents_3layer=OrderofComponents_3layer+1;
+ xNode3=xNode2.getChildNode("component",OrderofComponents_3layer);
+ if (xNode3.isEmpty()==1) {
+ printf("some value(s) of number_of_cores/number_of_L2s/number_of_L3s/number_of_NoCs is/are not correct!");
+ exit(0);
+ }
+ if (strstr(xNode3.getAttribute("id"),"system.pcie")!=NULL)
+ {
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.mem
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"clockrate")==0) {sys.pcie.clockrate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"number_units")==0) {sys.pcie.number_units=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"num_channels")==0) {sys.pcie.num_channels=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"type")==0) {sys.pcie.type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"withPHY")==0) {sys.pcie.withPHY=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+
+ }
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in system.mendirectory
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"duty_cycle")==0) {sys.pcie.duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_load_perc")==0) {sys.pcie.total_load_perc=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ }
+ }
+ else{
+ printf("some value(s) of number_of_cores/number_of_L2s/number_of_L3s/number_of_NoCs is/are not correct!");
+ exit(0);
+ }
+ //__________________________________________Get system.flashcontroller____________________________________________
+ if (OrderofComponents_3layer>0) OrderofComponents_3layer=OrderofComponents_3layer+1;
+ xNode3=xNode2.getChildNode("component",OrderofComponents_3layer);
+ if (xNode3.isEmpty()==1) {
+ printf("some value(s) of number_of_cores/number_of_L2s/number_of_L3s/number_of_NoCs is/are not correct!");
+ exit(0);
+ }
+ if (strstr(xNode3.getAttribute("id"),"system.flashc")!=NULL)
+ {
+ itmp=xNode3.nChildNode("param");
+ for(k=0; k<itmp; k++)
+ { //get all items of param in system.mem
+// if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"flashc_clock")==0) {sys.flashc.mc_clock=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+// if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"block_size")==0) {sys.flashc.llc_line_length=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"number_flashcs")==0) {sys.flashc.number_mcs=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+// if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"memory_channels_per_flashc")==0) {sys.flashc.memory_channels_per_mc=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+// if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"req_window_size_per_channel")==0) {sys.flashc.req_window_size_per_channel=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+// if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"IO_buffer_size_per_channel")==0) {sys.flashc.IO_buffer_size_per_channel=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+// if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"databus_width")==0) {sys.flashc.databus_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+// if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"addressbus_width")==0) {sys.flashc.addressbus_width=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"peak_transfer_rate")==0) {sys.flashc.peak_transfer_rate=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+// if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"number_ranks")==0) {sys.flashc.number_ranks=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+// if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"LVDS")==0) {sys.flashc.LVDS=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"type")==0) {sys.flashc.type=atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("param",k).getAttribute("name"),"withPHY")==0) {sys.flashc.withPHY=(bool)atoi(xNode3.getChildNode("param",k).getAttribute("value"));continue;}
+
+ }
+ itmp=xNode3.nChildNode("stat");
+ for(k=0; k<itmp; k++)
+ { //get all items of stat in system.mendirectory
+// if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"memory_accesses")==0) {sys.flashc.memory_accesses=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+// if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"memory_reads")==0) {sys.flashc.memory_reads=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+// if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"memory_writes")==0) {sys.flashc.memory_writes=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"duty_cycle")==0) {sys.flashc.duty_cycle=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+ if (strcmp(xNode3.getChildNode("stat",k).getAttribute("name"),"total_load_perc")==0) {sys.flashc.total_load_perc=atof(xNode3.getChildNode("stat",k).getAttribute("value"));continue;}
+
+ }
+ }
+ else{
+ printf("some value(s) of number_of_cores/number_of_L2s/number_of_L3s/number_of_NoCs is/are not correct!");
+ exit(0);
+ }
+
+ }
+}
+void ParseXML::initialize() //Initialize all
+{
+ //All number_of_* at the level of 'system' 03/21/2009
+ sys.number_of_cores=1;
+ sys.number_of_L1Directories=1;
+ sys.number_of_L2Directories=1;
+ sys.number_of_L2s=1;
+ sys.Private_L2 = false;
+ sys.number_of_L3s=1;
+ sys.number_of_NoCs=1;
+ // All params at the level of 'system'
+ //strcpy(sys.homogeneous_cores,"default");
+ sys.core_tech_node=1;
+ sys.target_core_clockrate=1;
+ sys.target_chip_area=1;
+ sys.temperature=1;
+ sys.number_cache_levels=1;
+ sys.homogeneous_cores=1;
+ sys.homogeneous_L1Directories=1;
+ sys.homogeneous_L2Directories=1;
+ sys.homogeneous_L2s=1;
+ sys.homogeneous_L3s=1;
+ sys.homogeneous_NoCs=1;
+ sys.homogeneous_ccs=1;
+
+ sys.Max_area_deviation=1;
+ sys.Max_power_deviation=1;
+ sys.device_type=1;
+ sys.longer_channel_device =true;
+ sys.Embedded =false;
+ sys.opt_dynamic_power=false;
+ sys.opt_lakage_power=false;
+ sys.opt_clockrate=true;
+ sys.opt_area=false;
+ sys.interconnect_projection_type=1;
+ int i,j;
+ for (i=0; i<=63; i++)
+ {
+ sys.core[i].clock_rate=1;
+ sys.core[i].opt_local = true;
+ sys.core[i].x86 = false;
+ sys.core[i].machine_bits=1;
+ sys.core[i].virtual_address_width=1;
+ sys.core[i].physical_address_width=1;
+ sys.core[i].opcode_width=1;
+ sys.core[i].micro_opcode_width=1;
+ //strcpy(sys.core[i].machine_type,"default");
+ sys.core[i].internal_datapath_width=1;
+ sys.core[i].number_hardware_threads=1;
+ sys.core[i].fetch_width=1;
+ sys.core[i].number_instruction_fetch_ports=1;
+ sys.core[i].decode_width=1;
+ sys.core[i].issue_width=1;
+ sys.core[i].peak_issue_width=1;
+ sys.core[i].commit_width=1;
+ for (j=0; j<20; j++) sys.core[i].pipelines_per_core[j]=1;
+ for (j=0; j<20; j++) sys.core[i].pipeline_depth[j]=1;
+ strcpy(sys.core[i].FPU,"default");
+ strcpy(sys.core[i]. divider_multiplier,"default");
+ sys.core[i].ALU_per_core=1;
+ sys.core[i].FPU_per_core=1.0;
+ sys.core[i].MUL_per_core=1;
+ sys.core[i].instruction_buffer_size=1;
+ sys.core[i].decoded_stream_buffer_size=1;
+ //strcpy(sys.core[i].instruction_window_scheme,"default");
+ sys.core[i].instruction_window_size=1;
+ sys.core[i].ROB_size=1;
+ sys.core[i].archi_Regs_IRF_size=1;
+ sys.core[i].archi_Regs_FRF_size=1;
+ sys.core[i].phy_Regs_IRF_size=1;
+ sys.core[i].phy_Regs_FRF_size=1;
+ //strcpy(sys.core[i].rename_scheme,"default");
+ sys.core[i].register_windows_size=1;
+ strcpy(sys.core[i].LSU_order,"default");
+ sys.core[i].store_buffer_size=1;
+ sys.core[i].load_buffer_size=1;
+ sys.core[i].memory_ports=1;
+ strcpy(sys.core[i].Dcache_dual_pump,"default");
+ sys.core[i].RAS_size=1;
+ //all stats at the level of system.core(0-n)
+ sys.core[i].total_instructions=1;
+ sys.core[i].int_instructions=1;
+ sys.core[i].fp_instructions=1;
+ sys.core[i].branch_instructions=1;
+ sys.core[i].branch_mispredictions=1;
+ sys.core[i].committed_instructions=1;
+ sys.core[i].load_instructions=1;
+ sys.core[i].store_instructions=1;
+ sys.core[i].total_cycles=1;
+ sys.core[i].idle_cycles=1;
+ sys.core[i].busy_cycles=1;
+ sys.core[i].instruction_buffer_reads=1;
+ sys.core[i].instruction_buffer_write=1;
+ sys.core[i].ROB_reads=1;
+ sys.core[i].ROB_writes=1;
+ sys.core[i].rename_accesses=1;
+ sys.core[i].inst_window_reads=1;
+ sys.core[i].inst_window_writes=1;
+ sys.core[i].inst_window_wakeup_accesses=1;
+ sys.core[i].inst_window_selections=1;
+ sys.core[i].archi_int_regfile_reads=1;
+ sys.core[i].archi_float_regfile_reads=1;
+ sys.core[i].phy_int_regfile_reads=1;
+ sys.core[i].phy_float_regfile_reads=1;
+ sys.core[i].windowed_reg_accesses=1;
+ sys.core[i].windowed_reg_transports=1;
+ sys.core[i].function_calls=1;
+ sys.core[i].ialu_accesses=1;
+ sys.core[i].fpu_accesses=1;
+ sys.core[i].mul_accesses=1;
+ sys.core[i].cdb_alu_accesses=1;
+ sys.core[i].cdb_mul_accesses=1;
+ sys.core[i].cdb_fpu_accesses=1;
+ sys.core[i].load_buffer_reads=1;
+ sys.core[i].load_buffer_writes=1;
+ sys.core[i].load_buffer_cams=1;
+ sys.core[i].store_buffer_reads=1;
+ sys.core[i].store_buffer_writes=1;
+ sys.core[i].store_buffer_cams=1;
+ sys.core[i].store_buffer_forwards=1;
+ sys.core[i].main_memory_access=1;
+ sys.core[i].main_memory_read=1;
+ sys.core[i].main_memory_write=1;
+ sys.core[i].IFU_duty_cycle = 1;
+ sys.core[i].BR_duty_cycle = 1;
+ sys.core[i].LSU_duty_cycle = 1;
+ sys.core[i].MemManU_I_duty_cycle =1;
+ sys.core[i].MemManU_D_duty_cycle =1;
+ sys.core[i].ALU_duty_cycle =1;
+ sys.core[i].MUL_duty_cycle =1;
+ sys.core[i].FPU_duty_cycle =1;
+ sys.core[i].ALU_cdb_duty_cycle =1;
+ sys.core[i].MUL_cdb_duty_cycle =1;
+ sys.core[i].FPU_cdb_duty_cycle =1;
+ //system.core?.predictor
+ sys.core[i].predictor.prediction_width=1;
+ strcpy(sys.core[i].predictor.prediction_scheme,"default");
+ sys.core[i].predictor.predictor_size=1;
+ sys.core[i].predictor.predictor_entries=1;
+ sys.core[i].predictor.local_predictor_entries=1;
+ for (j=0; j<20; j++) sys.core[i].predictor.local_predictor_size[j]=1;
+ sys.core[i].predictor.global_predictor_entries=1;
+ sys.core[i].predictor.global_predictor_bits=1;
+ sys.core[i].predictor.chooser_predictor_entries=1;
+ sys.core[i].predictor.chooser_predictor_bits=1;
+ sys.core[i].predictor.predictor_accesses=1;
+ //system.core?.itlb
+ sys.core[i].itlb.number_entries=1;
+ sys.core[i].itlb.total_hits=1;
+ sys.core[i].itlb.total_accesses=1;
+ sys.core[i].itlb.total_misses=1;
+ //system.core?.icache
+ for (j=0; j<20; j++) sys.core[i].icache.icache_config[j]=1;
+ //strcpy(sys.core[i].icache.buffer_sizes,"default");
+ sys.core[i].icache.total_accesses=1;
+ sys.core[i].icache.read_accesses=1;
+ sys.core[i].icache.read_misses=1;
+ sys.core[i].icache.replacements=1;
+ sys.core[i].icache.read_hits=1;
+ sys.core[i].icache.total_hits=1;
+ sys.core[i].icache.total_misses=1;
+ sys.core[i].icache.miss_buffer_access=1;
+ sys.core[i].icache.fill_buffer_accesses=1;
+ sys.core[i].icache.prefetch_buffer_accesses=1;
+ sys.core[i].icache.prefetch_buffer_writes=1;
+ sys.core[i].icache.prefetch_buffer_reads=1;
+ sys.core[i].icache.prefetch_buffer_hits=1;
+ //system.core?.dtlb
+ sys.core[i].dtlb.number_entries=1;
+ sys.core[i].dtlb.total_accesses=1;
+ sys.core[i].dtlb.read_accesses=1;
+ sys.core[i].dtlb.write_accesses=1;
+ sys.core[i].dtlb.write_hits=1;
+ sys.core[i].dtlb.read_hits=1;
+ sys.core[i].dtlb.read_misses=1;
+ sys.core[i].dtlb.write_misses=1;
+ sys.core[i].dtlb.total_hits=1;
+ sys.core[i].dtlb.total_misses=1;
+ //system.core?.dcache
+ for (j=0; j<20; j++) sys.core[i].dcache.dcache_config[j]=1;
+ //strcpy(sys.core[i].dcache.buffer_sizes,"default");
+ sys.core[i].dcache.total_accesses=1;
+ sys.core[i].dcache.read_accesses=1;
+ sys.core[i].dcache.write_accesses=1;
+ sys.core[i].dcache.total_hits=1;
+ sys.core[i].dcache.total_misses=1;
+ sys.core[i].dcache.read_hits=1;
+ sys.core[i].dcache.write_hits=1;
+ sys.core[i].dcache.read_misses=1;
+ sys.core[i].dcache.write_misses=1;
+ sys.core[i].dcache.replacements=1;
+ sys.core[i].dcache.write_backs=1;
+ sys.core[i].dcache.miss_buffer_access=1;
+ sys.core[i].dcache.fill_buffer_accesses=1;
+ sys.core[i].dcache.prefetch_buffer_accesses=1;
+ sys.core[i].dcache.prefetch_buffer_writes=1;
+ sys.core[i].dcache.prefetch_buffer_reads=1;
+ sys.core[i].dcache.prefetch_buffer_hits=1;
+ sys.core[i].dcache.wbb_writes=1;
+ sys.core[i].dcache.wbb_reads=1;
+ //system.core?.BTB
+ for (j=0; j<20; j++) sys.core[i].BTB.BTB_config[j]=1;
+ sys.core[i].BTB.total_accesses=1;
+ sys.core[i].BTB.read_accesses=1;
+ sys.core[i].BTB.write_accesses=1;
+ sys.core[i].BTB.total_hits=1;
+ sys.core[i].BTB.total_misses=1;
+ sys.core[i].BTB.read_hits=1;
+ sys.core[i].BTB.write_hits=1;
+ sys.core[i].BTB.read_misses=1;
+ sys.core[i].BTB.write_misses=1;
+ sys.core[i].BTB.replacements=1;
+ }
+
+ //system_L1directory
+ for (i=0; i<=63; i++)
+ {
+ for (j=0; j<20; j++) sys.L1Directory[i].Dir_config[j]=1;
+ for (j=0; j<20; j++) sys.L1Directory[i].buffer_sizes[j]=1;
+ sys.L1Directory[i].clockrate=1;
+ sys.L1Directory[i].ports[20]=1;
+ sys.L1Directory[i].device_type=1;
+ strcpy(sys.L1Directory[i].threeD_stack,"default");
+ sys.L1Directory[i].total_accesses=1;
+ sys.L1Directory[i].read_accesses=1;
+ sys.L1Directory[i].write_accesses=1;
+ sys.L1Directory[i].duty_cycle =1;
+ }
+ //system_L2directory
+ for (i=0; i<=63; i++)
+ {
+ for (j=0; j<20; j++) sys.L2Directory[i].Dir_config[j]=1;
+ for (j=0; j<20; j++) sys.L2Directory[i].buffer_sizes[j]=1;
+ sys.L2Directory[i].clockrate=1;
+ sys.L2Directory[i].ports[20]=1;
+ sys.L2Directory[i].device_type=1;
+ strcpy(sys.L2Directory[i].threeD_stack,"default");
+ sys.L2Directory[i].total_accesses=1;
+ sys.L2Directory[i].read_accesses=1;
+ sys.L2Directory[i].write_accesses=1;
+ sys.L2Directory[i].duty_cycle =1;
+ }
+ for (i=0; i<=63; i++)
+ {
+ //system_L2
+ for (j=0; j<20; j++) sys.L2[i].L2_config[j]=1;
+ sys.L2[i].clockrate=1;
+ for (j=0; j<20; j++) sys.L2[i].ports[j]=1;
+ sys.L2[i].device_type=1;
+ strcpy(sys.L2[i].threeD_stack,"default");
+ for (j=0; j<20; j++) sys.L2[i].buffer_sizes[j]=1;
+ sys.L2[i].total_accesses=1;
+ sys.L2[i].read_accesses=1;
+ sys.L2[i].write_accesses=1;
+ sys.L2[i].total_hits=1;
+ sys.L2[i].total_misses=1;
+ sys.L2[i].read_hits=1;
+ sys.L2[i].write_hits=1;
+ sys.L2[i].read_misses=1;
+ sys.L2[i].write_misses=1;
+ sys.L2[i].replacements=1;
+ sys.L2[i].write_backs=1;
+ sys.L2[i].miss_buffer_accesses=1;
+ sys.L2[i].fill_buffer_accesses=1;
+ sys.L2[i].prefetch_buffer_accesses=1;
+ sys.L2[i].prefetch_buffer_writes=1;
+ sys.L2[i].prefetch_buffer_reads=1;
+ sys.L2[i].prefetch_buffer_hits=1;
+ sys.L2[i].wbb_writes=1;
+ sys.L2[i].wbb_reads=1;
+ sys.L2[i].duty_cycle =1;
+ sys.L2[i].merged_dir=false;
+ sys.L2[i].homenode_read_accesses =1;
+ sys.L2[i].homenode_write_accesses=1;
+ sys.L2[i].homenode_read_hits=1;
+ sys.L2[i].homenode_write_hits=1;
+ sys.L2[i].homenode_read_misses=1;
+ sys.L2[i].homenode_write_misses=1;
+ sys.L2[i].dir_duty_cycle=1;
+ }
+ for (i=0; i<=63; i++)
+ {
+ //system_L3
+ for (j=0; j<20; j++) sys.L3[i].L3_config[j]=1;
+ sys.L3[i].clockrate=1;
+ for (j=0; j<20; j++) sys.L3[i].ports[j]=1;
+ sys.L3[i].device_type=1;
+ strcpy(sys.L3[i].threeD_stack,"default");
+ for (j=0; j<20; j++) sys.L3[i].buffer_sizes[j]=1;
+ sys.L3[i].total_accesses=1;
+ sys.L3[i].read_accesses=1;
+ sys.L3[i].write_accesses=1;
+ sys.L3[i].total_hits=1;
+ sys.L3[i].total_misses=1;
+ sys.L3[i].read_hits=1;
+ sys.L3[i].write_hits=1;
+ sys.L3[i].read_misses=1;
+ sys.L3[i].write_misses=1;
+ sys.L3[i].replacements=1;
+ sys.L3[i].write_backs=1;
+ sys.L3[i].miss_buffer_accesses=1;
+ sys.L3[i].fill_buffer_accesses=1;
+ sys.L3[i].prefetch_buffer_accesses=1;
+ sys.L3[i].prefetch_buffer_writes=1;
+ sys.L3[i].prefetch_buffer_reads=1;
+ sys.L3[i].prefetch_buffer_hits=1;
+ sys.L3[i].wbb_writes=1;
+ sys.L3[i].wbb_reads=1;
+ sys.L3[i].duty_cycle =1;
+ sys.L3[i].merged_dir=false;
+ sys.L3[i].homenode_read_accesses =1;
+ sys.L3[i].homenode_write_accesses=1;
+ sys.L3[i].homenode_read_hits=1;
+ sys.L3[i].homenode_write_hits=1;
+ sys.L3[i].homenode_read_misses=1;
+ sys.L3[i].homenode_write_misses=1;
+ sys.L3[i].dir_duty_cycle=1;
+ }
+ //system_NoC
+ for (i=0; i<=63; i++)
+ {
+ sys.NoC[i].clockrate=1;
+ sys.NoC[i].type=true;
+ sys.NoC[i].chip_coverage=1;
+ sys.NoC[i].has_global_link = true;
+ strcpy(sys.NoC[i].topology,"default");
+ sys.NoC[i].horizontal_nodes=1;
+ sys.NoC[i].vertical_nodes=1;
+ sys.NoC[i].input_ports=1;
+ sys.NoC[i].output_ports=1;
+ sys.NoC[i].virtual_channel_per_port=1;
+ sys.NoC[i].flit_bits=1;
+ sys.NoC[i].input_buffer_entries_per_vc=1;
+ sys.NoC[i].total_accesses=1;
+ sys.NoC[i].duty_cycle=1;
+ sys.NoC[i].route_over_perc = 0.5;
+ for (j=0; j<20; j++) sys.NoC[i].ports_of_input_buffer[j]=1;
+ sys.NoC[i].number_of_crossbars=1;
+ strcpy(sys.NoC[i].crossbar_type,"default");
+ strcpy(sys.NoC[i].crosspoint_type,"default");
+ //system.NoC?.xbar0;
+ sys.NoC[i].xbar0.number_of_inputs_of_crossbars=1;
+ sys.NoC[i].xbar0.number_of_outputs_of_crossbars=1;
+ sys.NoC[i].xbar0.flit_bits=1;
+ sys.NoC[i].xbar0.input_buffer_entries_per_port=1;
+ sys.NoC[i].xbar0.ports_of_input_buffer[20]=1;
+ sys.NoC[i].xbar0.crossbar_accesses=1;
+ }
+ //system_mem
+ sys.mem.mem_tech_node=1;
+ sys.mem.device_clock=1;
+ sys.mem.capacity_per_channel=1;
+ sys.mem.number_ranks=1;
+ sys.mem.peak_transfer_rate =1;
+ sys.mem.num_banks_of_DRAM_chip=1;
+ sys.mem.Block_width_of_DRAM_chip=1;
+ sys.mem.output_width_of_DRAM_chip=1;
+ sys.mem.page_size_of_DRAM_chip=1;
+ sys.mem.burstlength_of_DRAM_chip=1;
+ sys.mem.internal_prefetch_of_DRAM_chip=1;
+ sys.mem.memory_accesses=1;
+ sys.mem.memory_reads=1;
+ sys.mem.memory_writes=1;
+ //system_mc
+ sys.mc.mc_clock =1;
+ sys.mc.number_mcs=1;
+ sys.mc.peak_transfer_rate =1;
+ sys.mc.memory_channels_per_mc=1;
+ sys.mc.number_ranks=1;
+ sys.mc.req_window_size_per_channel=1;
+ sys.mc.IO_buffer_size_per_channel=1;
+ sys.mc.databus_width=1;
+ sys.mc.addressbus_width=1;
+ sys.mc.memory_accesses=1;
+ sys.mc.memory_reads=1;
+ sys.mc.memory_writes=1;
+ sys.mc.LVDS=true;
+ sys.mc.type=1;
+ //system_niu
+ sys.niu.clockrate =1;
+ sys.niu.number_units=1;
+ sys.niu.type = 1;
+ sys.niu.duty_cycle =1;
+ sys.niu.total_load_perc=1;
+ //system_pcie
+ sys.pcie.clockrate =1;
+ sys.pcie.number_units=1;
+ sys.pcie.num_channels=1;
+ sys.pcie.type = 1;
+ sys.pcie.withPHY = false;
+ sys.pcie.duty_cycle =1;
+ sys.pcie.total_load_perc=1;
+ //system_flash_controller
+ sys.flashc.mc_clock =1;
+ sys.flashc.number_mcs=1;
+ sys.flashc.peak_transfer_rate =1;
+ sys.flashc.memory_channels_per_mc=1;
+ sys.flashc.number_ranks=1;
+ sys.flashc.req_window_size_per_channel=1;
+ sys.flashc.IO_buffer_size_per_channel=1;
+ sys.flashc.databus_width=1;
+ sys.flashc.addressbus_width=1;
+ sys.flashc.memory_accesses=1;
+ sys.flashc.memory_reads=1;
+ sys.flashc.memory_writes=1;
+ sys.flashc.LVDS=true;
+ sys.flashc.withPHY = false;
+ sys.flashc.type =1;
+ sys.flashc.duty_cycle =1;
+ sys.flashc.total_load_perc=1;
+}
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#ifndef XML_PARSE_H_
+#define XML_PARSE_H_
+
+
+//#ifdef WIN32
+//#define _CRT_SECURE_NO_DEPRECATE
+//#endif
+
+#include <stdio.h>
+#include <string.h>
+
+#include <iostream>
+
+#include "xmlParser.h"
+using namespace std;
+
+/*
+void myfree(char *t); // {free(t);}
+ToXMLStringTool tx,tx2;
+*/
+//all subnodes at the level of system.core(0-n)
+//cache_policy is added into cache property arrays;//0 no write or write-though with non-write allocate;1 write-back with write-allocate
+
+typedef struct{
+ int prediction_width;
+ char prediction_scheme[20];
+ int predictor_size;
+ int predictor_entries;
+ int local_predictor_size[20];
+ int local_predictor_entries;
+ int global_predictor_entries;
+ int global_predictor_bits;
+ int chooser_predictor_entries;
+ int chooser_predictor_bits;
+ double predictor_accesses;
+} predictor_systemcore;
+typedef struct{
+ int number_entries;
+ int cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate
+ double total_hits;
+ double total_accesses;
+ double total_misses;
+ double conflicts;
+} itlb_systemcore;
+typedef struct{
+ //params
+ double icache_config[20];
+ int buffer_sizes[20];
+ int cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate
+ //stats
+ double total_accesses;
+ double read_accesses;
+ double read_misses;
+ double replacements;
+ double read_hits;
+ double total_hits;
+ double total_misses;
+ double miss_buffer_access;
+ double fill_buffer_accesses;
+ double prefetch_buffer_accesses;
+ double prefetch_buffer_writes;
+ double prefetch_buffer_reads;
+ double prefetch_buffer_hits;
+ double conflicts;
+} icache_systemcore;
+typedef struct{
+ //params
+ int number_entries;
+ int cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate
+ //stats
+ double total_accesses;
+ double read_accesses;
+ double write_accesses;
+ double write_hits;
+ double read_hits;
+ double read_misses;
+ double write_misses;
+ double total_hits;
+ double total_misses;
+ double conflicts;
+} dtlb_systemcore;
+typedef struct{
+ //params
+ double dcache_config[20];
+ int buffer_sizes[20];
+ int cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate
+ //stats
+ double total_accesses;
+ double read_accesses;
+ double write_accesses;
+ double total_hits;
+ double total_misses;
+ double read_hits;
+ double write_hits;
+ double read_misses;
+ double write_misses;
+ double replacements;
+ double write_backs;
+ double miss_buffer_access;
+ double fill_buffer_accesses;
+ double prefetch_buffer_accesses;
+ double prefetch_buffer_writes;
+ double prefetch_buffer_reads;
+ double prefetch_buffer_hits;
+ double wbb_writes;
+ double wbb_reads;
+ double conflicts;
+} dcache_systemcore;
+typedef struct{
+ //params
+ int BTB_config[20];
+ //stats
+ double total_accesses;
+ double read_accesses;
+ double write_accesses;
+ double total_hits;
+ double total_misses;
+ double read_hits;
+ double write_hits;
+ double read_misses;
+ double write_misses;
+ double replacements;
+} BTB_systemcore;
+typedef struct{
+ //all params at the level of system.core(0-n)
+ int clock_rate;
+ bool opt_local;
+ bool x86;
+ int machine_bits;
+ int virtual_address_width;
+ int physical_address_width;
+ int opcode_width;
+ int micro_opcode_width;
+ int instruction_length;
+ int machine_type;
+ int internal_datapath_width;
+ int number_hardware_threads;
+ int fetch_width;
+ int number_instruction_fetch_ports;
+ int decode_width;
+ int issue_width;
+ int peak_issue_width;
+ int commit_width;
+ int pipelines_per_core[20];
+ int pipeline_depth[20];
+ char FPU[20];
+ char divider_multiplier[20];
+ int ALU_per_core;
+ double FPU_per_core;
+ int MUL_per_core;
+ int instruction_buffer_size;
+ int decoded_stream_buffer_size;
+ int instruction_window_scheme;
+ int instruction_window_size;
+ int fp_instruction_window_size;
+ int ROB_size;
+ int archi_Regs_IRF_size;
+ int archi_Regs_FRF_size;
+ int phy_Regs_IRF_size;
+ int phy_Regs_FRF_size;
+ int rename_scheme;
+ int register_windows_size;
+ char LSU_order[20];
+ int store_buffer_size;
+ int load_buffer_size;
+ int memory_ports;
+ char Dcache_dual_pump[20];
+ int RAS_size;
+ int fp_issue_width;
+ int prediction_width;
+ int number_of_BTB;
+ int number_of_BPT;
+
+ //all stats at the level of system.core(0-n)
+ double total_instructions;
+ double int_instructions;
+ double fp_instructions;
+ double branch_instructions;
+ double branch_mispredictions;
+ double committed_instructions;
+ double committed_int_instructions;
+ double committed_fp_instructions;
+ double load_instructions;
+ double store_instructions;
+ double total_cycles;
+ double idle_cycles;
+ double busy_cycles;
+ double instruction_buffer_reads;
+ double instruction_buffer_write;
+ double ROB_reads;
+ double ROB_writes;
+ double rename_accesses;
+ double fp_rename_accesses;
+ double rename_reads;
+ double rename_writes;
+ double fp_rename_reads;
+ double fp_rename_writes;
+ double inst_window_reads;
+ double inst_window_writes;
+ double inst_window_wakeup_accesses;
+ double inst_window_selections;
+ double fp_inst_window_reads;
+ double fp_inst_window_writes;
+ double fp_inst_window_wakeup_accesses;
+ double fp_inst_window_selections;
+ double archi_int_regfile_reads;
+ double archi_float_regfile_reads;
+ double phy_int_regfile_reads;
+ double phy_float_regfile_reads;
+ double phy_int_regfile_writes;
+ double phy_float_regfile_writes;
+ double archi_int_regfile_writes;
+ double archi_float_regfile_writes;
+ double int_regfile_reads;
+ double float_regfile_reads;
+ double int_regfile_writes;
+ double float_regfile_writes;
+ double windowed_reg_accesses;
+ double windowed_reg_transports;
+ double function_calls;
+ double context_switches;
+ double ialu_accesses;
+ double fpu_accesses;
+ double mul_accesses;
+ double cdb_alu_accesses;
+ double cdb_mul_accesses;
+ double cdb_fpu_accesses;
+ double load_buffer_reads;
+ double load_buffer_writes;
+ double load_buffer_cams;
+ double store_buffer_reads;
+ double store_buffer_writes;
+ double store_buffer_cams;
+ double store_buffer_forwards;
+ double main_memory_access;
+ double main_memory_read;
+ double main_memory_write;
+ double pipeline_duty_cycle;
+
+ double IFU_duty_cycle ;
+ double BR_duty_cycle ;
+ double LSU_duty_cycle ;
+ double MemManU_I_duty_cycle;
+ double MemManU_D_duty_cycle ;
+ double ALU_duty_cycle ;
+ double MUL_duty_cycle ;
+ double FPU_duty_cycle ;
+ double ALU_cdb_duty_cycle ;
+ double MUL_cdb_duty_cycle ;
+ double FPU_cdb_duty_cycle ;
+
+ //all subnodes at the level of system.core(0-n)
+ predictor_systemcore predictor;
+ itlb_systemcore itlb;
+ icache_systemcore icache;
+ dtlb_systemcore dtlb;
+ dcache_systemcore dcache;
+ BTB_systemcore BTB;
+
+} system_core;
+typedef struct{
+ //params
+ int Directory_type;
+ double Dir_config[20];
+ int buffer_sizes[20];
+ int clockrate;
+ int ports[20];
+ int device_type;
+ int cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate
+ char threeD_stack[20];
+ //stats
+ double total_accesses;
+ double read_accesses;
+ double write_accesses;
+ double read_misses;
+ double write_misses;
+ double conflicts;
+ double duty_cycle;
+} system_L1Directory;
+typedef struct{
+ //params
+ int Directory_type;
+ double Dir_config[20];
+ int buffer_sizes[20];
+ int clockrate;
+ int ports[20];
+ int device_type;
+ int cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate
+ char threeD_stack[20];
+ //stats
+ double total_accesses;
+ double read_accesses;
+ double write_accesses;
+ double read_misses;
+ double write_misses;
+ double conflicts;
+ double duty_cycle;
+} system_L2Directory;
+typedef struct{
+ //params
+ double L2_config[20];
+ int clockrate;
+ int ports[20];
+ int device_type;
+ int cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate
+ char threeD_stack[20];
+ int buffer_sizes[20];
+ //stats
+ double total_accesses;
+ double read_accesses;
+ double write_accesses;
+ double total_hits;
+ double total_misses;
+ double read_hits;
+ double write_hits;
+ double read_misses;
+ double write_misses;
+ double replacements;
+ double write_backs;
+ double miss_buffer_accesses;
+ double fill_buffer_accesses;
+ double prefetch_buffer_accesses;
+ double prefetch_buffer_writes;
+ double prefetch_buffer_reads;
+ double prefetch_buffer_hits;
+ double wbb_writes;
+ double wbb_reads;
+ double conflicts;
+ double duty_cycle;
+
+ bool merged_dir;
+ double homenode_read_accesses;
+ double homenode_write_accesses;
+ double homenode_read_hits;
+ double homenode_write_hits;
+ double homenode_read_misses;
+ double homenode_write_misses;
+ double dir_duty_cycle;
+} system_L2;
+typedef struct{
+ //params
+ double L3_config[20];
+ int clockrate;
+ int ports[20];
+ int device_type;
+ int cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate
+ char threeD_stack[20];
+ int buffer_sizes[20];
+ //stats
+ double total_accesses;
+ double read_accesses;
+ double write_accesses;
+ double total_hits;
+ double total_misses;
+ double read_hits;
+ double write_hits;
+ double read_misses;
+ double write_misses;
+ double replacements;
+ double write_backs;
+ double miss_buffer_accesses;
+ double fill_buffer_accesses;
+ double prefetch_buffer_accesses;
+ double prefetch_buffer_writes;
+ double prefetch_buffer_reads;
+ double prefetch_buffer_hits;
+ double wbb_writes;
+ double wbb_reads;
+ double conflicts;
+ double duty_cycle;
+
+ bool merged_dir;
+ double homenode_read_accesses;
+ double homenode_write_accesses;
+ double homenode_read_hits;
+ double homenode_write_hits;
+ double homenode_read_misses;
+ double homenode_write_misses;
+ double dir_duty_cycle;
+} system_L3;
+typedef struct{
+ //params
+ int number_of_inputs_of_crossbars;
+ int number_of_outputs_of_crossbars;
+ int flit_bits;
+ int input_buffer_entries_per_port;
+ int ports_of_input_buffer[20];
+ //stats
+ double crossbar_accesses;
+} xbar0_systemNoC;
+typedef struct{
+ //params
+ int clockrate;
+ bool type;
+ bool has_global_link;
+ char topology[20];
+ int horizontal_nodes;
+ int vertical_nodes;
+ int link_throughput;
+ int link_latency;
+ int input_ports;
+ int output_ports;
+ int virtual_channel_per_port;
+ int flit_bits;
+ int input_buffer_entries_per_vc;
+ int ports_of_input_buffer[20];
+ int dual_pump;
+ int number_of_crossbars;
+ char crossbar_type[20];
+ char crosspoint_type[20];
+ xbar0_systemNoC xbar0;
+ int arbiter_type;
+ double chip_coverage;
+ //stats
+ double total_accesses;
+ double duty_cycle;
+ double route_over_perc;
+} system_NoC;
+typedef struct{
+ //params
+ int mem_tech_node;
+ int device_clock;
+ int peak_transfer_rate;
+ int internal_prefetch_of_DRAM_chip;
+ int capacity_per_channel;
+ int number_ranks;
+ int num_banks_of_DRAM_chip;
+ int Block_width_of_DRAM_chip;
+ int output_width_of_DRAM_chip;
+ int page_size_of_DRAM_chip;
+ int burstlength_of_DRAM_chip;
+ //stats
+ double memory_accesses;
+ double memory_reads;
+ double memory_writes;
+} system_mem;
+typedef struct{
+ //params
+ //Common Param for mc and fc
+ double peak_transfer_rate;
+ int number_mcs;
+ bool withPHY;
+ int type;
+
+ //FCParam
+ //stats
+ double duty_cycle;
+ double total_load_perc;
+
+ //McParam
+ int mc_clock;
+ int llc_line_length;
+ int memory_channels_per_mc;
+ int number_ranks;
+ int req_window_size_per_channel;
+ int IO_buffer_size_per_channel;
+ int databus_width;
+ int addressbus_width;
+ bool LVDS;
+
+ //stats
+ double memory_accesses;
+ double memory_reads;
+ double memory_writes;
+} system_mc;
+
+typedef struct{
+ //params
+ int clockrate;
+ int number_units;
+ int type;
+ //stats
+ double duty_cycle;
+ double total_load_perc;
+} system_niu;
+
+typedef struct{
+ //params
+ int clockrate;
+ int number_units;
+ int num_channels;
+ int type;
+ bool withPHY;
+ //stats
+ double duty_cycle;
+ double total_load_perc;
+} system_pcie;
+
+typedef struct{
+ //All number_of_* at the level of 'system' Ying 03/21/2009
+ int number_of_cores;
+ int number_of_L1Directories;
+ int number_of_L2Directories;
+ int number_of_L2s;
+ bool Private_L2;
+ int number_of_L3s;
+ int number_of_NoCs;
+ int number_of_dir_levels;
+ int domain_size;
+ int first_level_dir;
+ // All params at the level of 'system'
+ int homogeneous_cores;
+ int homogeneous_L1Directories;
+ int homogeneous_L2Directories;
+ double core_tech_node;
+ int target_core_clockrate;
+ int target_chip_area;
+ int temperature;
+ int number_cache_levels;
+ int L1_property;
+ int L2_property;
+ int homogeneous_L2s;
+ int L3_property;
+ int homogeneous_L3s;
+ int homogeneous_NoCs;
+ int homogeneous_ccs;
+ int Max_area_deviation;
+ int Max_power_deviation;
+ int device_type;
+ bool longer_channel_device;
+ bool Embedded;
+ bool opt_dynamic_power;
+ bool opt_lakage_power;
+ bool opt_clockrate;
+ bool opt_area;
+ int interconnect_projection_type;
+ int machine_bits;
+ int virtual_address_width;
+ int physical_address_width;
+ int virtual_memory_page_size;
+ double total_cycles;
+ //system.core(0-n):3rd level
+ system_core core[64];
+ system_L1Directory L1Directory[64];
+ system_L2Directory L2Directory[64];
+ system_L2 L2[64];
+ system_L3 L3[64];
+ system_NoC NoC[64];
+ system_mem mem;
+ system_mc mc;
+ system_mc flashc;
+ system_niu niu;
+ system_pcie pcie;
+} root_system;
+
+class ParseXML
+{
+public:
+ void parse(char* filepath);
+ void initialize();
+public:
+ root_system sys;
+};
+
+
+#endif /* XML_PARSE_H_ */
+
+
+
+
--- /dev/null
+<?xml version="1.0" ?>
+<component id="root" name="root">
+ <component id="system" name="system">
+ <!--McPAT will skip the components if number is set to 0 -->
+ <param name="number_of_cores" value="2"/>
+ <param name="number_of_L1Directories" value="0"/>
+ <param name="number_of_L2Directories" value="0"/>
+ <param name="number_of_L2s" value="1"/> <!-- This number means how many L2 clusters in each cluster there can be multiple banks/ports -->
+ <param name="Private_L2" value="1"/><!--1 Private, 0 shared/coherent -->
+ <param name="number_of_L3s" value="1"/> <!-- This number means how many L3 clusters -->
+ <param name="number_of_NoCs" value="1"/>
+ <param name="homogeneous_cores" value="1"/><!--1 means homo -->
+ <param name="homogeneous_L2s" value="1"/>
+ <param name="homogeneous_L1Directorys" value="1"/>
+ <param name="homogeneous_L2Directorys" value="1"/>
+ <param name="homogeneous_L3s" value="1"/>
+ <param name="homogeneous_ccs" value="1"/><!--cache coherece hardware -->
+ <param name="homogeneous_NoCs" value="1"/>
+ <param name="core_tech_node" value="65"/><!-- nm -->
+ <param name="target_core_clockrate" value="3400"/><!--MHz -->
+ <param name="temperature" value="380"/> <!-- Kelvin -->
+ <param name="number_cache_levels" value="3"/>
+ <param name="interconnect_projection_type" value="0"/><!--0: agressive wire technology; 1: conservative wire technology -->
+ <param name="device_type" value="0"/><!--0: HP(High Performance Type); 1: LSTP(Low standby power) 2: LOP (Low Operating Power) -->
+ <param name="longer_channel_device" value="1"/><!-- 0 no use; 1 use when approperiate -->
+ <param name="machine_bits" value="64"/>
+ <param name="virtual_address_width" value="64"/>
+ <param name="physical_address_width" value="52"/>
+ <param name="virtual_memory_page_size" value="4096"/>
+ <!-- address width determins the tag_width in Cache, LSQ and buffers in cache controller
+ default value is machine_bits, if not set -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!--This page size(B) is complete different from the page size in Main memo secction. this page size is the size of
+ virtual memory from OS/Archi perspective; the page size in Main memo secction is the actuall physical line in a DRAM bank -->
+ <!-- *********************** cores ******************* -->
+ <component id="system.core0" name="core0">
+ <!-- Core property -->
+ <param name="clock_rate" value="3400"/>
+ <!-- for cores with unknow timing, set to 0 to force off the opt flag -->
+ <param name="opt_local" value="0"/>
+ <param name="instruction_length" value="32"/>
+ <param name="opcode_width" value="16"/>
+ <param name="x86" value="1"/>
+ <param name="micro_opcode_width" value="8"/>
+ <param name="machine_type" value="0"/>
+ <!-- inorder/OoO; 1 inorder; 0 OOO-->
+ <param name="number_hardware_threads" value="2"/>
+ <!-- number_instruction_fetch_ports(icache ports) is always 1 in single-thread processor,
+ it only may be more than one in SMT processors. BTB ports always equals to fetch ports since
+ branch information in consective branch instructions in the same fetch group can be read out from BTB once.-->
+ <param name="fetch_width" value="4"/>
+ <!-- fetch_width determins the size of cachelines of L1 cache block -->
+ <param name="number_instruction_fetch_ports" value="1"/>
+ <param name="decode_width" value="4"/>
+ <!-- decode_width determins the number of ports of the
+ renaming table (both RAM and CAM) scheme -->
+ <param name="issue_width" value="4"/>
+ <param name="peak_issue_width" value="6"/>
+ <!-- issue_width determins the number of ports of Issue window and other logic
+ as in the complexity effective proccessors paper; issue_width==dispatch_width -->
+ <param name="commit_width" value="4"/>
+ <!-- commit_width determins the number of ports of register files -->
+ <param name="fp_issue_width" value="2"/>
+ <param name="prediction_width" value="1"/>
+ <!-- number of branch instructions can be predicted simultannouesl-->
+ <!-- Current version of McPAT does not distinguish int and floating point pipelines
+ Theses parameters are reserved for future use.-->
+ <param name="pipelines_per_core" value="1,1"/>
+ <!--integer_pipeline and floating_pipelines, if the floating_pipelines is 0, then the pipeline is shared-->
+ <param name="pipeline_depth" value="31,31"/>
+ <!-- pipeline depth of int and fp, if pipeline is shared, the second number is the average cycles of fp ops -->
+ <!-- issue and exe unit-->
+ <param name="ALU_per_core" value="6"/>
+ <!-- contains an adder, a shifter, and a logical unit -->
+ <param name="MUL_per_core" value="1"/>
+ <!-- For MUL and Div -->
+ <param name="FPU_per_core" value="2"/>
+ <!-- buffer between IF and ID stage -->
+ <param name="instruction_buffer_size" value="32"/>
+ <!-- buffer between ID and sche/exe stage -->
+ <param name="decoded_stream_buffer_size" value="16"/>
+ <param name="instruction_window_scheme" value="0"/><!-- 0 PHYREG based, 1 RSBASED-->
+ <!-- McPAT support 2 types of OoO cores, RS based and physical reg based-->
+ <param name="instruction_window_size" value="64"/>
+ <param name="fp_instruction_window_size" value="64"/>
+ <!-- the instruction issue Q as in Alpha 21264; The RS as in Intel P6 -->
+ <param name="ROB_size" value="128"/>
+ <!-- each in-flight instruction has an entry in ROB -->
+ <!-- registers -->
+ <param name="archi_Regs_IRF_size" value="16"/><!-- X86-64 has 16GPR -->
+ <param name="archi_Regs_FRF_size" value="32"/><!-- MMX + XMM -->
+ <!-- if OoO processor, phy_reg number is needed for renaming logic,
+ renaming logic is for both integer and floating point insts. -->
+ <param name="phy_Regs_IRF_size" value="256"/>
+ <param name="phy_Regs_FRF_size" value="256"/>
+ <!-- rename logic -->
+ <param name="rename_scheme" value="0"/>
+ <!-- can be RAM based(0) or CAM based(1) rename scheme
+ RAM-based scheme will have free list, status table;
+ CAM-based scheme have the valid bit in the data field of the CAM
+ both RAM and CAM need RAM-based checkpoint table, checkpoint_depth=# of in_flight instructions;
+ Detailed RAT Implementation see TR -->
+ <param name="register_windows_size" value="0"/>
+ <!-- how many windows in the windowed register file, sun processors;
+ no register windowing is used when this number is 0 -->
+ <!-- In OoO cores, loads and stores can be issued whether inorder(Pentium Pro) or (OoO)out-of-order(Alpha),
+ They will always try to exeute out-of-order though. -->
+ <param name="LSU_order" value="inorder"/>
+ <param name="store_buffer_size" value="96"/>
+ <!-- By default, in-order cores do not have load buffers -->
+ <param name="load_buffer_size" value="48"/>
+ <!-- number of ports refer to sustainable concurrent memory accesses -->
+ <param name="memory_ports" value="2"/>
+ <!-- max_allowed_in_flight_memo_instructions determins the # of ports of load and store buffer
+ as well as the ports of Dcache which is connected to LSU -->
+ <!-- dual-pumped Dcache can be used to save the extra read/write ports -->
+ <param name="RAS_size" value="64"/>
+ <!-- general stats, defines simulation periods;require total, idle, and busy cycles for senity check -->
+ <!-- please note: if target architecture is X86, then all the instrucions refer to (fused) micro-ops -->
+ <stat name="total_instructions" value="400000"/>
+ <stat name="int_instructions" value="200000"/>
+ <stat name="fp_instructions" value="100000"/>
+ <stat name="branch_instructions" value="100000"/>
+ <stat name="branch_mispredictions" value="0"/>
+ <stat name="load_instructions" value="0"/>
+ <stat name="store_instructions" value="50000"/>
+ <stat name="committed_instructions" value="400000"/>
+ <stat name="committed_int_instructions" value="200000"/>
+ <stat name="committed_fp_instructions" value="100000"/>
+ <stat name="pipeline_duty_cycle" value="1"/><!--<=1, runtime_ipc/peak_ipc; averaged for all cores if homogenous -->
+ <!-- the following cycle stats are used for heterogeneouse cores only,
+ please ignore them if homogeneouse cores -->
+ <stat name="total_cycles" value="100000"/>
+ <stat name="idle_cycles" value="0"/>
+ <stat name="busy_cycles" value="100000"/>
+ <!-- instruction buffer stats -->
+ <!-- ROB stats, both RS and Phy based OoOs have ROB
+ performance simulator should capture the difference on accesses,
+ otherwise, McPAT has to guess based on number of commited instructions. -->
+ <stat name="ROB_reads" value="400000"/>
+ <stat name="ROB_writes" value="400000"/>
+ <!-- RAT accesses -->
+ <stat name="rename_reads" value="800000"/> <!--lookup in renaming logic -->
+ <stat name="rename_writes" value="400000"/><!--update dest regs. renaming logic -->
+ <stat name="fp_rename_reads" value="200000"/>
+ <stat name="fp_rename_writes" value="100000"/>
+ <!-- decode and rename stage use this, should be total ic - nop -->
+ <!-- Inst window stats -->
+ <stat name="inst_window_reads" value="400000"/>
+ <stat name="inst_window_writes" value="400000"/>
+ <stat name="inst_window_wakeup_accesses" value="800000"/>
+ <stat name="fp_inst_window_reads" value="200000"/>
+ <stat name="fp_inst_window_writes" value="200000"/>
+ <stat name="fp_inst_window_wakeup_accesses" value="400000"/>
+ <!-- RF accesses -->
+ <stat name="int_regfile_reads" value="600000"/>
+ <stat name="float_regfile_reads" value="100000"/>
+ <stat name="int_regfile_writes" value="300000"/>
+ <stat name="float_regfile_writes" value="50000"/>
+ <!-- accesses to the working reg -->
+ <stat name="function_calls" value="5"/>
+ <stat name="context_switches" value="260343"/>
+ <!-- Number of Windowes switches (number of function calls and returns)-->
+ <!-- Alu stats by default, the processor has one FPU that includes the divider and
+ multiplier. The fpu accesses should include accesses to multiplier and divider -->
+ <stat name="ialu_accesses" value="300000"/>
+ <stat name="fpu_accesses" value="100000"/>
+ <stat name="mul_accesses" value="200000"/>
+ <stat name="cdb_alu_accesses" value="300000"/>
+ <stat name="cdb_mul_accesses" value="200000"/>
+ <stat name="cdb_fpu_accesses" value="100000"/>
+ <!-- multiple cycle accesses should be counted multiple times,
+ otherwise, McPAT can use internal counter for different floating point instructions
+ to get final accesses. But that needs detailed info for floating point inst mix -->
+ <!-- currently the performance simulator should
+ make sure all the numbers are final numbers,
+ including the explicit read/write accesses,
+ and the implicite accesses such as replacements and etc.
+ Future versions of McPAT may be able to reason the implicite access
+ based on param and stats of last level cache
+ The same rule applies to all cache access stats too! -->
+ <!-- following is AF for max power computation.
+ Do not change them, unless you understand them-->
+ <stat name="IFU_duty_cycle" value="1"/>
+ <stat name="LSU_duty_cycle" value="0.5"/>
+ <stat name="MemManU_I_duty_cycle" value="1"/>
+ <stat name="MemManU_D_duty_cycle" value="0.5"/>
+ <stat name="ALU_duty_cycle" value="1"/>
+ <stat name="MUL_duty_cycle" value="0.3"/>
+ <stat name="FPU_duty_cycle" value="0.3"/>
+ <stat name="ALU_cdb_duty_cycle" value="1"/>
+ <stat name="MUL_cdb_duty_cycle" value="0.3"/>
+ <stat name="FPU_cdb_duty_cycle" value="0.3"/>
+ <param name="number_of_BPT" value="2"/>
+ <component id="system.core0.predictor" name="PBT">
+ <!-- branch predictor; tournament predictor see Alpha implementation -->
+ <param name="local_predictor_size" value="10,3"/>
+ <param name="local_predictor_entries" value="1024"/>
+ <param name="global_predictor_entries" value="4096"/>
+ <param name="global_predictor_bits" value="2"/>
+ <param name="chooser_predictor_entries" value="4096"/>
+ <param name="chooser_predictor_bits" value="2"/>
+ <!-- These parameters can be combined like below in next version
+ <param name="load_predictor" value="10,3,1024"/>
+ <param name="global_predictor" value="4096,2"/>
+ <param name="predictor_chooser" value="4096,2"/>
+ -->
+ </component>
+ <component id="system.core0.itlb" name="itlb">
+ <param name="number_entries" value="128"/>
+ <stat name="total_accesses" value="200000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ <!-- there is no write requests to itlb although writes happen to itlb after miss,
+ which is actually a replacement -->
+ </component>
+ <component id="system.core0.icache" name="icache">
+ <!-- there is no write requests to itlb although writes happen to it after miss,
+ which is actually a replacement -->
+ <param name="icache_config" value="131072,32,8,1,8,3,32,0"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy, -->
+ <!-- cache_policy;//0 no write or write-though with non-write allocate;1 write-back with write-allocate -->
+ <param name="buffer_sizes" value="16, 16, 16,0"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="200000"/>
+ <stat name="read_misses" value="0"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dtlb" name="dtlb">
+ <param name="number_entries" value="128"/><!--dual threads-->
+ <stat name="total_accesses" value="400000"/>
+ <stat name="total_misses" value="4"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <component id="system.core0.dcache" name="dcache">
+ <!-- all the buffer related are optional -->
+ <param name="dcache_config" value="16384,16,4,1, 3,3, 16,1 "/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ </component>
+ <param name="number_of_BTB" value="2"/>
+ <component id="system.core0.BTB" name="BTB">
+ <!-- all the buffer related are optional -->
+ <param name="BTB_config" value="5120,4,2,1, 1,3"/> <!--should be 4096 + 1024 -->
+ <!-- the parameters are capacity,block_width,associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <stat name="read_accesses" value="400000"/> <!--See IFU code for guideline -->
+ <stat name="write_accesses" value="0"/>
+ </component>
+ </component>
+ <component id="system.L1Directory0" name="L1Directory0">
+ <param name="Directory_type" value="0"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="4096,2,0,1,100,100, 8"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="800000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="20"/>
+ </component>
+ <component id="system.L2Directory0" name="L2Directory0">
+ <param name="Directory_type" value="1"/>
+ <!--0 cam based shadowed tag. 1 directory cache -->
+ <param name="Dir_config" value="1048576,16,16,1,2, 100"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="buffer_sizes" value="8, 8, 8, 8"/>
+ <!-- all the buffer related are optional -->
+ <param name="clockrate" value="3400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw search ports -->
+ <param name="device_type" value="0"/>
+ <!-- altough there are multiple access types,
+ Performance simulator needs to cast them into reads or writes
+ e.g. the invalidates can be considered as writes -->
+ <stat name="read_accesses" value="58824"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="100"/>
+ </component>
+ <component id="system.L20" name="L20">
+ <!-- all the buffer related are optional -->
+ <param name="L2_config" value="1048576,32, 8, 8, 8, 23, 32, 1"/>
+ <!-- the parameters are capacity,block_width, associativity, bank, throughput w.r.t. core clock, latency w.r.t. core clock,output_width, cache policy -->
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <param name="clockrate" value="3400"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <stat name="read_accesses" value="200000"/>
+ <stat name="write_accesses" value="27276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+
+<!--**********************************************************************-->
+<component id="system.L30" name="L30">
+ <param name="L3_config" value="16777216,64,16, 16, 16, 100,1"/>
+ <!-- the parameters are capacity,block_width, associativity,bank, throughput w.r.t. core clock, latency w.r.t. core clock,-->
+ <param name="clockrate" value="850"/>
+ <param name="ports" value="1,1,1"/>
+ <!-- number of r, w, and rw ports -->
+ <param name="device_type" value="0"/>
+ <param name="buffer_sizes" value="16, 16, 16, 16"/>
+ <!-- cache controller buffer sizes: miss_buffer_size(MSHR),fill_buffer_size,prefetch_buffer_size,wb_buffer_size-->
+ <stat name="read_accesses" value="11824"/>
+ <stat name="write_accesses" value="11276"/>
+ <stat name="read_misses" value="1632"/>
+ <stat name="write_misses" value="183"/>
+ <stat name="conflicts" value="0"/>
+ <stat name="duty_cycle" value="1.0"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.NoC0" name="noc0">
+ <param name="clockrate" value="3400"/>
+ <param name="type" value="0"/>
+ <!--0:bus, 1:NoC , for bus no matter how many nodes sharing the bus
+ at each time only one node can send req -->
+ <param name="horizontal_nodes" value="1"/>
+ <param name="vertical_nodes" value="1"/>
+ <param name="has_global_link" value="0"/>
+ <!-- 1 has global link, 0 does not have global link -->
+ <param name="link_throughput" value="1"/><!--w.r.t clock -->
+ <param name="link_latency" value="1"/><!--w.r.t clock -->
+ <!-- througput >= latency -->
+ <!-- Router architecture -->
+ <param name="input_ports" value="1"/>
+ <param name="output_ports" value="1"/>
+ <!-- For bus the I/O ports should be 1 -->
+ <param name="flit_bits" value="256"/>
+ <param name="chip_coverage" value="1"/>
+ <!-- When multiple NOC present, one NOC will cover part of the whole chip.
+ chip_coverage <=1 -->
+ <param name="link_routing_over_percentage" value="0.5"/>
+ <!-- Links can route over other components or occupy whole area.
+ by default, 50% of the NoC global links routes over other
+ components -->
+ <stat name="total_accesses" value="100000"/>
+ <!-- This is the number of total accesses within the whole network not for each router -->
+ <stat name="duty_cycle" value="1"/>
+ </component>
+<!--**********************************************************************-->
+ <component id="system.mem" name="mem">
+ <!-- Main memory property -->
+ <param name="mem_tech_node" value="32"/>
+ <param name="device_clock" value="200"/><!--MHz, this is clock rate of the actual memory device, not the FSB -->
+ <param name="peak_transfer_rate" value="6400"/><!--MB/S-->
+ <param name="internal_prefetch_of_DRAM_chip" value="4"/>
+ <!-- 2 for DDR, 4 for DDR2, 8 for DDR3...-->
+ <!-- the device clock, peak_transfer_rate, and the internal prefetch decide the DIMM property -->
+ <!-- above numbers can be easily found from Wikipedia -->
+ <param name="capacity_per_channel" value="4096"/> <!-- MB -->
+ <!-- capacity_per_Dram_chip=capacity_per_channel/number_of_dimms/number_ranks/Dram_chips_per_rank
+ Current McPAT assumes single DIMMs are used.-->
+ <param name="number_ranks" value="2"/>
+ <param name="num_banks_of_DRAM_chip" value="8"/>
+ <param name="Block_width_of_DRAM_chip" value="64"/> <!-- B -->
+ <param name="output_width_of_DRAM_chip" value="8"/>
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <!--number of Dram_chips_per_rank=" 72/output_width_of_DRAM_chip-->
+ <param name="page_size_of_DRAM_chip" value="8"/> <!-- 8 or 16 -->
+ <param name="burstlength_of_DRAM_chip" value="8"/>
+ <stat name="memory_accesses" value="1052"/>
+ <stat name="memory_reads" value="1052"/>
+ <stat name="memory_writes" value="1052"/>
+ </component>
+ <component id="system.mc" name="mc">
+ <!-- Memeory controllers are for DDR(2,3...) DIMMs -->
+ <!-- current version of McPAT uses published values for base parameters of memory controller
+ improvments on MC will be added in later versions. -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="mc_clock" value="200"/><!--DIMM IO bus clock rate MHz DDR2-400 for Niagara 1-->
+ <param name="peak_transfer_rate" value="3200"/><!--MB/S-->
+ <param name="block_size" value="64"/><!--B-->
+ <param name="number_mcs" value="0"/>
+ <!-- current McPAT only supports homogeneous memory controllers -->
+ <param name="memory_channels_per_mc" value="1"/>
+ <param name="number_ranks" value="2"/>
+ <param name="withPHY" value="0"/>
+ <!-- # of ranks of each channel-->
+ <param name="req_window_size_per_channel" value="32"/>
+ <param name="IO_buffer_size_per_channel" value="32"/>
+ <param name="databus_width" value="128"/>
+ <param name="addressbus_width" value="51"/>
+ <!-- McPAT will add the control bus width to the addressbus width automatically -->
+ <stat name="memory_accesses" value="33333"/>
+ <stat name="memory_reads" value="16667"/>
+ <stat name="memory_writes" value="16667"/>
+ <!-- McPAT does not track individual mc, instead, it takes the total accesses and calculate
+ the average power per MC or per channel. This is sufficent for most application.
+ Further trackdown can be easily added in later versions. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.niu" name="niu">
+ <!-- On chip 10Gb Ethernet NIC, including XAUI Phy and MAC controller -->
+ <!-- For a minimum IP packet size of 84B at 10Gb/s, a new packet arrives every 67.2ns.
+ the low bound of clock rate of a 10Gb MAC is 150Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/> <!-- unlike PCIe and memory controllers, each Ethernet controller only have one port -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- ratio of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual nic, instead, it takes the total accesses and calculate
+ the average power per nic or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.pcie" name="pcie">
+ <!-- On chip PCIe controller, including Phy-->
+ <!-- For a minimum PCIe packet size of 84B at 8Gb/s per lane (PCIe 3.0), a new packet arrives every 84ns.
+ the low bound of clock rate of a PCIe per lane logic is 120Mhz -->
+ <param name="type" value="0"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="clockrate" value="350"/>
+ <param name="number_units" value="0"/>
+ <param name="num_channels" value="8"/> <!-- 2 ,4 ,8 ,16 ,32 -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual pcie controllers, instead, it takes the total accesses and calculate
+ the average power per pcie controller or per channel. This is sufficent for most application. -->
+ </component>
+<!--**********************************************************************-->
+ <component id="system.flashc" name="flashc">
+ <param name="number_flashcs" value="0"/>
+ <param name="type" value="1"/> <!-- 1: low power; 0 high performance -->
+ <param name="withPHY" value="1"/>
+ <param name="peak_transfer_rate" value="200"/><!--Per controller sustainable reak rate MB/S -->
+ <stat name="duty_cycle" value="1.0"/> <!-- achievable max load <= 1.0 -->
+ <stat name="total_load_perc" value="0.7"/> <!-- Percentage of total achived load to total achivable bandwidth -->
+ <!-- McPAT does not track individual flash controller, instead, it takes the total accesses and calculate
+ the average power per fc or per channel. This is sufficent for most application -->
+ </component>
+<!--**********************************************************************-->
+
+ </component>
+</component>
+
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#ifndef ARCH_CONST_H_
+#define ARCH_CONST_H_
+
+typedef struct{
+ unsigned int capacity;
+ unsigned int assoc;//fully
+ unsigned int blocksize;
+} array_inputs;
+
+//Do Not change, unless you want to bypass the XML interface and do not care about the default values.
+//Global parameters
+const int number_of_cores = 8;
+const int number_of_L2s = 1;
+const int number_of_L3s = 1;
+const int number_of_NoCs = 1;
+
+const double archi_F_sz_nm = 90.0;
+const unsigned int dev_type = 0;
+const double CLOCKRATE = 1.2*1e9;
+const double AF = 0.5;
+//const bool inorder = true;
+const bool embedded = false; //NEW
+
+const bool homogeneous_cores = true;
+const bool temperature = 360;
+const int number_cache_levels = 3;
+const int L1_property = 0; //private 0; coherent 1, shared 2.
+const int L2_property = 2;
+const bool homogeneous_L2s = true;
+const bool L3_property = 2;
+const bool homogeneous_L3s = true;
+const double Max_area_deviation = 50;
+const double Max_dynamic_deviation =50; //New
+const int opt_dynamic_power = 1;
+const int opt_lakage_power = 0;
+const int opt_area = 0;
+const int interconnect_projection_type = 0;
+
+//******************************Core Parameters
+#if (inorder)
+const int opcode_length = 8;//Niagara
+const int reg_length = 5;//Niagara
+const int instruction_length = 32;//Niagara
+const int data_width = 64;
+#else
+const int opcode_length = 8;//16;//Niagara
+const int reg_length = 7;//Niagara
+const int instruction_length = 32;//Niagara
+const int data_width = 64;
+#endif
+
+
+//Caches
+//itlb
+const int itlbsize=512;
+const int itlbassoc=0;//fully
+const int itlbblocksize=8;
+//icache
+const int icachesize=32768;
+const int icacheassoc=4;
+const int icacheblocksize=32;
+//dtlb
+const int dtlbsize=512;
+const int dtlbassoc=0;//fully
+const int dtlbblocksize=8;
+//dcache
+const int dcachesize=32768;
+const int dcacheassoc=4;
+const int dcacheblocksize=32;
+const int dcache_write_buffers=8;
+
+//cache controllers
+//IB,
+const int numIBEntries = 64;
+const int IBsize = 64;//2*4*instruction_length/8*2;
+const int IBassoc = 0;//In Niagara it is still fully associ
+const int IBblocksize = 4;
+
+//IFB and MIL should have the same parameters CAM
+const int IFBsize=128;//
+const int IFBassoc=0;//In Niagara it is still fully associ
+const int IFBblocksize=4;
+
+
+
+
+const int icache_write_buffers=8;
+
+//register file RAM
+const int regfilesize=5760;
+const int regfileassoc=1;
+const int regfileblocksize=18;
+//regwin RAM
+const int regwinsize=256;
+const int regwinassoc=1;
+const int regwinblocksize=8;
+
+
+
+//store buffer, lsq
+const int lsqsize=512;
+const int lsqassoc=0;
+const int lsqblocksize=8;
+
+//data fill queue RAM
+const int dfqsize=1024;
+const int dfqassoc=1;
+const int dfqblocksize=16;
+
+//outside the cores
+//L2 cache bank
+const int l2cachesize=262144;
+const int l2cacheassoc=16;
+const int l2cacheblocksize=64;
+
+//L2 directory
+const int l2dirsize=1024;
+const int l2dirassoc=0;
+const int l2dirblocksize=2;
+
+//crossbar
+//PCX
+const int PCX_NUMBER_INPUT_PORTS_CROSSBAR = 8;
+const int PCX_NUMBER_OUTPUT_PORTS_CROSSBAR = 9;
+const int PCX_NUMBER_SIGNALS_PER_PORT_CROSSBAR =144;
+//PCX buffer RAM
+const int pcx_buffersize=1024;
+const int pcx_bufferassoc=1;
+const int pcx_bufferblocksize=32;
+const int pcx_numbuffer=5;
+//pcx arbiter
+const int pcx_arbsize=128;
+const int pcx_arbassoc=1;
+const int pcx_arbblocksize=2;
+const int pcx_numarb=5;
+
+//CPX
+const int CPX_NUMBER_INPUT_PORTS_CROSSBAR = 5;
+const int CPX_NUMBER_OUTPUT_PORTS_CROSSBAR = 8;
+const int CPX_NUMBER_SIGNALS_PER_PORT_CROSSBAR =150;
+//CPX buffer RAM
+const int cpx_buffersize=1024;
+const int cpx_bufferassoc=1;
+const int cpx_bufferblocksize=32;
+const int cpx_numbuffer=8;
+//cpx arbiter
+const int cpx_arbsize=128;
+const int cpx_arbassoc=1;
+const int cpx_arbblocksize=2;
+const int cpx_numarb=8;
+
+
+
+
+
+const int numPhysFloatRegs=256;
+const int numPhysIntRegs=32;
+const int numROBEntries=192;
+const int umRobs=1;
+
+const int BTBEntries=4096;
+const int BTBTagSize=16;
+const int LFSTSize=1024;
+const int LQEntries=32;
+const int RASSize=16;
+const int SQEntries=32;
+const int SSITSize=1024;
+const int activity=0;
+const int backComSize=5;
+const int cachePorts=200;
+const int choiceCtrBits=2;
+const int choicePredictorSize=8192;
+
+
+const int commitWidth=8;
+const int decodeWidth=8;
+const int dispatchWidth=8;
+const int fetchWidth=8;
+const int issueWidth=1;
+const int renameWidth=8;
+//what is this forwardComSize=5??
+
+const int globalCtrBits=2;
+const int globalHistoryBits=13;
+const int globalPredictorSize=8192;
+
+
+
+const int localCtrBits=2;
+const int localHistoryBits=11;
+const int localHistoryTableSize=2048;
+const int localPredictorSize=2048;
+
+const double Woutdrvnandn =30 *0.09;//(24.0 * LSCALE)
+const double Woutdrvnandp =12.5 *0.09;//(10.0 * LSCALE)
+const double Woutdrvnorn =7.5*0.09;//(6.0 * LSCALE)
+const double Woutdrvnorp =50 * 0.09;// (40.0 * LSCALE)
+const double Woutdrivern =60*0.09;//(48.0 * LSCALE)
+const double Woutdriverp =100 * 0.09;//(80.0 * LSCALE)
+
+/*
+smtCommitPolicy=RoundRobin
+smtFetchPolicy=SingleThread
+smtIQPolicy=Partitioned
+smtIQThreshold=100
+smtLSQPolicy=Partitioned
+smtLSQThreshold=100
+smtNumFetchingThreads=1
+smtROBPolicy=Partitioned
+smtROBThreshold=100
+squashWidth=8
+*/
+
+/*
+prefetch_access=false
+prefetch_cache_check_push=true
+prefetch_data_accesses_only=false
+prefetch_degree=1
+prefetch_latency=10000
+prefetch_miss=false
+prefetch_past_page=false
+prefetch_policy=none
+prefetch_serial_squash=false
+prefetch_use_cpu_id=true
+prefetcher_size=100
+prioritizeRequests=false
+repl=Null
+
+
+split=false
+split_size=0
+subblock_size=0
+tgts_per_mshr=20
+trace_addr=0
+two_queue=false
+
+cpu_side=system.cpu0.dcache_port
+mem_side=system.tol2bus.port[2]
+*/
+
+//[system.cpu0.dtb]
+//type=AlphaDT
+
+
+#endif /* ARCH_CONST_H_ */
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#define GLOBALVAR
+#include <cassert>
+#include <cmath>
+#include <iostream>
+
+#include "area.h"
+#include "array.h"
+#include "decoder.h"
+#include "globalvar.h"
+#include "parameter.h"
+
+using namespace std;
+
+ArrayST::ArrayST(const InputParameter *configure_interface,
+ string _name,
+ enum Device_ty device_ty_,
+ bool opt_local_,
+ enum Core_type core_ty_,
+ bool _is_default)
+:l_ip(*configure_interface),
+ name(_name),
+ device_ty(device_ty_),
+ opt_local(opt_local_),
+ core_ty(core_ty_),
+ is_default(_is_default)
+ {
+
+ if (l_ip.cache_sz<64) l_ip.cache_sz=64;
+ l_ip.error_checking();//not only do the error checking but also fill some missing parameters
+ optimize_array();
+
+}
+
+
+void ArrayST::compute_base_power()
+ {
+ //l_ip.out_w =l_ip.line_sz*8;
+ local_result=cacti_interface(&l_ip);
+
+ }
+
+void ArrayST::optimize_array()
+{
+ list<uca_org_t > candidate_solutions(0);
+ list<uca_org_t >::iterator candidate_iter, min_dynamic_energy_iter;
+
+ uca_org_t * temp_res = 0;
+ local_result.valid=false;
+
+ double throughput=l_ip.throughput, latency=l_ip.latency;
+ double area_efficiency_threshold = 20.0;
+ bool throughput_overflow=true, latency_overflow=true;
+ compute_base_power();
+
+ if ((local_result.cycle_time - throughput) <= 1e-10 )
+ throughput_overflow=false;
+ if ((local_result.access_time - latency)<= 1e-10)
+ latency_overflow=false;
+
+ if (opt_for_clk && opt_local)
+ {
+ if (throughput_overflow || latency_overflow)
+ {
+ l_ip.ed=0;
+
+ l_ip.delay_wt = 100;//Fixed number, make sure timing can be satisfied.
+ l_ip.cycle_time_wt = 1000;
+
+ l_ip.area_wt = 10;//Fixed number, This is used to exhaustive search for individual components.
+ l_ip.dynamic_power_wt = 10;//Fixed number, This is used to exhaustive search for individual components.
+ l_ip.leakage_power_wt = 10;
+
+ l_ip.delay_dev = 1000000;//Fixed number, make sure timing can be satisfied.
+ l_ip.cycle_time_dev = 100;
+
+ l_ip.area_dev = 1000000;//Fixed number, This is used to exhaustive search for individual components.
+ l_ip.dynamic_power_dev = 1000000;//Fixed number, This is used to exhaustive search for individual components.
+ l_ip.leakage_power_dev = 1000000;
+
+ throughput_overflow=true; //Reset overflow flag before start optimization iterations
+ latency_overflow=true;
+
+ temp_res = &local_result; //Clean up the result for optimized for ED^2P
+ temp_res->cleanup();
+ }
+
+
+ while ((throughput_overflow || latency_overflow)&&l_ip.cycle_time_dev > 10)// && l_ip.delay_dev > 10
+ {
+ compute_base_power();
+
+ l_ip.cycle_time_dev-=10;//This is the time_dev to be used for next iteration
+
+ // from best area to worst area -->worst timing to best timing
+ if ((((local_result.cycle_time - throughput) <= 1e-10 ) && (local_result.access_time - latency)<= 1e-10)||
+ (local_result.data_array2->area_efficiency < area_efficiency_threshold && l_ip.assoc == 0))
+ { //if no satisfiable solution is found,the most aggressive one is left
+ candidate_solutions.push_back(local_result);
+ //output_data_csv(candidate_solutions.back());
+ if (((local_result.cycle_time - throughput) <= 1e-10) && ((local_result.access_time - latency)<= 1e-10))
+ //ensure stop opt not because of cam
+ {
+ throughput_overflow=false;
+ latency_overflow=false;
+ }
+
+ }
+ else
+ {
+ //TODO: whether checking the partial satisfied results too, or just change the mark???
+ if ((local_result.cycle_time - throughput) <= 1e-10)
+ throughput_overflow=false;
+ if ((local_result.access_time - latency)<= 1e-10)
+ latency_overflow=false;
+
+ if (l_ip.cycle_time_dev > 10)
+ { //if not >10 local_result is the last result, it cannot be cleaned up
+ temp_res = &local_result; //Only solutions not saved in the list need to be cleaned up
+ temp_res->cleanup();
+ }
+ }
+// l_ip.cycle_time_dev-=10;
+// l_ip.delay_dev-=10;
+
+ }
+
+
+ if (l_ip.assoc > 0)
+ {
+ //For array structures except CAM and FA, Give warning but still provide a result with best timing found
+ if (throughput_overflow==true)
+ cout<< "Warning: " << name<<" array structure cannot satisfy throughput constraint." << endl;
+ if (latency_overflow==true)
+ cout<< "Warning: " << name<<" array structure cannot satisfy latency constraint." << endl;
+ }
+
+// else
+// {
+// /*According to "Content-Addressable Memory (CAM) Circuits and
+// Architectures": A Tutorial and Survey
+// by Kostas Pagiamtzis et al.
+// CAM structures can be heavily pipelined and use look-ahead techniques,
+// therefore timing can be relaxed. But McPAT does not model the advanced
+// techniques. If continue optimizing, the area efficiency will be too low
+// */
+// //For CAM and FA, stop opt if area efficiency is too low
+// if (throughput_overflow==true)
+// cout<< "Warning: " <<" McPAT stopped optimization on throughput for "<< name
+// <<" array structure because its area efficiency is below "<<area_efficiency_threshold<<"% " << endl;
+// if (latency_overflow==true)
+// cout<< "Warning: " <<" McPAT stopped optimization on latency for "<< name
+// <<" array structure because its area efficiency is below "<<area_efficiency_threshold<<"% " << endl;
+// }
+
+ //double min_dynamic_energy, min_dynamic_power, min_leakage_power, min_cycle_time;
+ double min_dynamic_energy=BIGNUM;
+ if (candidate_solutions.empty()==false)
+ {
+ local_result.valid=true;
+ for (candidate_iter = candidate_solutions.begin(); candidate_iter != candidate_solutions.end(); ++candidate_iter)
+
+ {
+ if (min_dynamic_energy > (candidate_iter)->power.readOp.dynamic)
+ {
+ min_dynamic_energy = (candidate_iter)->power.readOp.dynamic;
+ min_dynamic_energy_iter = candidate_iter;
+ local_result = *(min_dynamic_energy_iter);
+ //TODO: since results are reordered results and l_ip may miss match. Therefore, the final output spread sheets may show the miss match.
+
+ }
+ else
+ {
+ candidate_iter->cleanup() ;
+ }
+
+ }
+
+
+ }
+ candidate_solutions.clear();
+ }
+
+ double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
+
+ double macro_layout_overhead = g_tp.macro_layout_overhead;
+ double chip_PR_overhead = g_tp.chip_layout_overhead;
+ double total_overhead = macro_layout_overhead*chip_PR_overhead;
+ local_result.area *= total_overhead;
+
+ //maintain constant power density
+ double pppm_t[4] = {total_overhead,1,1,total_overhead};
+
+ double sckRation = g_tp.sckt_co_eff;
+ local_result.power.readOp.dynamic *= sckRation;
+ local_result.power.writeOp.dynamic *= sckRation;
+ local_result.power.searchOp.dynamic *= sckRation;
+ local_result.power.readOp.leakage *= l_ip.nbanks;
+ local_result.power.readOp.longer_channel_leakage =
+ local_result.power.readOp.leakage*long_channel_device_reduction;
+ local_result.power = local_result.power* pppm_t;
+
+ local_result.data_array2->power.readOp.dynamic *= sckRation;
+ local_result.data_array2->power.writeOp.dynamic *= sckRation;
+ local_result.data_array2->power.searchOp.dynamic *= sckRation;
+ local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
+ local_result.data_array2->power.readOp.longer_channel_leakage =
+ local_result.data_array2->power.readOp.leakage*long_channel_device_reduction;
+ local_result.data_array2->power = local_result.data_array2->power* pppm_t;
+
+
+ if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache)
+ {
+ local_result.tag_array2->power.readOp.dynamic *= sckRation;
+ local_result.tag_array2->power.writeOp.dynamic *= sckRation;
+ local_result.tag_array2->power.searchOp.dynamic *= sckRation;
+ local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
+ local_result.tag_array2->power.readOp.longer_channel_leakage =
+ local_result.tag_array2->power.readOp.leakage*long_channel_device_reduction;
+ local_result.tag_array2->power = local_result.tag_array2->power* pppm_t;
+ }
+
+
+}
+
+void ArrayST::leakage_feedback(double temperature)
+{
+ // Update the temperature. l_ip is already set and error-checked in the creator function.
+ l_ip.temp = (unsigned int)round(temperature/10.0)*10;
+
+ // This corresponds to cacti_interface() in the initialization process. Leakage power is updated here.
+ reconfigure(&l_ip,&local_result);
+
+ // Scale the power values. This is part of ArrayST::optimize_array().
+ double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
+
+ double macro_layout_overhead = g_tp.macro_layout_overhead;
+ double chip_PR_overhead = g_tp.chip_layout_overhead;
+ double total_overhead = macro_layout_overhead*chip_PR_overhead;
+
+ double pppm_t[4] = {total_overhead,1,1,total_overhead};
+
+ double sckRation = g_tp.sckt_co_eff;
+ local_result.power.readOp.dynamic *= sckRation;
+ local_result.power.writeOp.dynamic *= sckRation;
+ local_result.power.searchOp.dynamic *= sckRation;
+ local_result.power.readOp.leakage *= l_ip.nbanks;
+ local_result.power.readOp.longer_channel_leakage = local_result.power.readOp.leakage*long_channel_device_reduction;
+ local_result.power = local_result.power* pppm_t;
+
+ local_result.data_array2->power.readOp.dynamic *= sckRation;
+ local_result.data_array2->power.writeOp.dynamic *= sckRation;
+ local_result.data_array2->power.searchOp.dynamic *= sckRation;
+ local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
+ local_result.data_array2->power.readOp.longer_channel_leakage = local_result.data_array2->power.readOp.leakage*long_channel_device_reduction;
+ local_result.data_array2->power = local_result.data_array2->power* pppm_t;
+
+ if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache)
+ {
+ local_result.tag_array2->power.readOp.dynamic *= sckRation;
+ local_result.tag_array2->power.writeOp.dynamic *= sckRation;
+ local_result.tag_array2->power.searchOp.dynamic *= sckRation;
+ local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
+ local_result.tag_array2->power.readOp.longer_channel_leakage = local_result.tag_array2->power.readOp.leakage*long_channel_device_reduction;
+ local_result.tag_array2->power = local_result.tag_array2->power* pppm_t;
+ }
+}
+
+ArrayST:: ~ArrayST()
+{
+ local_result.cleanup();
+}
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#ifndef ARRAY_H_
+#define ARRAY_H_
+
+#include <iostream>
+#include <string>
+
+#include "basic_components.h"
+#include "cacti_interface.h"
+#include "component.h"
+#include "const.h"
+#include "parameter.h"
+
+using namespace std;
+
+class ArrayST :public Component{
+ public:
+ ArrayST(){};
+ ArrayST(const InputParameter *configure_interface, string _name, enum Device_ty device_ty_, bool opt_local_=true, enum Core_type core_ty_=Inorder, bool _is_default=true);
+
+ InputParameter l_ip;
+ string name;
+ enum Device_ty device_ty;
+ bool opt_local;
+ enum Core_type core_ty;
+ bool is_default;
+ uca_org_t local_result;
+
+ statsDef tdp_stats;
+ statsDef rtp_stats;
+ statsDef stats_t;
+ powerDef power_t;
+
+ virtual void optimize_array();
+ virtual void compute_base_power();
+ virtual ~ArrayST();
+
+ void leakage_feedback(double temperature);
+};
+
+class InstCache :public Component{
+public:
+ ArrayST* caches;
+ ArrayST* missb;
+ ArrayST* ifb;
+ ArrayST* prefetchb;
+ powerDef power_t;//temp value holder for both (max) power and runtime power
+ InstCache(){caches=0;missb=0;ifb=0;prefetchb=0;};
+ ~InstCache(){
+ if (caches) {//caches->local_result.cleanup();
+ delete caches; caches=0;}
+ if (missb) {//missb->local_result.cleanup();
+ delete missb; missb=0;}
+ if (ifb) {//ifb->local_result.cleanup();
+ delete ifb; ifb=0;}
+ if (prefetchb) {//prefetchb->local_result.cleanup();
+ delete prefetchb; prefetchb=0;}
+ };
+};
+
+class DataCache :public InstCache{
+public:
+ ArrayST* wbb;
+ DataCache(){wbb=0;};
+ ~DataCache(){
+ if (wbb) {//wbb->local_result.cleanup();
+ delete wbb; wbb=0;}
+ };
+};
+
+#endif /* TLB_H_ */
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#include <cassert>
+#include <cmath>
+#include <iostream>
+
+#include "basic_components.h"
+
+double longer_channel_device_reduction(
+ enum Device_ty device_ty,
+ enum Core_type core_ty)
+{
+
+ double longer_channel_device_percentage_core;
+ double longer_channel_device_percentage_uncore;
+ double longer_channel_device_percentage_llc;
+
+ double long_channel_device_reduction;
+
+ longer_channel_device_percentage_llc = 1.0;
+ longer_channel_device_percentage_uncore = 0.82;
+ if (core_ty==OOO)
+ {
+ longer_channel_device_percentage_core = 0.56;//0.54 Xeon Tulsa //0.58 Nehelam
+ //longer_channel_device_percentage_uncore = 0.76;//0.85 Nehelam
+
+ }
+ else
+ {
+ longer_channel_device_percentage_core = 0.8;//0.8;//Niagara
+ //longer_channel_device_percentage_uncore = 0.9;//Niagara
+ }
+
+ if (device_ty==Core_device)
+ {
+ long_channel_device_reduction = (1- longer_channel_device_percentage_core)
+ + longer_channel_device_percentage_core * g_tp.peri_global.long_channel_leakage_reduction;
+ }
+ else if (device_ty==Uncore_device)
+ {
+ long_channel_device_reduction = (1- longer_channel_device_percentage_uncore)
+ + longer_channel_device_percentage_uncore * g_tp.peri_global.long_channel_leakage_reduction;
+ }
+ else if (device_ty==LLC_device)
+ {
+ long_channel_device_reduction = (1- longer_channel_device_percentage_llc)
+ + longer_channel_device_percentage_llc * g_tp.peri_global.long_channel_leakage_reduction;
+ }
+ else
+ {
+ cout<<"unknown device category"<<endl;
+ exit(0);
+ }
+
+ return long_channel_device_reduction;
+}
+
+statsComponents operator+(const statsComponents & x, const statsComponents & y)
+{
+ statsComponents z;
+
+ z.access = x.access + y.access;
+ z.hit = x.hit + y.hit;
+ z.miss = x.miss + y.miss;
+
+ return z;
+}
+
+statsComponents operator*(const statsComponents & x, double const * const y)
+{
+ statsComponents z;
+
+ z.access = x.access*y[0];
+ z.hit = x.hit*y[1];
+ z.miss = x.miss*y[2];
+
+ return z;
+}
+
+statsDef operator+(const statsDef & x, const statsDef & y)
+{
+ statsDef z;
+
+ z.readAc = x.readAc + y.readAc;
+ z.writeAc = x.writeAc + y.writeAc;
+ z.searchAc = x.searchAc + y.searchAc;
+ return z;
+}
+
+statsDef operator*(const statsDef & x, double const * const y)
+{
+ statsDef z;
+
+ z.readAc = x.readAc*y;
+ z.writeAc = x.writeAc*y;
+ z.searchAc = x.searchAc*y;
+ return z;
+}
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#ifndef BASIC_COMPONENTS_H_
+#define BASIC_COMPONENTS_H_
+
+#include <vector>
+
+#include "XML_Parse.h"
+#include "parameter.h"
+
+const double cdb_overhead = 1.1;
+
+enum FU_type {
+ FPU,
+ ALU,
+ MUL
+};
+
+enum Core_type {
+ OOO,
+ Inorder
+};
+
+enum Renaming_type {
+ RAMbased,
+ CAMbased
+};
+
+enum Scheduler_type {
+ PhysicalRegFile,
+ ReservationStation
+};
+
+enum cache_level {
+ L2,
+ L3,
+ L1Directory,
+ L2Directory
+};
+
+enum MemoryCtrl_type {
+ MC, //memory controller
+ FLASHC //flash controller
+};
+
+enum Dir_type {
+ ST,//shadowed tag
+ DC,//directory cache
+ SBT,//static bank tag
+ NonDir
+
+};
+
+enum Cache_policy {
+ Write_through,
+ Write_back
+};
+
+enum Device_ty {
+ Core_device,
+ Uncore_device,
+ LLC_device
+};
+
+class statsComponents
+{
+ public:
+ double access;
+ double hit;
+ double miss;
+
+ statsComponents() : access(0), hit(0), miss(0) {}
+ statsComponents(const statsComponents & obj) { *this = obj; }
+ statsComponents & operator=(const statsComponents & rhs)
+ {
+ access = rhs.access;
+ hit = rhs.hit;
+ miss = rhs.miss;
+ return *this;
+ }
+ void reset() { access = 0; hit = 0; miss = 0;}
+
+ friend statsComponents operator+(const statsComponents & x, const statsComponents & y);
+ friend statsComponents operator*(const statsComponents & x, double const * const y);
+};
+
+class statsDef
+{
+ public:
+ statsComponents readAc;
+ statsComponents writeAc;
+ statsComponents searchAc;
+
+ statsDef() : readAc(), writeAc(),searchAc() { }
+ void reset() { readAc.reset(); writeAc.reset();searchAc.reset();}
+
+ friend statsDef operator+(const statsDef & x, const statsDef & y);
+ friend statsDef operator*(const statsDef & x, double const * const y);
+};
+
+double longer_channel_device_reduction(
+ enum Device_ty device_ty=Core_device,
+ enum Core_type core_ty=Inorder);
+
+class CoreDynParam {
+public:
+ CoreDynParam(){};
+ CoreDynParam(ParseXML *XML_interface, int ithCore_);
+ // :XML(XML_interface),
+ // ithCore(ithCore_)
+ // core_ty(inorder),
+ // rm_ty(CAMbased),
+ // scheu_ty(PhysicalRegFile),
+ // clockRate(1e9),//1GHz
+ // arch_ireg_width(32),
+ // arch_freg_width(32),
+ // phy_ireg_width(128),
+ // phy_freg_width(128),
+ // perThreadState(8),
+ // globalCheckpoint(32),
+ // instructionLength(32){};
+ //ParseXML * XML;
+ bool opt_local;
+ bool x86;
+ bool Embedded;
+ enum Core_type core_ty;
+ enum Renaming_type rm_ty;
+ enum Scheduler_type scheu_ty;
+ double clockRate,executionTime;
+ int arch_ireg_width, arch_freg_width, phy_ireg_width, phy_freg_width;
+ int num_IRF_entry, num_FRF_entry, num_ifreelist_entries, num_ffreelist_entries;
+ int fetchW, decodeW,issueW,peak_issueW, commitW,peak_commitW, predictionW, fp_issueW, fp_decodeW;
+ int perThreadState, globalCheckpoint, instruction_length, pc_width, opcode_length, micro_opcode_length;
+ int num_hthreads, pipeline_stages, fp_pipeline_stages, num_pipelines, num_fp_pipelines;
+ int num_alus, num_muls;
+ double num_fpus;
+ int int_data_width, fp_data_width,v_address_width, p_address_width;
+ double pipeline_duty_cycle, total_cycles, busy_cycles, idle_cycles;
+ bool regWindowing,multithreaded;
+ double pppm_lkg_multhread[4];
+ double IFU_duty_cycle,BR_duty_cycle,LSU_duty_cycle,MemManU_I_duty_cycle,
+ MemManU_D_duty_cycle, ALU_duty_cycle,MUL_duty_cycle,
+ FPU_duty_cycle, ALU_cdb_duty_cycle,MUL_cdb_duty_cycle,
+ FPU_cdb_duty_cycle;
+ ~CoreDynParam(){};
+};
+
+class CacheDynParam {
+public:
+ CacheDynParam(){};
+ CacheDynParam(ParseXML *XML_interface, int ithCache_);
+ string name;
+ enum Dir_type dir_ty;
+ double clockRate,executionTime;
+ double capacity, blockW, assoc, nbanks;
+ double throughput, latency;
+ double duty_cycle, dir_duty_cycle;
+ //double duty_cycle;
+ int missb_size, fu_size, prefetchb_size, wbb_size;
+ ~CacheDynParam(){};
+};
+
+class MCParam {
+public:
+ MCParam(){};
+ MCParam(ParseXML *XML_interface, int ithCache_);
+ string name;
+ double clockRate,num_mcs, peakDataTransferRate, num_channels;
+ // double mcTEPowerperGhz;
+ // double mcPHYperGbit;
+ // double area;
+ int llcBlockSize, dataBusWidth, addressBusWidth;
+ int opcodeW;
+ int memAccesses;
+ int memRank;
+ int type;
+ double frontend_duty_cycle, duty_cycle, perc_load;
+ double executionTime, reads, writes;
+ bool LVDS, withPHY;
+
+ ~MCParam(){};
+};
+
+class NoCParam {
+public:
+ NoCParam(){};
+ NoCParam(ParseXML *XML_interface, int ithCache_);
+ string name;
+ double clockRate;
+ int flit_size;
+ int input_ports, output_ports, min_ports, global_linked_ports;
+ int virtual_channel_per_port,input_buffer_entries_per_vc;
+ int horizontal_nodes,vertical_nodes, total_nodes;
+ double executionTime, total_access, link_throughput,link_latency,
+ duty_cycle, chip_coverage, route_over_perc;
+ bool has_global_link, type;
+
+ ~NoCParam(){};
+};
+
+class ProcParam {
+public:
+ ProcParam(){};
+ ProcParam(ParseXML *XML_interface, int ithCache_);
+ string name;
+ int numCore, numL2, numL3, numNOC, numL1Dir, numL2Dir,numMC, numMCChannel;
+ bool homoCore, homoL2, homoL3, homoNOC, homoL1Dir, homoL2Dir;
+
+ ~ProcParam(){};
+};
+
+class NIUParam {
+public:
+ NIUParam(){};
+ NIUParam(ParseXML *XML_interface, int ithCache_);
+ string name;
+ double clockRate;
+ int num_units;
+ int type;
+ double duty_cycle, perc_load;
+ ~NIUParam(){};
+};
+
+class PCIeParam {
+public:
+ PCIeParam(){};
+ PCIeParam(ParseXML *XML_interface, int ithCache_);
+ string name;
+ double clockRate;
+ int num_channels, num_units;
+ bool withPHY;
+ int type;
+ double duty_cycle, perc_load;
+ ~PCIeParam(){};
+};
+#endif /* BASIC_COMPONENTS_H_ */
--- /dev/null
+-----------------------------------------------------------
+ ____ _ ____ _____ ___ __ ____
+ / ___| / \ / ___|_ _|_ _| / /_ | ___|
+ | | / _ \| | | | | | | '_ \ |___ \
+ | |___ / ___ \ |___ | | | | | (_) | ___) |
+ \____/_/ \_\____| |_| |___| \___(_)____/
+
+
+ A Tool to Model Caches/Memories
+-----------------------------------------------------------
+
+CACTI is an analytical tool that takes a set of cache/memory para-
+meters as input and calculates its access time, power, cycle
+time, and area.
+CACTI was originally developed by Dr. Jouppi and Dr. Wilton
+in 1993 and since then it has undergone five major
+revisions.
+
+List of features (version 1-6.5):
+===============================
+The following is the list of features supported by the tool.
+
+* Power, delay, area, and cycle time model for
+ direct mapped caches
+ set-associative caches
+ fully associative caches
+ Embedded DRAM memories
+ Commodity DRAM memories
+
+* Support for modeling multi-ported uniform cache access (UCA)
+ and multi-banked, multi-ported non-uniform cache access (NUCA).
+
+* Leakage power calculation that also considers the operating
+ temperature of the cache.
+
+* Router power model.
+
+* Interconnect model with different delay, power, and area
+ properties including low-swing wire model.
+
+* An interface to perform trade-off analysis involving power, delay,
+ area, and bandwidth.
+
+* All process specific values used by the tool are obtained
+ from ITRS and currently, the tool supports 90nm, 65nm, 45nm,
+ and 32nm technology nodes.
+
+Version 6.5 has a new c++ code base and includes numerous bug fixes.
+CACTI 5.3 and 6.0 activate an entire row of mats to read/write a single
+block of data. This technique improves reliability at the cost of
+power. CACTI 6.5 activates minimum number of mats just enough to retrieve
+a block to minimize power.
+
+How to use the tool?
+====================
+Prior versions of CACTI take input parameters such as cache
+size and technology node as a set of command line arguments.
+To avoid a long list of command line arguments,
+CACTI 6.5 lets users specify their cache model in a more
+detailed manner by using a config file (cache.cfg).
+
+-> define the cache model using cache.cfg
+-> run the "cacti" binary <./cacti -infile cache.cfg>
+
+CACTI6.5 also provides a command line interface similar to earlier versions
+of CACTI. The command line interface can be used as
+
+./cacti cache_size line_size associativity rw_ports excl_read_ports excl_write_ports
+ single_ended_read_ports search_ports banks tech_node output_width specific_tag tag_width
+ access_mode cache main_mem obj_func_delay obj_func_dynamic_power obj_func_leakage_power
+ obj_func_cycle_time obj_func_area dev_func_delay dev_func_dynamic_power dev_func_leakage_power
+ dev_func_area dev_func_cycle_time ed_ed2_none temp wt data_arr_ram_cell_tech_flavor_in
+ data_arr_peri_global_tech_flavor_in tag_arr_ram_cell_tech_flavor_in tag_arr_peri_global_tech_flavor_in
+ interconnect_projection_type_in wire_inside_mat_type_in wire_outside_mat_type_in
+ REPEATERS_IN_HTREE_SEGMENTS_in VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in
+ BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in PAGE_SIZE_BITS_in BURST_LENGTH_in
+ INTERNAL_PREFETCH_WIDTH_in force_wiretype wiretype force_config ndwl ndbl nspd ndcm
+ ndsam1 ndsam2 ecc
+
+For complete documentation of the tool, please refer CACTI-5.3 and 6.0
+technical reports and the following paper,
+"Optimizing NUCA Organizations and Wiring Alternatives for
+Large Caches With CACTI 6.0", that appears in MICRO 2007.
+
+We are still improving the tool and refining the code. If you
+have any comments, questions, or suggestions please write to
+us.
+
+Naveen Muralimanohar Jung Ho Ahn Sheng Li
+naveen.muralimanohar@hp.com gajh@snu.ac.kr sheng.li@hp.com
+
+
+
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#include <pthread.h>
+
+#include <algorithm>
+#include <cmath>
+#include <ctime>
+#include <iostream>
+#include <list>
+
+#include "Ucache.h"
+#include "area.h"
+#include "bank.h"
+#include "basic_circuit.h"
+#include "component.h"
+#include "const.h"
+#include "decoder.h"
+#include "parameter.h"
+#include "subarray.h"
+#include "uca.h"
+
+using namespace std;
+
+const uint32_t nthreads = NTHREADS;
+
+
+void min_values_t::update_min_values(const min_values_t * val)
+{
+ min_delay = (min_delay > val->min_delay) ? val->min_delay : min_delay;
+ min_dyn = (min_dyn > val->min_dyn) ? val->min_dyn : min_dyn;
+ min_leakage = (min_leakage > val->min_leakage) ? val->min_leakage : min_leakage;
+ min_area = (min_area > val->min_area) ? val->min_area : min_area;
+ min_cyc = (min_cyc > val->min_cyc) ? val->min_cyc : min_cyc;
+}
+
+
+
+void min_values_t::update_min_values(const uca_org_t & res)
+{
+ min_delay = (min_delay > res.access_time) ? res.access_time : min_delay;
+ min_dyn = (min_dyn > res.power.readOp.dynamic) ? res.power.readOp.dynamic : min_dyn;
+ min_leakage = (min_leakage > res.power.readOp.leakage) ? res.power.readOp.leakage : min_leakage;
+ min_area = (min_area > res.area) ? res.area : min_area;
+ min_cyc = (min_cyc > res.cycle_time) ? res.cycle_time : min_cyc;
+}
+
+void min_values_t::update_min_values(const nuca_org_t * res)
+{
+ min_delay = (min_delay > res->nuca_pda.delay) ? res->nuca_pda.delay : min_delay;
+ min_dyn = (min_dyn > res->nuca_pda.power.readOp.dynamic) ? res->nuca_pda.power.readOp.dynamic : min_dyn;
+ min_leakage = (min_leakage > res->nuca_pda.power.readOp.leakage) ? res->nuca_pda.power.readOp.leakage : min_leakage;
+ min_area = (min_area > res->nuca_pda.area.get_area()) ? res->nuca_pda.area.get_area() : min_area;
+ min_cyc = (min_cyc > res->nuca_pda.cycle_time) ? res->nuca_pda.cycle_time : min_cyc;
+}
+
+void min_values_t::update_min_values(const mem_array * res)
+{
+ min_delay = (min_delay > res->access_time) ? res->access_time : min_delay;
+ min_dyn = (min_dyn > res->power.readOp.dynamic) ? res->power.readOp.dynamic : min_dyn;
+ min_leakage = (min_leakage > res->power.readOp.leakage) ? res->power.readOp.leakage : min_leakage;
+ min_area = (min_area > res->area) ? res->area : min_area;
+ min_cyc = (min_cyc > res->cycle_time) ? res->cycle_time : min_cyc;
+}
+
+
+
+void * calc_time_mt_wrapper(void * void_obj)
+{
+ calc_time_mt_wrapper_struct * calc_obj = (calc_time_mt_wrapper_struct *) void_obj;
+ uint32_t tid = calc_obj->tid;
+ list<mem_array *> & data_arr = calc_obj->data_arr;
+ list<mem_array *> & tag_arr = calc_obj->tag_arr;
+ bool is_tag = calc_obj->is_tag;
+ bool pure_ram = calc_obj->pure_ram;
+ bool pure_cam = calc_obj->pure_cam;
+ bool is_main_mem = calc_obj->is_main_mem;
+ double Nspd_min = calc_obj->Nspd_min;
+ min_values_t * data_res = calc_obj->data_res;
+ min_values_t * tag_res = calc_obj->tag_res;
+
+ data_arr.clear();
+ data_arr.push_back(new mem_array);
+ tag_arr.clear();
+ tag_arr.push_back(new mem_array);
+
+ uint32_t Ndwl_niter = _log2(MAXDATAN) + 1;
+ uint32_t Ndbl_niter = _log2(MAXDATAN) + 1;
+ uint32_t Ndcm_niter = _log2(MAX_COL_MUX) + 1;
+ uint32_t niter = Ndwl_niter * Ndbl_niter * Ndcm_niter;
+
+
+ bool is_valid_partition;
+ int wt_min, wt_max;
+
+ if (g_ip->force_wiretype) {
+ if (g_ip->wt == 0) {
+ wt_min = Low_swing;
+ wt_max = Low_swing;
+ }
+ else {
+ wt_min = Global;
+ wt_max = Low_swing-1;
+ }
+ }
+ else {
+ wt_min = Global;
+ wt_max = Low_swing;
+ }
+
+ for (double Nspd = Nspd_min; Nspd <= MAXDATASPD; Nspd *= 2)
+ {
+ for (int wr = wt_min; wr <= wt_max; wr++)
+ {
+ for (uint32_t iter = tid; iter < niter; iter += nthreads)
+ {
+ // reconstruct Ndwl, Ndbl, Ndcm
+ unsigned int Ndwl = 1 << (iter / (Ndbl_niter * Ndcm_niter));
+ unsigned int Ndbl = 1 << ((iter / (Ndcm_niter))%Ndbl_niter);
+ unsigned int Ndcm = 1 << (iter % Ndcm_niter);
+ for(unsigned int Ndsam_lev_1 = 1; Ndsam_lev_1 <= MAX_COL_MUX; Ndsam_lev_1 *= 2)
+ {
+ for(unsigned int Ndsam_lev_2 = 1; Ndsam_lev_2 <= MAX_COL_MUX; Ndsam_lev_2 *= 2)
+ {
+ //for debuging
+ if (g_ip->force_cache_config && is_tag == false)
+ {
+ wr = g_ip->wt;
+ Ndwl = g_ip->ndwl;
+ Ndbl = g_ip->ndbl;
+ Ndcm = g_ip->ndcm;
+ if(g_ip->nspd != 0) {
+ Nspd = g_ip->nspd;
+ }
+ if(g_ip->ndsam1 != 0) {
+ Ndsam_lev_1 = g_ip->ndsam1;
+ Ndsam_lev_2 = g_ip->ndsam2;
+ }
+ }
+
+ if (is_tag == true)
+ {
+ is_valid_partition = calculate_time(is_tag, pure_ram, pure_cam, Nspd, Ndwl,
+ Ndbl, Ndcm, Ndsam_lev_1, Ndsam_lev_2,
+ tag_arr.back(), 0, NULL, NULL,
+ is_main_mem);
+ }
+ // If it's a fully-associative cache, the data array partition parameters are identical to that of
+ // the tag array, so compute data array partition properties also here.
+ if (is_tag == false || g_ip->fully_assoc)
+ {
+ is_valid_partition = calculate_time(is_tag/*false*/, pure_ram, pure_cam, Nspd, Ndwl,
+ Ndbl, Ndcm, Ndsam_lev_1, Ndsam_lev_2,
+ data_arr.back(), 0, NULL, NULL,
+ is_main_mem);
+ }
+
+ if (is_valid_partition)
+ {
+ if (is_tag == true)
+ {
+ tag_arr.back()->wt = (enum Wire_type) wr;
+ tag_res->update_min_values(tag_arr.back());
+ tag_arr.push_back(new mem_array);
+ }
+ if (is_tag == false || g_ip->fully_assoc)
+ {
+ data_arr.back()->wt = (enum Wire_type) wr;
+ data_res->update_min_values(data_arr.back());
+ data_arr.push_back(new mem_array);
+ }
+ }
+
+ if (g_ip->force_cache_config && is_tag == false)
+ {
+ wr = wt_max;
+ iter = niter;
+ if(g_ip->nspd != 0) {
+ Nspd = MAXDATASPD;
+ }
+ if (g_ip->ndsam1 != 0) {
+ Ndsam_lev_1 = MAX_COL_MUX+1;
+ Ndsam_lev_2 = MAX_COL_MUX+1;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ delete data_arr.back();
+ delete tag_arr.back();
+ data_arr.pop_back();
+ tag_arr.pop_back();
+
+ pthread_exit(NULL);
+}
+
+
+
+bool calculate_time(
+ bool is_tag,
+ int pure_ram,
+ bool pure_cam,
+ double Nspd,
+ unsigned int Ndwl,
+ unsigned int Ndbl,
+ unsigned int Ndcm,
+ unsigned int Ndsam_lev_1,
+ unsigned int Ndsam_lev_2,
+ mem_array *ptr_array,
+ int flag_results_populate,
+ results_mem_array *ptr_results,
+ uca_org_t *ptr_fin_res,
+ bool is_main_mem)
+{
+ DynamicParameter dyn_p(is_tag, pure_ram, pure_cam, Nspd, Ndwl, Ndbl, Ndcm, Ndsam_lev_1, Ndsam_lev_2, is_main_mem);
+
+ if (dyn_p.is_valid == false)
+ {
+ return false;
+ }
+
+ UCA * uca = new UCA(dyn_p);
+
+
+ if (flag_results_populate)
+ { //For the final solution, populate the ptr_results data structure -- TODO: copy only necessary variables
+ }
+ else
+ {
+ int num_act_mats_hor_dir = uca->bank.dp.num_act_mats_hor_dir;
+ int num_mats = uca->bank.dp.num_mats;
+ bool is_fa = uca->bank.dp.fully_assoc;
+ bool pure_cam = uca->bank.dp.pure_cam;
+ ptr_array->Ndwl = Ndwl;
+ ptr_array->Ndbl = Ndbl;
+ ptr_array->Nspd = Nspd;
+ ptr_array->deg_bl_muxing = dyn_p.deg_bl_muxing;
+ ptr_array->Ndsam_lev_1 = Ndsam_lev_1;
+ ptr_array->Ndsam_lev_2 = Ndsam_lev_2;
+ ptr_array->access_time = uca->access_time;
+ ptr_array->cycle_time = uca->cycle_time;
+ ptr_array->multisubbank_interleave_cycle_time = uca->multisubbank_interleave_cycle_time;
+ ptr_array->area_ram_cells = uca->area_all_dataramcells;
+ ptr_array->area = uca->area.get_area();
+ ptr_array->height = uca->area.h;
+ ptr_array->width = uca->area.w;
+ ptr_array->mat_height = uca->bank.mat.area.h;
+ ptr_array->mat_length = uca->bank.mat.area.w;
+ ptr_array->subarray_height = uca->bank.mat.subarray.area.h;
+ ptr_array->subarray_length = uca->bank.mat.subarray.area.w;
+ ptr_array->power = uca->power;
+ ptr_array->delay_senseamp_mux_decoder =
+ MAX(uca->delay_array_to_sa_mux_lev_1_decoder,
+ uca->delay_array_to_sa_mux_lev_2_decoder);
+ ptr_array->delay_before_subarray_output_driver = uca->delay_before_subarray_output_driver;
+ ptr_array->delay_from_subarray_output_driver_to_output = uca->delay_from_subarray_out_drv_to_out;
+
+ ptr_array->delay_route_to_bank = uca->htree_in_add->delay;
+ ptr_array->delay_input_htree = uca->bank.htree_in_add->delay;
+ ptr_array->delay_row_predecode_driver_and_block = uca->bank.mat.r_predec->delay;
+ ptr_array->delay_row_decoder = uca->bank.mat.row_dec->delay;
+ ptr_array->delay_bitlines = uca->bank.mat.delay_bitline;
+ ptr_array->delay_matchlines = uca->bank.mat.delay_matchchline;
+ ptr_array->delay_sense_amp = uca->bank.mat.delay_sa;
+ ptr_array->delay_subarray_output_driver = uca->bank.mat.delay_subarray_out_drv_htree;
+ ptr_array->delay_dout_htree = uca->bank.htree_out_data->delay;
+ ptr_array->delay_comparator = uca->bank.mat.delay_comparator;
+
+ ptr_array->all_banks_height = uca->area.h;
+ ptr_array->all_banks_width = uca->area.w;
+ ptr_array->area_efficiency = uca->area_all_dataramcells * 100 / (uca->area.get_area());
+
+ ptr_array->power_routing_to_bank = uca->power_routing_to_bank;
+ ptr_array->power_addr_input_htree = uca->bank.htree_in_add->power;
+ ptr_array->power_data_input_htree = uca->bank.htree_in_data->power;
+// cout<<"power_data_input_htree"<<uca->bank.htree_in_data->power.readOp.leakage<<endl;
+ ptr_array->power_data_output_htree = uca->bank.htree_out_data->power;
+// cout<<"power_data_output_htree"<<uca->bank.htree_out_data->power.readOp.leakage<<endl;
+ ptr_array->power_row_predecoder_drivers = uca->bank.mat.r_predec->driver_power;
+ ptr_array->power_row_predecoder_drivers.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_row_predecoder_drivers.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_row_predecoder_drivers.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_row_predecoder_blocks = uca->bank.mat.r_predec->block_power;
+ ptr_array->power_row_predecoder_blocks.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_row_predecoder_blocks.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_row_predecoder_blocks.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_row_decoders = uca->bank.mat.power_row_decoders;
+ ptr_array->power_row_decoders.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_row_decoders.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_row_decoders.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_bit_mux_predecoder_drivers = uca->bank.mat.b_mux_predec->driver_power;
+ ptr_array->power_bit_mux_predecoder_drivers.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_bit_mux_predecoder_drivers.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_bit_mux_predecoder_drivers.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_bit_mux_predecoder_blocks = uca->bank.mat.b_mux_predec->block_power;
+ ptr_array->power_bit_mux_predecoder_blocks.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_bit_mux_predecoder_blocks.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_bit_mux_predecoder_blocks.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_bit_mux_decoders = uca->bank.mat.power_bit_mux_decoders;
+ ptr_array->power_bit_mux_decoders.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_bit_mux_decoders.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_bit_mux_decoders.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_senseamp_mux_lev_1_predecoder_drivers = uca->bank.mat.sa_mux_lev_1_predec->driver_power;
+ ptr_array->power_senseamp_mux_lev_1_predecoder_drivers .readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_1_predecoder_drivers .writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_1_predecoder_drivers .searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_senseamp_mux_lev_1_predecoder_blocks = uca->bank.mat.sa_mux_lev_1_predec->block_power;
+ ptr_array->power_senseamp_mux_lev_1_predecoder_blocks.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_1_predecoder_blocks.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_1_predecoder_blocks.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_senseamp_mux_lev_1_decoders = uca->bank.mat.power_sa_mux_lev_1_decoders;
+ ptr_array->power_senseamp_mux_lev_1_decoders.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_1_decoders.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_1_decoders.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_senseamp_mux_lev_2_predecoder_drivers = uca->bank.mat.sa_mux_lev_2_predec->driver_power;
+ ptr_array->power_senseamp_mux_lev_2_predecoder_drivers.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_2_predecoder_drivers.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_2_predecoder_drivers.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_senseamp_mux_lev_2_predecoder_blocks = uca->bank.mat.sa_mux_lev_2_predec->block_power;
+ ptr_array->power_senseamp_mux_lev_2_predecoder_blocks.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_2_predecoder_blocks.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_2_predecoder_blocks.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_senseamp_mux_lev_2_decoders = uca->bank.mat.power_sa_mux_lev_2_decoders;
+ ptr_array->power_senseamp_mux_lev_2_decoders .readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_2_decoders .writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_senseamp_mux_lev_2_decoders .searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_bitlines = uca->bank.mat.power_bitline;
+ ptr_array->power_bitlines.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_bitlines.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_bitlines.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_sense_amps = uca->bank.mat.power_sa;
+ ptr_array->power_sense_amps.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_sense_amps.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_sense_amps.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_prechg_eq_drivers = uca->bank.mat.power_bl_precharge_eq_drv;
+ ptr_array->power_prechg_eq_drivers.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_prechg_eq_drivers.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_prechg_eq_drivers.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_output_drivers_at_subarray = uca->bank.mat.power_subarray_out_drv;
+ ptr_array->power_output_drivers_at_subarray.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_output_drivers_at_subarray.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_output_drivers_at_subarray.searchOp.dynamic *= num_act_mats_hor_dir;
+
+ ptr_array->power_comparators = uca->bank.mat.power_comparator;
+ ptr_array->power_comparators.readOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_comparators.writeOp.dynamic *= num_act_mats_hor_dir;
+ ptr_array->power_comparators.searchOp.dynamic *= num_act_mats_hor_dir;
+
+// cout << " num of mats: " << dyn_p.num_mats << endl;
+ if (is_fa || pure_cam)
+ {
+ ptr_array->power_htree_in_search = uca->bank.htree_in_search->power;
+// cout<<"power_htree_in_search"<<uca->bank.htree_in_search->power.readOp.leakage<<endl;
+ ptr_array->power_htree_out_search = uca->bank.htree_out_search->power;
+// cout<<"power_htree_out_search"<<uca->bank.htree_out_search->power.readOp.leakage<<endl;
+ ptr_array->power_searchline = uca->bank.mat.power_searchline;
+// cout<<"power_searchlineh"<<uca->bank.mat.power_searchline.readOp.leakage<<endl;
+ ptr_array->power_searchline.searchOp.dynamic *= num_mats;
+ ptr_array->power_searchline_precharge = uca->bank.mat.power_searchline_precharge;
+ ptr_array->power_searchline_precharge.searchOp.dynamic *= num_mats;
+ ptr_array->power_matchlines = uca->bank.mat.power_matchline;
+ ptr_array->power_matchlines.searchOp.dynamic *= num_mats;
+ ptr_array->power_matchline_precharge = uca->bank.mat.power_matchline_precharge;
+ ptr_array->power_matchline_precharge.searchOp.dynamic *= num_mats;
+ ptr_array->power_matchline_to_wordline_drv = uca->bank.mat.power_ml_to_ram_wl_drv;
+// cout<<"power_matchline.searchOp.leakage"<<uca->bank.mat.power_matchline.searchOp.leakage<<endl;
+ }
+
+ ptr_array->activate_energy = uca->activate_energy;
+ ptr_array->read_energy = uca->read_energy;
+ ptr_array->write_energy = uca->write_energy;
+ ptr_array->precharge_energy = uca->precharge_energy;
+ ptr_array->refresh_power = uca->refresh_power;
+ ptr_array->leak_power_subbank_closed_page = uca->leak_power_subbank_closed_page;
+ ptr_array->leak_power_subbank_open_page = uca->leak_power_subbank_open_page;
+ ptr_array->leak_power_request_and_reply_networks = uca->leak_power_request_and_reply_networks;
+
+ ptr_array->precharge_delay = uca->precharge_delay;
+
+
+// cout<<"power_matchline.searchOp.leakage"<<uca->bank.mat.<<endl;
+//
+// if (!(is_fa || pure_cam))
+// {
+// cout << " num of cols: " << dyn_p.num_c_subarray << endl;
+// }
+// else if (is_fa)
+// {
+// cout << " num of cols: " << dyn_p.tag_num_c_subarray+ dyn_p.data_num_c_subarray<< endl;
+// } else
+// cout << " num of cols: " << dyn_p.tag_num_c_subarray<< endl;
+// cout << uca->bank.mat.subarray.get_total_cell_area()<<endl;
+ }
+
+
+ delete uca;
+ return true;
+}
+
+
+
+bool check_uca_org(uca_org_t & u, min_values_t *minval)
+{
+ if (((u.access_time - minval->min_delay)*100/minval->min_delay) > g_ip->delay_dev) {
+ return false;
+ }
+ if (((u.power.readOp.dynamic - minval->min_dyn)/minval->min_dyn)*100 >
+ g_ip->dynamic_power_dev) {
+ return false;
+ }
+ if (((u.power.readOp.leakage - minval->min_leakage)/minval->min_leakage)*100 >
+ g_ip->leakage_power_dev) {
+ return false;
+ }
+ if (((u.cycle_time - minval->min_cyc)/minval->min_cyc)*100 >
+ g_ip->cycle_time_dev) {
+ return false;
+ }
+ if (((u.area - minval->min_area)/minval->min_area)*100 >
+ g_ip->area_dev) {
+ return false;
+ }
+ return true;
+}
+
+bool check_mem_org(mem_array & u, const min_values_t *minval)
+{
+ if (((u.access_time - minval->min_delay)*100/minval->min_delay) > g_ip->delay_dev) {
+ return false;
+ }
+ if (((u.power.readOp.dynamic - minval->min_dyn)/minval->min_dyn)*100 >
+ g_ip->dynamic_power_dev) {
+ return false;
+ }
+ if (((u.power.readOp.leakage - minval->min_leakage)/minval->min_leakage)*100 >
+ g_ip->leakage_power_dev) {
+ return false;
+ }
+ if (((u.cycle_time - minval->min_cyc)/minval->min_cyc)*100 >
+ g_ip->cycle_time_dev) {
+ return false;
+ }
+ if (((u.area - minval->min_area)/minval->min_area)*100 >
+ g_ip->area_dev) {
+ return false;
+ }
+ return true;
+}
+
+
+
+
+void find_optimal_uca(uca_org_t *res, min_values_t * minval, list<uca_org_t> & ulist)
+{
+ double cost = 0;
+ double min_cost = BIGNUM;
+ float d, a, dp, lp, c;
+
+ dp = g_ip->dynamic_power_wt;
+ lp = g_ip->leakage_power_wt;
+ a = g_ip->area_wt;
+ d = g_ip->delay_wt;
+ c = g_ip->cycle_time_wt;
+
+ if (ulist.empty() == true)
+ {
+ cout << "ERROR: no valid cache organizations found" << endl;
+ exit(0);
+ }
+
+ for (list<uca_org_t>::iterator niter = ulist.begin(); niter != ulist.end(); niter++)
+ {
+ if (g_ip->ed == 1)
+ {
+ cost = ((niter)->access_time/minval->min_delay) * ((niter)->power.readOp.dynamic/minval->min_dyn);
+ if (min_cost > cost)
+ {
+ min_cost = cost;
+ *res = (*(niter));
+ }
+ }
+ else if (g_ip->ed == 2)
+ {
+ cost = ((niter)->access_time/minval->min_delay)*
+ ((niter)->access_time/minval->min_delay)*
+ ((niter)->power.readOp.dynamic/minval->min_dyn);
+ if (min_cost > cost)
+ {
+ min_cost = cost;
+ *res = (*(niter));
+ }
+ }
+ else
+ {
+ /*
+ * check whether the current organization
+ * meets the input deviation constraints
+ */
+ bool v = check_uca_org(*niter, minval);
+ //if (minval->min_leakage == 0) minval->min_leakage = 0.1; //FIXME remove this after leakage modeling
+
+ if (v)
+ {
+ cost = (d * ((niter)->access_time/minval->min_delay) +
+ c * ((niter)->cycle_time/minval->min_cyc) +
+ dp * ((niter)->power.readOp.dynamic/minval->min_dyn) +
+ lp * ((niter)->power.readOp.leakage/minval->min_leakage) +
+ a * ((niter)->area/minval->min_area));
+ //fprintf(stderr, "cost = %g\n", cost);
+
+ if (min_cost > cost) {
+ min_cost = cost;
+ *res = (*(niter));
+ niter = ulist.erase(niter);
+ if (niter!=ulist.begin())
+ niter--;
+ }
+ }
+ else {
+ niter = ulist.erase(niter);
+ if (niter!=ulist.begin())
+ niter--;
+ }
+ }
+ }
+
+ if (min_cost == BIGNUM)
+ {
+ cout << "ERROR: no cache organizations met optimization criteria" << endl;
+ exit(0);
+ }
+}
+
+
+
+void filter_tag_arr(const min_values_t * min, list<mem_array *> & list)
+{
+ double cost = BIGNUM;
+ double cur_cost;
+ double wt_delay = g_ip->delay_wt, wt_dyn = g_ip->dynamic_power_wt, wt_leakage = g_ip->leakage_power_wt, wt_cyc = g_ip->cycle_time_wt, wt_area = g_ip->area_wt;
+ mem_array * res = NULL;
+
+ if (list.empty() == true)
+ {
+ cout << "ERROR: no valid tag organizations found" << endl;
+ exit(1);
+ }
+
+
+ while (list.empty() != true)
+ {
+ bool v = check_mem_org(*list.back(), min);
+ if (v)
+ {
+ cur_cost = wt_delay * (list.back()->access_time/min->min_delay) +
+ wt_dyn * (list.back()->power.readOp.dynamic/min->min_dyn) +
+ wt_leakage * (list.back()->power.readOp.leakage/min->min_leakage) +
+ wt_area * (list.back()->area/min->min_area) +
+ wt_cyc * (list.back()->cycle_time/min->min_cyc);
+ }
+ else
+ {
+ cur_cost = BIGNUM;
+ }
+ if (cur_cost < cost)
+ {
+ if (res != NULL)
+ {
+ delete res;
+ }
+ cost = cur_cost;
+ res = list.back();
+ }
+ else
+ {
+ delete list.back();
+ }
+ list.pop_back();
+ }
+ if(!res)
+ {
+ cout << "ERROR: no valid tag organizations found" << endl;
+ exit(0);
+ }
+
+ list.push_back(res);
+}
+
+
+
+void filter_data_arr(list<mem_array *> & curr_list)
+{
+ if (curr_list.empty() == true)
+ {
+ cout << "ERROR: no valid data array organizations found" << endl;
+ exit(1);
+ }
+
+ list<mem_array *>::iterator iter;
+
+ for (iter = curr_list.begin(); iter != curr_list.end(); ++iter)
+ {
+ mem_array * m = *iter;
+
+ if (m == NULL) exit(1);
+
+ if(((m->access_time - m->arr_min->min_delay)/m->arr_min->min_delay > 0.5) &&
+ ((m->power.readOp.dynamic - m->arr_min->min_dyn)/m->arr_min->min_dyn > 0.5))
+ {
+ delete m;
+ iter = curr_list.erase(iter);
+ iter --;
+ }
+ }
+}
+
+
+
+/*
+ * Performs exhaustive search across different sub-array sizes,
+ * wire types and aspect ratios to find an optimal UCA organization
+ * 1. First different valid tag array organizations are calculated
+ * and stored in tag_arr array
+ * 2. The exhaustive search is repeated to find valid data array
+ * organizations and stored in data_arr array
+ * 3. Cache area, delay, power, and cycle time for different
+ * cache organizations are calculated based on the
+ * above results
+ * 4. Cache model with least cost is picked from sol_list
+ */
+void solve(uca_org_t *fin_res)
+{
+ bool is_dram = false;
+ int pure_ram = g_ip->pure_ram;
+ bool pure_cam = g_ip->pure_cam;
+
+ init_tech_params(g_ip->F_sz_um, false);
+
+
+ list<mem_array *> tag_arr (0);
+ list<mem_array *> data_arr(0);
+ list<mem_array *>::iterator miter;
+ list<uca_org_t> sol_list(1, uca_org_t());
+
+ fin_res->tag_array.access_time = 0;
+ fin_res->tag_array.Ndwl = 0;
+ fin_res->tag_array.Ndbl = 0;
+ fin_res->tag_array.Nspd = 0;
+ fin_res->tag_array.deg_bl_muxing = 0;
+ fin_res->tag_array.Ndsam_lev_1 = 0;
+ fin_res->tag_array.Ndsam_lev_2 = 0;
+
+
+ // distribute calculate_time() execution to multiple threads
+ calc_time_mt_wrapper_struct * calc_array = new calc_time_mt_wrapper_struct[nthreads];
+ pthread_t threads[nthreads];
+
+ for (uint32_t t = 0; t < nthreads; t++)
+ {
+ calc_array[t].tid = t;
+ calc_array[t].pure_ram = pure_ram;
+ calc_array[t].pure_cam = pure_cam;
+ calc_array[t].data_res = new min_values_t();
+ calc_array[t].tag_res = new min_values_t();
+ }
+
+ bool is_tag;
+ uint32_t ram_cell_tech_type;
+
+ // If it's a cache, first calculate the area, delay and power for all tag array partitions.
+ if (!(pure_ram||pure_cam||g_ip->fully_assoc))
+ { //cache
+ is_tag = true;
+ ram_cell_tech_type = g_ip->tag_arr_ram_cell_tech_type;
+ is_dram = ((ram_cell_tech_type == lp_dram) || (ram_cell_tech_type == comm_dram));
+ init_tech_params(g_ip->F_sz_um, is_tag);
+
+ for (uint32_t t = 0; t < nthreads; t++)
+ {
+ calc_array[t].is_tag = is_tag;
+ calc_array[t].is_main_mem = false;
+ calc_array[t].Nspd_min = 0.125;
+ pthread_create(&threads[t], NULL, calc_time_mt_wrapper, (void *)(&(calc_array[t])));
+ }
+
+ for (uint32_t t = 0; t < nthreads; t++)
+ {
+ pthread_join(threads[t], NULL);
+ }
+
+ for (uint32_t t = 0; t < nthreads; t++)
+ {
+ calc_array[t].data_arr.sort(mem_array::lt);
+ data_arr.merge(calc_array[t].data_arr, mem_array::lt);
+ calc_array[t].tag_arr.sort(mem_array::lt);
+ tag_arr.merge(calc_array[t].tag_arr, mem_array::lt);
+ }
+ }
+
+
+ // calculate the area, delay and power for all data array partitions (for cache or plain RAM).
+// if (!g_ip->fully_assoc)
+// {//in the new cacti, cam, fully_associative cache are processed as single array in the data portion
+ is_tag = false;
+ ram_cell_tech_type = g_ip->data_arr_ram_cell_tech_type;
+ is_dram = ((ram_cell_tech_type == lp_dram) || (ram_cell_tech_type == comm_dram));
+ init_tech_params(g_ip->F_sz_um, is_tag);
+
+ for (uint32_t t = 0; t < nthreads; t++)
+ {
+ calc_array[t].is_tag = is_tag;
+ calc_array[t].is_main_mem = g_ip->is_main_mem;
+ if (!(pure_cam||g_ip->fully_assoc))
+ {
+ calc_array[t].Nspd_min = (double)(g_ip->out_w)/(double)(g_ip->block_sz*8);
+ }
+ else
+ {
+ calc_array[t].Nspd_min = 1;
+ }
+
+ pthread_create(&threads[t], NULL, calc_time_mt_wrapper, (void *)(&(calc_array[t])));
+ }
+
+ for (uint32_t t = 0; t < nthreads; t++)
+ {
+ pthread_join(threads[t], NULL);
+ }
+
+ data_arr.clear();
+ for (uint32_t t = 0; t < nthreads; t++)
+ {
+ calc_array[t].data_arr.sort(mem_array::lt);
+ data_arr.merge(calc_array[t].data_arr, mem_array::lt);
+ }
+// }
+
+
+ min_values_t * d_min = new min_values_t();
+ min_values_t * t_min = new min_values_t();
+ min_values_t * cache_min = new min_values_t();
+
+ for (uint32_t t = 0; t < nthreads; t++)
+ {
+ d_min->update_min_values(calc_array[t].data_res);
+ t_min->update_min_values(calc_array[t].tag_res);
+ }
+
+ for (miter = data_arr.begin(); miter != data_arr.end(); miter++)
+ {
+ (*miter)->arr_min = d_min;
+ }
+
+
+ //cout << data_arr.size() << "\t" << tag_arr.size() <<" before\n";
+ filter_data_arr(data_arr);
+ if(!(pure_ram||pure_cam||g_ip->fully_assoc))
+ {
+ filter_tag_arr(t_min, tag_arr);
+ }
+ //cout << data_arr.size() << "\t" << tag_arr.size() <<" after\n";
+
+
+ if (pure_ram||pure_cam||g_ip->fully_assoc)
+ {
+ for (miter = data_arr.begin(); miter != data_arr.end(); miter++)
+ {
+ uca_org_t & curr_org = sol_list.back();
+ curr_org.tag_array2 = NULL;
+ curr_org.data_array2 = (*miter);
+
+ curr_org.find_delay();
+ curr_org.find_energy();
+ curr_org.find_area();
+ curr_org.find_cyc();
+
+ //update min values for the entire cache
+ cache_min->update_min_values(curr_org);
+
+ sol_list.push_back(uca_org_t());
+ }
+ }
+ else
+ {
+ while (tag_arr.empty() != true)
+ {
+ mem_array * arr_temp = (tag_arr.back());
+ //delete tag_arr.back();
+ tag_arr.pop_back();
+
+ for (miter = data_arr.begin(); miter != data_arr.end(); miter++)
+ {
+ uca_org_t & curr_org = sol_list.back();
+ curr_org.tag_array2 = arr_temp;
+ curr_org.data_array2 = (*miter);
+
+ curr_org.find_delay();
+ curr_org.find_energy();
+ curr_org.find_area();
+ curr_org.find_cyc();
+
+ //update min values for the entire cache
+ cache_min->update_min_values(curr_org);
+
+ sol_list.push_back(uca_org_t());
+ }
+ }
+ }
+
+ sol_list.pop_back();
+
+ find_optimal_uca(fin_res, cache_min, sol_list);
+
+ sol_list.clear();
+
+ for (miter = data_arr.begin(); miter != data_arr.end(); ++miter)
+ {
+ if (*miter != fin_res->data_array2)
+ {
+ delete *miter;
+ }
+ }
+ data_arr.clear();
+
+ for (uint32_t t = 0; t < nthreads; t++)
+ {
+ delete calc_array[t].data_res;
+ delete calc_array[t].tag_res;
+ }
+
+ delete [] calc_array;
+ delete cache_min;
+ delete d_min;
+ delete t_min;
+}
+
+void update(uca_org_t *fin_res)
+{
+ if(fin_res->tag_array2)
+ {
+ init_tech_params(g_ip->F_sz_um,true);
+ DynamicParameter tag_arr_dyn_p(true, g_ip->pure_ram, g_ip->pure_cam, fin_res->tag_array2->Nspd, fin_res->tag_array2->Ndwl, fin_res->tag_array2->Ndbl, fin_res->tag_array2->Ndcm, fin_res->tag_array2->Ndsam_lev_1, fin_res->tag_array2->Ndsam_lev_2, g_ip->is_main_mem);
+ if(tag_arr_dyn_p.is_valid)
+ {
+ UCA * tag_arr = new UCA(tag_arr_dyn_p);
+ fin_res->tag_array2->power = tag_arr->power;
+ }
+ else
+ {
+ cout << "ERROR: Cannot retrieve array structure for leakage feedback" << endl;
+ exit(1);
+ }
+ }
+ init_tech_params(g_ip->F_sz_um,false);
+ DynamicParameter data_arr_dyn_p(false, g_ip->pure_ram, g_ip->pure_cam, fin_res->data_array2->Nspd, fin_res->data_array2->Ndwl, fin_res->data_array2->Ndbl, fin_res->data_array2->Ndcm, fin_res->data_array2->Ndsam_lev_1, fin_res->data_array2->Ndsam_lev_2, g_ip->is_main_mem);
+ if(data_arr_dyn_p.is_valid)
+ {
+ UCA * data_arr = new UCA(data_arr_dyn_p);
+ fin_res->data_array2->power = data_arr->power;
+ }
+ else
+ {
+ cout << "ERROR: Cannot retrieve array structure for leakage feedback" << endl;
+ exit(1);
+ }
+
+ fin_res->find_energy();
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#ifndef __UCACHE_H__
+#define __UCACHE_H__
+
+#include <list>
+
+#include "area.h"
+#include "nuca.h"
+#include "router.h"
+
+class min_values_t
+{
+ public:
+ double min_delay;
+ double min_dyn;
+ double min_leakage;
+ double min_area;
+ double min_cyc;
+
+ min_values_t() : min_delay(BIGNUM), min_dyn(BIGNUM), min_leakage(BIGNUM), min_area(BIGNUM), min_cyc(BIGNUM) { }
+
+ void update_min_values(const min_values_t * val);
+ void update_min_values(const uca_org_t & res);
+ void update_min_values(const nuca_org_t * res);
+ void update_min_values(const mem_array * res);
+};
+
+
+
+struct solution
+{
+ int tag_array_index;
+ int data_array_index;
+ list<mem_array *>::iterator tag_array_iter;
+ list<mem_array *>::iterator data_array_iter;
+ double access_time;
+ double cycle_time;
+ double area;
+ double efficiency;
+ powerDef total_power;
+};
+
+
+
+bool calculate_time(
+ bool is_tag,
+ int pure_ram,
+ bool pure_cam,
+ double Nspd,
+ unsigned int Ndwl,
+ unsigned int Ndbl,
+ unsigned int Ndcm,
+ unsigned int Ndsam_lev_1,
+ unsigned int Ndsam_lev_2,
+ mem_array *ptr_array,
+ int flag_results_populate,
+ results_mem_array *ptr_results,
+ uca_org_t *ptr_fin_res,
+ bool is_main_mem);
+void update(uca_org_t *fin_res);
+
+void solve(uca_org_t *fin_res);
+void init_tech_params(double tech, bool is_tag);
+
+
+struct calc_time_mt_wrapper_struct
+{
+ uint32_t tid;
+ bool is_tag;
+ bool pure_ram;
+ bool pure_cam;
+ bool is_main_mem;
+ double Nspd_min;
+
+ min_values_t * data_res;
+ min_values_t * tag_res;
+
+ list<mem_array *> data_arr;
+ list<mem_array *> tag_arr;
+};
+
+void *calc_time_mt_wrapper(void * void_obj);
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#include "arbiter.h"
+
+Arbiter::Arbiter(
+ double n_req,
+ double flit_size_,
+ double output_len,
+ TechnologyParameter::DeviceType *dt
+ ):R(n_req), flit_size(flit_size_),
+ o_len (output_len), deviceType(dt)
+{
+ min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio*g_tp.min_w_nmos_;
+ Vdd = dt->Vdd;
+ double technology = g_ip->F_sz_um;
+ NTn1 = 13.5*technology/2;
+ PTn1 = 76*technology/2;
+ NTn2 = 13.5*technology/2;
+ PTn2 = 76*technology/2;
+ NTi = 12.5*technology/2;
+ PTi = 25*technology/2;
+ NTtr = 10*technology/2; /*Transmission gate's nmos tr. length*/
+ PTtr = 20*technology/2; /* pmos tr. length*/
+}
+
+Arbiter::~Arbiter(){}
+
+double
+Arbiter::arb_req() {
+ double temp = ((R-1)*(2*gate_C(NTn1, 0)+gate_C(PTn1, 0)) + 2*gate_C(NTn2, 0) +
+ gate_C(PTn2, 0) + gate_C(NTi, 0) + gate_C(PTi, 0) +
+ drain_C_(NTi, 0, 1, 1, g_tp.cell_h_def) + drain_C_(PTi, 1, 1, 1, g_tp.cell_h_def));
+ return temp;
+}
+
+double
+Arbiter::arb_pri() {
+ double temp = 2*(2*gate_C(NTn1, 0)+gate_C(PTn1, 0)); /* switching capacitance
+ of flip-flop is ignored */
+ return temp;
+}
+
+
+double
+Arbiter::arb_grant() {
+ double temp = drain_C_(NTn1, 0, 1, 1, g_tp.cell_h_def)*2 + drain_C_(PTn1, 1, 1, 1, g_tp.cell_h_def) + crossbar_ctrline();
+ return temp;
+}
+
+double
+Arbiter::arb_int() {
+ double temp = (drain_C_(NTn1, 0, 1, 1, g_tp.cell_h_def)*2 + drain_C_(PTn1, 1, 1, 1, g_tp.cell_h_def) +
+ 2*gate_C(NTn2, 0) + gate_C(PTn2, 0));
+ return temp;
+}
+
+void
+Arbiter::compute_power() {
+ power.readOp.dynamic = (R*arb_req()*Vdd*Vdd/2 + R*arb_pri()*Vdd*Vdd/2 +
+ arb_grant()*Vdd*Vdd + arb_int()*0.5*Vdd*Vdd);
+ double nor1_leak = cmos_Isub_leakage(g_tp.min_w_nmos_*NTn1*2, min_w_pmos * PTn1*2, 2, nor);
+ double nor2_leak = cmos_Isub_leakage(g_tp.min_w_nmos_*NTn2*R, min_w_pmos * PTn2*R, 2, nor);
+ double not_leak = cmos_Isub_leakage(g_tp.min_w_nmos_*NTi, min_w_pmos * PTi, 1, inv);
+ double nor1_leak_gate = cmos_Ig_leakage(g_tp.min_w_nmos_*NTn1*2, min_w_pmos * PTn1*2, 2, nor);
+ double nor2_leak_gate = cmos_Ig_leakage(g_tp.min_w_nmos_*NTn2*R, min_w_pmos * PTn2*R, 2, nor);
+ double not_leak_gate = cmos_Ig_leakage(g_tp.min_w_nmos_*NTi, min_w_pmos * PTi, 1, inv);
+ power.readOp.leakage = (nor1_leak + nor2_leak + not_leak)*Vdd; //FIXME include priority table leakage
+ power.readOp.gate_leakage = nor1_leak_gate*Vdd + nor2_leak_gate*Vdd + not_leak_gate*Vdd;
+}
+
+double //wire cap with triple spacing
+Arbiter::Cw3(double length) {
+ Wire wc(g_ip->wt, length, 1, 3, 3);
+ double temp = (wc.wire_cap(length,true));
+ return temp;
+}
+
+double
+Arbiter::crossbar_ctrline() {
+ double temp = (Cw3(o_len * 1e-6 /* m */) +
+ drain_C_(NTi, 0, 1, 1, g_tp.cell_h_def) + drain_C_(PTi, 1, 1, 1, g_tp.cell_h_def) +
+ gate_C(NTi, 0) + gate_C(PTi, 0));
+ return temp;
+}
+
+double
+Arbiter::transmission_buf_ctrcap() {
+ double temp = gate_C(NTtr, 0)+gate_C(PTtr, 0);
+ return temp;
+}
+
+
+void Arbiter::print_arbiter()
+{
+ cout << "\nArbiter Stats (" << R << " input arbiter" << ")\n\n";
+ cout << "Flit size : " << flit_size << " bits" << endl;
+ cout << "Dynamic Power : " << power.readOp.dynamic*1e9 << " (nJ)" << endl;
+ cout << "Leakage Power : " << power.readOp.leakage*1e3 << " (mW)" << endl;
+}
+
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#ifndef __ARBITER__
+#define __ARBITER__
+
+#include <assert.h>
+
+#include <iostream>
+
+#include "basic_circuit.h"
+#include "cacti_interface.h"
+#include "component.h"
+#include "mat.h"
+#include "parameter.h"
+#include "wire.h"
+
+class Arbiter : public Component
+{
+ public:
+ Arbiter(
+ double Req,
+ double flit_sz,
+ double output_len,
+ TechnologyParameter::DeviceType *dt = &(g_tp.peri_global));
+ ~Arbiter();
+
+ void print_arbiter();
+ double arb_req();
+ double arb_pri();
+ double arb_grant();
+ double arb_int();
+ void compute_power();
+ double Cw3(double len);
+ double crossbar_ctrline();
+ double transmission_buf_ctrcap();
+
+
+
+ private:
+ double NTn1, PTn1, NTn2, PTn2, R, PTi, NTi;
+ double flit_size;
+ double NTtr, PTtr;
+ double o_len;
+ TechnologyParameter::DeviceType *deviceType;
+ double TriS1, TriS2;
+ double min_w_pmos, Vdd;
+
+};
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include <cassert>
+#include <cmath>
+#include <iostream>
+
+#include "area.h"
+#include "basic_circuit.h"
+#include "component.h"
+#include "decoder.h"
+#include "parameter.h"
+
+using namespace std;
+
+
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __AREA_H__
+#define __AREA_H__
+
+#include "basic_circuit.h"
+#include "cacti_interface.h"
+
+using namespace std;
+
+class Area
+{
+ public:
+ double w;
+ double h;
+
+ Area():w(0), h(0), area(0) { }
+ double get_w() const { return w; }
+ double get_h() const { return h; }
+ double get_area() const
+ {
+ if (w == 0 && h == 0)
+ {
+ return area;
+ }
+ else
+ {
+ return w*h;
+ }
+ }
+ void set_w(double w_) { w = w_; }
+ void set_h(double h_) { h = h_; }
+ void set_area(double a_) { area = a_; }
+
+ private:
+ double area;
+};
+
+#endif
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include <iostream>
+
+#include "bank.h"
+
+Bank::Bank(const DynamicParameter & dyn_p):
+ dp(dyn_p), mat(dp),
+ num_addr_b_mat(dyn_p.number_addr_bits_mat),
+ num_mats_hor_dir(dyn_p.num_mats_h_dir), num_mats_ver_dir(dyn_p.num_mats_v_dir)
+{
+ int RWP;
+ int ERP;
+ int EWP;
+ int SCHP;
+
+ if (dp.use_inp_params)
+ {
+ RWP = dp.num_rw_ports;
+ ERP = dp.num_rd_ports;
+ EWP = dp.num_wr_ports;
+ SCHP = dp.num_search_ports;
+ }
+ else
+ {
+ RWP = g_ip->num_rw_ports;
+ ERP = g_ip->num_rd_ports;
+ EWP = g_ip->num_wr_ports;
+ SCHP = g_ip->num_search_ports;
+ }
+
+ int total_addrbits = (dp.number_addr_bits_mat + dp.number_subbanks_decode)*(RWP+ERP+EWP);
+ int datainbits = dp.num_di_b_bank_per_port * (RWP + EWP);
+ int dataoutbits = dp.num_do_b_bank_per_port * (RWP + ERP);
+ int searchinbits;
+ int searchoutbits;
+
+ if (dp.fully_assoc || dp.pure_cam)
+ {
+ datainbits = dp.num_di_b_bank_per_port * (RWP + EWP);
+ dataoutbits = dp.num_do_b_bank_per_port * (RWP + ERP);
+ searchinbits = dp.num_si_b_bank_per_port * SCHP;
+ searchoutbits = dp.num_so_b_bank_per_port * SCHP;
+ }
+
+ if (!(dp.fully_assoc || dp.pure_cam))
+ {
+ if (g_ip->fast_access && dp.is_tag == false)
+ {
+ dataoutbits *= g_ip->data_assoc;
+ }
+
+ htree_in_add = new Htree2 (g_ip->wt,(double) mat.area.w, (double)mat.area.h,
+ total_addrbits, datainbits, 0,dataoutbits,0, num_mats_ver_dir*2, num_mats_hor_dir*2, Add_htree);
+ htree_in_data = new Htree2 (g_ip->wt,(double) mat.area.w, (double)mat.area.h,
+ total_addrbits, datainbits, 0,dataoutbits,0, num_mats_ver_dir*2, num_mats_hor_dir*2, Data_in_htree);
+ htree_out_data = new Htree2 (g_ip->wt,(double) mat.area.w, (double)mat.area.h,
+ total_addrbits, datainbits, 0,dataoutbits,0, num_mats_ver_dir*2, num_mats_hor_dir*2, Data_out_htree);
+
+// htree_out_data = new Htree2 (g_ip->wt,(double) 100, (double)100,
+// total_addrbits, datainbits, 0,dataoutbits,0, num_mats_ver_dir*2, num_mats_hor_dir*2, Data_out_htree);
+
+ area.w = htree_in_data->area.w;
+ area.h = htree_in_data->area.h;
+ }
+ else
+ {
+ htree_in_add = new Htree2 (g_ip->wt,(double) mat.area.w, (double)mat.area.h,
+ total_addrbits, datainbits, searchinbits,dataoutbits,searchoutbits, num_mats_ver_dir*2, num_mats_hor_dir*2, Add_htree);
+ htree_in_data = new Htree2 (g_ip->wt,(double) mat.area.w, (double)mat.area.h,
+ total_addrbits, datainbits,searchinbits, dataoutbits, searchoutbits, num_mats_ver_dir*2, num_mats_hor_dir*2, Data_in_htree);
+ htree_out_data = new Htree2 (g_ip->wt,(double) mat.area.w, (double)mat.area.h,
+ total_addrbits, datainbits,searchinbits, dataoutbits, searchoutbits,num_mats_ver_dir*2, num_mats_hor_dir*2, Data_out_htree);
+ htree_in_search = new Htree2 (g_ip->wt,(double) mat.area.w, (double)mat.area.h,
+ total_addrbits, datainbits,searchinbits, dataoutbits, searchoutbits, num_mats_ver_dir*2, num_mats_hor_dir*2, Data_in_htree,true, true);
+ htree_out_search = new Htree2 (g_ip->wt,(double) mat.area.w, (double)mat.area.h,
+ total_addrbits, datainbits,searchinbits, dataoutbits, searchoutbits,num_mats_ver_dir*2, num_mats_hor_dir*2, Data_out_htree,true);
+
+ area.w = htree_in_data->area.w;
+ area.h = htree_in_data->area.h;
+ }
+
+ num_addr_b_row_dec = _log2(mat.subarray.num_rows);
+ num_addr_b_routed_to_mat_for_act = num_addr_b_row_dec;
+ num_addr_b_routed_to_mat_for_rd_or_wr = num_addr_b_mat - num_addr_b_row_dec;
+}
+
+
+
+Bank::~Bank()
+{
+ delete htree_in_add;
+ delete htree_out_data;
+ delete htree_in_data;
+ if (dp.fully_assoc || dp.pure_cam)
+ {
+ delete htree_in_search;
+ delete htree_out_search;
+ }
+}
+
+
+
+double Bank::compute_delays(double inrisetime)
+{
+ return mat.compute_delays(inrisetime);
+}
+
+
+
+void Bank::compute_power_energy()
+{
+ mat.compute_power_energy();
+
+ if (!(dp.fully_assoc || dp.pure_cam))
+ {
+ power.readOp.dynamic += mat.power.readOp.dynamic * dp.num_act_mats_hor_dir;
+ power.readOp.leakage += mat.power.readOp.leakage * dp.num_mats;
+ power.readOp.gate_leakage += mat.power.readOp.gate_leakage * dp.num_mats;
+
+ power.readOp.dynamic += htree_in_add->power.readOp.dynamic;
+ power.readOp.dynamic += htree_out_data->power.readOp.dynamic;
+
+ power.readOp.leakage += htree_in_add->power.readOp.leakage;
+ power.readOp.leakage += htree_in_data->power.readOp.leakage;
+ power.readOp.leakage += htree_out_data->power.readOp.leakage;
+ power.readOp.gate_leakage += htree_in_add->power.readOp.gate_leakage;
+ power.readOp.gate_leakage += htree_in_data->power.readOp.gate_leakage;
+ power.readOp.gate_leakage += htree_out_data->power.readOp.gate_leakage;
+ }
+ else
+ {
+
+ power.readOp.dynamic += mat.power.readOp.dynamic ;//for fa and cam num_act_mats_hor_dir is 1 for plain r/w
+ power.readOp.leakage += mat.power.readOp.leakage * dp.num_mats;
+ power.readOp.gate_leakage += mat.power.readOp.gate_leakage * dp.num_mats;
+
+ power.searchOp.dynamic += mat.power.searchOp.dynamic * dp.num_mats;
+ power.searchOp.dynamic += mat.power_bl_precharge_eq_drv.searchOp.dynamic +
+ mat.power_sa.searchOp.dynamic +
+ mat.power_bitline.searchOp.dynamic +
+ mat.power_subarray_out_drv.searchOp.dynamic+
+ mat.ml_to_ram_wl_drv->power.readOp.dynamic;
+
+ power.readOp.dynamic += htree_in_add->power.readOp.dynamic;
+ power.readOp.dynamic += htree_out_data->power.readOp.dynamic;
+
+ power.searchOp.dynamic += htree_in_search->power.searchOp.dynamic;
+ power.searchOp.dynamic += htree_out_search->power.searchOp.dynamic;
+
+ power.readOp.leakage += htree_in_add->power.readOp.leakage;
+ power.readOp.leakage += htree_in_data->power.readOp.leakage;
+ power.readOp.leakage += htree_out_data->power.readOp.leakage;
+ power.readOp.leakage += htree_in_search->power.readOp.leakage;
+ power.readOp.leakage += htree_out_search->power.readOp.leakage;
+
+
+ power.readOp.gate_leakage += htree_in_add->power.readOp.gate_leakage;
+ power.readOp.gate_leakage += htree_in_data->power.readOp.gate_leakage;
+ power.readOp.gate_leakage += htree_out_data->power.readOp.gate_leakage;
+ power.readOp.gate_leakage += htree_in_search->power.readOp.gate_leakage;
+ power.readOp.gate_leakage += htree_out_search->power.readOp.gate_leakage;
+
+ }
+
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __BANK_H__
+#define __BANK_H__
+
+#include "component.h"
+#include "decoder.h"
+#include "htree2.h"
+#include "mat.h"
+
+class Bank : public Component
+{
+ public:
+ Bank(const DynamicParameter & dyn_p);
+ ~Bank();
+ double compute_delays(double inrisetime); // return outrisetime
+ void compute_power_energy();
+
+ const DynamicParameter & dp;
+ Mat mat;
+ Htree2 *htree_in_add;
+ Htree2 *htree_in_data;
+ Htree2 *htree_out_data;
+ Htree2 *htree_in_search;
+ Htree2 *htree_out_search;
+
+ int num_addr_b_mat;
+ int num_mats_hor_dir;
+ int num_mats_ver_dir;
+
+ int num_addr_b_row_dec;
+ int num_addr_b_routed_to_mat_for_act;
+ int num_addr_b_routed_to_mat_for_rd_or_wr;
+};
+
+
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+
+#include <cassert>
+#include <cmath>
+#include <iostream>
+
+#include "basic_circuit.h"
+#include "parameter.h"
+
+uint32_t _log2(uint64_t num)
+{
+ uint32_t log2 = 0;
+
+ if (num == 0)
+ {
+ std::cerr << "log0?" << std::endl;
+ exit(1);
+ }
+
+ while (num > 1)
+ {
+ num = (num >> 1);
+ log2++;
+ }
+
+ return log2;
+}
+
+
+bool is_pow2(int64_t val)
+{
+ if (val <= 0)
+ {
+ return false;
+ }
+ else if (val == 1)
+ {
+ return true;
+ }
+ else
+ {
+ return (_log2(val) != _log2(val-1));
+ }
+}
+
+
+int powers (int base, int n)
+{
+ int i, p;
+
+ p = 1;
+ for (i = 1; i <= n; ++i)
+ p *= base;
+ return p;
+}
+
+/*----------------------------------------------------------------------*/
+
+double logtwo (double x)
+{
+ assert(x > 0);
+ return ((double) (log (x) / log (2.0)));
+}
+
+/*----------------------------------------------------------------------*/
+
+
+double gate_C(
+ double width,
+ double wirelength,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr)
+{
+ const TechnologyParameter::DeviceType * dt;
+
+ if (_is_dram && _is_cell)
+ {
+ dt = &g_tp.dram_acc; //DRAM cell access transistor
+ }
+ else if (_is_dram && _is_wl_tr)
+ {
+ dt = &g_tp.dram_wl; //DRAM wordline transistor
+ }
+ else if (!_is_dram && _is_cell)
+ {
+ dt = &g_tp.sram_cell; // SRAM cell access transistor
+ }
+ else
+ {
+ dt = &g_tp.peri_global;
+ }
+
+ return (dt->C_g_ideal + dt->C_overlap + 3*dt->C_fringe)*width + dt->l_phy*Cpolywire;
+}
+
+
+// returns gate capacitance in Farads
+// actually this function is the same as gate_C() now
+double gate_C_pass(
+ double width, // gate width in um (length is Lphy_periph_global)
+ double wirelength, // poly wire length going to gate in lambda
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr)
+{
+ // v5.0
+ const TechnologyParameter::DeviceType * dt;
+
+ if ((_is_dram) && (_is_cell))
+ {
+ dt = &g_tp.dram_acc; //DRAM cell access transistor
+ }
+ else if ((_is_dram) && (_is_wl_tr))
+ {
+ dt = &g_tp.dram_wl; //DRAM wordline transistor
+ }
+ else if ((!_is_dram) && _is_cell)
+ {
+ dt = &g_tp.sram_cell; // SRAM cell access transistor
+ }
+ else
+ {
+ dt = &g_tp.peri_global;
+ }
+
+ return (dt->C_g_ideal + dt->C_overlap + 3*dt->C_fringe)*width + dt->l_phy*Cpolywire;
+}
+
+
+
+double drain_C_(
+ double width,
+ int nchannel,
+ int stack,
+ int next_arg_thresh_folding_width_or_height_cell,
+ double fold_dimension,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr)
+{
+ double w_folded_tr;
+ const TechnologyParameter::DeviceType * dt;
+
+ if ((_is_dram) && (_is_cell))
+ {
+ dt = &g_tp.dram_acc; // DRAM cell access transistor
+ }
+ else if ((_is_dram) && (_is_wl_tr))
+ {
+ dt = &g_tp.dram_wl; // DRAM wordline transistor
+ }
+ else if ((!_is_dram) && _is_cell)
+ {
+ dt = &g_tp.sram_cell; // SRAM cell access transistor
+ }
+ else
+ {
+ dt = &g_tp.peri_global;
+ }
+
+ double c_junc_area = dt->C_junc;
+ double c_junc_sidewall = dt->C_junc_sidewall;
+ double c_fringe = 2*dt->C_fringe;
+ double c_overlap = 2*dt->C_overlap;
+ double drain_C_metal_connecting_folded_tr = 0;
+
+ // determine the width of the transistor after folding (if it is getting folded)
+ if (next_arg_thresh_folding_width_or_height_cell == 0)
+ { // interpret fold_dimension as the the folding width threshold
+ // i.e. the value of transistor width above which the transistor gets folded
+ w_folded_tr = fold_dimension;
+ }
+ else
+ { // interpret fold_dimension as the height of the cell that this transistor is part of.
+ double h_tr_region = fold_dimension - 2 * g_tp.HPOWERRAIL;
+ // TODO : w_folded_tr must come from Component::compute_gate_area()
+ double ratio_p_to_n = 2.0 / (2.0 + 1.0);
+ if (nchannel)
+ {
+ w_folded_tr = (1 - ratio_p_to_n) * (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS);
+ }
+ else
+ {
+ w_folded_tr = ratio_p_to_n * (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS);
+ }
+ }
+ int num_folded_tr = (int) (ceil(width / w_folded_tr));
+
+ if (num_folded_tr < 2)
+ {
+ w_folded_tr = width;
+ }
+
+ double total_drain_w = (g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact) + // only for drain
+ (stack - 1) * g_tp.spacing_poly_to_poly;
+ double drain_h_for_sidewall = w_folded_tr;
+ double total_drain_height_for_cap_wrt_gate = w_folded_tr + 2 * w_folded_tr * (stack - 1);
+ if (num_folded_tr > 1)
+ {
+ total_drain_w += (num_folded_tr - 2) * (g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact) +
+ (num_folded_tr - 1) * ((stack - 1) * g_tp.spacing_poly_to_poly);
+
+ if (num_folded_tr%2 == 0)
+ {
+ drain_h_for_sidewall = 0;
+ }
+ total_drain_height_for_cap_wrt_gate *= num_folded_tr;
+ drain_C_metal_connecting_folded_tr = g_tp.wire_local.C_per_um * total_drain_w;
+ }
+
+ double drain_C_area = c_junc_area * total_drain_w * w_folded_tr;
+ double drain_C_sidewall = c_junc_sidewall * (drain_h_for_sidewall + 2 * total_drain_w);
+ double drain_C_wrt_gate = (c_fringe + c_overlap) * total_drain_height_for_cap_wrt_gate;
+
+ return (drain_C_area + drain_C_sidewall + drain_C_wrt_gate + drain_C_metal_connecting_folded_tr);
+}
+
+
+double tr_R_on(
+ double width,
+ int nchannel,
+ int stack,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr)
+{
+ const TechnologyParameter::DeviceType * dt;
+
+ if ((_is_dram) && (_is_cell))
+ {
+ dt = &g_tp.dram_acc; //DRAM cell access transistor
+ }
+ else if ((_is_dram) && (_is_wl_tr))
+ {
+ dt = &g_tp.dram_wl; //DRAM wordline transistor
+ }
+ else if ((!_is_dram) && _is_cell)
+ {
+ dt = &g_tp.sram_cell; // SRAM cell access transistor
+ }
+ else
+ {
+ dt = &g_tp.peri_global;
+ }
+
+ double restrans = (nchannel) ? dt->R_nch_on : dt->R_pch_on;
+ return (stack * restrans / width);
+}
+
+
+/* This routine operates in reverse: given a resistance, it finds
+ * the transistor width that would have this R. It is used in the
+ * data wordline to estimate the wordline driver size. */
+
+// returns width in um
+double R_to_w(
+ double res,
+ int nchannel,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr)
+{
+ const TechnologyParameter::DeviceType * dt;
+
+ if ((_is_dram) && (_is_cell))
+ {
+ dt = &g_tp.dram_acc; //DRAM cell access transistor
+ }
+ else if ((_is_dram) && (_is_wl_tr))
+ {
+ dt = &g_tp.dram_wl; //DRAM wordline transistor
+ }
+ else if ((!_is_dram) && (_is_cell))
+ {
+ dt = &g_tp.sram_cell; // SRAM cell access transistor
+ }
+ else
+ {
+ dt = &g_tp.peri_global;
+ }
+
+ double restrans = (nchannel) ? dt->R_nch_on : dt->R_pch_on;
+ return (restrans / res);
+}
+
+
+double pmos_to_nmos_sz_ratio(
+ bool _is_dram,
+ bool _is_wl_tr)
+{
+ double p_to_n_sizing_ratio;
+ if ((_is_dram) && (_is_wl_tr))
+ { //DRAM wordline transistor
+ p_to_n_sizing_ratio = g_tp.dram_wl.n_to_p_eff_curr_drv_ratio;
+ }
+ else
+ { //DRAM or SRAM all other transistors
+ p_to_n_sizing_ratio = g_tp.peri_global.n_to_p_eff_curr_drv_ratio;
+ }
+ return p_to_n_sizing_ratio;
+}
+
+
+// "Timing Models for MOS Circuits" by Mark Horowitz, 1984
+double horowitz(
+ double inputramptime, // input rise time
+ double tf, // time constant of gate
+ double vs1, // threshold voltage
+ double vs2, // threshold voltage
+ int rise) // whether input rises or fall
+{
+ if (inputramptime == 0 && vs1 == vs2)
+ {
+ return tf * (vs1 < 1 ? -log(vs1) : log(vs1));
+ }
+ double a, b, td;
+
+ a = inputramptime / tf;
+ if (rise == RISE)
+ {
+ b = 0.5;
+ td = tf * sqrt(log(vs1)*log(vs1) + 2*a*b*(1.0 - vs1)) + tf*(log(vs1) - log(vs2));
+ }
+ else
+ {
+ b = 0.4;
+ td = tf * sqrt(log(1.0 - vs1)*log(1.0 - vs1) + 2*a*b*(vs1)) + tf*(log(1.0 - vs1) - log(1.0 - vs2));
+ }
+ return (td);
+}
+
+double cmos_Ileak(
+ double nWidth,
+ double pWidth,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr)
+{
+ TechnologyParameter::DeviceType * dt;
+
+ if ((!_is_dram)&&(_is_cell))
+ { //SRAM cell access transistor
+ dt = &(g_tp.sram_cell);
+ }
+ else if ((_is_dram)&&(_is_wl_tr))
+ { //DRAM wordline transistor
+ dt = &(g_tp.dram_wl);
+ }
+ else
+ { //DRAM or SRAM all other transistors
+ dt = &(g_tp.peri_global);
+ }
+ return nWidth*dt->I_off_n + pWidth*dt->I_off_p;
+}
+
+
+double simplified_nmos_leakage(
+ double nwidth,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr)
+{
+ TechnologyParameter::DeviceType * dt;
+
+ if ((!_is_dram)&&(_is_cell))
+ { //SRAM cell access transistor
+ dt = &(g_tp.sram_cell);
+ }
+ else if ((_is_dram)&&(_is_wl_tr))
+ { //DRAM wordline transistor
+ dt = &(g_tp.dram_wl);
+ }
+ else
+ { //DRAM or SRAM all other transistors
+ dt = &(g_tp.peri_global);
+ }
+ return nwidth * dt->I_off_n;
+}
+
+int factorial(int n, int m)
+{
+ int fa = m, i;
+ for (i=m+1; i<=n; i++)
+ fa *=i;
+ return fa;
+}
+
+int combination(int n, int m)
+{
+ int ret;
+ ret = factorial(n, m+1) / factorial(n - m);
+ return ret;
+}
+
+double simplified_pmos_leakage(
+ double pwidth,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr)
+{
+ TechnologyParameter::DeviceType * dt;
+
+ if ((!_is_dram)&&(_is_cell))
+ { //SRAM cell access transistor
+ dt = &(g_tp.sram_cell);
+ }
+ else if ((_is_dram)&&(_is_wl_tr))
+ { //DRAM wordline transistor
+ dt = &(g_tp.dram_wl);
+ }
+ else
+ { //DRAM or SRAM all other transistors
+ dt = &(g_tp.peri_global);
+ }
+ return pwidth * dt->I_off_p;
+}
+
+double cmos_Ig_n(
+ double nWidth,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr)
+{
+ TechnologyParameter::DeviceType * dt;
+
+ if ((!_is_dram)&&(_is_cell))
+ { //SRAM cell access transistor
+ dt = &(g_tp.sram_cell);
+ }
+ else if ((_is_dram)&&(_is_wl_tr))
+ { //DRAM wordline transistor
+ dt = &(g_tp.dram_wl);
+ }
+ else
+ { //DRAM or SRAM all other transistors
+ dt = &(g_tp.peri_global);
+ }
+ return nWidth*dt->I_g_on_n;
+}
+
+double cmos_Ig_p(
+ double pWidth,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr)
+{
+ TechnologyParameter::DeviceType * dt;
+
+ if ((!_is_dram)&&(_is_cell))
+ { //SRAM cell access transistor
+ dt = &(g_tp.sram_cell);
+ }
+ else if ((_is_dram)&&(_is_wl_tr))
+ { //DRAM wordline transistor
+ dt = &(g_tp.dram_wl);
+ }
+ else
+ { //DRAM or SRAM all other transistors
+ dt = &(g_tp.peri_global);
+ }
+ return pWidth*dt->I_g_on_p;
+}
+
+double cmos_Isub_leakage(
+ double nWidth,
+ double pWidth,
+ int fanin,
+ enum Gate_type g_type,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr,
+ enum Half_net_topology topo)
+{
+ assert (fanin>=1);
+ double nmos_leak = simplified_nmos_leakage(nWidth, _is_dram, _is_cell, _is_wl_tr);
+ double pmos_leak = simplified_pmos_leakage(pWidth, _is_dram, _is_cell, _is_wl_tr);
+ double Isub=0;
+ int num_states;
+ int num_off_tx;
+
+ num_states = int(pow(2.0, fanin));
+
+ switch (g_type)
+ {
+ case nmos:
+ if (fanin==1)
+ {
+ Isub = nmos_leak/num_states;
+ }
+ else
+ {
+ if (topo==parallel)
+ {
+ Isub=nmos_leak*fanin/num_states; //only when all tx are off, leakage power is non-zero. The possibility of this state is 1/num_states
+ }
+ else
+ {
+ for (num_off_tx=1; num_off_tx<=fanin; num_off_tx++) //when num_off_tx ==0 there is no leakage power
+ {
+ //Isub += nmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*(factorial(fanin)/(factorial(fanin, num_off_tx)*factorial(num_off_tx)));
+ Isub += nmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*combination(fanin, num_off_tx);
+ }
+ Isub /=num_states;
+ }
+
+ }
+ break;
+ case pmos:
+ if (fanin==1)
+ {
+ Isub = pmos_leak/num_states;
+ }
+ else
+ {
+ if (topo==parallel)
+ {
+ Isub=pmos_leak*fanin/num_states; //only when all tx are off, leakage power is non-zero. The possibility of this state is 1/num_states
+ }
+ else
+ {
+ for (num_off_tx=1; num_off_tx<=fanin; num_off_tx++) //when num_off_tx ==0 there is no leakage power
+ {
+ //Isub += pmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*(factorial(fanin)/(factorial(fanin, num_off_tx)*factorial(num_off_tx)));
+ Isub += pmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*combination(fanin, num_off_tx);
+ }
+ Isub /=num_states;
+ }
+
+ }
+ break;
+ case inv:
+ Isub = (nmos_leak + pmos_leak)/2;
+ break;
+ case nand:
+ Isub += fanin*pmos_leak;//the pullup network
+ for (num_off_tx=1; num_off_tx<=fanin; num_off_tx++) // the pulldown network
+ {
+ //Isub += nmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*(factorial(fanin)/(factorial(fanin, num_off_tx)*factorial(num_off_tx)));
+ Isub += nmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*combination(fanin, num_off_tx);
+ }
+ Isub /=num_states;
+ break;
+ case nor:
+ for (num_off_tx=1; num_off_tx<=fanin; num_off_tx++) // the pullup network
+ {
+ //Isub += pmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*(factorial(fanin)/(factorial(fanin, num_off_tx)*factorial(num_off_tx)));
+ Isub += pmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*combination(fanin, num_off_tx);
+ }
+ Isub += fanin*nmos_leak;//the pulldown network
+ Isub /=num_states;
+ break;
+ case tri:
+ Isub += (nmos_leak + pmos_leak)/2;//enabled
+ Isub += nmos_leak*UNI_LEAK_STACK_FACTOR; //disabled upper bound of leakage power
+ Isub /=2;
+ break;
+ case tg:
+ Isub = (nmos_leak + pmos_leak)/2;
+ break;
+ default:
+ assert(0);
+ break;
+ }
+
+ return Isub;
+}
+
+
+double cmos_Ig_leakage(
+ double nWidth,
+ double pWidth,
+ int fanin,
+ enum Gate_type g_type,
+ bool _is_dram,
+ bool _is_cell,
+ bool _is_wl_tr,
+ enum Half_net_topology topo)
+{
+ assert (fanin>=1);
+ double nmos_leak = cmos_Ig_n(nWidth, _is_dram, _is_cell, _is_wl_tr);
+ double pmos_leak = cmos_Ig_p(pWidth, _is_dram, _is_cell, _is_wl_tr);
+ double Ig_on=0;
+ int num_states;
+ int num_on_tx;
+
+ num_states = int(pow(2.0, fanin));
+
+ switch (g_type)
+ {
+ case nmos:
+ if (fanin==1)
+ {
+ Ig_on = nmos_leak/num_states;
+ }
+ else
+ {
+ if (topo==parallel)
+ {
+ for (num_on_tx=1; num_on_tx<=fanin; num_on_tx++)
+ {
+ Ig_on += nmos_leak*combination(fanin, num_on_tx)*num_on_tx;
+ }
+ }
+ else
+ {
+ Ig_on += nmos_leak * fanin;//pull down network when all TXs are on.
+ //num_on_tx is the number of on tx
+ for (num_on_tx=1; num_on_tx<fanin; num_on_tx++)//when num_on_tx=[1,n-1]
+ {
+ Ig_on += nmos_leak*combination(fanin, num_on_tx)*num_on_tx/2;//TODO: this is a approximation now, a precise computation will be very complicated.
+ }
+ Ig_on /=num_states;
+ }
+ }
+ break;
+ case pmos:
+ if (fanin==1)
+ {
+ Ig_on = pmos_leak/num_states;
+ }
+ else
+ {
+ if (topo==parallel)
+ {
+ for (num_on_tx=1; num_on_tx<=fanin; num_on_tx++)
+ {
+ Ig_on += pmos_leak*combination(fanin, num_on_tx)*num_on_tx;
+ }
+ }
+ else
+ {
+ Ig_on += pmos_leak * fanin;//pull down network when all TXs are on.
+ //num_on_tx is the number of on tx
+ for (num_on_tx=1; num_on_tx<fanin; num_on_tx++)//when num_on_tx=[1,n-1]
+ {
+ Ig_on += pmos_leak*combination(fanin, num_on_tx)*num_on_tx/2;//TODO: this is a approximation now, a precise computation will be very complicated.
+ }
+ Ig_on /=num_states;
+ }
+ }
+ break;
+
+ case inv:
+ Ig_on = (nmos_leak + pmos_leak)/2;
+ break;
+ case nand:
+ //pull up network
+ for (num_on_tx=1; num_on_tx<=fanin; num_on_tx++)//when num_on_tx=[1,n]
+ {
+ Ig_on += pmos_leak*combination(fanin, num_on_tx)*num_on_tx;
+ }
+
+ //pull down network
+ Ig_on += nmos_leak * fanin;//pull down network when all TXs are on.
+ //num_on_tx is the number of on tx
+ for (num_on_tx=1; num_on_tx<fanin; num_on_tx++)//when num_on_tx=[1,n-1]
+ {
+ Ig_on += nmos_leak*combination(fanin, num_on_tx)*num_on_tx/2;//TODO: this is a approximation now, a precise computation will be very complicated.
+ }
+ Ig_on /=num_states;
+ break;
+ case nor:
+ // num_on_tx is the number of on tx in pull up network
+ Ig_on += pmos_leak * fanin;//pull up network when all TXs are on.
+ for (num_on_tx=1; num_on_tx<fanin; num_on_tx++)
+ {
+ Ig_on += pmos_leak*combination(fanin, num_on_tx)*num_on_tx/2;
+
+ }
+ //pull down network
+ for (num_on_tx=1; num_on_tx<=fanin; num_on_tx++)//when num_on_tx=[1,n]
+ {
+ Ig_on += nmos_leak*combination(fanin, num_on_tx)*num_on_tx;
+ }
+ Ig_on /=num_states;
+ break;
+ case tri:
+ Ig_on += (2*nmos_leak + 2*pmos_leak)/2;//enabled
+ Ig_on += (nmos_leak + pmos_leak)/2; //disabled upper bound of leakage power
+ Ig_on /=2;
+ break;
+ case tg:
+ Ig_on = (nmos_leak + pmos_leak)/2;
+ break;
+ default:
+ assert(0);
+ break;
+ }
+
+ return Ig_on;
+}
+
+double shortcircuit_simple(
+ double vt,
+ double velocity_index,
+ double c_in,
+ double c_out,
+ double w_nmos,
+ double w_pmos,
+ double i_on_n,
+ double i_on_p,
+ double i_on_n_in,
+ double i_on_p_in,
+ double vdd)
+{
+
+ double p_short_circuit, p_short_circuit_discharge, p_short_circuit_charge, p_short_circuit_discharge_low, p_short_circuit_discharge_high, p_short_circuit_charge_low, p_short_circuit_charge_high; //this is actually energy
+ double fo_n, fo_p, fanout, beta_ratio, vt_to_vdd_ratio;
+
+ fo_n = i_on_n/i_on_n_in;
+ fo_p = i_on_p/i_on_p_in;
+ fanout = c_out/c_in;
+ beta_ratio = i_on_p/i_on_n;
+ vt_to_vdd_ratio = vt/vdd;
+
+ //p_short_circuit_discharge_low = 10/3*(pow(0.5-vt_to_vdd_ratio,3.0)/pow(velocity_index,2.0)/pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio))*c_in*vdd*vdd*fo_p*fo_p/fanout/beta_ratio;
+ p_short_circuit_discharge_low = 10/3*(pow(((vdd-vt)-vt_to_vdd_ratio),3.0)/pow(velocity_index,2.0)/pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio))*c_in*vdd*vdd*fo_p*fo_p/fanout/beta_ratio;
+ p_short_circuit_charge_low = 10/3*(pow(((vdd-vt)-vt_to_vdd_ratio),3.0)/pow(velocity_index,2.0)/pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio))*c_in*vdd*vdd*fo_n*fo_n/fanout*beta_ratio;
+// double t1, t2, t3, t4, t5;
+// t1=pow(((vdd-vt)-vt_to_vdd_ratio),3);
+// t2=pow(velocity_index,2.0);
+// t3=pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio);
+// t4=t1/t2/t3;
+// cout <<t1<<"t1\n"<<t2<<"t2\n"<<t3<<"t3\n"<<t4<<"t4\n"<<fanout<<endl;
+
+ p_short_circuit_discharge_high = pow(((vdd-vt)-vt_to_vdd_ratio),1.5)*c_in*vdd*vdd*fo_p/10/pow(2, 3*vt_to_vdd_ratio+2*velocity_index);
+ p_short_circuit_charge_high = pow(((vdd-vt)-vt_to_vdd_ratio),1.5)*c_in*vdd*vdd*fo_n/10/pow(2, 3*vt_to_vdd_ratio+2*velocity_index);
+
+// t1=pow(((vdd-vt)-vt_to_vdd_ratio),1.5);
+// t2=pow(2, 3*vt_to_vdd_ratio+2*velocity_index);
+// t3=t1/t2;
+// cout <<t1<<"t1\n"<<t2<<"t2\n"<<t3<<"t3\n"<<t4<<"t4\n"<<fanout<<endl;
+// p_short_circuit_discharge = 1.0/(1.0/p_short_circuit_discharge_low + 1.0/p_short_circuit_discharge_high);
+// p_short_circuit_charge = 1/(1/p_short_circuit_charge_low + 1/p_short_circuit_charge_high); //harmmoic mean cannot be applied simple formulas.
+
+ p_short_circuit_discharge = p_short_circuit_discharge_low;
+ p_short_circuit_charge = p_short_circuit_charge_low;
+ p_short_circuit = (p_short_circuit_discharge + p_short_circuit_charge)/2;
+
+ return (p_short_circuit);
+}
+
+double shortcircuit(
+ double vt,
+ double velocity_index,
+ double c_in,
+ double c_out,
+ double w_nmos,
+ double w_pmos,
+ double i_on_n,
+ double i_on_p,
+ double i_on_n_in,
+ double i_on_p_in,
+ double vdd)
+{
+
+ double p_short_circuit=0, p_short_circuit_discharge;//, p_short_circuit_charge, p_short_circuit_discharge_low, p_short_circuit_discharge_high, p_short_circuit_charge_low, p_short_circuit_charge_high; //this is actually energy
+ double fo_n, fo_p, fanout, beta_ratio, vt_to_vdd_ratio;
+ double f_alpha, k_v, e, g_v_alpha, h_v_alpha;
+
+ fo_n = i_on_n/i_on_n_in;
+ fo_p = i_on_p/i_on_p_in;
+ fanout = 1;
+ beta_ratio = i_on_p/i_on_n;
+ vt_to_vdd_ratio = vt/vdd;
+ e = 2.71828;
+ f_alpha = 1/(velocity_index+2) -velocity_index/(2*(velocity_index+3)) +velocity_index/(velocity_index+4)*(velocity_index/2-1);
+ k_v = 0.9/0.8+(vdd-vt)/0.8*log(10*(vdd-vt)/e);
+ g_v_alpha = (velocity_index + 1)*pow((1-velocity_index),velocity_index)*pow((1-velocity_index),velocity_index/2)/f_alpha/pow((1-velocity_index-velocity_index),(velocity_index/2+velocity_index+2));
+ h_v_alpha = pow(2, velocity_index)*(velocity_index+1)*pow((1-velocity_index),velocity_index)/pow((1-velocity_index-velocity_index),(velocity_index+1));
+
+ //p_short_circuit_discharge_low = 10/3*(pow(0.5-vt_to_vdd_ratio,3.0)/pow(velocity_index,2.0)/pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio))*c_in*vdd*vdd*fo_p*fo_p/fanout/beta_ratio;
+// p_short_circuit_discharge_low = 10/3*(pow(((vdd-vt)-vt_to_vdd_ratio),3.0)/pow(velocity_index,2.0)/pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio))*c_in*vdd*vdd*fo_p*fo_p/fanout/beta_ratio;
+// p_short_circuit_charge_low = 10/3*(pow(((vdd-vt)-vt_to_vdd_ratio),3.0)/pow(velocity_index,2.0)/pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio))*c_in*vdd*vdd*fo_n*fo_n/fanout*beta_ratio;
+// double t1, t2, t3, t4, t5;
+// t1=pow(((vdd-vt)-vt_to_vdd_ratio),3);
+// t2=pow(velocity_index,2.0);
+// t3=pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio);
+// t4=t1/t2/t3;
+//
+// cout <<t1<<"t1\n"<<t2<<"t2\n"<<t3<<"t3\n"<<t4<<"t4\n"<<fanout<<endl;
+//
+//
+// p_short_circuit_discharge_high = pow(((vdd-vt)-vt_to_vdd_ratio),1.5)*c_in*vdd*vdd*fo_p/10/pow(2, 3*vt_to_vdd_ratio+2*velocity_index);
+// p_short_circuit_charge_high = pow(((vdd-vt)-vt_to_vdd_ratio),1.5)*c_in*vdd*vdd*fo_n/10/pow(2, 3*vt_to_vdd_ratio+2*velocity_index);
+//
+// p_short_circuit_discharge = 1.0/(1.0/p_short_circuit_discharge_low + 1.0/p_short_circuit_discharge_high);
+// p_short_circuit_charge = 1/(1/p_short_circuit_charge_low + 1/p_short_circuit_charge_high);
+//
+// p_short_circuit = (p_short_circuit_discharge + p_short_circuit_charge)/2;
+//
+// p_short_circuit = p_short_circuit_discharge;
+
+ p_short_circuit_discharge = k_v*vdd*vdd*c_in*fo_p*fo_p/((vdd-vt)*g_v_alpha*fanout*beta_ratio/2/k_v + h_v_alpha*fo_p);
+ return (p_short_circuit);
+}
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __BASIC_CIRCUIT_H__
+#define __BASIC_CIRCUIT_H__
+
+#include "cacti_interface.h"
+#include "const.h"
+
+using namespace std;
+
+#define UNI_LEAK_STACK_FACTOR 0.43
+
+int powers (int base, int n);
+bool is_pow2(int64_t val);
+uint32_t _log2(uint64_t num);
+int factorial(int n, int m = 1);
+int combination(int n, int m);
+
+//#define DBG
+#ifdef DBG
+ #define PRINTDW(a);\
+ a;
+#else
+ #define PRINTDW(a);\
+
+#endif
+
+
+enum Wire_placement {
+ outside_mat,
+ inside_mat,
+ local_wires
+};
+
+
+
+enum Htree_type {
+ Add_htree,
+ Data_in_htree,
+ Data_out_htree,
+ Search_in_htree,
+ Search_out_htree,
+};
+
+enum Gate_type {
+ nmos,
+ pmos,
+ inv,
+ nand,
+ nor,
+ tri,
+ tg
+};
+
+enum Half_net_topology {
+ parallel,
+ series
+};
+
+double logtwo (double x);
+
+double gate_C(
+ double width,
+ double wirelength,
+ bool _is_dram = false,
+ bool _is_sram = false,
+ bool _is_wl_tr = false);
+
+double gate_C_pass(
+ double width,
+ double wirelength,
+ bool _is_dram = false,
+ bool _is_sram = false,
+ bool _is_wl_tr = false);
+
+double drain_C_(
+ double width,
+ int nchannel,
+ int stack,
+ int next_arg_thresh_folding_width_or_height_cell,
+ double fold_dimension,
+ bool _is_dram = false,
+ bool _is_sram = false,
+ bool _is_wl_tr = false);
+
+double tr_R_on(
+ double width,
+ int nchannel,
+ int stack,
+ bool _is_dram = false,
+ bool _is_sram = false,
+ bool _is_wl_tr = false);
+
+double R_to_w(
+ double res,
+ int nchannel,
+ bool _is_dram = false,
+ bool _is_sram = false,
+ bool _is_wl_tr = false);
+
+double horowitz (
+ double inputramptime,
+ double tf,
+ double vs1,
+ double vs2,
+ int rise);
+
+double pmos_to_nmos_sz_ratio(
+ bool _is_dram = false,
+ bool _is_wl_tr = false);
+
+double simplified_nmos_leakage(
+ double nwidth,
+ bool _is_dram = false,
+ bool _is_cell = false,
+ bool _is_wl_tr = false);
+
+double simplified_pmos_leakage(
+ double pwidth,
+ bool _is_dram = false,
+ bool _is_cell = false,
+ bool _is_wl_tr = false);
+
+
+double cmos_Ileak(
+ double nWidth,
+ double pWidth,
+ bool _is_dram = false,
+ bool _is_cell = false,
+ bool _is_wl_tr = false);
+
+double cmos_Ig_n(
+ double nWidth,
+ bool _is_dram = false,
+ bool _is_cell = false,
+ bool _is_wl_tr= false);
+
+double cmos_Ig_p(
+ double pWidth,
+ bool _is_dram = false,
+ bool _is_cell = false,
+ bool _is_wl_tr= false);
+
+
+double cmos_Isub_leakage(
+ double nWidth,
+ double pWidth,
+ int fanin,
+ enum Gate_type g_type,
+ bool _is_dram = false,
+ bool _is_cell = false,
+ bool _is_wl_tr = false,
+ enum Half_net_topology topo = series);
+
+double cmos_Ig_leakage(
+ double nWidth,
+ double pWidth,
+ int fanin,
+ enum Gate_type g_type,
+ bool _is_dram = false,
+ bool _is_cell = false,
+ bool _is_wl_tr = false,
+ enum Half_net_topology topo = series);
+
+double shortcircuit(
+ double vt,
+ double velocity_index,
+ double c_in,
+ double c_out,
+ double w_nmos,
+ double w_pmos,
+ double i_on_n,
+ double i_on_p,
+ double i_on_n_in,
+ double i_on_p_in,
+ double vdd);
+
+double shortcircuit_simple(
+ double vt,
+ double velocity_index,
+ double c_in,
+ double c_out,
+ double w_nmos,
+ double w_pmos,
+ double i_on_n,
+ double i_on_p,
+ double i_on_n_in,
+ double i_on_p_in,
+ double vdd);
+//set power point product mask; strictly speaking this is not real point product
+inline void set_pppm(
+ double * pppv,
+ double a=1,
+ double b=1,
+ double c=1,
+ double d=1
+ ){
+ pppv[0]= a;
+ pppv[1]= b;
+ pppv[2]= c;
+ pppv[3]= d;
+
+}
+
+inline void set_sppm(
+ double * sppv,
+ double a=1,
+ double b=1,
+ double c=1,
+ double d=1
+ ){
+ sppv[0]= a;
+ sppv[1]= b;
+ sppv[2]= c;
+}
+
+#endif
--- /dev/null
+rm -rf ./out.csv
+./cacti 8192 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 16384 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 32768 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 65536 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 131072 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 262144 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 524288 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 1048576 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 2097152 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 4194304 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 8388608 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 16777216 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 0 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 8192 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 16384 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 32768 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 65536 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 131072 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 262144 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 524288 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 1048576 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 2097152 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 4194304 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 8388608 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 16777216 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 3 0 0 0 1 1 1 1 0 0 0 1 1
+./cacti 8192 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 16384 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 32768 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 65536 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 131072 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 262144 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 524288 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 1048576 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 2097152 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 4194304 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 8388608 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 16777216 64 1 1 0 0 0 1 65 512 0 0 0 0 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 2097152 64 1 1 0 0 0 1 65 512 0 0 0 1 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 4194304 64 1 1 0 0 0 1 65 512 0 0 0 1 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 8388608 64 1 1 0 0 0 1 65 512 0 0 0 1 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
+./cacti 16777216 64 1 1 0 0 0 1 65 512 0 0 0 1 0 1 0 0 0 0 10 1000 1000 1000 1000 360 4 1 1 1 1 1 1 1 0 0 0 1 1
--- /dev/null
+# Cache size
+//-size (bytes) 2048
+//-size (bytes) 4096
+//-size (bytes) 32768
+//-size (bytes) 262144
+//-size (bytes) 1048576
+//-size (bytes) 2097152
+//-size (bytes) 4194304
+//-size (bytes) 8388608
+//-size (bytes) 16777216
+//-size (bytes) 33554432
+//-size (bytes) 134217728
+//-size (bytes) 67108864
+-size (bytes) 1073741824
+
+# Line size
+//-block size (bytes) 8
+-block size (bytes) 64
+
+# To model Fully Associative cache, set associativity to zero
+//-associativity 0
+//-associativity 2
+//-associativity 4
+-associativity 8
+//-associativity 16
+
+-read-write port 1
+-exclusive read port 0
+-exclusive write port 0
+-single ended read ports 0
+
+# Multiple banks connected using a bus
+-UCA bank count 1
+-technology (u) 0.022
+//-technology (u) 0.040
+//-technology (u) 0.032
+//-technology (u) 0.090
+
+# following three parameters are meaningful only for main memories
+
+-page size (bits) 8192
+-burst length 8
+-internal prefetch width 8
+
+# following parameter can have one of five values -- (itrs-hp, itrs-lstp, itrs-lop, lp-dram, comm-dram)
+-Data array cell type - "itrs-hp"
+//-Data array cell type - "itrs-lstp"
+//-Data array cell type - "itrs-lop"
+
+# following parameter can have one of three values -- (itrs-hp, itrs-lstp, itrs-lop)
+-Data array peripheral type - "itrs-hp"
+//-Data array peripheral type - "itrs-lstp"
+//-Data array peripheral type - "itrs-lop"
+
+# following parameter can have one of five values -- (itrs-hp, itrs-lstp, itrs-lop, lp-dram, comm-dram)
+-Tag array cell type - "itrs-hp"
+//-Tag array cell type - "itrs-lstp"
+//-Tag array cell type - "itrs-lop"
+
+# following parameter can have one of three values -- (itrs-hp, itrs-lstp, itrs-lop)
+-Tag array peripheral type - "itrs-hp"
+//-Tag array peripheral type - "itrs-lstp"
+//-Tag array peripheral type - "itrs-lop
+
+# Bus width include data bits and address bits required by the decoder
+//-output/input bus width 16
+-output/input bus width 512
+
+// 300-400 in steps of 10
+-operating temperature (K) 360
+
+# Type of memory - cache (with a tag array) or ram (scratch ram similar to a register file)
+# or main memory (no tag array and every access will happen at a page granularity Ref: CACTI 5.3 report)
+-cache type "cache"
+//-cache type "ram"
+//-cache type "main memory"
+
+# to model special structure like branch target buffers, directory, etc.
+# change the tag size parameter
+# if you want cacti to calculate the tagbits, set the tag size to "default"
+-tag size (b) "default"
+//-tag size (b) 22
+
+# fast - data and tag access happen in parallel
+# sequential - data array is accessed after accessing the tag array
+# normal - data array lookup and tag access happen in parallel
+# final data block is broadcasted in data array h-tree
+# after getting the signal from the tag array
+//-access mode (normal, sequential, fast) - "fast"
+-access mode (normal, sequential, fast) - "normal"
+//-access mode (normal, sequential, fast) - "sequential"
+
+
+# DESIGN OBJECTIVE for UCA (or banks in NUCA)
+-design objective (weight delay, dynamic power, leakage power, cycle time, area) 0:0:0:100:0
+
+# Percentage deviation from the minimum value
+# Ex: A deviation value of 10:1000:1000:1000:1000 will try to find an organization
+# that compromises at most 10% delay.
+# NOTE: Try reasonable values for % deviation. Inconsistent deviation
+# percentage values will not produce any valid organizations. For example,
+# 0:0:100:100:100 will try to identify an organization that has both
+# least delay and dynamic power. Since such an organization is not possible, CACTI will
+# throw an error. Refer CACTI-6 Technical report for more details
+-deviate (delay, dynamic power, leakage power, cycle time, area) 20:100000:100000:100000:100000
+
+# Objective for NUCA
+-NUCAdesign objective (weight delay, dynamic power, leakage power, cycle time, area) 100:100:0:0:100
+-NUCAdeviate (delay, dynamic power, leakage power, cycle time, area) 10:10000:10000:10000:10000
+
+# Set optimize tag to ED or ED^2 to obtain a cache configuration optimized for
+# energy-delay or energy-delay sq. product
+# Note: Optimize tag will disable weight or deviate values mentioned above
+# Set it to NONE to let weight and deviate values determine the
+# appropriate cache configuration
+//-Optimize ED or ED^2 (ED, ED^2, NONE): "ED"
+-Optimize ED or ED^2 (ED, ED^2, NONE): "ED^2"
+//-Optimize ED or ED^2 (ED, ED^2, NONE): "NONE"
+
+-Cache model (NUCA, UCA) - "UCA"
+//-Cache model (NUCA, UCA) - "NUCA"
+
+# In order for CACTI to find the optimal NUCA bank value the following
+# variable should be assigned 0.
+-NUCA bank count 0
+
+# NOTE: for nuca network frequency is set to a default value of
+# 5GHz in time.c. CACTI automatically
+# calculates the maximum possible frequency and downgrades this value if necessary
+
+# By default CACTI considers both full-swing and low-swing
+# wires to find an optimal configuration. However, it is possible to
+# restrict the search space by changing the signalling from "default" to
+# "fullswing" or "lowswing" type.
+//-Wire signalling (fullswing, lowswing, default) - "Global_10"
+-Wire signalling (fullswing, lowswing, default) - "default"
+//-Wire signalling (fullswing, lowswing, default) - "lowswing"
+
+//-Wire inside mat - "global"
+-Wire inside mat - "semi-global"
+//-Wire outside mat - "global"
+-Wire outside mat - "semi-global"
+
+//-Interconnect projection - "conservative"
+-Interconnect projection - "aggressive"
+
+# Contention in network (which is a function of core count and cache level) is one of
+# the critical factor used for deciding the optimal bank count value
+# core count can be 4, 8, or 16
+//-Core count 4
+-Core count 8
+//-Core count 16
+-Cache level (L2/L3) - "L3"
+
+-Add ECC - "true"
+
+//-Print level (DETAILED, CONCISE) - "CONCISE"
+-Print level (DETAILED, CONCISE) - "DETAILED"
+
+# for debugging
+//-Print input parameters - "true"
+-Print input parameters - "false"
+# force CACTI to model the cache with the
+# following Ndbl, Ndwl, Nspd, Ndsam,
+# and Ndcm values
+//-Force cache config - "true"
+-Force cache config - "false"
+-Ndwl 1
+-Ndbl 1
+-Nspd 0
+-Ndcm 1
+-Ndsam1 0
+-Ndsam2 0
+
+
--- /dev/null
+%module cacti
+%{
+/* Includes the header in the wrapper code */
+#include "cacti_interface.h"
+%}
+
+/* Parse the header file to generate wrappers */
+%include "cacti_interface.h"
\ No newline at end of file
--- /dev/null
+TARGET = cacti
+SHELL = /bin/sh
+.PHONY: all depend clean
+.SUFFIXES: .cc .o
+
+ifndef NTHREADS
+ NTHREADS = 8
+endif
+
+
+LIBS =
+INCS = -lm
+
+ifeq ($(TAG),dbg)
+ DBG = -Wall
+ OPT = -ggdb -g -O0 -DNTHREADS=1 -gstabs+
+else
+ DBG =
+ OPT = -O3 -msse2 -mfpmath=sse -DNTHREADS=$(NTHREADS)
+endif
+
+#CXXFLAGS = -Wall -Wno-unknown-pragmas -Winline $(DBG) $(OPT)
+CXXFLAGS = -Wno-unknown-pragmas $(DBG) $(OPT)
+CXX = g++ -m32
+CC = gcc -m32
+
+SRCS = area.cc bank.cc mat.cc main.cc Ucache.cc io.cc technology.cc basic_circuit.cc parameter.cc \
+ decoder.cc component.cc uca.cc subarray.cc wire.cc htree2.cc \
+ cacti_interface.cc router.cc nuca.cc crossbar.cc arbiter.cc
+
+OBJS = $(patsubst %.cc,obj_$(TAG)/%.o,$(SRCS))
+PYTHONLIB_SRCS = $(patsubst main.cc, ,$(SRCS)) obj_$(TAG)/cacti_wrap.cc
+PYTHONLIB_OBJS = $(patsubst %.cc,%.o,$(PYTHONLIB_SRCS))
+INCLUDES = -I /usr/include/python2.4 -I /usr/lib/python2.4/config
+
+all: obj_$(TAG)/$(TARGET)
+ cp -f obj_$(TAG)/$(TARGET) $(TARGET)
+
+obj_$(TAG)/$(TARGET) : $(OBJS)
+ $(CXX) $(OBJS) -o $@ $(INCS) $(CXXFLAGS) $(LIBS) -pthread
+
+#obj_$(TAG)/%.o : %.cc
+# $(CXX) -c $(CXXFLAGS) $(INCS) -o $@ $<
+
+obj_$(TAG)/%.o : %.cc
+ $(CXX) $(CXXFLAGS) -c $< -o $@
+
+clean:
+ -rm -f *.o _cacti.so cacti.py $(TARGET)
+
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#include <pthread.h>
+
+#include <algorithm>
+#include <cmath>
+#include <ctime>
+#include <iostream>
+
+#include "Ucache.h"
+#include "area.h"
+#include "basic_circuit.h"
+#include "cacti_interface.h"
+#include "component.h"
+#include "const.h"
+#include "parameter.h"
+
+using namespace std;
+
+
+bool mem_array::lt(const mem_array * m1, const mem_array * m2)
+{
+ if (m1->Nspd < m2->Nspd) return true;
+ else if (m1->Nspd > m2->Nspd) return false;
+ else if (m1->Ndwl < m2->Ndwl) return true;
+ else if (m1->Ndwl > m2->Ndwl) return false;
+ else if (m1->Ndbl < m2->Ndbl) return true;
+ else if (m1->Ndbl > m2->Ndbl) return false;
+ else if (m1->deg_bl_muxing < m2->deg_bl_muxing) return true;
+ else if (m1->deg_bl_muxing > m2->deg_bl_muxing) return false;
+ else if (m1->Ndsam_lev_1 < m2->Ndsam_lev_1) return true;
+ else if (m1->Ndsam_lev_1 > m2->Ndsam_lev_1) return false;
+ else if (m1->Ndsam_lev_2 < m2->Ndsam_lev_2) return true;
+ else return false;
+}
+
+
+
+void uca_org_t::find_delay()
+{
+ mem_array * data_arr = data_array2;
+ mem_array * tag_arr = tag_array2;
+
+ // check whether it is a regular cache or scratch ram
+ if (g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)
+ {
+ access_time = data_arr->access_time;
+ }
+ // Both tag and data lookup happen in parallel
+ // and the entire set is sent over the data array h-tree without
+ // waiting for the way-select signal --TODO add the corresponding
+ // power overhead Nav
+ else if (g_ip->fast_access == true)
+ {
+ access_time = MAX(tag_arr->access_time, data_arr->access_time);
+ }
+ // Tag is accessed first. On a hit, way-select signal along with the
+ // address is sent to read/write the appropriate block in the data
+ // array
+ else if (g_ip->is_seq_acc == true)
+ {
+ access_time = tag_arr->access_time + data_arr->access_time;
+ }
+ // Normal access: tag array access and data array access happen in parallel.
+ // But, the data array will wait for the way-select and transfer only the
+ // appropriate block over the h-tree.
+ else
+ {
+ access_time = MAX(tag_arr->access_time + data_arr->delay_senseamp_mux_decoder,
+ data_arr->delay_before_subarray_output_driver) +
+ data_arr->delay_from_subarray_output_driver_to_output;
+ }
+}
+
+
+
+void uca_org_t::find_energy()
+{
+ if (!(g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc))//(g_ip->is_cache)
+ power = data_array2->power + tag_array2->power;
+ else
+ power = data_array2->power;
+}
+
+
+
+void uca_org_t::find_area()
+{
+ if (g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)//(g_ip->is_cache == false)
+ {
+ cache_ht = data_array2->height;
+ cache_len = data_array2->width;
+ }
+ else
+ {
+ cache_ht = MAX(tag_array2->height, data_array2->height);
+ cache_len = tag_array2->width + data_array2->width;
+ }
+ area = cache_ht * cache_len;
+}
+
+void uca_org_t::adjust_area()
+{
+ double area_adjust;
+ if (g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)
+ {
+ if (data_array2->area_efficiency/100.0<0.2)
+ {
+ //area_adjust = sqrt(area/(area*(data_array2->area_efficiency/100.0)/0.2));
+ area_adjust = sqrt(0.2/(data_array2->area_efficiency/100.0));
+ cache_ht = cache_ht/area_adjust;
+ cache_len = cache_len/area_adjust;
+ }
+ }
+ area = cache_ht * cache_len;
+}
+
+void uca_org_t::find_cyc()
+{
+ if ((g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc))//(g_ip->is_cache == false)
+ {
+ cycle_time = data_array2->cycle_time;
+ }
+ else
+ {
+ cycle_time = MAX(tag_array2->cycle_time,
+ data_array2->cycle_time);
+ }
+}
+
+uca_org_t :: uca_org_t()
+:tag_array2(0),
+ data_array2(0)
+{
+
+}
+
+void uca_org_t :: cleanup()
+{
+ if (data_array2!=0)
+ delete data_array2;
+ if (tag_array2!=0)
+ delete tag_array2;
+}
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __CACTI_INTERFACE_H__
+#define __CACTI_INTERFACE_H__
+
+#include <iostream>
+#include <list>
+#include <map>
+#include <string>
+#include <vector>
+
+#include "const.h"
+
+using namespace std;
+
+
+class min_values_t;
+class mem_array;
+class uca_org_t;
+
+
+class powerComponents
+{
+ public:
+ double dynamic;
+ double leakage;
+ double gate_leakage;
+ double short_circuit;
+ double longer_channel_leakage;
+
+ powerComponents() : dynamic(0), leakage(0), gate_leakage(0), short_circuit(0), longer_channel_leakage(0) { }
+ powerComponents(const powerComponents & obj) { *this = obj; }
+ powerComponents & operator=(const powerComponents & rhs)
+ {
+ dynamic = rhs.dynamic;
+ leakage = rhs.leakage;
+ gate_leakage = rhs.gate_leakage;
+ short_circuit = rhs.short_circuit;
+ longer_channel_leakage = rhs.longer_channel_leakage;
+ return *this;
+ }
+ void reset() { dynamic = 0; leakage = 0; gate_leakage = 0; short_circuit = 0;longer_channel_leakage = 0;}
+
+ friend powerComponents operator+(const powerComponents & x, const powerComponents & y);
+ friend powerComponents operator*(const powerComponents & x, double const * const y);
+};
+
+
+
+class powerDef
+{
+ public:
+ powerComponents readOp;
+ powerComponents writeOp;
+ powerComponents searchOp;//Sheng: for CAM and FA
+
+ powerDef() : readOp(), writeOp(), searchOp() { }
+ void reset() { readOp.reset(); writeOp.reset(); searchOp.reset();}
+
+ friend powerDef operator+(const powerDef & x, const powerDef & y);
+ friend powerDef operator*(const powerDef & x, double const * const y);
+};
+
+enum Wire_type
+{
+ Global /* gloabl wires with repeaters */,
+ Global_5 /* 5% delay penalty */,
+ Global_10 /* 10% delay penalty */,
+ Global_20 /* 20% delay penalty */,
+ Global_30 /* 30% delay penalty */,
+ Low_swing /* differential low power wires with high area overhead */,
+ Semi_global /* mid-level wires with repeaters*/,
+ Transmission /* tranmission lines with high area overhead */,
+ Optical /* optical wires */,
+ Invalid_wtype
+};
+
+
+
+class InputParameter
+{
+ public:
+ void parse_cfg(const string & infile);
+
+ bool error_checking(); // return false if the input parameters are problematic
+ void display_ip();
+
+ unsigned int cache_sz; // in bytes
+ unsigned int line_sz;
+ unsigned int assoc;
+ unsigned int nbanks;
+ unsigned int out_w;// == nr_bits_out
+ bool specific_tag;
+ unsigned int tag_w;
+ unsigned int access_mode;
+ unsigned int obj_func_dyn_energy;
+ unsigned int obj_func_dyn_power;
+ unsigned int obj_func_leak_power;
+ unsigned int obj_func_cycle_t;
+
+ double F_sz_nm; // feature size in nm
+ double F_sz_um; // feature size in um
+ unsigned int num_rw_ports;
+ unsigned int num_rd_ports;
+ unsigned int num_wr_ports;
+ unsigned int num_se_rd_ports; // number of single ended read ports
+ unsigned int num_search_ports; // Sheng: number of search ports for CAM
+ bool is_main_mem;
+ bool is_cache;
+ bool pure_ram;
+ bool pure_cam;
+ bool rpters_in_htree; // if there are repeaters in htree segment
+ unsigned int ver_htree_wires_over_array;
+ unsigned int broadcast_addr_din_over_ver_htrees;
+ unsigned int temp;
+
+ unsigned int ram_cell_tech_type;
+ unsigned int peri_global_tech_type;
+ unsigned int data_arr_ram_cell_tech_type;
+ unsigned int data_arr_peri_global_tech_type;
+ unsigned int tag_arr_ram_cell_tech_type;
+ unsigned int tag_arr_peri_global_tech_type;
+
+ unsigned int burst_len;
+ unsigned int int_prefetch_w;
+ unsigned int page_sz_bits;
+
+ unsigned int ic_proj_type; // interconnect_projection_type
+ unsigned int wire_is_mat_type; // wire_inside_mat_type
+ unsigned int wire_os_mat_type; // wire_outside_mat_type
+ enum Wire_type wt;
+ int force_wiretype;
+ bool print_input_args;
+ unsigned int nuca_cache_sz; // TODO
+ int ndbl, ndwl, nspd, ndsam1, ndsam2, ndcm;
+ bool force_cache_config;
+
+ int cache_level;
+ int cores;
+ int nuca_bank_count;
+ int force_nuca_bank;
+
+ int delay_wt, dynamic_power_wt, leakage_power_wt,
+ cycle_time_wt, area_wt;
+ int delay_wt_nuca, dynamic_power_wt_nuca, leakage_power_wt_nuca,
+ cycle_time_wt_nuca, area_wt_nuca;
+
+ int delay_dev, dynamic_power_dev, leakage_power_dev,
+ cycle_time_dev, area_dev;
+ int delay_dev_nuca, dynamic_power_dev_nuca, leakage_power_dev_nuca,
+ cycle_time_dev_nuca, area_dev_nuca;
+ int ed; //ED or ED2 optimization
+ int nuca;
+
+ bool fast_access;
+ unsigned int block_sz; // bytes
+ unsigned int tag_assoc;
+ unsigned int data_assoc;
+ bool is_seq_acc;
+ bool fully_assoc;
+ unsigned int nsets; // == number_of_sets
+ int print_detail;
+
+
+ bool add_ecc_b_;
+ //parameters for design constraint
+ double throughput;
+ double latency;
+ bool pipelinable;
+ int pipeline_stages;
+ int per_stage_vector;
+ bool with_clock_grid;
+};
+
+
+typedef struct{
+ int Ndwl;
+ int Ndbl;
+ double Nspd;
+ int deg_bl_muxing;
+ int Ndsam_lev_1;
+ int Ndsam_lev_2;
+ int number_activated_mats_horizontal_direction;
+ int number_subbanks;
+ int page_size_in_bits;
+ double delay_route_to_bank;
+ double delay_crossbar;
+ double delay_addr_din_horizontal_htree;
+ double delay_addr_din_vertical_htree;
+ double delay_row_predecode_driver_and_block;
+ double delay_row_decoder;
+ double delay_bitlines;
+ double delay_sense_amp;
+ double delay_subarray_output_driver;
+ double delay_bit_mux_predecode_driver_and_block;
+ double delay_bit_mux_decoder;
+ double delay_senseamp_mux_lev_1_predecode_driver_and_block;
+ double delay_senseamp_mux_lev_1_decoder;
+ double delay_senseamp_mux_lev_2_predecode_driver_and_block;
+ double delay_senseamp_mux_lev_2_decoder;
+ double delay_input_htree;
+ double delay_output_htree;
+ double delay_dout_vertical_htree;
+ double delay_dout_horizontal_htree;
+ double delay_comparator;
+ double access_time;
+ double cycle_time;
+ double multisubbank_interleave_cycle_time;
+ double delay_request_network;
+ double delay_inside_mat;
+ double delay_reply_network;
+ double trcd;
+ double cas_latency;
+ double precharge_delay;
+ powerDef power_routing_to_bank;
+ powerDef power_addr_input_htree;
+ powerDef power_data_input_htree;
+ powerDef power_data_output_htree;
+ powerDef power_addr_horizontal_htree;
+ powerDef power_datain_horizontal_htree;
+ powerDef power_dataout_horizontal_htree;
+ powerDef power_addr_vertical_htree;
+ powerDef power_datain_vertical_htree;
+ powerDef power_row_predecoder_drivers;
+ powerDef power_row_predecoder_blocks;
+ powerDef power_row_decoders;
+ powerDef power_bit_mux_predecoder_drivers;
+ powerDef power_bit_mux_predecoder_blocks;
+ powerDef power_bit_mux_decoders;
+ powerDef power_senseamp_mux_lev_1_predecoder_drivers;
+ powerDef power_senseamp_mux_lev_1_predecoder_blocks;
+ powerDef power_senseamp_mux_lev_1_decoders;
+ powerDef power_senseamp_mux_lev_2_predecoder_drivers;
+ powerDef power_senseamp_mux_lev_2_predecoder_blocks;
+ powerDef power_senseamp_mux_lev_2_decoders;
+ powerDef power_bitlines;
+ powerDef power_sense_amps;
+ powerDef power_prechg_eq_drivers;
+ powerDef power_output_drivers_at_subarray;
+ powerDef power_dataout_vertical_htree;
+ powerDef power_comparators;
+ powerDef power_crossbar;
+ powerDef total_power;
+ double area;
+ double all_banks_height;
+ double all_banks_width;
+ double bank_height;
+ double bank_width;
+ double subarray_memory_cell_area_height;
+ double subarray_memory_cell_area_width;
+ double mat_height;
+ double mat_width;
+ double routing_area_height_within_bank;
+ double routing_area_width_within_bank;
+ double area_efficiency;
+// double perc_power_dyn_routing_to_bank;
+// double perc_power_dyn_addr_horizontal_htree;
+// double perc_power_dyn_datain_horizontal_htree;
+// double perc_power_dyn_dataout_horizontal_htree;
+// double perc_power_dyn_addr_vertical_htree;
+// double perc_power_dyn_datain_vertical_htree;
+// double perc_power_dyn_row_predecoder_drivers;
+// double perc_power_dyn_row_predecoder_blocks;
+// double perc_power_dyn_row_decoders;
+// double perc_power_dyn_bit_mux_predecoder_drivers;
+// double perc_power_dyn_bit_mux_predecoder_blocks;
+// double perc_power_dyn_bit_mux_decoders;
+// double perc_power_dyn_senseamp_mux_lev_1_predecoder_drivers;
+// double perc_power_dyn_senseamp_mux_lev_1_predecoder_blocks;
+// double perc_power_dyn_senseamp_mux_lev_1_decoders;
+// double perc_power_dyn_senseamp_mux_lev_2_predecoder_drivers;
+// double perc_power_dyn_senseamp_mux_lev_2_predecoder_blocks;
+// double perc_power_dyn_senseamp_mux_lev_2_decoders;
+// double perc_power_dyn_bitlines;
+// double perc_power_dyn_sense_amps;
+// double perc_power_dyn_prechg_eq_drivers;
+// double perc_power_dyn_subarray_output_drivers;
+// double perc_power_dyn_dataout_vertical_htree;
+// double perc_power_dyn_comparators;
+// double perc_power_dyn_crossbar;
+// double perc_power_dyn_spent_outside_mats;
+// double perc_power_leak_routing_to_bank;
+// double perc_power_leak_addr_horizontal_htree;
+// double perc_power_leak_datain_horizontal_htree;
+// double perc_power_leak_dataout_horizontal_htree;
+// double perc_power_leak_addr_vertical_htree;
+// double perc_power_leak_datain_vertical_htree;
+// double perc_power_leak_row_predecoder_drivers;
+// double perc_power_leak_row_predecoder_blocks;
+// double perc_power_leak_row_decoders;
+// double perc_power_leak_bit_mux_predecoder_drivers;
+// double perc_power_leak_bit_mux_predecoder_blocks;
+// double perc_power_leak_bit_mux_decoders;
+// double perc_power_leak_senseamp_mux_lev_1_predecoder_drivers;
+// double perc_power_leak_senseamp_mux_lev_1_predecoder_blocks;
+// double perc_power_leak_senseamp_mux_lev_1_decoders;
+// double perc_power_leak_senseamp_mux_lev_2_predecoder_drivers;
+// double perc_power_leak_senseamp_mux_lev_2_predecoder_blocks;
+// double perc_power_leak_senseamp_mux_lev_2_decoders;
+// double perc_power_leak_bitlines;
+// double perc_power_leak_sense_amps;
+// double perc_power_leak_prechg_eq_drivers;
+// double perc_power_leak_subarray_output_drivers;
+// double perc_power_leak_dataout_vertical_htree;
+// double perc_power_leak_comparators;
+// double perc_power_leak_crossbar;
+// double perc_leak_mats;
+// double perc_active_mats;
+ double refresh_power;
+ double dram_refresh_period;
+ double dram_array_availability;
+ double dyn_read_energy_from_closed_page;
+ double dyn_read_energy_from_open_page;
+ double leak_power_subbank_closed_page;
+ double leak_power_subbank_open_page;
+ double leak_power_request_and_reply_networks;
+ double activate_energy;
+ double read_energy;
+ double write_energy;
+ double precharge_energy;
+} results_mem_array;
+
+
+class uca_org_t
+{
+ public:
+ mem_array * tag_array2;
+ mem_array * data_array2;
+ double access_time;
+ double cycle_time;
+ double area;
+ double area_efficiency;
+ powerDef power;
+ double leak_power_with_sleep_transistors_in_mats;
+ double cache_ht;
+ double cache_len;
+ char file_n[100];
+ double vdd_periph_global;
+ bool valid;
+ results_mem_array tag_array;
+ results_mem_array data_array;
+
+ uca_org_t();
+ void find_delay();
+ void find_energy();
+ void find_area();
+ void find_cyc();
+ void adjust_area();//for McPAT only to adjust routing overhead
+ void cleanup();
+ ~uca_org_t(){};
+};
+
+void reconfigure(InputParameter *local_interface, uca_org_t *fin_res);
+
+uca_org_t cacti_interface(const string & infile_name);
+//McPAT's plain interface, please keep !!!
+uca_org_t cacti_interface(InputParameter * const local_interface);
+//McPAT's plain interface, please keep !!!
+uca_org_t init_interface(InputParameter * const local_interface);
+//McPAT's plain interface, please keep !!!
+uca_org_t cacti_interface(
+ int cache_size,
+ int line_size,
+ int associativity,
+ int rw_ports,
+ int excl_read_ports,
+ int excl_write_ports,
+ int single_ended_read_ports,
+ int search_ports,
+ int banks,
+ double tech_node,
+ int output_width,
+ int specific_tag,
+ int tag_width,
+ int access_mode,
+ int cache,
+ int main_mem,
+ int obj_func_delay,
+ int obj_func_dynamic_power,
+ int obj_func_leakage_power,
+ int obj_func_cycle_time,
+ int obj_func_area,
+ int dev_func_delay,
+ int dev_func_dynamic_power,
+ int dev_func_leakage_power,
+ int dev_func_area,
+ int dev_func_cycle_time,
+ int ed_ed2_none, // 0 - ED, 1 - ED^2, 2 - use weight and deviate
+ int temp,
+ int wt, //0 - default(search across everything), 1 - global, 2 - 5% delay penalty, 3 - 10%, 4 - 20 %, 5 - 30%, 6 - low-swing
+ int data_arr_ram_cell_tech_flavor_in,
+ int data_arr_peri_global_tech_flavor_in,
+ int tag_arr_ram_cell_tech_flavor_in,
+ int tag_arr_peri_global_tech_flavor_in,
+ int interconnect_projection_type_in,
+ int wire_inside_mat_type_in,
+ int wire_outside_mat_type_in,
+ int REPEATERS_IN_HTREE_SEGMENTS_in,
+ int VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in,
+ int BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in,
+ int PAGE_SIZE_BITS_in,
+ int BURST_LENGTH_in,
+ int INTERNAL_PREFETCH_WIDTH_in,
+ int force_wiretype,
+ int wiretype,
+ int force_config,
+ int ndwl,
+ int ndbl,
+ int nspd,
+ int ndcm,
+ int ndsam1,
+ int ndsam2,
+ int ecc);
+// int cache_size,
+// int line_size,
+// int associativity,
+// int rw_ports,
+// int excl_read_ports,
+// int excl_write_ports,
+// int single_ended_read_ports,
+// int banks,
+// double tech_node,
+// int output_width,
+// int specific_tag,
+// int tag_width,
+// int access_mode,
+// int cache,
+// int main_mem,
+// int obj_func_delay,
+// int obj_func_dynamic_power,
+// int obj_func_leakage_power,
+// int obj_func_area,
+// int obj_func_cycle_time,
+// int dev_func_delay,
+// int dev_func_dynamic_power,
+// int dev_func_leakage_power,
+// int dev_func_area,
+// int dev_func_cycle_time,
+// int temp,
+// int data_arr_ram_cell_tech_flavor_in,
+// int data_arr_peri_global_tech_flavor_in,
+// int tag_arr_ram_cell_tech_flavor_in,
+// int tag_arr_peri_global_tech_flavor_in,
+// int interconnect_projection_type_in,
+// int wire_inside_mat_type_in,
+// int wire_outside_mat_type_in,
+// int REPEATERS_IN_HTREE_SEGMENTS_in,
+// int VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in,
+// int BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in,
+//// double MAXAREACONSTRAINT_PERC_in,
+//// double MAXACCTIMECONSTRAINT_PERC_in,
+//// double MAX_PERC_DIFF_IN_DELAY_FROM_BEST_DELAY_REPEATER_SOLUTION_in,
+// int PAGE_SIZE_BITS_in,
+// int BURST_LENGTH_in,
+// int INTERNAL_PREFETCH_WIDTH_in);
+
+//Naveen's interface
+uca_org_t cacti_interface(
+ int cache_size,
+ int line_size,
+ int associativity,
+ int rw_ports,
+ int excl_read_ports,
+ int excl_write_ports,
+ int single_ended_read_ports,
+ int banks,
+ double tech_node,
+ int page_sz,
+ int burst_length,
+ int pre_width,
+ int output_width,
+ int specific_tag,
+ int tag_width,
+ int access_mode, //0 normal, 1 seq, 2 fast
+ int cache, //scratch ram or cache
+ int main_mem,
+ int obj_func_delay,
+ int obj_func_dynamic_power,
+ int obj_func_leakage_power,
+ int obj_func_area,
+ int obj_func_cycle_time,
+ int dev_func_delay,
+ int dev_func_dynamic_power,
+ int dev_func_leakage_power,
+ int dev_func_area,
+ int dev_func_cycle_time,
+ int ed_ed2_none, // 0 - ED, 1 - ED^2, 2 - use weight and deviate
+ int temp,
+ int wt, //0 - default(search across everything), 1 - global, 2 - 5% delay penalty, 3 - 10%, 4 - 20 %, 5 - 30%, 6 - low-swing
+ int data_arr_ram_cell_tech_flavor_in,
+ int data_arr_peri_global_tech_flavor_in,
+ int tag_arr_ram_cell_tech_flavor_in,
+ int tag_arr_peri_global_tech_flavor_in,
+ int interconnect_projection_type_in, // 0 - aggressive, 1 - normal
+ int wire_inside_mat_type_in,
+ int wire_outside_mat_type_in,
+ int is_nuca, // 0 - UCA, 1 - NUCA
+ int core_count,
+ int cache_level, // 0 - L2, 1 - L3
+ int nuca_bank_count,
+ int nuca_obj_func_delay,
+ int nuca_obj_func_dynamic_power,
+ int nuca_obj_func_leakage_power,
+ int nuca_obj_func_area,
+ int nuca_obj_func_cycle_time,
+ int nuca_dev_func_delay,
+ int nuca_dev_func_dynamic_power,
+ int nuca_dev_func_leakage_power,
+ int nuca_dev_func_area,
+ int nuca_dev_func_cycle_time,
+ int REPEATERS_IN_HTREE_SEGMENTS_in,//TODO for now only wires with repeaters are supported
+ int p_input);
+
+class mem_array
+{
+ public:
+ int Ndcm;
+ int Ndwl;
+ int Ndbl;
+ double Nspd;
+ int deg_bl_muxing;
+ int Ndsam_lev_1;
+ int Ndsam_lev_2;
+ double access_time;
+ double cycle_time;
+ double multisubbank_interleave_cycle_time;
+ double area_ram_cells;
+ double area;
+ powerDef power;
+ double delay_senseamp_mux_decoder;
+ double delay_before_subarray_output_driver;
+ double delay_from_subarray_output_driver_to_output;
+ double height;
+ double width;
+
+ double mat_height;
+ double mat_length;
+ double subarray_length;
+ double subarray_height;
+
+ double delay_route_to_bank,
+ delay_input_htree,
+ delay_row_predecode_driver_and_block,
+ delay_row_decoder,
+ delay_bitlines,
+ delay_sense_amp,
+ delay_subarray_output_driver,
+ delay_dout_htree,
+ delay_comparator,
+ delay_matchlines;
+
+ double all_banks_height,
+ all_banks_width,
+ area_efficiency;
+
+ powerDef power_routing_to_bank;
+ powerDef power_addr_input_htree;
+ powerDef power_data_input_htree;
+ powerDef power_data_output_htree;
+ powerDef power_htree_in_search;
+ powerDef power_htree_out_search;
+ powerDef power_row_predecoder_drivers;
+ powerDef power_row_predecoder_blocks;
+ powerDef power_row_decoders;
+ powerDef power_bit_mux_predecoder_drivers;
+ powerDef power_bit_mux_predecoder_blocks;
+ powerDef power_bit_mux_decoders;
+ powerDef power_senseamp_mux_lev_1_predecoder_drivers;
+ powerDef power_senseamp_mux_lev_1_predecoder_blocks;
+ powerDef power_senseamp_mux_lev_1_decoders;
+ powerDef power_senseamp_mux_lev_2_predecoder_drivers;
+ powerDef power_senseamp_mux_lev_2_predecoder_blocks;
+ powerDef power_senseamp_mux_lev_2_decoders;
+ powerDef power_bitlines;
+ powerDef power_sense_amps;
+ powerDef power_prechg_eq_drivers;
+ powerDef power_output_drivers_at_subarray;
+ powerDef power_dataout_vertical_htree;
+ powerDef power_comparators;
+
+ powerDef power_cam_bitline_precharge_eq_drv;
+ powerDef power_searchline;
+ powerDef power_searchline_precharge;
+ powerDef power_matchlines;
+ powerDef power_matchline_precharge;
+ powerDef power_matchline_to_wordline_drv;
+
+ min_values_t *arr_min;
+ enum Wire_type wt;
+
+ // dram stats
+ double activate_energy, read_energy, write_energy, precharge_energy,
+ refresh_power, leak_power_subbank_closed_page, leak_power_subbank_open_page,
+ leak_power_request_and_reply_networks;
+
+ double precharge_delay;
+
+ static bool lt(const mem_array * m1, const mem_array * m2);
+};
+
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+
+#include <cassert>
+#include <cmath>
+#include <iostream>
+
+#include "bank.h"
+#include "component.h"
+#include "decoder.h"
+
+using namespace std;
+
+
+
+Component::Component()
+ :area(), power(), rt_power(),delay(0)
+{
+}
+
+
+
+Component::~Component()
+{
+}
+
+
+
+double Component::compute_diffusion_width(int num_stacked_in, int num_folded_tr)
+{
+ double w_poly = g_ip->F_sz_um;
+ double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact;
+ double total_diff_w = 2 * spacing_poly_to_poly + // for both source and drain
+ num_stacked_in * w_poly +
+ (num_stacked_in - 1) * g_tp.spacing_poly_to_poly;
+
+ if (num_folded_tr > 1)
+ {
+ total_diff_w += (num_folded_tr - 2) * 2 * spacing_poly_to_poly +
+ (num_folded_tr - 1) * num_stacked_in * w_poly +
+ (num_folded_tr - 1) * (num_stacked_in - 1) * g_tp.spacing_poly_to_poly;
+ }
+
+ return total_diff_w;
+}
+
+
+
+double Component::compute_gate_area(
+ int gate_type,
+ int num_inputs,
+ double w_pmos,
+ double w_nmos,
+ double h_gate)
+{
+ if (w_pmos <= 0.0 || w_nmos <= 0.0)
+ {
+ return 0.0;
+ }
+
+ double w_folded_pmos, w_folded_nmos;
+ int num_folded_pmos, num_folded_nmos;
+ double total_ndiff_w, total_pdiff_w;
+ Area gate;
+
+ double h_tr_region = h_gate - 2 * g_tp.HPOWERRAIL;
+ double ratio_p_to_n = w_pmos / (w_pmos + w_nmos);
+
+ if (ratio_p_to_n >= 1 || ratio_p_to_n <= 0)
+ {
+ return 0.0;
+ }
+
+ w_folded_pmos = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * ratio_p_to_n;
+ w_folded_nmos = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * (1 - ratio_p_to_n);
+ assert(w_folded_pmos > 0);
+
+ num_folded_pmos = (int) (ceil(w_pmos / w_folded_pmos));
+ num_folded_nmos = (int) (ceil(w_nmos / w_folded_nmos));
+
+ switch (gate_type)
+ {
+ case INV:
+ total_ndiff_w = compute_diffusion_width(1, num_folded_nmos);
+ total_pdiff_w = compute_diffusion_width(1, num_folded_pmos);
+ break;
+
+ case NOR:
+ total_ndiff_w = compute_diffusion_width(1, num_inputs * num_folded_nmos);
+ total_pdiff_w = compute_diffusion_width(num_inputs, num_folded_pmos);
+ break;
+
+ case NAND:
+ total_ndiff_w = compute_diffusion_width(num_inputs, num_folded_nmos);
+ total_pdiff_w = compute_diffusion_width(1, num_inputs * num_folded_pmos);
+ break;
+ default:
+ cout << "Unknown gate type: " << gate_type << endl;
+ exit(1);
+ }
+
+ gate.w = MAX(total_ndiff_w, total_pdiff_w);
+
+ if (w_folded_nmos > w_nmos)
+ {
+ //means that the height of the gate can
+ //be made smaller than the input height specified, so calculate the height of the gate.
+ gate.h = w_nmos + w_pmos + g_tp.MIN_GAP_BET_P_AND_N_DIFFS + 2 * g_tp.HPOWERRAIL;
+ }
+ else
+ {
+ gate.h = h_gate;
+ }
+ return gate.get_area();
+}
+
+
+
+double Component::compute_tr_width_after_folding(
+ double input_width,
+ double threshold_folding_width)
+{//This is actually the width of the cell not the width of a device.
+//The width of a cell and the width of a device is orthogonal.
+ if (input_width <= 0)
+ {
+ return 0;
+ }
+
+ int num_folded_tr = (int) (ceil(input_width / threshold_folding_width));
+ double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact;
+ double width_poly = g_ip->F_sz_um;
+ double total_diff_width = num_folded_tr * width_poly + (num_folded_tr + 1) * spacing_poly_to_poly;
+
+ return total_diff_width;
+}
+
+
+
+double Component::height_sense_amplifier(double pitch_sense_amp)
+{
+ // compute the height occupied by all PMOS transistors
+ double h_pmos_tr = compute_tr_width_after_folding(g_tp.w_sense_p, pitch_sense_amp) * 2 +
+ compute_tr_width_after_folding(g_tp.w_iso, pitch_sense_amp) +
+ 2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS;
+
+ // compute the height occupied by all NMOS transistors
+ double h_nmos_tr = compute_tr_width_after_folding(g_tp.w_sense_n, pitch_sense_amp) * 2 +
+ compute_tr_width_after_folding(g_tp.w_sense_en, pitch_sense_amp) +
+ 2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS;
+
+ // compute total height by considering gap between the p and n diffusion areas
+ return h_pmos_tr + h_nmos_tr + g_tp.MIN_GAP_BET_P_AND_N_DIFFS;
+}
+
+
+
+int Component::logical_effort(
+ int num_gates_min,
+ double g,
+ double F,
+ double * w_n,
+ double * w_p,
+ double C_load,
+ double p_to_n_sz_ratio,
+ bool is_dram_,
+ bool is_wl_tr_,
+ double max_w_nmos)
+{
+ int num_gates = (int) (log(F) / log(fopt));
+
+ // check if num_gates is odd. if so, add 1 to make it even
+ num_gates+= (num_gates % 2) ? 1 : 0;
+ num_gates = MAX(num_gates, num_gates_min);
+
+ // recalculate the effective fanout of each stage
+ double f = pow(F, 1.0 / num_gates);
+ int i = num_gates - 1;
+ double C_in = C_load / f;
+ w_n[i] = (1.0 / (1.0 + p_to_n_sz_ratio)) * C_in / gate_C(1, 0, is_dram_, false, is_wl_tr_);
+ w_n[i] = MAX(w_n[i], g_tp.min_w_nmos_);
+ w_p[i] = p_to_n_sz_ratio * w_n[i];
+
+ if (w_n[i] > max_w_nmos)
+ {
+ double C_ld = gate_C((1 + p_to_n_sz_ratio) * max_w_nmos, 0, is_dram_, false, is_wl_tr_);
+ F = g * C_ld / gate_C(w_n[0] + w_p[0], 0, is_dram_, false, is_wl_tr_);
+ num_gates = (int) (log(F) / log(fopt)) + 1;
+ num_gates+= (num_gates % 2) ? 1 : 0;
+ num_gates = MAX(num_gates, num_gates_min);
+ f = pow(F, 1.0 / (num_gates - 1));
+ i = num_gates - 1;
+ w_n[i] = max_w_nmos;
+ w_p[i] = p_to_n_sz_ratio * w_n[i];
+ }
+
+ for (i = num_gates - 2; i >= 1; i--)
+ {
+ w_n[i] = MAX(w_n[i+1] / f, g_tp.min_w_nmos_);
+ w_p[i] = p_to_n_sz_ratio * w_n[i];
+ }
+
+ assert(num_gates <= MAX_NUMBER_GATES_STAGE);
+ return num_gates;
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __COMPONENT_H__
+#define __COMPONENT_H__
+
+#include "area.h"
+#include "parameter.h"
+
+using namespace std;
+
+class Crossbar;
+class Bank;
+
+class Component
+{
+ public:
+ Component();
+ ~Component();
+
+ Area area;
+ powerDef power,rt_power;
+ double delay;
+ double cycle_time;
+
+ double compute_gate_area(
+ int gate_type,
+ int num_inputs,
+ double w_pmos,
+ double w_nmos,
+ double h_gate);
+
+ double compute_tr_width_after_folding(double input_width, double threshold_folding_width);
+ double height_sense_amplifier(double pitch_sense_amp);
+
+ protected:
+ int logical_effort(
+ int num_gates_min,
+ double g,
+ double F,
+ double * w_n,
+ double * w_p,
+ double C_load,
+ double p_to_n_sz_ratio,
+ bool is_dram_,
+ bool is_wl_tr_,
+ double max_w_nmos);
+
+ private:
+ double compute_diffusion_width(int num_stacked_in, int num_folded_tr);
+};
+
+#endif
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#ifndef __CONST_H__
+#define __CONST_H__
+
+#include <math.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+/* The following are things you might want to change
+ * when compiling
+ */
+
+/*
+ * Address bits in a word, and number of output bits from the cache
+ */
+
+/*
+was: #define ADDRESS_BITS 32
+now: I'm using 42 bits as in the Power4,
+since that's bigger then the 36 bits on the Pentium 4
+and 40 bits on the Opteron
+*/
+const int ADDRESS_BITS = 42;
+
+/*dt: In addition to the tag bits, the tags also include 1 valid bit, 1 dirty bit, 2 bits for a 4-state
+ cache coherency protocoll (MESI), 1 bit for MRU (change this to log(ways) for full LRU).
+ So in total we have 1 + 1 + 2 + 1 = 5 */
+const int EXTRA_TAG_BITS = 5;
+
+/* limits on the various N parameters */
+
+const unsigned int MAXDATAN = 512; // maximum for Ndwl and Ndbl
+const unsigned int MAXSUBARRAYS = 1048576; // maximum subarrays for data and tag arrays
+const unsigned int MAXDATASPD = 256; // maximum for Nspd
+const unsigned int MAX_COL_MUX = 256;
+
+
+
+#define ROUTER_TYPES 3
+#define WIRE_TYPES 6
+
+const double Cpolywire = 0;
+
+
+/* Threshold voltages (as a proportion of Vdd)
+ If you don't know them, set all values to 0.5 */
+#define VTHFA1 0.452
+#define VTHFA2 0.304
+#define VTHFA3 0.420
+#define VTHFA4 0.413
+#define VTHFA5 0.405
+#define VTHFA6 0.452
+#define VSINV 0.452
+#define VTHCOMPINV 0.437
+#define VTHMUXNAND 0.548 // TODO : this constant must be revisited
+#define VTHEVALINV 0.452
+#define VTHSENSEEXTDRV 0.438
+
+
+//WmuxdrvNANDn and WmuxdrvNANDp are no longer being used but it's part of the old
+//delay_comparator function which we are using exactly as it used to be, so just setting these to 0
+const double WmuxdrvNANDn = 0;
+const double WmuxdrvNANDp = 0;
+
+
+/*===================================================================*/
+/*
+ * The following are things you probably wouldn't want to change.
+ */
+
+#define BIGNUM 1e30
+#define INF 9999999
+#define MAX(a,b) (((a)>(b))?(a):(b))
+#define MIN(a,b) (((a)<(b))?(a):(b))
+
+/* Used to communicate with the horowitz model */
+#define RISE 1
+#define FALL 0
+#define NCH 1
+#define PCH 0
+
+
+#define EPSILON 0.5 //v4.1: This constant is being used in order to fix floating point -> integer
+//conversion problems that were occuring within CACTI. Typical problem that was occuring was
+//that with different compilers a floating point number like 3.0 would get represented as either
+//2.9999....or 3.00000001 and then the integer part of the floating point number (3.0) would
+//be computed differently depending on the compiler. What we are doing now is to replace
+//int (x) with (int) (x+EPSILON) where EPSILON is 0.5. This would fix such problems. Note that
+//this works only when x is an integer >= 0.
+/*
+ * Sheng thinks this is more a solution to solve the simple truncate problem
+ * (http://www.cs.tut.fi/~jkorpela/round.html) rather than the problem mentioned above.
+ * Unfortunately, this solution causes nasty bugs (different results when using O0 and O3).
+ * Moreover, round is not correct in CACTI since when an extra fraction of bit/line is needed,
+ * we need to provide a complete bit/line even the fraction is just 0.01.
+ * So, in later version than 6.5 we use (int)ceil() to get double to int conversion.
+ */
+
+#define EPSILON2 0.1
+#define EPSILON3 0.6
+
+
+#define MINSUBARRAYROWS 16 //For simplicity in modeling, for the row decoding structure, we assume
+//that each row predecode block is composed of at least one 2-4 decoder. When the outputs from the
+//row predecode blocks are combined this means that there are at least 4*4=16 row decode outputs
+#define MAXSUBARRAYROWS 262144 //Each row predecode block produces a max of 2^9 outputs. So
+//the maximum number of row decode outputs will be 2^9*2^9
+#define MINSUBARRAYCOLS 2
+#define MAXSUBARRAYCOLS 262144
+
+
+#define INV 0
+#define NOR 1
+#define NAND 2
+
+
+#define NUMBER_TECH_FLAVORS 4
+
+#define NUMBER_INTERCONNECT_PROJECTION_TYPES 2 //aggressive and conservative
+//0 = Aggressive projections, 1 = Conservative projections
+#define NUMBER_WIRE_TYPES 4 //local, semi-global and global
+//1 = 'Semi-global' wire type, 2 = 'Global' wire type
+
+
+const int dram_cell_tech_flavor = 3;
+
+
+#define VBITSENSEMIN 0.08 //minimum bitline sense voltage is fixed to be 80 mV.
+
+#define fopt 4.0
+
+#define INPUT_WIRE_TO_INPUT_GATE_CAP_RATIO 0
+#define BUFFER_SEPARATION_LENGTH_MULTIPLIER 1
+#define NUMBER_MATS_PER_REDUNDANT_MAT 8
+
+#define NUMBER_STACKED_DIE_LAYERS 1
+
+// this variable can be set to carry out solution optimization for
+// a maximum area allocation.
+#define STACKED_DIE_LAYER_ALLOTED_AREA_mm2 0 //6.24 //6.21//71.5
+
+// this variable can also be employed when solution optimization
+// with maximum area allocation is carried out.
+#define MAX_PERCENT_AWAY_FROM_ALLOTED_AREA 50
+
+// this variable can also be employed when solution optimization
+// with maximum area allocation is carried out.
+#define MIN_AREA_EFFICIENCY 20
+
+// this variable can be employed when solution with a desired
+// aspect ratio is required.
+#define STACKED_DIE_LAYER_ASPECT_RATIO 1
+
+// this variable can be employed when solution with a desired
+// aspect ratio is required.
+#define MAX_PERCENT_AWAY_FROM_ASPECT_RATIO 101
+
+// this variable can be employed to carry out solution optimization
+// for a certain target random cycle time.
+#define TARGET_CYCLE_TIME_ns 1000000000
+
+#define NUMBER_PIPELINE_STAGES 4
+
+// this can be used to model the length of interconnect
+// between a bank and a crossbar
+#define LENGTH_INTERCONNECT_FROM_BANK_TO_CROSSBAR 0 //3791 // 2880//micron
+
+#define IS_CROSSBAR 0
+#define NUMBER_INPUT_PORTS_CROSSBAR 8
+#define NUMBER_OUTPUT_PORTS_CROSSBAR 8
+#define NUMBER_SIGNALS_PER_PORT_CROSSBAR 256
+
+
+#define MAT_LEAKAGE_REDUCTION_DUE_TO_SLEEP_TRANSISTORS_FACTOR 1
+#define LEAKAGE_REDUCTION_DUE_TO_LONG_CHANNEL_HP_TRANSISTORS_FACTOR 1
+
+#define PAGE_MODE 0
+
+#define MAIN_MEM_PER_CHIP_STANDBY_CURRENT_mA 60
+// We are actually not using this variable in the CACTI code. We just want to acknowledge that
+// this current should be multiplied by the DDR(n) system VDD value to compute the standby power
+// consumed during precharge.
+
+
+const double VDD_STORAGE_LOSS_FRACTION_WORST = 0.125;
+const double CU_RESISTIVITY = 0.022; //ohm-micron
+const double BULK_CU_RESISTIVITY = 0.018; //ohm-micron
+const double PERMITTIVITY_FREE_SPACE = 8.854e-18; //F/micron
+
+const static uint32_t sram_num_cells_wl_stitching_ = 16;
+const static uint32_t dram_num_cells_wl_stitching_ = 64;
+const static uint32_t comm_dram_num_cells_wl_stitching_ = 256;
+const static double num_bits_per_ecc_b_ = 8.0;
+
+const double bit_to_byte = 8.0;
+
+#define MAX_NUMBER_GATES_STAGE 20
+#define MAX_NUMBER_HTREE_NODES 20
+#define NAND2_LEAK_STACK_FACTOR 0.2
+#define NAND3_LEAK_STACK_FACTOR 0.2
+#define NOR2_LEAK_STACK_FACTOR 0.2
+#define INV_LEAK_STACK_FACTOR 0.5
+#define MAX_NUMBER_ARRAY_PARTITIONS 1000000
+
+// abbreviations used in this project
+// ----------------------------------
+//
+// num : number
+// rw : read/write
+// rd : read
+// wr : write
+// se : single-ended
+// sz : size
+// F : feature
+// w : width
+// h : height or horizontal
+// v : vertical or velocity
+
+
+enum ram_cell_tech_type_num
+{
+ itrs_hp = 0,
+ itrs_lstp = 1,
+ itrs_lop = 2,
+ lp_dram = 3,
+ comm_dram = 4
+};
+
+const double pppm[4] = {1,1,1,1};
+const double pppm_lkg[4] = {0,1,1,0};
+const double pppm_dyn[4] = {1,0,0,0};
+const double pppm_Isub[4] = {0,1,0,0};
+const double pppm_Ig[4] = {0,0,1,0};
+const double pppm_sc[4] = {0,0,0,1};
+
+
+
+#endif
--- /dev/null
+l34c64l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l34c64l2b: 9 11 19 29 43 62 81 102
+l34c64l4b: 6 8 12 17 24 29 39 47
+l34c64l8b: 7 8 10 14 18 22 25 30
+l34c64l16b: 7 7 9 12 14 17 20 24
+l34c64l32b: 7 7 9 12 14 17 20 24 -r
+l34c64l64b: 7 7 9 12 14 17 20 24 -r
+l34c128l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l34c128l2b: 4 10 19 30 44 64 82 103
+l34c128l4b: 3 6 11 17 24 31 38 47
+l34c128l8b: 3 5 9 13 17 21 25 29
+l34c128l16b: 4 5 7 10 13 16 19 22
+l34c128l32b: 4 5 7 10 13 16 19 22 -r
+l34c128l64b: 4 5 7 10 13 16 19 22 -r
+l34c256l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l34c256l2b: 3 10 19 30 44 63 82 103
+l34c256l4b: 3 6 11 17 24 31 38 47
+l34c256l8b: 2 5 8 12 16 20 24 29
+l34c256l16b: 2 4 7 9 12 15 18 21
+l34c256l32b: 2 4 7 9 12 15 18 21 -r
+l34c256l64b: 2 4 7 9 12 15 18 21 -r
+l38c64l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l38c64l2b: 57 59 77 90 137 187 219 245
+l38c64l4b: 35 40 48 56 43 61 80 101
+l38c64l8b: 18 27 41 45 52 58 58 58 -r
+l38c64l16b: 16 17 19 35 40 49 53 53 -r
+l38c64l32b: 15 15 17 19 22 25 30 30 -r
+l38c64l64b: 15 15 17 19 22 25 30 30 -r
+l38c128l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l38c128l2b: 38 50 78 93 139 188 220 245
+l38c128l4b: 29 37 46 56 43 61 81 102
+l38c128l8b: 16 30 39 44 50 57 57 57 -r
+l38c128l16b: 14 16 19 33 40 47 52 52 -r
+l38c128l32b: 14 15 17 20 23 27 31 31 -r
+l38c128l64b: 14 15 17 20 23 27 31 31 -r
+l38c256l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l38c256l2b: 35 50 78 94 139 188 220 246
+l38c256l4b: 28 36 45 55 55 61 81 102
+l38c256l8b: 17 30 38 43 50 57 57 57 -r
+l38c256l16b: 15 17 21 32 40 47 51 51
+l38c256l32b: 15 17 19 21 24 29 33 33
+l38c256l64b: 15 17 19 21 24 29 33 33 -r
+l316c64l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l316c64l2b: 1000 1000 1000 1000 1000 1000 1000 1000
+l316c64l4b: 34 35 78 126 178 220 252 274
+l316c64l8b: 9 11 23 43 62 87 105 130
+l316c64l16b: 7 9 13 23 33 45 56 67
+l316c64l32b: 5 6 7 10 13 19 25 30
+l316c64l64b: 4 5 6 8 10 14 18 21
+l316c128l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l316c128l2b: 25 131 243 1000 1000 1000 1000 1000
+l316c128l4b: 8 28 79 127 179 221 253 274
+l316c128l8b: 4 9 22 43 62 88 106 131
+l316c128l16b: 4 6 11 21 32 44 55 67
+l316c128l32b: 4 6 11 12 12 18 24 29
+l316c128l64b: 2 3 5 7 9 13 17 21
+l316c256l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l316c256l2b: 1000 1000 1000 1000 1000 1000 1000 1000
+l316c256l4b: 5 28 80 128 180 221 253 274
+l316c256l8b: 3 8 22 43 63 88 107 131
+l316c256l16b: 2 5 11 21 32 44 55 67
+l316c256l32b: 2 3 5 8 12 18 24 29
+l316c256l64b: 2 3 4 6 9 13 17 21
+l24c64l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l24c64l2b: 10 12 24 41 60 86 105 122
+l24c64l4b: 5 7 13 20 29 38 47 56
+l24c64l8b: 5 6 9 14 18 24 29 35
+l24c64l16b: 4 5 7 10 12 16 19 22
+l24c64l32b: 5 5 6 8 10 12 14 17
+l24c64l64b: 5 5 6 8 10 12 14 16
+l24c128l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l24c128l2b: 1000 1000 1000 1000 1000 1000 1000 1000
+l24c128l4b: 3 7 13 20 29 38 47 57
+l24c128l8b: 3 5 9 13 18 23 29 35
+l24c128l16b: 3 4 6 9 12 15 19 22
+l24c128l32b: 3 4 5 7 9 11 14 16
+l24c128l64b: 1000 1000 1000 1000 1000 1000 1000 1000
+l24c256l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l24c256l2b: 1000 1000 1000 1000 1000 1000 1000 1000
+l24c256l4b: 2 6 13 20 29 38 47 57
+l24c256l8b: 2 4 8 13 18 23 28 35
+l24c256l16b: 2 3 6 8 11 15 18 22
+l24c256l32b: 2 3 5 6 8 11 14 16
+l24c256l64b: 1000 1000 1000 1000 1000 1000 1000 1000
+l28c64l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l28c64l2b: 46 52 117 157 188 225 246 261
+l28c64l4b: 19 25 39 54 96 107 120 150
+l28c64l8b: 9 12 21 30 39 47 58 79
+l28c64l16b: 8 9 11 16 25 32 37 42
+l28c64l32b: 7 8 9 11 14 19 23 28
+l28c64l64b: 7 7 8 10 12 14 18 22
+l28c128l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l28c128l2b: 1000 1000 1000 1000 1000 1000 1000 1000
+l28c128l4b: 12 22 39 54 98 108 130 151
+l28c128l8b: 7 12 21 30 39 48 59 80
+l28c128l16b: 6 8 11 16 24 31 37 42
+l28c128l32b: 6 7 9 11 14 19 24 28
+l28c128l64b: 6 7 9 11 14 19 24 28
+l28c256l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l28c256l2b: 1000 1000 1000 1000 1000 1000 1000 1000
+l28c256l4b: 12 22 39 54 100 108 130 152
+l28c256l8b: 7 12 21 30 39 48 59 81
+l28c256l16b: 6 8 11 16 24 31 37 42
+l28c256l32b: 6 7 9 11 14 19 24 28
+l28c256l64b: 6 7 9 11 14 19 24 28
+l216c64l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l216c64l2b: 1000 1000 1000 1000 1000 1000 1000 1000
+l216c64l4b: 34 35 78 126 178 220 252 274
+l216c64l8b: 9 11 23 43 62 87 105 130
+l216c64l16b: 7 9 13 23 33 45 56 67
+l216c64l32b: 5 6 7 10 13 19 25 30
+l216c64l64b: 4 5 6 8 10 14 18 21
+l216c128l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l216c128l2b: 25 131 243 1000 1000 1000 1000 1000
+l216c128l4b: 8 28 79 127 179 221 253 274
+l216c128l8b: 4 9 22 43 62 88 106 131
+l216c128l16b: 4 6 11 21 32 44 55 67
+l216c128l32b: 4 6 11 12 12 18 24 29
+l216c128l64b: 2 3 5 7 9 13 17 21
+l216c256l1b: 1000 1000 1000 1000 1000 1000 1000 1000
+l216c256l2b: 1000 1000 1000 1000 1000 1000 1000 1000
+l216c256l4b: 5 28 80 128 180 221 253 274
+l216c256l8b: 3 8 22 43 63 88 107 131
+l216c256l16b: 2 5 11 21 32 44 55 67
+l216c256l32b: 2 3 5 8 12 18 24 29
+l216c256l64b: 2 3 4 6 9 13 17 21
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#include "crossbar.h"
+
+#define ASPECT_THRESHOLD .8
+#define ADJ 1
+
+Crossbar::Crossbar(
+ double n_inp_,
+ double n_out_,
+ double flit_size_,
+ TechnologyParameter::DeviceType *dt
+ ):n_inp(n_inp_), n_out(n_out_), flit_size(flit_size_), deviceType(dt)
+{
+ min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio*g_tp.min_w_nmos_;
+ Vdd = dt->Vdd;
+ CB_ADJ = 1;
+}
+
+Crossbar::~Crossbar(){}
+
+double Crossbar::output_buffer()
+{
+
+ //Wire winit(4, 4);
+ double l_eff = n_inp*flit_size*g_tp.wire_outside_mat.pitch;
+ Wire w1(g_ip->wt, l_eff);
+ //double s1 = w1.repeater_size *l_eff*ADJ/w1.repeater_spacing;
+ double s1 = w1.repeater_size * (l_eff <w1.repeater_spacing? l_eff *ADJ/w1.repeater_spacing : ADJ);
+ double pton_size = deviceType->n_to_p_eff_curr_drv_ratio;
+ // the model assumes input capacitance of the wire driver = input capacitance of nand + nor = input cap of the driver transistor
+ TriS1 = s1*(1 + pton_size)/(2 + pton_size + 1 + 2*pton_size);
+ TriS2 = s1; //driver transistor
+
+ if (TriS1 < 1)
+ TriS1 = 1;
+
+ double input_cap = gate_C(TriS1*(2*min_w_pmos + g_tp.min_w_nmos_), 0) +
+ gate_C(TriS1*(min_w_pmos + 2*g_tp.min_w_nmos_), 0);
+// input_cap += drain_C_(TriS1*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+// drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)*2 +
+// gate_C(TriS2*g_tp.min_w_nmos_, 0)+
+// drain_C_(TriS1*min_w_pmos, NCH, 1, 1, g_tp.cell_h_def)*2 +
+// drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+// gate_C(TriS2*min_w_pmos, 0);
+ tri_int_cap = drain_C_(TriS1*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)*2 +
+ gate_C(TriS2*g_tp.min_w_nmos_, 0)+
+ drain_C_(TriS1*min_w_pmos, NCH, 1, 1, g_tp.cell_h_def)*2 +
+ drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(TriS2*min_w_pmos, 0);
+ double output_cap = drain_C_(TriS2*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(TriS2*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def);
+ double ctr_cap = gate_C(TriS2 *(min_w_pmos + g_tp.min_w_nmos_), 0);
+
+ tri_inp_cap = input_cap;
+ tri_out_cap = output_cap;
+ tri_ctr_cap = ctr_cap;
+ return input_cap + output_cap + ctr_cap;
+}
+
+void Crossbar::compute_power()
+{
+
+ Wire winit(4, 4);
+ double tri_cap = output_buffer();
+ assert(tri_cap > 0);
+ //area of a tristate logic
+ double g_area = compute_gate_area(INV, 1, TriS2*g_tp.min_w_nmos_, TriS2*min_w_pmos, g_tp.cell_h_def);
+ g_area *= 2; // to model area of output transistors
+ g_area += compute_gate_area (NAND, 2, TriS1*2*g_tp.min_w_nmos_, TriS1*min_w_pmos, g_tp.cell_h_def);
+ g_area += compute_gate_area (NOR, 2, TriS1*g_tp.min_w_nmos_, TriS1*2*min_w_pmos, g_tp.cell_h_def);
+ double width /*per tristate*/ = g_area/(CB_ADJ * g_tp.cell_h_def);
+ // effective no. of tristate buffers that need to be laid side by side
+ int ntri = (int)ceil(g_tp.cell_h_def/(g_tp.wire_outside_mat.pitch));
+ double wire_len = MAX(width*ntri*n_out, flit_size*g_tp.wire_outside_mat.pitch*n_out);
+ Wire w1(g_ip->wt, wire_len);
+
+ area.w = wire_len;
+ area.h = g_tp.wire_outside_mat.pitch*n_inp*flit_size * CB_ADJ;
+ Wire w2(g_ip->wt, area.h);
+
+ double aspect_ratio_cb = (area.h/area.w)*(n_out/n_inp);
+ if (aspect_ratio_cb > 1) aspect_ratio_cb = 1/aspect_ratio_cb;
+
+ if (aspect_ratio_cb < ASPECT_THRESHOLD) {
+ if (n_out > 2 && n_inp > 2) {
+ CB_ADJ+=0.2;
+ //cout << "CB ADJ " << CB_ADJ << endl;
+ if (CB_ADJ < 4) {
+ this->compute_power();
+ }
+ }
+ }
+
+
+
+ power.readOp.dynamic = (w1.power.readOp.dynamic + w2.power.readOp.dynamic + (tri_inp_cap * n_out + tri_out_cap * n_inp + tri_ctr_cap + tri_int_cap) * Vdd*Vdd)*flit_size;
+ power.readOp.leakage = n_inp * n_out * flit_size * (
+ cmos_Isub_leakage(g_tp.min_w_nmos_*TriS2*2, min_w_pmos*TriS2*2, 1, inv) *Vdd+
+ cmos_Isub_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nand)*Vdd+
+ cmos_Isub_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nor) *Vdd+
+ w1.power.readOp.leakage + w2.power.readOp.leakage);
+ power.readOp.gate_leakage = n_inp * n_out * flit_size * (
+ cmos_Ig_leakage(g_tp.min_w_nmos_*TriS2*2, min_w_pmos*TriS2*2, 1, inv) *Vdd+
+ cmos_Ig_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nand)*Vdd+
+ cmos_Ig_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nor) *Vdd+
+ w1.power.readOp.gate_leakage + w2.power.readOp.gate_leakage);
+
+ // delay calculation
+ double l_eff = n_inp*flit_size*g_tp.wire_outside_mat.pitch;
+ Wire wdriver(g_ip->wt, l_eff);
+ double res = g_tp.wire_outside_mat.R_per_um * (area.w+area.h) + tr_R_on(g_tp.min_w_nmos_*wdriver.repeater_size, NCH, 1);
+ double cap = g_tp.wire_outside_mat.C_per_um * (area.w + area.h) + n_out*tri_inp_cap + n_inp*tri_out_cap;
+ delay = horowitz(w1.signal_rise_time(), res*cap, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE);
+
+ Wire wreset();
+}
+
+void Crossbar::print_crossbar()
+{
+ cout << "\nCrossbar Stats (" << n_inp << "x" << n_out << ")\n\n";
+ cout << "Flit size : " << flit_size << " bits" << endl;
+ cout << "Width : " << area.w << " u" << endl;
+ cout << "Height : " << area.h << " u" << endl;
+ cout << "Dynamic Power : " << power.readOp.dynamic*1e9 * MIN(n_inp, n_out) << " (nJ)" << endl;
+ cout << "Leakage Power : " << power.readOp.leakage*1e3 << " (mW)" << endl;
+ cout << "Gate Leakage Power : " << power.readOp.gate_leakage*1e3 << " (mW)" << endl;
+ cout << "Crossbar Delay : " << delay*1e12 << " ps\n";
+}
+
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#ifndef __CROSSBAR__
+#define __CROSSBAR__
+
+#include <assert.h>
+
+#include <iostream>
+
+#include "basic_circuit.h"
+#include "cacti_interface.h"
+#include "component.h"
+#include "mat.h"
+#include "parameter.h"
+#include "wire.h"
+
+class Crossbar : public Component
+{
+ public:
+ Crossbar(
+ double in,
+ double out,
+ double flit_sz,
+ TechnologyParameter::DeviceType *dt = &(g_tp.peri_global));
+ ~Crossbar();
+
+ void print_crossbar();
+ double output_buffer();
+ void compute_power();
+
+ double n_inp, n_out;
+ double flit_size;
+ double tri_inp_cap, tri_out_cap, tri_ctr_cap, tri_int_cap;
+
+ private:
+ double CB_ADJ;
+ /*
+ * Adjust factor of the height of the cross-point (tri-state buffer) cell (layout) in crossbar
+ * buffer is adjusted to get an aspect ratio of whole cross bar close to one;
+ * when adjust the ratio, the number of wires route over the tri-state buffers does not change,
+ * however, the effective wiring pitch changes. Specifically, since CB_ADJ will increase
+ * during the adjust, the tri-state buffer will become taller and thiner, and the effective wiring pitch
+ * will increase. As a result, the height of the crossbar (area.h) will increase.
+ */
+
+ TechnologyParameter::DeviceType *deviceType;
+ double TriS1, TriS2;
+ double min_w_pmos, Vdd;
+
+};
+
+
+
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include <cassert>
+#include <cmath>
+#include <iostream>
+
+#include "area.h"
+#include "decoder.h"
+#include "parameter.h"
+
+using namespace std;
+
+
+Decoder::Decoder(
+ int _num_dec_signals,
+ bool flag_way_select,
+ double _C_ld_dec_out,
+ double _R_wire_dec_out,
+ bool fully_assoc_,
+ bool is_dram_,
+ bool is_wl_tr_,
+ const Area & cell_)
+:exist(false),
+ C_ld_dec_out(_C_ld_dec_out),
+ R_wire_dec_out(_R_wire_dec_out),
+ num_gates(0), num_gates_min(2),
+ delay(0),
+ //power(),
+ fully_assoc(fully_assoc_), is_dram(is_dram_),
+ is_wl_tr(is_wl_tr_), cell(cell_)
+{
+
+ for (int i = 0; i < MAX_NUMBER_GATES_STAGE; i++)
+ {
+ w_dec_n[i] = 0;
+ w_dec_p[i] = 0;
+ }
+
+ /*
+ * _num_dec_signals is the number of decoded signal as output
+ * num_addr_bits_dec is the number of signal to be decoded
+ * as the decoders input.
+ */
+ int num_addr_bits_dec = _log2(_num_dec_signals);
+
+ if (num_addr_bits_dec < 4)
+ {
+ if (flag_way_select)
+ {
+ exist = true;
+ num_in_signals = 2;
+ }
+ else
+ {
+ num_in_signals = 0;
+ }
+ }
+ else
+ {
+ exist = true;
+
+ if (flag_way_select)
+ {
+ num_in_signals = 3;
+ }
+ else
+ {
+ num_in_signals = 2;
+ }
+ }
+
+ assert(cell.h>0);
+ assert(cell.w>0);
+ // the height of a row-decoder-driver cell is fixed to be 4 * cell.h;
+ //area.h = 4 * cell.h;
+ area.h = g_tp.h_dec * cell.h;
+
+ compute_widths();
+ compute_area();
+}
+
+
+
+void Decoder::compute_widths()
+{
+ double F;
+ double p_to_n_sz_ratio = pmos_to_nmos_sz_ratio(is_dram, is_wl_tr);
+ double gnand2 = (2 + p_to_n_sz_ratio) / (1 + p_to_n_sz_ratio);
+ double gnand3 = (3 + p_to_n_sz_ratio) / (1 + p_to_n_sz_ratio);
+
+ if (exist)
+ {
+ if (num_in_signals == 2 || fully_assoc)
+ {
+ w_dec_n[0] = 2 * g_tp.min_w_nmos_;
+ w_dec_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_;
+ F = gnand2;
+ }
+ else
+ {
+ w_dec_n[0] = 3 * g_tp.min_w_nmos_;
+ w_dec_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_;
+ F = gnand3;
+ }
+
+ F *= C_ld_dec_out / (gate_C(w_dec_n[0], 0, is_dram, false, is_wl_tr) +
+ gate_C(w_dec_p[0], 0, is_dram, false, is_wl_tr));
+ num_gates = logical_effort(
+ num_gates_min,
+ num_in_signals == 2 ? gnand2 : gnand3,
+ F,
+ w_dec_n,
+ w_dec_p,
+ C_ld_dec_out,
+ p_to_n_sz_ratio,
+ is_dram,
+ is_wl_tr,
+ g_tp.max_w_nmos_dec);
+ }
+}
+
+
+
+void Decoder::compute_area()
+{
+ double cumulative_area = 0;
+ double cumulative_curr = 0; // cumulative leakage current
+ double cumulative_curr_Ig = 0; // cumulative leakage current
+
+ if (exist)
+ { // First check if this decoder exists
+ if (num_in_signals == 2)
+ {
+ cumulative_area = compute_gate_area(NAND, 2, w_dec_p[0], w_dec_n[0], area.h);
+ cumulative_curr = cmos_Isub_leakage(w_dec_n[0], w_dec_p[0], 2, nand,is_dram);
+ cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[0], w_dec_p[0], 2, nand,is_dram);
+ }
+ else if (num_in_signals == 3)
+ {
+ cumulative_area = compute_gate_area(NAND, 3, w_dec_p[0], w_dec_n[0], area.h);
+ cumulative_curr = cmos_Isub_leakage(w_dec_n[0], w_dec_p[0], 3, nand, is_dram);;
+ cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[0], w_dec_p[0], 3, nand, is_dram);
+ }
+
+ for (int i = 1; i < num_gates; i++)
+ {
+ cumulative_area += compute_gate_area(INV, 1, w_dec_p[i], w_dec_n[i], area.h);
+ cumulative_curr += cmos_Isub_leakage(w_dec_n[i], w_dec_p[i], 1, inv, is_dram);
+ cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[i], w_dec_p[i], 1, inv, is_dram);
+ }
+ power.readOp.leakage = cumulative_curr * g_tp.peri_global.Vdd;
+ power.readOp.gate_leakage = cumulative_curr_Ig * g_tp.peri_global.Vdd;
+
+ area.w = (cumulative_area / area.h);
+ }
+}
+
+
+
+double Decoder::compute_delays(double inrisetime)
+{
+ if (exist)
+ {
+ double ret_val = 0; // outrisetime
+ int i;
+ double rd, tf, this_delay, c_load, c_intrinsic, Vpp;
+ double Vdd = g_tp.peri_global.Vdd;
+
+ if ((is_wl_tr) && (is_dram))
+ {
+ Vpp = g_tp.vpp;
+ }
+ else if (is_wl_tr)
+ {
+ Vpp = g_tp.sram_cell.Vdd;
+ }
+ else
+ {
+ Vpp = g_tp.peri_global.Vdd;
+ }
+
+ // first check whether a decoder is required at all
+ rd = tr_R_on(w_dec_n[0], NCH, num_in_signals, is_dram, false, is_wl_tr);
+ c_load = gate_C(w_dec_n[1] + w_dec_p[1], 0.0, is_dram, false, is_wl_tr);
+ c_intrinsic = drain_C_(w_dec_p[0], PCH, 1, 1, area.h, is_dram, false, is_wl_tr) * num_in_signals +
+ drain_C_(w_dec_n[0], NCH, num_in_signals, 1, area.h, is_dram, false, is_wl_tr);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE);
+ delay += this_delay;
+ inrisetime = this_delay / (1.0 - 0.5);
+ power.readOp.dynamic += (c_load + c_intrinsic) * Vdd * Vdd;
+
+ for (i = 1; i < num_gates - 1; ++i)
+ {
+ rd = tr_R_on(w_dec_n[i], NCH, 1, is_dram, false, is_wl_tr);
+ c_load = gate_C(w_dec_p[i+1] + w_dec_n[i+1], 0.0, is_dram, false, is_wl_tr);
+ c_intrinsic = drain_C_(w_dec_p[i], PCH, 1, 1, area.h, is_dram, false, is_wl_tr) +
+ drain_C_(w_dec_n[i], NCH, 1, 1, area.h, is_dram, false, is_wl_tr);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE);
+ delay += this_delay;
+ inrisetime = this_delay / (1.0 - 0.5);
+ power.readOp.dynamic += (c_load + c_intrinsic) * Vdd * Vdd;
+ }
+
+ // add delay of final inverter that drives the wordline
+ i = num_gates - 1;
+ c_load = C_ld_dec_out;
+ rd = tr_R_on(w_dec_n[i], NCH, 1, is_dram, false, is_wl_tr);
+ c_intrinsic = drain_C_(w_dec_p[i], PCH, 1, 1, area.h, is_dram, false, is_wl_tr) +
+ drain_C_(w_dec_n[i], NCH, 1, 1, area.h, is_dram, false, is_wl_tr);
+ tf = rd * (c_intrinsic + c_load) + R_wire_dec_out * c_load / 2;
+ this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE);
+ delay += this_delay;
+ ret_val = this_delay / (1.0 - 0.5);
+ power.readOp.dynamic += c_load * Vpp * Vpp + c_intrinsic * Vdd * Vdd;
+
+ return ret_val;
+ }
+ else
+ {
+ return 0.0;
+ }
+}
+
+void Decoder::leakage_feedback(double temperature)
+{
+ double cumulative_curr = 0; // cumulative leakage current
+ double cumulative_curr_Ig = 0; // cumulative leakage current
+
+ if (exist)
+ { // First check if this decoder exists
+ if (num_in_signals == 2)
+ {
+ cumulative_curr = cmos_Isub_leakage(w_dec_n[0], w_dec_p[0], 2, nand,is_dram);
+ cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[0], w_dec_p[0], 2, nand,is_dram);
+ }
+ else if (num_in_signals == 3)
+ {
+ cumulative_curr = cmos_Isub_leakage(w_dec_n[0], w_dec_p[0], 3, nand, is_dram);;
+ cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[0], w_dec_p[0], 3, nand, is_dram);
+ }
+
+ for (int i = 1; i < num_gates; i++)
+ {
+ cumulative_curr += cmos_Isub_leakage(w_dec_n[i], w_dec_p[i], 1, inv, is_dram);
+ cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[i], w_dec_p[i], 1, inv, is_dram);
+ }
+
+ power.readOp.leakage = cumulative_curr * g_tp.peri_global.Vdd;
+ power.readOp.gate_leakage = cumulative_curr_Ig * g_tp.peri_global.Vdd;
+ }
+}
+
+PredecBlk::PredecBlk(
+ int num_dec_signals,
+ Decoder * dec_,
+ double C_wire_predec_blk_out,
+ double R_wire_predec_blk_out_,
+ int num_dec_per_predec,
+ bool is_dram,
+ bool is_blk1)
+ :dec(dec_),
+ exist(false),
+ number_input_addr_bits(0),
+ C_ld_predec_blk_out(0),
+ R_wire_predec_blk_out(0),
+ branch_effort_nand2_gate_output(1),
+ branch_effort_nand3_gate_output(1),
+ flag_two_unique_paths(false),
+ flag_L2_gate(0),
+ number_inputs_L1_gate(0),
+ number_gates_L1_nand2_path(0),
+ number_gates_L1_nand3_path(0),
+ number_gates_L2(0),
+ min_number_gates_L1(2),
+ min_number_gates_L2(2),
+ num_L1_active_nand2_path(0),
+ num_L1_active_nand3_path(0),
+ delay_nand2_path(0),
+ delay_nand3_path(0),
+ power_nand2_path(),
+ power_nand3_path(),
+ power_L2(),
+ is_dram_(is_dram)
+{
+ int branch_effort_predec_out;
+ double C_ld_dec_gate;
+ int num_addr_bits_dec = _log2(num_dec_signals);
+ int blk1_num_input_addr_bits = (num_addr_bits_dec + 1) / 2;
+ int blk2_num_input_addr_bits = num_addr_bits_dec - blk1_num_input_addr_bits;
+
+ w_L1_nand2_n[0] = 0;
+ w_L1_nand2_p[0] = 0;
+ w_L1_nand3_n[0] = 0;
+ w_L1_nand3_p[0] = 0;
+
+ if (is_blk1 == true)
+ {
+ if (num_addr_bits_dec <= 0)
+ {
+ return;
+ }
+ else if (num_addr_bits_dec < 4)
+ {
+ // Just one predecoder block is required with NAND2 gates. No decoder required.
+ // The first level of predecoding directly drives the decoder output load
+ exist = true;
+ number_input_addr_bits = num_addr_bits_dec;
+ R_wire_predec_blk_out = dec->R_wire_dec_out;
+ C_ld_predec_blk_out = dec->C_ld_dec_out;
+ }
+ else
+ {
+ exist = true;
+ number_input_addr_bits = blk1_num_input_addr_bits;
+ branch_effort_predec_out = (1 << blk2_num_input_addr_bits);
+ C_ld_dec_gate = num_dec_per_predec * gate_C(dec->w_dec_n[0] + dec->w_dec_p[0], 0, is_dram_, false, false);
+ R_wire_predec_blk_out = R_wire_predec_blk_out_;
+ C_ld_predec_blk_out = branch_effort_predec_out * C_ld_dec_gate + C_wire_predec_blk_out;
+ }
+ }
+ else
+ {
+ if (num_addr_bits_dec >= 4)
+ {
+ exist = true;
+ number_input_addr_bits = blk2_num_input_addr_bits;
+ branch_effort_predec_out = (1 << blk1_num_input_addr_bits);
+ C_ld_dec_gate = num_dec_per_predec * gate_C(dec->w_dec_n[0] + dec->w_dec_p[0], 0, is_dram_, false, false);
+ R_wire_predec_blk_out = R_wire_predec_blk_out_;
+ C_ld_predec_blk_out = branch_effort_predec_out * C_ld_dec_gate + C_wire_predec_blk_out;
+ }
+ }
+
+ compute_widths();
+ compute_area();
+}
+
+
+
+void PredecBlk::compute_widths()
+{
+ double F, c_load_nand3_path, c_load_nand2_path;
+ double p_to_n_sz_ratio = pmos_to_nmos_sz_ratio(is_dram_);
+ double gnand2 = (2 + p_to_n_sz_ratio) / (1 + p_to_n_sz_ratio);
+ double gnand3 = (3 + p_to_n_sz_ratio) / (1 + p_to_n_sz_ratio);
+
+ if (exist == false) return;
+
+
+ switch (number_input_addr_bits)
+ {
+ case 1:
+ flag_two_unique_paths = false;
+ number_inputs_L1_gate = 2;
+ flag_L2_gate = 0;
+ break;
+ case 2:
+ flag_two_unique_paths = false;
+ number_inputs_L1_gate = 2;
+ flag_L2_gate = 0;
+ break;
+ case 3:
+ flag_two_unique_paths = false;
+ number_inputs_L1_gate = 3;
+ flag_L2_gate = 0;
+ break;
+ case 4:
+ flag_two_unique_paths = false;
+ number_inputs_L1_gate = 2;
+ flag_L2_gate = 2;
+ branch_effort_nand2_gate_output = 4;
+ break;
+ case 5:
+ flag_two_unique_paths = true;
+ flag_L2_gate = 2;
+ branch_effort_nand2_gate_output = 8;
+ branch_effort_nand3_gate_output = 4;
+ break;
+ case 6:
+ flag_two_unique_paths = false;
+ number_inputs_L1_gate = 3;
+ flag_L2_gate = 2;
+ branch_effort_nand3_gate_output = 8;
+ break;
+ case 7:
+ flag_two_unique_paths = true;
+ flag_L2_gate = 3;
+ branch_effort_nand2_gate_output = 32;
+ branch_effort_nand3_gate_output = 16;
+ break;
+ case 8:
+ flag_two_unique_paths = true;
+ flag_L2_gate = 3;
+ branch_effort_nand2_gate_output = 64;
+ branch_effort_nand3_gate_output = 32;
+ break;
+ case 9:
+ flag_two_unique_paths = false;
+ number_inputs_L1_gate = 3;
+ flag_L2_gate = 3;
+ branch_effort_nand3_gate_output = 64;
+ break;
+ default:
+ assert(0);
+ break;
+ }
+
+ // find the number of gates and sizing in second level of predecoder (if there is a second level)
+ if (flag_L2_gate)
+ {
+ if (flag_L2_gate == 2)
+ { // 2nd level is a NAND2 gate
+ w_L2_n[0] = 2 * g_tp.min_w_nmos_;
+ F = gnand2;
+ }
+ else
+ { // 2nd level is a NAND3 gate
+ w_L2_n[0] = 3 * g_tp.min_w_nmos_;
+ F = gnand3;
+ }
+ w_L2_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_;
+ F *= C_ld_predec_blk_out / (gate_C(w_L2_n[0], 0, is_dram_) + gate_C(w_L2_p[0], 0, is_dram_));
+ number_gates_L2 = logical_effort(
+ min_number_gates_L2,
+ flag_L2_gate == 2 ? gnand2 : gnand3,
+ F,
+ w_L2_n,
+ w_L2_p,
+ C_ld_predec_blk_out,
+ p_to_n_sz_ratio,
+ is_dram_, false,
+ g_tp.max_w_nmos_);
+
+ // Now find the number of gates and widths in first level of predecoder
+ if ((flag_two_unique_paths)||(number_inputs_L1_gate == 2))
+ { // Whenever flag_two_unique_paths is true, it means first level of decoder employs
+ // both NAND2 and NAND3 gates. Or when number_inputs_L1_gate is 2, it means
+ // a NAND2 gate is used in the first level of the predecoder
+ c_load_nand2_path = branch_effort_nand2_gate_output *
+ (gate_C(w_L2_n[0], 0, is_dram_) +
+ gate_C(w_L2_p[0], 0, is_dram_));
+ w_L1_nand2_n[0] = 2 * g_tp.min_w_nmos_;
+ w_L1_nand2_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_;
+ F = gnand2 * c_load_nand2_path /
+ (gate_C(w_L1_nand2_n[0], 0, is_dram_) +
+ gate_C(w_L1_nand2_p[0], 0, is_dram_));
+ number_gates_L1_nand2_path = logical_effort(
+ min_number_gates_L1,
+ gnand2,
+ F,
+ w_L1_nand2_n,
+ w_L1_nand2_p,
+ c_load_nand2_path,
+ p_to_n_sz_ratio,
+ is_dram_, false,
+ g_tp.max_w_nmos_);
+ }
+
+ //Now find widths of gates along path in which first gate is a NAND3
+ if ((flag_two_unique_paths)||(number_inputs_L1_gate == 3))
+ { // Whenever flag_two_unique_paths is TRUE, it means first level of decoder employs
+ // both NAND2 and NAND3 gates. Or when number_inputs_L1_gate is 3, it means
+ // a NAND3 gate is used in the first level of the predecoder
+ c_load_nand3_path = branch_effort_nand3_gate_output *
+ (gate_C(w_L2_n[0], 0, is_dram_) +
+ gate_C(w_L2_p[0], 0, is_dram_));
+ w_L1_nand3_n[0] = 3 * g_tp.min_w_nmos_;
+ w_L1_nand3_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_;
+ F = gnand3 * c_load_nand3_path /
+ (gate_C(w_L1_nand3_n[0], 0, is_dram_) +
+ gate_C(w_L1_nand3_p[0], 0, is_dram_));
+ number_gates_L1_nand3_path = logical_effort(
+ min_number_gates_L1,
+ gnand3,
+ F,
+ w_L1_nand3_n,
+ w_L1_nand3_p,
+ c_load_nand3_path,
+ p_to_n_sz_ratio,
+ is_dram_, false,
+ g_tp.max_w_nmos_);
+ }
+ }
+ else
+ { // find number of gates and widths in first level of predecoder block when there is no second level
+ if (number_inputs_L1_gate == 2)
+ {
+ w_L1_nand2_n[0] = 2 * g_tp.min_w_nmos_;
+ w_L1_nand2_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_;
+ F = gnand2*C_ld_predec_blk_out /
+ (gate_C(w_L1_nand2_n[0], 0, is_dram_) +
+ gate_C(w_L1_nand2_p[0], 0, is_dram_));
+ number_gates_L1_nand2_path = logical_effort(
+ min_number_gates_L1,
+ gnand2,
+ F,
+ w_L1_nand2_n,
+ w_L1_nand2_p,
+ C_ld_predec_blk_out,
+ p_to_n_sz_ratio,
+ is_dram_, false,
+ g_tp.max_w_nmos_);
+ }
+ else if (number_inputs_L1_gate == 3)
+ {
+ w_L1_nand3_n[0] = 3 * g_tp.min_w_nmos_;
+ w_L1_nand3_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_;
+ F = gnand3*C_ld_predec_blk_out /
+ (gate_C(w_L1_nand3_n[0], 0, is_dram_) +
+ gate_C(w_L1_nand3_p[0], 0, is_dram_));
+ number_gates_L1_nand3_path = logical_effort(
+ min_number_gates_L1,
+ gnand3,
+ F,
+ w_L1_nand3_n,
+ w_L1_nand3_p,
+ C_ld_predec_blk_out,
+ p_to_n_sz_ratio,
+ is_dram_, false,
+ g_tp.max_w_nmos_);
+ }
+ }
+}
+
+
+
+void PredecBlk::compute_area()
+{
+ if (exist)
+ { // First check whether a predecoder block is needed
+ int num_L1_nand2 = 0;
+ int num_L1_nand3 = 0;
+ int num_L2 = 0;
+ double tot_area_L1_nand3 =0;
+ double leak_L1_nand3 =0;
+ double gate_leak_L1_nand3 =0;
+
+ double tot_area_L1_nand2 = compute_gate_area(NAND, 2, w_L1_nand2_p[0], w_L1_nand2_n[0], g_tp.cell_h_def);
+ double leak_L1_nand2 = cmos_Isub_leakage(w_L1_nand2_n[0], w_L1_nand2_p[0], 2, nand, is_dram_);
+ double gate_leak_L1_nand2 = cmos_Ig_leakage(w_L1_nand2_n[0], w_L1_nand2_p[0], 2, nand, is_dram_);
+ if (number_inputs_L1_gate != 3) {
+ tot_area_L1_nand3 = 0;
+ leak_L1_nand3 = 0;
+ gate_leak_L1_nand3 =0;
+ }
+ else {
+ tot_area_L1_nand3 = compute_gate_area(NAND, 3, w_L1_nand3_p[0], w_L1_nand3_n[0], g_tp.cell_h_def);
+ leak_L1_nand3 = cmos_Isub_leakage(w_L1_nand3_n[0], w_L1_nand3_p[0], 3, nand);
+ gate_leak_L1_nand3 = cmos_Ig_leakage(w_L1_nand3_n[0], w_L1_nand3_p[0], 3, nand);
+ }
+
+ switch (number_input_addr_bits)
+ {
+ case 1: //2 NAND2 gates
+ num_L1_nand2 = 2;
+ num_L2 = 0;
+ num_L1_active_nand2_path =1;
+ num_L1_active_nand3_path =0;
+ break;
+ case 2: //4 NAND2 gates
+ num_L1_nand2 = 4;
+ num_L2 = 0;
+ num_L1_active_nand2_path =1;
+ num_L1_active_nand3_path =0;
+ break;
+ case 3: //8 NAND3 gates
+ num_L1_nand3 = 8;
+ num_L2 = 0;
+ num_L1_active_nand2_path =0;
+ num_L1_active_nand3_path =1;
+ break;
+ case 4: //4 + 4 NAND2 gates
+ num_L1_nand2 = 8;
+ num_L2 = 16;
+ num_L1_active_nand2_path =2;
+ num_L1_active_nand3_path =0;
+ break;
+ case 5: //4 NAND2 gates, 8 NAND3 gates
+ num_L1_nand2 = 4;
+ num_L1_nand3 = 8;
+ num_L2 = 32;
+ num_L1_active_nand2_path =1;
+ num_L1_active_nand3_path =1;
+ break;
+ case 6: //8 + 8 NAND3 gates
+ num_L1_nand3 = 16;
+ num_L2 = 64;
+ num_L1_active_nand2_path =0;
+ num_L1_active_nand3_path =2;
+ break;
+ case 7: //4 + 4 NAND2 gates, 8 NAND3 gates
+ num_L1_nand2 = 8;
+ num_L1_nand3 = 8;
+ num_L2 = 128;
+ num_L1_active_nand2_path =2;
+ num_L1_active_nand3_path =1;
+ break;
+ case 8: //4 NAND2 gates, 8 + 8 NAND3 gates
+ num_L1_nand2 = 4;
+ num_L1_nand3 = 16;
+ num_L2 = 256;
+ num_L1_active_nand2_path =2;
+ num_L1_active_nand3_path =2;
+ break;
+ case 9: //8 + 8 + 8 NAND3 gates
+ num_L1_nand3 = 24;
+ num_L2 = 512;
+ num_L1_active_nand2_path =0;
+ num_L1_active_nand3_path =3;
+ break;
+ default:
+ break;
+ }
+
+ for (int i = 1; i < number_gates_L1_nand2_path; ++i)
+ {
+ tot_area_L1_nand2 += compute_gate_area(INV, 1, w_L1_nand2_p[i], w_L1_nand2_n[i], g_tp.cell_h_def);
+ leak_L1_nand2 += cmos_Isub_leakage(w_L1_nand2_n[i], w_L1_nand2_p[i], 2, nand, is_dram_);
+ gate_leak_L1_nand2 += cmos_Ig_leakage(w_L1_nand2_n[i], w_L1_nand2_p[i], 2, nand, is_dram_);
+ }
+ tot_area_L1_nand2 *= num_L1_nand2;
+ leak_L1_nand2 *= num_L1_nand2;
+ gate_leak_L1_nand2 *= num_L1_nand2;
+
+ for (int i = 1; i < number_gates_L1_nand3_path; ++i)
+ {
+ tot_area_L1_nand3 += compute_gate_area(INV, 1, w_L1_nand3_p[i], w_L1_nand3_n[i], g_tp.cell_h_def);
+ leak_L1_nand3 += cmos_Isub_leakage(w_L1_nand3_n[i], w_L1_nand3_p[i], 3, nand, is_dram_);
+ gate_leak_L1_nand3 += cmos_Ig_leakage(w_L1_nand3_n[i], w_L1_nand3_p[i], 3, nand, is_dram_);
+ }
+ tot_area_L1_nand3 *= num_L1_nand3;
+ leak_L1_nand3 *= num_L1_nand3;
+ gate_leak_L1_nand3 *= num_L1_nand3;
+
+ double cumulative_area_L1 = tot_area_L1_nand2 + tot_area_L1_nand3;
+ double cumulative_area_L2 = 0.0;
+ double leakage_L2 = 0.0;
+ double gate_leakage_L2 = 0.0;
+
+ if (flag_L2_gate == 2)
+ {
+ cumulative_area_L2 = compute_gate_area(NAND, 2, w_L2_p[0], w_L2_n[0], g_tp.cell_h_def);
+ leakage_L2 = cmos_Isub_leakage(w_L2_n[0], w_L2_p[0], 2, nand, is_dram_);
+ gate_leakage_L2 = cmos_Ig_leakage(w_L2_n[0], w_L2_p[0], 2, nand, is_dram_);
+ }
+ else if (flag_L2_gate == 3)
+ {
+ cumulative_area_L2 = compute_gate_area(NAND, 3, w_L2_p[0], w_L2_n[0], g_tp.cell_h_def);
+ leakage_L2 = cmos_Isub_leakage(w_L2_n[0], w_L2_p[0], 3, nand, is_dram_);
+ gate_leakage_L2 = cmos_Ig_leakage(w_L2_n[0], w_L2_p[0], 3, nand, is_dram_);
+ }
+
+ for (int i = 1; i < number_gates_L2; ++i)
+ {
+ cumulative_area_L2 += compute_gate_area(INV, 1, w_L2_p[i], w_L2_n[i], g_tp.cell_h_def);
+ leakage_L2 += cmos_Isub_leakage(w_L2_n[i], w_L2_p[i], 2, inv, is_dram_);
+ gate_leakage_L2 += cmos_Ig_leakage(w_L2_n[i], w_L2_p[i], 2, inv, is_dram_);
+ }
+ cumulative_area_L2 *= num_L2;
+ leakage_L2 *= num_L2;
+ gate_leakage_L2 *= num_L2;
+
+ power_nand2_path.readOp.leakage = leak_L1_nand2 * g_tp.peri_global.Vdd;
+ power_nand3_path.readOp.leakage = leak_L1_nand3 * g_tp.peri_global.Vdd;
+ power_L2.readOp.leakage = leakage_L2 * g_tp.peri_global.Vdd;
+ area.set_area(cumulative_area_L1 + cumulative_area_L2);
+ power_nand2_path.readOp.gate_leakage = gate_leak_L1_nand2 * g_tp.peri_global.Vdd;
+ power_nand3_path.readOp.gate_leakage = gate_leak_L1_nand3 * g_tp.peri_global.Vdd;
+ power_L2.readOp.gate_leakage = gate_leakage_L2 * g_tp.peri_global.Vdd;
+ }
+}
+
+
+
+pair<double, double> PredecBlk::compute_delays(
+ pair<double, double> inrisetime) // <nand2, nand3>
+{
+ pair<double, double> ret_val;
+ ret_val.first = 0; // outrisetime_nand2_path
+ ret_val.second = 0; // outrisetime_nand3_path
+
+ double inrisetime_nand2_path = inrisetime.first;
+ double inrisetime_nand3_path = inrisetime.second;
+ int i;
+ double rd, c_load, c_intrinsic, tf, this_delay;
+ double Vdd = g_tp.peri_global.Vdd;
+
+ // TODO: following delay calculation part can be greatly simplified.
+ // first check whether a predecoder block is required
+ if (exist)
+ {
+ //Find delay in first level of predecoder block
+ //First find delay in path
+ if ((flag_two_unique_paths) || (number_inputs_L1_gate == 2))
+ {
+ //First gate is a NAND2 gate
+ rd = tr_R_on(w_L1_nand2_n[0], NCH, 2, is_dram_);
+ c_load = gate_C(w_L1_nand2_n[1] + w_L1_nand2_p[1], 0.0, is_dram_);
+ c_intrinsic = 2 * drain_C_(w_L1_nand2_p[0], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L1_nand2_n[0], NCH, 2, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE);
+ delay_nand2_path += this_delay;
+ inrisetime_nand2_path = this_delay / (1.0 - 0.5);
+ power_nand2_path.readOp.dynamic += (c_load + c_intrinsic) * Vdd * Vdd;
+
+ //Add delays of all but the last inverter in the chain
+ for (i = 1; i < number_gates_L1_nand2_path - 1; ++i)
+ {
+ rd = tr_R_on(w_L1_nand2_n[i], NCH, 1, is_dram_);
+ c_load = gate_C(w_L1_nand2_n[i+1] + w_L1_nand2_p[i+1], 0.0, is_dram_);
+ c_intrinsic = drain_C_(w_L1_nand2_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L1_nand2_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE);
+ delay_nand2_path += this_delay;
+ inrisetime_nand2_path = this_delay / (1.0 - 0.5);
+ power_nand2_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+ }
+
+ //Add delay of the last inverter
+ i = number_gates_L1_nand2_path - 1;
+ rd = tr_R_on(w_L1_nand2_n[i], NCH, 1, is_dram_);
+ if (flag_L2_gate)
+ {
+ c_load = branch_effort_nand2_gate_output*(gate_C(w_L2_n[0], 0, is_dram_) + gate_C(w_L2_p[0], 0, is_dram_));
+ c_intrinsic = drain_C_(w_L1_nand2_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L1_nand2_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE);
+ delay_nand2_path += this_delay;
+ inrisetime_nand2_path = this_delay / (1.0 - 0.5);
+ power_nand2_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+ }
+ else
+ { //First level directly drives decoder output load
+ c_load = C_ld_predec_blk_out;
+ c_intrinsic = drain_C_(w_L1_nand2_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L1_nand2_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load) + R_wire_predec_blk_out * c_load / 2;
+ this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE);
+ delay_nand2_path += this_delay;
+ ret_val.first = this_delay / (1.0 - 0.5);
+ power_nand2_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+ }
+ }
+
+ if ((flag_two_unique_paths) || (number_inputs_L1_gate == 3))
+ { //Check if the number of gates in the first level is more than 1.
+ //First gate is a NAND3 gate
+ rd = tr_R_on(w_L1_nand3_n[0], NCH, 3, is_dram_);
+ c_load = gate_C(w_L1_nand3_n[1] + w_L1_nand3_p[1], 0.0, is_dram_);
+ c_intrinsic = 3 * drain_C_(w_L1_nand3_p[0], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L1_nand3_n[0], NCH, 3, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE);
+ delay_nand3_path += this_delay;
+ inrisetime_nand3_path = this_delay / (1.0 - 0.5);
+ power_nand3_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+
+ //Add delays of all but the last inverter in the chain
+ for (i = 1; i < number_gates_L1_nand3_path - 1; ++i)
+ {
+ rd = tr_R_on(w_L1_nand3_n[i], NCH, 1, is_dram_);
+ c_load = gate_C(w_L1_nand3_n[i+1] + w_L1_nand3_p[i+1], 0.0, is_dram_);
+ c_intrinsic = drain_C_(w_L1_nand3_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L1_nand3_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE);
+ delay_nand3_path += this_delay;
+ inrisetime_nand3_path = this_delay / (1.0 - 0.5);
+ power_nand3_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+ }
+
+ //Add delay of the last inverter
+ i = number_gates_L1_nand3_path - 1;
+ rd = tr_R_on(w_L1_nand3_n[i], NCH, 1, is_dram_);
+ if (flag_L2_gate)
+ {
+ c_load = branch_effort_nand3_gate_output*(gate_C(w_L2_n[0], 0, is_dram_) + gate_C(w_L2_p[0], 0, is_dram_));
+ c_intrinsic = drain_C_(w_L1_nand3_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L1_nand3_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE);
+ delay_nand3_path += this_delay;
+ inrisetime_nand3_path = this_delay / (1.0 - 0.5);
+ power_nand3_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+ }
+ else
+ { //First level directly drives decoder output load
+ c_load = C_ld_predec_blk_out;
+ c_intrinsic = drain_C_(w_L1_nand3_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L1_nand3_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load) + R_wire_predec_blk_out * c_load / 2;
+ this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE);
+ delay_nand3_path += this_delay;
+ ret_val.second = this_delay / (1.0 - 0.5);
+ power_nand3_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+ }
+ }
+
+ // Find delay through second level
+ if (flag_L2_gate)
+ {
+ if (flag_L2_gate == 2)
+ {
+ rd = tr_R_on(w_L2_n[0], NCH, 2, is_dram_);
+ c_load = gate_C(w_L2_n[1] + w_L2_p[1], 0.0, is_dram_);
+ c_intrinsic = 2 * drain_C_(w_L2_p[0], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L2_n[0], NCH, 2, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE);
+ delay_nand2_path += this_delay;
+ inrisetime_nand2_path = this_delay / (1.0 - 0.5);
+ power_L2.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+ }
+ else
+ { // flag_L2_gate = 3
+ rd = tr_R_on(w_L2_n[0], NCH, 3, is_dram_);
+ c_load = gate_C(w_L2_n[1] + w_L2_p[1], 0.0, is_dram_);
+ c_intrinsic = 3 * drain_C_(w_L2_p[0], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L2_n[0], NCH, 3, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE);
+ delay_nand3_path += this_delay;
+ inrisetime_nand3_path = this_delay / (1.0 - 0.5);
+ power_L2.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+ }
+
+ for (i = 1; i < number_gates_L2 - 1; ++i)
+ {
+ rd = tr_R_on(w_L2_n[i], NCH, 1, is_dram_);
+ c_load = gate_C(w_L2_n[i+1] + w_L2_p[i+1], 0.0, is_dram_);
+ c_intrinsic = drain_C_(w_L2_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L2_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE);
+ delay_nand2_path += this_delay;
+ inrisetime_nand2_path = this_delay / (1.0 - 0.5);
+ this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE);
+ delay_nand3_path += this_delay;
+ inrisetime_nand3_path = this_delay / (1.0 - 0.5);
+ power_L2.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+ }
+
+ //Add delay of final inverter that drives the wordline decoders
+ i = number_gates_L2 - 1;
+ c_load = C_ld_predec_blk_out;
+ rd = tr_R_on(w_L2_n[i], NCH, 1, is_dram_);
+ c_intrinsic = drain_C_(w_L2_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(w_L2_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load) + R_wire_predec_blk_out * c_load / 2;
+ this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE);
+ delay_nand2_path += this_delay;
+ ret_val.first = this_delay / (1.0 - 0.5);
+ this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE);
+ delay_nand3_path += this_delay;
+ ret_val.second = this_delay / (1.0 - 0.5);
+ power_L2.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd;
+ }
+ }
+
+ delay = (ret_val.first > ret_val.second) ? ret_val.first : ret_val.second;
+ return ret_val;
+}
+
+void PredecBlk::leakage_feedback(double temperature)
+{
+ if (exist)
+ { // First check whether a predecoder block is needed
+ int num_L1_nand2 = 0;
+ int num_L1_nand3 = 0;
+ int num_L2 = 0;
+ double leak_L1_nand3 =0;
+ double gate_leak_L1_nand3 =0;
+
+ double leak_L1_nand2 = cmos_Isub_leakage(w_L1_nand2_n[0], w_L1_nand2_p[0], 2, nand, is_dram_);
+ double gate_leak_L1_nand2 = cmos_Ig_leakage(w_L1_nand2_n[0], w_L1_nand2_p[0], 2, nand, is_dram_);
+ if (number_inputs_L1_gate != 3) {
+ leak_L1_nand3 = 0;
+ gate_leak_L1_nand3 =0;
+ }
+ else {
+ leak_L1_nand3 = cmos_Isub_leakage(w_L1_nand3_n[0], w_L1_nand3_p[0], 3, nand);
+ gate_leak_L1_nand3 = cmos_Ig_leakage(w_L1_nand3_n[0], w_L1_nand3_p[0], 3, nand);
+ }
+
+ switch (number_input_addr_bits)
+ {
+ case 1: //2 NAND2 gates
+ num_L1_nand2 = 2;
+ num_L2 = 0;
+ num_L1_active_nand2_path =1;
+ num_L1_active_nand3_path =0;
+ break;
+ case 2: //4 NAND2 gates
+ num_L1_nand2 = 4;
+ num_L2 = 0;
+ num_L1_active_nand2_path =1;
+ num_L1_active_nand3_path =0;
+ break;
+ case 3: //8 NAND3 gates
+ num_L1_nand3 = 8;
+ num_L2 = 0;
+ num_L1_active_nand2_path =0;
+ num_L1_active_nand3_path =1;
+ break;
+ case 4: //4 + 4 NAND2 gates
+ num_L1_nand2 = 8;
+ num_L2 = 16;
+ num_L1_active_nand2_path =2;
+ num_L1_active_nand3_path =0;
+ break;
+ case 5: //4 NAND2 gates, 8 NAND3 gates
+ num_L1_nand2 = 4;
+ num_L1_nand3 = 8;
+ num_L2 = 32;
+ num_L1_active_nand2_path =1;
+ num_L1_active_nand3_path =1;
+ break;
+ case 6: //8 + 8 NAND3 gates
+ num_L1_nand3 = 16;
+ num_L2 = 64;
+ num_L1_active_nand2_path =0;
+ num_L1_active_nand3_path =2;
+ break;
+ case 7: //4 + 4 NAND2 gates, 8 NAND3 gates
+ num_L1_nand2 = 8;
+ num_L1_nand3 = 8;
+ num_L2 = 128;
+ num_L1_active_nand2_path =2;
+ num_L1_active_nand3_path =1;
+ break;
+ case 8: //4 NAND2 gates, 8 + 8 NAND3 gates
+ num_L1_nand2 = 4;
+ num_L1_nand3 = 16;
+ num_L2 = 256;
+ num_L1_active_nand2_path =2;
+ num_L1_active_nand3_path =2;
+ break;
+ case 9: //8 + 8 + 8 NAND3 gates
+ num_L1_nand3 = 24;
+ num_L2 = 512;
+ num_L1_active_nand2_path =0;
+ num_L1_active_nand3_path =3;
+ break;
+ default:
+ break;
+ }
+
+ for (int i = 1; i < number_gates_L1_nand2_path; ++i)
+ {
+ leak_L1_nand2 += cmos_Isub_leakage(w_L1_nand2_n[i], w_L1_nand2_p[i], 2, nand, is_dram_);
+ gate_leak_L1_nand2 += cmos_Ig_leakage(w_L1_nand2_n[i], w_L1_nand2_p[i], 2, nand, is_dram_);
+ }
+ leak_L1_nand2 *= num_L1_nand2;
+ gate_leak_L1_nand2 *= num_L1_nand2;
+
+ for (int i = 1; i < number_gates_L1_nand3_path; ++i)
+ {
+ leak_L1_nand3 += cmos_Isub_leakage(w_L1_nand3_n[i], w_L1_nand3_p[i], 3, nand, is_dram_);
+ gate_leak_L1_nand3 += cmos_Ig_leakage(w_L1_nand3_n[i], w_L1_nand3_p[i], 3, nand, is_dram_);
+ }
+ leak_L1_nand3 *= num_L1_nand3;
+ gate_leak_L1_nand3 *= num_L1_nand3;
+
+ double leakage_L2 = 0.0;
+ double gate_leakage_L2 = 0.0;
+
+ if (flag_L2_gate == 2)
+ {
+ leakage_L2 = cmos_Isub_leakage(w_L2_n[0], w_L2_p[0], 2, nand, is_dram_);
+ gate_leakage_L2 = cmos_Ig_leakage(w_L2_n[0], w_L2_p[0], 2, nand, is_dram_);
+ }
+ else if (flag_L2_gate == 3)
+ {
+ leakage_L2 = cmos_Isub_leakage(w_L2_n[0], w_L2_p[0], 3, nand, is_dram_);
+ gate_leakage_L2 = cmos_Ig_leakage(w_L2_n[0], w_L2_p[0], 3, nand, is_dram_);
+ }
+
+ for (int i = 1; i < number_gates_L2; ++i)
+ {
+ leakage_L2 += cmos_Isub_leakage(w_L2_n[i], w_L2_p[i], 2, inv, is_dram_);
+ gate_leakage_L2 += cmos_Ig_leakage(w_L2_n[i], w_L2_p[i], 2, inv, is_dram_);
+ }
+ leakage_L2 *= num_L2;
+ gate_leakage_L2 *= num_L2;
+
+ power_nand2_path.readOp.leakage = leak_L1_nand2 * g_tp.peri_global.Vdd;
+ power_nand3_path.readOp.leakage = leak_L1_nand3 * g_tp.peri_global.Vdd;
+ power_L2.readOp.leakage = leakage_L2 * g_tp.peri_global.Vdd;
+
+ power_nand2_path.readOp.gate_leakage = gate_leak_L1_nand2 * g_tp.peri_global.Vdd;
+ power_nand3_path.readOp.gate_leakage = gate_leak_L1_nand3 * g_tp.peri_global.Vdd;
+ power_L2.readOp.gate_leakage = gate_leakage_L2 * g_tp.peri_global.Vdd;
+ }
+}
+
+PredecBlkDrv::PredecBlkDrv(
+ int way_select_,
+ PredecBlk * blk_,
+ bool is_dram)
+ :flag_driver_exists(0),
+ number_gates_nand2_path(0),
+ number_gates_nand3_path(0),
+ min_number_gates(2),
+ num_buffers_driving_1_nand2_load(0),
+ num_buffers_driving_2_nand2_load(0),
+ num_buffers_driving_4_nand2_load(0),
+ num_buffers_driving_2_nand3_load(0),
+ num_buffers_driving_8_nand3_load(0),
+ num_buffers_nand3_path(0),
+ c_load_nand2_path_out(0),
+ c_load_nand3_path_out(0),
+ r_load_nand2_path_out(0),
+ r_load_nand3_path_out(0),
+ delay_nand2_path(0),
+ delay_nand3_path(0),
+ power_nand2_path(),
+ power_nand3_path(),
+ blk(blk_), dec(blk->dec),
+ is_dram_(is_dram),
+ way_select(way_select_)
+{
+ for (int i = 0; i < MAX_NUMBER_GATES_STAGE; i++)
+ {
+ width_nand2_path_n[i] = 0;
+ width_nand2_path_p[i] = 0;
+ width_nand3_path_n[i] = 0;
+ width_nand3_path_p[i] = 0;
+ }
+
+ number_input_addr_bits = blk->number_input_addr_bits;
+
+ if (way_select > 1)
+ {
+ flag_driver_exists = 1;
+ number_input_addr_bits = way_select;
+ if (dec->num_in_signals == 2)
+ {
+ c_load_nand2_path_out = gate_C(dec->w_dec_n[0] + dec->w_dec_p[0], 0, is_dram_);
+ num_buffers_driving_2_nand2_load = number_input_addr_bits;
+ }
+ else if (dec->num_in_signals == 3)
+ {
+ c_load_nand3_path_out = gate_C(dec->w_dec_n[0] + dec->w_dec_p[0], 0, is_dram_);
+ num_buffers_driving_2_nand3_load = number_input_addr_bits;
+ }
+ }
+ else if (way_select == 0)
+ {
+ if (blk->exist)
+ {
+ flag_driver_exists = 1;
+ }
+ }
+
+ compute_widths();
+ compute_area();
+}
+
+
+
+void PredecBlkDrv::compute_widths()
+{
+ // The predecode block driver accepts as input the address bits from the h-tree network. For
+ // each addr bit it then generates addr and addrbar as outputs. For now ignore the effect of
+ // inversion to generate addrbar and simply treat addrbar as addr.
+
+ double F;
+ double p_to_n_sz_ratio = pmos_to_nmos_sz_ratio(is_dram_);
+
+ if (flag_driver_exists)
+ {
+ double C_nand2_gate_blk = gate_C(blk->w_L1_nand2_n[0] + blk->w_L1_nand2_p[0], 0, is_dram_);
+ double C_nand3_gate_blk = gate_C(blk->w_L1_nand3_n[0] + blk->w_L1_nand3_p[0], 0, is_dram_);
+
+ if (way_select == 0)
+ {
+ if (blk->number_input_addr_bits == 1)
+ { //2 NAND2 gates
+ num_buffers_driving_2_nand2_load = 1;
+ c_load_nand2_path_out = 2 * C_nand2_gate_blk;
+ }
+ else if (blk->number_input_addr_bits == 2)
+ { //4 NAND2 gates one 2-4 decoder
+ num_buffers_driving_4_nand2_load = 2;
+ c_load_nand2_path_out = 4 * C_nand2_gate_blk;
+ }
+ else if (blk->number_input_addr_bits == 3)
+ { //8 NAND3 gates one 3-8 decoder
+ num_buffers_driving_8_nand3_load = 3;
+ c_load_nand3_path_out = 8 * C_nand3_gate_blk;
+ }
+ else if (blk->number_input_addr_bits == 4)
+ { //4 + 4 NAND2 gates two 2-4 decoder
+ num_buffers_driving_4_nand2_load = 4;
+ c_load_nand2_path_out = 4 * C_nand2_gate_blk;
+ }
+ else if (blk->number_input_addr_bits == 5)
+ { //4 NAND2 gates, 8 NAND3 gates one 2-4 decoder and one 3-8 decoder
+ num_buffers_driving_4_nand2_load = 2;
+ num_buffers_driving_8_nand3_load = 3;
+ c_load_nand2_path_out = 4 * C_nand2_gate_blk;
+ c_load_nand3_path_out = 8 * C_nand3_gate_blk;
+ }
+ else if (blk->number_input_addr_bits == 6)
+ { //8 + 8 NAND3 gates two 3-8 decoder
+ num_buffers_driving_8_nand3_load = 6;
+ c_load_nand3_path_out = 8 * C_nand3_gate_blk;
+ }
+ else if (blk->number_input_addr_bits == 7)
+ { //4 + 4 NAND2 gates, 8 NAND3 gates two 2-4 decoder and one 3-8 decoder
+ num_buffers_driving_4_nand2_load = 4;
+ num_buffers_driving_8_nand3_load = 3;
+ c_load_nand2_path_out = 4 * C_nand2_gate_blk;
+ c_load_nand3_path_out = 8 * C_nand3_gate_blk;
+ }
+ else if (blk->number_input_addr_bits == 8)
+ { //4 NAND2 gates, 8 + 8 NAND3 gates one 2-4 decoder and two 3-8 decoder
+ num_buffers_driving_4_nand2_load = 2;
+ num_buffers_driving_8_nand3_load = 6;
+ c_load_nand2_path_out = 4 * C_nand2_gate_blk;
+ c_load_nand3_path_out = 8 * C_nand3_gate_blk;
+ }
+ else if (blk->number_input_addr_bits == 9)
+ { //8 + 8 + 8 NAND3 gates three 3-8 decoder
+ num_buffers_driving_8_nand3_load = 9;
+ c_load_nand3_path_out = 8 * C_nand3_gate_blk;
+ }
+ }
+
+ if ((blk->flag_two_unique_paths) ||
+ (blk->number_inputs_L1_gate == 2) ||
+ (number_input_addr_bits == 0) ||
+ ((way_select)&&(dec->num_in_signals == 2)))
+ { //this means that way_select is driving NAND2 in decoder.
+ width_nand2_path_n[0] = g_tp.min_w_nmos_;
+ width_nand2_path_p[0] = p_to_n_sz_ratio * width_nand2_path_n[0];
+ F = c_load_nand2_path_out / gate_C(width_nand2_path_n[0] + width_nand2_path_p[0], 0, is_dram_);
+ number_gates_nand2_path = logical_effort(
+ min_number_gates,
+ 1,
+ F,
+ width_nand2_path_n,
+ width_nand2_path_p,
+ c_load_nand2_path_out,
+ p_to_n_sz_ratio,
+ is_dram_, false, g_tp.max_w_nmos_);
+ }
+
+ if ((blk->flag_two_unique_paths) ||
+ (blk->number_inputs_L1_gate == 3) ||
+ ((way_select)&&(dec->num_in_signals == 3)))
+ { //this means that way_select is driving NAND3 in decoder.
+ width_nand3_path_n[0] = g_tp.min_w_nmos_;
+ width_nand3_path_p[0] = p_to_n_sz_ratio * width_nand3_path_n[0];
+ F = c_load_nand3_path_out / gate_C(width_nand3_path_n[0] + width_nand3_path_p[0], 0, is_dram_);
+ number_gates_nand3_path = logical_effort(
+ min_number_gates,
+ 1,
+ F,
+ width_nand3_path_n,
+ width_nand3_path_p,
+ c_load_nand3_path_out,
+ p_to_n_sz_ratio,
+ is_dram_, false, g_tp.max_w_nmos_);
+ }
+ }
+}
+
+
+
+void PredecBlkDrv::compute_area()
+{
+ double area_nand2_path = 0;
+ double area_nand3_path = 0;
+ double leak_nand2_path = 0;
+ double leak_nand3_path = 0;
+ double gate_leak_nand2_path = 0;
+ double gate_leak_nand3_path = 0;
+
+ if (flag_driver_exists)
+ { // first check whether a predecoder block driver is needed
+ for (int i = 0; i < number_gates_nand2_path; ++i)
+ {
+ area_nand2_path += compute_gate_area(INV, 1, width_nand2_path_p[i], width_nand2_path_n[i], g_tp.cell_h_def);
+ leak_nand2_path += cmos_Isub_leakage(width_nand2_path_n[i], width_nand2_path_p[i], 1, inv,is_dram_);
+ gate_leak_nand2_path += cmos_Ig_leakage(width_nand2_path_n[i], width_nand2_path_p[i], 1, inv,is_dram_);
+ }
+ area_nand2_path *= (num_buffers_driving_1_nand2_load +
+ num_buffers_driving_2_nand2_load +
+ num_buffers_driving_4_nand2_load);
+ leak_nand2_path *= (num_buffers_driving_1_nand2_load +
+ num_buffers_driving_2_nand2_load +
+ num_buffers_driving_4_nand2_load);
+ gate_leak_nand2_path *= (num_buffers_driving_1_nand2_load +
+ num_buffers_driving_2_nand2_load +
+ num_buffers_driving_4_nand2_load);
+
+ for (int i = 0; i < number_gates_nand3_path; ++i)
+ {
+ area_nand3_path += compute_gate_area(INV, 1, width_nand3_path_p[i], width_nand3_path_n[i], g_tp.cell_h_def);
+ leak_nand3_path += cmos_Isub_leakage(width_nand3_path_n[i], width_nand3_path_p[i], 1, inv,is_dram_);
+ gate_leak_nand3_path += cmos_Ig_leakage(width_nand3_path_n[i], width_nand3_path_p[i], 1, inv,is_dram_);
+ }
+ area_nand3_path *= (num_buffers_driving_2_nand3_load + num_buffers_driving_8_nand3_load);
+ leak_nand3_path *= (num_buffers_driving_2_nand3_load + num_buffers_driving_8_nand3_load);
+ gate_leak_nand3_path *= (num_buffers_driving_2_nand3_load + num_buffers_driving_8_nand3_load);
+
+ power_nand2_path.readOp.leakage = leak_nand2_path * g_tp.peri_global.Vdd;
+ power_nand3_path.readOp.leakage = leak_nand3_path * g_tp.peri_global.Vdd;
+ power_nand2_path.readOp.gate_leakage = gate_leak_nand2_path * g_tp.peri_global.Vdd;
+ power_nand3_path.readOp.gate_leakage = gate_leak_nand3_path * g_tp.peri_global.Vdd;
+ area.set_area(area_nand2_path + area_nand3_path);
+ }
+}
+
+
+
+pair<double, double> PredecBlkDrv::compute_delays(
+ double inrisetime_nand2_path,
+ double inrisetime_nand3_path)
+{
+ pair<double, double> ret_val;
+ ret_val.first = 0; // outrisetime_nand2_path
+ ret_val.second = 0; // outrisetime_nand3_path
+ int i;
+ double rd, c_gate_load, c_load, c_intrinsic, tf, this_delay;
+ double Vdd = g_tp.peri_global.Vdd;
+
+ if (flag_driver_exists)
+ {
+ for (i = 0; i < number_gates_nand2_path - 1; ++i)
+ {
+ rd = tr_R_on(width_nand2_path_n[i], NCH, 1, is_dram_);
+ c_gate_load = gate_C(width_nand2_path_p[i+1] + width_nand2_path_n[i+1], 0.0, is_dram_);
+ c_intrinsic = drain_C_(width_nand2_path_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(width_nand2_path_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_gate_load);
+ this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE);
+ delay_nand2_path += this_delay;
+ inrisetime_nand2_path = this_delay / (1.0 - 0.5);
+ power_nand2_path.readOp.dynamic += (c_gate_load + c_intrinsic) * 0.5 * Vdd * Vdd;
+ }
+
+ // Final inverter drives the predecoder block or the decoder output load
+ if (number_gates_nand2_path != 0)
+ {
+ i = number_gates_nand2_path - 1;
+ rd = tr_R_on(width_nand2_path_n[i], NCH, 1, is_dram_);
+ c_intrinsic = drain_C_(width_nand2_path_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(width_nand2_path_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ c_load = c_load_nand2_path_out;
+ tf = rd * (c_intrinsic + c_load) + r_load_nand2_path_out*c_load/ 2;
+ this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE);
+ delay_nand2_path += this_delay;
+ ret_val.first = this_delay / (1.0 - 0.5);
+ power_nand2_path.readOp.dynamic += (c_intrinsic + c_load) * 0.5 * Vdd * Vdd;
+// cout<< "c_intrinsic = " << c_intrinsic << "c_load" << c_load <<endl;
+ }
+
+ for (i = 0; i < number_gates_nand3_path - 1; ++i)
+ {
+ rd = tr_R_on(width_nand3_path_n[i], NCH, 1, is_dram_);
+ c_gate_load = gate_C(width_nand3_path_p[i+1] + width_nand3_path_n[i+1], 0.0, is_dram_);
+ c_intrinsic = drain_C_(width_nand3_path_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(width_nand3_path_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_gate_load);
+ this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE);
+ delay_nand3_path += this_delay;
+ inrisetime_nand3_path = this_delay / (1.0 - 0.5);
+ power_nand3_path.readOp.dynamic += (c_gate_load + c_intrinsic) * 0.5 * Vdd * Vdd;
+ }
+
+ // Final inverter drives the predecoder block or the decoder output load
+ if (number_gates_nand3_path != 0)
+ {
+ i = number_gates_nand3_path - 1;
+ rd = tr_R_on(width_nand3_path_n[i], NCH, 1, is_dram_);
+ c_intrinsic = drain_C_(width_nand3_path_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(width_nand3_path_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ c_load = c_load_nand3_path_out;
+ tf = rd*(c_intrinsic + c_load) + r_load_nand3_path_out*c_load / 2;
+ this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE);
+ delay_nand3_path += this_delay;
+ ret_val.second = this_delay / (1.0 - 0.5);
+ power_nand3_path.readOp.dynamic += (c_intrinsic + c_load) * 0.5 * Vdd * Vdd;
+ }
+ }
+ return ret_val;
+}
+
+
+double PredecBlkDrv::get_rdOp_dynamic_E(int num_act_mats_hor_dir)
+{
+ return (num_addr_bits_nand2_path()*power_nand2_path.readOp.dynamic +
+ num_addr_bits_nand3_path()*power_nand3_path.readOp.dynamic) * num_act_mats_hor_dir;
+}
+
+
+
+Predec::Predec(
+ PredecBlkDrv * drv1_,
+ PredecBlkDrv * drv2_)
+:blk1(drv1_->blk), blk2(drv2_->blk), drv1(drv1_), drv2(drv2_)
+{
+ driver_power.readOp.leakage = drv1->power_nand2_path.readOp.leakage +
+ drv1->power_nand3_path.readOp.leakage +
+ drv2->power_nand2_path.readOp.leakage +
+ drv2->power_nand3_path.readOp.leakage;
+ block_power.readOp.leakage = blk1->power_nand2_path.readOp.leakage +
+ blk1->power_nand3_path.readOp.leakage +
+ blk1->power_L2.readOp.leakage +
+ blk2->power_nand2_path.readOp.leakage +
+ blk2->power_nand3_path.readOp.leakage +
+ blk2->power_L2.readOp.leakage;
+ power.readOp.leakage = driver_power.readOp.leakage + block_power.readOp.leakage;
+
+ driver_power.readOp.gate_leakage = drv1->power_nand2_path.readOp.gate_leakage +
+ drv1->power_nand3_path.readOp.gate_leakage +
+ drv2->power_nand2_path.readOp.gate_leakage +
+ drv2->power_nand3_path.readOp.gate_leakage;
+ block_power.readOp.gate_leakage = blk1->power_nand2_path.readOp.gate_leakage +
+ blk1->power_nand3_path.readOp.gate_leakage +
+ blk1->power_L2.readOp.gate_leakage +
+ blk2->power_nand2_path.readOp.gate_leakage +
+ blk2->power_nand3_path.readOp.gate_leakage +
+ blk2->power_L2.readOp.gate_leakage;
+ power.readOp.gate_leakage = driver_power.readOp.gate_leakage + block_power.readOp.gate_leakage;
+}
+
+void PredecBlkDrv::leakage_feedback(double temperature)
+{
+ double leak_nand2_path = 0;
+ double leak_nand3_path = 0;
+ double gate_leak_nand2_path = 0;
+ double gate_leak_nand3_path = 0;
+
+ if (flag_driver_exists)
+ { // first check whether a predecoder block driver is needed
+ for (int i = 0; i < number_gates_nand2_path; ++i)
+ {
+ leak_nand2_path += cmos_Isub_leakage(width_nand2_path_n[i], width_nand2_path_p[i], 1, inv,is_dram_);
+ gate_leak_nand2_path += cmos_Ig_leakage(width_nand2_path_n[i], width_nand2_path_p[i], 1, inv,is_dram_);
+ }
+ leak_nand2_path *= (num_buffers_driving_1_nand2_load +
+ num_buffers_driving_2_nand2_load +
+ num_buffers_driving_4_nand2_load);
+ gate_leak_nand2_path *= (num_buffers_driving_1_nand2_load +
+ num_buffers_driving_2_nand2_load +
+ num_buffers_driving_4_nand2_load);
+
+ for (int i = 0; i < number_gates_nand3_path; ++i)
+ {
+ leak_nand3_path += cmos_Isub_leakage(width_nand3_path_n[i], width_nand3_path_p[i], 1, inv,is_dram_);
+ gate_leak_nand3_path += cmos_Ig_leakage(width_nand3_path_n[i], width_nand3_path_p[i], 1, inv,is_dram_);
+ }
+ leak_nand3_path *= (num_buffers_driving_2_nand3_load + num_buffers_driving_8_nand3_load);
+ gate_leak_nand3_path *= (num_buffers_driving_2_nand3_load + num_buffers_driving_8_nand3_load);
+
+ power_nand2_path.readOp.leakage = leak_nand2_path * g_tp.peri_global.Vdd;
+ power_nand3_path.readOp.leakage = leak_nand3_path * g_tp.peri_global.Vdd;
+ power_nand2_path.readOp.gate_leakage = gate_leak_nand2_path * g_tp.peri_global.Vdd;
+ power_nand3_path.readOp.gate_leakage = gate_leak_nand3_path * g_tp.peri_global.Vdd;
+ }
+}
+
+double Predec::compute_delays(double inrisetime)
+{
+ // TODO: Jung Ho thinks that predecoder block driver locates between decoder and predecoder block.
+ pair<double, double> tmp_pair1, tmp_pair2;
+ tmp_pair1 = drv1->compute_delays(inrisetime, inrisetime);
+ tmp_pair1 = blk1->compute_delays(tmp_pair1);
+ tmp_pair2 = drv2->compute_delays(inrisetime, inrisetime);
+ tmp_pair2 = blk2->compute_delays(tmp_pair2);
+ tmp_pair1 = get_max_delay_before_decoder(tmp_pair1, tmp_pair2);
+
+ driver_power.readOp.dynamic =
+ drv1->num_addr_bits_nand2_path() * drv1->power_nand2_path.readOp.dynamic +
+ drv1->num_addr_bits_nand3_path() * drv1->power_nand3_path.readOp.dynamic +
+ drv2->num_addr_bits_nand2_path() * drv2->power_nand2_path.readOp.dynamic +
+ drv2->num_addr_bits_nand3_path() * drv2->power_nand3_path.readOp.dynamic;
+
+ block_power.readOp.dynamic =
+ blk1->power_nand2_path.readOp.dynamic*blk1->num_L1_active_nand2_path +
+ blk1->power_nand3_path.readOp.dynamic*blk1->num_L1_active_nand3_path +
+ blk1->power_L2.readOp.dynamic +
+ blk2->power_nand2_path.readOp.dynamic*blk1->num_L1_active_nand2_path +
+ blk2->power_nand3_path.readOp.dynamic*blk1->num_L1_active_nand3_path +
+ blk2->power_L2.readOp.dynamic;
+
+ power.readOp.dynamic = driver_power.readOp.dynamic + block_power.readOp.dynamic;
+
+ delay = tmp_pair1.first;
+ return tmp_pair1.second;
+}
+
+
+void Predec::leakage_feedback(double temperature)
+{
+ drv1->leakage_feedback(temperature);
+ drv2->leakage_feedback(temperature);
+ blk1->leakage_feedback(temperature);
+ blk2->leakage_feedback(temperature);
+
+ driver_power.readOp.leakage = drv1->power_nand2_path.readOp.leakage +
+ drv1->power_nand3_path.readOp.leakage +
+ drv2->power_nand2_path.readOp.leakage +
+ drv2->power_nand3_path.readOp.leakage;
+ block_power.readOp.leakage = blk1->power_nand2_path.readOp.leakage +
+ blk1->power_nand3_path.readOp.leakage +
+ blk1->power_L2.readOp.leakage +
+ blk2->power_nand2_path.readOp.leakage +
+ blk2->power_nand3_path.readOp.leakage +
+ blk2->power_L2.readOp.leakage;
+ power.readOp.leakage = driver_power.readOp.leakage + block_power.readOp.leakage;
+
+ driver_power.readOp.gate_leakage = drv1->power_nand2_path.readOp.gate_leakage +
+ drv1->power_nand3_path.readOp.gate_leakage +
+ drv2->power_nand2_path.readOp.gate_leakage +
+ drv2->power_nand3_path.readOp.gate_leakage;
+ block_power.readOp.gate_leakage = blk1->power_nand2_path.readOp.gate_leakage +
+ blk1->power_nand3_path.readOp.gate_leakage +
+ blk1->power_L2.readOp.gate_leakage +
+ blk2->power_nand2_path.readOp.gate_leakage +
+ blk2->power_nand3_path.readOp.gate_leakage +
+ blk2->power_L2.readOp.gate_leakage;
+ power.readOp.gate_leakage = driver_power.readOp.gate_leakage + block_power.readOp.gate_leakage;
+}
+
+// returns <delay, risetime>
+pair<double, double> Predec::get_max_delay_before_decoder(
+ pair<double, double> input_pair1,
+ pair<double, double> input_pair2)
+{
+ pair<double, double> ret_val;
+ double delay;
+
+ delay = drv1->delay_nand2_path + blk1->delay_nand2_path;
+ ret_val.first = delay;
+ ret_val.second = input_pair1.first;
+ delay = drv1->delay_nand3_path + blk1->delay_nand3_path;
+ if (ret_val.first < delay)
+ {
+ ret_val.first = delay;
+ ret_val.second = input_pair1.second;
+ }
+ delay = drv2->delay_nand2_path + blk2->delay_nand2_path;
+ if (ret_val.first < delay)
+ {
+ ret_val.first = delay;
+ ret_val.second = input_pair2.first;
+ }
+ delay = drv2->delay_nand3_path + blk2->delay_nand3_path;
+ if (ret_val.first < delay)
+ {
+ ret_val.first = delay;
+ ret_val.second = input_pair2.second;
+ }
+
+ return ret_val;
+}
+
+
+
+Driver::Driver(double c_gate_load_, double c_wire_load_, double r_wire_load_, bool is_dram)
+:number_gates(0),
+ min_number_gates(2),
+ c_gate_load(c_gate_load_),
+ c_wire_load(c_wire_load_),
+ r_wire_load(r_wire_load_),
+ delay(0),
+ power(),
+ is_dram_(is_dram)
+{
+ for (int i = 0; i < MAX_NUMBER_GATES_STAGE; i++)
+ {
+ width_n[i] = 0;
+ width_p[i] = 0;
+ }
+
+ compute_widths();
+}
+
+
+void Driver::compute_widths()
+{
+ double p_to_n_sz_ratio = pmos_to_nmos_sz_ratio(is_dram_);
+ double c_load = c_gate_load + c_wire_load;
+ width_n[0] = g_tp.min_w_nmos_;
+ width_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_;
+
+ double F = c_load / gate_C(width_n[0] + width_p[0], 0, is_dram_);
+ number_gates = logical_effort(
+ min_number_gates,
+ 1,
+ F,
+ width_n,
+ width_p,
+ c_load,
+ p_to_n_sz_ratio,
+ is_dram_, false,
+ g_tp.max_w_nmos_);
+}
+
+
+
+double Driver::compute_delay(double inrisetime)
+{
+ int i;
+ double rd, c_load, c_intrinsic, tf;
+ double this_delay = 0;
+
+ for (i = 0; i < number_gates - 1; ++i)
+ {
+ rd = tr_R_on(width_n[i], NCH, 1, is_dram_);
+ c_load = gate_C(width_n[i+1] + width_p[i+1], 0.0, is_dram_);
+ c_intrinsic = drain_C_(width_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(width_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load);
+ this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE);
+ delay += this_delay;
+ inrisetime = this_delay / (1.0 - 0.5);
+ power.readOp.dynamic += (c_intrinsic + c_load) * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;
+ power.readOp.leakage += cmos_Isub_leakage(width_n[i], width_p[i], 1, inv, is_dram_) *g_tp.peri_global.Vdd;
+ power.readOp.gate_leakage += cmos_Ig_leakage(width_n[i], width_p[i], 1, inv, is_dram_)* g_tp.peri_global.Vdd;
+ }
+
+ i = number_gates - 1;
+ c_load = c_gate_load + c_wire_load;
+ rd = tr_R_on(width_n[i], NCH, 1, is_dram_);
+ c_intrinsic = drain_C_(width_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) +
+ drain_C_(width_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_);
+ tf = rd * (c_intrinsic + c_load) + r_wire_load * (c_wire_load / 2 + c_gate_load);
+ this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE);
+ delay += this_delay;
+ power.readOp.dynamic += (c_intrinsic + c_load) * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;
+ power.readOp.leakage += cmos_Isub_leakage(width_n[i], width_p[i], 1, inv, is_dram_) * g_tp.peri_global.Vdd;
+ power.readOp.gate_leakage += cmos_Ig_leakage(width_n[i], width_p[i], 1, inv, is_dram_)* g_tp.peri_global.Vdd;
+
+ return this_delay / (1.0 - 0.5);
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#ifndef __DECODER_H__
+#define __DECODER_H__
+
+#include <vector>
+
+#include "area.h"
+#include "component.h"
+#include "parameter.h"
+
+using namespace std;
+
+
+class Decoder : public Component
+{
+ public:
+ Decoder(
+ int _num_dec_signals,
+ bool flag_way_select,
+ double _C_ld_dec_out,
+ double _R_wire_dec_out,
+ bool fully_assoc_,
+ bool is_dram_,
+ bool is_wl_tr_,
+ const Area & cell_);
+
+ bool exist;
+ int num_in_signals;
+ double C_ld_dec_out;
+ double R_wire_dec_out;
+ int num_gates;
+ int num_gates_min;
+ double w_dec_n[MAX_NUMBER_GATES_STAGE];
+ double w_dec_p[MAX_NUMBER_GATES_STAGE];
+ double delay;
+ //powerDef power;
+ bool fully_assoc;
+ bool is_dram;
+ bool is_wl_tr;
+ const Area & cell;
+
+
+ void compute_widths();
+ void compute_area();
+ double compute_delays(double inrisetime); // return outrisetime
+
+ void leakage_feedback(double temperature);
+};
+
+
+
+class PredecBlk : public Component
+{
+ public:
+ PredecBlk(
+ int num_dec_signals,
+ Decoder * dec,
+ double C_wire_predec_blk_out,
+ double R_wire_predec_blk_out,
+ int num_dec_per_predec,
+ bool is_dram_,
+ bool is_blk1);
+
+ Decoder * dec;
+ bool exist;
+ int number_input_addr_bits;
+ double C_ld_predec_blk_out;
+ double R_wire_predec_blk_out;
+ int branch_effort_nand2_gate_output;
+ int branch_effort_nand3_gate_output;
+ bool flag_two_unique_paths;
+ int flag_L2_gate;
+ int number_inputs_L1_gate;
+ int number_gates_L1_nand2_path;
+ int number_gates_L1_nand3_path;
+ int number_gates_L2;
+ int min_number_gates_L1;
+ int min_number_gates_L2;
+ int num_L1_active_nand2_path;
+ int num_L1_active_nand3_path;
+ double w_L1_nand2_n[MAX_NUMBER_GATES_STAGE];
+ double w_L1_nand2_p[MAX_NUMBER_GATES_STAGE];
+ double w_L1_nand3_n[MAX_NUMBER_GATES_STAGE];
+ double w_L1_nand3_p[MAX_NUMBER_GATES_STAGE];
+ double w_L2_n[MAX_NUMBER_GATES_STAGE];
+ double w_L2_p[MAX_NUMBER_GATES_STAGE];
+ double delay_nand2_path;
+ double delay_nand3_path;
+ powerDef power_nand2_path;
+ powerDef power_nand3_path;
+ powerDef power_L2;
+
+ bool is_dram_;
+
+ void compute_widths();
+ void compute_area();
+
+ void leakage_feedback(double temperature);
+
+ pair<double, double> compute_delays(pair<double, double> inrisetime); // <nand2, nand3>
+ // return <outrise_nand2, outrise_nand3>
+};
+
+
+class PredecBlkDrv : public Component
+{
+ public:
+ PredecBlkDrv(
+ int way_select,
+ PredecBlk * blk_,
+ bool is_dram);
+
+ int flag_driver_exists;
+ int number_input_addr_bits;
+ int number_gates_nand2_path;
+ int number_gates_nand3_path;
+ int min_number_gates;
+ int num_buffers_driving_1_nand2_load;
+ int num_buffers_driving_2_nand2_load;
+ int num_buffers_driving_4_nand2_load;
+ int num_buffers_driving_2_nand3_load;
+ int num_buffers_driving_8_nand3_load;
+ int num_buffers_nand3_path;
+ double c_load_nand2_path_out;
+ double c_load_nand3_path_out;
+ double r_load_nand2_path_out;
+ double r_load_nand3_path_out;
+ double width_nand2_path_n[MAX_NUMBER_GATES_STAGE];
+ double width_nand2_path_p[MAX_NUMBER_GATES_STAGE];
+ double width_nand3_path_n[MAX_NUMBER_GATES_STAGE];
+ double width_nand3_path_p[MAX_NUMBER_GATES_STAGE];
+ double delay_nand2_path;
+ double delay_nand3_path;
+ powerDef power_nand2_path;
+ powerDef power_nand3_path;
+
+ PredecBlk * blk;
+ Decoder * dec;
+ bool is_dram_;
+ int way_select;
+
+ void compute_widths();
+ void compute_area();
+
+ void leakage_feedback(double temperature);
+
+
+ pair<double, double> compute_delays(
+ double inrisetime_nand2_path,
+ double inrisetime_nand3_path); // return <outrise_nand2, outrise_nand3>
+
+ inline int num_addr_bits_nand2_path()
+ {
+ return num_buffers_driving_1_nand2_load +
+ num_buffers_driving_2_nand2_load +
+ num_buffers_driving_4_nand2_load;
+ }
+ inline int num_addr_bits_nand3_path()
+ {
+ return num_buffers_driving_2_nand3_load +
+ num_buffers_driving_8_nand3_load;
+ }
+ double get_rdOp_dynamic_E(int num_act_mats_hor_dir);
+};
+
+
+
+class Predec : public Component
+{
+ public:
+ Predec(
+ PredecBlkDrv * drv1,
+ PredecBlkDrv * drv2);
+
+ double compute_delays(double inrisetime); // return outrisetime
+
+ void leakage_feedback(double temperature);
+ PredecBlk * blk1;
+ PredecBlk * blk2;
+ PredecBlkDrv * drv1;
+ PredecBlkDrv * drv2;
+
+ powerDef block_power;
+ powerDef driver_power;
+
+ private:
+ // returns <delay, risetime>
+ pair<double, double> get_max_delay_before_decoder(
+ pair<double, double> input_pair1,
+ pair<double, double> input_pair2);
+};
+
+
+
+class Driver : public Component
+{
+ public:
+ Driver(double c_gate_load_, double c_wire_load_, double r_wire_load_, bool is_dram);
+
+ int number_gates;
+ int min_number_gates;
+ double width_n[MAX_NUMBER_GATES_STAGE];
+ double width_p[MAX_NUMBER_GATES_STAGE];
+ double c_gate_load;
+ double c_wire_load;
+ double r_wire_load;
+ double delay;
+ powerDef power;
+ bool is_dram_;
+
+ void compute_widths();
+ double compute_delay(double inrisetime);
+};
+
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include <cassert>
+#include <iostream>
+
+#include "htree2.h"
+#include "wire.h"
+
+Htree2::Htree2(
+ enum Wire_type wire_model, double mat_w, double mat_h,
+ int a_bits, int d_inbits, int search_data_in, int d_outbits, int search_data_out, int bl, int wl, enum Htree_type htree_type,
+ bool uca_tree_, bool search_tree_, TechnologyParameter::DeviceType *dt)
+ :in_rise_time(0), out_rise_time(0),
+ tree_type(htree_type), mat_width(mat_w), mat_height(mat_h),
+ add_bits(a_bits), data_in_bits(d_inbits), search_data_in_bits(search_data_in),data_out_bits(d_outbits),
+ search_data_out_bits(search_data_out), ndbl(bl), ndwl(wl),
+ uca_tree(uca_tree_), search_tree(search_tree_), wt(wire_model), deviceType(dt)
+{
+ assert(ndbl >= 2 && ndwl >= 2);
+
+// if (ndbl == 1 && ndwl == 1)
+// {
+// delay = 0;
+// power.readOp.dynamic = 0;
+// power.readOp.leakage = 0;
+// area.w = mat_w;
+// area.h = mat_h;
+// return;
+// }
+// if (ndwl == 1) ndwl++;
+// if (ndbl == 1) ndbl++;
+
+ max_unpipelined_link_delay = 0; //TODO
+ min_w_nmos = g_tp.min_w_nmos_;
+ min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * min_w_nmos;
+
+ switch (htree_type)
+ {
+ case Add_htree:
+ wire_bw = init_wire_bw = add_bits;
+ in_htree();
+ break;
+ case Data_in_htree:
+ wire_bw = init_wire_bw = data_in_bits;
+ in_htree();
+ break;
+ case Data_out_htree:
+ wire_bw = init_wire_bw = data_out_bits;
+ out_htree();
+ break;
+ case Search_in_htree:
+ wire_bw = init_wire_bw = search_data_in_bits;//in_search_tree is broad cast, out_htree is not.
+ in_htree();
+ break;
+ case Search_out_htree:
+ wire_bw = init_wire_bw = search_data_out_bits;
+ out_htree();
+ break;
+ default:
+ assert(0);
+ break;
+ }
+
+ power_bit = power;
+ power.readOp.dynamic *= init_wire_bw;
+
+ assert(power.readOp.dynamic >= 0);
+ assert(power.readOp.leakage >= 0);
+}
+
+
+
+// nand gate sizing calculation
+void Htree2::input_nand(double s1, double s2, double l_eff)
+{
+ Wire w1(wt, l_eff);
+ double pton_size = deviceType->n_to_p_eff_curr_drv_ratio;
+ // input capacitance of a repeater = input capacitance of nand.
+ double nsize = s1*(1 + pton_size)/(2 + pton_size);
+ nsize = (nsize < 1) ? 1 : nsize;
+
+ double tc = 2*tr_R_on(nsize*min_w_nmos, NCH, 1) *
+ (drain_C_(nsize*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)*2 +
+ 2 * gate_C(s2*(min_w_nmos + min_w_pmos), 0));
+ delay+= horowitz (w1.out_rise_time, tc,
+ deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE);
+ power.readOp.dynamic += 0.5 *
+ (2*drain_C_(pton_size * nsize*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ + drain_C_(nsize*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ + 2*gate_C(s2*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd;
+
+ power.searchOp.dynamic += 0.5 *
+ (2*drain_C_(pton_size * nsize*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ + drain_C_(nsize*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ + 2*gate_C(s2*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd * wire_bw ;
+ power.readOp.leakage += (wire_bw*cmos_Isub_leakage(min_w_nmos*(nsize*2), min_w_pmos * nsize * 2, 2, nand))*deviceType->Vdd;
+ power.readOp.gate_leakage += (wire_bw*cmos_Ig_leakage(min_w_nmos*(nsize*2), min_w_pmos * nsize * 2, 2, nand))*deviceType->Vdd;
+}
+
+
+
+// tristate buffer model consisting of not, nand, nor, and driver transistors
+void Htree2::output_buffer(double s1, double s2, double l_eff)
+{
+ Wire w1(wt, l_eff);
+ double pton_size = deviceType->n_to_p_eff_curr_drv_ratio;
+ // input capacitance of repeater = input capacitance of nand + nor.
+ double size = s1*(1 + pton_size)/(2 + pton_size + 1 + 2*pton_size);
+ double s_eff = //stage eff of a repeater in a wire
+ (gate_C(s2*(min_w_nmos + min_w_pmos), 0) + w1.wire_cap(l_eff*1e-6,true))/
+ gate_C(s2*(min_w_nmos + min_w_pmos), 0);
+ double tr_size = gate_C(s1*(min_w_nmos + min_w_pmos), 0) * 1/2/(s_eff*gate_C(min_w_pmos, 0));
+ size = (size < 1) ? 1 : size;
+
+ double res_nor = 2*tr_R_on(size*min_w_pmos, PCH, 1);
+ double res_ptrans = tr_R_on(tr_size*min_w_nmos, NCH, 1);
+ double cap_nand_out = drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)*2 +
+ gate_C(tr_size*min_w_pmos, 0);
+ double cap_ptrans_out = 2 *(drain_C_(tr_size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(tr_size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)) +
+ gate_C(s1*(min_w_nmos + min_w_pmos), 0);
+
+ double tc = res_nor * cap_nand_out + (res_nor + res_ptrans) * cap_ptrans_out;
+
+
+ delay += horowitz (w1.out_rise_time, tc,
+ deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE);
+
+ //nand
+ power.readOp.dynamic += 0.5 *
+ (2*drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(tr_size*(min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd;
+
+ power.searchOp.dynamic += 0.5 *
+ (2*drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(tr_size*(min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd*init_wire_bw;
+
+ //not
+ power.readOp.dynamic += 0.5 *
+ (drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ +drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ +gate_C(size*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd;
+
+ power.searchOp.dynamic += 0.5 *
+ (drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ +drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ +gate_C(size*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd*init_wire_bw;
+
+ //nor
+ power.readOp.dynamic += 0.5 *
+ (drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ + 2*drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ +gate_C(tr_size*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd;
+
+ power.searchOp.dynamic += 0.5 *
+ (drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ + 2*drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ +gate_C(tr_size*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd*init_wire_bw;
+
+ //output transistor
+ power.readOp.dynamic += 0.5 *
+ ((drain_C_(tr_size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ +drain_C_(tr_size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def))*2
+ + gate_C(s1*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd;
+
+ power.searchOp.dynamic += 0.5 *
+ ((drain_C_(tr_size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ +drain_C_(tr_size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def))*2
+ + gate_C(s1*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd*init_wire_bw;
+
+ if(uca_tree) {
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*tr_size*2, min_w_pmos*tr_size*2, 1, inv)*deviceType->Vdd*wire_bw;/*inverter + output tr*/
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nand)*deviceType->Vdd*wire_bw;//nand
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nor)*deviceType->Vdd*wire_bw;//nor
+
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*tr_size*2, min_w_pmos*tr_size*2, 1, inv)*deviceType->Vdd*wire_bw;/*inverter + output tr*/
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nand)*deviceType->Vdd*wire_bw;//nand
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nor)*deviceType->Vdd*wire_bw;//nor
+ //power.readOp.gate_leakage *=;
+ }
+ else {
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*tr_size*2, min_w_pmos*tr_size*2, 1, inv)*deviceType->Vdd*wire_bw;/*inverter + output tr*/
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nand)*deviceType->Vdd*wire_bw;//nand
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nor)*deviceType->Vdd*wire_bw;//nor
+
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*tr_size*2, min_w_pmos*tr_size*2, 1, inv)*deviceType->Vdd*wire_bw;/*inverter + output tr*/
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nand)*deviceType->Vdd*wire_bw;//nand
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nor)*deviceType->Vdd*wire_bw;//nor
+ //power.readOp.gate_leakage *=deviceType->Vdd*wire_bw;
+ }
+}
+
+
+
+/* calculates the input h-tree delay/power
+ * A nand gate is used at each node to
+ * limit the signal
+ * The area of an unbalanced htree (rows != columns)
+ * depends on how data is traversed.
+ * In the following function, if ( no. of rows < no. of columns),
+ * then data first traverse in excess hor. links until vertical
+ * and horizontal nodes are same.
+ * If no. of rows is bigger, then data traverse in
+ * a hor. link followed by a ver. link in a repeated
+ * fashion (similar to a balanced tree) until there are no
+ * hor. links left. After this it goes through the remaining vertical
+ * links.
+ */
+ void
+Htree2::in_htree()
+{
+ //temp var
+ double s1 = 0, s2 = 0, s3 = 0;
+ double l_eff = 0;
+ Wire *wtemp1 = 0, *wtemp2 = 0, *wtemp3 = 0;
+ double len = 0, ht = 0;
+ int option = 0;
+
+ int h = (int) _log2(ndwl/2); // horizontal nodes
+ int v = (int) _log2(ndbl/2); // vertical nodes
+ double len_temp;
+ double ht_temp;
+ if (uca_tree)
+ {//Sheng: this computation do not consider the wires that route from edge to middle.
+ ht_temp = (mat_height*ndbl/2 +/* since uca_tree models interbank tree, mat_height => bank height */
+ ((add_bits + data_in_bits + data_out_bits + (search_data_in_bits + search_data_out_bits)) * g_tp.wire_outside_mat.pitch *
+ 2 * (1-pow(0.5,h))))/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + data_in_bits + data_out_bits + (search_data_in_bits + search_data_out_bits)) * g_tp.wire_outside_mat.pitch *
+ 2 * (1-pow(0.5,v))))/2;
+ }
+ else
+ {
+ if (ndwl == ndbl) {
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* (ndbl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * h)
+ )/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits)) * (ndwl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * v))/2;
+ }
+ else if (ndwl > ndbl) {
+ double excess_part = (_log2(ndwl/2) - _log2(ndbl/2));
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits + + (search_data_in_bits + search_data_out_bits)) * ((ndbl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ (data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch *
+ (2*(1 - pow(0.5, h-v)) + pow(0.5, v-h) * v))/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* (ndwl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * v))/2;
+ }
+ else {
+ double excess_part = (_log2(ndbl/2) - _log2(ndwl/2));
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* ((ndwl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * h)
+ )/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits)) * ((ndwl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ (data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * (h + 2*(1-pow(0.5, v-h))))/2;
+ }
+ }
+
+ area.h = ht_temp * 2;
+ area.w = len_temp * 2;
+ delay = 0;
+ power.readOp.dynamic = 0;
+ power.readOp.leakage = 0;
+ power.searchOp.dynamic =0;
+ len = len_temp;
+ ht = ht_temp/2;
+
+ while (v > 0 || h > 0)
+ {
+ if (wtemp1) delete wtemp1;
+ if (wtemp2) delete wtemp2;
+ if (wtemp3) delete wtemp3;
+
+ if (h > v)
+ {
+ //the iteration considers only one horizontal link
+ wtemp1 = new Wire(wt, len); // hor
+ wtemp2 = new Wire(wt, len/2); // ver
+ len_temp = len;
+ len /= 2;
+ wtemp3 = 0;
+ h--;
+ option = 0;
+ }
+ else if (v>0 && h>0)
+ {
+ //considers one horizontal link and one vertical link
+ wtemp1 = new Wire(wt, len); // hor
+ wtemp2 = new Wire(wt, ht); // ver
+ wtemp3 = new Wire(wt, len/2); // next hor
+ len_temp = len;
+ ht_temp = ht;
+ len /= 2;
+ ht /= 2;
+ v--;
+ h--;
+ option = 1;
+ }
+ else
+ {
+ // considers only one vertical link
+ assert(h == 0);
+ wtemp1 = new Wire(wt, ht); // ver
+ wtemp2 = new Wire(wt, ht/2); // hor
+ ht_temp = ht;
+ ht /= 2;
+ wtemp3 = 0;
+ v--;
+ option = 2;
+ }
+
+ delay += wtemp1->delay;
+ power.readOp.dynamic += wtemp1->power.readOp.dynamic;
+ power.searchOp.dynamic += wtemp1->power.readOp.dynamic*wire_bw;
+ power.readOp.leakage += wtemp1->power.readOp.leakage*wire_bw;
+ power.readOp.gate_leakage += wtemp1->power.readOp.gate_leakage*wire_bw;
+ if ((uca_tree == false && option == 2) || search_tree==true)
+ {
+ wire_bw*=2; // wire bandwidth doubles only for vertical branches
+ }
+
+ if (uca_tree == false)
+ {
+ if (len_temp > wtemp1->repeater_spacing)
+ {
+ s1 = wtemp1->repeater_size;
+ l_eff = wtemp1->repeater_spacing;
+ }
+ else
+ {
+ s1 = (len_temp/wtemp1->repeater_spacing) * wtemp1->repeater_size;
+ l_eff = len_temp;
+ }
+
+ if (ht_temp > wtemp2->repeater_spacing)
+ {
+ s2 = wtemp2->repeater_size;
+ }
+ else
+ {
+ s2 = (len_temp/wtemp2->repeater_spacing) * wtemp2->repeater_size;
+ }
+ // first level
+ input_nand(s1, s2, l_eff);
+ }
+
+
+ if (option != 1)
+ {
+ continue;
+ }
+
+ // second level
+ delay += wtemp2->delay;
+ power.readOp.dynamic += wtemp2->power.readOp.dynamic;
+ power.searchOp.dynamic += wtemp2->power.readOp.dynamic*wire_bw;
+ power.readOp.leakage += wtemp2->power.readOp.leakage*wire_bw;
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+
+ if (uca_tree)
+ {
+ power.readOp.leakage += (wtemp2->power.readOp.leakage*wire_bw);
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+ }
+ else
+ {
+ power.readOp.leakage += (wtemp2->power.readOp.leakage*wire_bw);
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+ wire_bw*=2;
+
+ if (ht_temp > wtemp3->repeater_spacing)
+ {
+ s3 = wtemp3->repeater_size;
+ l_eff = wtemp3->repeater_spacing;
+ }
+ else
+ {
+ s3 = (len_temp/wtemp3->repeater_spacing) * wtemp3->repeater_size;
+ l_eff = ht_temp;
+ }
+
+ input_nand(s2, s3, l_eff);
+ }
+ }
+
+ if (wtemp1) delete wtemp1;
+ if (wtemp2) delete wtemp2;
+ if (wtemp3) delete wtemp3;
+}
+
+
+
+/* a tristate buffer is used to handle fan-ins
+ * The area of an unbalanced htree (rows != columns)
+ * depends on how data is traversed.
+ * In the following function, if ( no. of rows < no. of columns),
+ * then data first traverse in excess hor. links until vertical
+ * and horizontal nodes are same.
+ * If no. of rows is bigger, then data traverse in
+ * a hor. link followed by a ver. link in a repeated
+ * fashion (similar to a balanced tree) until there are no
+ * hor. links left. After this it goes through the remaining vertical
+ * links.
+ */
+void Htree2::out_htree()
+{
+ //temp var
+ double s1 = 0, s2 = 0, s3 = 0;
+ double l_eff = 0;
+ Wire *wtemp1 = 0, *wtemp2 = 0, *wtemp3 = 0;
+ double len = 0, ht = 0;
+ int option = 0;
+
+ int h = (int) _log2(ndwl/2);
+ int v = (int) _log2(ndbl/2);
+ double len_temp;
+ double ht_temp;
+ if (uca_tree)
+ {
+ ht_temp = (mat_height*ndbl/2 +/* since uca_tree models interbank tree, mat_height => bank height */
+ ((add_bits + data_in_bits + data_out_bits + (search_data_in_bits + search_data_out_bits)) * g_tp.wire_outside_mat.pitch *
+ 2 * (1-pow(0.5,h))))/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + data_in_bits + data_out_bits + (search_data_in_bits + search_data_out_bits)) * g_tp.wire_outside_mat.pitch *
+ 2 * (1-pow(0.5,v))))/2;
+ }
+ else
+ {
+ if (ndwl == ndbl) {
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits+ (search_data_in_bits + search_data_out_bits)) * (ndbl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * h)
+ )/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits)) * (ndwl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * v))/2;
+
+ }
+ else if (ndwl > ndbl) {
+ double excess_part = (_log2(ndwl/2) - _log2(ndbl/2));
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits + (search_data_in_bits + search_data_out_bits)) * ((ndbl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ (data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch *
+ (2*(1 - pow(0.5, h-v)) + pow(0.5, v-h) * v))/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* (ndwl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * v))/2;
+ }
+ else {
+ double excess_part = (_log2(ndbl/2) - _log2(ndwl/2));
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* ((ndwl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * h)
+ )/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* ((ndwl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ (data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * (h + 2*(1-pow(0.5, v-h))))/2;
+ }
+ }
+ area.h = ht_temp * 2;
+ area.w = len_temp * 2;
+ delay = 0;
+ power.readOp.dynamic = 0;
+ power.readOp.leakage = 0;
+ power.readOp.gate_leakage = 0;
+ //cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
+ len = len_temp;
+ ht = ht_temp/2;
+
+ while (v > 0 || h > 0)
+ { //finds delay/power of each link in the tree
+ if (wtemp1) delete wtemp1;
+ if (wtemp2) delete wtemp2;
+ if (wtemp3) delete wtemp3;
+
+ if(h > v) {
+ //the iteration considers only one horizontal link
+ wtemp1 = new Wire(wt, len); // hor
+ wtemp2 = new Wire(wt, len/2); // ver
+ len_temp = len;
+ len /= 2;
+ wtemp3 = 0;
+ h--;
+ option = 0;
+ }
+ else if (v>0 && h>0) {
+ //considers one horizontal link and one vertical link
+ wtemp1 = new Wire(wt, len); // hor
+ wtemp2 = new Wire(wt, ht); // ver
+ wtemp3 = new Wire(wt, len/2); // next hor
+ len_temp = len;
+ ht_temp = ht;
+ len /= 2;
+ ht /= 2;
+ v--;
+ h--;
+ option = 1;
+ }
+ else {
+ // considers only one vertical link
+ assert(h == 0);
+ wtemp1 = new Wire(wt, ht); // hor
+ wtemp2 = new Wire(wt, ht/2); // ver
+ ht_temp = ht;
+ ht /= 2;
+ wtemp3 = 0;
+ v--;
+ option = 2;
+ }
+ delay += wtemp1->delay;
+ power.readOp.dynamic += wtemp1->power.readOp.dynamic;
+ power.searchOp.dynamic += wtemp1->power.readOp.dynamic*init_wire_bw;
+ power.readOp.leakage += wtemp1->power.readOp.leakage*wire_bw;
+ power.readOp.gate_leakage += wtemp1->power.readOp.gate_leakage*wire_bw;
+ //cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
+ if ((uca_tree == false && option == 2) || search_tree==true)
+ {
+ wire_bw*=2;
+ }
+
+ if (uca_tree == false)
+ {
+ if (len_temp > wtemp1->repeater_spacing)
+ {
+ s1 = wtemp1->repeater_size;
+ l_eff = wtemp1->repeater_spacing;
+ }
+ else
+ {
+ s1 = (len_temp/wtemp1->repeater_spacing) * wtemp1->repeater_size;
+ l_eff = len_temp;
+ }
+ if (ht_temp > wtemp2->repeater_spacing)
+ {
+ s2 = wtemp2->repeater_size;
+ }
+ else
+ {
+ s2 = (len_temp/wtemp2->repeater_spacing) * wtemp2->repeater_size;
+ }
+ // first level
+ output_buffer(s1, s2, l_eff);
+ }
+
+
+ if (option != 1)
+ {
+ continue;
+ }
+
+ // second level
+ delay += wtemp2->delay;
+ power.readOp.dynamic += wtemp2->power.readOp.dynamic;
+ power.searchOp.dynamic += wtemp2->power.readOp.dynamic*init_wire_bw;
+ power.readOp.leakage += wtemp2->power.readOp.leakage*wire_bw;
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+ //cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
+ if (uca_tree)
+ {
+ power.readOp.leakage += (wtemp2->power.readOp.leakage*wire_bw);
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+ }
+ else
+ {
+ power.readOp.leakage += (wtemp2->power.readOp.leakage*wire_bw);
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+ wire_bw*=2;
+
+ if (ht_temp > wtemp3->repeater_spacing)
+ {
+ s3 = wtemp3->repeater_size;
+ l_eff = wtemp3->repeater_spacing;
+ }
+ else
+ {
+ s3 = (len_temp/wtemp3->repeater_spacing) * wtemp3->repeater_size;
+ l_eff = ht_temp;
+ }
+
+ output_buffer(s2, s3, l_eff);
+ }
+ //cout<<"power.readOp.leakage"<<power.readOp.leakage<<endl;
+ //cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
+ //cout<<"wtemp2->power.readOp.gate_leakage"<<wtemp2->power.readOp.gate_leakage<<endl;
+ }
+
+ if (wtemp1) delete wtemp1;
+ if (wtemp2) delete wtemp2;
+ if (wtemp3) delete wtemp3;
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#ifndef __HTREE2_H__
+#define __HTREE2_H__
+
+#include "assert.h"
+#include "basic_circuit.h"
+#include "cacti_interface.h"
+#include "component.h"
+#include "parameter.h"
+#include "subarray.h"
+#include "wire.h"
+
+// leakge power includes entire htree in a bank (when uca_tree == false)
+// leakge power includes only part to one bank when uca_tree == true
+
+class Htree2 : public Component
+{
+ public:
+ Htree2(enum Wire_type wire_model,
+ double mat_w, double mat_h, int add, int data_in, int search_data_in, int data_out, int search_data_out, int bl, int wl,
+ enum Htree_type h_type, bool uca_tree_ = false, bool search_tree_ = false,
+ TechnologyParameter::DeviceType *dt = &(g_tp.peri_global));
+ ~Htree2() {};
+
+ void in_htree();
+ void out_htree();
+
+ // repeaters only at h-tree nodes
+ void limited_in_htree();
+ void limited_out_htree();
+ void input_nand(double s1, double s2, double l);
+ void output_buffer(double s1, double s2, double l);
+
+ double in_rise_time, out_rise_time;
+
+ void set_in_rise_time(double rt)
+ {
+ in_rise_time = rt;
+ }
+
+ double max_unpipelined_link_delay;
+ powerDef power_bit;
+
+
+ private:
+ double wire_bw;
+ double init_wire_bw; // bus width at root
+ enum Htree_type tree_type;
+ double htree_hnodes;
+ double htree_vnodes;
+ double mat_width;
+ double mat_height;
+ int add_bits, data_in_bits,search_data_in_bits,data_out_bits, search_data_out_bits;
+ int ndbl, ndwl;
+ bool uca_tree; // should have full bandwidth to access all banks in the array simultaneously
+ bool search_tree;
+
+ enum Wire_type wt;
+ double min_w_nmos;
+ double min_w_pmos;
+
+ TechnologyParameter::DeviceType *deviceType;
+
+};
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include <fstream>
+#include <iostream>
+#include <sstream>
+
+#include "Ucache.h"
+#include "arbiter.h"
+#include "area.h"
+#include "basic_circuit.h"
+#include "crossbar.h"
+#include "io.h"
+#include "nuca.h"
+#include "parameter.h"
+//#include "highradix.h"
+
+using namespace std;
+
+
+/* Parses "cache.cfg" file */
+ void
+InputParameter::parse_cfg(const string & in_file)
+{
+ FILE *fp = fopen(in_file.c_str(), "r");
+ char line[5000];
+ char jk[5000];
+ char temp_var[5000];
+
+ if(!fp) {
+ cout << in_file << " is missing!\n";
+ exit(-1);
+ }
+
+ while(fscanf(fp, "%[^\n]\n", line) != EOF) {
+
+ if (!strncmp("-size", line, strlen("-size"))) {
+ sscanf(line, "-size %[(:-~)*]%u", jk, &(cache_sz));
+ continue;
+ }
+
+ if (!strncmp("-page size", line, strlen("-page size"))) {
+ sscanf(line, "-page size %[(:-~)*]%u", jk, &(page_sz_bits));
+ continue;
+ }
+
+ if (!strncmp("-burst length", line, strlen("-burst length"))) {
+ sscanf(line, "-burst %[(:-~)*]%u", jk, &(burst_len));
+ continue;
+ }
+
+ if (!strncmp("-internal prefetch width", line, strlen("-internal prefetch width"))) {
+ sscanf(line, "-internal prefetch %[(:-~)*]%u", jk, &(int_prefetch_w));
+ continue;
+ }
+
+ if (!strncmp("-block", line, strlen("-block"))) {
+ sscanf(line, "-block size (bytes) %d", &(line_sz));
+ continue;
+ }
+
+ if (!strncmp("-associativity", line, strlen("-associativity"))) {
+ sscanf(line, "-associativity %d", &(assoc));
+ continue;
+ }
+
+ if (!strncmp("-read-write", line, strlen("-read-write"))) {
+ sscanf(line, "-read-write port %d", &(num_rw_ports));
+ continue;
+ }
+
+ if (!strncmp("-exclusive read", line, strlen("exclusive read"))) {
+ sscanf(line, "-exclusive read port %d", &(num_rd_ports));
+ continue;
+ }
+
+ if(!strncmp("-exclusive write", line, strlen("-exclusive write"))) {
+ sscanf(line, "-exclusive write port %d", &(num_wr_ports));
+ continue;
+ }
+
+ if (!strncmp("-single ended", line, strlen("-single ended"))) {
+ sscanf(line, "-single %[(:-~)*]%d", jk,
+ &(num_se_rd_ports));
+ continue;
+ }
+
+ if (!strncmp("-search", line, strlen("-search"))) {
+ sscanf(line, "-search port %d", &(num_search_ports));
+ continue;
+ }
+
+ if (!strncmp("-UCA bank", line, strlen("-UCA bank"))) {
+ sscanf(line, "-UCA bank%[((:-~)| )*]%d", jk, &(nbanks));
+ continue;
+ }
+
+ if (!strncmp("-technology", line, strlen("-technology"))) {
+ sscanf(line, "-technology (u) %lf", &(F_sz_um));
+ F_sz_nm = F_sz_um*1000;
+ continue;
+ }
+
+ if (!strncmp("-output/input", line, strlen("-output/input"))) {
+ sscanf(line, "-output/input bus %[(:-~)*]%d", jk, &(out_w));
+ continue;
+ }
+
+ if (!strncmp("-operating temperature", line, strlen("-operating temperature"))) {
+ sscanf(line, "-operating temperature %[(:-~)*]%d", jk, &(temp));
+ continue;
+ }
+
+ if (!strncmp("-cache type", line, strlen("-cache type"))) {
+ sscanf(line, "-cache type%[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if (!strncmp("cache", temp_var, sizeof("cache"))) {
+ is_cache = true;
+ }
+ else
+ {
+ is_cache = false;
+ }
+
+ if (!strncmp("main memory", temp_var, sizeof("main memory"))) {
+ is_main_mem = true;
+ }
+ else {
+ is_main_mem = false;
+ }
+
+ if (!strncmp("cam", temp_var, sizeof("cam"))) {
+ pure_cam = true;
+ }
+ else {
+ pure_cam = false;
+ }
+
+ if (!strncmp("ram", temp_var, sizeof("ram"))) {
+ pure_ram = true;
+ }
+ else {
+ if (!is_main_mem)
+ pure_ram = false;
+ else
+ pure_ram = true;
+ }
+
+ continue;
+ }
+
+
+ if (!strncmp("-tag size", line, strlen("-tag size"))) {
+ sscanf(line, "-tag size%[^\"]\"%[^\"]\"", jk, temp_var);
+ if (!strncmp("default", temp_var, sizeof("default"))) {
+ specific_tag = false;
+ tag_w = 42; /* the acutal value is calculated
+ * later based on the cache size, bank count, and associativity
+ */
+ }
+ else {
+ specific_tag = true;
+ sscanf(line, "-tag size (b) %d", &(tag_w));
+ }
+ continue;
+ }
+
+ if (!strncmp("-access mode", line, strlen("-access mode"))) {
+ sscanf(line, "-access %[^\"]\"%[^\"]\"", jk, temp_var);
+ if (!strncmp("fast", temp_var, strlen("fast"))) {
+ access_mode = 2;
+ }
+ else if (!strncmp("sequential", temp_var, strlen("sequential"))) {
+ access_mode = 1;
+ }
+ else if(!strncmp("normal", temp_var, strlen("normal"))) {
+ access_mode = 0;
+ }
+ else {
+ cout << "ERROR: Invalid access mode!\n";
+ exit(0);
+ }
+ continue;
+ }
+
+ if (!strncmp("-Data array cell type", line, strlen("-Data array cell type"))) {
+ sscanf(line, "-Data array cell type %[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if(!strncmp("itrs-hp", temp_var, strlen("itrs-hp"))) {
+ data_arr_ram_cell_tech_type = 0;
+ }
+ else if(!strncmp("itrs-lstp", temp_var, strlen("itrs-lstp"))) {
+ data_arr_ram_cell_tech_type = 1;
+ }
+ else if(!strncmp("itrs-lop", temp_var, strlen("itrs-lop"))) {
+ data_arr_ram_cell_tech_type = 2;
+ }
+ else if(!strncmp("lp-dram", temp_var, strlen("lp-dram"))) {
+ data_arr_ram_cell_tech_type = 3;
+ }
+ else if(!strncmp("comm-dram", temp_var, strlen("comm-dram"))) {
+ data_arr_ram_cell_tech_type = 4;
+ }
+ else {
+ cout << "ERROR: Invalid type!\n";
+ exit(0);
+ }
+ continue;
+ }
+
+ if (!strncmp("-Data array peripheral type", line, strlen("-Data array peripheral type"))) {
+ sscanf(line, "-Data array peripheral type %[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if(!strncmp("itrs-hp", temp_var, strlen("itrs-hp"))) {
+ data_arr_peri_global_tech_type = 0;
+ }
+ else if(!strncmp("itrs-lstp", temp_var, strlen("itrs-lstp"))) {
+ data_arr_peri_global_tech_type = 1;
+ }
+ else if(!strncmp("itrs-lop", temp_var, strlen("itrs-lop"))) {
+ data_arr_peri_global_tech_type = 2;
+ }
+ else {
+ cout << "ERROR: Invalid type!\n";
+ exit(0);
+ }
+ continue;
+ }
+
+ if (!strncmp("-Tag array cell type", line, strlen("-Tag array cell type"))) {
+ sscanf(line, "-Tag array cell type %[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if(!strncmp("itrs-hp", temp_var, strlen("itrs-hp"))) {
+ tag_arr_ram_cell_tech_type = 0;
+ }
+ else if(!strncmp("itrs-lstp", temp_var, strlen("itrs-lstp"))) {
+ tag_arr_ram_cell_tech_type = 1;
+ }
+ else if(!strncmp("itrs-lop", temp_var, strlen("itrs-lop"))) {
+ tag_arr_ram_cell_tech_type = 2;
+ }
+ else if(!strncmp("lp-dram", temp_var, strlen("lp-dram"))) {
+ tag_arr_ram_cell_tech_type = 3;
+ }
+ else if(!strncmp("comm-dram", temp_var, strlen("comm-dram"))) {
+ tag_arr_ram_cell_tech_type = 4;
+ }
+ else {
+ cout << "ERROR: Invalid type!\n";
+ exit(0);
+ }
+ continue;
+ }
+
+ if (!strncmp("-Tag array peripheral type", line, strlen("-Tag array peripheral type"))) {
+ sscanf(line, "-Tag array peripheral type %[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if(!strncmp("itrs-hp", temp_var, strlen("itrs-hp"))) {
+ tag_arr_peri_global_tech_type = 0;
+ }
+ else if(!strncmp("itrs-lstp", temp_var, strlen("itrs-lstp"))) {
+ tag_arr_peri_global_tech_type = 1;
+ }
+ else if(!strncmp("itrs-lop", temp_var, strlen("itrs-lop"))) {
+ tag_arr_peri_global_tech_type = 2;
+ }
+ else {
+ cout << "ERROR: Invalid type!\n";
+ exit(0);
+ }
+ continue;
+ }
+ if(!strncmp("-design", line, strlen("-design"))) {
+ sscanf(line, "-%[((:-~)| |,)*]%d:%d:%d:%d:%d", jk,
+ &(delay_wt), &(dynamic_power_wt),
+ &(leakage_power_wt),
+ &(cycle_time_wt), &(area_wt));
+ continue;
+ }
+
+ if(!strncmp("-deviate", line, strlen("-deviate"))) {
+ sscanf(line, "-%[((:-~)| |,)*]%d:%d:%d:%d:%d", jk,
+ &(delay_dev), &(dynamic_power_dev),
+ &(leakage_power_dev),
+ &(cycle_time_dev), &(area_dev));
+ continue;
+ }
+
+ if(!strncmp("-Optimize", line, strlen("-Optimize"))) {
+ sscanf(line, "-Optimize %[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if(!strncmp("ED^2", temp_var, strlen("ED^2"))) {
+ ed = 2;
+ }
+ else if(!strncmp("ED", temp_var, strlen("ED"))) {
+ ed = 1;
+ }
+ else {
+ ed = 0;
+ }
+ }
+
+ if(!strncmp("-NUCAdesign", line, strlen("-NUCAdesign"))) {
+ sscanf(line, "-%[((:-~)| |,)*]%d:%d:%d:%d:%d", jk,
+ &(delay_wt_nuca), &(dynamic_power_wt_nuca),
+ &(leakage_power_wt_nuca),
+ &(cycle_time_wt_nuca), &(area_wt_nuca));
+ continue;
+ }
+
+ if(!strncmp("-NUCAdeviate", line, strlen("-NUCAdeviate"))) {
+ sscanf(line, "-%[((:-~)| |,)*]%d:%d:%d:%d:%d", jk,
+ &(delay_dev_nuca), &(dynamic_power_dev_nuca),
+ &(leakage_power_dev_nuca),
+ &(cycle_time_dev_nuca), &(area_dev_nuca));
+ continue;
+ }
+
+ if(!strncmp("-Cache model", line, strlen("-cache model"))) {
+ sscanf(line, "-Cache model %[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if (!strncmp("UCA", temp_var, strlen("UCA"))) {
+ nuca = 0;
+ }
+ else {
+ nuca = 1;
+ }
+ continue;
+ }
+
+ if(!strncmp("-NUCA bank", line, strlen("-NUCA bank"))) {
+ sscanf(line, "-NUCA bank count %d", &(nuca_bank_count));
+
+ if (nuca_bank_count != 0) {
+ force_nuca_bank = 1;
+ }
+ continue;
+ }
+
+ if(!strncmp("-Wire inside mat", line, strlen("-Wire inside mat"))) {
+ sscanf(line, "-Wire%[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if (!strncmp("global", temp_var, strlen("global"))) {
+ wire_is_mat_type = 2;
+ continue;
+ }
+ else if (!strncmp("local", temp_var, strlen("local"))) {
+ wire_is_mat_type = 0;
+ continue;
+ }
+ else {
+ wire_is_mat_type = 1;
+ continue;
+ }
+ }
+
+ if(!strncmp("-Wire outside mat", line, strlen("-Wire outside mat"))) {
+ sscanf(line, "-Wire%[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if (!strncmp("global", temp_var, strlen("global"))) {
+ wire_os_mat_type = 2;
+ }
+ else {
+ wire_os_mat_type = 1;
+ }
+ continue;
+ }
+
+ if(!strncmp("-Interconnect projection", line, strlen("-Interconnect projection"))) {
+ sscanf(line, "-Interconnect projection%[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if (!strncmp("aggressive", temp_var, strlen("aggressive"))) {
+ ic_proj_type = 0;
+ }
+ else {
+ ic_proj_type = 1;
+ }
+ continue;
+ }
+
+ if(!strncmp("-Wire signalling", line, strlen("-wire signalling"))) {
+ sscanf(line, "-Wire%[^\"]\"%[^\"]\"", jk, temp_var);
+
+ if (!strncmp("default", temp_var, strlen("default"))) {
+ force_wiretype = 0;
+ wt = Global;
+ }
+ else if (!(strncmp("Global_10", temp_var, strlen("Global_10")))) {
+ force_wiretype = 1;
+ wt = Global_10;
+ }
+ else if (!(strncmp("Global_20", temp_var, strlen("Global_20")))) {
+ force_wiretype = 1;
+ wt = Global_20;
+ }
+ else if (!(strncmp("Global_30", temp_var, strlen("Global_30")))) {
+ force_wiretype = 1;
+ wt = Global_30;
+ }
+ else if (!(strncmp("Global_5", temp_var, strlen("Global_5")))) {
+ force_wiretype = 1;
+ wt = Global_5;
+ }
+ else if (!(strncmp("Global", temp_var, strlen("Global")))) {
+ force_wiretype = 1;
+ wt = Global;
+ }
+ else {
+ wt = Low_swing;
+ force_wiretype = 1;
+ }
+ continue;
+ }
+
+
+
+ if(!strncmp("-Core", line, strlen("-Core"))) {
+ sscanf(line, "-Core count %d\n", &(cores));
+ if (cores > 16) {
+ printf("No. of cores should be less than 16!\n");
+ }
+ continue;
+ }
+
+ if(!strncmp("-Cache level", line, strlen("-Cache level"))) {
+ sscanf(line, "-Cache l%[^\"]\"%[^\"]\"", jk, temp_var);
+ if (!strncmp("L2", temp_var, strlen("L2"))) {
+ cache_level = 0;
+ }
+ else {
+ cache_level = 1;
+ }
+ }
+
+ if(!strncmp("-Print level", line, strlen("-Print level"))) {
+ sscanf(line, "-Print l%[^\"]\"%[^\"]\"", jk, temp_var);
+ if (!strncmp("DETAILED", temp_var, strlen("DETAILED"))) {
+ print_detail = 1;
+ }
+ else {
+ print_detail = 0;
+ }
+
+ }
+ if(!strncmp("-Add ECC", line, strlen("-Add ECC"))) {
+ sscanf(line, "-Add ECC %[^\"]\"%[^\"]\"", jk, temp_var);
+ if (!strncmp("true", temp_var, strlen("true"))) {
+ add_ecc_b_ = true;
+ }
+ else {
+ add_ecc_b_ = false;
+ }
+ }
+
+ if(!strncmp("-Print input parameters", line, strlen("-Print input parameters"))) {
+ sscanf(line, "-Print input %[^\"]\"%[^\"]\"", jk, temp_var);
+ if (!strncmp("true", temp_var, strlen("true"))) {
+ print_input_args = true;
+ }
+ else {
+ print_input_args = false;
+ }
+ }
+
+ if(!strncmp("-Force cache config", line, strlen("-Force cache config"))) {
+ sscanf(line, "-Force cache %[^\"]\"%[^\"]\"", jk, temp_var);
+ if (!strncmp("true", temp_var, strlen("true"))) {
+ force_cache_config = true;
+ }
+ else {
+ force_cache_config = false;
+ }
+ }
+
+ if(!strncmp("-Ndbl", line, strlen("-Ndbl"))) {
+ sscanf(line, "-Ndbl %d\n", &(ndbl));
+ continue;
+ }
+ if(!strncmp("-Ndwl", line, strlen("-Ndwl"))) {
+ sscanf(line, "-Ndwl %d\n", &(ndwl));
+ continue;
+ }
+ if(!strncmp("-Nspd", line, strlen("-Nspd"))) {
+ sscanf(line, "-Nspd %d\n", &(nspd));
+ continue;
+ }
+ if(!strncmp("-Ndsam1", line, strlen("-Ndsam1"))) {
+ sscanf(line, "-Ndsam1 %d\n", &(ndsam1));
+ continue;
+ }
+ if(!strncmp("-Ndsam2", line, strlen("-Ndsam2"))) {
+ sscanf(line, "-Ndsam2 %d\n", &(ndsam2));
+ continue;
+ }
+ if(!strncmp("-Ndcm", line, strlen("-Ndcm"))) {
+ sscanf(line, "-Ndcm %d\n", &(ndcm));
+ continue;
+ }
+
+ }
+ rpters_in_htree = true;
+ fclose(fp);
+}
+
+ void
+InputParameter::display_ip()
+{
+ cout << "Cache size : " << cache_sz << endl;
+ cout << "Block size : " << line_sz << endl;
+ cout << "Associativity : " << assoc << endl;
+ cout << "Read only ports : " << num_rd_ports << endl;
+ cout << "Write only ports : " << num_wr_ports << endl;
+ cout << "Read write ports : " << num_rw_ports << endl;
+ cout << "Single ended read ports : " << num_se_rd_ports << endl;
+ if (fully_assoc||pure_cam)
+ {
+ cout << "Search ports : " << num_search_ports << endl;
+ }
+ cout << "Cache banks (UCA) : " << nbanks << endl;
+ cout << "Technology : " << F_sz_um << endl;
+ cout << "Temperature : " << temp << endl;
+ cout << "Tag size : " << tag_w << endl;
+ if (is_cache) {
+ cout << "array type : " << "Cache" << endl;
+ }
+ if (pure_ram) {
+ cout << "array type : " << "Scratch RAM" << endl;
+ }
+ if (pure_cam)
+ {
+ cout << "array type : " << "CAM" << endl;
+ }
+ cout << "Model as memory : " << is_main_mem << endl;
+ cout << "Access mode : " << access_mode << endl;
+ cout << "Data array cell type : " << data_arr_ram_cell_tech_type << endl;
+ cout << "Data array peripheral type : " << data_arr_peri_global_tech_type << endl;
+ cout << "Tag array cell type : " << tag_arr_ram_cell_tech_type << endl;
+ cout << "Tag array peripheral type : " << tag_arr_peri_global_tech_type << endl;
+ cout << "Optimization target : " << ed << endl;
+ cout << "Design objective (UCA wt) : " << delay_wt << " "
+ << dynamic_power_wt << " " << leakage_power_wt << " " << cycle_time_wt
+ << " " << area_wt << endl;
+ cout << "Design objective (UCA dev) : " << delay_dev << " "
+ << dynamic_power_dev << " " << leakage_power_dev << " " << cycle_time_dev
+ << " " << area_dev << endl;
+ if (nuca)
+ {
+ cout << "Cores : " << cores << endl;
+
+
+ cout << "Design objective (NUCA wt) : " << delay_wt_nuca << " "
+ << dynamic_power_wt_nuca << " " << leakage_power_wt_nuca << " " << cycle_time_wt_nuca
+ << " " << area_wt_nuca << endl;
+ cout << "Design objective (NUCA dev) : " << delay_dev_nuca << " "
+ << dynamic_power_dev_nuca << " " << leakage_power_dev_nuca << " " << cycle_time_dev_nuca
+ << " " << area_dev_nuca << endl;
+ }
+ cout << "Cache model : " << nuca << endl;
+ cout << "Nuca bank : " << nuca_bank_count << endl;
+ cout << "Wire inside mat : " << wire_is_mat_type << endl;
+ cout << "Wire outside mat : " << wire_os_mat_type << endl;
+ cout << "Interconnect projection : " << ic_proj_type << endl;
+ cout << "Wire signalling : " << force_wiretype << endl;
+ cout << "Print level : " << print_detail << endl;
+ cout << "ECC overhead : " << add_ecc_b_ << endl;
+ cout << "Page size : " << page_sz_bits << endl;
+ cout << "Burst length : " << burst_len << endl;
+ cout << "Internal prefetch width : " << int_prefetch_w << endl;
+ cout << "Force cache config : " << g_ip->force_cache_config << endl;
+ if (g_ip->force_cache_config) {
+ cout << "Ndwl : " << g_ip->ndwl << endl;
+ cout << "Ndbl : " << g_ip->ndbl << endl;
+ cout << "Nspd : " << g_ip->nspd << endl;
+ cout << "Ndcm : " << g_ip->ndcm << endl;
+ cout << "Ndsam1 : " << g_ip->ndsam1 << endl;
+ cout << "Ndsam2 : " << g_ip->ndsam2 << endl;
+ }
+}
+
+
+
+powerComponents operator+(const powerComponents & x, const powerComponents & y)
+{
+ powerComponents z;
+
+ z.dynamic = x.dynamic + y.dynamic;
+ z.leakage = x.leakage + y.leakage;
+ z.gate_leakage = x.gate_leakage + y.gate_leakage;
+ z.short_circuit = x.short_circuit + y.short_circuit;
+ z.longer_channel_leakage = x.longer_channel_leakage + y.longer_channel_leakage;
+
+ return z;
+}
+
+powerComponents operator*(const powerComponents & x, double const * const y)
+{
+ powerComponents z;
+
+ z.dynamic = x.dynamic*y[0];
+ z.leakage = x.leakage*y[1];
+ z.gate_leakage = x.gate_leakage*y[2];
+ z.short_circuit = x.short_circuit*y[3];
+ z.longer_channel_leakage = x.longer_channel_leakage*y[1];//longer channel leakage has the same behavior as normal leakage
+
+ return z;
+}
+
+
+powerDef operator+(const powerDef & x, const powerDef & y)
+{
+ powerDef z;
+
+ z.readOp = x.readOp + y.readOp;
+ z.writeOp = x.writeOp + y.writeOp;
+ z.searchOp = x.searchOp + y.searchOp;
+ return z;
+}
+
+powerDef operator*(const powerDef & x, double const * const y)
+{
+ powerDef z;
+
+ z.readOp = x.readOp*y;
+ z.writeOp = x.writeOp*y;
+ z.searchOp = x.searchOp*y;
+ return z;
+}
+
+uca_org_t cacti_interface(const string & infile_name)
+{
+
+ uca_org_t fin_res;
+ //uca_org_t result;
+ fin_res.valid = false;
+
+ g_ip = new InputParameter();
+ g_ip->parse_cfg(infile_name);
+ if(!g_ip->error_checking())
+ exit(0);
+ if (g_ip->print_input_args)
+ g_ip->display_ip();
+
+ init_tech_params(g_ip->F_sz_um, false);
+ Wire winit; // Do not delete this line. It initializes wires.
+
+
+// For HighRadix Only
+// //// Wire wirea(g_ip->wt, 1000);
+// //// wirea.print_wire();
+// //// cout << "Wire Area " << wirea.area.get_area() << " sq. u" << endl;
+// // winit.print_wire();
+// //
+// HighRadix *hr;
+// hr = new HighRadix();
+// hr->compute_power();
+// hr->print_router();
+// exit(0);
+//
+// double sub_switch_sz = 2;
+// double rows = 32;
+// for (int i=0; i<6; i++) {
+// sub_switch_sz = pow(2, i);
+// rows = 64/sub_switch_sz;
+// hr = new HighRadix(sub_switch_sz, rows, .8/* freq */, 64, 2, 64, 0.7);
+// hr->compute_power();
+// hr->print_router();
+// delete hr;
+// }
+// // HighRadix yarc;
+// // yarc.compute_power();
+// // yarc.print_router();
+// winit.print_wire();
+// exit(0);
+// For HighRadix Only End
+
+ if (g_ip->nuca == 1)
+ {
+ Nuca n(&g_tp.peri_global);
+ n.sim_nuca();
+ }
+ g_ip->display_ip();
+ solve(&fin_res);
+
+ output_UCA(&fin_res);
+ output_data_csv(fin_res);
+
+ delete (g_ip);
+ return fin_res;
+}
+
+//cacti6.5's plain interface, please keep !!!
+uca_org_t cacti_interface(
+ int cache_size,
+ int line_size,
+ int associativity,
+ int rw_ports,
+ int excl_read_ports,
+ int excl_write_ports,
+ int single_ended_read_ports,
+ int banks,
+ double tech_node, // in nm
+ int page_sz,
+ int burst_length,
+ int pre_width,
+ int output_width,
+ int specific_tag,
+ int tag_width,
+ int access_mode, //0 normal, 1 seq, 2 fast
+ int cache, //scratch ram or cache
+ int main_mem,
+ int obj_func_delay,
+ int obj_func_dynamic_power,
+ int obj_func_leakage_power,
+ int obj_func_area,
+ int obj_func_cycle_time,
+ int dev_func_delay,
+ int dev_func_dynamic_power,
+ int dev_func_leakage_power,
+ int dev_func_area,
+ int dev_func_cycle_time,
+ int ed_ed2_none, // 0 - ED, 1 - ED^2, 2 - use weight and deviate
+ int temp,
+ int wt, //0 - default(search across everything), 1 - global, 2 - 5% delay penalty, 3 - 10%, 4 - 20 %, 5 - 30%, 6 - low-swing
+ int data_arr_ram_cell_tech_flavor_in, // 0-4
+ int data_arr_peri_global_tech_flavor_in,
+ int tag_arr_ram_cell_tech_flavor_in,
+ int tag_arr_peri_global_tech_flavor_in,
+ int interconnect_projection_type_in, // 0 - aggressive, 1 - normal
+ int wire_inside_mat_type_in,
+ int wire_outside_mat_type_in,
+ int is_nuca, // 0 - UCA, 1 - NUCA
+ int core_count,
+ int cache_level, // 0 - L2, 1 - L3
+ int nuca_bank_count,
+ int nuca_obj_func_delay,
+ int nuca_obj_func_dynamic_power,
+ int nuca_obj_func_leakage_power,
+ int nuca_obj_func_area,
+ int nuca_obj_func_cycle_time,
+ int nuca_dev_func_delay,
+ int nuca_dev_func_dynamic_power,
+ int nuca_dev_func_leakage_power,
+ int nuca_dev_func_area,
+ int nuca_dev_func_cycle_time,
+ int REPEATERS_IN_HTREE_SEGMENTS_in,//TODO for now only wires with repeaters are supported
+ int p_input)
+{
+ g_ip = new InputParameter();
+ g_ip->add_ecc_b_ = true;
+
+ g_ip->data_arr_ram_cell_tech_type = data_arr_ram_cell_tech_flavor_in;
+ g_ip->data_arr_peri_global_tech_type = data_arr_peri_global_tech_flavor_in;
+ g_ip->tag_arr_ram_cell_tech_type = tag_arr_ram_cell_tech_flavor_in;
+ g_ip->tag_arr_peri_global_tech_type = tag_arr_peri_global_tech_flavor_in;
+
+ g_ip->ic_proj_type = interconnect_projection_type_in;
+ g_ip->wire_is_mat_type = wire_inside_mat_type_in;
+ g_ip->wire_os_mat_type = wire_outside_mat_type_in;
+ g_ip->burst_len = burst_length;
+ g_ip->int_prefetch_w = pre_width;
+ g_ip->page_sz_bits = page_sz;
+
+ g_ip->cache_sz = cache_size;
+ g_ip->line_sz = line_size;
+ g_ip->assoc = associativity;
+ g_ip->nbanks = banks;
+ g_ip->out_w = output_width;
+ g_ip->specific_tag = specific_tag;
+ if (tag_width == 0) {
+ g_ip->tag_w = 42;
+ }
+ else {
+ g_ip->tag_w = tag_width;
+ }
+
+ g_ip->access_mode = access_mode;
+ g_ip->delay_wt = obj_func_delay;
+ g_ip->dynamic_power_wt = obj_func_dynamic_power;
+ g_ip->leakage_power_wt = obj_func_leakage_power;
+ g_ip->area_wt = obj_func_area;
+ g_ip->cycle_time_wt = obj_func_cycle_time;
+ g_ip->delay_dev = dev_func_delay;
+ g_ip->dynamic_power_dev = dev_func_dynamic_power;
+ g_ip->leakage_power_dev = dev_func_leakage_power;
+ g_ip->area_dev = dev_func_area;
+ g_ip->cycle_time_dev = dev_func_cycle_time;
+ g_ip->ed = ed_ed2_none;
+
+ switch(wt) {
+ case (0):
+ g_ip->force_wiretype = 0;
+ g_ip->wt = Global;
+ break;
+ case (1):
+ g_ip->force_wiretype = 1;
+ g_ip->wt = Global;
+ break;
+ case (2):
+ g_ip->force_wiretype = 1;
+ g_ip->wt = Global_5;
+ break;
+ case (3):
+ g_ip->force_wiretype = 1;
+ g_ip->wt = Global_10;
+ break;
+ case (4):
+ g_ip->force_wiretype = 1;
+ g_ip->wt = Global_20;
+ break;
+ case (5):
+ g_ip->force_wiretype = 1;
+ g_ip->wt = Global_30;
+ break;
+ case (6):
+ g_ip->force_wiretype = 1;
+ g_ip->wt = Low_swing;
+ break;
+ default:
+ cout << "Unknown wire type!\n";
+ exit(0);
+ }
+
+ g_ip->delay_wt_nuca = nuca_obj_func_delay;
+ g_ip->dynamic_power_wt_nuca = nuca_obj_func_dynamic_power;
+ g_ip->leakage_power_wt_nuca = nuca_obj_func_leakage_power;
+ g_ip->area_wt_nuca = nuca_obj_func_area;
+ g_ip->cycle_time_wt_nuca = nuca_obj_func_cycle_time;
+ g_ip->delay_dev_nuca = dev_func_delay;
+ g_ip->dynamic_power_dev_nuca = nuca_dev_func_dynamic_power;
+ g_ip->leakage_power_dev_nuca = nuca_dev_func_leakage_power;
+ g_ip->area_dev_nuca = nuca_dev_func_area;
+ g_ip->cycle_time_dev_nuca = nuca_dev_func_cycle_time;
+ g_ip->nuca = is_nuca;
+ g_ip->nuca_bank_count = nuca_bank_count;
+ if(nuca_bank_count > 0) {
+ g_ip->force_nuca_bank = 1;
+ }
+ g_ip->cores = core_count;
+ g_ip->cache_level = cache_level;
+
+ g_ip->temp = temp;
+
+ g_ip->F_sz_nm = tech_node;
+ g_ip->F_sz_um = tech_node / 1000;
+ g_ip->is_main_mem = (main_mem != 0) ? true : false;
+ g_ip->is_cache = (cache != 0) ? true : false;
+ g_ip->rpters_in_htree = (REPEATERS_IN_HTREE_SEGMENTS_in != 0) ? true : false;
+
+ g_ip->num_rw_ports = rw_ports;
+ g_ip->num_rd_ports = excl_read_ports;
+ g_ip->num_wr_ports = excl_write_ports;
+ g_ip->num_se_rd_ports = single_ended_read_ports;
+ g_ip->print_detail = 1;
+ g_ip->nuca = 0;
+
+ g_ip->wt = Global_5;
+ g_ip->force_cache_config = false;
+ g_ip->force_wiretype = false;
+ g_ip->print_input_args = p_input;
+
+
+ uca_org_t fin_res;
+ fin_res.valid = false;
+
+ if (g_ip->error_checking() == false) exit(0);
+ if (g_ip->print_input_args)
+ g_ip->display_ip();
+ init_tech_params(g_ip->F_sz_um, false);
+ Wire winit; // Do not delete this line. It initializes wires.
+
+ if (g_ip->nuca == 1)
+ {
+ Nuca n(&g_tp.peri_global);
+ n.sim_nuca();
+ }
+ solve(&fin_res);
+
+ output_UCA(&fin_res);
+
+ delete (g_ip);
+ return fin_res;
+}
+
+//McPAT's plain interface, please keep !!!
+uca_org_t cacti_interface(
+ int cache_size,
+ int line_size,
+ int associativity,
+ int rw_ports,
+ int excl_read_ports,// para5
+ int excl_write_ports,
+ int single_ended_read_ports,
+ int search_ports,
+ int banks,
+ double tech_node,//para10
+ int output_width,
+ int specific_tag,
+ int tag_width,
+ int access_mode,
+ int cache, //para15
+ int main_mem,
+ int obj_func_delay,
+ int obj_func_dynamic_power,
+ int obj_func_leakage_power,
+ int obj_func_cycle_time, //para20
+ int obj_func_area,
+ int dev_func_delay,
+ int dev_func_dynamic_power,
+ int dev_func_leakage_power,
+ int dev_func_area, //para25
+ int dev_func_cycle_time,
+ int ed_ed2_none, // 0 - ED, 1 - ED^2, 2 - use weight and deviate
+ int temp,
+ int wt, //0 - default(search across everything), 1 - global, 2 - 5% delay penalty, 3 - 10%, 4 - 20 %, 5 - 30%, 6 - low-swing
+ int data_arr_ram_cell_tech_flavor_in,//para30
+ int data_arr_peri_global_tech_flavor_in,
+ int tag_arr_ram_cell_tech_flavor_in,
+ int tag_arr_peri_global_tech_flavor_in,
+ int interconnect_projection_type_in,
+ int wire_inside_mat_type_in,//para35
+ int wire_outside_mat_type_in,
+ int REPEATERS_IN_HTREE_SEGMENTS_in,
+ int VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in,
+ int BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in,
+ int PAGE_SIZE_BITS_in,//para40
+ int BURST_LENGTH_in,
+ int INTERNAL_PREFETCH_WIDTH_in,
+ int force_wiretype,
+ int wiretype,
+ int force_config,//para45
+ int ndwl,
+ int ndbl,
+ int nspd,
+ int ndcm,
+ int ndsam1,//para50
+ int ndsam2,
+ int ecc)
+{
+ g_ip = new InputParameter();
+
+ uca_org_t fin_res;
+ fin_res.valid = false;
+
+ g_ip->data_arr_ram_cell_tech_type = data_arr_ram_cell_tech_flavor_in;
+ g_ip->data_arr_peri_global_tech_type = data_arr_peri_global_tech_flavor_in;
+ g_ip->tag_arr_ram_cell_tech_type = tag_arr_ram_cell_tech_flavor_in;
+ g_ip->tag_arr_peri_global_tech_type = tag_arr_peri_global_tech_flavor_in;
+
+ g_ip->ic_proj_type = interconnect_projection_type_in;
+ g_ip->wire_is_mat_type = wire_inside_mat_type_in;
+ g_ip->wire_os_mat_type = wire_outside_mat_type_in;
+ g_ip->burst_len = BURST_LENGTH_in;
+ g_ip->int_prefetch_w = INTERNAL_PREFETCH_WIDTH_in;
+ g_ip->page_sz_bits = PAGE_SIZE_BITS_in;
+
+ g_ip->cache_sz = cache_size;
+ g_ip->line_sz = line_size;
+ g_ip->assoc = associativity;
+ g_ip->nbanks = banks;
+ g_ip->out_w = output_width;
+ g_ip->specific_tag = specific_tag;
+ if (specific_tag == 0) {
+ g_ip->tag_w = 42;
+ }
+ else {
+ g_ip->tag_w = tag_width;
+ }
+
+ g_ip->access_mode = access_mode;
+ g_ip->delay_wt = obj_func_delay;
+ g_ip->dynamic_power_wt = obj_func_dynamic_power;
+ g_ip->leakage_power_wt = obj_func_leakage_power;
+ g_ip->area_wt = obj_func_area;
+ g_ip->cycle_time_wt = obj_func_cycle_time;
+ g_ip->delay_dev = dev_func_delay;
+ g_ip->dynamic_power_dev = dev_func_dynamic_power;
+ g_ip->leakage_power_dev = dev_func_leakage_power;
+ g_ip->area_dev = dev_func_area;
+ g_ip->cycle_time_dev = dev_func_cycle_time;
+ g_ip->temp = temp;
+ g_ip->ed = ed_ed2_none;
+
+ g_ip->F_sz_nm = tech_node;
+ g_ip->F_sz_um = tech_node / 1000;
+ g_ip->is_main_mem = (main_mem != 0) ? true : false;
+ g_ip->is_cache = (cache ==1) ? true : false;
+ g_ip->pure_ram = (cache ==0) ? true : false;
+ g_ip->pure_cam = (cache ==2) ? true : false;
+ g_ip->rpters_in_htree = (REPEATERS_IN_HTREE_SEGMENTS_in != 0) ? true : false;
+ g_ip->ver_htree_wires_over_array = VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in;
+ g_ip->broadcast_addr_din_over_ver_htrees = BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in;
+
+ g_ip->num_rw_ports = rw_ports;
+ g_ip->num_rd_ports = excl_read_ports;
+ g_ip->num_wr_ports = excl_write_ports;
+ g_ip->num_se_rd_ports = single_ended_read_ports;
+ g_ip->num_search_ports = search_ports;
+
+ g_ip->print_detail = 1;
+ g_ip->nuca = 0;
+
+ if (force_wiretype == 0)
+ {
+ g_ip->wt = Global;
+ g_ip->force_wiretype = false;
+ }
+ else
+ { g_ip->force_wiretype = true;
+ if (wiretype==10) {
+ g_ip->wt = Global_10;
+ }
+ if (wiretype==20) {
+ g_ip->wt = Global_20;
+ }
+ if (wiretype==30) {
+ g_ip->wt = Global_30;
+ }
+ if (wiretype==5) {
+ g_ip->wt = Global_5;
+ }
+ if (wiretype==0) {
+ g_ip->wt = Low_swing;
+ }
+ }
+ //g_ip->wt = Global_5;
+ if (force_config == 0)
+ {
+ g_ip->force_cache_config = false;
+ }
+ else
+ {
+ g_ip->force_cache_config = true;
+ g_ip->ndbl=ndbl;
+ g_ip->ndwl=ndwl;
+ g_ip->nspd=nspd;
+ g_ip->ndcm=ndcm;
+ g_ip->ndsam1=ndsam1;
+ g_ip->ndsam2=ndsam2;
+
+
+ }
+
+ if (ecc==0){
+ g_ip->add_ecc_b_=false;
+ }
+ else
+ {
+ g_ip->add_ecc_b_=true;
+ }
+
+
+ if(!g_ip->error_checking())
+ exit(0);
+
+ init_tech_params(g_ip->F_sz_um, false);
+ Wire winit; // Do not delete this line. It initializes wires.
+
+ g_ip->display_ip();
+ solve(&fin_res);
+ output_UCA(&fin_res);
+ output_data_csv(fin_res);
+ delete (g_ip);
+
+ return fin_res;
+}
+
+
+
+bool InputParameter::error_checking()
+{
+ int A;
+ bool seq_access = false;
+ fast_access = true;
+
+ switch (access_mode)
+ {
+ case 0:
+ seq_access = false;
+ fast_access = false;
+ break;
+ case 1:
+ seq_access = true;
+ fast_access = false;
+ break;
+ case 2:
+ seq_access = false;
+ fast_access = true;
+ break;
+ }
+
+ if(is_main_mem)
+ {
+ if(ic_proj_type == 0)
+ {
+ cerr << "DRAM model supports only conservative interconnect projection!\n\n";
+ return false;
+ }
+ }
+
+
+ uint32_t B = line_sz;
+
+ if (B < 1)
+ {
+ cerr << "Block size must >= 1" << endl;
+ return false;
+ }
+ else if (B*8 < out_w)
+ {
+ cerr << "Block size must be at least " << out_w/8 << endl;
+ return false;
+ }
+
+ if (F_sz_um <= 0)
+ {
+ cerr << "Feature size must be > 0" << endl;
+ return false;
+ }
+ else if (F_sz_um > 0.091)
+ {
+ cerr << "Feature size must be <= 90 nm" << endl;
+ return false;
+ }
+
+
+ uint32_t RWP = num_rw_ports;
+ uint32_t ERP = num_rd_ports;
+ uint32_t EWP = num_wr_ports;
+ uint32_t NSER = num_se_rd_ports;
+ uint32_t SCHP = num_search_ports;
+
+//TODO: revisit this. This is an important feature. Sheng thought this should be used
+// // If multiple banks and multiple ports are specified, then if number of ports is less than or equal to
+// // the number of banks, we assume that the multiple ports are implemented via the multiple banks.
+// // In such a case we assume that each bank has 1 RWP port.
+// if ((RWP + ERP + EWP) <= nbanks && nbanks>1)
+// {
+// RWP = 1;
+// ERP = 0;
+// EWP = 0;
+// NSER = 0;
+// }
+// else if ((RWP < 0) || (EWP < 0) || (ERP < 0))
+// {
+// cerr << "Ports must >=0" << endl;
+// return false;
+// }
+// else if (RWP > 2)
+// {
+// cerr << "Maximum of 2 read/write ports" << endl;
+// return false;
+// }
+// else if ((RWP+ERP+EWP) < 1)
+ // Changed to new implementation:
+ // The number of ports specified at input is per bank
+ if ((RWP+ERP+EWP) < 1)
+ {
+ cerr << "Must have at least one port" << endl;
+ return false;
+ }
+
+ if (is_pow2(nbanks) == false)
+ {
+ cerr << "Number of subbanks should be greater than or equal to 1 and should be a power of 2" << endl;
+ return false;
+ }
+
+ int C = cache_sz/nbanks;
+ if (C < 64)
+ {
+ cerr << "Cache size must >=64" << endl;
+ return false;
+ }
+
+//TODO: revisit this
+// if (pure_ram==true && assoc!=1)
+// {
+// cerr << "Pure RAM must have assoc as 1" << endl;
+// return false;
+// }
+
+ //fully assoc and cam check
+ if (is_cache && assoc==0)
+ fully_assoc =true;
+ else
+ fully_assoc = false;
+
+ if (pure_cam==true && assoc!=0)
+ {
+ cerr << "Pure CAM must have associativity as 0" << endl;
+ return false;
+ }
+
+ if (assoc==0 && (pure_cam==false && is_cache ==false))
+ {
+ cerr << "Only CAM or Fully associative cache can have associativity as 0" << endl;
+ return false;
+ }
+
+ if ((fully_assoc==true || pure_cam==true)
+ && (data_arr_ram_cell_tech_type!= tag_arr_ram_cell_tech_type
+ || data_arr_peri_global_tech_type != tag_arr_peri_global_tech_type ))
+ {
+ cerr << "CAM and fully associative cache must have same device type for both data and tag array" << endl;
+ return false;
+ }
+
+ if ((fully_assoc==true || pure_cam==true)
+ && (data_arr_ram_cell_tech_type== lp_dram || data_arr_ram_cell_tech_type== comm_dram))
+ {
+ cerr << "DRAM based CAM and fully associative cache are not supported" << endl;
+ return false;
+ }
+
+ if ((fully_assoc==true || pure_cam==true)
+ && (is_main_mem==true))
+ {
+ cerr << "CAM and fully associative cache cannot be as main memory" << endl;
+ return false;
+ }
+
+ if ((fully_assoc || pure_cam) && SCHP<1)
+ {
+ cerr << "CAM and fully associative must have at least 1 search port" << endl;
+ return false;
+ }
+
+ if (RWP==0 && ERP==0 && SCHP>0 && ((fully_assoc || pure_cam)))
+ {
+ ERP=SCHP;
+ }
+
+// if ((!(fully_assoc || pure_cam)) && SCHP>=1)
+// {
+// cerr << "None CAM and fully associative cannot have search ports" << endl;
+// return false;
+// }
+
+ if (assoc == 0)
+ {
+ A = C/B;
+ //fully_assoc = true;
+ }
+ else
+ {
+ if (assoc == 1)
+ {
+ A = 1;
+ //fully_assoc = false;
+ }
+ else
+ {
+ //fully_assoc = false;
+ A = assoc;
+ if (is_pow2(A) == false)
+ {
+ cerr << "Associativity must be a power of 2" << endl;
+ return false;
+ }
+ }
+ }
+
+ if (C/(B*A) <= 1 && assoc!=0)
+ {
+ cerr << "Number of sets is too small: " << endl;
+ cerr << " Need to either increase cache size, or decrease associativity or block size" << endl;
+ cerr << " (or use fully associative cache)" << endl;
+ return false;
+ }
+
+ block_sz = B;
+
+ /*dt: testing sequential access mode*/
+ if(seq_access)
+ {
+ tag_assoc = A;
+ data_assoc = 1;
+ is_seq_acc = true;
+ }
+ else
+ {
+ tag_assoc = A;
+ data_assoc = A;
+ is_seq_acc = false;
+ }
+
+ if (assoc==0)
+ {
+ data_assoc = 1;
+ }
+ num_rw_ports = RWP;
+ num_rd_ports = ERP;
+ num_wr_ports = EWP;
+ num_se_rd_ports = NSER;
+ if (!(fully_assoc || pure_cam))
+ num_search_ports = 0;
+ nsets = C/(B*A);
+
+ if (temp < 300 || temp > 400 || temp%10 != 0)
+ {
+ cerr << temp << " Temperature must be between 300 and 400 Kelvin and multiple of 10." << endl;
+ return false;
+ }
+
+ if (nsets < 1)
+ {
+ cerr << "Less than one set..." << endl;
+ return false;
+ }
+
+ return true;
+}
+
+
+
+void output_data_csv(const uca_org_t & fin_res)
+{
+ //TODO: the csv output should remain
+ fstream file("out.csv", ios::in);
+ bool print_index = file.fail();
+ file.close();
+
+ file.open("out.csv", ios::out|ios::app);
+ if (file.fail() == true)
+ {
+ cerr << "File out.csv could not be opened successfully" << endl;
+ }
+ else
+ {
+ if (print_index == true)
+ {
+ file << "Tech node (nm), ";
+ file << "Capacity (bytes), ";
+ file << "Number of banks, ";
+ file << "Associativity, ";
+ file << "Output width (bits), ";
+ file << "Access time (ns), ";
+ file << "Random cycle time (ns), ";
+// file << "Multisubbank interleave cycle time (ns), ";
+
+// file << "Delay request network (ns), ";
+// file << "Delay inside mat (ns), ";
+// file << "Delay reply network (ns), ";
+// file << "Tag array access time (ns), ";
+// file << "Data array access time (ns), ";
+// file << "Refresh period (microsec), ";
+// file << "DRAM array availability (%), ";
+ file << "Dynamic search energy (nJ), ";
+ file << "Dynamic read energy (nJ), ";
+ file << "Dynamic write energy (nJ), ";
+// file << "Tag Dynamic read energy (nJ), ";
+// file << "Data Dynamic read energy (nJ), ";
+// file << "Dynamic read power (mW), ";
+ file << "Standby leakage per bank(mW), ";
+// file << "Leakage per bank with leak power management (mW), ";
+// file << "Leakage per bank with leak power management (mW), ";
+// file << "Refresh power as percentage of standby leakage, ";
+ file << "Area (mm2), ";
+ file << "Ndwl, ";
+ file << "Ndbl, ";
+ file << "Nspd, ";
+ file << "Ndcm, ";
+ file << "Ndsam_level_1, ";
+ file << "Ndsam_level_2, ";
+ file << "Data arrary area efficiency %, ";
+ file << "Ntwl, ";
+ file << "Ntbl, ";
+ file << "Ntspd, ";
+ file << "Ntcm, ";
+ file << "Ntsam_level_1, ";
+ file << "Ntsam_level_2, ";
+ file << "Tag arrary area efficiency %, ";
+
+// file << "Resistance per unit micron (ohm-micron), ";
+// file << "Capacitance per unit micron (fF per micron), ";
+// file << "Unit-length wire delay (ps), ";
+// file << "FO4 delay (ps), ";
+// file << "delay route to bank (including crossb delay) (ps), ";
+// file << "Crossbar delay (ps), ";
+// file << "Dyn read energy per access from closed page (nJ), ";
+// file << "Dyn read energy per access from open page (nJ), ";
+// file << "Leak power of an subbank with page closed (mW), ";
+// file << "Leak power of a subbank with page open (mW), ";
+// file << "Leak power of request and reply networks (mW), ";
+// file << "Number of subbanks, ";
+// file << "Page size in bits, ";
+// file << "Activate power, ";
+// file << "Read power, ";
+// file << "Write power, ";
+// file << "Precharge power, ";
+// file << "tRCD, ";
+// file << "CAS latency, ";
+// file << "Precharge delay, ";
+// file << "Perc dyn energy bitlines, ";
+// file << "perc dyn energy wordlines, ";
+// file << "perc dyn energy outside mat, ";
+// file << "Area opt (perc), ";
+// file << "Delay opt (perc), ";
+// file << "Repeater opt (perc), ";
+// file << "Aspect ratio";
+ file << endl;
+ }
+ file << g_ip->F_sz_nm << ", ";
+ file << g_ip->cache_sz << ", ";
+ file << g_ip->nbanks << ", ";
+ file << g_ip->tag_assoc << ", ";
+ file << g_ip->out_w << ", ";
+ file << fin_res.access_time*1e+9 << ", ";
+ file << fin_res.cycle_time*1e+9 << ", ";
+// file << fin_res.data_array2->multisubbank_interleave_cycle_time*1e+9 << ", ";
+// file << fin_res.data_array2->delay_request_network*1e+9 << ", ";
+// file << fin_res.data_array2->delay_inside_mat*1e+9 << ", ";
+// file << fin_res.data_array2.delay_reply_network*1e+9 << ", ";
+
+// if (!(g_ip->fully_assoc || g_ip->pure_cam || g_ip->pure_ram))
+// {
+// file << fin_res.tag_array2->access_time*1e+9 << ", ";
+// }
+// else
+// {
+// file << 0 << ", ";
+// }
+// file << fin_res.data_array2->access_time*1e+9 << ", ";
+// file << fin_res.data_array2->dram_refresh_period*1e+6 << ", ";
+// file << fin_res.data_array2->dram_array_availability << ", ";
+ if (g_ip->fully_assoc || g_ip->pure_cam)
+ {
+ file << fin_res.power.searchOp.dynamic*1e+9 << ", ";
+ }
+ else
+ {
+ file << "N/A" << ", ";
+ }
+ file << fin_res.power.readOp.dynamic*1e+9 << ", ";
+ file << fin_res.power.writeOp.dynamic*1e+9 << ", ";
+// if (!(g_ip->fully_assoc || g_ip->pure_cam || g_ip->pure_ram))
+// {
+// file << fin_res.tag_array2->power.readOp.dynamic*1e+9 << ", ";
+// }
+// else
+// {
+// file << "NA" << ", ";
+// }
+// file << fin_res.data_array2->power.readOp.dynamic*1e+9 << ", ";
+// if (g_ip->fully_assoc || g_ip->pure_cam)
+// {
+// file << fin_res.power.searchOp.dynamic*1000/fin_res.cycle_time << ", ";
+// }
+// else
+// {
+// file << fin_res.power.readOp.dynamic*1000/fin_res.cycle_time << ", ";
+// }
+
+ file <<( fin_res.power.readOp.leakage + fin_res.power.readOp.gate_leakage )*1000 << ", ";
+// file << fin_res.leak_power_with_sleep_transistors_in_mats*1000 << ", ";
+// file << fin_res.data_array.refresh_power / fin_res.data_array.total_power.readOp.leakage << ", ";
+ file << fin_res.area*1e-6 << ", ";
+
+ file << fin_res.data_array2->Ndwl << ", ";
+ file << fin_res.data_array2->Ndbl << ", ";
+ file << fin_res.data_array2->Nspd << ", ";
+ file << fin_res.data_array2->deg_bl_muxing << ", ";
+ file << fin_res.data_array2->Ndsam_lev_1 << ", ";
+ file << fin_res.data_array2->Ndsam_lev_2 << ", ";
+ file << fin_res.data_array2->area_efficiency << ", ";
+ if (!(g_ip->fully_assoc || g_ip->pure_cam || g_ip->pure_ram))
+ {
+ file << fin_res.tag_array2->Ndwl << ", ";
+ file << fin_res.tag_array2->Ndbl << ", ";
+ file << fin_res.tag_array2->Nspd << ", ";
+ file << fin_res.tag_array2->deg_bl_muxing << ", ";
+ file << fin_res.tag_array2->Ndsam_lev_1 << ", ";
+ file << fin_res.tag_array2->Ndsam_lev_2 << ", ";
+ file << fin_res.tag_array2->area_efficiency << ", ";
+ }
+ else
+ {
+ file << "N/A" << ", ";
+ file << "N/A"<< ", ";
+ file << "N/A" << ", ";
+ file << "N/A" << ", ";
+ file << "N/A" << ", ";
+ file << "N/A" << ", ";
+ file << "N/A" << ", ";
+ }
+
+// file << g_tp.wire_inside_mat.R_per_um << ", ";
+// file << g_tp.wire_inside_mat.C_per_um / 1e-15 << ", ";
+// file << g_tp.unit_len_wire_del / 1e-12 << ", ";
+// file << g_tp.FO4 / 1e-12 << ", ";
+// file << fin_res.data_array.delay_route_to_bank / 1e-9 << ", ";
+// file << fin_res.data_array.delay_crossbar / 1e-9 << ", ";
+// file << fin_res.data_array.dyn_read_energy_from_closed_page / 1e-9 << ", ";
+// file << fin_res.data_array.dyn_read_energy_from_open_page / 1e-9 << ", ";
+// file << fin_res.data_array.leak_power_subbank_closed_page / 1e-3 << ", ";
+// file << fin_res.data_array.leak_power_subbank_open_page / 1e-3 << ", ";
+// file << fin_res.data_array.leak_power_request_and_reply_networks / 1e-3 << ", ";
+// file << fin_res.data_array.number_subbanks << ", " ;
+// file << fin_res.data_array.page_size_in_bits << ", " ;
+// file << fin_res.data_array.activate_energy * 1e9 << ", " ;
+// file << fin_res.data_array.read_energy * 1e9 << ", " ;
+// file << fin_res.data_array.write_energy * 1e9 << ", " ;
+// file << fin_res.data_array.precharge_energy * 1e9 << ", " ;
+// file << fin_res.data_array.trcd * 1e9 << ", " ;
+// file << fin_res.data_array.cas_latency * 1e9 << ", " ;
+// file << fin_res.data_array.precharge_delay * 1e9 << ", " ;
+// file << fin_res.data_array.all_banks_height / fin_res.data_array.all_banks_width;
+ file<<endl;
+ }
+ file.close();
+}
+
+
+
+void output_UCA(uca_org_t *fr)
+{
+ // if (NUCA)
+ if (0) {
+ cout << "\n\n Detailed Bank Stats:\n";
+ cout << " Bank Size (bytes): %d\n" <<
+ (int) (g_ip->cache_sz);
+ }
+ else {
+ if (g_ip->data_arr_ram_cell_tech_type == 3) {
+ cout << "\n---------- CACTI version 6.5, Uniform Cache Access " <<
+ "Logic Process Based DRAM Model ----------\n";
+ }
+ else if (g_ip->data_arr_ram_cell_tech_type == 4) {
+ cout << "\n---------- CACTI version 6.5, Uniform" <<
+ "Cache Access Commodity DRAM Model ----------\n";
+ }
+ else {
+ cout << "\n---------- CACTI version 6.5, Uniform Cache Access "
+ "SRAM Model ----------\n";
+ }
+ cout << "\nCache Parameters:\n";
+ cout << " Total cache size (bytes): " <<
+ (int) (g_ip->cache_sz) << endl;
+ }
+
+ cout << " Number of banks: " << (int) g_ip->nbanks << endl;
+ if (g_ip->fully_assoc|| g_ip->pure_cam)
+ cout << " Associativity: fully associative\n";
+ else {
+ if (g_ip->tag_assoc == 1)
+ cout << " Associativity: direct mapped\n";
+ else
+ cout << " Associativity: " <<
+ g_ip->tag_assoc << endl;
+ }
+
+
+ cout << " Block size (bytes): " << g_ip->line_sz << endl;
+ cout << " Read/write Ports: " <<
+ g_ip->num_rw_ports << endl;
+ cout << " Read ports: " <<
+ g_ip->num_rd_ports << endl;
+ cout << " Write ports: " <<
+ g_ip->num_wr_ports << endl;
+ if (g_ip->fully_assoc|| g_ip->pure_cam)
+ cout << " search ports: " <<
+ g_ip->num_search_ports << endl;
+ cout << " Technology size (nm): " <<
+ g_ip->F_sz_nm << endl << endl;
+
+ cout << " Access time (ns): " << fr->access_time*1e9 << endl;
+ cout << " Cycle time (ns): " << fr->cycle_time*1e9 << endl;
+ if (g_ip->data_arr_ram_cell_tech_type >= 4) {
+ cout << " Precharge Delay (ns): " << fr->data_array2->precharge_delay*1e9 << endl;
+ cout << " Activate Energy (nJ): " << fr->data_array2->activate_energy*1e9 << endl;
+ cout << " Read Energy (nJ): " << fr->data_array2->read_energy*1e9 << endl;
+ cout << " Write Energy (nJ): " << fr->data_array2->write_energy*1e9 << endl;
+ cout << " Precharge Energy (nJ): " << fr->data_array2->precharge_energy*1e9 << endl;
+ cout << " Leakage Power Closed Page (mW): " << fr->data_array2->leak_power_subbank_closed_page*1e3 << endl;
+ cout << " Leakage Power Open Page (mW): " << fr->data_array2->leak_power_subbank_open_page*1e3 << endl;
+ cout << " Leakage Power I/O (mW): " << fr->data_array2->leak_power_request_and_reply_networks*1e3 << endl;
+ cout << " Refresh power (mW): " <<
+ fr->data_array2->refresh_power*1e3 << endl;
+ }
+ else {
+ if ((g_ip->fully_assoc|| g_ip->pure_cam))
+ {
+ cout << " Total dynamic associative search energy per access (nJ): " <<
+ fr->power.searchOp.dynamic*1e9 << endl;
+// cout << " Total dynamic read energy per access (nJ): " <<
+// fr->power.readOp.dynamic*1e9 << endl;
+// cout << " Total dynamic write energy per access (nJ): " <<
+// fr->power.writeOp.dynamic*1e9 << endl;
+ }
+// else
+// {
+ cout << " Total dynamic read energy per access (nJ): " <<
+ fr->power.readOp.dynamic*1e9 << endl;
+ cout << " Total dynamic write energy per access (nJ): " <<
+ fr->power.writeOp.dynamic*1e9 << endl;
+// }
+ cout << " Total leakage power of a bank"
+ " (mW): " << fr->power.readOp.leakage*1e3 << endl;
+ cout << " Total gate leakage power of a bank"
+ " (mW): " << fr->power.readOp.gate_leakage*1e3 << endl;
+ }
+
+ if (g_ip->data_arr_ram_cell_tech_type ==3 || g_ip->data_arr_ram_cell_tech_type ==4)
+ {
+ }
+ cout << " Cache height x width (mm): " <<
+ fr->cache_ht*1e-3 << " x " << fr->cache_len*1e-3 << endl << endl;
+
+
+ cout << " Best Ndwl : " << fr->data_array2->Ndwl << endl;
+ cout << " Best Ndbl : " << fr->data_array2->Ndbl << endl;
+ cout << " Best Nspd : " << fr->data_array2->Nspd << endl;
+ cout << " Best Ndcm : " << fr->data_array2->deg_bl_muxing << endl;
+ cout << " Best Ndsam L1 : " << fr->data_array2->Ndsam_lev_1 << endl;
+ cout << " Best Ndsam L2 : " << fr->data_array2->Ndsam_lev_2 << endl << endl;
+
+ if ((!(g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) && !g_ip->is_main_mem)
+ {
+ cout << " Best Ntwl : " << fr->tag_array2->Ndwl << endl;
+ cout << " Best Ntbl : " << fr->tag_array2->Ndbl << endl;
+ cout << " Best Ntspd : " << fr->tag_array2->Nspd << endl;
+ cout << " Best Ntcm : " << fr->tag_array2->deg_bl_muxing << endl;
+ cout << " Best Ntsam L1 : " << fr->tag_array2->Ndsam_lev_1 << endl;
+ cout << " Best Ntsam L2 : " << fr->tag_array2->Ndsam_lev_2 << endl;
+ }
+
+ switch (fr->data_array2->wt) {
+ case (0):
+ cout << " Data array, H-tree wire type: Delay optimized global wires\n";
+ break;
+ case (1):
+ cout << " Data array, H-tree wire type: Global wires with 5\% delay penalty\n";
+ break;
+ case (2):
+ cout << " Data array, H-tree wire type: Global wires with 10\% delay penalty\n";
+ break;
+ case (3):
+ cout << " Data array, H-tree wire type: Global wires with 20\% delay penalty\n";
+ break;
+ case (4):
+ cout << " Data array, H-tree wire type: Global wires with 30\% delay penalty\n";
+ break;
+ case (5):
+ cout << " Data array, wire type: Low swing wires\n";
+ break;
+ default:
+ cout << "ERROR - Unknown wire type " << (int) fr->data_array2->wt <<endl;
+ exit(0);
+ }
+
+ if (!(g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) {
+ switch (fr->tag_array2->wt) {
+ case (0):
+ cout << " Tag array, H-tree wire type: Delay optimized global wires\n";
+ break;
+ case (1):
+ cout << " Tag array, H-tree wire type: Global wires with 5\% delay penalty\n";
+ break;
+ case (2):
+ cout << " Tag array, H-tree wire type: Global wires with 10\% delay penalty\n";
+ break;
+ case (3):
+ cout << " Tag array, H-tree wire type: Global wires with 20\% delay penalty\n";
+ break;
+ case (4):
+ cout << " Tag array, H-tree wire type: Global wires with 30\% delay penalty\n";
+ break;
+ case (5):
+ cout << " Tag array, wire type: Low swing wires\n";
+ break;
+ default:
+ cout << "ERROR - Unknown wire type " << (int) fr->tag_array2->wt <<endl;
+ exit(-1);
+ }
+ }
+
+ if (g_ip->print_detail)
+ {
+ //if(g_ip->fully_assoc) return;
+
+ /* Delay stats */
+ /* data array stats */
+ cout << endl << "Time Components:" << endl << endl;
+
+ cout << " Data side (with Output driver) (ns): " <<
+ fr->data_array2->access_time/1e-9 << endl;
+
+ cout << "\tH-tree input delay (ns): " <<
+ fr->data_array2->delay_route_to_bank * 1e9 +
+ fr->data_array2->delay_input_htree * 1e9 << endl;
+
+ if (!(g_ip->pure_cam || g_ip->fully_assoc))
+ {
+ cout << "\tDecoder + wordline delay (ns): " <<
+ fr->data_array2->delay_row_predecode_driver_and_block * 1e9 +
+ fr->data_array2->delay_row_decoder * 1e9 << endl;
+ }
+ else
+ {
+ cout << "\tCAM search delay (ns): " <<
+ fr->data_array2->delay_matchlines * 1e9 << endl;
+ }
+
+ cout << "\tBitline delay (ns): " <<
+ fr->data_array2->delay_bitlines/1e-9 << endl;
+
+ cout << "\tSense Amplifier delay (ns): " <<
+ fr->data_array2->delay_sense_amp * 1e9 << endl;
+
+
+ cout << "\tH-tree output delay (ns): " <<
+ fr->data_array2->delay_subarray_output_driver * 1e9 +
+ fr->data_array2->delay_dout_htree * 1e9 << endl;
+
+ if ((!(g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) && !g_ip->is_main_mem)
+ {
+ /* tag array stats */
+ cout << endl << " Tag side (with Output driver) (ns): " <<
+ fr->tag_array2->access_time/1e-9 << endl;
+
+ cout << "\tH-tree input delay (ns): " <<
+ fr->tag_array2->delay_route_to_bank * 1e9 +
+ fr->tag_array2->delay_input_htree * 1e9 << endl;
+
+ cout << "\tDecoder + wordline delay (ns): " <<
+ fr->tag_array2->delay_row_predecode_driver_and_block * 1e9 +
+ fr->tag_array2->delay_row_decoder * 1e9 << endl;
+
+ cout << "\tBitline delay (ns): " <<
+ fr->tag_array2->delay_bitlines/1e-9 << endl;
+
+ cout << "\tSense Amplifier delay (ns): " <<
+ fr->tag_array2->delay_sense_amp * 1e9 << endl;
+
+ cout << "\tComparator delay (ns): " <<
+ fr->tag_array2->delay_comparator * 1e9 << endl;
+
+ cout << "\tH-tree output delay (ns): " <<
+ fr->tag_array2->delay_subarray_output_driver * 1e9 +
+ fr->tag_array2->delay_dout_htree * 1e9 << endl;
+ }
+
+
+
+ /* Energy/Power stats */
+ cout << endl << endl << "Power Components:" << endl << endl;
+
+ if (!(g_ip->pure_cam || g_ip->fully_assoc))
+ {
+ cout << " Data array: Total dynamic read energy/access (nJ): " <<
+ fr->data_array2->power.readOp.dynamic * 1e9 << endl;
+ cout << "\tTotal leakage read/write power of a bank (mW): " <<
+ fr->data_array2->power.readOp.leakage * 1e3 << endl;
+
+ cout << "\tTotal energy in H-tree (that includes both "
+ "address and data transfer) (nJ): " <<
+ (fr->data_array2->power_addr_input_htree.readOp.dynamic +
+ fr->data_array2->power_data_output_htree.readOp.dynamic +
+ fr->data_array2->power_routing_to_bank.readOp.dynamic) * 1e9 << endl;
+
+ cout << "\tTotal leakage power in H-tree (that includes both "
+ "address and data network) ((mW)): " <<
+ (fr->data_array2->power_addr_input_htree.readOp.leakage +
+ fr->data_array2->power_data_output_htree.readOp.leakage +
+ fr->data_array2->power_routing_to_bank.readOp.leakage) * 1e3 << endl;
+
+ cout << "\tTotal gate leakage power in H-tree (that includes both "
+ "address and data network) ((mW)): " <<
+ (fr->data_array2->power_addr_input_htree.readOp.gate_leakage +
+ fr->data_array2->power_data_output_htree.readOp.gate_leakage +
+ fr->data_array2->power_routing_to_bank.readOp.gate_leakage) * 1e3 << endl;
+
+ cout << "\tOutput Htree inside bank Energy (nJ): " <<
+ fr->data_array2->power_data_output_htree.readOp.dynamic * 1e9 << endl;
+ cout << "\tDecoder (nJ): " <<
+ fr->data_array2->power_row_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_row_predecoder_blocks.readOp.dynamic * 1e9 << endl;
+ cout << "\tWordline (nJ): " <<
+ fr->data_array2->power_row_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tBitline mux & associated drivers (nJ): " <<
+ fr->data_array2->power_bit_mux_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_bit_mux_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->data_array2->power_bit_mux_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tSense amp mux & associated drivers (nJ): " <<
+ fr->data_array2->power_senseamp_mux_lev_1_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_1_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_1_decoders.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_2_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_2_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_2_decoders.readOp.dynamic * 1e9 << endl;
+
+ cout << "\tBitlines precharge and equalization circuit (nJ): " <<
+ fr->data_array2->power_prechg_eq_drivers.readOp.dynamic * 1e9 << endl;
+ cout << "\tBitlines (nJ): " <<
+ fr->data_array2->power_bitlines.readOp.dynamic * 1e9 << endl;
+ cout << "\tSense amplifier energy (nJ): " <<
+ fr->data_array2->power_sense_amps.readOp.dynamic * 1e9 << endl;
+ cout << "\tSub-array output driver (nJ): " <<
+ fr->data_array2->power_output_drivers_at_subarray.readOp.dynamic * 1e9 << endl;
+ }
+
+ else if (g_ip->pure_cam)
+ {
+
+ cout << " CAM array:"<<endl;
+ cout << " Total dynamic associative search energy/access (nJ): " <<
+ fr->data_array2->power.searchOp.dynamic * 1e9 << endl;
+ cout << "\tTotal energy in H-tree (that includes both "
+ "match key and data transfer) (nJ): " <<
+ (fr->data_array2->power_htree_in_search.searchOp.dynamic +
+ fr->data_array2->power_htree_out_search.searchOp.dynamic +
+ fr->data_array2->power_routing_to_bank.searchOp.dynamic) * 1e9 << endl;
+ cout << "\tKeyword input and result output Htrees inside bank Energy (nJ): " <<
+ (fr->data_array2->power_htree_in_search.searchOp.dynamic +
+ fr->data_array2->power_htree_out_search.searchOp.dynamic) * 1e9 << endl;
+ cout << "\tSearchlines (nJ): " <<
+ fr->data_array2->power_searchline.searchOp.dynamic * 1e9 +
+ fr->data_array2->power_searchline_precharge.searchOp.dynamic * 1e9 << endl;
+ cout << "\tMatchlines (nJ): " <<
+ fr->data_array2->power_matchlines.searchOp.dynamic * 1e9 +
+ fr->data_array2->power_matchline_precharge.searchOp.dynamic * 1e9 << endl;
+ cout << "\tSub-array output driver (nJ): " <<
+ fr->data_array2->power_output_drivers_at_subarray.searchOp.dynamic * 1e9 << endl;
+
+
+ cout <<endl<< " Total dynamic read energy/access (nJ): " <<
+ fr->data_array2->power.readOp.dynamic * 1e9 << endl;
+ cout << "\tTotal energy in H-tree (that includes both "
+ "address and data transfer) (nJ): " <<
+ (fr->data_array2->power_addr_input_htree.readOp.dynamic +
+ fr->data_array2->power_data_output_htree.readOp.dynamic +
+ fr->data_array2->power_routing_to_bank.readOp.dynamic) * 1e9 << endl;
+ cout << "\tOutput Htree inside bank Energy (nJ): " <<
+ fr->data_array2->power_data_output_htree.readOp.dynamic * 1e9 << endl;
+ cout << "\tDecoder (nJ): " <<
+ fr->data_array2->power_row_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_row_predecoder_blocks.readOp.dynamic * 1e9 << endl;
+ cout << "\tWordline (nJ): " <<
+ fr->data_array2->power_row_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tBitline mux & associated drivers (nJ): " <<
+ fr->data_array2->power_bit_mux_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_bit_mux_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->data_array2->power_bit_mux_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tSense amp mux & associated drivers (nJ): " <<
+ fr->data_array2->power_senseamp_mux_lev_1_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_1_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_1_decoders.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_2_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_2_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_2_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tBitlines (nJ): " <<
+ fr->data_array2->power_bitlines.readOp.dynamic * 1e9 +
+ fr->data_array2->power_prechg_eq_drivers.readOp.dynamic * 1e9<< endl;
+ cout << "\tSense amplifier energy (nJ): " <<
+ fr->data_array2->power_sense_amps.readOp.dynamic * 1e9 << endl;
+ cout << "\tSub-array output driver (nJ): " <<
+ fr->data_array2->power_output_drivers_at_subarray.readOp.dynamic * 1e9 << endl;
+
+ cout << endl <<" Total leakage power of a bank (mW): " <<
+ fr->data_array2->power.readOp.leakage * 1e3 << endl;
+ }
+ else
+ {
+ cout << " Fully associative array:"<<endl;
+ cout << " Total dynamic associative search energy/access (nJ): " <<
+ fr->data_array2->power.searchOp.dynamic * 1e9 << endl;
+ cout << "\tTotal energy in H-tree (that includes both "
+ "match key and data transfer) (nJ): " <<
+ (fr->data_array2->power_htree_in_search.searchOp.dynamic +
+ fr->data_array2->power_htree_out_search.searchOp.dynamic +
+ fr->data_array2->power_routing_to_bank.searchOp.dynamic) * 1e9 << endl;
+ cout << "\tKeyword input and result output Htrees inside bank Energy (nJ): " <<
+ (fr->data_array2->power_htree_in_search.searchOp.dynamic +
+ fr->data_array2->power_htree_out_search.searchOp.dynamic) * 1e9 << endl;
+ cout << "\tSearchlines (nJ): " <<
+ fr->data_array2->power_searchline.searchOp.dynamic * 1e9 +
+ fr->data_array2->power_searchline_precharge.searchOp.dynamic * 1e9 << endl;
+ cout << "\tMatchlines (nJ): " <<
+ fr->data_array2->power_matchlines.searchOp.dynamic * 1e9 +
+ fr->data_array2->power_matchline_precharge.searchOp.dynamic * 1e9 << endl;
+ cout << "\tData portion wordline (nJ): " <<
+ fr->data_array2->power_matchline_to_wordline_drv.searchOp.dynamic * 1e9 << endl;
+ cout << "\tData Bitlines (nJ): " <<
+ fr->data_array2->power_bitlines.searchOp.dynamic * 1e9 +
+ fr->data_array2->power_prechg_eq_drivers.searchOp.dynamic * 1e9 << endl;
+ cout << "\tSense amplifier energy (nJ): " <<
+ fr->data_array2->power_sense_amps.searchOp.dynamic * 1e9 << endl;
+ cout << "\tSub-array output driver (nJ): " <<
+ fr->data_array2->power_output_drivers_at_subarray.searchOp.dynamic * 1e9 << endl;
+
+
+ cout <<endl<< " Total dynamic read energy/access (nJ): " <<
+ fr->data_array2->power.readOp.dynamic * 1e9 << endl;
+ cout << "\tTotal energy in H-tree (that includes both "
+ "address and data transfer) (nJ): " <<
+ (fr->data_array2->power_addr_input_htree.readOp.dynamic +
+ fr->data_array2->power_data_output_htree.readOp.dynamic +
+ fr->data_array2->power_routing_to_bank.readOp.dynamic) * 1e9 << endl;
+ cout << "\tOutput Htree inside bank Energy (nJ): " <<
+ fr->data_array2->power_data_output_htree.readOp.dynamic * 1e9 << endl;
+ cout << "\tDecoder (nJ): " <<
+ fr->data_array2->power_row_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_row_predecoder_blocks.readOp.dynamic * 1e9 << endl;
+ cout << "\tWordline (nJ): " <<
+ fr->data_array2->power_row_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tBitline mux & associated drivers (nJ): " <<
+ fr->data_array2->power_bit_mux_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_bit_mux_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->data_array2->power_bit_mux_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tSense amp mux & associated drivers (nJ): " <<
+ fr->data_array2->power_senseamp_mux_lev_1_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_1_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_1_decoders.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_2_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_2_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->data_array2->power_senseamp_mux_lev_2_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tBitlines (nJ): " <<
+ fr->data_array2->power_bitlines.readOp.dynamic * 1e9 +
+ fr->data_array2->power_prechg_eq_drivers.readOp.dynamic * 1e9<< endl;
+ cout << "\tSense amplifier energy (nJ): " <<
+ fr->data_array2->power_sense_amps.readOp.dynamic * 1e9 << endl;
+ cout << "\tSub-array output driver (nJ): " <<
+ fr->data_array2->power_output_drivers_at_subarray.readOp.dynamic * 1e9 << endl;
+
+ cout << endl <<" Total leakage power of a bank (mW): " <<
+ fr->data_array2->power.readOp.leakage * 1e3 << endl;
+ }
+
+
+ if ((!(g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) && !g_ip->is_main_mem)
+ {
+ cout << endl << " Tag array: Total dynamic read energy/access (nJ): " <<
+ fr->tag_array2->power.readOp.dynamic * 1e9 << endl;
+ cout << "\tTotal leakage read/write power of a bank (mW): " <<
+ fr->tag_array2->power.readOp.leakage * 1e3 << endl;
+ cout << "\tTotal energy in H-tree (that includes both "
+ "address and data transfer) (nJ): " <<
+ (fr->tag_array2->power_addr_input_htree.readOp.dynamic +
+ fr->tag_array2->power_data_output_htree.readOp.dynamic +
+ fr->tag_array2->power_routing_to_bank.readOp.dynamic) * 1e9 << endl;
+
+ cout << "\tTotal leakage power in H-tree (that includes both "
+ "address and data network) ((mW)): " <<
+ (fr->tag_array2->power_addr_input_htree.readOp.leakage +
+ fr->tag_array2->power_data_output_htree.readOp.leakage +
+ fr->tag_array2->power_routing_to_bank.readOp.leakage) * 1e3 << endl;
+
+ cout << "\tTotal gate leakage power in H-tree (that includes both "
+ "address and data network) ((mW)): " <<
+ (fr->tag_array2->power_addr_input_htree.readOp.gate_leakage +
+ fr->tag_array2->power_data_output_htree.readOp.gate_leakage +
+ fr->tag_array2->power_routing_to_bank.readOp.gate_leakage) * 1e3 << endl;
+
+ cout << "\tOutput Htree inside a bank Energy (nJ): " <<
+ fr->tag_array2->power_data_output_htree.readOp.dynamic * 1e9 << endl;
+ cout << "\tDecoder (nJ): " <<
+ fr->tag_array2->power_row_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->tag_array2->power_row_predecoder_blocks.readOp.dynamic * 1e9 << endl;
+ cout << "\tWordline (nJ): " <<
+ fr->tag_array2->power_row_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tBitline mux & associated drivers (nJ): " <<
+ fr->tag_array2->power_bit_mux_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->tag_array2->power_bit_mux_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->tag_array2->power_bit_mux_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tSense amp mux & associated drivers (nJ): " <<
+ fr->tag_array2->power_senseamp_mux_lev_1_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->tag_array2->power_senseamp_mux_lev_1_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->tag_array2->power_senseamp_mux_lev_1_decoders.readOp.dynamic * 1e9 +
+ fr->tag_array2->power_senseamp_mux_lev_2_predecoder_drivers.readOp.dynamic * 1e9 +
+ fr->tag_array2->power_senseamp_mux_lev_2_predecoder_blocks.readOp.dynamic * 1e9 +
+ fr->tag_array2->power_senseamp_mux_lev_2_decoders.readOp.dynamic * 1e9 << endl;
+ cout << "\tBitlines precharge and equalization circuit (nJ): " <<
+ fr->tag_array2->power_prechg_eq_drivers.readOp.dynamic * 1e9 << endl;
+ cout << "\tBitlines (nJ): " <<
+ fr->tag_array2->power_bitlines.readOp.dynamic * 1e9 << endl;
+ cout << "\tSense amplifier energy (nJ): " <<
+ fr->tag_array2->power_sense_amps.readOp.dynamic * 1e9 << endl;
+ cout << "\tSub-array output driver (nJ): " <<
+ fr->tag_array2->power_output_drivers_at_subarray.readOp.dynamic * 1e9 << endl;
+ }
+
+ cout << endl << endl << "Area Components:" << endl << endl;
+ /* Data array area stats */
+ if (!(g_ip->pure_cam || g_ip->fully_assoc))
+ cout << " Data array: Area (mm2): " << fr->data_array2->area * 1e-6 << endl;
+ else if (g_ip->pure_cam)
+ cout << " CAM array: Area (mm2): " << fr->data_array2->area * 1e-6 << endl;
+ else
+ cout << " Fully associative cache array: Area (mm2): " << fr->data_array2->area * 1e-6 << endl;
+ cout << "\tHeight (mm): " <<
+ fr->data_array2->all_banks_height*1e-3 << endl;
+ cout << "\tWidth (mm): " <<
+ fr->data_array2->all_banks_width*1e-3 << endl;
+ if (g_ip->print_detail) {
+ cout << "\tArea efficiency (Memory cell area/Total area) - " <<
+ fr->data_array2->area_efficiency << " %" << endl;
+ cout << "\t\tMAT Height (mm): " <<
+ fr->data_array2->mat_height*1e-3 << endl;
+ cout << "\t\tMAT Length (mm): " <<
+ fr->data_array2->mat_length*1e-3 << endl;
+ cout << "\t\tSubarray Height (mm): " <<
+ fr->data_array2->subarray_height*1e-3 << endl;
+ cout << "\t\tSubarray Length (mm): " <<
+ fr->data_array2->subarray_length*1e-3 << endl;
+ }
+
+ /* Tag array area stats */
+ if ((!(g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) && !g_ip->is_main_mem)
+ {
+ cout << endl << " Tag array: Area (mm2): " << fr->tag_array2->area * 1e-6 << endl;
+ cout << "\tHeight (mm): " <<
+ fr->tag_array2->all_banks_height*1e-3 << endl;
+ cout << "\tWidth (mm): " <<
+ fr->tag_array2->all_banks_width*1e-3 << endl;
+ if (g_ip->print_detail)
+ {
+ cout << "\tArea efficiency (Memory cell area/Total area) - " <<
+ fr->tag_array2->area_efficiency << " %" << endl;
+ cout << "\t\tMAT Height (mm): " <<
+ fr->tag_array2->mat_height*1e-3 << endl;
+ cout << "\t\tMAT Length (mm): " <<
+ fr->tag_array2->mat_length*1e-3 << endl;
+ cout << "\t\tSubarray Height (mm): " <<
+ fr->tag_array2->subarray_height*1e-3 << endl;
+ cout << "\t\tSubarray Length (mm): " <<
+ fr->tag_array2->subarray_length*1e-3 << endl;
+ }
+ }
+ Wire wpr;
+ wpr.print_wire();
+
+ //cout << "FO4 = " << g_tp.FO4 << endl;
+ }
+}
+
+//McPAT's plain interface, please keep !!!
+uca_org_t cacti_interface(InputParameter * const local_interface)
+{
+// g_ip = new InputParameter();
+ //g_ip->add_ecc_b_ = true;
+
+ uca_org_t fin_res;
+ fin_res.valid = false;
+
+ g_ip = local_interface;
+
+
+// g_ip->data_arr_ram_cell_tech_type = data_arr_ram_cell_tech_flavor_in;
+// g_ip->data_arr_peri_global_tech_type = data_arr_peri_global_tech_flavor_in;
+// g_ip->tag_arr_ram_cell_tech_type = tag_arr_ram_cell_tech_flavor_in;
+// g_ip->tag_arr_peri_global_tech_type = tag_arr_peri_global_tech_flavor_in;
+//
+// g_ip->ic_proj_type = interconnect_projection_type_in;
+// g_ip->wire_is_mat_type = wire_inside_mat_type_in;
+// g_ip->wire_os_mat_type = wire_outside_mat_type_in;
+// g_ip->burst_len = BURST_LENGTH_in;
+// g_ip->int_prefetch_w = INTERNAL_PREFETCH_WIDTH_in;
+// g_ip->page_sz_bits = PAGE_SIZE_BITS_in;
+//
+// g_ip->cache_sz = cache_size;
+// g_ip->line_sz = line_size;
+// g_ip->assoc = associativity;
+// g_ip->nbanks = banks;
+// g_ip->out_w = output_width;
+// g_ip->specific_tag = specific_tag;
+// if (tag_width == 0) {
+// g_ip->tag_w = 42;
+// }
+// else {
+// g_ip->tag_w = tag_width;
+// }
+//
+// g_ip->access_mode = access_mode;
+// g_ip->delay_wt = obj_func_delay;
+// g_ip->dynamic_power_wt = obj_func_dynamic_power;
+// g_ip->leakage_power_wt = obj_func_leakage_power;
+// g_ip->area_wt = obj_func_area;
+// g_ip->cycle_time_wt = obj_func_cycle_time;
+// g_ip->delay_dev = dev_func_delay;
+// g_ip->dynamic_power_dev = dev_func_dynamic_power;
+// g_ip->leakage_power_dev = dev_func_leakage_power;
+// g_ip->area_dev = dev_func_area;
+// g_ip->cycle_time_dev = dev_func_cycle_time;
+// g_ip->temp = temp;
+//
+// g_ip->F_sz_nm = tech_node;
+// g_ip->F_sz_um = tech_node / 1000;
+// g_ip->is_main_mem = (main_mem != 0) ? true : false;
+// g_ip->is_cache = (cache ==1) ? true : false;
+// g_ip->pure_ram = (cache ==0) ? true : false;
+// g_ip->pure_cam = (cache ==2) ? true : false;
+// g_ip->rpters_in_htree = (REPEATERS_IN_HTREE_SEGMENTS_in != 0) ? true : false;
+// g_ip->ver_htree_wires_over_array = VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in;
+// g_ip->broadcast_addr_din_over_ver_htrees = BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in;
+//
+// g_ip->num_rw_ports = rw_ports;
+// g_ip->num_rd_ports = excl_read_ports;
+// g_ip->num_wr_ports = excl_write_ports;
+// g_ip->num_se_rd_ports = single_ended_read_ports;
+// g_ip->num_search_ports = search_ports;
+//
+// g_ip->print_detail = 1;
+// g_ip->nuca = 0;
+// g_ip->is_cache=true;
+//
+// if (force_wiretype == 0)
+// {
+// g_ip->wt = Global;
+// g_ip->force_wiretype = false;
+// }
+// else
+// { g_ip->force_wiretype = true;
+// if (wiretype==10) {
+// g_ip->wt = Global_10;
+// }
+// if (wiretype==20) {
+// g_ip->wt = Global_20;
+// }
+// if (wiretype==30) {
+// g_ip->wt = Global_30;
+// }
+// if (wiretype==5) {
+// g_ip->wt = Global_5;
+// }
+// if (wiretype==0) {
+// g_ip->wt = Low_swing;
+// }
+// }
+// //g_ip->wt = Global_5;
+// if (force_config == 0)
+// {
+// g_ip->force_cache_config = false;
+// }
+// else
+// {
+// g_ip->force_cache_config = true;
+// g_ip->ndbl=ndbl;
+// g_ip->ndwl=ndwl;
+// g_ip->nspd=nspd;
+// g_ip->ndcm=ndcm;
+// g_ip->ndsam1=ndsam1;
+// g_ip->ndsam2=ndsam2;
+//
+//
+// }
+//
+// if (ecc==0){
+// g_ip->add_ecc_b_=false;
+// }
+// else
+// {
+// g_ip->add_ecc_b_=true;
+// }
+
+
+ g_ip->error_checking();
+
+
+ init_tech_params(g_ip->F_sz_um, false);
+ Wire winit; // Do not delete this line. It initializes wires.
+
+ solve(&fin_res);
+
+// g_ip->display_ip();
+// output_UCA(&fin_res);
+// output_data_csv(fin_res);
+
+ // delete (g_ip);
+
+ return fin_res;
+}
+
+//McPAT's plain interface, please keep !!!
+uca_org_t init_interface(InputParameter* const local_interface)
+{
+ // g_ip = new InputParameter();
+ //g_ip->add_ecc_b_ = true;
+
+ uca_org_t fin_res;
+ fin_res.valid = false;
+
+ g_ip = local_interface;
+
+
+// g_ip->data_arr_ram_cell_tech_type = data_arr_ram_cell_tech_flavor_in;
+// g_ip->data_arr_peri_global_tech_type = data_arr_peri_global_tech_flavor_in;
+// g_ip->tag_arr_ram_cell_tech_type = tag_arr_ram_cell_tech_flavor_in;
+// g_ip->tag_arr_peri_global_tech_type = tag_arr_peri_global_tech_flavor_in;
+//
+// g_ip->ic_proj_type = interconnect_projection_type_in;
+// g_ip->wire_is_mat_type = wire_inside_mat_type_in;
+// g_ip->wire_os_mat_type = wire_outside_mat_type_in;
+// g_ip->burst_len = BURST_LENGTH_in;
+// g_ip->int_prefetch_w = INTERNAL_PREFETCH_WIDTH_in;
+// g_ip->page_sz_bits = PAGE_SIZE_BITS_in;
+//
+// g_ip->cache_sz = cache_size;
+// g_ip->line_sz = line_size;
+// g_ip->assoc = associativity;
+// g_ip->nbanks = banks;
+// g_ip->out_w = output_width;
+// g_ip->specific_tag = specific_tag;
+// if (tag_width == 0) {
+// g_ip->tag_w = 42;
+// }
+// else {
+// g_ip->tag_w = tag_width;
+// }
+//
+// g_ip->access_mode = access_mode;
+// g_ip->delay_wt = obj_func_delay;
+// g_ip->dynamic_power_wt = obj_func_dynamic_power;
+// g_ip->leakage_power_wt = obj_func_leakage_power;
+// g_ip->area_wt = obj_func_area;
+// g_ip->cycle_time_wt = obj_func_cycle_time;
+// g_ip->delay_dev = dev_func_delay;
+// g_ip->dynamic_power_dev = dev_func_dynamic_power;
+// g_ip->leakage_power_dev = dev_func_leakage_power;
+// g_ip->area_dev = dev_func_area;
+// g_ip->cycle_time_dev = dev_func_cycle_time;
+// g_ip->temp = temp;
+//
+// g_ip->F_sz_nm = tech_node;
+// g_ip->F_sz_um = tech_node / 1000;
+// g_ip->is_main_mem = (main_mem != 0) ? true : false;
+// g_ip->is_cache = (cache ==1) ? true : false;
+// g_ip->pure_ram = (cache ==0) ? true : false;
+// g_ip->pure_cam = (cache ==2) ? true : false;
+// g_ip->rpters_in_htree = (REPEATERS_IN_HTREE_SEGMENTS_in != 0) ? true : false;
+// g_ip->ver_htree_wires_over_array = VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in;
+// g_ip->broadcast_addr_din_over_ver_htrees = BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in;
+//
+// g_ip->num_rw_ports = rw_ports;
+// g_ip->num_rd_ports = excl_read_ports;
+// g_ip->num_wr_ports = excl_write_ports;
+// g_ip->num_se_rd_ports = single_ended_read_ports;
+// g_ip->num_search_ports = search_ports;
+//
+// g_ip->print_detail = 1;
+// g_ip->nuca = 0;
+//
+// if (force_wiretype == 0)
+// {
+// g_ip->wt = Global;
+// g_ip->force_wiretype = false;
+// }
+// else
+// { g_ip->force_wiretype = true;
+// if (wiretype==10) {
+// g_ip->wt = Global_10;
+// }
+// if (wiretype==20) {
+// g_ip->wt = Global_20;
+// }
+// if (wiretype==30) {
+// g_ip->wt = Global_30;
+// }
+// if (wiretype==5) {
+// g_ip->wt = Global_5;
+// }
+// if (wiretype==0) {
+// g_ip->wt = Low_swing;
+// }
+// }
+// //g_ip->wt = Global_5;
+// if (force_config == 0)
+// {
+// g_ip->force_cache_config = false;
+// }
+// else
+// {
+// g_ip->force_cache_config = true;
+// g_ip->ndbl=ndbl;
+// g_ip->ndwl=ndwl;
+// g_ip->nspd=nspd;
+// g_ip->ndcm=ndcm;
+// g_ip->ndsam1=ndsam1;
+// g_ip->ndsam2=ndsam2;
+//
+//
+// }
+//
+// if (ecc==0){
+// g_ip->add_ecc_b_=false;
+// }
+// else
+// {
+// g_ip->add_ecc_b_=true;
+// }
+
+
+ g_ip->error_checking();
+
+ init_tech_params(g_ip->F_sz_um, false);
+ Wire winit; // Do not delete this line. It initializes wires.
+ //solve(&fin_res);
+ //g_ip->display_ip();
+
+ //solve(&fin_res);
+ //output_UCA(&fin_res);
+ //output_data_csv(fin_res);
+ // delete (g_ip);
+
+ return fin_res;
+}
+
+void reconfigure(InputParameter *local_interface, uca_org_t *fin_res)
+{
+ // Copy the InputParameter to global interface (g_ip) and do error checking.
+ g_ip = local_interface;
+ g_ip->error_checking();
+
+ // Initialize technology parameters
+ init_tech_params(g_ip->F_sz_um,false);
+
+ Wire winit; // Do not delete this line. It initializes wires.
+
+ // This corresponds to solve() in the initialization process.
+ update(fin_res);
+}
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#ifndef __IO_H__
+#define __IO_H__
+
+
+#include "cacti_interface.h"
+#include "const.h"
+
+void output_data_csv(const uca_org_t & fin_res);
+void output_UCA(uca_org_t * fin_res);
+
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#include <iostream>
+
+#include "io.h"
+
+using namespace std;
+
+
+int main(int argc,char *argv[])
+{
+
+ uca_org_t result;
+ if (argc != 53 && argc != 55)
+ {
+ bool infile_specified = false;
+ string infile_name("");
+
+ for (int32_t i = 0; i < argc; i++)
+ {
+ if (argv[i] == string("-infile"))
+ {
+ infile_specified = true;
+ i++;
+ infile_name = argv[i];
+ }
+ }
+
+ if (infile_specified == false)
+ {
+ cerr << " Invalid arguments -- how to use CACTI:" << endl;
+ cerr << " 1) cacti -infile <input file name>" << endl;
+ cerr << " 2) cacti arg1 ... arg52 -- please refer to the README file" << endl;
+ cerr << " No. of arguments input - " << argc << endl;
+ exit(1);
+ }
+ else
+ {
+ result = cacti_interface(infile_name);
+ }
+ }
+ else if (argc == 53)
+ {
+ result = cacti_interface(atoi(argv[ 1]),
+ atoi(argv[ 2]),
+ atoi(argv[ 3]),
+ atoi(argv[ 4]),
+ atoi(argv[ 5]),
+ atoi(argv[ 6]),
+ atoi(argv[ 7]),
+ atoi(argv[ 8]),
+ atoi(argv[ 9]),
+ atof(argv[10]),
+ atoi(argv[11]),
+ atoi(argv[12]),
+ atoi(argv[13]),
+ atoi(argv[14]),
+ atoi(argv[15]),
+ atoi(argv[16]),
+ atoi(argv[17]),
+ atoi(argv[18]),
+ atoi(argv[19]),
+ atoi(argv[20]),
+ atoi(argv[21]),
+ atoi(argv[22]),
+ atoi(argv[23]),
+ atoi(argv[24]),
+ atoi(argv[25]),
+ atoi(argv[26]),
+ atoi(argv[27]),
+ atoi(argv[28]),
+ atoi(argv[29]),
+ atoi(argv[30]),
+ atoi(argv[31]),
+ atoi(argv[32]),
+ atoi(argv[33]),
+ atoi(argv[34]),
+ atoi(argv[35]),
+ atoi(argv[36]),
+ atoi(argv[37]),
+ atoi(argv[38]),
+ atoi(argv[39]),
+ atoi(argv[40]),
+ atoi(argv[41]),
+ atoi(argv[42]),
+ atoi(argv[43]),
+ atoi(argv[44]),
+ atoi(argv[45]),
+ atoi(argv[46]),
+ atoi(argv[47]),
+ atoi(argv[48]),
+ atoi(argv[49]),
+ atoi(argv[50]),
+ atoi(argv[51]),
+ atoi(argv[52]));
+ }
+ else
+ {
+ result = cacti_interface(atoi(argv[ 1]),
+ atoi(argv[ 2]),
+ atoi(argv[ 3]),
+ atoi(argv[ 4]),
+ atoi(argv[ 5]),
+ atoi(argv[ 6]),
+ atoi(argv[ 7]),
+ atoi(argv[ 8]),
+ atof(argv[ 9]),
+ atoi(argv[10]),
+ atoi(argv[11]),
+ atoi(argv[12]),
+ atoi(argv[13]),
+ atoi(argv[14]),
+ atoi(argv[15]),
+ atoi(argv[16]),
+ atoi(argv[17]),
+ atoi(argv[18]),
+ atoi(argv[19]),
+ atoi(argv[20]),
+ atoi(argv[21]),
+ atoi(argv[22]),
+ atoi(argv[23]),
+ atoi(argv[24]),
+ atoi(argv[25]),
+ atoi(argv[26]),
+ atoi(argv[27]),
+ atoi(argv[28]),
+ atoi(argv[29]),
+ atoi(argv[30]),
+ atoi(argv[31]),
+ atoi(argv[32]),
+ atoi(argv[33]),
+ atoi(argv[34]),
+ atoi(argv[35]),
+ atoi(argv[36]),
+ atoi(argv[37]),
+ atoi(argv[38]),
+ atoi(argv[39]),
+ atoi(argv[40]),
+ atoi(argv[41]),
+ atoi(argv[42]),
+ atoi(argv[43]),
+ atoi(argv[44]),
+ atoi(argv[45]),
+ atoi(argv[46]),
+ atoi(argv[47]),
+ atoi(argv[48]),
+ atoi(argv[49]),
+ atoi(argv[50]),
+ atoi(argv[51]),
+ atoi(argv[52]),
+ atoi(argv[53]),
+ atoi(argv[54]));
+ }
+
+ result.cleanup();
+// delete result.data_array2;
+// if (result.tag_array2!=NULL)
+// delete result.tag_array2;
+
+ return 0;
+}
+
--- /dev/null
+TAR = cacti
+
+.PHONY: dbg opt depend clean clean_dbg clean_opt
+
+all: opt
+
+dbg: $(TAR).mk obj_dbg
+ @$(MAKE) TAG=dbg -C . -f $(TAR).mk
+
+opt: $(TAR).mk obj_opt
+ @$(MAKE) TAG=opt -C . -f $(TAR).mk
+
+obj_dbg:
+ mkdir $@
+
+obj_opt:
+ mkdir $@
+
+clean: clean_dbg clean_opt
+
+clean_dbg: obj_dbg
+ @$(MAKE) TAG=dbg -C . -f $(TAR).mk clean
+ rm -rf $<
+
+clean_opt: obj_opt
+ @$(MAKE) TAG=opt -C . -f $(TAR).mk clean
+ rm -rf $<
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include <cassert>
+
+#include "mat.h"
+
+Mat::Mat(const DynamicParameter & dyn_p)
+ :dp(dyn_p),
+ power_subarray_out_drv(),
+ delay_fa_tag(0), delay_cam(0),
+ delay_before_decoder(0), delay_bitline(0),
+ delay_wl_reset(0), delay_bl_restore(0),
+ delay_searchline(0), delay_matchchline(0),
+ delay_cam_sl_restore(0), delay_cam_ml_reset(0),
+ delay_fa_ram_wl(0),delay_hit_miss_reset(0),
+ delay_hit_miss(0),
+ subarray(dp, dp.fully_assoc),
+ power_bitline(), per_bitline_read_energy(0),
+ deg_bl_muxing(dp.deg_bl_muxing),
+ num_act_mats_hor_dir(dyn_p.num_act_mats_hor_dir),
+ delay_writeback(0),
+ cell(subarray.cell), cam_cell(subarray.cam_cell),
+ is_dram(dyn_p.is_dram),
+ pure_cam(dyn_p.pure_cam),
+ num_mats(dp.num_mats),
+ power_sa(), delay_sa(0),
+ leak_power_sense_amps_closed_page_state(0),
+ leak_power_sense_amps_open_page_state(0),
+ delay_subarray_out_drv(0),
+ delay_comparator(0), power_comparator(),
+ num_do_b_mat(dyn_p.num_do_b_mat), num_so_b_mat(dyn_p.num_so_b_mat),
+ num_subarrays_per_mat(dp.num_subarrays/dp.num_mats),
+ num_subarrays_per_row(dp.Ndwl/dp.num_mats_h_dir)
+{
+ assert(num_subarrays_per_mat <= 4);
+ assert(num_subarrays_per_row <= 2);
+ is_fa = (dp.fully_assoc) ? true : false;
+ camFlag = (is_fa || pure_cam);//although cam_cell.w = cell.w for fa, we still differentiate them.
+
+ if (is_fa || pure_cam)
+ num_subarrays_per_row = num_subarrays_per_mat>2?num_subarrays_per_mat/2:num_subarrays_per_mat;
+
+ if (dp.use_inp_params == 1) {
+ RWP = dp.num_rw_ports;
+ ERP = dp.num_rd_ports;
+ EWP = dp.num_wr_ports;
+ SCHP = dp.num_search_ports;
+ }
+ else {
+ RWP = g_ip->num_rw_ports;
+ ERP = g_ip->num_rd_ports;
+ EWP = g_ip->num_wr_ports;
+ SCHP = g_ip->num_search_ports;
+
+ }
+
+ double number_sa_subarray;
+
+ if (!is_fa && !pure_cam)
+ {
+ number_sa_subarray = subarray.num_cols / deg_bl_muxing;
+ }
+ else if (is_fa && !pure_cam)
+ {
+ number_sa_subarray = (subarray.num_cols_fa_cam + subarray.num_cols_fa_ram) / deg_bl_muxing;
+ }
+
+ else
+ {
+ number_sa_subarray = (subarray.num_cols_fa_cam) / deg_bl_muxing;
+ }
+
+ int num_dec_signals = subarray.num_rows;
+ double C_ld_bit_mux_dec_out = 0;
+ double C_ld_sa_mux_lev_1_dec_out = 0;
+ double C_ld_sa_mux_lev_2_dec_out = 0;
+ double R_wire_wl_drv_out;
+
+ if (!is_fa && !pure_cam)
+ {
+ R_wire_wl_drv_out = subarray.num_cols * cell.w * g_tp.wire_local.R_per_um;
+ }
+ else if (is_fa && !pure_cam)
+ {
+ R_wire_wl_drv_out = (subarray.num_cols_fa_cam * cam_cell.w + subarray.num_cols_fa_ram * cell.w) * g_tp.wire_local.R_per_um ;
+ }
+ else
+ {
+ R_wire_wl_drv_out = (subarray.num_cols_fa_cam * cam_cell.w ) * g_tp.wire_local.R_per_um;
+ }
+
+ double R_wire_bit_mux_dec_out = num_subarrays_per_row * subarray.num_cols * g_tp.wire_inside_mat.R_per_um * cell.w;//TODO:revisit for FA
+ double R_wire_sa_mux_dec_out = num_subarrays_per_row * subarray.num_cols * g_tp.wire_inside_mat.R_per_um * cell.w;
+
+ if (deg_bl_muxing > 1)
+ {
+ C_ld_bit_mux_dec_out =
+ (2 * num_subarrays_per_mat * subarray.num_cols / deg_bl_muxing)*gate_C(g_tp.w_nmos_b_mux, 0, is_dram) + // 2 transistor per cell
+ num_subarrays_per_row * subarray.num_cols*g_tp.wire_inside_mat.C_per_um*cell.get_w();
+ }
+
+ if (dp.Ndsam_lev_1 > 1)
+ {
+ C_ld_sa_mux_lev_1_dec_out =
+ (num_subarrays_per_mat * number_sa_subarray / dp.Ndsam_lev_1)*gate_C(g_tp.w_nmos_sa_mux, 0, is_dram) +
+ num_subarrays_per_row * subarray.num_cols*g_tp.wire_inside_mat.C_per_um*cell.get_w();
+ }
+ if (dp.Ndsam_lev_2 > 1)
+ {
+ C_ld_sa_mux_lev_2_dec_out =
+ (num_subarrays_per_mat * number_sa_subarray / (dp.Ndsam_lev_1*dp.Ndsam_lev_2))*gate_C(g_tp.w_nmos_sa_mux, 0, is_dram) +
+ num_subarrays_per_row * subarray.num_cols*g_tp.wire_inside_mat.C_per_um*cell.get_w();
+ }
+
+ if (num_subarrays_per_row >= 2)
+ {
+ // wire heads for both right and left side of a mat, so half the resistance
+ R_wire_bit_mux_dec_out /= 2.0;
+ R_wire_sa_mux_dec_out /= 2.0;
+ }
+
+
+ row_dec = new Decoder(
+ num_dec_signals,
+ false,
+ subarray.C_wl,
+ R_wire_wl_drv_out,
+ false/*is_fa*/,
+ is_dram,
+ true,
+ camFlag? cam_cell:cell);
+// if (is_fa && (!dp.is_tag))
+// {
+// row_dec->exist = true;
+// }
+ bit_mux_dec = new Decoder(
+ deg_bl_muxing,// This number is 1 for FA or CAM
+ false,
+ C_ld_bit_mux_dec_out,
+ R_wire_bit_mux_dec_out,
+ false/*is_fa*/,
+ is_dram,
+ false,
+ camFlag? cam_cell:cell);
+ sa_mux_lev_1_dec = new Decoder(
+ dp.deg_senseamp_muxing_non_associativity, // This number is 1 for FA or CAM
+ dp.number_way_select_signals_mat ? true : false,//only sa_mux_lev_1_dec needs way select signal
+ C_ld_sa_mux_lev_1_dec_out,
+ R_wire_sa_mux_dec_out,
+ false/*is_fa*/,
+ is_dram,
+ false,
+ camFlag? cam_cell:cell);
+ sa_mux_lev_2_dec = new Decoder(
+ dp.Ndsam_lev_2, // This number is 1 for FA or CAM
+ false,
+ C_ld_sa_mux_lev_2_dec_out,
+ R_wire_sa_mux_dec_out,
+ false/*is_fa*/,
+ is_dram,
+ false,
+ camFlag? cam_cell:cell);
+
+ double C_wire_predec_blk_out;
+ double R_wire_predec_blk_out;
+
+ if (!is_fa && !pure_cam)
+ {
+
+ C_wire_predec_blk_out = num_subarrays_per_row * subarray.num_rows * g_tp.wire_inside_mat.C_per_um * cell.h;
+ R_wire_predec_blk_out = num_subarrays_per_row * subarray.num_rows * g_tp.wire_inside_mat.R_per_um * cell.h;
+
+ }
+ else //for pre-decode block's load is same for both FA and CAM
+ {
+ C_wire_predec_blk_out = subarray.num_rows * g_tp.wire_inside_mat.C_per_um * cam_cell.h;
+ R_wire_predec_blk_out = subarray.num_rows * g_tp.wire_inside_mat.R_per_um * cam_cell.h;
+ }
+
+
+ if (is_fa||pure_cam)
+ num_dec_signals += _log2(num_subarrays_per_mat);
+
+ PredecBlk * r_predec_blk1 = new PredecBlk(
+ num_dec_signals,
+ row_dec,
+ C_wire_predec_blk_out,
+ R_wire_predec_blk_out,
+ num_subarrays_per_mat,
+ is_dram,
+ true);
+ PredecBlk * r_predec_blk2 = new PredecBlk(
+ num_dec_signals,
+ row_dec,
+ C_wire_predec_blk_out,
+ R_wire_predec_blk_out,
+ num_subarrays_per_mat,
+ is_dram,
+ false);
+ PredecBlk * b_mux_predec_blk1 = new PredecBlk(deg_bl_muxing, bit_mux_dec, 0, 0, 1, is_dram, true);
+ PredecBlk * b_mux_predec_blk2 = new PredecBlk(deg_bl_muxing, bit_mux_dec, 0, 0, 1, is_dram, false);
+ PredecBlk * sa_mux_lev_1_predec_blk1 = new PredecBlk(dyn_p.deg_senseamp_muxing_non_associativity, sa_mux_lev_1_dec, 0, 0, 1, is_dram, true);
+ PredecBlk * sa_mux_lev_1_predec_blk2 = new PredecBlk(dyn_p.deg_senseamp_muxing_non_associativity, sa_mux_lev_1_dec, 0, 0, 1, is_dram, false);
+ PredecBlk * sa_mux_lev_2_predec_blk1 = new PredecBlk(dp.Ndsam_lev_2, sa_mux_lev_2_dec, 0, 0, 1, is_dram, true);
+ PredecBlk * sa_mux_lev_2_predec_blk2 = new PredecBlk(dp.Ndsam_lev_2, sa_mux_lev_2_dec, 0, 0, 1, is_dram, false);
+ dummy_way_sel_predec_blk1 = new PredecBlk(1, sa_mux_lev_1_dec, 0, 0, 0, is_dram, true);
+ dummy_way_sel_predec_blk2 = new PredecBlk(1, sa_mux_lev_1_dec, 0, 0, 0, is_dram, false);
+
+ PredecBlkDrv * r_predec_blk_drv1 = new PredecBlkDrv(0, r_predec_blk1, is_dram);
+ PredecBlkDrv * r_predec_blk_drv2 = new PredecBlkDrv(0, r_predec_blk2, is_dram);
+ PredecBlkDrv * b_mux_predec_blk_drv1 = new PredecBlkDrv(0, b_mux_predec_blk1, is_dram);
+ PredecBlkDrv * b_mux_predec_blk_drv2 = new PredecBlkDrv(0, b_mux_predec_blk2, is_dram);
+ PredecBlkDrv * sa_mux_lev_1_predec_blk_drv1 = new PredecBlkDrv(0, sa_mux_lev_1_predec_blk1, is_dram);
+ PredecBlkDrv * sa_mux_lev_1_predec_blk_drv2 = new PredecBlkDrv(0, sa_mux_lev_1_predec_blk2, is_dram);
+ PredecBlkDrv * sa_mux_lev_2_predec_blk_drv1 = new PredecBlkDrv(0, sa_mux_lev_2_predec_blk1, is_dram);
+ PredecBlkDrv * sa_mux_lev_2_predec_blk_drv2 = new PredecBlkDrv(0, sa_mux_lev_2_predec_blk2, is_dram);
+ way_sel_drv1 = new PredecBlkDrv(dyn_p.number_way_select_signals_mat, dummy_way_sel_predec_blk1, is_dram);
+ dummy_way_sel_predec_blk_drv2 = new PredecBlkDrv(1, dummy_way_sel_predec_blk2, is_dram);
+
+ r_predec = new Predec(r_predec_blk_drv1, r_predec_blk_drv2);
+ b_mux_predec = new Predec(b_mux_predec_blk_drv1, b_mux_predec_blk_drv2);
+ sa_mux_lev_1_predec = new Predec(sa_mux_lev_1_predec_blk_drv1, sa_mux_lev_1_predec_blk_drv2);
+ sa_mux_lev_2_predec = new Predec(sa_mux_lev_2_predec_blk_drv1, sa_mux_lev_2_predec_blk_drv2);
+
+ subarray_out_wire = new Wire(g_ip->wt, subarray.area.h);//Bug should be subarray.area.w Owen and Sheng
+
+ double driver_c_gate_load;
+ double driver_c_wire_load;
+ double driver_r_wire_load;
+
+ if (is_fa || pure_cam)
+
+ { //Although CAM and RAM use different bl pre-charge driver, assuming the precharge p size is the same
+ driver_c_gate_load = (subarray.num_cols_fa_cam )* gate_C(2 * g_tp.w_pmos_bl_precharge + g_tp.w_pmos_bl_eq, 0, is_dram, false, false);
+ driver_c_wire_load = subarray.num_cols_fa_cam * cam_cell.w * g_tp.wire_outside_mat.C_per_um;
+ driver_r_wire_load = subarray.num_cols_fa_cam * cam_cell.w * g_tp.wire_outside_mat.R_per_um;
+ cam_bl_precharge_eq_drv = new Driver(
+ driver_c_gate_load,
+ driver_c_wire_load,
+ driver_r_wire_load,
+ is_dram);
+
+ if (!pure_cam)
+ {
+ //This is only used for fully asso not pure CAM
+ driver_c_gate_load = (subarray.num_cols_fa_ram )* gate_C(2 * g_tp.w_pmos_bl_precharge + g_tp.w_pmos_bl_eq, 0, is_dram, false, false);
+ driver_c_wire_load = subarray.num_cols_fa_ram * cell.w * g_tp.wire_outside_mat.C_per_um;
+ driver_r_wire_load = subarray.num_cols_fa_ram * cell.w * g_tp.wire_outside_mat.R_per_um;
+ bl_precharge_eq_drv = new Driver(
+ driver_c_gate_load,
+ driver_c_wire_load,
+ driver_r_wire_load,
+ is_dram);
+ }
+ }
+
+ else
+ {
+ driver_c_gate_load = subarray.num_cols * gate_C(2 * g_tp.w_pmos_bl_precharge + g_tp.w_pmos_bl_eq, 0, is_dram, false, false);
+ driver_c_wire_load = subarray.num_cols * cell.w * g_tp.wire_outside_mat.C_per_um;
+ driver_r_wire_load = subarray.num_cols * cell.w * g_tp.wire_outside_mat.R_per_um;
+ bl_precharge_eq_drv = new Driver(
+ driver_c_gate_load,
+ driver_c_wire_load,
+ driver_r_wire_load,
+ is_dram);
+ }
+ double area_row_decoder = row_dec->area.get_area() * subarray.num_rows * (RWP + ERP + EWP);
+ double w_row_decoder = area_row_decoder / subarray.area.get_h();
+
+ double h_bit_mux_sense_amp_precharge_sa_mux_write_driver_write_mux =
+ compute_bit_mux_sa_precharge_sa_mux_wr_drv_wr_mux_h();
+
+ double h_subarray_out_drv = subarray_out_wire->area.get_area() *
+ (subarray.num_cols / (deg_bl_muxing * dp.Ndsam_lev_1 * dp.Ndsam_lev_2)) / subarray.area.get_w();
+
+
+ h_subarray_out_drv *= (RWP + ERP + SCHP);
+
+ double h_comparators = 0.0;
+ double w_row_predecode_output_wires = 0.0;
+ double h_bit_mux_dec_out_wires = 0.0;
+ double h_senseamp_mux_dec_out_wires = 0.0;
+
+ if ((!is_fa)&&(dp.is_tag))
+ {
+ //tagbits = (4 * num_cols_subarray / (deg_bl_muxing * dp.Ndsam_lev_1 * dp.Ndsam_lev_2)) / num_do_b_mat;
+ h_comparators = compute_comparators_height(dp.tagbits, dyn_p.num_do_b_mat, subarray.area.get_w());
+ h_comparators *= (RWP + ERP);
+ }
+
+
+ int branch_effort_predec_blk1_out = (1 << r_predec_blk2->number_input_addr_bits);
+ int branch_effort_predec_blk2_out = (1 << r_predec_blk1->number_input_addr_bits);
+ w_row_predecode_output_wires = (branch_effort_predec_blk1_out + branch_effort_predec_blk2_out) *
+ g_tp.wire_inside_mat.pitch * (RWP + ERP + EWP);
+
+
+ double h_non_cell_area = (num_subarrays_per_mat / num_subarrays_per_row) *
+ (h_bit_mux_sense_amp_precharge_sa_mux_write_driver_write_mux +
+ h_subarray_out_drv + h_comparators);
+
+ double w_non_cell_area = MAX(w_row_predecode_output_wires, num_subarrays_per_row * w_row_decoder);
+
+ if (deg_bl_muxing > 1)
+ {
+ h_bit_mux_dec_out_wires = deg_bl_muxing * g_tp.wire_inside_mat.pitch * (RWP + ERP);
+ }
+ if (dp.Ndsam_lev_1 > 1)
+ {
+ h_senseamp_mux_dec_out_wires = dp.Ndsam_lev_1 * g_tp.wire_inside_mat.pitch * (RWP + ERP);
+ }
+ if (dp.Ndsam_lev_2 > 1)
+ {
+ h_senseamp_mux_dec_out_wires += dp.Ndsam_lev_2 * g_tp.wire_inside_mat.pitch * (RWP + ERP);
+ }
+
+ double h_addr_datain_wires;
+ if (!g_ip->ver_htree_wires_over_array)
+ {
+ h_addr_datain_wires = (dp.number_addr_bits_mat + dp.number_way_select_signals_mat +
+ (dp.num_di_b_mat + dp.num_do_b_mat)/num_subarrays_per_row) *
+ g_tp.wire_inside_mat.pitch * (RWP + ERP + EWP);
+
+ if (is_fa || pure_cam)
+ {
+ h_addr_datain_wires = (dp.number_addr_bits_mat + dp.number_way_select_signals_mat + //TODO: revisit
+ (dp.num_di_b_mat+ dp.num_do_b_mat )/num_subarrays_per_row) *
+ g_tp.wire_inside_mat.pitch * (RWP + ERP + EWP) +
+ (dp.num_si_b_mat + dp.num_so_b_mat )/num_subarrays_per_row * g_tp.wire_inside_mat.pitch * SCHP;
+ }
+ //h_non_cell_area = 2 * h_bit_mux_sense_amp_precharge_sa_mux +
+ //MAX(h_addr_datain_wires, 2 * h_subarray_out_drv);
+ h_non_cell_area = (h_bit_mux_sense_amp_precharge_sa_mux_write_driver_write_mux + h_comparators +
+ h_subarray_out_drv) * (num_subarrays_per_mat / num_subarrays_per_row) +
+ h_addr_datain_wires +
+ h_bit_mux_dec_out_wires +
+ h_senseamp_mux_dec_out_wires;
+
+ }
+
+ // double area_rectangle_center_mat = h_non_cell_area * w_non_cell_area;
+ double area_mat_center_circuitry = (r_predec_blk_drv1->area.get_area() +
+ b_mux_predec_blk_drv1->area.get_area() +
+ sa_mux_lev_1_predec_blk_drv1->area.get_area() +
+ sa_mux_lev_2_predec_blk_drv1->area.get_area() +
+ way_sel_drv1->area.get_area() +
+ r_predec_blk_drv2->area.get_area() +
+ b_mux_predec_blk_drv2->area.get_area() +
+ sa_mux_lev_1_predec_blk_drv2->area.get_area() +
+ sa_mux_lev_2_predec_blk_drv2->area.get_area() +
+ r_predec_blk1->area.get_area() +
+ b_mux_predec_blk1->area.get_area() +
+ sa_mux_lev_1_predec_blk1->area.get_area() +
+ sa_mux_lev_2_predec_blk1->area.get_area() +
+ r_predec_blk2->area.get_area() +
+ b_mux_predec_blk2->area.get_area() +
+ sa_mux_lev_1_predec_blk2->area.get_area() +
+ sa_mux_lev_2_predec_blk2->area.get_area() +
+ bit_mux_dec->area.get_area() +
+ sa_mux_lev_1_dec->area.get_area() +
+ sa_mux_lev_2_dec->area.get_area()) * (RWP + ERP + EWP);
+
+ double area_efficiency_mat;
+
+// if (!is_fa)
+// {
+ assert(num_subarrays_per_mat/num_subarrays_per_row>0);
+ area.h = (num_subarrays_per_mat/num_subarrays_per_row)* subarray.area.h + h_non_cell_area;
+ area.w = num_subarrays_per_row * subarray.area.get_w() + w_non_cell_area;
+ area.w = (area.h*area.w + area_mat_center_circuitry) / area.h;
+ area_efficiency_mat = subarray.area.get_area() * num_subarrays_per_mat * 100.0 / area.get_area();
+
+// cout<<"h_bit_mux_sense_amp_precharge_sa_mux_write_driver_write_mux"<<h_bit_mux_sense_amp_precharge_sa_mux_write_driver_write_mux<<endl;
+// cout<<"h_comparators"<<h_comparators<<endl;
+// cout<<"h_subarray_out_drv"<<h_subarray_out_drv<<endl;
+// cout<<"h_addr_datain_wires"<<h_addr_datain_wires<<endl;
+// cout<<"h_bit_mux_dec_out_wires"<<h_bit_mux_dec_out_wires<<endl;
+// cout<<"h_senseamp_mux_dec_out_wires"<<h_senseamp_mux_dec_out_wires<<endl;
+// cout<<"h_non_cell_area"<<h_non_cell_area<<endl;
+// cout<<"area.h =" << (num_subarrays_per_mat/num_subarrays_per_row)* subarray.area.h<<endl;
+// cout<<"w_non_cell_area"<<w_non_cell_area<<endl;
+// cout<<"area_mat_center_circuitry"<<area_mat_center_circuitry<<endl;
+
+ assert(area.h>0);
+ assert(area.w>0);
+// }
+// else
+// {
+// area.h = (num_subarrays_per_mat / num_subarrays_per_row) * subarray.area.get_h() + h_non_cell_area;
+// area.w = num_subarrays_per_row * subarray.area.get_w() + w_non_cell_area;
+// area.w = (area.h*area.w + area_mat_center_circuitry) / area.h;
+// area_efficiency_mat = subarray.area.get_area() * num_subarrays_per_row * 100.0 / area.get_area();
+// }
+ }
+
+
+
+Mat::~Mat()
+{
+ delete row_dec;
+ delete bit_mux_dec;
+ delete sa_mux_lev_1_dec;
+ delete sa_mux_lev_2_dec;
+
+ delete r_predec->blk1;
+ delete r_predec->blk2;
+ delete b_mux_predec->blk1;
+ delete b_mux_predec->blk2;
+ delete sa_mux_lev_1_predec->blk1;
+ delete sa_mux_lev_1_predec->blk2;
+ delete sa_mux_lev_2_predec->blk1;
+ delete sa_mux_lev_2_predec->blk2;
+ delete dummy_way_sel_predec_blk1;
+ delete dummy_way_sel_predec_blk2;
+
+ delete r_predec->drv1;
+ delete r_predec->drv2;
+ delete b_mux_predec->drv1;
+ delete b_mux_predec->drv2;
+ delete sa_mux_lev_1_predec->drv1;
+ delete sa_mux_lev_1_predec->drv2;
+ delete sa_mux_lev_2_predec->drv1;
+ delete sa_mux_lev_2_predec->drv2;
+ delete way_sel_drv1;
+ delete dummy_way_sel_predec_blk_drv2;
+
+ delete r_predec;
+ delete b_mux_predec;
+ delete sa_mux_lev_1_predec;
+ delete sa_mux_lev_2_predec;
+
+ delete subarray_out_wire;
+ if (!pure_cam)
+ delete bl_precharge_eq_drv;
+
+ if (is_fa || pure_cam)
+ {
+ delete sl_precharge_eq_drv ;
+ delete sl_data_drv ;
+ delete cam_bl_precharge_eq_drv;
+ delete ml_precharge_drv;
+ delete ml_to_ram_wl_drv;
+ }
+}
+
+
+
+double Mat::compute_delays(double inrisetime)
+{
+ int k;
+ double rd, C_intrinsic, C_ld, tf, R_bl_precharge,r_b_metal, R_bl, C_bl;
+ double outrisetime_search, outrisetime, row_dec_outrisetime;
+ // delay calculation for tags of fully associative cache
+ if (is_fa || pure_cam)
+ {
+ //Compute search access time
+ outrisetime_search = compute_cam_delay(inrisetime);
+ if (is_fa)
+ {
+ bl_precharge_eq_drv->compute_delay(0);
+ k = ml_to_ram_wl_drv->number_gates - 1;
+ rd = tr_R_on(ml_to_ram_wl_drv->width_n[k], NCH, 1, is_dram, false, true);
+ C_intrinsic = drain_C_(ml_to_ram_wl_drv->width_n[k], PCH, 1, 1, 4*cell.h, is_dram, false, true) +
+ drain_C_(ml_to_ram_wl_drv->width_n[k], NCH, 1, 1, 4*cell.h, is_dram, false, true);
+ C_ld = ml_to_ram_wl_drv->c_gate_load+ ml_to_ram_wl_drv->c_wire_load;
+ tf = rd * (C_intrinsic + C_ld) + ml_to_ram_wl_drv->r_wire_load * C_ld / 2;
+ delay_wl_reset = horowitz(0, tf, 0.5, 0.5, RISE);
+
+ R_bl_precharge = tr_R_on(g_tp.w_pmos_bl_precharge, PCH, 1, is_dram, false, false);
+ r_b_metal = cam_cell.h * g_tp.wire_local.R_per_um;//dummy rows in sram are filled in
+ R_bl = subarray.num_rows * r_b_metal;
+ C_bl = subarray.C_bl;
+ delay_bl_restore = bl_precharge_eq_drv->delay +
+ log((g_tp.sram.Vbitpre - 0.1 * dp.V_b_sense) / (g_tp.sram.Vbitpre - dp.V_b_sense))*
+ (R_bl_precharge * C_bl + R_bl * C_bl / 2);
+
+
+ outrisetime_search = compute_bitline_delay(outrisetime_search);
+ outrisetime_search = compute_sa_delay(outrisetime_search);
+ }
+ outrisetime_search = compute_subarray_out_drv(outrisetime_search);
+ subarray_out_wire->set_in_rise_time(outrisetime_search);
+ outrisetime_search = subarray_out_wire->signal_rise_time();
+ delay_subarray_out_drv_htree = delay_subarray_out_drv + subarray_out_wire->delay;
+
+
+ //TODO: this is just for compute plain read/write energy for fa and cam, plain read/write access timing need to be revisited.
+ outrisetime = r_predec->compute_delays(inrisetime);
+ row_dec_outrisetime = row_dec->compute_delays(outrisetime);
+
+ outrisetime = b_mux_predec->compute_delays(inrisetime);
+ bit_mux_dec->compute_delays(outrisetime);
+
+ outrisetime = sa_mux_lev_1_predec->compute_delays(inrisetime);
+ sa_mux_lev_1_dec->compute_delays(outrisetime);
+
+ outrisetime = sa_mux_lev_2_predec->compute_delays(inrisetime);
+ sa_mux_lev_2_dec->compute_delays(outrisetime);
+
+ if (pure_cam)
+ {
+ outrisetime = compute_bitline_delay(row_dec_outrisetime);
+ outrisetime = compute_sa_delay(outrisetime);
+ }
+ return outrisetime_search;
+ }
+ else
+ {
+ bl_precharge_eq_drv->compute_delay(0);
+ if (row_dec->exist == true)
+ {
+ int k = row_dec->num_gates - 1;
+ double rd = tr_R_on(row_dec->w_dec_n[k], NCH, 1, is_dram, false, true);
+ // TODO: this 4*cell.h number must be revisited
+ double C_intrinsic = drain_C_(row_dec->w_dec_p[k], PCH, 1, 1, 4*cell.h, is_dram, false, true) +
+ drain_C_(row_dec->w_dec_n[k], NCH, 1, 1, 4*cell.h, is_dram, false, true);
+ double C_ld = row_dec->C_ld_dec_out;
+ double tf = rd * (C_intrinsic + C_ld) + row_dec->R_wire_dec_out * C_ld / 2;
+ delay_wl_reset = horowitz(0, tf, 0.5, 0.5, RISE);
+ }
+ double R_bl_precharge = tr_R_on(g_tp.w_pmos_bl_precharge, PCH, 1, is_dram, false, false);
+ double r_b_metal = cell.h * g_tp.wire_local.R_per_um;
+ double R_bl = subarray.num_rows * r_b_metal;
+ double C_bl = subarray.C_bl;
+
+ if (is_dram)
+ {
+ delay_bl_restore = bl_precharge_eq_drv->delay + 2.3 * (R_bl_precharge * C_bl + R_bl * C_bl / 2);
+ }
+ else
+ {
+ delay_bl_restore = bl_precharge_eq_drv->delay +
+ log((g_tp.sram.Vbitpre - 0.1 * dp.V_b_sense) / (g_tp.sram.Vbitpre - dp.V_b_sense))*
+ (R_bl_precharge * C_bl + R_bl * C_bl / 2);
+ }
+ }
+
+
+
+ outrisetime = r_predec->compute_delays(inrisetime);
+ row_dec_outrisetime = row_dec->compute_delays(outrisetime);
+
+ outrisetime = b_mux_predec->compute_delays(inrisetime);
+ bit_mux_dec->compute_delays(outrisetime);
+
+ outrisetime = sa_mux_lev_1_predec->compute_delays(inrisetime);
+ sa_mux_lev_1_dec->compute_delays(outrisetime);
+
+ outrisetime = sa_mux_lev_2_predec->compute_delays(inrisetime);
+ sa_mux_lev_2_dec->compute_delays(outrisetime);
+
+ outrisetime = compute_bitline_delay(row_dec_outrisetime);
+ outrisetime = compute_sa_delay(outrisetime);
+ outrisetime = compute_subarray_out_drv(outrisetime);
+ subarray_out_wire->set_in_rise_time(outrisetime);
+ outrisetime = subarray_out_wire->signal_rise_time();
+
+ delay_subarray_out_drv_htree = delay_subarray_out_drv + subarray_out_wire->delay;
+
+ if (dp.is_tag == true && dp.fully_assoc == false)
+ {
+ compute_comparator_delay(0);
+ }
+
+ if (row_dec->exist == false)
+ {
+ delay_wl_reset = MAX(r_predec->blk1->delay, r_predec->blk2->delay);
+ }
+ return outrisetime;
+}
+
+
+
+double Mat::compute_bit_mux_sa_precharge_sa_mux_wr_drv_wr_mux_h()
+{
+
+ double height = compute_tr_width_after_folding(g_tp.w_pmos_bl_precharge, camFlag? cam_cell.w:cell.w / (2 *(RWP + ERP + SCHP))) +
+ compute_tr_width_after_folding(g_tp.w_pmos_bl_eq, camFlag? cam_cell.w:cell.w / (RWP + ERP + SCHP)); // precharge circuitry
+
+ if (deg_bl_muxing > 1)
+ {
+ height += compute_tr_width_after_folding(g_tp.w_nmos_b_mux, cell.w / (2 *(RWP + ERP))); // col mux tr height
+ // height += deg_bl_muxing * g_tp.wire_inside_mat.pitch * (RWP + ERP); // bit mux dec out wires height
+ }
+
+ height += height_sense_amplifier(/*camFlag? sram_cell.w:*/cell.w * deg_bl_muxing / (RWP + ERP)); // sense_amp_height
+
+ if (dp.Ndsam_lev_1 > 1)
+ {
+ height += compute_tr_width_after_folding(
+ g_tp.w_nmos_sa_mux, cell.w * dp.Ndsam_lev_1 / (RWP + ERP)); // sense_amp_mux_height
+ //height_senseamp_mux_decode_output_wires = Ndsam * wire_inside_mat_pitch * (RWP + ERP);
+ }
+
+ if (dp.Ndsam_lev_2 > 1)
+ {
+ height += compute_tr_width_after_folding(
+ g_tp.w_nmos_sa_mux, cell.w * deg_bl_muxing * dp.Ndsam_lev_1 / (RWP + ERP)); // sense_amp_mux_height
+ //height_senseamp_mux_decode_output_wires = Ndsam * wire_inside_mat_pitch * (RWP + ERP);
+
+ // add height of inverter-buffers between the two levels (pass-transistors) of sense-amp mux
+ height += 2 * compute_tr_width_after_folding(
+ pmos_to_nmos_sz_ratio(is_dram) * g_tp.min_w_nmos_, cell.w * dp.Ndsam_lev_2 / (RWP + ERP));
+ height += 2 * compute_tr_width_after_folding(g_tp.min_w_nmos_, cell.w * dp.Ndsam_lev_2 / (RWP + ERP));
+ }
+
+ // TODO: this should be uncommented...
+ /*if (deg_bl_muxing * dp.Ndsam_lev_1 * dp.Ndsam_lev_2 > 1)
+ {
+ //height_write_mux_decode_output_wires = deg_bl_muxing * Ndsam * g_tp.wire_inside_mat.pitch * (RWP + EWP);
+ double width_write_driver_write_mux = width_write_driver_or_write_mux();
+ double height_write_driver_write_mux = compute_tr_width_after_folding(2 * width_write_driver_write_mux,
+ cell.w *
+ // deg_bl_muxing *
+ dp.Ndsam_lev_1 * dp.Ndsam_lev_2 / (RWP + EWP));
+ height += height_write_driver_write_mux;
+ }*/
+
+ return height;
+}
+
+
+
+double Mat::compute_cam_delay(double inrisetime)
+{
+
+ double out_time_ramp, this_delay;
+ double Rwire, tf, c_intrinsic, rd, Cwire, c_gate_load;
+
+
+ double Wdecdrivep, Wdecdriven, Wfadriven, Wfadrivep, Wfadrive2n, Wfadrive2p, Wfadecdrive1n, Wfadecdrive1p,
+ Wfadecdrive2n, Wfadecdrive2p, Wfadecdriven, Wfadecdrivep, Wfaprechn, Wfaprechp,
+ Wdummyn, Wdummyinvn, Wdummyinvp, Wfainvn, Wfainvp, Waddrnandn, Waddrnandp,
+ Wfanandn, Wfanandp, Wfanorn, Wfanorp, Wdecnandn, Wdecnandp, W_hit_miss_n, W_hit_miss_p;
+
+ double c_matchline_metal, r_matchline_metal, c_searchline_metal, r_searchline_metal, dynSearchEng;
+ int Htagbits;
+
+ double driver_c_gate_load;
+ double driver_c_wire_load;
+ double driver_r_wire_load;
+ //double searchline_precharge_time;
+
+ double leak_power_cc_inverters_sram_cell = 0;
+ double leak_power_acc_tr_RW_or_WR_port_sram_cell = 0;
+ double leak_power_RD_port_sram_cell = 0;
+ double leak_power_SCHP_port_sram_cell = 0;
+ double leak_comparator_cam_cell =0;
+
+ double gate_leak_comparator_cam_cell = 0;
+ double gate_leak_power_cc_inverters_sram_cell = 0;
+ double gate_leak_power_RD_port_sram_cell = 0;
+ double gate_leak_power_SCHP_port_sram_cell = 0;
+
+ c_matchline_metal = cam_cell.get_w() * g_tp.wire_local.C_per_um;
+ c_searchline_metal = cam_cell.get_h() * g_tp.wire_local.C_per_um;
+ r_matchline_metal = cam_cell.get_w() * g_tp.wire_local.R_per_um;
+ r_searchline_metal = cam_cell.get_h() * g_tp.wire_local.R_per_um;
+
+ dynSearchEng = 0.0;
+ delay_matchchline = 0.0;
+ double p_to_n_sizing_r = pmos_to_nmos_sz_ratio(is_dram);
+ bool linear_scaling = false;
+
+ if (linear_scaling)
+ {
+ Wdecdrivep = 450 * g_ip->F_sz_um;//this was 360 micron for the 0.8 micron process
+ Wdecdriven = 300 * g_ip->F_sz_um;//this was 240 micron for the 0.8 micron process
+ Wfadriven = 62.5 * g_ip->F_sz_um;//this was 50 micron for the 0.8 micron process
+ Wfadrivep = 125 * g_ip->F_sz_um;//this was 100 micron for the 0.8 micron process
+ Wfadrive2n = 250 * g_ip->F_sz_um;//this was 200 micron for the 0.8 micron process
+ Wfadrive2p = 500 * g_ip->F_sz_um;//this was 400 micron for the 0.8 micron process
+ Wfadecdrive1n = 6.25 * g_ip->F_sz_um;//this was 5 micron for the 0.8 micron process
+ Wfadecdrive1p = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ Wfadecdrive2n = 25 * g_ip->F_sz_um;//this was 20 micron for the 0.8 micron process
+ Wfadecdrive2p = 50 * g_ip->F_sz_um;//this was 40 micron for the 0.8 micron process
+ Wfadecdriven = 62.5 * g_ip->F_sz_um;//this was 50 micron for the 0.8 micron process
+ Wfadecdrivep = 125 * g_ip->F_sz_um;//this was 100 micron for the 0.8 micron process
+ Wfaprechn = 7.5 * g_ip->F_sz_um;//this was 6 micron for the 0.8 micron process
+ Wfainvn = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ Wfainvp = 25 * g_ip->F_sz_um;//this was 20 micron for the 0.8 micron process
+ Wfanandn = 25 * g_ip->F_sz_um;//this was 20 micron for the 0.8 micron process
+ Wfanandp = 37.5 * g_ip->F_sz_um;//this was 30 micron for the 0.8 micron process
+ Wdecnandn = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ Wdecnandp = 37.5 * g_ip->F_sz_um;//this was 30 micron for the 0.8 micron process
+
+ Wfaprechp = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ Wdummyn = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ Wdummyinvn = 75 * g_ip->F_sz_um;//this was 60 micron for the 0.8 micron process
+ Wdummyinvp = 100 * g_ip->F_sz_um;//this was 80 micron for the 0.8 micron process
+ Waddrnandn = 62.5 * g_ip->F_sz_um;//this was 50 micron for the 0.8 micron process
+ Waddrnandp = 62.5 * g_ip->F_sz_um;//this was 50 micron for the 0.8 micron process
+ Wfanorn = 6.25 * g_ip->F_sz_um;//this was 5 micron for the 0.8 micron process
+ Wfanorp = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ W_hit_miss_n = Wdummyn;
+ W_hit_miss_p = g_tp.min_w_nmos_*p_to_n_sizing_r;
+ //TODO: this number should updated using new layout; from the NAND to output NOR should be computed using logical effort
+ }
+ else
+ {
+ Wdecdrivep = 450 * g_ip->F_sz_um;//this was 360 micron for the 0.8 micron process
+ Wdecdriven = 300 * g_ip->F_sz_um;//this was 240 micron for the 0.8 micron process
+ Wfadriven = 62.5 * g_ip->F_sz_um;//this was 50 micron for the 0.8 micron process
+ Wfadrivep = 125 * g_ip->F_sz_um;//this was 100 micron for the 0.8 micron process
+ Wfadrive2n = 250 * g_ip->F_sz_um;//this was 200 micron for the 0.8 micron process
+ Wfadrive2p = 500 * g_ip->F_sz_um;//this was 400 micron for the 0.8 micron process
+ Wfadecdrive1n = 6.25 * g_ip->F_sz_um;//this was 5 micron for the 0.8 micron process
+ Wfadecdrive1p = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ Wfadecdrive2n = 25 * g_ip->F_sz_um;//this was 20 micron for the 0.8 micron process
+ Wfadecdrive2p = 50 * g_ip->F_sz_um;//this was 40 micron for the 0.8 micron process
+ Wfadecdriven = 62.5 * g_ip->F_sz_um;//this was 50 micron for the 0.8 micron process
+ Wfadecdrivep = 125 * g_ip->F_sz_um;//this was 100 micron for the 0.8 micron process
+ Wfaprechn = 7.5 * g_ip->F_sz_um;//this was 6 micron for the 0.8 micron process
+ Wfainvn = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ Wfainvp = 25 * g_ip->F_sz_um;//this was 20 micron for the 0.8 micron process
+ Wfanandn = 25 * g_ip->F_sz_um;//this was 20 micron for the 0.8 micron process
+ Wfanandp = 37.5 * g_ip->F_sz_um;//this was 30 micron for the 0.8 micron process
+ Wdecnandn = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ Wdecnandp = 37.5 * g_ip->F_sz_um;//this was 30 micron for the 0.8 micron process
+
+ Wfaprechp = g_tp.w_pmos_bl_precharge;//this was 10 micron for the 0.8 micron process
+ Wdummyn = g_tp.cam.cell_nmos_w;
+ Wdummyinvn = 75 * g_ip->F_sz_um;//this was 60 micron for the 0.8 micron process
+ Wdummyinvp = 100 * g_ip->F_sz_um;//this was 80 micron for the 0.8 micron process
+ Waddrnandn = 62.5 * g_ip->F_sz_um;//this was 50 micron for the 0.8 micron process
+ Waddrnandp = 62.5 * g_ip->F_sz_um;//this was 50 micron for the 0.8 micron process
+ Wfanorn = 6.25 * g_ip->F_sz_um;//this was 5 micron for the 0.8 micron process
+ Wfanorp = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ W_hit_miss_n = Wdummyn;
+ W_hit_miss_p = g_tp.min_w_nmos_*p_to_n_sizing_r;
+ }
+
+ Htagbits = (int)(ceil ((double) (subarray.num_cols_fa_cam) / 2.0));
+
+ /* First stage, searchline is precharged. searchline data driver drives the searchline to open (if miss) the comparators.
+ search_line_delay, search_line_power, search_line_restore_delay for cycle time computation.
+ From the driver(am and an) to the comparators in all the rows including the dummy row,
+ Assuming that comparators in both the normal matching line and the dummy matching line have the same sizing */
+
+ //Searchline precharge circuitry is same as that of bitline. However, no sharing between search ports and r/w ports
+ //Searchline precharge routes horizontally
+ driver_c_gate_load = subarray.num_cols_fa_cam * gate_C(2 * g_tp.w_pmos_bl_precharge + g_tp.w_pmos_bl_eq, 0, is_dram, false, false);
+ driver_c_wire_load = subarray.num_cols_fa_cam * cam_cell.w * g_tp.wire_outside_mat.C_per_um;
+ driver_r_wire_load = subarray.num_cols_fa_cam * cam_cell.w * g_tp.wire_outside_mat.R_per_um;
+
+ sl_precharge_eq_drv = new Driver(
+ driver_c_gate_load,
+ driver_c_wire_load,
+ driver_r_wire_load,
+ is_dram);
+
+ //searchline data driver ; subarray.num_rows + 1 is because of the dummy row
+ //data drv should only have gate_C not 2*gate_C since the two searchlines are differential--same as bitlines
+ driver_c_gate_load = (subarray.num_rows + 1) * gate_C(Wdummyn, 0, is_dram, false, false);
+ driver_c_wire_load = (subarray.num_rows + 1) * c_searchline_metal;
+ driver_r_wire_load = (subarray.num_rows + 1) * r_searchline_metal;
+ sl_data_drv = new Driver(
+ driver_c_gate_load,
+ driver_c_wire_load,
+ driver_r_wire_load,
+ is_dram);
+
+ sl_precharge_eq_drv->compute_delay(0);
+ double R_bl_precharge = tr_R_on(g_tp.w_pmos_bl_precharge, PCH, 1, is_dram, false, false);//Assuming CAM and SRAM have same Pre_eq_dr
+ double r_b_metal = cam_cell.h * g_tp.wire_local.R_per_um;
+ double R_bl = (subarray.num_rows + 1) * r_b_metal;
+ double C_bl = subarray.C_bl_cam;
+ delay_cam_sl_restore = sl_precharge_eq_drv->delay
+ + log(g_tp.cam.Vbitpre)* (R_bl_precharge * C_bl + R_bl * C_bl / 2);
+
+ out_time_ramp = sl_data_drv->compute_delay(inrisetime);//After entering one mat, start to consider the inrisetime from 0(0 is passed from outside)
+
+ //matchline ops delay
+ delay_matchchline += sl_data_drv->delay;
+
+ /* second stage, from the trasistors in the comparators(both normal row and dummy row) to the NAND gates that combins both half*/
+ //matchline delay, matchline power, matchline_reset for cycle time computation,
+
+ ////matchline precharge circuitry routes vertically
+ //There are two matchline precharge driver chains per subarray.
+ driver_c_gate_load = (subarray.num_rows + 1) * gate_C(Wfaprechp, 0, is_dram);
+ driver_c_wire_load = (subarray.num_rows + 1) * c_searchline_metal;
+ driver_r_wire_load = (subarray.num_rows + 1) * r_searchline_metal;
+
+ ml_precharge_drv = new Driver(
+ driver_c_gate_load,
+ driver_c_wire_load,
+ driver_r_wire_load,
+ is_dram);
+
+ ml_precharge_drv->compute_delay(0);
+
+
+ rd = tr_R_on(Wdummyn, NCH, 2, is_dram);
+ c_intrinsic = Htagbits*(2*drain_C_(Wdummyn, NCH, 2, 1, g_tp.cell_h_def, is_dram)//TODO: the cell_h_def should be revisit
+ + drain_C_(Wfaprechp, PCH, 1, 1, g_tp.cell_h_def, is_dram)/Htagbits);//since each halve only has one precharge tx per matchline
+
+ Cwire = c_matchline_metal * Htagbits;
+ Rwire = r_matchline_metal * Htagbits;
+ c_gate_load = gate_C(Waddrnandn + Waddrnandp, 0, is_dram);
+
+ double R_ml_precharge = tr_R_on(Wfaprechp, PCH, 1, is_dram);
+ //double r_ml_metal = cam_cell.w * g_tp.wire_local.R_per_um;
+ double R_ml = Rwire;
+ double C_ml = Cwire + c_intrinsic;
+ delay_cam_ml_reset = ml_precharge_drv->delay
+ + log(g_tp.cam.Vbitpre)* (R_ml_precharge * C_ml + R_ml * C_ml / 2);//TODO: latest CAM has sense amps on matchlines too
+
+ //matchline ops delay
+ tf = rd * (c_intrinsic + Cwire / 2 + c_gate_load) + Rwire * (Cwire / 2 + c_gate_load);
+ this_delay = horowitz(out_time_ramp, tf, VTHFA2, VTHFA3, FALL);
+ delay_matchchline += this_delay;
+ out_time_ramp = this_delay / VTHFA3;
+
+ dynSearchEng += ((c_intrinsic + Cwire + c_gate_load)*(subarray.num_rows +1)) //+ 2*drain_C_(Wdummyn, NCH, 2, 1, g_tp.cell_h_def, is_dram))//TODO: need to be precise
+ * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd *2;//* Ntbl;//each subarry has two halves
+
+ /* third stage, from the NAND2 gates to the drivers in the dummy row */
+ rd = tr_R_on(Waddrnandn, NCH, 2, is_dram);
+ c_intrinsic = drain_C_(Waddrnandn, NCH, 2, 1, g_tp.cell_h_def, is_dram) +
+ drain_C_(Waddrnandp, PCH, 1, 1, g_tp.cell_h_def, is_dram)*2;
+ c_gate_load = gate_C(Wdummyinvn + Wdummyinvp, 0, is_dram);
+ tf = rd * (c_intrinsic + c_gate_load);
+ this_delay = horowitz(out_time_ramp, tf, VTHFA3, VTHFA4, RISE);
+ out_time_ramp = this_delay / (1 - VTHFA4);
+ delay_matchchline += this_delay;
+
+ //only the dummy row has the extra inverter between NAND and NOR gates
+ dynSearchEng += (c_intrinsic* (subarray.num_rows+1)+ c_gate_load*2) * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;// * Ntbl;
+
+ /* fourth stage, from the driver in dummy matchline to the NOR2 gate which drives the wordline of the data portion */
+ rd = tr_R_on(Wdummyinvn, NCH, 1, is_dram);
+ c_intrinsic = drain_C_(Wdummyinvn, NCH, 1, 1, g_tp.cell_h_def, is_dram) + drain_C_(Wdummyinvp, NCH, 1, 1, g_tp.cell_h_def, is_dram);
+ Cwire = c_matchline_metal * Htagbits + c_searchline_metal * (subarray.num_rows+1)/2;
+ Rwire = r_matchline_metal * Htagbits + r_searchline_metal * (subarray.num_rows+1)/2;
+ c_gate_load = gate_C(Wfanorn + Wfanorp, 0, is_dram);
+ tf = rd * (c_intrinsic + Cwire + c_gate_load) + Rwire * (Cwire / 2 + c_gate_load);
+ this_delay = horowitz (out_time_ramp, tf, VTHFA4, VTHFA5, FALL);
+ out_time_ramp = this_delay / VTHFA5;
+ delay_matchchline += this_delay;
+
+ dynSearchEng += (c_intrinsic + Cwire + subarray.num_rows*c_gate_load) * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;//* Ntbl;
+
+ /*final statge from the NOR gate to drive the wordline of the data portion */
+
+ //searchline data driver There are two matchline precharge driver chains per subarray.
+ driver_c_gate_load = gate_C(W_hit_miss_n, 0, is_dram, false, false);//nmos of the pull down logic
+ driver_c_wire_load = subarray.C_wl_ram;
+ driver_r_wire_load = subarray.R_wl_ram;
+
+ ml_to_ram_wl_drv = new Driver(
+ driver_c_gate_load,
+ driver_c_wire_load,
+ driver_r_wire_load,
+ is_dram);
+
+
+
+ rd = tr_R_on(Wfanorn, NCH, 1, is_dram);
+ c_intrinsic = 2* drain_C_(Wfanorn, NCH, 1, 1, g_tp.cell_h_def, is_dram) + drain_C_(Wfanorp, NCH, 1, 1, g_tp.cell_h_def, is_dram);
+ c_gate_load = gate_C(ml_to_ram_wl_drv->width_n[0] + ml_to_ram_wl_drv->width_p[0], 0, is_dram);
+ tf = rd * (c_intrinsic + c_gate_load);
+ this_delay = horowitz (out_time_ramp, tf, 0.5, 0.5, RISE);
+ out_time_ramp = this_delay / (1-0.5);
+ delay_matchchline += this_delay;
+
+ out_time_ramp = ml_to_ram_wl_drv->compute_delay(out_time_ramp);
+
+ //c_gate_load energy is computed in ml_to_ram_wl_drv
+ dynSearchEng += (c_intrinsic) * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;//* Ntbl;
+
+
+ /* peripheral-- hitting logic "CMOS VLSI Design Fig11.51*/
+ /*Precharge the hitting logic */
+ c_intrinsic = 2*drain_C_(W_hit_miss_p, NCH, 2, 1, g_tp.cell_h_def, is_dram);
+ Cwire = c_searchline_metal * subarray.num_rows;
+ Rwire = r_searchline_metal * subarray.num_rows;
+ c_gate_load = drain_C_(W_hit_miss_n, NCH, 1, 1, g_tp.cell_h_def, is_dram)* subarray.num_rows;
+
+ rd = tr_R_on(W_hit_miss_p, PCH, 1, is_dram, false, false);
+ //double r_ml_metal = cam_cell.w * g_tp.wire_local.R_per_um;
+ double R_hit_miss = Rwire;
+ double C_hit_miss = Cwire + c_intrinsic;
+ delay_hit_miss_reset = log(g_tp.cam.Vbitpre)* (rd * C_hit_miss + R_hit_miss * C_hit_miss / 2);
+ dynSearchEng += (c_intrinsic + Cwire + c_gate_load) * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;
+
+ /*hitting logic evaluation */
+ c_intrinsic = 2*drain_C_(W_hit_miss_n, NCH, 2, 1, g_tp.cell_h_def, is_dram);
+ Cwire = c_searchline_metal * subarray.num_rows;
+ Rwire = r_searchline_metal * subarray.num_rows;
+ c_gate_load = drain_C_(W_hit_miss_n, NCH, 1, 1, g_tp.cell_h_def, is_dram)* subarray.num_rows;
+
+ rd = tr_R_on(W_hit_miss_n, PCH, 1, is_dram, false, false);
+ tf = rd * (c_intrinsic + Cwire / 2 + c_gate_load) + Rwire * (Cwire / 2 + c_gate_load);
+
+ delay_hit_miss = horowitz(0, tf, 0.5, 0.5, FALL);
+
+ if (is_fa)
+ delay_matchchline += MAX(ml_to_ram_wl_drv->delay, delay_hit_miss);
+
+ dynSearchEng += (c_intrinsic + Cwire + c_gate_load) * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;
+
+ /* TODO: peripheral-- Priority Encoder, usually this is not necessary in processor components*/
+
+ power_matchline.searchOp.dynamic = dynSearchEng;
+
+ //leakage in one subarray
+ double Iport = cmos_Isub_leakage(g_tp.cam.cell_a_w, 0, 1, nmos, false, true);//TODO: how much is the idle time? just by *2?
+ double Iport_erp = cmos_Isub_leakage(g_tp.cam.cell_a_w, 0, 2, nmos, false, true);
+ double Icell = cmos_Isub_leakage(g_tp.cam.cell_nmos_w, g_tp.cam.cell_pmos_w, 1, inv, false, true)*2;
+ double Icell_comparator = cmos_Isub_leakage(Wdummyn, Wdummyn, 1, inv, false, true)*2;//approx XOR with Inv
+
+ leak_power_cc_inverters_sram_cell = Icell * g_tp.cam_cell.Vdd;
+ leak_comparator_cam_cell = Icell_comparator * g_tp.cam_cell.Vdd;
+ leak_power_acc_tr_RW_or_WR_port_sram_cell = Iport * g_tp.cam_cell.Vdd;
+ leak_power_RD_port_sram_cell = Iport_erp * g_tp.cam_cell.Vdd;
+ leak_power_SCHP_port_sram_cell = 0;//search port and r/w port are sperate, therefore no access txs in search ports
+
+ power_matchline.searchOp.leakage += leak_power_cc_inverters_sram_cell +
+ leak_comparator_cam_cell +
+ leak_power_acc_tr_RW_or_WR_port_sram_cell +
+ leak_power_acc_tr_RW_or_WR_port_sram_cell * (RWP + EWP - 1) +
+ leak_power_RD_port_sram_cell * ERP +
+ leak_power_SCHP_port_sram_cell*SCHP;
+// power_matchline.searchOp.leakage += leak_comparator_cam_cell;
+ power_matchline.searchOp.leakage *= (subarray.num_rows+1) * subarray.num_cols_fa_cam;//TODO:dumy line precise
+ power_matchline.searchOp.leakage += (subarray.num_rows+1) * cmos_Isub_leakage(0, Wfaprechp, 1, pmos) * g_tp.cam_cell.Vdd;
+ power_matchline.searchOp.leakage += (subarray.num_rows+1) * cmos_Isub_leakage(Waddrnandn, Waddrnandp, 2, nand) * g_tp.cam_cell.Vdd;
+ power_matchline.searchOp.leakage += (subarray.num_rows+1) * cmos_Isub_leakage(Wfanorn, Wfanorp,2, nor) * g_tp.cam_cell.Vdd;
+ //In idle states, the hit/miss txs are closed (on) therefore no Isub
+ power_matchline.searchOp.leakage += 0;// subarray.num_rows * cmos_Isub_leakage(W_hit_miss_n, 0,1, nmos) * g_tp.cam_cell.Vdd+
+ // + cmos_Isub_leakage(0, W_hit_miss_p,1, pmos) * g_tp.cam_cell.Vdd;
+
+ //in idle state, Ig_on only possibly exist in access transistors of read only ports
+ double Ig_port_erp = cmos_Ig_leakage(g_tp.cam.cell_a_w, 0, 1, nmos, false, true);
+ double Ig_cell = cmos_Ig_leakage(g_tp.cam.cell_nmos_w, g_tp.cam.cell_pmos_w, 1, inv, false, true)*2;
+ double Ig_cell_comparator = cmos_Ig_leakage(Wdummyn, Wdummyn, 1, inv, false, true)*2;// cmos_Ig_leakage(Wdummyn, 0, 2, nmos)*2;
+
+ gate_leak_comparator_cam_cell = Ig_cell_comparator* g_tp.cam_cell.Vdd;
+ gate_leak_power_cc_inverters_sram_cell = Ig_cell*g_tp.cam_cell.Vdd;
+ gate_leak_power_RD_port_sram_cell = Ig_port_erp*g_tp.sram_cell.Vdd;
+ gate_leak_power_SCHP_port_sram_cell = 0;
+
+ //cout<<"power_matchline.searchOp.leakage"<<power_matchline.searchOp.leakage<<endl;
+
+ power_matchline.searchOp.gate_leakage += gate_leak_power_cc_inverters_sram_cell;
+ power_matchline.searchOp.gate_leakage += gate_leak_comparator_cam_cell;
+ power_matchline.searchOp.gate_leakage += gate_leak_power_SCHP_port_sram_cell*SCHP + gate_leak_power_RD_port_sram_cell * ERP;
+ power_matchline.searchOp.gate_leakage *= (subarray.num_rows+1) * subarray.num_cols_fa_cam;//TODO:dumy line precise
+ power_matchline.searchOp.gate_leakage += (subarray.num_rows+1) * cmos_Ig_leakage(0, Wfaprechp,1, pmos) * g_tp.cam_cell.Vdd;
+ power_matchline.searchOp.gate_leakage += (subarray.num_rows+1) * cmos_Ig_leakage(Waddrnandn, Waddrnandp, 2, nand) * g_tp.cam_cell.Vdd;
+ power_matchline.searchOp.gate_leakage += (subarray.num_rows+1) * cmos_Ig_leakage(Wfanorn, Wfanorp, 2, nor) * g_tp.cam_cell.Vdd;
+ power_matchline.searchOp.gate_leakage += subarray.num_rows * cmos_Ig_leakage(W_hit_miss_n, 0,1, nmos) * g_tp.cam_cell.Vdd+
+ + cmos_Ig_leakage(0, W_hit_miss_p,1, pmos) * g_tp.cam_cell.Vdd;
+
+
+ return out_time_ramp;
+}
+
+
+double Mat::width_write_driver_or_write_mux()
+{
+ // calculate resistance of SRAM cell pull-up PMOS transistor
+ // cam and sram have same cell trasistor properties
+ double R_sram_cell_pull_up_tr = tr_R_on(g_tp.sram.cell_pmos_w, NCH, 1, is_dram, true);
+ double R_access_tr = tr_R_on(g_tp.sram.cell_a_w, NCH, 1, is_dram, true);
+ double target_R_write_driver_and_mux = (2 * R_sram_cell_pull_up_tr - R_access_tr) / 2;
+ double width_write_driver_nmos = R_to_w(target_R_write_driver_and_mux, NCH, is_dram);
+
+ return width_write_driver_nmos;
+}
+
+
+
+double Mat::compute_comparators_height(
+ int tagbits,
+ int number_ways_in_mat,
+ double subarray_mem_cell_area_width)
+{
+ double nand2_area = compute_gate_area(NAND, 2, 0, g_tp.w_comp_n, g_tp.cell_h_def);
+ double cumulative_area = nand2_area * number_ways_in_mat * tagbits / 4;
+ return cumulative_area / subarray_mem_cell_area_width;
+}
+
+
+
+double Mat::compute_bitline_delay(double inrisetime)
+{
+ double V_b_pre, v_th_mem_cell, V_wl;
+ double tstep;
+ double dynRdEnergy = 0.0, dynWriteEnergy = 0.0;
+ double R_cell_pull_down=0.0, R_cell_acc =0.0, r_dev=0.0;
+ int deg_senseamp_muxing = dp.Ndsam_lev_1 * dp.Ndsam_lev_2;
+
+ double R_b_metal = camFlag? cam_cell.h:cell.h * g_tp.wire_local.R_per_um;
+ double R_bl = subarray.num_rows * R_b_metal;
+ double C_bl = subarray.C_bl;
+
+ // TODO: no leakage for DRAMs?
+ double leak_power_cc_inverters_sram_cell = 0;
+ double gate_leak_power_cc_inverters_sram_cell = 0;
+ double leak_power_acc_tr_RW_or_WR_port_sram_cell = 0;
+ double leak_power_RD_port_sram_cell = 0;
+ double gate_leak_power_RD_port_sram_cell = 0;
+
+ if (is_dram == true)
+ {
+ V_b_pre = g_tp.dram.Vbitpre;
+ v_th_mem_cell = g_tp.dram_acc.Vth;
+ V_wl = g_tp.vpp;
+ //The access transistor is not folded. So we just need to specify a threshold value for the
+ //folding width that is equal to or greater than Wmemcella.
+ R_cell_acc = tr_R_on(g_tp.dram.cell_a_w, NCH, 1, true, true);
+ r_dev = g_tp.dram_cell_Vdd / g_tp.dram_cell_I_on + R_bl / 2;
+ }
+ else
+ { //SRAM
+ V_b_pre = g_tp.sram.Vbitpre;
+ v_th_mem_cell = g_tp.sram_cell.Vth;
+ V_wl = g_tp.sram_cell.Vdd;
+ R_cell_pull_down = tr_R_on(g_tp.sram.cell_nmos_w, NCH, 1, false, true);
+ R_cell_acc = tr_R_on(g_tp.sram.cell_a_w, NCH, 1, false, true);
+
+ //Leakage current of an SRAM cell
+ double Iport = cmos_Isub_leakage(g_tp.sram.cell_a_w, 0, 1, nmos,false, true);//TODO: how much is the idle time? just by *2?
+ double Iport_erp = cmos_Isub_leakage(g_tp.sram.cell_a_w, 0, 2, nmos,false, true);
+ double Icell = cmos_Isub_leakage(g_tp.sram.cell_nmos_w, g_tp.sram.cell_pmos_w, 1, inv,false, true)*2;//two invs per cell
+
+ leak_power_cc_inverters_sram_cell = Icell * g_tp.sram_cell.Vdd;
+ leak_power_acc_tr_RW_or_WR_port_sram_cell = Iport * g_tp.sram_cell.Vdd;
+ leak_power_RD_port_sram_cell = Iport_erp * g_tp.sram_cell.Vdd;
+
+
+ //in idle state, Ig_on only possibly exist in access transistors of read only ports
+ double Ig_port_erp = cmos_Ig_leakage(g_tp.sram.cell_a_w, 0, 1, nmos,false, true);
+ double Ig_cell = cmos_Ig_leakage(g_tp.sram.cell_nmos_w, g_tp.sram.cell_pmos_w, 1, inv,false, true);
+
+ gate_leak_power_cc_inverters_sram_cell = Ig_cell*g_tp.sram_cell.Vdd;
+ gate_leak_power_RD_port_sram_cell = Ig_port_erp*g_tp.sram_cell.Vdd;
+ }
+
+
+ double C_drain_bit_mux = drain_C_(g_tp.w_nmos_b_mux, NCH, 1, 0, camFlag? cam_cell.w:cell.w / (2 *(RWP + ERP + SCHP)), is_dram);
+ double R_bit_mux = tr_R_on(g_tp.w_nmos_b_mux, NCH, 1, is_dram);
+ double C_drain_sense_amp_iso = drain_C_(g_tp.w_iso, PCH, 1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing / (RWP + ERP + SCHP), is_dram);
+ double R_sense_amp_iso = tr_R_on(g_tp.w_iso, PCH, 1, is_dram);
+ double C_sense_amp_latch = gate_C(g_tp.w_sense_p + g_tp.w_sense_n, 0, is_dram) +
+ drain_C_(g_tp.w_sense_n, NCH, 1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing / (RWP + ERP + SCHP), is_dram) +
+ drain_C_(g_tp.w_sense_p, PCH, 1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing / (RWP + ERP + SCHP), is_dram);
+ double C_drain_sense_amp_mux = drain_C_(g_tp.w_nmos_sa_mux, NCH, 1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing / (RWP + ERP + SCHP), is_dram);
+
+ if (is_dram)
+ {
+ double fraction = dp.V_b_sense / ((g_tp.dram_cell_Vdd/2) * g_tp.dram_cell_C /(g_tp.dram_cell_C + C_bl));
+ tstep = 2.3 * fraction * r_dev *
+ (g_tp.dram_cell_C * (C_bl + 2*C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux)) /
+ (g_tp.dram_cell_C + (C_bl + 2*C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux));
+ delay_writeback = tstep;
+ dynRdEnergy += (C_bl + 2*C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux) *
+ (g_tp.dram_cell_Vdd / 2) * g_tp.dram_cell_Vdd /* subarray.num_cols * num_subarrays_per_mat*/;
+ dynWriteEnergy += (C_bl + 2*C_drain_sense_amp_iso + C_sense_amp_latch) *
+ (g_tp.dram_cell_Vdd / 2) * g_tp.dram_cell_Vdd /* subarray.num_cols * num_subarrays_per_mat*/ * num_act_mats_hor_dir*100;
+ per_bitline_read_energy = (C_bl + 2*C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux) *
+ (g_tp.dram_cell_Vdd / 2) * g_tp.dram_cell_Vdd;
+ }
+ else
+ {
+ double tau;
+
+ if (deg_bl_muxing > 1)
+ {
+ tau = (R_cell_pull_down + R_cell_acc) *
+ (C_bl + 2*C_drain_bit_mux + 2*C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux) +
+ R_bl * (C_bl/2 + 2*C_drain_bit_mux + 2*C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux) +
+ R_bit_mux * (C_drain_bit_mux + 2*C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux) +
+ R_sense_amp_iso * (C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux);
+ dynRdEnergy += (C_bl + 2 * C_drain_bit_mux) * 2 * dp.V_b_sense * g_tp.sram_cell.Vdd /*
+ subarray.num_cols * num_subarrays_per_mat*/;
+ dynRdEnergy += (2 * C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux) *
+ 2 * dp.V_b_sense * g_tp.sram_cell.Vdd * (1.0/*subarray.num_cols * num_subarrays_per_mat*/ / deg_bl_muxing);
+ dynWriteEnergy += ((1.0/*subarray.num_cols *num_subarrays_per_mat*/ / deg_bl_muxing) / deg_senseamp_muxing) *
+ num_act_mats_hor_dir * (C_bl + 2*C_drain_bit_mux) * g_tp.sram_cell.Vdd * g_tp.sram_cell.Vdd*2;
+ //Write Ops are differential for SRAM
+ }
+ else
+ {
+ tau = (R_cell_pull_down + R_cell_acc) *
+ (C_bl + C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux) + R_bl * C_bl / 2 +
+ R_sense_amp_iso * (C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux);
+ dynRdEnergy += (C_bl + 2 * C_drain_sense_amp_iso + C_sense_amp_latch + C_drain_sense_amp_mux) *
+ 2 * dp.V_b_sense * g_tp.sram_cell.Vdd /* subarray.num_cols * num_subarrays_per_mat*/;
+ dynWriteEnergy += (((1.0/*subarray.num_cols * num_subarrays_per_mat*/ / deg_bl_muxing) / deg_senseamp_muxing) *
+ num_act_mats_hor_dir * C_bl) * g_tp.sram_cell.Vdd * g_tp.sram_cell.Vdd*2;
+
+ }
+ tstep = tau * log(V_b_pre / (V_b_pre - dp.V_b_sense));
+ power_bitline.readOp.leakage =
+ leak_power_cc_inverters_sram_cell +
+ leak_power_acc_tr_RW_or_WR_port_sram_cell +
+ leak_power_acc_tr_RW_or_WR_port_sram_cell * (RWP + EWP - 1) +
+ leak_power_RD_port_sram_cell * ERP;
+ power_bitline.readOp.gate_leakage = gate_leak_power_cc_inverters_sram_cell +
+ gate_leak_power_RD_port_sram_cell * ERP;
+
+ }
+
+// cout<<"leak_power_cc_inverters_sram_cell"<<leak_power_cc_inverters_sram_cell<<endl;
+// cout<<"leak_power_acc_tr_RW_or_WR_port_sram_cell"<<leak_power_acc_tr_RW_or_WR_port_sram_cell<<endl;
+// cout<<"leak_power_acc_tr_RW_or_WR_port_sram_cell"<<leak_power_acc_tr_RW_or_WR_port_sram_cell<<endl;
+// cout<<"leak_power_RD_port_sram_cell"<<leak_power_RD_port_sram_cell<<endl;
+
+
+ /* take input rise time into account */
+ double m = V_wl / inrisetime;
+ if (tstep <= (0.5 * (V_wl - v_th_mem_cell) / m))
+ {
+ delay_bitline = sqrt(2 * tstep * (V_wl - v_th_mem_cell)/ m);
+ }
+ else
+ {
+ delay_bitline = tstep + (V_wl - v_th_mem_cell) / (2 * m);
+ }
+
+ bool is_fa = (dp.fully_assoc) ? true : false;
+
+ if (dp.is_tag == false || is_fa == false)
+ {
+ power_bitline.readOp.dynamic = dynRdEnergy;
+ power_bitline.writeOp.dynamic = dynWriteEnergy;
+ }
+
+ double outrisetime = 0;
+ return outrisetime;
+}
+
+
+
+double Mat::compute_sa_delay(double inrisetime)
+{
+ //int num_sa_subarray = subarray.num_cols / deg_bl_muxing; //in a subarray
+
+ //Bitline circuitry leakage.
+ double Iiso = simplified_pmos_leakage(g_tp.w_iso, is_dram);
+ double IsenseEn = simplified_nmos_leakage(g_tp.w_sense_en, is_dram);
+ double IsenseN = simplified_nmos_leakage(g_tp.w_sense_n, is_dram);
+ double IsenseP = simplified_pmos_leakage(g_tp.w_sense_p, is_dram);
+
+ double lkgIdlePh = IsenseEn;//+ 2*IoBufP;
+ //double lkgWritePh = Iiso + IsenseEn;// + 2*IoBufP + 2*Ipch;
+ double lkgReadPh = Iiso + IsenseN + IsenseP;//+ IoBufN + IoBufP + 2*IsPch ;
+ //double lkgRead = lkgReadPh * num_sa_subarray * 4 * num_act_mats_hor_dir +
+ // lkgIdlePh * num_sa_subarray * 4 * (num_mats - num_act_mats_hor_dir);
+ double lkgIdle = lkgIdlePh /*num_sa_subarray * num_subarrays_per_mat*/;
+ leak_power_sense_amps_closed_page_state = lkgIdlePh * g_tp.peri_global.Vdd /* num_sa_subarray * num_subarrays_per_mat*/;
+ leak_power_sense_amps_open_page_state = lkgReadPh * g_tp.peri_global.Vdd /* num_sa_subarray * num_subarrays_per_mat*/;
+
+ // sense amplifier has to drive logic in "data out driver" and sense precharge load.
+ // load seen by sense amp. New delay model for sense amp that is sensitive to both the output time
+ //constant as well as the magnitude of input differential voltage.
+ double C_ld = gate_C(g_tp.w_sense_p + g_tp.w_sense_n, 0, is_dram) +
+ drain_C_(g_tp.w_sense_n, NCH, 1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing / (RWP + ERP + SCHP), is_dram) +
+ drain_C_(g_tp.w_sense_p, PCH, 1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing / (RWP + ERP + SCHP), is_dram) +
+ drain_C_(g_tp.w_iso,PCH,1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing / (RWP + ERP + SCHP), is_dram) +
+ drain_C_(g_tp.w_nmos_sa_mux, NCH, 1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing / (RWP + ERP + SCHP), is_dram);
+ double tau = C_ld / g_tp.gm_sense_amp_latch;
+ delay_sa = tau * log(g_tp.peri_global.Vdd / dp.V_b_sense);
+ power_sa.readOp.dynamic = C_ld * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd /* num_sa_subarray
+ num_subarrays_per_mat * num_act_mats_hor_dir*/;
+ power_sa.readOp.leakage = lkgIdle * g_tp.peri_global.Vdd;
+
+ double outrisetime = 0;
+ return outrisetime;
+}
+
+
+
+double Mat::compute_subarray_out_drv(double inrisetime)
+{
+ double C_ld, rd, tf, this_delay;
+ double p_to_n_sz_r = pmos_to_nmos_sz_ratio(is_dram);
+
+ // delay of signal through pass-transistor of first level of sense-amp mux to input of inverter-buffer.
+ rd = tr_R_on(g_tp.w_nmos_sa_mux, NCH, 1, is_dram);
+ C_ld = dp.Ndsam_lev_1 * drain_C_(g_tp.w_nmos_sa_mux, NCH, 1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing / (RWP + ERP + SCHP), is_dram) +
+ gate_C(g_tp.min_w_nmos_ + p_to_n_sz_r * g_tp.min_w_nmos_, 0.0, is_dram);
+ tf = rd * C_ld;
+ this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE);
+ delay_subarray_out_drv += this_delay;
+ inrisetime = this_delay/(1.0 - 0.5);
+ power_subarray_out_drv.readOp.dynamic += C_ld * 0.5 * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;
+ power_subarray_out_drv.readOp.leakage += 0; // for now, let leakage of the pass transistor be 0
+ power_subarray_out_drv.readOp.gate_leakage += cmos_Ig_leakage(g_tp.w_nmos_sa_mux, 0, 1, nmos)* g_tp.peri_global.Vdd;
+ // delay of signal through inverter-buffer to second level of sense-amp mux.
+ // internal delay of buffer
+ rd = tr_R_on(g_tp.min_w_nmos_, NCH, 1, is_dram);
+ C_ld = drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def, is_dram) +
+ drain_C_(p_to_n_sz_r * g_tp.min_w_nmos_, PCH, 1, 1, g_tp.cell_h_def, is_dram) +
+ gate_C(g_tp.min_w_nmos_ + p_to_n_sz_r * g_tp.min_w_nmos_, 0.0, is_dram);
+ tf = rd * C_ld;
+ this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE);
+ delay_subarray_out_drv += this_delay;
+ inrisetime = this_delay/(1.0 - 0.5);
+ power_subarray_out_drv.readOp.dynamic += C_ld * 0.5 * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;
+ power_subarray_out_drv.readOp.leakage += cmos_Isub_leakage(g_tp.min_w_nmos_, p_to_n_sz_r * g_tp.min_w_nmos_, 1, inv, is_dram)* g_tp.peri_global.Vdd;
+ power_subarray_out_drv.readOp.gate_leakage += cmos_Ig_leakage(g_tp.min_w_nmos_, p_to_n_sz_r * g_tp.min_w_nmos_, 1, inv)* g_tp.peri_global.Vdd;
+
+ // inverter driving drain of pass transistor of second level of sense-amp mux.
+ rd = tr_R_on(g_tp.min_w_nmos_, NCH, 1, is_dram);
+ C_ld = drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def, is_dram) +
+ drain_C_(p_to_n_sz_r * g_tp.min_w_nmos_, PCH, 1, 1, g_tp.cell_h_def, is_dram) +
+ drain_C_(g_tp.w_nmos_sa_mux, NCH, 1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing * dp.Ndsam_lev_1 / (RWP + ERP + SCHP), is_dram);
+ tf = rd * C_ld;
+ this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE);
+ delay_subarray_out_drv += this_delay;
+ inrisetime = this_delay/(1.0 - 0.5);
+ power_subarray_out_drv.readOp.dynamic += C_ld * 0.5 * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;
+ power_subarray_out_drv.readOp.leakage += cmos_Isub_leakage(g_tp.min_w_nmos_, p_to_n_sz_r * g_tp.min_w_nmos_, 1, inv)* g_tp.peri_global.Vdd;
+ power_subarray_out_drv.readOp.gate_leakage += cmos_Ig_leakage(g_tp.min_w_nmos_, p_to_n_sz_r * g_tp.min_w_nmos_, 1, inv)* g_tp.peri_global.Vdd;
+
+
+ // delay of signal through pass-transistor to input of subarray output driver.
+ rd = tr_R_on(g_tp.w_nmos_sa_mux, NCH, 1, is_dram);
+ C_ld = dp.Ndsam_lev_2 * drain_C_(g_tp.w_nmos_sa_mux, NCH, 1, 0, camFlag? cam_cell.w:cell.w * deg_bl_muxing * dp.Ndsam_lev_1 / (RWP + ERP + SCHP), is_dram) +
+ //gate_C(subarray_out_wire->repeater_size * g_tp.min_w_nmos_ * (1 + p_to_n_sz_r), 0.0, is_dram);
+ gate_C(subarray_out_wire->repeater_size *(subarray_out_wire->wire_length/subarray_out_wire->repeater_spacing) * g_tp.min_w_nmos_ * (1 + p_to_n_sz_r), 0.0, is_dram);
+ tf = rd * C_ld;
+ this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE);
+ delay_subarray_out_drv += this_delay;
+ inrisetime = this_delay/(1.0 - 0.5);
+ power_subarray_out_drv.readOp.dynamic += C_ld * 0.5 * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;
+ power_subarray_out_drv.readOp.leakage += 0; // for now, let leakage of the pass transistor be 0
+ power_subarray_out_drv.readOp.gate_leakage += cmos_Ig_leakage(g_tp.w_nmos_sa_mux, 0, 1, nmos)* g_tp.peri_global.Vdd;
+
+
+ return inrisetime;
+}
+
+
+
+double Mat::compute_comparator_delay(double inrisetime)
+{
+ int A = g_ip->tag_assoc;
+
+ int tagbits_ = dp.tagbits / 4; // Assuming there are 4 quarter comparators. input tagbits is already
+ // a multiple of 4.
+
+ /* First Inverter */
+ double Ceq = gate_C(g_tp.w_comp_inv_n2+g_tp.w_comp_inv_p2, 0, is_dram) +
+ drain_C_(g_tp.w_comp_inv_p1, PCH, 1, 1, g_tp.cell_h_def, is_dram) +
+ drain_C_(g_tp.w_comp_inv_n1, NCH, 1, 1, g_tp.cell_h_def, is_dram);
+ double Req = tr_R_on(g_tp.w_comp_inv_p1, PCH, 1, is_dram);
+ double tf = Req*Ceq;
+ double st1del = horowitz(inrisetime,tf,VTHCOMPINV,VTHCOMPINV,FALL);
+ double nextinputtime = st1del/VTHCOMPINV;
+ power_comparator.readOp.dynamic += 0.5 * Ceq * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd * 4 * A;
+
+ //For each degree of associativity
+ //there are 4 such quarter comparators
+ double lkgCurrent = cmos_Isub_leakage(g_tp.w_comp_inv_n1, g_tp.w_comp_inv_p1, 1, inv, is_dram)* 4 * A;
+ double gatelkgCurrent = cmos_Ig_leakage(g_tp.w_comp_inv_n1, g_tp.w_comp_inv_p1, 1, inv, is_dram)* 4 * A;
+ /* Second Inverter */
+ Ceq = gate_C(g_tp.w_comp_inv_n3+g_tp.w_comp_inv_p3, 0, is_dram) +
+ drain_C_(g_tp.w_comp_inv_p2, PCH, 1, 1, g_tp.cell_h_def, is_dram) +
+ drain_C_(g_tp.w_comp_inv_n2, NCH, 1, 1, g_tp.cell_h_def, is_dram);
+ Req = tr_R_on(g_tp.w_comp_inv_n2, NCH, 1, is_dram);
+ tf = Req*Ceq;
+ double st2del = horowitz(nextinputtime,tf,VTHCOMPINV,VTHCOMPINV,RISE);
+ nextinputtime = st2del/(1.0-VTHCOMPINV);
+ power_comparator.readOp.dynamic += 0.5 * Ceq * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd * 4 * A;
+ lkgCurrent += cmos_Isub_leakage(g_tp.w_comp_inv_n2, g_tp.w_comp_inv_p2, 1, inv, is_dram)* 4 * A;
+ gatelkgCurrent += cmos_Ig_leakage(g_tp.w_comp_inv_n2, g_tp.w_comp_inv_p2, 1, inv, is_dram)* 4 * A;
+
+ /* Third Inverter */
+ Ceq = gate_C(g_tp.w_eval_inv_n+g_tp.w_eval_inv_p, 0, is_dram) +
+ drain_C_(g_tp.w_comp_inv_p3, PCH, 1, 1, g_tp.cell_h_def, is_dram) +
+ drain_C_(g_tp.w_comp_inv_n3, NCH, 1, 1, g_tp.cell_h_def, is_dram);
+ Req = tr_R_on(g_tp.w_comp_inv_p3, PCH, 1, is_dram);
+ tf = Req*Ceq;
+ double st3del = horowitz(nextinputtime,tf,VTHCOMPINV,VTHEVALINV,FALL);
+ nextinputtime = st3del/(VTHEVALINV);
+ power_comparator.readOp.dynamic += 0.5 * Ceq * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd * 4 * A;
+ lkgCurrent += cmos_Isub_leakage(g_tp.w_comp_inv_n3, g_tp.w_comp_inv_p3, 1, inv, is_dram)* 4 * A;
+ gatelkgCurrent += cmos_Ig_leakage(g_tp.w_comp_inv_n3, g_tp.w_comp_inv_p3, 1, inv, is_dram)* 4 * A;
+
+ /* Final Inverter (virtual ground driver) discharging compare part */
+ double r1 = tr_R_on(g_tp.w_comp_n,NCH,2, is_dram);
+ double r2 = tr_R_on(g_tp.w_eval_inv_n,NCH,1, is_dram); /* was switch */
+ double c2 = (tagbits_)*(drain_C_(g_tp.w_comp_n,NCH,1, 1, g_tp.cell_h_def, is_dram) +
+ drain_C_(g_tp.w_comp_n,NCH,2, 1, g_tp.cell_h_def, is_dram)) +
+ drain_C_(g_tp.w_eval_inv_p,PCH,1, 1, g_tp.cell_h_def, is_dram) +
+ drain_C_(g_tp.w_eval_inv_n,NCH,1, 1, g_tp.cell_h_def, is_dram);
+ double c1 = (tagbits_)*(drain_C_(g_tp.w_comp_n,NCH,1, 1, g_tp.cell_h_def, is_dram) +
+ drain_C_(g_tp.w_comp_n,NCH,2, 1, g_tp.cell_h_def, is_dram)) +
+ drain_C_(g_tp.w_comp_p,PCH,1, 1, g_tp.cell_h_def, is_dram) +
+ gate_C(WmuxdrvNANDn+WmuxdrvNANDp,0, is_dram);
+ power_comparator.readOp.dynamic += 0.5 * c2 * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd * 4 * A;
+ power_comparator.readOp.dynamic += c1 * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd * (A - 1);
+ lkgCurrent += cmos_Isub_leakage(g_tp.w_eval_inv_n, g_tp.w_eval_inv_p, 1, inv, is_dram)* 4 * A;
+ lkgCurrent += cmos_Isub_leakage(g_tp.w_comp_n, g_tp.w_comp_n, 1, inv, is_dram)* 4 * A; // stack factor of 0.2
+
+ gatelkgCurrent += cmos_Ig_leakage(g_tp.w_eval_inv_n, g_tp.w_eval_inv_p, 1, inv, is_dram)* 4 * A;
+ gatelkgCurrent += cmos_Ig_leakage(g_tp.w_comp_n, g_tp.w_comp_n, 1, inv, is_dram)* 4 * A;//for gate leakage this equals to a inverter
+
+ /* time to go to threshold of mux driver */
+ double tstep = (r2*c2+(r1+r2)*c1)*log(1.0/VTHMUXNAND);
+ /* take into account non-zero input rise time */
+ double m = g_tp.peri_global.Vdd/nextinputtime;
+ double Tcomparatorni;
+
+ if((tstep) <= (0.5*(g_tp.peri_global.Vdd-g_tp.peri_global.Vth)/m))
+ {
+ double a = m;
+ double b = 2*((g_tp.peri_global.Vdd*VTHEVALINV)-g_tp.peri_global.Vth);
+ double c = -2*(tstep)*(g_tp.peri_global.Vdd-g_tp.peri_global.Vth)+1/m*((g_tp.peri_global.Vdd*VTHEVALINV)-g_tp.peri_global.Vth)*((g_tp.peri_global.Vdd*VTHEVALINV)-g_tp.peri_global.Vth);
+ Tcomparatorni = (-b+sqrt(b*b-4*a*c))/(2*a);
+ }
+ else
+ {
+ Tcomparatorni = (tstep) + (g_tp.peri_global.Vdd+g_tp.peri_global.Vth)/(2*m) - (g_tp.peri_global.Vdd*VTHEVALINV)/m;
+ }
+ delay_comparator = Tcomparatorni+st1del+st2del+st3del;
+ power_comparator.readOp.leakage = lkgCurrent * g_tp.peri_global.Vdd;
+ power_comparator.readOp.gate_leakage = gatelkgCurrent * g_tp.peri_global.Vdd;
+
+ return Tcomparatorni / (1.0 - VTHMUXNAND);;
+}
+
+
+
+void Mat::compute_power_energy()
+{
+ //for cam and FA, power.readOp is the plain read power, power.searchOp is the associative search related power
+ //when search all subarrays and all mats are fully active
+ //when plain read/write only one subarray in a single mat is active.
+
+ // add energy consumed in predecoder drivers. This unit is shared by all subarrays in a mat.
+ power.readOp.dynamic += r_predec->power.readOp.dynamic +
+ b_mux_predec->power.readOp.dynamic +
+ sa_mux_lev_1_predec->power.readOp.dynamic +
+ sa_mux_lev_2_predec->power.readOp.dynamic;
+
+ // add energy consumed in decoders
+ power_row_decoders.readOp.dynamic = row_dec->power.readOp.dynamic;
+ if (!(is_fa||pure_cam))
+ power_row_decoders.readOp.dynamic *= num_subarrays_per_mat;
+
+ // add energy consumed in bitline prechagers, SAs, and bitlines
+ if (!(is_fa||pure_cam))
+ {
+ // add energy consumed in bitline prechagers
+ power_bl_precharge_eq_drv.readOp.dynamic = bl_precharge_eq_drv->power.readOp.dynamic;
+ power_bl_precharge_eq_drv.readOp.dynamic *= num_subarrays_per_mat;
+
+ //Add sense amps energy
+ num_sa_subarray = subarray.num_cols / deg_bl_muxing;
+ power_sa.readOp.dynamic *= num_sa_subarray*num_subarrays_per_mat ;
+
+ // add energy consumed in bitlines
+ //cout<<"bitline power"<<power_bitline.readOp.dynamic<<endl;
+ power_bitline.readOp.dynamic *= num_subarrays_per_mat*subarray.num_cols;
+ power_bitline.writeOp.dynamic *= num_subarrays_per_mat*subarray.num_cols;
+ //cout<<"bitline power"<<power_bitline.readOp.dynamic<<"subarray"<<num_subarrays_per_mat<<"cols"<<subarray.num_cols<<endl;
+ //Add subarray output energy
+ power_subarray_out_drv.readOp.dynamic =
+ (power_subarray_out_drv.readOp.dynamic + subarray_out_wire->power.readOp.dynamic) * num_do_b_mat;
+
+ power.readOp.dynamic += power_bl_precharge_eq_drv.readOp.dynamic +
+ power_sa.readOp.dynamic +
+ power_bitline.readOp.dynamic +
+ power_subarray_out_drv.readOp.dynamic;
+
+ power.readOp.dynamic += power_row_decoders.readOp.dynamic +
+ bit_mux_dec->power.readOp.dynamic +
+ sa_mux_lev_1_dec->power.readOp.dynamic +
+ sa_mux_lev_2_dec->power.readOp.dynamic +
+ power_comparator.readOp.dynamic;
+ }
+
+ else if (is_fa)
+ {
+ //for plain read/write only one subarray in a mat is active
+ // add energy consumed in bitline prechagers
+ power_bl_precharge_eq_drv.readOp.dynamic = bl_precharge_eq_drv->power.readOp.dynamic
+ + cam_bl_precharge_eq_drv->power.readOp.dynamic;
+ power_bl_precharge_eq_drv.searchOp.dynamic = bl_precharge_eq_drv->power.readOp.dynamic;
+
+ //Add sense amps energy
+ num_sa_subarray = (subarray.num_cols_fa_cam + subarray.num_cols_fa_ram)/ deg_bl_muxing;
+ num_sa_subarray_search = subarray.num_cols_fa_ram/ deg_bl_muxing;
+ power_sa.searchOp.dynamic = power_sa.readOp.dynamic*num_sa_subarray_search;
+ power_sa.readOp.dynamic *= num_sa_subarray;
+
+
+ // add energy consumed in bitlines
+ power_bitline.searchOp.dynamic = power_bitline.readOp.dynamic;
+ power_bitline.readOp.dynamic *= (subarray.num_cols_fa_cam+subarray.num_cols_fa_ram);
+ power_bitline.writeOp.dynamic *= (subarray.num_cols_fa_cam+subarray.num_cols_fa_ram);
+ power_bitline.searchOp.dynamic *= subarray.num_cols_fa_ram;
+
+ //Add subarray output energy
+ power_subarray_out_drv.searchOp.dynamic =
+ (power_subarray_out_drv.readOp.dynamic + subarray_out_wire->power.readOp.dynamic) * num_so_b_mat;
+ power_subarray_out_drv.readOp.dynamic =
+ (power_subarray_out_drv.readOp.dynamic + subarray_out_wire->power.readOp.dynamic) * num_do_b_mat;
+
+
+ power.readOp.dynamic += power_bl_precharge_eq_drv.readOp.dynamic +
+ power_sa.readOp.dynamic +
+ power_bitline.readOp.dynamic +
+ power_subarray_out_drv.readOp.dynamic;
+
+ power.readOp.dynamic += power_row_decoders.readOp.dynamic +
+ bit_mux_dec->power.readOp.dynamic +
+ sa_mux_lev_1_dec->power.readOp.dynamic +
+ sa_mux_lev_2_dec->power.readOp.dynamic +
+ power_comparator.readOp.dynamic;
+
+ //add energy consumed inside cam
+ power_matchline.searchOp.dynamic *= num_subarrays_per_mat;
+ power_searchline_precharge = sl_precharge_eq_drv->power;
+ power_searchline_precharge.searchOp.dynamic = power_searchline_precharge.readOp.dynamic * num_subarrays_per_mat;
+ power_searchline = sl_data_drv->power;
+ power_searchline.searchOp.dynamic = power_searchline.readOp.dynamic*subarray.num_cols_fa_cam* num_subarrays_per_mat;;
+ power_matchline_precharge = ml_precharge_drv->power;
+ power_matchline_precharge.searchOp.dynamic = power_matchline_precharge.readOp.dynamic* num_subarrays_per_mat;
+ power_ml_to_ram_wl_drv= ml_to_ram_wl_drv->power;
+ power_ml_to_ram_wl_drv.searchOp.dynamic= ml_to_ram_wl_drv->power.readOp.dynamic;
+
+ power_cam_all_active.searchOp.dynamic = power_matchline.searchOp.dynamic;
+ power_cam_all_active.searchOp.dynamic +=power_searchline_precharge.searchOp.dynamic;
+ power_cam_all_active.searchOp.dynamic +=power_searchline.searchOp.dynamic;
+ power_cam_all_active.searchOp.dynamic +=power_matchline_precharge.searchOp.dynamic;
+
+ power.searchOp.dynamic += power_cam_all_active.searchOp.dynamic;
+ //power.searchOp.dynamic += ml_to_ram_wl_drv->power.readOp.dynamic;
+
+ }
+ else
+ {
+ // add energy consumed in bitline prechagers
+ power_bl_precharge_eq_drv.readOp.dynamic = cam_bl_precharge_eq_drv->power.readOp.dynamic;
+ //power_bl_precharge_eq_drv.readOp.dynamic *= num_subarrays_per_mat;
+ //power_bl_precharge_eq_drv.searchOp.dynamic = cam_bl_precharge_eq_drv->power.readOp.dynamic;
+ //power_bl_precharge_eq_drv.searchOp.dynamic *= num_subarrays_per_mat;
+
+ //Add sense amps energy
+ num_sa_subarray = subarray.num_cols_fa_cam/ deg_bl_muxing;
+ power_sa.readOp.dynamic *= num_sa_subarray;//*num_subarrays_per_mat;
+ power_sa.searchOp.dynamic = 0;
+
+ power_bitline.readOp.dynamic *= subarray.num_cols_fa_cam;
+ power_bitline.searchOp.dynamic = 0;
+ power_bitline.writeOp.dynamic *= subarray.num_cols_fa_cam;
+
+ power_subarray_out_drv.searchOp.dynamic =
+ (power_subarray_out_drv.readOp.dynamic + subarray_out_wire->power.readOp.dynamic) * num_so_b_mat;
+ power_subarray_out_drv.readOp.dynamic =
+ (power_subarray_out_drv.readOp.dynamic + subarray_out_wire->power.readOp.dynamic) * num_do_b_mat;
+
+ power.readOp.dynamic += power_bl_precharge_eq_drv.readOp.dynamic +
+ power_sa.readOp.dynamic +
+ power_bitline.readOp.dynamic +
+ power_subarray_out_drv.readOp.dynamic;
+
+ power.readOp.dynamic += power_row_decoders.readOp.dynamic +
+ bit_mux_dec->power.readOp.dynamic +
+ sa_mux_lev_1_dec->power.readOp.dynamic +
+ sa_mux_lev_2_dec->power.readOp.dynamic +
+ power_comparator.readOp.dynamic;
+
+
+ ////add energy consumed inside cam
+ power_matchline.searchOp.dynamic *= num_subarrays_per_mat;
+ power_searchline_precharge = sl_precharge_eq_drv->power;
+ power_searchline_precharge.searchOp.dynamic = power_searchline_precharge.readOp.dynamic * num_subarrays_per_mat;
+ power_searchline = sl_data_drv->power;
+ power_searchline.searchOp.dynamic = power_searchline.readOp.dynamic*subarray.num_cols_fa_cam* num_subarrays_per_mat;;
+ power_matchline_precharge = ml_precharge_drv->power;
+ power_matchline_precharge.searchOp.dynamic = power_matchline_precharge.readOp.dynamic* num_subarrays_per_mat;
+ power_ml_to_ram_wl_drv= ml_to_ram_wl_drv->power;
+ power_ml_to_ram_wl_drv.searchOp.dynamic= ml_to_ram_wl_drv->power.readOp.dynamic;
+
+ power_cam_all_active.searchOp.dynamic = power_matchline.searchOp.dynamic;
+ power_cam_all_active.searchOp.dynamic +=power_searchline_precharge.searchOp.dynamic;
+ power_cam_all_active.searchOp.dynamic +=power_searchline.searchOp.dynamic;
+ power_cam_all_active.searchOp.dynamic +=power_matchline_precharge.searchOp.dynamic;
+
+ power.searchOp.dynamic += power_cam_all_active.searchOp.dynamic;
+ //power.searchOp.dynamic += ml_to_ram_wl_drv->power.readOp.dynamic;
+
+ }
+
+
+
+ // calculate leakage power
+ if (!(is_fa || pure_cam))
+ {
+ int number_output_drivers_subarray = num_sa_subarray / (dp.Ndsam_lev_1 * dp.Ndsam_lev_2);
+
+ power_bitline.readOp.leakage *= subarray.num_rows * subarray.num_cols * num_subarrays_per_mat;
+ power_bl_precharge_eq_drv.readOp.leakage = bl_precharge_eq_drv->power.readOp.leakage * num_subarrays_per_mat;
+ power_sa.readOp.leakage *= num_sa_subarray*num_subarrays_per_mat*(RWP + ERP);
+
+ //num_sa_subarray = subarray.num_cols / deg_bl_muxing;
+ power_subarray_out_drv.readOp.leakage =
+ (power_subarray_out_drv.readOp.leakage + subarray_out_wire->power.readOp.leakage) *
+ number_output_drivers_subarray * num_subarrays_per_mat * (RWP + ERP);
+
+ power.readOp.leakage += power_bitline.readOp.leakage +
+ power_bl_precharge_eq_drv.readOp.leakage +
+ power_sa.readOp.leakage +
+ power_subarray_out_drv.readOp.leakage;
+ //cout<<"leakage"<<power.readOp.leakage<<endl;
+
+ power_comparator.readOp.leakage *= num_do_b_mat * (RWP + ERP);
+ power.readOp.leakage += power_comparator.readOp.leakage;
+
+ //cout<<"leakage1"<<power.readOp.leakage<<endl;
+
+ // leakage power
+ power_row_decoders.readOp.leakage = row_dec->power.readOp.leakage * subarray.num_rows * num_subarrays_per_mat;
+ power_bit_mux_decoders.readOp.leakage = bit_mux_dec->power.readOp.leakage * deg_bl_muxing;
+ power_sa_mux_lev_1_decoders.readOp.leakage = sa_mux_lev_1_dec->power.readOp.leakage * dp.Ndsam_lev_1;
+ power_sa_mux_lev_2_decoders.readOp.leakage = sa_mux_lev_2_dec->power.readOp.leakage * dp.Ndsam_lev_2;
+
+ power.readOp.leakage += r_predec->power.readOp.leakage +
+ b_mux_predec->power.readOp.leakage +
+ sa_mux_lev_1_predec->power.readOp.leakage +
+ sa_mux_lev_2_predec->power.readOp.leakage +
+ power_row_decoders.readOp.leakage +
+ power_bit_mux_decoders.readOp.leakage +
+ power_sa_mux_lev_1_decoders.readOp.leakage +
+ power_sa_mux_lev_2_decoders.readOp.leakage;
+ //cout<<"leakage2"<<power.readOp.leakage<<endl;
+
+ //++++Below is gate leakage
+ power_bitline.readOp.gate_leakage *= subarray.num_rows * subarray.num_cols * num_subarrays_per_mat;
+ power_bl_precharge_eq_drv.readOp.gate_leakage = bl_precharge_eq_drv->power.readOp.gate_leakage * num_subarrays_per_mat;
+ power_sa.readOp.gate_leakage *= num_sa_subarray*num_subarrays_per_mat*(RWP + ERP);
+
+ //num_sa_subarray = subarray.num_cols / deg_bl_muxing;
+ power_subarray_out_drv.readOp.gate_leakage =
+ (power_subarray_out_drv.readOp.gate_leakage + subarray_out_wire->power.readOp.gate_leakage) *
+ number_output_drivers_subarray * num_subarrays_per_mat * (RWP + ERP);
+
+ power.readOp.gate_leakage += power_bitline.readOp.gate_leakage +
+ power_bl_precharge_eq_drv.readOp.gate_leakage +
+ power_sa.readOp.gate_leakage +
+ power_subarray_out_drv.readOp.gate_leakage;
+ //cout<<"leakage"<<power.readOp.leakage<<endl;
+
+ power_comparator.readOp.gate_leakage *= num_do_b_mat * (RWP + ERP);
+ power.readOp.gate_leakage += power_comparator.readOp.gate_leakage;
+
+ //cout<<"leakage1"<<power.readOp.gate_leakage<<endl;
+
+ // gate_leakage power
+ power_row_decoders.readOp.gate_leakage = row_dec->power.readOp.gate_leakage * subarray.num_rows * num_subarrays_per_mat;
+ power_bit_mux_decoders.readOp.gate_leakage = bit_mux_dec->power.readOp.gate_leakage * deg_bl_muxing;
+ power_sa_mux_lev_1_decoders.readOp.gate_leakage = sa_mux_lev_1_dec->power.readOp.gate_leakage * dp.Ndsam_lev_1;
+ power_sa_mux_lev_2_decoders.readOp.gate_leakage = sa_mux_lev_2_dec->power.readOp.gate_leakage * dp.Ndsam_lev_2;
+
+ power.readOp.gate_leakage += r_predec->power.readOp.gate_leakage +
+ b_mux_predec->power.readOp.gate_leakage +
+ sa_mux_lev_1_predec->power.readOp.gate_leakage +
+ sa_mux_lev_2_predec->power.readOp.gate_leakage +
+ power_row_decoders.readOp.gate_leakage +
+ power_bit_mux_decoders.readOp.gate_leakage +
+ power_sa_mux_lev_1_decoders.readOp.gate_leakage +
+ power_sa_mux_lev_2_decoders.readOp.gate_leakage;
+ }
+ else if (is_fa)
+ {
+ int number_output_drivers_subarray = num_sa_subarray;// / (dp.Ndsam_lev_1 * dp.Ndsam_lev_2);
+
+ power_bitline.readOp.leakage *= subarray.num_rows * subarray.num_cols * num_subarrays_per_mat;
+ power_bl_precharge_eq_drv.readOp.leakage = bl_precharge_eq_drv->power.readOp.leakage * num_subarrays_per_mat;
+ power_bl_precharge_eq_drv.searchOp.leakage = cam_bl_precharge_eq_drv->power.readOp.leakage * num_subarrays_per_mat;
+ power_sa.readOp.leakage *= num_sa_subarray*num_subarrays_per_mat*(RWP + ERP + SCHP);
+
+ //cout<<"leakage3"<<power.readOp.leakage<<endl;
+
+
+ power_subarray_out_drv.readOp.leakage =
+ (power_subarray_out_drv.readOp.leakage + subarray_out_wire->power.readOp.leakage) *
+ number_output_drivers_subarray * num_subarrays_per_mat * (RWP + ERP + SCHP);
+
+ power.readOp.leakage += power_bitline.readOp.leakage +
+ power_bl_precharge_eq_drv.readOp.leakage +
+ power_bl_precharge_eq_drv.searchOp.leakage +
+ power_sa.readOp.leakage +
+ power_subarray_out_drv.readOp.leakage;
+
+ //cout<<"leakage4"<<power.readOp.leakage<<endl;
+
+ // leakage power
+ power_row_decoders.readOp.leakage = row_dec->power.readOp.leakage * subarray.num_rows * num_subarrays_per_mat;
+ power.readOp.leakage += r_predec->power.readOp.leakage +
+ power_row_decoders.readOp.leakage;
+
+ //cout<<"leakage5"<<power.readOp.leakage<<endl;
+
+ //inside cam
+ power_cam_all_active.searchOp.leakage = power_matchline.searchOp.leakage;
+ power_cam_all_active.searchOp.leakage +=sl_precharge_eq_drv->power.readOp.leakage;
+ power_cam_all_active.searchOp.leakage +=sl_data_drv->power.readOp.leakage*subarray.num_cols_fa_cam;
+ power_cam_all_active.searchOp.leakage +=ml_precharge_drv->power.readOp.dynamic;
+ power_cam_all_active.searchOp.leakage *= num_subarrays_per_mat;
+
+ power.readOp.leakage += power_cam_all_active.searchOp.leakage;
+
+// cout<<"leakage6"<<power.readOp.leakage<<endl;
+
+ //+++Below is gate leakage
+ power_bitline.readOp.gate_leakage *= subarray.num_rows * subarray.num_cols * num_subarrays_per_mat;
+ power_bl_precharge_eq_drv.readOp.gate_leakage = bl_precharge_eq_drv->power.readOp.gate_leakage * num_subarrays_per_mat;
+ power_bl_precharge_eq_drv.searchOp.gate_leakage = cam_bl_precharge_eq_drv->power.readOp.gate_leakage * num_subarrays_per_mat;
+ power_sa.readOp.gate_leakage *= num_sa_subarray*num_subarrays_per_mat*(RWP + ERP + SCHP);
+
+ //cout<<"leakage3"<<power.readOp.gate_leakage<<endl;
+
+
+ power_subarray_out_drv.readOp.gate_leakage =
+ (power_subarray_out_drv.readOp.gate_leakage + subarray_out_wire->power.readOp.gate_leakage) *
+ number_output_drivers_subarray * num_subarrays_per_mat * (RWP + ERP + SCHP);
+
+ power.readOp.gate_leakage += power_bitline.readOp.gate_leakage +
+ power_bl_precharge_eq_drv.readOp.gate_leakage +
+ power_bl_precharge_eq_drv.searchOp.gate_leakage +
+ power_sa.readOp.gate_leakage +
+ power_subarray_out_drv.readOp.gate_leakage;
+
+ //cout<<"leakage4"<<power.readOp.gate_leakage<<endl;
+
+ // gate_leakage power
+ power_row_decoders.readOp.gate_leakage = row_dec->power.readOp.gate_leakage * subarray.num_rows * num_subarrays_per_mat;
+ power.readOp.gate_leakage += r_predec->power.readOp.gate_leakage +
+ power_row_decoders.readOp.gate_leakage;
+
+ //cout<<"leakage5"<<power.readOp.gate_leakage<<endl;
+
+ //inside cam
+ power_cam_all_active.searchOp.gate_leakage = power_matchline.searchOp.gate_leakage;
+ power_cam_all_active.searchOp.gate_leakage +=sl_precharge_eq_drv->power.readOp.gate_leakage;
+ power_cam_all_active.searchOp.gate_leakage +=sl_data_drv->power.readOp.gate_leakage*subarray.num_cols_fa_cam;
+ power_cam_all_active.searchOp.gate_leakage +=ml_precharge_drv->power.readOp.dynamic;
+ power_cam_all_active.searchOp.gate_leakage *= num_subarrays_per_mat;
+
+ power.readOp.gate_leakage += power_cam_all_active.searchOp.gate_leakage;
+
+ }
+ else
+ {
+ int number_output_drivers_subarray = num_sa_subarray;// / (dp.Ndsam_lev_1 * dp.Ndsam_lev_2);
+
+ //power_bitline.readOp.leakage *= subarray.num_rows * subarray.num_cols * num_subarrays_per_mat;
+ //power_bl_precharge_eq_drv.readOp.leakage = bl_precharge_eq_drv->power.readOp.leakage * num_subarrays_per_mat;
+ power_bl_precharge_eq_drv.searchOp.leakage = cam_bl_precharge_eq_drv->power.readOp.leakage * num_subarrays_per_mat;
+ power_sa.readOp.leakage *= num_sa_subarray*num_subarrays_per_mat*(RWP + ERP + SCHP);
+
+
+ power_subarray_out_drv.readOp.leakage =
+ (power_subarray_out_drv.readOp.leakage + subarray_out_wire->power.readOp.leakage) *
+ number_output_drivers_subarray * num_subarrays_per_mat * (RWP + ERP + SCHP);
+
+ power.readOp.leakage += //power_bitline.readOp.leakage +
+ //power_bl_precharge_eq_drv.readOp.leakage +
+ power_bl_precharge_eq_drv.searchOp.leakage +
+ power_sa.readOp.leakage +
+ power_subarray_out_drv.readOp.leakage;
+
+ // leakage power
+ power_row_decoders.readOp.leakage = row_dec->power.readOp.leakage * subarray.num_rows * num_subarrays_per_mat*(RWP + ERP + EWP);
+ power.readOp.leakage += r_predec->power.readOp.leakage +
+ power_row_decoders.readOp.leakage;
+
+ //inside cam
+ power_cam_all_active.searchOp.leakage = power_matchline.searchOp.leakage;
+ power_cam_all_active.searchOp.leakage +=sl_precharge_eq_drv->power.readOp.leakage;
+ power_cam_all_active.searchOp.leakage +=sl_data_drv->power.readOp.leakage*subarray.num_cols_fa_cam;
+ power_cam_all_active.searchOp.leakage +=ml_precharge_drv->power.readOp.dynamic;
+ power_cam_all_active.searchOp.leakage *= num_subarrays_per_mat;
+
+ power.readOp.leakage += power_cam_all_active.searchOp.leakage;
+
+ //+++Below is gate leakage
+ power_bl_precharge_eq_drv.searchOp.gate_leakage = cam_bl_precharge_eq_drv->power.readOp.gate_leakage * num_subarrays_per_mat;
+ power_sa.readOp.gate_leakage *= num_sa_subarray*num_subarrays_per_mat*(RWP + ERP + SCHP);
+
+
+ power_subarray_out_drv.readOp.gate_leakage =
+ (power_subarray_out_drv.readOp.gate_leakage + subarray_out_wire->power.readOp.gate_leakage) *
+ number_output_drivers_subarray * num_subarrays_per_mat * (RWP + ERP + SCHP);
+
+ power.readOp.gate_leakage += //power_bitline.readOp.gate_leakage +
+ //power_bl_precharge_eq_drv.readOp.gate_leakage +
+ power_bl_precharge_eq_drv.searchOp.gate_leakage +
+ power_sa.readOp.gate_leakage +
+ power_subarray_out_drv.readOp.gate_leakage;
+
+ // gate_leakage power
+ power_row_decoders.readOp.gate_leakage = row_dec->power.readOp.gate_leakage * subarray.num_rows * num_subarrays_per_mat*(RWP + ERP + EWP);
+ power.readOp.gate_leakage += r_predec->power.readOp.gate_leakage +
+ power_row_decoders.readOp.gate_leakage;
+
+ //inside cam
+ power_cam_all_active.searchOp.gate_leakage = power_matchline.searchOp.gate_leakage;
+ power_cam_all_active.searchOp.gate_leakage +=sl_precharge_eq_drv->power.readOp.gate_leakage;
+ power_cam_all_active.searchOp.gate_leakage +=sl_data_drv->power.readOp.gate_leakage*subarray.num_cols_fa_cam;
+ power_cam_all_active.searchOp.gate_leakage +=ml_precharge_drv->power.readOp.dynamic;
+ power_cam_all_active.searchOp.gate_leakage *= num_subarrays_per_mat;
+
+ power.readOp.gate_leakage += power_cam_all_active.searchOp.gate_leakage;
+ }
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __MAT_H__
+#define __MAT_H__
+
+#include "component.h"
+#include "decoder.h"
+#include "subarray.h"
+#include "wire.h"
+
+class Mat : public Component
+{
+ public:
+ Mat(const DynamicParameter & dyn_p);
+ ~Mat();
+ double compute_delays(double inrisetime); // return outrisetime
+ void compute_power_energy();
+
+ const DynamicParameter & dp;
+
+ // TODO: clean up pointers and powerDefs below
+ Decoder * row_dec;
+ Decoder * bit_mux_dec;
+ Decoder * sa_mux_lev_1_dec;
+ Decoder * sa_mux_lev_2_dec;
+ PredecBlk * dummy_way_sel_predec_blk1;
+ PredecBlk * dummy_way_sel_predec_blk2;
+ PredecBlkDrv * way_sel_drv1;
+ PredecBlkDrv * dummy_way_sel_predec_blk_drv2;
+
+ Predec * r_predec;
+ Predec * b_mux_predec;
+ Predec * sa_mux_lev_1_predec;
+ Predec * sa_mux_lev_2_predec;
+
+ Wire * subarray_out_wire;
+ Driver * bl_precharge_eq_drv;
+ Driver * cam_bl_precharge_eq_drv;//bitline pre-charge circuit is separated for CAM and RAM arrays.
+ Driver * ml_precharge_drv;//matchline prechange driver
+ Driver * sl_precharge_eq_drv;//searchline prechage driver
+ Driver * sl_data_drv;//search line data driver
+ Driver * ml_to_ram_wl_drv;//search line data driver
+
+
+ powerDef power_row_decoders;
+ powerDef power_bit_mux_decoders;
+ powerDef power_sa_mux_lev_1_decoders;
+ powerDef power_sa_mux_lev_2_decoders;
+ powerDef power_fa_cam; // TODO: leakage power is not computed yet
+ powerDef power_bl_precharge_eq_drv;
+ powerDef power_subarray_out_drv;
+ powerDef power_cam_all_active;
+ powerDef power_searchline_precharge;
+ powerDef power_matchline_precharge;
+ powerDef power_ml_to_ram_wl_drv;
+
+ double delay_fa_tag, delay_cam;
+ double delay_before_decoder;
+ double delay_bitline;
+ double delay_wl_reset;
+ double delay_bl_restore;
+
+ double delay_searchline;
+ double delay_matchchline;
+ double delay_cam_sl_restore;
+ double delay_cam_ml_reset;
+ double delay_fa_ram_wl;
+
+ double delay_hit_miss_reset;
+ double delay_hit_miss;
+
+ Subarray subarray;
+ powerDef power_bitline, power_searchline, power_matchline;
+ double per_bitline_read_energy;
+ int deg_bl_muxing;
+ int num_act_mats_hor_dir;
+ double delay_writeback;
+ Area cell,cam_cell;
+ bool is_dram,is_fa, pure_cam, camFlag;
+ int num_mats;
+ powerDef power_sa;
+ double delay_sa;
+ double leak_power_sense_amps_closed_page_state;
+ double leak_power_sense_amps_open_page_state;
+ double delay_subarray_out_drv;
+ double delay_subarray_out_drv_htree;
+ double delay_comparator;
+ powerDef power_comparator;
+ int num_do_b_mat;
+ int num_so_b_mat;
+ int num_sa_subarray;
+ int num_sa_subarray_search;
+ double C_bl;
+
+ uint32_t num_subarrays_per_mat; // the number of subarrays in a mat
+ uint32_t num_subarrays_per_row; // the number of subarrays in a row of a mat
+
+
+ private:
+ double compute_bit_mux_sa_precharge_sa_mux_wr_drv_wr_mux_h();
+ double width_write_driver_or_write_mux();
+ double compute_comparators_height(int tagbits, int number_ways_in_mat, double subarray_mem_cell_area_w);
+ double compute_cam_delay(double inrisetime);
+ double compute_bitline_delay(double inrisetime);
+ double compute_sa_delay(double inrisetime);
+ double compute_subarray_out_drv(double inrisetime);
+ double compute_comparator_delay(double inrisetime);
+
+ int RWP;
+ int ERP;
+ int EWP;
+ int SCHP;
+};
+
+
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include <cassert>
+
+#include "Ucache.h"
+#include "nuca.h"
+
+unsigned int MIN_BANKSIZE=65536;
+#define FIXED_OVERHEAD 55e-12 /* clock skew and jitter in s. Ref: Hrishikesh et al ISCA 01 */
+#define LATCH_DELAY 28e-12 /* latch delay in s (later should use FO4 TODO) */
+#define CONTR_2_BANK_LAT 0
+
+int cont_stats[2 /*l2 or l3*/][5/* cores */][ROUTER_TYPES][7 /*banks*/][8 /* cycle time */];
+
+ Nuca::Nuca(
+ TechnologyParameter::DeviceType *dt = &(g_tp.peri_global)
+ ):deviceType(dt)
+{
+ init_cont();
+}
+
+void
+Nuca::init_cont()
+{
+ FILE *cont;
+ char line[5000];
+ char jk[5000];
+ cont = fopen("contention.dat", "r");
+ if (!cont) {
+ cout << "contention.dat file is missing!\n";
+ exit(0);
+ }
+
+ for(int i=0; i<2; i++) {
+ for(int j=2; j<5; j++) {
+ for(int k=0; k<ROUTER_TYPES; k++) {
+ for(int l=0;l<7; l++) {
+ int *temp = cont_stats[i/*l2 or l3*/][j/*core*/][k/*64 or 128 or 256 link bw*/][l /* no banks*/];
+ assert(fscanf(cont, "%[^\n]\n", line) != EOF);
+ sscanf(line, "%[^:]: %d %d %d %d %d %d %d %d",jk, &temp[0], &temp[1], &temp[2], &temp[3],
+ &temp[4], &temp[5], &temp[6], &temp[7]);
+ }
+ }
+ }
+ }
+ fclose(cont);
+}
+
+ void
+Nuca::print_cont_stats()
+{
+ for(int i=0; i<2; i++) {
+ for(int j=2; j<5; j++) {
+ for(int k=0; k<ROUTER_TYPES; k++) {
+ for(int l=0;l<7; l++) {
+ for(int m=0;l<7; l++) {
+ cout << cont_stats[i][j][k][l][m] << " ";
+ }
+ cout << endl;
+ }
+ }
+ }
+ }
+ cout << endl;
+}
+
+Nuca::~Nuca(){
+ for (int i = wt_min; i <= wt_max; i++) {
+ delete wire_vertical[i];
+ delete wire_horizontal[i];
+ }
+}
+
+/* converts latency (in s) to cycles depending upon the FREQUENCY (in GHz) */
+ int
+Nuca::calc_cycles(double lat, double oper_freq)
+{
+ //TODO: convert latch delay to FO4 */
+ double cycle_time = (1.0/(oper_freq*1e9)); /*s*/
+ cycle_time -= LATCH_DELAY;
+ cycle_time -= FIXED_OVERHEAD;
+
+ return (int)ceil(lat/cycle_time);
+}
+
+
+nuca_org_t::~nuca_org_t() {
+ // if(h_wire) delete h_wire;
+ // if(v_wire) delete v_wire;
+ // if(router) delete router;
+}
+
+/*
+ * Version - 6.0
+ *
+ * Perform exhaustive search across different bank organizatons,
+ * router configurations, grid organizations, and wire models and
+ * find an optimal NUCA organization
+ * For different bank count values
+ * 1. Optimal bank organization is calculated
+ * 2. For each bank organization, find different NUCA organizations
+ * using various router configurations, grid organizations,
+ * and wire models.
+ * 3. NUCA model with the least cost is picked for
+ * this particular bank count
+ * Finally include contention statistics and find the optimal
+ * NUCA configuration
+ */
+ void
+Nuca::sim_nuca()
+{
+ /* temp variables */
+ int it, ro, wr;
+ int num_cyc;
+ unsigned int i, j, k;
+ unsigned int r, c;
+ int l2_c;
+ int bank_count = 0;
+ uca_org_t ures;
+ nuca_org_t *opt_n;
+ mem_array tag, data;
+ list<nuca_org_t *> nuca_list;
+ Router *router_s[ROUTER_TYPES];
+ router_s[0] = new Router(64.0, 8, 4, &(g_tp.peri_global));
+ router_s[0]->print_router();
+ router_s[1] = new Router(128.0, 8, 4, &(g_tp.peri_global));
+ router_s[1]->print_router();
+ router_s[2] = new Router(256.0, 8, 4, &(g_tp.peri_global));
+ router_s[2]->print_router();
+
+ int core_in; // to store no. of cores
+
+ /* to search diff grid organizations */
+ double curr_hop, totno_hops, totno_hhops, totno_vhops, tot_lat,
+ curr_acclat;
+ double avg_lat, avg_hop, avg_hhop, avg_vhop, avg_dyn_power,
+ avg_leakage_power;
+
+ double opt_acclat = INF, opt_avg_lat = INF, opt_tot_lat = INF;
+ int opt_rows = 0;
+ int opt_columns = 0;
+ double opt_totno_hops = 0;
+ double opt_avg_hop = 0;
+ double opt_dyn_power = 0, opt_leakage_power = 0;
+ min_values_t minval;
+
+ int bank_start = 0;
+
+ int flit_width = 0;
+
+ /* vertical and horizontal hop latency values */
+ int ver_hop_lat, hor_hop_lat; /* in cycles */
+
+
+ /* no. of different bank sizes to consider */
+ int iterations;
+
+
+ g_ip->nuca_cache_sz = g_ip->cache_sz;
+ nuca_list.push_back(new nuca_org_t());
+
+ if (g_ip->cache_level == 0) l2_c = 1;
+ else l2_c = 0;
+
+ if (g_ip->cores <= 4) core_in = 2;
+ else if (g_ip->cores <= 8) core_in = 3;
+ else if (g_ip->cores <= 16) core_in = 4;
+ else {cout << "Number of cores should be <= 16!\n"; exit(0);}
+
+
+ // set the lower bound to an appropriate value. this depends on cache associativity
+ if (g_ip->assoc > 2) {
+ i = 2;
+ while (i != g_ip->assoc) {
+ MIN_BANKSIZE *= 2;
+ i *= 2;
+ }
+ }
+
+ iterations = (int)logtwo((int)g_ip->cache_sz/MIN_BANKSIZE);
+
+ if (g_ip->force_wiretype)
+ {
+ if (g_ip->wt == Low_swing) {
+ wt_min = Low_swing;
+ wt_max = Low_swing;
+ }
+ else {
+ wt_min = Global;
+ wt_max = Low_swing-1;
+ }
+ }
+ else {
+ wt_min = Global;
+ wt_max = Low_swing;
+ }
+ if (g_ip->nuca_bank_count != 0) { // simulate just one bank
+ if (g_ip->nuca_bank_count != 2 && g_ip->nuca_bank_count != 4 &&
+ g_ip->nuca_bank_count != 8 && g_ip->nuca_bank_count != 16 &&
+ g_ip->nuca_bank_count != 32 && g_ip->nuca_bank_count != 64) {
+ fprintf(stderr,"Incorrect bank count value! Please fix the value in cache.cfg\n");
+ }
+ bank_start = (int)logtwo((double)g_ip->nuca_bank_count);
+ iterations = bank_start+1;
+ g_ip->cache_sz = g_ip->cache_sz/g_ip->nuca_bank_count;
+ }
+ cout << "Simulating various NUCA configurations\n";
+ for (it=bank_start; it<iterations; it++) { /* different bank count values */
+ ures.tag_array2 = &tag;
+ ures.data_array2 = &data;
+ /*
+ * find the optimal bank organization
+ */
+ solve(&ures);
+// output_UCA(&ures);
+ bank_count = g_ip->nuca_cache_sz/g_ip->cache_sz;
+ cout << "====" << g_ip->cache_sz << "\n";
+
+ for (wr=wt_min; wr<=wt_max; wr++) {
+
+ for (ro=0; ro<ROUTER_TYPES; ro++)
+ {
+ flit_width = (int) router_s[ro]->flit_size; //initialize router
+ nuca_list.back()->nuca_pda.cycle_time = router_s[ro]->cycle_time;
+
+ /* calculate router and wire parameters */
+
+ double vlength = ures.cache_ht; /* length of the wire (u)*/
+ double hlength = ures.cache_len; // u
+
+ /* find delay, area, and power for wires */
+ wire_vertical[wr] = new Wire((enum Wire_type) wr, vlength);
+ wire_horizontal[wr] = new Wire((enum Wire_type) wr, hlength);
+
+
+ hor_hop_lat = calc_cycles(wire_horizontal[wr]->delay,
+ 1/(nuca_list.back()->nuca_pda.cycle_time*.001));
+ ver_hop_lat = calc_cycles(wire_vertical[wr]->delay,
+ 1/(nuca_list.back()->nuca_pda.cycle_time*.001));
+
+ /*
+ * assume a grid like topology and explore for optimal network
+ * configuration using different row and column count values.
+ */
+ for (c=1; c<=(unsigned int)bank_count; c++) {
+ while (bank_count%c != 0) c++;
+ r = bank_count/c;
+
+ /*
+ * to find the avg access latency of a NUCA cache, uncontended
+ * access time to each bank from the
+ * cache controller is calculated.
+ * avg latency =
+ * sum of the access latencies to individual banks)/bank
+ * count value.
+ */
+ totno_hops = totno_hhops = totno_vhops = tot_lat = 0;
+ k = 1;
+ for (i=0; i<r; i++) {
+ for (j=0; j<c; j++) {
+ /*
+ * vertical hops including the
+ * first hop from the cache controller
+ */
+ curr_hop = i + 1;
+ curr_hop += j; /* horizontal hops */
+ totno_hhops += j;
+ totno_vhops += (i+1);
+ curr_acclat = (i * ver_hop_lat + CONTR_2_BANK_LAT +
+ j * hor_hop_lat);
+
+ tot_lat += curr_acclat;
+ totno_hops += curr_hop;
+ }
+ }
+ avg_lat = tot_lat/bank_count;
+ avg_hop = totno_hops/bank_count;
+ avg_hhop = totno_hhops/bank_count;
+ avg_vhop = totno_vhops/bank_count;
+
+ /* net access latency */
+ curr_acclat = 2*avg_lat + 2*(router_s[ro]->delay*avg_hop) +
+ calc_cycles(ures.access_time,
+ 1/(nuca_list.back()->nuca_pda.cycle_time*.001));
+
+ /* avg access lat of nuca */
+ avg_dyn_power =
+ avg_hop *
+ (router_s[ro]->power.readOp.dynamic) + avg_hhop *
+ (wire_horizontal[wr]->power.readOp.dynamic) *
+ (g_ip->block_sz*8 + 64) + avg_vhop *
+ (wire_vertical[wr]->power.readOp.dynamic) *
+ (g_ip->block_sz*8 + 64) + ures.power.readOp.dynamic;
+
+ avg_leakage_power =
+ bank_count * router_s[ro]->power.readOp.leakage +
+ avg_hhop * (wire_horizontal[wr]->power.readOp.leakage*
+ wire_horizontal[wr]->delay) * flit_width +
+ avg_vhop * (wire_vertical[wr]->power.readOp.leakage *
+ wire_horizontal[wr]->delay);
+
+ if (curr_acclat < opt_acclat) {
+ opt_acclat = curr_acclat;
+ opt_tot_lat = tot_lat;
+ opt_avg_lat = avg_lat;
+ opt_totno_hops = totno_hops;
+ opt_avg_hop = avg_hop;
+ opt_rows = r;
+ opt_columns = c;
+ opt_dyn_power = avg_dyn_power;
+ opt_leakage_power = avg_leakage_power;
+ }
+ totno_hops = 0;
+ tot_lat = 0;
+ totno_hhops = 0;
+ totno_vhops = 0;
+ }
+ nuca_list.back()->wire_pda.power.readOp.dynamic =
+ opt_avg_hop * flit_width *
+ (wire_horizontal[wr]->power.readOp.dynamic +
+ wire_vertical[wr]->power.readOp.dynamic);
+ nuca_list.back()->avg_hops = opt_avg_hop;
+ /* network delay/power */
+ nuca_list.back()->h_wire = wire_horizontal[wr];
+ nuca_list.back()->v_wire = wire_vertical[wr];
+ nuca_list.back()->router = router_s[ro];
+ /* bank delay/power */
+
+ nuca_list.back()->bank_pda.delay = ures.access_time;
+ nuca_list.back()->bank_pda.power = ures.power;
+ nuca_list.back()->bank_pda.area.h = ures.cache_ht;
+ nuca_list.back()->bank_pda.area.w = ures.cache_len;
+ nuca_list.back()->bank_pda.cycle_time = ures.cycle_time;
+
+ num_cyc = calc_cycles(nuca_list.back()->bank_pda.delay /*s*/,
+ 1/(nuca_list.back()->nuca_pda.cycle_time*.001/*GHz*/));
+ if(num_cyc%2 != 0) num_cyc++;
+ if (num_cyc > 16) num_cyc = 16; // we have data only up to 16 cycles
+
+ if (it < 7) {
+ nuca_list.back()->nuca_pda.delay = opt_acclat +
+ cont_stats[l2_c][core_in][ro][it][num_cyc/2-1];
+ nuca_list.back()->contention =
+ cont_stats[l2_c][core_in][ro][it][num_cyc/2-1];
+ }
+ else {
+ nuca_list.back()->nuca_pda.delay = opt_acclat +
+ cont_stats[l2_c][core_in][ro][7][num_cyc/2-1];
+ nuca_list.back()->contention =
+ cont_stats[l2_c][core_in][ro][7][num_cyc/2-1];
+ }
+ nuca_list.back()->nuca_pda.power.readOp.dynamic = opt_dyn_power;
+ nuca_list.back()->nuca_pda.power.readOp.leakage = opt_leakage_power;
+
+ /* array organization */
+ nuca_list.back()->bank_count = bank_count;
+ nuca_list.back()->rows = opt_rows;
+ nuca_list.back()->columns = opt_columns;
+ calculate_nuca_area (nuca_list.back());
+
+ minval.update_min_values(nuca_list.back());
+ nuca_list.push_back(new nuca_org_t());
+ opt_acclat = BIGNUM;
+
+ }
+ }
+ g_ip->cache_sz /= 2;
+ }
+
+ delete(nuca_list.back());
+ nuca_list.pop_back();
+ opt_n = find_optimal_nuca(&nuca_list, &minval);
+ print_nuca(opt_n);
+ g_ip->cache_sz = g_ip->nuca_cache_sz/opt_n->bank_count;
+
+ list<nuca_org_t *>::iterator niter;
+ for (niter = nuca_list.begin(); niter != nuca_list.end(); ++niter)
+ {
+ delete *niter;
+ }
+ nuca_list.clear();
+
+ for(int i=0; i < ROUTER_TYPES; i++)
+ {
+ delete router_s[i];
+ }
+ g_ip->display_ip();
+ // g_ip->force_cache_config = true;
+ // g_ip->ndwl = 8;
+ // g_ip->ndbl = 16;
+ // g_ip->nspd = 4;
+ // g_ip->ndcm = 1;
+ // g_ip->ndsam1 = 8;
+ // g_ip->ndsam2 = 32;
+
+}
+
+
+ void
+Nuca::print_nuca (nuca_org_t *fr)
+{
+ printf("\n---------- CACTI version 6.5, Non-uniform Cache Access "
+ "----------\n\n");
+ printf("Optimal number of banks - %d\n", fr->bank_count);
+ printf("Grid organization rows x columns - %d x %d\n",
+ fr->rows, fr->columns);
+ printf("Network frequency - %g GHz\n",
+ (1/fr->nuca_pda.cycle_time)*1e3);
+ printf("Cache dimension (mm x mm) - %g x %g\n",
+ fr->nuca_pda.area.h,
+ fr->nuca_pda.area.w);
+
+ fr->router->print_router();
+
+ printf("\n\nWire stats:\n");
+ if (fr->h_wire->wt == Global) {
+ printf("\tWire type - Full swing global wires with least "
+ "possible delay\n");
+ }
+ else if (fr->h_wire->wt == Global_5) {
+ printf("\tWire type - Full swing global wires with "
+ "5%% delay penalty\n");
+ }
+ else if (fr->h_wire->wt == Global_10) {
+ printf("\tWire type - Full swing global wires with "
+ "10%% delay penalty\n");
+ }
+ else if (fr->h_wire->wt == Global_20) {
+ printf("\tWire type - Full swing global wires with "
+ "20%% delay penalty\n");
+ }
+ else if (fr->h_wire->wt == Global_30) {
+ printf("\tWire type - Full swing global wires with "
+ "30%% delay penalty\n");
+ }
+ else if(fr->h_wire->wt == Low_swing) {
+ printf("\tWire type - Low swing wires\n");
+ }
+
+ printf("\tHorizontal link delay - %g (ns)\n",
+ fr->h_wire->delay*1e9);
+ printf("\tVertical link delay - %g (ns)\n",
+ fr->v_wire->delay*1e9);
+ printf("\tDelay/length - %g (ns/mm)\n",
+ fr->h_wire->delay*1e9/fr->bank_pda.area.w);
+ printf("\tHorizontal link energy -dynamic/access %g (nJ)\n"
+ "\t -leakage %g (nW)\n\n",
+ fr->h_wire->power.readOp.dynamic*1e9,
+ fr->h_wire->power.readOp.leakage*1e9);
+ printf("\tVertical link energy -dynamic/access %g (nJ)\n"
+ "\t -leakage %g (nW)\n\n",
+ fr->v_wire->power.readOp.dynamic*1e9,
+ fr->v_wire->power.readOp.leakage*1e9);
+ printf("\n\n");
+ fr->v_wire->print_wire();
+ printf("\n\nBank stats:\n");
+}
+
+
+ nuca_org_t *
+Nuca::find_optimal_nuca (list<nuca_org_t *> *n, min_values_t *minval)
+{
+ double cost = 0;
+ double min_cost = BIGNUM;
+ nuca_org_t *res = NULL;
+ float d, a, dp, lp, c;
+ int v;
+ dp = g_ip->dynamic_power_wt_nuca;
+ lp = g_ip->leakage_power_wt_nuca;
+ a = g_ip->area_wt_nuca;
+ d = g_ip->delay_wt_nuca;
+ c = g_ip->cycle_time_wt_nuca;
+
+ list<nuca_org_t *>::iterator niter;
+
+
+ for (niter = n->begin(); niter != n->end(); niter++) {
+ fprintf(stderr, "\n-----------------------------"
+ "---------------\n");
+
+
+ printf("NUCA___stats %d \tbankcount: lat = %g \tdynP = %g \twt = %d\t "
+ "bank_dpower = %g \tleak = %g \tcycle = %g\n",
+ (*niter)->bank_count,
+ (*niter)->nuca_pda.delay,
+ (*niter)->nuca_pda.power.readOp.dynamic,
+ (*niter)->h_wire->wt,
+ (*niter)->bank_pda.power.readOp.dynamic,
+ (*niter)->nuca_pda.power.readOp.leakage,
+ (*niter)->nuca_pda.cycle_time);
+
+
+ if (g_ip->ed == 1) {
+ cost = ((*niter)->nuca_pda.delay/minval->min_delay)*
+ ((*niter)->nuca_pda.power.readOp.dynamic/minval->min_dyn);
+ if (min_cost > cost) {
+ min_cost = cost;
+ res = ((*niter));
+ }
+ }
+ else if (g_ip->ed == 2) {
+ cost = ((*niter)->nuca_pda.delay/minval->min_delay)*
+ ((*niter)->nuca_pda.delay/minval->min_delay)*
+ ((*niter)->nuca_pda.power.readOp.dynamic/minval->min_dyn);
+ if (min_cost > cost) {
+ min_cost = cost;
+ res = ((*niter));
+ }
+ }
+ else {
+ /*
+ * check whether the current organization
+ * meets the input deviation constraints
+ */
+ v = check_nuca_org((*niter), minval);
+ if (minval->min_leakage == 0) minval->min_leakage = 0.1; //FIXME remove this after leakage modeling
+
+ if (v) {
+ cost = (d * ((*niter)->nuca_pda.delay/minval->min_delay) +
+ c * ((*niter)->nuca_pda.cycle_time/minval->min_cyc) +
+ dp * ((*niter)->nuca_pda.power.readOp.dynamic/minval->min_dyn) +
+ lp * ((*niter)->nuca_pda.power.readOp.leakage/minval->min_leakage) +
+ a * ((*niter)->nuca_pda.area.get_area()/minval->min_area));
+ fprintf(stderr, "cost = %g\n", cost);
+
+ if (min_cost > cost) {
+ min_cost = cost;
+ res = ((*niter));
+ }
+ }
+ else {
+ niter = n->erase(niter);
+ if (niter !=n->begin())
+ niter --;
+ }
+ }
+ }
+ return res;
+}
+
+ int
+Nuca::check_nuca_org (nuca_org_t *n, min_values_t *minval)
+{
+ if (((n->nuca_pda.delay - minval->min_delay)*100/minval->min_delay) > g_ip->delay_dev_nuca) {
+ return 0;
+ }
+ if (((n->nuca_pda.power.readOp.dynamic - minval->min_dyn)/minval->min_dyn)*100 >
+ g_ip->dynamic_power_dev_nuca) {
+ return 0;
+ }
+ if (((n->nuca_pda.power.readOp.leakage - minval->min_leakage)/minval->min_leakage)*100 >
+ g_ip->leakage_power_dev_nuca) {
+ return 0;
+ }
+ if (((n->nuca_pda.cycle_time - minval->min_cyc)/minval->min_cyc)*100 >
+ g_ip->cycle_time_dev_nuca) {
+ return 0;
+ }
+ if (((n->nuca_pda.area.get_area() - minval->min_area)/minval->min_area)*100 >
+ g_ip->area_dev_nuca) {
+ return 0;
+ }
+ return 1;
+}
+
+ void
+Nuca::calculate_nuca_area (nuca_org_t *nuca)
+{
+ nuca->nuca_pda.area.h=
+ nuca->rows * ((nuca->h_wire->wire_width +
+ nuca->h_wire->wire_spacing)
+ * nuca->router->flit_size +
+ nuca->bank_pda.area.h);
+
+ nuca->nuca_pda.area.w =
+ nuca->columns * ((nuca->v_wire->wire_width +
+ nuca->v_wire->wire_spacing)
+ * nuca->router->flit_size +
+ nuca->bank_pda.area.w);
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#ifndef __NUCA_H__
+#define __NUCA_H__
+
+#include <iostream>
+
+#include "assert.h"
+#include "basic_circuit.h"
+#include "cacti_interface.h"
+#include "component.h"
+#include "io.h"
+#include "mat.h"
+#include "parameter.h"
+#include "router.h"
+#include "wire.h"
+
+class nuca_org_t {
+ public:
+ ~nuca_org_t();
+// int size;
+ /* area, power, access time, and cycle time stats */
+ Component nuca_pda;
+ Component bank_pda;
+ Component wire_pda;
+ Wire *h_wire;
+ Wire *v_wire;
+ Router *router;
+ /* for particular network configuration
+ * calculated based on a cycle accurate
+ * simulation Ref: CACTI 6 - Tech report
+ */
+ double contention;
+
+ /* grid network stats */
+ double avg_hops;
+ int rows;
+ int columns;
+ int bank_count;
+};
+
+
+
+class Nuca : public Component
+{
+ public:
+ Nuca(
+ TechnologyParameter::DeviceType *dt);
+ void print_router();
+ ~Nuca();
+ void sim_nuca();
+ void init_cont();
+ int calc_cycles(double lat, double oper_freq);
+ void calculate_nuca_area (nuca_org_t *nuca);
+ int check_nuca_org (nuca_org_t *n, min_values_t *minval);
+ nuca_org_t * find_optimal_nuca (list<nuca_org_t *> *n, min_values_t *minval);
+ void print_nuca(nuca_org_t *n);
+ void print_cont_stats();
+
+ private:
+
+ TechnologyParameter::DeviceType *deviceType;
+ int wt_min, wt_max;
+ Wire *wire_vertical[WIRE_TYPES],
+ *wire_horizontal[WIRE_TYPES];
+
+};
+
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include <iomanip>
+#include <iostream>
+#include <string>
+
+#include "area.h"
+#include "parameter.h"
+
+using namespace std;
+
+
+InputParameter * g_ip;
+TechnologyParameter g_tp;
+
+
+
+void TechnologyParameter::DeviceType::display(uint32_t indent)
+{
+ string indent_str(indent, ' ');
+
+ cout << indent_str << "C_g_ideal = " << setw(12) << C_g_ideal << " F/um" << endl;
+ cout << indent_str << "C_fringe = " << setw(12) << C_fringe << " F/um" << endl;
+ cout << indent_str << "C_overlap = " << setw(12) << C_overlap << " F/um" << endl;
+ cout << indent_str << "C_junc = " << setw(12) << C_junc << " F/um^2" << endl;
+ cout << indent_str << "l_phy = " << setw(12) << l_phy << " um" << endl;
+ cout << indent_str << "l_elec = " << setw(12) << l_elec << " um" << endl;
+ cout << indent_str << "R_nch_on = " << setw(12) << R_nch_on << " ohm-um" << endl;
+ cout << indent_str << "R_pch_on = " << setw(12) << R_pch_on << " ohm-um" << endl;
+ cout << indent_str << "Vdd = " << setw(12) << Vdd << " V" << endl;
+ cout << indent_str << "Vth = " << setw(12) << Vth << " V" << endl;
+ cout << indent_str << "I_on_n = " << setw(12) << I_on_n << " A/um" << endl;
+ cout << indent_str << "I_on_p = " << setw(12) << I_on_p << " A/um" << endl;
+ cout << indent_str << "I_off_n = " << setw(12) << I_off_n << " A/um" << endl;
+ cout << indent_str << "I_off_p = " << setw(12) << I_off_p << " A/um" << endl;
+ cout << indent_str << "C_ox = " << setw(12) << C_ox << " F/um^2" << endl;
+ cout << indent_str << "t_ox = " << setw(12) << t_ox << " um" << endl;
+ cout << indent_str << "n_to_p_eff_curr_drv_ratio = " << n_to_p_eff_curr_drv_ratio << endl;
+}
+
+
+
+void TechnologyParameter::InterconnectType::display(uint32_t indent)
+{
+ string indent_str(indent, ' ');
+
+ cout << indent_str << "pitch = " << setw(12) << pitch << " um" << endl;
+ cout << indent_str << "R_per_um = " << setw(12) << R_per_um << " ohm/um" << endl;
+ cout << indent_str << "C_per_um = " << setw(12) << C_per_um << " F/um" << endl;
+}
+
+void TechnologyParameter::ScalingFactor::display(uint32_t indent)
+{
+ string indent_str(indent, ' ');
+
+ cout << indent_str << "logic_scaling_co_eff = " << setw(12) << logic_scaling_co_eff << endl;
+ cout << indent_str << "curr_core_tx_density = " << setw(12) << core_tx_density << " # of tx/um^2" << endl;
+}
+
+void TechnologyParameter::MemoryType::display(uint32_t indent)
+{
+ string indent_str(indent, ' ');
+
+ cout << indent_str << "b_w = " << setw(12) << b_w << " um" << endl;
+ cout << indent_str << "b_h = " << setw(12) << b_h << " um" << endl;
+ cout << indent_str << "cell_a_w = " << setw(12) << cell_a_w << " um" << endl;
+ cout << indent_str << "cell_pmos_w = " << setw(12) << cell_pmos_w << " um" << endl;
+ cout << indent_str << "cell_nmos_w = " << setw(12) << cell_nmos_w << " um" << endl;
+ cout << indent_str << "Vbitpre = " << setw(12) << Vbitpre << " V" << endl;
+}
+
+
+
+void TechnologyParameter::display(uint32_t indent)
+{
+ string indent_str(indent, ' ');
+
+ cout << indent_str << "ram_wl_stitching_overhead_ = " << setw(12) << ram_wl_stitching_overhead_ << " um" << endl;
+ cout << indent_str << "min_w_nmos_ = " << setw(12) << min_w_nmos_ << " um" << endl;
+ cout << indent_str << "max_w_nmos_ = " << setw(12) << max_w_nmos_ << " um" << endl;
+ cout << indent_str << "unit_len_wire_del = " << setw(12) << unit_len_wire_del << " s/um^2" << endl;
+ cout << indent_str << "FO4 = " << setw(12) << FO4 << " s" << endl;
+ cout << indent_str << "kinv = " << setw(12) << kinv << " s" << endl;
+ cout << indent_str << "vpp = " << setw(12) << vpp << " V" << endl;
+ cout << indent_str << "w_sense_en = " << setw(12) << w_sense_en << " um" << endl;
+ cout << indent_str << "w_sense_n = " << setw(12) << w_sense_n << " um" << endl;
+ cout << indent_str << "w_sense_p = " << setw(12) << w_sense_p << " um" << endl;
+ cout << indent_str << "w_iso = " << setw(12) << w_iso << " um" << endl;
+ cout << indent_str << "w_poly_contact = " << setw(12) << w_poly_contact << " um" << endl;
+ cout << indent_str << "spacing_poly_to_poly = " << setw(12) << spacing_poly_to_poly << " um" << endl;
+ cout << indent_str << "spacing_poly_to_contact = " << setw(12) << spacing_poly_to_contact << " um" << endl;
+ cout << endl;
+ cout << indent_str << "w_comp_inv_p1 = " << setw(12) << w_comp_inv_p1 << " um" << endl;
+ cout << indent_str << "w_comp_inv_p2 = " << setw(12) << w_comp_inv_p2 << " um" << endl;
+ cout << indent_str << "w_comp_inv_p3 = " << setw(12) << w_comp_inv_p3 << " um" << endl;
+ cout << indent_str << "w_comp_inv_n1 = " << setw(12) << w_comp_inv_n1 << " um" << endl;
+ cout << indent_str << "w_comp_inv_n2 = " << setw(12) << w_comp_inv_n2 << " um" << endl;
+ cout << indent_str << "w_comp_inv_n3 = " << setw(12) << w_comp_inv_n3 << " um" << endl;
+ cout << indent_str << "w_eval_inv_p = " << setw(12) << w_eval_inv_p << " um" << endl;
+ cout << indent_str << "w_eval_inv_n = " << setw(12) << w_eval_inv_n << " um" << endl;
+ cout << indent_str << "w_comp_n = " << setw(12) << w_comp_n << " um" << endl;
+ cout << indent_str << "w_comp_p = " << setw(12) << w_comp_p << " um" << endl;
+ cout << endl;
+ cout << indent_str << "dram_cell_I_on = " << setw(12) << dram_cell_I_on << " A/um" << endl;
+ cout << indent_str << "dram_cell_Vdd = " << setw(12) << dram_cell_Vdd << " V" << endl;
+ cout << indent_str << "dram_cell_I_off_worst_case_len_temp = " << setw(12) << dram_cell_I_off_worst_case_len_temp << " A/um" << endl;
+ cout << indent_str << "dram_cell_C = " << setw(12) << dram_cell_C << " F" << endl;
+ cout << indent_str << "gm_sense_amp_latch = " << setw(12) << gm_sense_amp_latch << " F/s" << endl;
+ cout << endl;
+ cout << indent_str << "w_nmos_b_mux = " << setw(12) << w_nmos_b_mux << " um" << endl;
+ cout << indent_str << "w_nmos_sa_mux = " << setw(12) << w_nmos_sa_mux << " um" << endl;
+ cout << indent_str << "w_pmos_bl_precharge = " << setw(12) << w_pmos_bl_precharge << " um" << endl;
+ cout << indent_str << "w_pmos_bl_eq = " << setw(12) << w_pmos_bl_eq << " um" << endl;
+ cout << indent_str << "MIN_GAP_BET_P_AND_N_DIFFS = " << setw(12) << MIN_GAP_BET_P_AND_N_DIFFS << " um" << endl;
+ cout << indent_str << "HPOWERRAIL = " << setw(12) << HPOWERRAIL << " um" << endl;
+ cout << indent_str << "cell_h_def = " << setw(12) << cell_h_def << " um" << endl;
+
+ cout << endl;
+ cout << indent_str << "SRAM cell transistor: " << endl;
+ sram_cell.display(indent + 2);
+
+ cout << endl;
+ cout << indent_str << "DRAM access transistor: " << endl;
+ dram_acc.display(indent + 2);
+
+ cout << endl;
+ cout << indent_str << "DRAM wordline transistor: " << endl;
+ dram_wl.display(indent + 2);
+
+ cout << endl;
+ cout << indent_str << "peripheral global transistor: " << endl;
+ peri_global.display(indent + 2);
+
+ cout << endl;
+ cout << indent_str << "wire local" << endl;
+ wire_local.display(indent + 2);
+
+ cout << endl;
+ cout << indent_str << "wire inside mat" << endl;
+ wire_inside_mat.display(indent + 2);
+
+ cout << endl;
+ cout << indent_str << "wire outside mat" << endl;
+ wire_outside_mat.display(indent + 2);
+
+ cout << endl;
+ cout << indent_str << "SRAM" << endl;
+ sram.display(indent + 2);
+
+ cout << endl;
+ cout << indent_str << "DRAM" << endl;
+ dram.display(indent + 2);
+}
+
+
+DynamicParameter::DynamicParameter():
+ use_inp_params(0), cell(), is_valid(true)
+{
+}
+
+
+
+DynamicParameter::DynamicParameter(
+ bool is_tag_,
+ int pure_ram_,
+ int pure_cam_,
+ double Nspd_,
+ unsigned int Ndwl_,
+ unsigned int Ndbl_,
+ unsigned int Ndcm_,
+ unsigned int Ndsam_lev_1_,
+ unsigned int Ndsam_lev_2_,
+ bool is_main_mem_):
+ is_tag(is_tag_), pure_ram(pure_ram_), pure_cam(pure_cam_), tagbits(0), Nspd(Nspd_), Ndwl(Ndwl_), Ndbl(Ndbl_),Ndcm(Ndcm_),
+ Ndsam_lev_1(Ndsam_lev_1_), Ndsam_lev_2(Ndsam_lev_2_),
+ number_way_select_signals_mat(0), V_b_sense(0), use_inp_params(0),
+ is_main_mem(is_main_mem_), cell(), is_valid(false)
+{
+ ram_cell_tech_type = (is_tag) ? g_ip->tag_arr_ram_cell_tech_type : g_ip->data_arr_ram_cell_tech_type;
+ is_dram = ((ram_cell_tech_type == lp_dram) || (ram_cell_tech_type == comm_dram));
+
+ unsigned int capacity_per_die = g_ip->cache_sz / NUMBER_STACKED_DIE_LAYERS; // capacity per stacked die layer
+ const TechnologyParameter::InterconnectType & wire_local = g_tp.wire_local;
+ fully_assoc = (g_ip->fully_assoc) ? true : false;
+
+ if (fully_assoc || pure_cam)
+ { // fully-assocative cache -- ref: CACTi 2.0 report
+ if (Ndwl != 1 || //Ndwl is fixed to 1 for FA
+ Ndcm != 1 || //Ndcm is fixed to 1 for FA
+ Nspd < 1 || Nspd > 1 || //Nspd is fixed to 1 for FA
+ Ndsam_lev_1 != 1 || //Ndsam_lev_1 is fixed to one
+ Ndsam_lev_2 != 1 || //Ndsam_lev_2 is fixed to one
+ Ndbl < 2)
+ {
+ return;
+ }
+ }
+
+ if ((is_dram) && (!is_tag) && (Ndcm > 1))
+ {
+ return; // For a DRAM array, each bitline has its own sense-amp
+ }
+
+ // If it's not an FA tag/data array, Ndwl should be at least two and Ndbl should be
+ // at least two because an array is assumed to have at least one mat. And a mat
+ // is formed out of two horizontal subarrays and two vertical subarrays
+ if (fully_assoc == false && (Ndwl < 1 || Ndbl < 1))
+ {
+ return;
+ }
+
+ //***********compute row, col of an subarray
+ if (!(fully_assoc || pure_cam))//Not fully_asso nor cam
+ {
+ // if data array, let tagbits = 0
+ if (is_tag)
+ {
+ if (g_ip->specific_tag)
+ {
+ tagbits = g_ip->tag_w;
+ }
+ else
+ {
+ tagbits = ADDRESS_BITS + EXTRA_TAG_BITS - _log2(capacity_per_die) +
+ _log2(g_ip->tag_assoc*2 - 1) - _log2(g_ip->nbanks);
+
+ }
+ tagbits = (((tagbits + 3) >> 2) << 2);
+
+ num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks *
+ g_ip->block_sz * g_ip->tag_assoc * Ndbl * Nspd));// + EPSILON);
+ num_c_subarray = (int)ceil((tagbits * g_ip->tag_assoc * Nspd / Ndwl));// + EPSILON);
+ //burst_length = 1;
+ }
+ else
+ {
+ num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks *
+ g_ip->block_sz * g_ip->data_assoc * Ndbl * Nspd));// + EPSILON);
+ num_c_subarray = (int)ceil((8 * g_ip->block_sz * g_ip->data_assoc * Nspd / Ndwl));// + EPSILON); + EPSILON);
+ // burst_length = g_ip->block_sz * 8 / g_ip->out_w;
+ }
+
+ if (num_r_subarray < MINSUBARRAYROWS) return;
+ if (num_r_subarray == 0) return;
+ if (num_r_subarray > MAXSUBARRAYROWS) return;
+ if (num_c_subarray < MINSUBARRAYCOLS) return;
+ if (num_c_subarray > MAXSUBARRAYCOLS) return;
+
+ }
+
+ else
+ {//either fully-asso or cam
+ if (pure_cam)
+ {
+ if (g_ip->specific_tag)
+ {
+ tagbits = int(ceil(g_ip->tag_w/8.0)*8);
+ }
+ else
+ {
+ tagbits = int(ceil((ADDRESS_BITS + EXTRA_TAG_BITS)/8.0)*8);
+// cout<<"Pure CAM needs tag width to be specified"<<endl;
+// exit(0);
+ }
+ //tagbits = (((tagbits + 3) >> 2) << 2);
+
+ tag_num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks*tagbits/8.0 * Ndbl));//TODO: error check input of tagbits and blocksize //TODO: for pure CAM, g_ip->block should be number of entries.
+ //tag_num_c_subarray = (int)(tagbits + EPSILON);
+ tag_num_c_subarray = tagbits;
+ if (tag_num_r_subarray == 0) return;
+ if (tag_num_r_subarray > MAXSUBARRAYROWS) return;
+ if (tag_num_c_subarray < MINSUBARRAYCOLS) return;
+ if (tag_num_c_subarray > MAXSUBARRAYCOLS) return;
+ num_r_subarray = tag_num_r_subarray;
+ }
+ else //fully associative
+ {
+ if (g_ip->specific_tag)
+ {
+ tagbits = g_ip->tag_w;
+ }
+ else
+ {
+ tagbits = ADDRESS_BITS + EXTRA_TAG_BITS - _log2(g_ip->block_sz);//TODO: should be the page_offset=log2(page size), but this info is not avail with CACTI, for McPAT this is no problem.
+ }
+ tagbits = (((tagbits + 3) >> 2) << 2);
+
+ tag_num_r_subarray = (int)(capacity_per_die / (g_ip->nbanks*g_ip->block_sz * Ndbl));
+ tag_num_c_subarray = (int)ceil((tagbits * Nspd / Ndwl));// + EPSILON);
+ if (tag_num_r_subarray == 0) return;
+ if (tag_num_r_subarray > MAXSUBARRAYROWS) return;
+ if (tag_num_c_subarray < MINSUBARRAYCOLS) return;
+ if (tag_num_c_subarray > MAXSUBARRAYCOLS) return;
+
+ data_num_r_subarray = tag_num_r_subarray;
+ data_num_c_subarray = 8 * g_ip->block_sz;
+ if (data_num_r_subarray == 0) return;
+ if (data_num_r_subarray > MAXSUBARRAYROWS) return;
+ if (data_num_c_subarray < MINSUBARRAYCOLS) return;
+ if (data_num_c_subarray > MAXSUBARRAYCOLS) return;
+ num_r_subarray = tag_num_r_subarray;
+ }
+ }
+
+ num_subarrays = Ndwl * Ndbl;
+ //****************end of computation of row, col of an subarray
+
+ // calculate wire parameters
+ if (fully_assoc || pure_cam)
+ {
+ cam_cell.h = g_tp.cam.b_h + 2 * wire_local.pitch * (g_ip->num_rw_ports-1 + g_ip->num_rd_ports + g_ip->num_wr_ports)
+ + 2 * wire_local.pitch*(g_ip->num_search_ports-1) + wire_local.pitch * g_ip->num_se_rd_ports;
+ cam_cell.w = g_tp.cam.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports-1 + g_ip->num_rd_ports + g_ip->num_wr_ports)
+ + 2 * wire_local.pitch*(g_ip->num_search_ports-1) + wire_local.pitch * g_ip->num_se_rd_ports;
+
+ cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_wr_ports +g_ip->num_rw_ports-1 + g_ip->num_rd_ports)
+ + 2 * wire_local.pitch*(g_ip->num_search_ports-1);
+ cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports -1 + (g_ip->num_rd_ports - g_ip->num_se_rd_ports)
+ + g_ip->num_wr_ports) + g_tp.wire_local.pitch * g_ip->num_se_rd_ports + 2 * wire_local.pitch*(g_ip->num_search_ports-1);
+ }
+ else
+ {
+ if(is_tag)
+ {
+ cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + g_ip->num_rd_ports +
+ g_ip->num_wr_ports);
+ cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + g_ip->num_wr_ports +
+ (g_ip->num_rd_ports - g_ip->num_se_rd_ports)) +
+ wire_local.pitch * g_ip->num_se_rd_ports;
+ }
+ else
+ {
+ if (is_dram)
+ {
+ cell.h = g_tp.dram.b_h;
+ cell.w = g_tp.dram.b_w;
+ }
+ else
+ {
+ cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_wr_ports +
+ g_ip->num_rw_ports - 1 + g_ip->num_rd_ports);
+ cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 +
+ (g_ip->num_rd_ports - g_ip->num_se_rd_ports) +
+ g_ip->num_wr_ports) + g_tp.wire_local.pitch * g_ip->num_se_rd_ports;
+ }
+ }
+ }
+
+ double c_b_metal = cell.h * wire_local.C_per_um;
+ double C_bl;
+
+ if (!(fully_assoc || pure_cam))
+ {
+ if (is_dram)
+ {
+ deg_bl_muxing = 1;
+ if (ram_cell_tech_type == comm_dram)
+ {
+ C_bl = num_r_subarray * c_b_metal;
+ V_b_sense = (g_tp.dram_cell_Vdd/2) * g_tp.dram_cell_C / (g_tp.dram_cell_C + C_bl);
+ if (V_b_sense < VBITSENSEMIN)
+ {
+ return;
+ }
+ V_b_sense = VBITSENSEMIN; // in any case, we fix sense amp input signal to a constant value
+ dram_refresh_period = 64e-3;
+ }
+ else
+ {
+ double Cbitrow_drain_cap = drain_C_(g_tp.dram.cell_a_w, NCH, 1, 0, cell.w, true, true) / 2.0;
+ C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal);
+ V_b_sense = (g_tp.dram_cell_Vdd/2) * g_tp.dram_cell_C /(g_tp.dram_cell_C + C_bl);
+
+ if (V_b_sense < VBITSENSEMIN)
+ {
+ return; //Sense amp input signal is smaller that minimum allowable sense amp input signal
+ }
+ V_b_sense = VBITSENSEMIN; // in any case, we fix sense amp input signal to a constant value
+ //v_storage_worst = g_tp.dram_cell_Vdd / 2 - VBITSENSEMIN * (g_tp.dram_cell_C + C_bl) / g_tp.dram_cell_C;
+ //dram_refresh_period = 1.1 * g_tp.dram_cell_C * v_storage_worst / g_tp.dram_cell_I_off_worst_case_len_temp;
+ dram_refresh_period = 0.9 * g_tp.dram_cell_C * VDD_STORAGE_LOSS_FRACTION_WORST * g_tp.dram_cell_Vdd / g_tp.dram_cell_I_off_worst_case_len_temp;
+ }
+ }
+ else
+ { //SRAM
+ V_b_sense = (0.05 * g_tp.sram_cell.Vdd > VBITSENSEMIN) ? 0.05 * g_tp.sram_cell.Vdd : VBITSENSEMIN;
+ deg_bl_muxing = Ndcm;
+ // "/ 2.0" below is due to the fact that two adjacent access transistors share drain
+ // contacts in a physical layout
+ double Cbitrow_drain_cap = drain_C_(g_tp.sram.cell_a_w, NCH, 1, 0, cell.w, false, true) / 2.0;
+ C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal);
+ dram_refresh_period = 0;
+ }
+ }
+ else
+ {
+ c_b_metal = cam_cell.h * wire_local.C_per_um;//IBM and SUN design, SRAM array uses dummy cells to fill the blank space due to mismatch on CAM-RAM
+ V_b_sense = (0.05 * g_tp.sram_cell.Vdd > VBITSENSEMIN) ? 0.05 * g_tp.sram_cell.Vdd : VBITSENSEMIN;
+ deg_bl_muxing = 1;//FA fix as 1
+ // "/ 2.0" below is due to the fact that two adjacent access transistors share drain
+ // contacts in a physical layout
+ double Cbitrow_drain_cap = drain_C_(g_tp.cam.cell_a_w, NCH, 1, 0, cam_cell.w, false, true) / 2.0;//TODO: comment out these two lines
+ C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal);
+ dram_refresh_period = 0;
+ }
+
+
+ // do/di: data in/out, for fully associative they are the data width for normal read and write
+ // so/si: search data in/out, for fully associative they are the data width for the search ops
+ // for CAM, si=di, but so = matching address. do = data out = di (for normal read/write)
+ // so/si needs broadcase while do/di do not
+
+ if (fully_assoc || pure_cam)
+ {
+ switch (Ndbl) {
+ case (0):
+ cout << " Invalid Ndbl \n"<<endl;
+ exit(0);
+ break;
+ case (1):
+ num_mats_h_dir = 1;//one subarray per mat
+ num_mats_v_dir = 1;
+ break;
+ case (2):
+ num_mats_h_dir = 1;//two subarrays per mat
+ num_mats_v_dir = 1;
+ break;
+ default:
+ num_mats_h_dir = int(floor(sqrt(Ndbl/4.0)));//4 subbarrys per mat
+ num_mats_v_dir = int(Ndbl/4.0 / num_mats_h_dir);
+ }
+ num_mats = num_mats_h_dir * num_mats_v_dir;
+
+ if (fully_assoc)
+ {
+ num_so_b_mat = data_num_c_subarray;
+ num_do_b_mat = data_num_c_subarray + tagbits;
+ }
+ else
+ {
+ num_so_b_mat = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));//the address contains the matched data
+ num_do_b_mat = tagbits;
+ }
+ }
+ else
+ {
+ num_mats_h_dir = MAX(Ndwl / 2, 1);
+ num_mats_v_dir = MAX(Ndbl / 2, 1);
+ num_mats = num_mats_h_dir * num_mats_v_dir;
+ num_do_b_mat = MAX((num_subarrays/num_mats) * num_c_subarray / (deg_bl_muxing * Ndsam_lev_1 * Ndsam_lev_2), 1);
+ }
+
+ if (!(fully_assoc|| pure_cam) && (num_do_b_mat < (num_subarrays/num_mats)))
+ {
+ return;
+ }
+
+
+ int deg_sa_mux_l1_non_assoc;
+ //TODO:the i/o for subbank is not necessary and should be removed.
+ if (!(fully_assoc || pure_cam))
+ {
+ if (!is_tag)
+ {
+ if (is_main_mem == true)
+ {
+ num_do_b_subbank = g_ip->int_prefetch_w * g_ip->out_w;
+ deg_sa_mux_l1_non_assoc = Ndsam_lev_1;
+ }
+ else
+ {
+ if (g_ip->fast_access == true)
+ {
+ num_do_b_subbank = g_ip->out_w * g_ip->data_assoc;
+ deg_sa_mux_l1_non_assoc = Ndsam_lev_1;
+ }
+ else
+ {
+
+ num_do_b_subbank = g_ip->out_w;
+ deg_sa_mux_l1_non_assoc = Ndsam_lev_1 / g_ip->data_assoc;
+ if (deg_sa_mux_l1_non_assoc < 1)
+ {
+ return;
+ }
+
+ }
+ }
+ }
+ else
+ {
+ num_do_b_subbank = tagbits * g_ip->tag_assoc;
+ if (num_do_b_mat < tagbits)
+ {
+ return;
+ }
+ deg_sa_mux_l1_non_assoc = Ndsam_lev_1;
+ //num_do_b_mat = g_ip->tag_assoc / num_mats_h_dir;
+ }
+ }
+ else
+ {
+ if (fully_assoc)
+ {
+ num_so_b_subbank = 8 * g_ip->block_sz;//TODO:internal perfetch should be considered also for fa
+ num_do_b_subbank = num_so_b_subbank + tag_num_c_subarray;
+ }
+ else
+ {
+ num_so_b_subbank = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));//the address contains the matched data
+ num_do_b_subbank = tag_num_c_subarray;
+ }
+
+ deg_sa_mux_l1_non_assoc = 1;
+ }
+
+ deg_senseamp_muxing_non_associativity = deg_sa_mux_l1_non_assoc;
+
+ if (fully_assoc || pure_cam)
+ {
+ num_act_mats_hor_dir = 1;
+ num_act_mats_hor_dir_sl = num_mats_h_dir;//TODO: this is unnecessary, since search op, num_mats is used
+ }
+ else
+ {
+ num_act_mats_hor_dir = num_do_b_subbank / num_do_b_mat;
+ if (num_act_mats_hor_dir == 0)
+ {
+ return;
+ }
+ }
+
+ //compute num_do_mat for tag
+ if (is_tag)
+ {
+ if (!(fully_assoc || pure_cam))
+ {
+ num_do_b_mat = g_ip->tag_assoc / num_act_mats_hor_dir;
+ num_do_b_subbank = num_act_mats_hor_dir * num_do_b_mat;
+ }
+ }
+
+ if ((g_ip->is_cache == false && is_main_mem == true) || (PAGE_MODE == 1 && is_dram))
+ {
+ if (num_act_mats_hor_dir * num_do_b_mat * Ndsam_lev_1 * Ndsam_lev_2 != (int)g_ip->page_sz_bits)
+ {
+ return;
+ }
+ }
+
+// if (is_tag == false && g_ip->is_cache == true && !fully_assoc && !pure_cam && //TODO: TODO burst transfer should also apply to RAM arrays
+ if (is_tag == false && g_ip->is_main_mem == true &&
+ num_act_mats_hor_dir*num_do_b_mat*Ndsam_lev_1*Ndsam_lev_2 < ((int) g_ip->out_w * (int) g_ip->burst_len * (int) g_ip->data_assoc))
+ {
+ return;
+ }
+
+ if (num_act_mats_hor_dir > num_mats_h_dir)
+ {
+ return;
+ }
+
+
+ //compute di for mat subbank and bank
+ if (!(fully_assoc ||pure_cam))
+ {
+ if(!is_tag)
+ {
+ if(g_ip->fast_access == true)
+ {
+ num_di_b_mat = num_do_b_mat / g_ip->data_assoc;
+ }
+ else
+ {
+ num_di_b_mat = num_do_b_mat;
+ }
+ }
+ else
+ {
+ num_di_b_mat = tagbits;
+ }
+ }
+ else
+ {
+ if (fully_assoc)
+ {
+ num_di_b_mat = num_do_b_mat;
+ //*num_subarrays/num_mats; bits per mat of CAM/FA is as same as cache,
+ //but inside the mat wire tracks need to be reserved for search data bus
+ num_si_b_mat = tagbits;
+ }
+ else
+ {
+ num_di_b_mat = tagbits;
+ num_si_b_mat = tagbits;//*num_subarrays/num_mats;
+ }
+
+ }
+
+ num_di_b_subbank = num_di_b_mat * num_act_mats_hor_dir;//normal cache or normal r/w for FA
+ num_si_b_subbank = num_si_b_mat; //* num_act_mats_hor_dir_sl; inside the data is broadcast
+
+ int num_addr_b_row_dec = _log2(num_r_subarray);
+ if ((fully_assoc ||pure_cam))
+ num_addr_b_row_dec +=_log2(num_subarrays/num_mats);
+ int number_subbanks = num_mats / num_act_mats_hor_dir;
+ number_subbanks_decode = _log2(number_subbanks);//TODO: add log2(num_subarray_per_bank) to FA/CAM
+
+ num_rw_ports = g_ip->num_rw_ports;
+ num_rd_ports = g_ip->num_rd_ports;
+ num_wr_ports = g_ip->num_wr_ports;
+ num_se_rd_ports = g_ip->num_se_rd_ports;
+ num_search_ports = g_ip->num_search_ports;
+
+ if (is_dram && is_main_mem)
+ {
+ number_addr_bits_mat = MAX((unsigned int) num_addr_b_row_dec,
+ _log2(deg_bl_muxing) + _log2(deg_sa_mux_l1_non_assoc) + _log2(Ndsam_lev_2));
+ }
+ else
+ {
+ number_addr_bits_mat = num_addr_b_row_dec + _log2(deg_bl_muxing) +
+ _log2(deg_sa_mux_l1_non_assoc) + _log2(Ndsam_lev_2);
+ }
+
+ if (!(fully_assoc ||pure_cam))
+ {
+ if (is_tag)
+ {
+ num_di_b_bank_per_port = tagbits;
+ num_do_b_bank_per_port = g_ip->data_assoc;
+ }
+ else
+ {
+ num_di_b_bank_per_port = g_ip->out_w + g_ip->data_assoc;
+ num_do_b_bank_per_port = g_ip->out_w;
+ }
+ }
+ else
+ {
+ if (fully_assoc)
+ {
+ num_di_b_bank_per_port = g_ip->out_w + tagbits;//TODO: out_w or block_sz?
+ num_si_b_bank_per_port = tagbits;
+ num_do_b_bank_per_port = g_ip->out_w + tagbits;
+ num_so_b_bank_per_port = g_ip->out_w;
+ }
+ else
+ {
+ num_di_b_bank_per_port = tagbits;
+ num_si_b_bank_per_port = tagbits;
+ num_do_b_bank_per_port = tagbits;
+ num_so_b_bank_per_port = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));
+ }
+ }
+
+ if ((!is_tag) && (g_ip->data_assoc > 1) && (!g_ip->fast_access))
+ {
+ number_way_select_signals_mat = g_ip->data_assoc;
+ }
+
+ // add ECC adjustment to all data signals that traverse on H-trees.
+ if (g_ip->add_ecc_b_ == true)
+ {
+ num_do_b_mat += (int) (ceil(num_do_b_mat / num_bits_per_ecc_b_));
+ num_di_b_mat += (int) (ceil(num_di_b_mat / num_bits_per_ecc_b_));
+ num_di_b_subbank += (int) (ceil(num_di_b_subbank / num_bits_per_ecc_b_));
+ num_do_b_subbank += (int) (ceil(num_do_b_subbank / num_bits_per_ecc_b_));
+ num_di_b_bank_per_port += (int) (ceil(num_di_b_bank_per_port / num_bits_per_ecc_b_));
+ num_do_b_bank_per_port += (int) (ceil(num_do_b_bank_per_port / num_bits_per_ecc_b_));
+
+ num_so_b_mat += (int) (ceil(num_so_b_mat / num_bits_per_ecc_b_));
+ num_si_b_mat += (int) (ceil(num_si_b_mat / num_bits_per_ecc_b_));
+ num_si_b_subbank += (int) (ceil(num_si_b_subbank / num_bits_per_ecc_b_));
+ num_so_b_subbank += (int) (ceil(num_so_b_subbank / num_bits_per_ecc_b_));
+ num_si_b_bank_per_port += (int) (ceil(num_si_b_bank_per_port / num_bits_per_ecc_b_));
+ num_so_b_bank_per_port += (int) (ceil(num_so_b_bank_per_port / num_bits_per_ecc_b_));
+ }
+
+ is_valid = true;
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __PARAMETER_H__
+#define __PARAMETER_H__
+
+#include "area.h"
+#include "cacti_interface.h"
+#include "const.h"
+#include "io.h"
+
+// parameters which are functions of certain device technology
+class TechnologyParameter
+{
+ public:
+ class DeviceType
+ {
+ public:
+ double C_g_ideal;
+ double C_fringe;
+ double C_overlap;
+ double C_junc; // C_junc_area
+ double C_junc_sidewall;
+ double l_phy;
+ double l_elec;
+ double R_nch_on;
+ double R_pch_on;
+ double Vdd;
+ double Vth;
+ double I_on_n;
+ double I_on_p;
+ double I_off_n;
+ double I_off_p;
+ double I_g_on_n;
+ double I_g_on_p;
+ double C_ox;
+ double t_ox;
+ double n_to_p_eff_curr_drv_ratio;
+ double long_channel_leakage_reduction;
+
+ DeviceType(): C_g_ideal(0), C_fringe(0), C_overlap(0), C_junc(0),
+ C_junc_sidewall(0), l_phy(0), l_elec(0), R_nch_on(0), R_pch_on(0),
+ Vdd(0), Vth(0),
+ I_on_n(0), I_on_p(0), I_off_n(0), I_off_p(0),I_g_on_n(0),I_g_on_p(0),
+ C_ox(0), t_ox(0), n_to_p_eff_curr_drv_ratio(0), long_channel_leakage_reduction(0) { };
+ void reset()
+ {
+ C_g_ideal = 0;
+ C_fringe = 0;
+ C_overlap = 0;
+ C_junc = 0;
+ l_phy = 0;
+ l_elec = 0;
+ R_nch_on = 0;
+ R_pch_on = 0;
+ Vdd = 0;
+ Vth = 0;
+ I_on_n = 0;
+ I_on_p = 0;
+ I_off_n = 0;
+ I_off_p = 0;
+ I_g_on_n = 0;
+ I_g_on_p = 0;
+ C_ox = 0;
+ t_ox = 0;
+ n_to_p_eff_curr_drv_ratio = 0;
+ long_channel_leakage_reduction = 0;
+ }
+
+ void display(uint32_t indent = 0);
+ };
+ class InterconnectType
+ {
+ public:
+ double pitch;
+ double R_per_um;
+ double C_per_um;
+ double horiz_dielectric_constant;
+ double vert_dielectric_constant;
+ double aspect_ratio;
+ double miller_value;
+ double ild_thickness;
+
+ InterconnectType(): pitch(0), R_per_um(0), C_per_um(0) { };
+
+ void reset()
+ {
+ pitch = 0;
+ R_per_um = 0;
+ C_per_um = 0;
+ horiz_dielectric_constant = 0;
+ vert_dielectric_constant = 0;
+ aspect_ratio = 0;
+ miller_value = 0;
+ ild_thickness = 0;
+ }
+
+ void display(uint32_t indent = 0);
+ };
+ class MemoryType
+ {
+ public:
+ double b_w;
+ double b_h;
+ double cell_a_w;
+ double cell_pmos_w;
+ double cell_nmos_w;
+ double Vbitpre;
+
+ void reset()
+ {
+ b_w = 0;
+ b_h = 0;
+ cell_a_w = 0;
+ cell_pmos_w = 0;
+ cell_nmos_w = 0;
+ Vbitpre = 0;
+ }
+
+ void display(uint32_t indent = 0);
+ };
+
+ class ScalingFactor
+ {
+ public:
+ double logic_scaling_co_eff;
+ double core_tx_density;
+ double long_channel_leakage_reduction;
+
+ ScalingFactor(): logic_scaling_co_eff(0), core_tx_density(0),
+ long_channel_leakage_reduction(0) { };
+
+ void reset()
+ {
+ logic_scaling_co_eff= 0;
+ core_tx_density = 0;
+ long_channel_leakage_reduction= 0;
+ }
+
+ void display(uint32_t indent = 0);
+ };
+
+ double ram_wl_stitching_overhead_;
+ double min_w_nmos_;
+ double max_w_nmos_;
+ double max_w_nmos_dec;
+ double unit_len_wire_del;
+ double FO4;
+ double kinv;
+ double vpp;
+ double w_sense_en;
+ double w_sense_n;
+ double w_sense_p;
+ double sense_delay;
+ double sense_dy_power;
+ double w_iso;
+ double w_poly_contact;
+ double spacing_poly_to_poly;
+ double spacing_poly_to_contact;
+
+ double w_comp_inv_p1;
+ double w_comp_inv_p2;
+ double w_comp_inv_p3;
+ double w_comp_inv_n1;
+ double w_comp_inv_n2;
+ double w_comp_inv_n3;
+ double w_eval_inv_p;
+ double w_eval_inv_n;
+ double w_comp_n;
+ double w_comp_p;
+
+ double dram_cell_I_on;
+ double dram_cell_Vdd;
+ double dram_cell_I_off_worst_case_len_temp;
+ double dram_cell_C;
+ double gm_sense_amp_latch;
+
+ double w_nmos_b_mux;
+ double w_nmos_sa_mux;
+ double w_pmos_bl_precharge;
+ double w_pmos_bl_eq;
+ double MIN_GAP_BET_P_AND_N_DIFFS;
+ double MIN_GAP_BET_SAME_TYPE_DIFFS;
+ double HPOWERRAIL;
+ double cell_h_def;
+
+ double chip_layout_overhead;
+ double macro_layout_overhead;
+ double sckt_co_eff;
+
+ double fringe_cap;
+
+ uint64_t h_dec;
+
+ DeviceType sram_cell; // SRAM cell transistor
+ DeviceType dram_acc; // DRAM access transistor
+ DeviceType dram_wl; // DRAM wordline transistor
+ DeviceType peri_global; // peripheral global
+ DeviceType cam_cell; // SRAM cell transistor
+
+ InterconnectType wire_local;
+ InterconnectType wire_inside_mat;
+ InterconnectType wire_outside_mat;
+
+ ScalingFactor scaling_factor;
+
+ MemoryType sram;
+ MemoryType dram;
+ MemoryType cam;
+
+ void display(uint32_t indent = 0);
+
+ void reset()
+ {
+ dram_cell_Vdd = 0;
+ dram_cell_I_on = 0;
+ dram_cell_C = 0;
+ vpp = 0;
+
+ sense_delay = 0;
+ sense_dy_power = 0;
+ fringe_cap = 0;
+// horiz_dielectric_constant = 0;
+// vert_dielectric_constant = 0;
+// aspect_ratio = 0;
+// miller_value = 0;
+// ild_thickness = 0;
+
+ dram_cell_I_off_worst_case_len_temp = 0;
+
+ sram_cell.reset();
+ dram_acc.reset();
+ dram_wl.reset();
+ peri_global.reset();
+ cam_cell.reset();
+
+ scaling_factor.reset();
+
+ wire_local.reset();
+ wire_inside_mat.reset();
+ wire_outside_mat.reset();
+
+ sram.reset();
+ dram.reset();
+ cam.reset();
+
+ chip_layout_overhead = 0;
+ macro_layout_overhead = 0;
+ sckt_co_eff = 0;
+ }
+};
+
+
+
+class DynamicParameter
+{
+ public:
+ bool is_tag;
+ bool pure_ram;
+ bool pure_cam;
+ bool fully_assoc;
+ int tagbits;
+ int num_subarrays; // only for leakage computation -- the number of subarrays per bank
+ int num_mats; // only for leakage computation -- the number of mats per bank
+ double Nspd;
+ int Ndwl;
+ int Ndbl;
+ int Ndcm;
+ int deg_bl_muxing;
+ int deg_senseamp_muxing_non_associativity;
+ int Ndsam_lev_1;
+ int Ndsam_lev_2;
+ int number_addr_bits_mat; // per port
+ int number_subbanks_decode; // per_port
+ int num_di_b_bank_per_port;
+ int num_do_b_bank_per_port;
+ int num_di_b_mat;
+ int num_do_b_mat;
+ int num_di_b_subbank;
+ int num_do_b_subbank;
+
+ int num_si_b_mat;
+ int num_so_b_mat;
+ int num_si_b_subbank;
+ int num_so_b_subbank;
+ int num_si_b_bank_per_port;
+ int num_so_b_bank_per_port;
+
+ int number_way_select_signals_mat;
+ int num_act_mats_hor_dir;
+
+ int num_act_mats_hor_dir_sl;
+ bool is_dram;
+ double V_b_sense;
+ unsigned int num_r_subarray;
+ unsigned int num_c_subarray;
+ int tag_num_r_subarray;//sheng: fully associative cache tag and data must be computed together, data and tag must be separate
+ int tag_num_c_subarray;
+ int data_num_r_subarray;
+ int data_num_c_subarray;
+ int num_mats_h_dir;
+ int num_mats_v_dir;
+ uint32_t ram_cell_tech_type;
+ double dram_refresh_period;
+
+ DynamicParameter();
+ DynamicParameter(
+ bool is_tag_,
+ int pure_ram_,
+ int pure_cam_,
+ double Nspd_,
+ unsigned int Ndwl_,
+ unsigned int Ndbl_,
+ unsigned int Ndcm_,
+ unsigned int Ndsam_lev_1_,
+ unsigned int Ndsam_lev_2_,
+ bool is_main_mem_);
+
+ int use_inp_params;
+ unsigned int num_rw_ports;
+ unsigned int num_rd_ports;
+ unsigned int num_wr_ports;
+ unsigned int num_se_rd_ports; // number of single ended read ports
+ unsigned int num_search_ports;
+ unsigned int out_w;// == nr_bits_out
+ bool is_main_mem;
+ Area cell, cam_cell;//cell is the sram_cell in both nomal cache/ram and FA.
+ bool is_valid;
+};
+
+
+
+extern InputParameter * g_ip;
+extern TechnologyParameter g_tp;
+
+#endif
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include "router.h"
+
+Router::Router(
+ double flit_size_,
+ double vc_buf, /* vc size = vc_buffer_size * flit_size */
+ double vc_c,
+ TechnologyParameter::DeviceType *dt,
+ double I_,
+ double O_,
+ double M_
+ ):flit_size(flit_size_),
+ deviceType(dt),
+ I(I_),
+ O(O_),
+ M(M_)
+{
+ vc_buffer_size = vc_buf;
+ vc_count = vc_c;
+ min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio*g_tp.min_w_nmos_;
+ double technology = g_ip->F_sz_um;
+
+ Vdd = dt->Vdd;
+
+ /*Crossbar parameters. Transmisson gate is employed for connector*/
+ NTtr = 10*technology*1e-6/2; /*Transmission gate's nmos tr. length*/
+ PTtr = 20*technology*1e-6/2; /* pmos tr. length*/
+ wt = 15*technology*1e-6/2; /*track width*/
+ ht = 15*technology*1e-6/2; /*track height*/
+// I = 5; /*Number of crossbar input ports*/
+// O = 5; /*Number of crossbar output ports*/
+ NTi = 12.5*technology*1e-6/2;
+ PTi = 25*technology*1e-6/2;
+
+ NTid = 60*technology*1e-6/2; //m
+ PTid = 120*technology*1e-6/2; // m
+ NTod = 60*technology*1e-6/2; // m
+ PTod = 120*technology*1e-6/2; // m
+
+ calc_router_parameters();
+}
+
+Router::~Router(){}
+
+
+double //wire cap with triple spacing
+Router::Cw3(double length) {
+ Wire wc(g_ip->wt, length, 1, 3, 3);
+ return (wc.wire_cap(length));
+}
+
+/*Function to calculate the gate capacitance*/
+double
+Router::gate_cap(double w) {
+ return (double) gate_C (w*1e6 /*u*/, 0);
+}
+
+/*Function to calculate the diffusion capacitance*/
+double
+Router::diff_cap(double w, int type /*0 for n-mos and 1 for p-mos*/,
+ double s /*number of stacking transistors*/) {
+ return (double) drain_C_(w*1e6 /*u*/, type, (int) s, 1, g_tp.cell_h_def);
+}
+
+
+/*crossbar related functions */
+
+// Model for simple transmission gate
+double
+Router::transmission_buf_inpcap() {
+ return diff_cap(NTtr, 0, 1)+diff_cap(PTtr, 1, 1);
+}
+
+double
+Router::transmission_buf_outcap() {
+ return diff_cap(NTtr, 0, 1)+diff_cap(PTtr, 1, 1);
+}
+
+double
+Router::transmission_buf_ctrcap() {
+ return gate_cap(NTtr)+gate_cap(PTtr);
+}
+
+double
+Router::crossbar_inpline() {
+ return (Cw3(O*flit_size*wt) + O*transmission_buf_inpcap() + gate_cap(NTid) +
+ gate_cap(PTid) + diff_cap(NTid, 0, 1) + diff_cap(PTid, 1, 1));
+}
+
+double
+Router::crossbar_outline() {
+ return (Cw3(I*flit_size*ht) + I*transmission_buf_outcap() + gate_cap(NTod) +
+ gate_cap(PTod) + diff_cap(NTod, 0, 1) + diff_cap(PTod, 1, 1));
+}
+
+double
+Router::crossbar_ctrline() {
+ return (Cw3(0.5*O*flit_size*wt) + flit_size*transmission_buf_ctrcap() +
+ diff_cap(NTi, 0, 1) + diff_cap(PTi, 1, 1) +
+ gate_cap(NTi) + gate_cap(PTi));
+}
+
+double
+Router::tr_crossbar_power() {
+ return (crossbar_inpline()*Vdd*Vdd*flit_size/2 +
+ crossbar_outline()*Vdd*Vdd*flit_size/2)*2;
+}
+
+void Router::buffer_stats()
+{
+ DynamicParameter dyn_p;
+ dyn_p.is_tag = false;
+ dyn_p.pure_cam = false;
+ dyn_p.fully_assoc = false;
+ dyn_p.pure_ram = true;
+ dyn_p.is_dram = false;
+ dyn_p.is_main_mem = false;
+ dyn_p.num_subarrays = 1;
+ dyn_p.num_mats = 1;
+ dyn_p.Ndbl = 1;
+ dyn_p.Ndwl = 1;
+ dyn_p.Nspd = 1;
+ dyn_p.deg_bl_muxing = 1;
+ dyn_p.deg_senseamp_muxing_non_associativity = 1;
+ dyn_p.Ndsam_lev_1 = 1;
+ dyn_p.Ndsam_lev_2 = 1;
+ dyn_p.Ndcm = 1;
+ dyn_p.number_addr_bits_mat = 8;
+ dyn_p.number_way_select_signals_mat = 1;
+ dyn_p.number_subbanks_decode = 0;
+ dyn_p.num_act_mats_hor_dir = 1;
+ dyn_p.V_b_sense = Vdd; // FIXME check power calc.
+ dyn_p.ram_cell_tech_type = 0;
+ dyn_p.num_r_subarray = (int) vc_buffer_size;
+ dyn_p.num_c_subarray = (int) flit_size * (int) vc_count;
+ dyn_p.num_mats_h_dir = 1;
+ dyn_p.num_mats_v_dir = 1;
+ dyn_p.num_do_b_subbank = (int)flit_size;
+ dyn_p.num_di_b_subbank = (int)flit_size;
+ dyn_p.num_do_b_mat = (int) flit_size;
+ dyn_p.num_di_b_mat = (int) flit_size;
+ dyn_p.num_do_b_mat = (int) flit_size;
+ dyn_p.num_di_b_mat = (int) flit_size;
+ dyn_p.num_do_b_bank_per_port = (int) flit_size;
+ dyn_p.num_di_b_bank_per_port = (int) flit_size;
+ dyn_p.out_w = (int) flit_size;
+
+ dyn_p.use_inp_params = 1;
+ dyn_p.num_wr_ports = (unsigned int) vc_count;
+ dyn_p.num_rd_ports = 1;//(unsigned int) vc_count;//based on Bill Dally's book
+ dyn_p.num_rw_ports = 0;
+ dyn_p.num_se_rd_ports =0;
+ dyn_p.num_search_ports =0;
+
+
+
+ dyn_p.cell.h = g_tp.sram.b_h + 2 * g_tp.wire_outside_mat.pitch * (dyn_p.num_wr_ports +
+ dyn_p.num_rw_ports - 1 + dyn_p.num_rd_ports);
+ dyn_p.cell.w = g_tp.sram.b_w + 2 * g_tp.wire_outside_mat.pitch * (dyn_p.num_rw_ports - 1 +
+ (dyn_p.num_rd_ports - dyn_p.num_se_rd_ports) +
+ dyn_p.num_wr_ports) + g_tp.wire_outside_mat.pitch * dyn_p.num_se_rd_ports;
+
+ Mat buff(dyn_p);
+ buff.compute_delays(0);
+ buff.compute_power_energy();
+ buffer.power.readOp = buff.power.readOp;
+ buffer.power.writeOp = buffer.power.readOp; //FIXME
+ buffer.area = buff.area;
+}
+
+
+
+ void
+Router::cb_stats ()
+{
+ if (1) {
+ Crossbar c_b(I, O, flit_size);
+ c_b.compute_power();
+ crossbar.delay = c_b.delay;
+ crossbar.power.readOp.dynamic = c_b.power.readOp.dynamic;
+ crossbar.power.readOp.leakage = c_b.power.readOp.leakage;
+ crossbar.power.readOp.gate_leakage = c_b.power.readOp.gate_leakage;
+ crossbar.area = c_b.area;
+// c_b.print_crossbar();
+ }
+ else {
+ crossbar.power.readOp.dynamic = tr_crossbar_power();
+ crossbar.power.readOp.leakage = flit_size * I * O *
+ cmos_Isub_leakage(NTtr*g_tp.min_w_nmos_, PTtr*min_w_pmos, 1, tg);
+ crossbar.power.readOp.gate_leakage = flit_size * I * O *
+ cmos_Ig_leakage(NTtr*g_tp.min_w_nmos_, PTtr*min_w_pmos, 1, tg);
+ }
+}
+
+void
+Router::get_router_power()
+{
+ /* calculate buffer stats */
+ buffer_stats();
+
+ /* calculate cross-bar stats */
+ cb_stats();
+
+ /* calculate arbiter stats */
+ Arbiter vcarb(vc_count, flit_size, buffer.area.w);
+ Arbiter cbarb(I, flit_size, crossbar.area.w);
+ vcarb.compute_power();
+ cbarb.compute_power();
+ arbiter.power.readOp.dynamic = vcarb.power.readOp.dynamic * I +
+ cbarb.power.readOp.dynamic * O;
+ arbiter.power.readOp.leakage = vcarb.power.readOp.leakage * I +
+ cbarb.power.readOp.leakage * O;
+ arbiter.power.readOp.gate_leakage = vcarb.power.readOp.gate_leakage * I +
+ cbarb.power.readOp.gate_leakage * O;
+
+// arb_stats();
+ power.readOp.dynamic = ((buffer.power.readOp.dynamic+buffer.power.writeOp.dynamic) +
+ crossbar.power.readOp.dynamic +
+ arbiter.power.readOp.dynamic)*MIN(I, O)*M;
+ double pppm_t[4] = {1,I,I,1};
+ power = power + (buffer.power*pppm_t + crossbar.power + arbiter.power)*pppm_lkg;
+
+}
+
+ void
+Router::get_router_delay ()
+{
+ FREQUENCY=5; // move this to config file --TODO
+ cycle_time = (1/(double)FREQUENCY)*1e3; //ps
+ delay = 4;
+ max_cyc = 17 * g_tp.FO4; //s
+ max_cyc *= 1e12; //ps
+ if (cycle_time < max_cyc) {
+ FREQUENCY = (1/max_cyc)*1e3; //GHz
+ }
+}
+
+ void
+Router::get_router_area()
+{
+ area.h = I*buffer.area.h;
+ area.w = buffer.area.w+crossbar.area.w;
+}
+
+ void
+Router::calc_router_parameters()
+{
+ /* calculate router frequency and pipeline cycles */
+ get_router_delay();
+
+ /* router power stats */
+ get_router_power();
+
+ /* area stats */
+ get_router_area();
+}
+
+ void
+Router::print_router()
+{
+ cout << "\n\nRouter stats:\n";
+ cout << "\tRouter Area - "<< area.get_area()*1e-6<<"(mm^2)\n";
+ cout << "\tMaximum possible network frequency - " << (1/max_cyc)*1e3 << "GHz\n";
+ cout << "\tNetwork frequency - " << FREQUENCY <<" GHz\n";
+ cout << "\tNo. of Virtual channels - " << vc_count << "\n";
+ cout << "\tNo. of pipeline stages - " << delay << endl;
+ cout << "\tLink bandwidth - " << flit_size << " (bits)\n";
+ cout << "\tNo. of buffer entries per virtual channel - "<< vc_buffer_size << "\n";
+ cout << "\tSimple buffer Area - "<< buffer.area.get_area()*1e-6<<"(mm^2)\n";
+ cout << "\tSimple buffer access (Read) - " << buffer.power.readOp.dynamic * 1e9 <<" (nJ)\n";
+ cout << "\tSimple buffer leakage - " << buffer.power.readOp.leakage * 1e3 <<" (mW)\n";
+ cout << "\tCrossbar Area - "<< crossbar.area.get_area()*1e-6<<"(mm^2)\n";
+ cout << "\tCross bar access energy - " << crossbar.power.readOp.dynamic * 1e9<<" (nJ)\n";
+ cout << "\tCross bar leakage power - " << crossbar.power.readOp.leakage * 1e3<<" (mW)\n";
+ cout << "\tArbiter access energy (VC arb + Crossbar arb) - "<<arbiter.power.readOp.dynamic * 1e9 <<" (nJ)\n";
+ cout << "\tArbiter leakage (VC arb + Crossbar arb) - "<<arbiter.power.readOp.leakage * 1e3 <<" (mW)\n";
+
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __ROUTER_H__
+#define __ROUTER_H__
+
+#include <assert.h>
+
+#include <iostream>
+
+#include "arbiter.h"
+#include "basic_circuit.h"
+#include "cacti_interface.h"
+#include "component.h"
+#include "crossbar.h"
+#include "mat.h"
+#include "parameter.h"
+#include "wire.h"
+
+class Router : public Component
+{
+ public:
+ Router(
+ double flit_size_,
+ double vc_buf, /* vc size = vc_buffer_size * flit_size */
+ double vc_count,
+ TechnologyParameter::DeviceType *dt = &(g_tp.peri_global),
+ double I_ = 5,
+ double O_ = 5,
+ double M_ = 0.6);
+ ~Router();
+
+
+ void print_router();
+
+ Component arbiter, crossbar, buffer;
+
+ double cycle_time, max_cyc;
+ double flit_size;
+ double vc_count;
+ double vc_buffer_size; /* vc size = vc_buffer_size * flit_size */
+
+ private:
+ TechnologyParameter::DeviceType *deviceType;
+ double FREQUENCY; // move this to config file --TODO
+ double Cw3(double len);
+ double gate_cap(double w);
+ double diff_cap(double w, int type /*0 for n-mos and 1 for p-mos*/, double stack);
+ enum Wire_type wtype;
+ enum Wire_placement wire_placement;
+ //corssbar
+ double NTtr, PTtr, wt, ht, I, O, NTi, PTi, NTid, PTid, NTod, PTod, TriS1, TriS2;
+ double M; //network load
+ double transmission_buf_inpcap();
+ double transmission_buf_outcap();
+ double transmission_buf_ctrcap();
+ double crossbar_inpline();
+ double crossbar_outline();
+ double crossbar_ctrline();
+ double tr_crossbar_power();
+ void cb_stats ();
+ double arb_power();
+ void arb_stats ();
+ double buffer_params();
+ void buffer_stats();
+
+
+ //arbiter
+
+ //buffer
+
+ //router params
+ double Vdd;
+
+ void calc_router_parameters();
+ void get_router_area();
+ void get_router_power();
+ void get_router_delay();
+
+ double min_w_pmos;
+
+
+};
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+
+#include <cassert>
+#include <cmath>
+#include <iostream>
+
+#include "subarray.h"
+
+Subarray::Subarray(const DynamicParameter & dp_, bool is_fa_):
+ dp(dp_), num_rows(dp.num_r_subarray), num_cols(dp.num_c_subarray),
+ num_cols_fa_cam(dp.tag_num_c_subarray), num_cols_fa_ram(dp.data_num_c_subarray),
+ cell(dp.cell), cam_cell(dp.cam_cell), is_fa(is_fa_)
+{
+ //num_cols=7;
+ //cout<<"num_cols ="<< num_cols <<endl;
+ if (!(is_fa || dp.pure_cam))
+ {
+ num_cols +=(g_ip->add_ecc_b_ ? (int)ceil(num_cols / num_bits_per_ecc_b_) : 0); // ECC overhead
+ uint32_t ram_num_cells_wl_stitching =
+ (dp.ram_cell_tech_type == lp_dram) ? dram_num_cells_wl_stitching_ :
+ (dp.ram_cell_tech_type == comm_dram) ? comm_dram_num_cells_wl_stitching_ : sram_num_cells_wl_stitching_;
+
+ area.h = cell.h * num_rows;
+
+ area.w = cell.w * num_cols +
+ ceil(num_cols / ram_num_cells_wl_stitching) * g_tp.ram_wl_stitching_overhead_; // stitching overhead
+ }
+ else //cam fa
+ {
+
+ //should not add dummy row here since the dummy row do not need decoder
+ if (is_fa)// fully associative cache
+ {
+ num_cols_fa_cam += g_ip->add_ecc_b_ ? (int)ceil(num_cols_fa_cam / num_bits_per_ecc_b_) : 0;
+ num_cols_fa_ram += (g_ip->add_ecc_b_ ? (int)ceil(num_cols_fa_ram / num_bits_per_ecc_b_) : 0);
+ num_cols = num_cols_fa_cam + num_cols_fa_ram;
+ }
+ else
+ {
+ num_cols_fa_cam += g_ip->add_ecc_b_ ? (int)ceil(num_cols_fa_cam / num_bits_per_ecc_b_) : 0;
+ num_cols_fa_ram = 0;
+ num_cols = num_cols_fa_cam;
+ }
+
+ area.h = cam_cell.h * (num_rows + 1);//height of subarray is decided by CAM array. blank space in sram array are filled with dummy cells
+ area.w = cam_cell.w * num_cols_fa_cam + cell.w * num_cols_fa_ram
+ + ceil((num_cols_fa_cam + num_cols_fa_ram) / sram_num_cells_wl_stitching_)*g_tp.ram_wl_stitching_overhead_
+ + 16*g_tp.wire_local.pitch //the overhead for the NAND gate to connect the two halves
+ + 128*g_tp.wire_local.pitch;//the overhead for the drivers from matchline to wordline of RAM
+ }
+
+ assert(area.h>0);
+ assert(area.w>0);
+ compute_C();
+}
+
+
+
+Subarray::~Subarray()
+{
+}
+
+
+
+double Subarray::get_total_cell_area()
+{
+// return (is_fa==false? cell.get_area() * num_rows * num_cols
+// //: cam_cell.h*(num_rows+1)*(num_cols_fa_cam + sram_cell.get_area()*num_cols_fa_ram));
+// : cam_cell.get_area()*(num_rows+1)*(num_cols_fa_cam + num_cols_fa_ram));
+// //: cam_cell.get_area()*(num_rows+1)*num_cols_fa_cam + sram_cell.get_area()*(num_rows+1)*num_cols_fa_ram);//for FA, this area does not include the dummy cells in SRAM arrays.
+
+ if (!(is_fa || dp.pure_cam))
+ return (cell.get_area() * num_rows * num_cols);
+ else if (is_fa)
+ { //for FA, this area includes the dummy cells in SRAM arrays.
+ //return (cam_cell.get_area()*(num_rows+1)*(num_cols_fa_cam + num_cols_fa_ram));
+ //cout<<"diff" <<cam_cell.get_area()*(num_rows+1)*(num_cols_fa_cam + num_cols_fa_ram)- cam_cell.h*(num_rows+1)*(cam_cell.w*num_cols_fa_cam + cell.w*num_cols_fa_ram)<<endl;
+ return (cam_cell.h*(num_rows+1)*(cam_cell.w*num_cols_fa_cam + cell.w*num_cols_fa_ram));
+ }
+ else
+ return (cam_cell.get_area()*(num_rows+1)*num_cols_fa_cam );
+
+
+}
+
+
+
+void Subarray::compute_C()
+{
+ double c_w_metal = cell.w * g_tp.wire_local.C_per_um;
+ double r_w_metal = cell.w * g_tp.wire_local.R_per_um;
+ double C_b_metal = cell.h * g_tp.wire_local.C_per_um;
+ double C_b_row_drain_C;
+
+ if (dp.is_dram)
+ {
+ C_wl = (gate_C_pass(g_tp.dram.cell_a_w, g_tp.dram.b_w, true, true) + c_w_metal) * num_cols;
+
+ if (dp.ram_cell_tech_type == comm_dram)
+ {
+ C_bl = num_rows * C_b_metal;
+ }
+ else
+ {
+ C_b_row_drain_C = drain_C_(g_tp.dram.cell_a_w, NCH, 1, 0, cell.w, true, true) / 2.0; // due to shared contact
+ C_bl = num_rows * (C_b_row_drain_C + C_b_metal);
+ }
+ }
+ else
+ {
+ if (!(is_fa ||dp.pure_cam))
+ {
+ C_wl = (gate_C_pass(g_tp.sram.cell_a_w, (g_tp.sram.b_w-2*g_tp.sram.cell_a_w)/2.0, false, true)*2 +
+ c_w_metal) * num_cols;
+ C_b_row_drain_C = drain_C_(g_tp.sram.cell_a_w, NCH, 1, 0, cell.w, false, true) / 2.0; // due to shared contact
+ C_bl = num_rows * (C_b_row_drain_C + C_b_metal);
+ }
+ else
+ {
+ //Following is wordline not matchline
+ //CAM portion
+ c_w_metal = cam_cell.w * g_tp.wire_local.C_per_um;
+ r_w_metal = cam_cell.w * g_tp.wire_local.R_per_um;
+ C_wl_cam = (gate_C_pass(g_tp.cam.cell_a_w, (g_tp.cam.b_w-2*g_tp.cam.cell_a_w)/2.0, false, true)*2 +
+ c_w_metal) * num_cols_fa_cam;
+ R_wl_cam = (r_w_metal) * num_cols_fa_cam;
+
+ if (!dp.pure_cam)
+ {
+ //RAM portion
+ c_w_metal = cell.w * g_tp.wire_local.C_per_um;
+ r_w_metal = cell.w * g_tp.wire_local.R_per_um;
+ C_wl_ram = (gate_C_pass(g_tp.sram.cell_a_w, (g_tp.sram.b_w-2*g_tp.sram.cell_a_w)/2.0, false, true)*2 +
+ c_w_metal) * num_cols_fa_ram;
+ R_wl_ram = (r_w_metal) * num_cols_fa_ram;
+ }
+ else
+ {
+ C_wl_ram = R_wl_ram =0;
+ }
+ C_wl = C_wl_cam + C_wl_ram;
+ C_wl += (16+128)*g_tp.wire_local.pitch*g_tp.wire_local.C_per_um;
+
+ R_wl = R_wl_cam + R_wl_ram;
+ R_wl += (16+128)*g_tp.wire_local.pitch*g_tp.wire_local.R_per_um;
+
+ //there are two ways to write to a FA,
+ //1) Write to CAM array then force a match on match line to active the corresponding wordline in RAM;
+ //2) using separate wordline for read/write and search in RAM.
+ //We are using the second approach.
+
+ //Bitline CAM portion This is bitline not searchline. We assume no sharing between bitline and searchline according to SUN's implementations.
+ C_b_metal = cam_cell.h * g_tp.wire_local.C_per_um;
+ C_b_row_drain_C = drain_C_(g_tp.cam.cell_a_w, NCH, 1, 0, cam_cell.w, false, true) / 2.0; // due to shared contact
+ C_bl_cam = (num_rows+1) * (C_b_row_drain_C + C_b_metal);
+ //height of subarray is decided by CAM array. blank space in sram array are filled with dummy cells
+ C_b_row_drain_C = drain_C_(g_tp.sram.cell_a_w, NCH, 1, 0, cell.w, false, true) / 2.0; // due to shared contact
+ C_bl = (num_rows +1) * (C_b_row_drain_C + C_b_metal);
+
+ }
+ }
+}
+
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __SUBARRAY_H__
+#define __SUBARRAY_H__
+
+#include "area.h"
+#include "component.h"
+#include "parameter.h"
+
+using namespace std;
+
+
+class Subarray : public Component
+{
+ public:
+ Subarray(const DynamicParameter & dp, bool is_fa_);
+ ~Subarray();
+
+ const DynamicParameter & dp;
+ double get_total_cell_area();
+ unsigned int num_rows;
+ unsigned int num_cols;
+ int32_t num_cols_fa_cam;
+ int32_t num_cols_fa_ram;
+ Area cell, cam_cell;
+
+ bool is_fa;
+ double C_wl, C_wl_cam, C_wl_ram;
+ double R_wl, R_wl_cam, R_wl_ram;
+ double C_bl, C_bl_cam;
+ private:
+
+ void compute_C(); // compute bitline and wordline capacitance
+};
+
+
+
+#endif
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#include "basic_circuit.h"
+
+#include "parameter.h"
+
+double wire_resistance(double resistivity, double wire_width, double wire_thickness,
+ double barrier_thickness, double dishing_thickness, double alpha_scatter)
+{
+ double resistance;
+ resistance = alpha_scatter * resistivity /((wire_thickness - barrier_thickness - dishing_thickness)*(wire_width - 2 * barrier_thickness));
+ return(resistance);
+}
+
+double wire_capacitance(double wire_width, double wire_thickness, double wire_spacing,
+ double ild_thickness, double miller_value, double horiz_dielectric_constant,
+ double vert_dielectric_constant, double fringe_cap)
+{
+ double vertical_cap, sidewall_cap, total_cap;
+ vertical_cap = 2 * PERMITTIVITY_FREE_SPACE * vert_dielectric_constant * wire_width / ild_thickness;
+ sidewall_cap = 2 * PERMITTIVITY_FREE_SPACE * miller_value * horiz_dielectric_constant * wire_thickness / wire_spacing;
+ total_cap = vertical_cap + sidewall_cap + fringe_cap;
+ return(total_cap);
+}
+
+
+void init_tech_params(double technology, bool is_tag)
+{
+ int iter, tech, tech_lo, tech_hi;
+ double curr_alpha, curr_vpp;
+ double wire_width, wire_thickness, wire_spacing,
+ fringe_cap, pmos_to_nmos_sizing_r;
+// double aspect_ratio,ild_thickness, miller_value = 1.5, horiz_dielectric_constant, vert_dielectric_constant;
+ double barrier_thickness, dishing_thickness, alpha_scatter;
+ double curr_vdd_dram_cell, curr_v_th_dram_access_transistor, curr_I_on_dram_cell, curr_c_dram_cell;
+
+ uint32_t ram_cell_tech_type = (is_tag) ? g_ip->tag_arr_ram_cell_tech_type : g_ip->data_arr_ram_cell_tech_type;
+ uint32_t peri_global_tech_type = (is_tag) ? g_ip->tag_arr_peri_global_tech_type : g_ip->data_arr_peri_global_tech_type;
+
+ technology = technology * 1000.0; // in the unit of nm
+
+ // initialize parameters
+ g_tp.reset();
+ double gmp_to_gmn_multiplier_periph_global = 0;
+
+ double curr_Wmemcella_dram, curr_Wmemcellpmos_dram, curr_Wmemcellnmos_dram,
+ curr_area_cell_dram, curr_asp_ratio_cell_dram, curr_Wmemcella_sram,
+ curr_Wmemcellpmos_sram, curr_Wmemcellnmos_sram, curr_area_cell_sram,
+ curr_asp_ratio_cell_sram, curr_I_off_dram_cell_worst_case_length_temp;
+ double curr_Wmemcella_cam, curr_Wmemcellpmos_cam, curr_Wmemcellnmos_cam, curr_area_cell_cam,//Sheng: CAM data
+ curr_asp_ratio_cell_cam;
+ double SENSE_AMP_D, SENSE_AMP_P; // J
+ double area_cell_dram = 0;
+ double asp_ratio_cell_dram = 0;
+ double area_cell_sram = 0;
+ double asp_ratio_cell_sram = 0;
+ double area_cell_cam = 0;
+ double asp_ratio_cell_cam = 0;
+ double mobility_eff_periph_global = 0;
+ double Vdsat_periph_global = 0;
+ double nmos_effective_resistance_multiplier;
+ double width_dram_access_transistor;
+
+ double curr_logic_scaling_co_eff = 0;//This is based on the reported numbers of Intel Merom 65nm, Penryn45nm and IBM cell 90/65/45 date
+ double curr_core_tx_density = 0;//this is density per um^2; 90, ...22nm based on Intel Penryn
+ double curr_chip_layout_overhead = 0;
+ double curr_macro_layout_overhead = 0;
+ double curr_sckt_co_eff = 0;
+
+ if (technology < 181 && technology > 179)
+ {
+ tech_lo = 180;
+ tech_hi = 180;
+ }
+ else if (technology < 91 && technology > 89)
+ {
+ tech_lo = 90;
+ tech_hi = 90;
+ }
+ else if (technology < 66 && technology > 64)
+ {
+ tech_lo = 65;
+ tech_hi = 65;
+ }
+ else if (technology < 46 && technology > 44)
+ {
+ tech_lo = 45;
+ tech_hi = 45;
+ }
+ else if (technology < 33 && technology > 31)
+ {
+ tech_lo = 32;
+ tech_hi = 32;
+ }
+ else if (technology < 23 && technology > 21)
+ {
+ tech_lo = 22;
+ tech_hi = 22;
+ if (ram_cell_tech_type == 3 )
+ {
+ cout<<"current version does not support eDRAM technologies at 22nm"<<endl;
+ exit(0);
+ }
+ }
+// else if (technology < 17 && technology > 15)
+// {
+// tech_lo = 16;
+// tech_hi = 16;
+// }
+ else if (technology < 180 && technology > 90)
+ {
+ tech_lo = 180;
+ tech_hi = 90;
+ }
+ else if (technology < 90 && technology > 65)
+ {
+ tech_lo = 90;
+ tech_hi = 65;
+ }
+ else if (technology < 65 && technology > 45)
+ {
+ tech_lo = 65;
+ tech_hi = 45;
+ }
+ else if (technology < 45 && technology > 32)
+ {
+ tech_lo = 45;
+ tech_hi = 32;
+ }
+ else if (technology < 32 && technology > 22)
+ {
+ tech_lo = 32;
+ tech_hi = 22;
+ }
+// else if (technology < 22 && technology > 16)
+// {
+// tech_lo = 22;
+// tech_hi = 16;
+// }
+ else
+ {
+ cout<<"Invalid technology nodes"<<endl;
+ exit(0);
+ }
+
+ double vdd[NUMBER_TECH_FLAVORS];
+ double Lphy[NUMBER_TECH_FLAVORS];
+ double Lelec[NUMBER_TECH_FLAVORS];
+ double t_ox[NUMBER_TECH_FLAVORS];
+ double v_th[NUMBER_TECH_FLAVORS];
+ double c_ox[NUMBER_TECH_FLAVORS];
+ double mobility_eff[NUMBER_TECH_FLAVORS];
+ double Vdsat[NUMBER_TECH_FLAVORS];
+ double c_g_ideal[NUMBER_TECH_FLAVORS];
+ double c_fringe[NUMBER_TECH_FLAVORS];
+ double c_junc[NUMBER_TECH_FLAVORS];
+ double I_on_n[NUMBER_TECH_FLAVORS];
+ double I_on_p[NUMBER_TECH_FLAVORS];
+ double Rnchannelon[NUMBER_TECH_FLAVORS];
+ double Rpchannelon[NUMBER_TECH_FLAVORS];
+ double n_to_p_eff_curr_drv_ratio[NUMBER_TECH_FLAVORS];
+ double I_off_n[NUMBER_TECH_FLAVORS][101];
+ double I_g_on_n[NUMBER_TECH_FLAVORS][101];
+ //double I_off_p[NUMBER_TECH_FLAVORS][101];
+ double gmp_to_gmn_multiplier[NUMBER_TECH_FLAVORS];
+ //double curr_sckt_co_eff[NUMBER_TECH_FLAVORS];
+ double long_channel_leakage_reduction[NUMBER_TECH_FLAVORS];
+
+ for (iter = 0; iter <= 1; ++iter)
+ {
+ // linear interpolation
+ if (iter == 0)
+ {
+ tech = tech_lo;
+ if (tech_lo == tech_hi)
+ {
+ curr_alpha = 1;
+ }
+ else
+ {
+ curr_alpha = (technology - tech_hi)/(tech_lo - tech_hi);
+ }
+ }
+ else
+ {
+ tech = tech_hi;
+ if (tech_lo == tech_hi)
+ {
+ break;
+ }
+ else
+ {
+ curr_alpha = (tech_lo - technology)/(tech_lo - tech_hi);
+ }
+ }
+
+ if (tech == 180)
+ {
+ //180nm technology-node. Corresponds to year 1999 in ITRS
+ //Only HP transistor was of interest that 180nm since leakage power was not a big issue. Performance was the king
+ //MASTAR does not contain data for 0.18um process. The following parameters are projected based on ITRS 2000 update and IBM 0.18 Cu Spice input
+ bool Aggre_proj = false;
+ SENSE_AMP_D = .28e-9; // s
+ SENSE_AMP_P = 14.7e-15; // J
+ vdd[0] = 1.5;
+ Lphy[0] = 0.12;//Lphy is the physical gate-length. micron
+ Lelec[0] = 0.10;//Lelec is the electrical gate-length. micron
+ t_ox[0] = 1.2e-3*(Aggre_proj? 1.9/1.2:2);//micron
+ v_th[0] = Aggre_proj? 0.36 : 0.4407;//V
+ c_ox[0] = 1.79e-14*(Aggre_proj? 1.9/1.2:2);//F/micron2
+ mobility_eff[0] = 302.16 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[0] = 0.128*2; //V
+ c_g_ideal[0] = (Aggre_proj? 1.9/1.2:2)*6.64e-16;//F/micron
+ c_fringe[0] = (Aggre_proj? 1.9/1.2:2)*0.08e-15;//F/micron
+ c_junc[0] = (Aggre_proj? 1.9/1.2:2)*1e-15;//F/micron2
+ I_on_n[0] = 750e-6;//A/micron
+ I_on_p[0] = 350e-6;//A/micron
+ //Note that nmos_effective_resistance_multiplier, n_to_p_eff_curr_drv_ratio and gmp_to_gmn_multiplier values are calculated offline
+ nmos_effective_resistance_multiplier = 1.54;
+ n_to_p_eff_curr_drv_ratio[0] = 2.45;
+ gmp_to_gmn_multiplier[0] = 1.22;
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
+ long_channel_leakage_reduction[0] = 1;
+ I_off_n[0][0] = 7e-10;//A/micron
+ I_off_n[0][10] = 8.26e-10;
+ I_off_n[0][20] = 9.74e-10;
+ I_off_n[0][30] = 1.15e-9;
+ I_off_n[0][40] = 1.35e-9;
+ I_off_n[0][50] = 1.60e-9;
+ I_off_n[0][60] = 1.88e-9;
+ I_off_n[0][70] = 2.29e-9;
+ I_off_n[0][80] = 2.70e-9;
+ I_off_n[0][90] = 3.19e-9;
+ I_off_n[0][100] = 3.76e-9;
+
+ I_g_on_n[0][0] = 1.65e-10;//A/micron
+ I_g_on_n[0][10] = 1.65e-10;
+ I_g_on_n[0][20] = 1.65e-10;
+ I_g_on_n[0][30] = 1.65e-10;
+ I_g_on_n[0][40] = 1.65e-10;
+ I_g_on_n[0][50] = 1.65e-10;
+ I_g_on_n[0][60] = 1.65e-10;
+ I_g_on_n[0][70] = 1.65e-10;
+ I_g_on_n[0][80] = 1.65e-10;
+ I_g_on_n[0][90] = 1.65e-10;
+ I_g_on_n[0][100] = 1.65e-10;
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;//360
+ curr_asp_ratio_cell_cam = 2.92;//2.5
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 1.5;//linear scaling from 90nm
+ curr_core_tx_density = 1.25*0.7*0.7*0.4;
+ curr_sckt_co_eff = 1.11;
+ curr_chip_layout_overhead = 1.0;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.0;//EDA placement and routing tool rule of thumb
+
+ }
+
+ if (tech == 90)
+ {
+ SENSE_AMP_D = .28e-9; // s
+ SENSE_AMP_P = 14.7e-15; // J
+ //90nm technology-node. Corresponds to year 2004 in ITRS
+ //ITRS HP device type
+ vdd[0] = 1.2;
+ Lphy[0] = 0.037;//Lphy is the physical gate-length. micron
+ Lelec[0] = 0.0266;//Lelec is the electrical gate-length. micron
+ t_ox[0] = 1.2e-3;//micron
+ v_th[0] = 0.23707;//V
+ c_ox[0] = 1.79e-14;//F/micron2
+ mobility_eff[0] = 342.16 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[0] = 0.128; //V
+ c_g_ideal[0] = 6.64e-16;//F/micron
+ c_fringe[0] = 0.08e-15;//F/micron
+ c_junc[0] = 1e-15;//F/micron2
+ I_on_n[0] = 1076.9e-6;//A/micron
+ I_on_p[0] = 712.6e-6;//A/micron
+ //Note that nmos_effective_resistance_multiplier, n_to_p_eff_curr_drv_ratio and gmp_to_gmn_multiplier values are calculated offline
+ nmos_effective_resistance_multiplier = 1.54;
+ n_to_p_eff_curr_drv_ratio[0] = 2.45;
+ gmp_to_gmn_multiplier[0] = 1.22;
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
+ long_channel_leakage_reduction[0] = 1;
+ I_off_n[0][0] = 3.24e-8;//A/micron
+ I_off_n[0][10] = 4.01e-8;
+ I_off_n[0][20] = 4.90e-8;
+ I_off_n[0][30] = 5.92e-8;
+ I_off_n[0][40] = 7.08e-8;
+ I_off_n[0][50] = 8.38e-8;
+ I_off_n[0][60] = 9.82e-8;
+ I_off_n[0][70] = 1.14e-7;
+ I_off_n[0][80] = 1.29e-7;
+ I_off_n[0][90] = 1.43e-7;
+ I_off_n[0][100] = 1.54e-7;
+
+ I_g_on_n[0][0] = 1.65e-8;//A/micron
+ I_g_on_n[0][10] = 1.65e-8;
+ I_g_on_n[0][20] = 1.65e-8;
+ I_g_on_n[0][30] = 1.65e-8;
+ I_g_on_n[0][40] = 1.65e-8;
+ I_g_on_n[0][50] = 1.65e-8;
+ I_g_on_n[0][60] = 1.65e-8;
+ I_g_on_n[0][70] = 1.65e-8;
+ I_g_on_n[0][80] = 1.65e-8;
+ I_g_on_n[0][90] = 1.65e-8;
+ I_g_on_n[0][100] = 1.65e-8;
+
+ //ITRS LSTP device type
+ vdd[1] = 1.3;
+ Lphy[1] = 0.075;
+ Lelec[1] = 0.0486;
+ t_ox[1] = 2.2e-3;
+ v_th[1] = 0.48203;
+ c_ox[1] = 1.22e-14;
+ mobility_eff[1] = 356.76 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[1] = 0.373;
+ c_g_ideal[1] = 9.15e-16;
+ c_fringe[1] = 0.08e-15;
+ c_junc[1] = 1e-15;
+ I_on_n[1] = 503.6e-6;
+ I_on_p[1] = 235.1e-6;
+ nmos_effective_resistance_multiplier = 1.92;
+ n_to_p_eff_curr_drv_ratio[1] = 2.44;
+ gmp_to_gmn_multiplier[1] =0.88;
+ Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
+ Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
+ long_channel_leakage_reduction[1] = 1;
+ I_off_n[1][0] = 2.81e-12;
+ I_off_n[1][10] = 4.76e-12;
+ I_off_n[1][20] = 7.82e-12;
+ I_off_n[1][30] = 1.25e-11;
+ I_off_n[1][40] = 1.94e-11;
+ I_off_n[1][50] = 2.94e-11;
+ I_off_n[1][60] = 4.36e-11;
+ I_off_n[1][70] = 6.32e-11;
+ I_off_n[1][80] = 8.95e-11;
+ I_off_n[1][90] = 1.25e-10;
+ I_off_n[1][100] = 1.7e-10;
+
+ I_g_on_n[1][0] = 3.87e-11;//A/micron
+ I_g_on_n[1][10] = 3.87e-11;
+ I_g_on_n[1][20] = 3.87e-11;
+ I_g_on_n[1][30] = 3.87e-11;
+ I_g_on_n[1][40] = 3.87e-11;
+ I_g_on_n[1][50] = 3.87e-11;
+ I_g_on_n[1][60] = 3.87e-11;
+ I_g_on_n[1][70] = 3.87e-11;
+ I_g_on_n[1][80] = 3.87e-11;
+ I_g_on_n[1][90] = 3.87e-11;
+ I_g_on_n[1][100] = 3.87e-11;
+
+ //ITRS LOP device type
+ vdd[2] = 0.9;
+ Lphy[2] = 0.053;
+ Lelec[2] = 0.0354;
+ t_ox[2] = 1.5e-3;
+ v_th[2] = 0.30764;
+ c_ox[2] = 1.59e-14;
+ mobility_eff[2] = 460.39 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[2] = 0.113;
+ c_g_ideal[2] = 8.45e-16;
+ c_fringe[2] = 0.08e-15;
+ c_junc[2] = 1e-15;
+ I_on_n[2] = 386.6e-6;
+ I_on_p[2] = 209.7e-6;
+ nmos_effective_resistance_multiplier = 1.77;
+ n_to_p_eff_curr_drv_ratio[2] = 2.54;
+ gmp_to_gmn_multiplier[2] = 0.98;
+ Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
+ Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
+ long_channel_leakage_reduction[2] = 1;
+ I_off_n[2][0] = 2.14e-9;
+ I_off_n[2][10] = 2.9e-9;
+ I_off_n[2][20] = 3.87e-9;
+ I_off_n[2][30] = 5.07e-9;
+ I_off_n[2][40] = 6.54e-9;
+ I_off_n[2][50] = 8.27e-8;
+ I_off_n[2][60] = 1.02e-7;
+ I_off_n[2][70] = 1.20e-7;
+ I_off_n[2][80] = 1.36e-8;
+ I_off_n[2][90] = 1.52e-8;
+ I_off_n[2][100] = 1.73e-8;
+
+ I_g_on_n[2][0] = 4.31e-8;//A/micron
+ I_g_on_n[2][10] = 4.31e-8;
+ I_g_on_n[2][20] = 4.31e-8;
+ I_g_on_n[2][30] = 4.31e-8;
+ I_g_on_n[2][40] = 4.31e-8;
+ I_g_on_n[2][50] = 4.31e-8;
+ I_g_on_n[2][60] = 4.31e-8;
+ I_g_on_n[2][70] = 4.31e-8;
+ I_g_on_n[2][80] = 4.31e-8;
+ I_g_on_n[2][90] = 4.31e-8;
+ I_g_on_n[2][100] = 4.31e-8;
+
+ if (ram_cell_tech_type == lp_dram)
+ {
+ //LP-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.2;
+ Lphy[3] = 0.12;
+ Lelec[3] = 0.0756;
+ curr_v_th_dram_access_transistor = 0.4545;
+ width_dram_access_transistor = 0.14;
+ curr_I_on_dram_cell = 45e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 21.1e-12;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 0.168;
+ curr_asp_ratio_cell_dram = 1.46;
+ curr_c_dram_cell = 20e-15;
+
+ //LP-DRAM wordline transistor parameters
+ curr_vpp = 1.6;
+ t_ox[3] = 2.2e-3;
+ v_th[3] = 0.4545;
+ c_ox[3] = 1.22e-14;
+ mobility_eff[3] = 323.95 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.3;
+ c_g_ideal[3] = 1.47e-15;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 321.6e-6;
+ I_on_p[3] = 203.3e-6;
+ nmos_effective_resistance_multiplier = 1.65;
+ n_to_p_eff_curr_drv_ratio[3] = 1.95;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 1.42e-11;
+ I_off_n[3][10] = 2.25e-11;
+ I_off_n[3][20] = 3.46e-11;
+ I_off_n[3][30] = 5.18e-11;
+ I_off_n[3][40] = 7.58e-11;
+ I_off_n[3][50] = 1.08e-10;
+ I_off_n[3][60] = 1.51e-10;
+ I_off_n[3][70] = 2.02e-10;
+ I_off_n[3][80] = 2.57e-10;
+ I_off_n[3][90] = 3.14e-10;
+ I_off_n[3][100] = 3.85e-10;
+ }
+ else if (ram_cell_tech_type == comm_dram)
+ {
+ //COMM-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.6;
+ Lphy[3] = 0.09;
+ Lelec[3] = 0.0576;
+ curr_v_th_dram_access_transistor = 1;
+ width_dram_access_transistor = 0.09;
+ curr_I_on_dram_cell = 20e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.09*0.09;
+ curr_asp_ratio_cell_dram = 1.5;
+ curr_c_dram_cell = 30e-15;
+
+ //COMM-DRAM wordline transistor parameters
+ curr_vpp = 3.7;
+ t_ox[3] = 5.5e-3;
+ v_th[3] = 1.0;
+ c_ox[3] = 5.65e-15;
+ mobility_eff[3] = 302.2 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.32;
+ c_g_ideal[3] = 5.08e-16;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 1094.3e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.62;
+ n_to_p_eff_curr_drv_ratio[3] = 2.05;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 5.80e-15;
+ I_off_n[3][10] = 1.21e-14;
+ I_off_n[3][20] = 2.42e-14;
+ I_off_n[3][30] = 4.65e-14;
+ I_off_n[3][40] = 8.60e-14;
+ I_off_n[3][50] = 1.54e-13;
+ I_off_n[3][60] = 2.66e-13;
+ I_off_n[3][70] = 4.45e-13;
+ I_off_n[3][80] = 7.17e-13;
+ I_off_n[3][90] = 1.11e-12;
+ I_off_n[3][100] = 1.67e-12;
+ }
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;//360
+ curr_asp_ratio_cell_cam = 2.92;//2.5
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 1;
+ curr_core_tx_density = 1.25*0.7*0.7;
+ curr_sckt_co_eff = 1.1539;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+
+
+ }
+
+ if (tech == 65)
+ { //65nm technology-node. Corresponds to year 2007 in ITRS
+ //ITRS HP device type
+ SENSE_AMP_D = .2e-9; // s
+ SENSE_AMP_P = 5.7e-15; // J
+ vdd[0] = 1.1;
+ Lphy[0] = 0.025;
+ Lelec[0] = 0.019;
+ t_ox[0] = 1.1e-3;
+ v_th[0] = .19491;
+ c_ox[0] = 1.88e-14;
+ mobility_eff[0] = 436.24 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[0] = 7.71e-2;
+ c_g_ideal[0] = 4.69e-16;
+ c_fringe[0] = 0.077e-15;
+ c_junc[0] = 1e-15;
+ I_on_n[0] = 1197.2e-6;
+ I_on_p[0] = 870.8e-6;
+ nmos_effective_resistance_multiplier = 1.50;
+ n_to_p_eff_curr_drv_ratio[0] = 2.41;
+ gmp_to_gmn_multiplier[0] = 1.38;
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];
+ long_channel_leakage_reduction[0] = 1/3.74;
+ //Using MASTAR, @380K, increase Lgate until Ion reduces to 90% or Lgate increase by 10%, whichever comes first
+ //Ioff(Lgate normal)/Ioff(Lgate long)= 3.74.
+ I_off_n[0][0] = 1.96e-7;
+ I_off_n[0][10] = 2.29e-7;
+ I_off_n[0][20] = 2.66e-7;
+ I_off_n[0][30] = 3.05e-7;
+ I_off_n[0][40] = 3.49e-7;
+ I_off_n[0][50] = 3.95e-7;
+ I_off_n[0][60] = 4.45e-7;
+ I_off_n[0][70] = 4.97e-7;
+ I_off_n[0][80] = 5.48e-7;
+ I_off_n[0][90] = 5.94e-7;
+ I_off_n[0][100] = 6.3e-7;
+ I_g_on_n[0][0] = 4.09e-8;//A/micron
+ I_g_on_n[0][10] = 4.09e-8;
+ I_g_on_n[0][20] = 4.09e-8;
+ I_g_on_n[0][30] = 4.09e-8;
+ I_g_on_n[0][40] = 4.09e-8;
+ I_g_on_n[0][50] = 4.09e-8;
+ I_g_on_n[0][60] = 4.09e-8;
+ I_g_on_n[0][70] = 4.09e-8;
+ I_g_on_n[0][80] = 4.09e-8;
+ I_g_on_n[0][90] = 4.09e-8;
+ I_g_on_n[0][100] = 4.09e-8;
+
+ //ITRS LSTP device type
+ vdd[1] = 1.2;
+ Lphy[1] = 0.045;
+ Lelec[1] = 0.0298;
+ t_ox[1] = 1.9e-3;
+ v_th[1] = 0.52354;
+ c_ox[1] = 1.36e-14;
+ mobility_eff[1] = 341.21 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[1] = 0.128;
+ c_g_ideal[1] = 6.14e-16;
+ c_fringe[1] = 0.08e-15;
+ c_junc[1] = 1e-15;
+ I_on_n[1] = 519.2e-6;
+ I_on_p[1] = 266e-6;
+ nmos_effective_resistance_multiplier = 1.96;
+ n_to_p_eff_curr_drv_ratio[1] = 2.23;
+ gmp_to_gmn_multiplier[1] = 0.99;
+ Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
+ Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
+ long_channel_leakage_reduction[1] = 1/2.82;
+ I_off_n[1][0] = 9.12e-12;
+ I_off_n[1][10] = 1.49e-11;
+ I_off_n[1][20] = 2.36e-11;
+ I_off_n[1][30] = 3.64e-11;
+ I_off_n[1][40] = 5.48e-11;
+ I_off_n[1][50] = 8.05e-11;
+ I_off_n[1][60] = 1.15e-10;
+ I_off_n[1][70] = 1.59e-10;
+ I_off_n[1][80] = 2.1e-10;
+ I_off_n[1][90] = 2.62e-10;
+ I_off_n[1][100] = 3.21e-10;
+
+ I_g_on_n[1][0] = 1.09e-10;//A/micron
+ I_g_on_n[1][10] = 1.09e-10;
+ I_g_on_n[1][20] = 1.09e-10;
+ I_g_on_n[1][30] = 1.09e-10;
+ I_g_on_n[1][40] = 1.09e-10;
+ I_g_on_n[1][50] = 1.09e-10;
+ I_g_on_n[1][60] = 1.09e-10;
+ I_g_on_n[1][70] = 1.09e-10;
+ I_g_on_n[1][80] = 1.09e-10;
+ I_g_on_n[1][90] = 1.09e-10;
+ I_g_on_n[1][100] = 1.09e-10;
+
+ //ITRS LOP device type
+ vdd[2] = 0.8;
+ Lphy[2] = 0.032;
+ Lelec[2] = 0.0216;
+ t_ox[2] = 1.2e-3;
+ v_th[2] = 0.28512;
+ c_ox[2] = 1.87e-14;
+ mobility_eff[2] = 495.19 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[2] = 0.292;
+ c_g_ideal[2] = 6e-16;
+ c_fringe[2] = 0.08e-15;
+ c_junc[2] = 1e-15;
+ I_on_n[2] = 573.1e-6;
+ I_on_p[2] = 340.6e-6;
+ nmos_effective_resistance_multiplier = 1.82;
+ n_to_p_eff_curr_drv_ratio[2] = 2.28;
+ gmp_to_gmn_multiplier[2] = 1.11;
+ Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
+ Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
+ long_channel_leakage_reduction[2] = 1/2.05;
+ I_off_n[2][0] = 4.9e-9;
+ I_off_n[2][10] = 6.49e-9;
+ I_off_n[2][20] = 8.45e-9;
+ I_off_n[2][30] = 1.08e-8;
+ I_off_n[2][40] = 1.37e-8;
+ I_off_n[2][50] = 1.71e-8;
+ I_off_n[2][60] = 2.09e-8;
+ I_off_n[2][70] = 2.48e-8;
+ I_off_n[2][80] = 2.84e-8;
+ I_off_n[2][90] = 3.13e-8;
+ I_off_n[2][100] = 3.42e-8;
+
+ I_g_on_n[2][0] = 9.61e-9;//A/micron
+ I_g_on_n[2][10] = 9.61e-9;
+ I_g_on_n[2][20] = 9.61e-9;
+ I_g_on_n[2][30] = 9.61e-9;
+ I_g_on_n[2][40] = 9.61e-9;
+ I_g_on_n[2][50] = 9.61e-9;
+ I_g_on_n[2][60] = 9.61e-9;
+ I_g_on_n[2][70] = 9.61e-9;
+ I_g_on_n[2][80] = 9.61e-9;
+ I_g_on_n[2][90] = 9.61e-9;
+ I_g_on_n[2][100] = 9.61e-9;
+
+ if (ram_cell_tech_type == lp_dram)
+ {
+ //LP-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.2;
+ Lphy[3] = 0.12;
+ Lelec[3] = 0.0756;
+ curr_v_th_dram_access_transistor = 0.43806;
+ width_dram_access_transistor = 0.09;
+ curr_I_on_dram_cell = 36e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 19.6e-12;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 0.11;
+ curr_asp_ratio_cell_dram = 1.46;
+ curr_c_dram_cell = 20e-15;
+
+ //LP-DRAM wordline transistor parameters
+ curr_vpp = 1.6;
+ t_ox[3] = 2.2e-3;
+ v_th[3] = 0.43806;
+ c_ox[3] = 1.22e-14;
+ mobility_eff[3] = 328.32 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.43806;
+ c_g_ideal[3] = 1.46e-15;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15 ;
+ I_on_n[3] = 399.8e-6;
+ I_on_p[3] = 243.4e-6;
+ nmos_effective_resistance_multiplier = 1.65;
+ n_to_p_eff_curr_drv_ratio[3] = 2.05;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 2.23e-11;
+ I_off_n[3][10] = 3.46e-11;
+ I_off_n[3][20] = 5.24e-11;
+ I_off_n[3][30] = 7.75e-11;
+ I_off_n[3][40] = 1.12e-10;
+ I_off_n[3][50] = 1.58e-10;
+ I_off_n[3][60] = 2.18e-10;
+ I_off_n[3][70] = 2.88e-10;
+ I_off_n[3][80] = 3.63e-10;
+ I_off_n[3][90] = 4.41e-10;
+ I_off_n[3][100] = 5.36e-10;
+ }
+ else if (ram_cell_tech_type == comm_dram)
+ {
+ //COMM-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.3;
+ Lphy[3] = 0.065;
+ Lelec[3] = 0.0426;
+ curr_v_th_dram_access_transistor = 1;
+ width_dram_access_transistor = 0.065;
+ curr_I_on_dram_cell = 20e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.065*0.065;
+ curr_asp_ratio_cell_dram = 1.5;
+ curr_c_dram_cell = 30e-15;
+
+ //COMM-DRAM wordline transistor parameters
+ curr_vpp = 3.3;
+ t_ox[3] = 5e-3;
+ v_th[3] = 1.0;
+ c_ox[3] = 6.16e-15;
+ mobility_eff[3] = 303.44 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.385;
+ c_g_ideal[3] = 4e-16;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15 ;
+ I_on_n[3] = 1031e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.69;
+ n_to_p_eff_curr_drv_ratio[3] = 2.39;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 1.80e-14;
+ I_off_n[3][10] = 3.64e-14;
+ I_off_n[3][20] = 7.03e-14;
+ I_off_n[3][30] = 1.31e-13;
+ I_off_n[3][40] = 2.35e-13;
+ I_off_n[3][50] = 4.09e-13;
+ I_off_n[3][60] = 6.89e-13;
+ I_off_n[3][70] = 1.13e-12;
+ I_off_n[3][80] = 1.78e-12;
+ I_off_n[3][90] = 2.71e-12;
+ I_off_n[3][100] = 3.99e-12;
+ }
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_cam = 2.92;
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 0.7; //Rather than scale proportionally to square of feature size, only scale linearly according to IBM cell processor
+ curr_core_tx_density = 1.25*0.7;
+ curr_sckt_co_eff = 1.1359;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+ }
+
+ if (tech == 45)
+ { //45nm technology-node. Corresponds to year 2010 in ITRS
+ //ITRS HP device type
+ SENSE_AMP_D = .04e-9; // s
+ SENSE_AMP_P = 2.7e-15; // J
+ vdd[0] = 1.0;
+ Lphy[0] = 0.018;
+ Lelec[0] = 0.01345;
+ t_ox[0] = 0.65e-3;
+ v_th[0] = .18035;
+ c_ox[0] = 3.77e-14;
+ mobility_eff[0] = 266.68 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[0] = 9.38E-2;
+ c_g_ideal[0] = 6.78e-16;
+ c_fringe[0] = 0.05e-15;
+ c_junc[0] = 1e-15;
+ I_on_n[0] = 2046.6e-6;
+ //There are certain problems with the ITRS PMOS numbers in MASTAR for 45nm. So we are using 65nm values of
+ //n_to_p_eff_curr_drv_ratio and gmp_to_gmn_multiplier for 45nm
+ I_on_p[0] = I_on_n[0] / 2;//This value is fixed arbitrarily but I_on_p is not being used in CACTI
+ nmos_effective_resistance_multiplier = 1.51;
+ n_to_p_eff_curr_drv_ratio[0] = 2.41;
+ gmp_to_gmn_multiplier[0] = 1.38;
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];
+ long_channel_leakage_reduction[0] = 1/3.546;//Using MASTAR, @380K, increase Lgate until Ion reduces to 90%, Ioff(Lgate normal)/Ioff(Lgate long)= 3.74
+ I_off_n[0][0] = 2.8e-7;
+ I_off_n[0][10] = 3.28e-7;
+ I_off_n[0][20] = 3.81e-7;
+ I_off_n[0][30] = 4.39e-7;
+ I_off_n[0][40] = 5.02e-7;
+ I_off_n[0][50] = 5.69e-7;
+ I_off_n[0][60] = 6.42e-7;
+ I_off_n[0][70] = 7.2e-7;
+ I_off_n[0][80] = 8.03e-7;
+ I_off_n[0][90] = 8.91e-7;
+ I_off_n[0][100] = 9.84e-7;
+
+ I_g_on_n[0][0] = 3.59e-8;//A/micron
+ I_g_on_n[0][10] = 3.59e-8;
+ I_g_on_n[0][20] = 3.59e-8;
+ I_g_on_n[0][30] = 3.59e-8;
+ I_g_on_n[0][40] = 3.59e-8;
+ I_g_on_n[0][50] = 3.59e-8;
+ I_g_on_n[0][60] = 3.59e-8;
+ I_g_on_n[0][70] = 3.59e-8;
+ I_g_on_n[0][80] = 3.59e-8;
+ I_g_on_n[0][90] = 3.59e-8;
+ I_g_on_n[0][100] = 3.59e-8;
+
+ //ITRS LSTP device type
+ vdd[1] = 1.1;
+ Lphy[1] = 0.028;
+ Lelec[1] = 0.0212;
+ t_ox[1] = 1.4e-3;
+ v_th[1] = 0.50245;
+ c_ox[1] = 2.01e-14;
+ mobility_eff[1] = 363.96 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[1] = 9.12e-2;
+ c_g_ideal[1] = 5.18e-16;
+ c_fringe[1] = 0.08e-15;
+ c_junc[1] = 1e-15;
+ I_on_n[1] = 666.2e-6;
+ I_on_p[1] = I_on_n[1] / 2;
+ nmos_effective_resistance_multiplier = 1.99;
+ n_to_p_eff_curr_drv_ratio[1] = 2.23;
+ gmp_to_gmn_multiplier[1] = 0.99;
+ Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
+ Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
+ long_channel_leakage_reduction[1] = 1/2.08;
+ I_off_n[1][0] = 1.01e-11;
+ I_off_n[1][10] = 1.65e-11;
+ I_off_n[1][20] = 2.62e-11;
+ I_off_n[1][30] = 4.06e-11;
+ I_off_n[1][40] = 6.12e-11;
+ I_off_n[1][50] = 9.02e-11;
+ I_off_n[1][60] = 1.3e-10;
+ I_off_n[1][70] = 1.83e-10;
+ I_off_n[1][80] = 2.51e-10;
+ I_off_n[1][90] = 3.29e-10;
+ I_off_n[1][100] = 4.1e-10;
+
+ I_g_on_n[1][0] = 9.47e-12;//A/micron
+ I_g_on_n[1][10] = 9.47e-12;
+ I_g_on_n[1][20] = 9.47e-12;
+ I_g_on_n[1][30] = 9.47e-12;
+ I_g_on_n[1][40] = 9.47e-12;
+ I_g_on_n[1][50] = 9.47e-12;
+ I_g_on_n[1][60] = 9.47e-12;
+ I_g_on_n[1][70] = 9.47e-12;
+ I_g_on_n[1][80] = 9.47e-12;
+ I_g_on_n[1][90] = 9.47e-12;
+ I_g_on_n[1][100] = 9.47e-12;
+
+ //ITRS LOP device type
+ vdd[2] = 0.7;
+ Lphy[2] = 0.022;
+ Lelec[2] = 0.016;
+ t_ox[2] = 0.9e-3;
+ v_th[2] = 0.22599;
+ c_ox[2] = 2.82e-14;//F/micron2
+ mobility_eff[2] = 508.9 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[2] = 5.71e-2;
+ c_g_ideal[2] = 6.2e-16;
+ c_fringe[2] = 0.073e-15;
+ c_junc[2] = 1e-15;
+ I_on_n[2] = 748.9e-6;
+ I_on_p[2] = I_on_n[2] / 2;
+ nmos_effective_resistance_multiplier = 1.76;
+ n_to_p_eff_curr_drv_ratio[2] = 2.28;
+ gmp_to_gmn_multiplier[2] = 1.11;
+ Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
+ Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
+ long_channel_leakage_reduction[2] = 1/1.92;
+ I_off_n[2][0] = 4.03e-9;
+ I_off_n[2][10] = 5.02e-9;
+ I_off_n[2][20] = 6.18e-9;
+ I_off_n[2][30] = 7.51e-9;
+ I_off_n[2][40] = 9.04e-9;
+ I_off_n[2][50] = 1.08e-8;
+ I_off_n[2][60] = 1.27e-8;
+ I_off_n[2][70] = 1.47e-8;
+ I_off_n[2][80] = 1.66e-8;
+ I_off_n[2][90] = 1.84e-8;
+ I_off_n[2][100] = 2.03e-8;
+
+ I_g_on_n[2][0] = 3.24e-8;//A/micron
+ I_g_on_n[2][10] = 4.01e-8;
+ I_g_on_n[2][20] = 4.90e-8;
+ I_g_on_n[2][30] = 5.92e-8;
+ I_g_on_n[2][40] = 7.08e-8;
+ I_g_on_n[2][50] = 8.38e-8;
+ I_g_on_n[2][60] = 9.82e-8;
+ I_g_on_n[2][70] = 1.14e-7;
+ I_g_on_n[2][80] = 1.29e-7;
+ I_g_on_n[2][90] = 1.43e-7;
+ I_g_on_n[2][100] = 1.54e-7;
+
+ if (ram_cell_tech_type == lp_dram)
+ {
+ //LP-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.1;
+ Lphy[3] = 0.078;
+ Lelec[3] = 0.0504;// Assume Lelec is 30% lesser than Lphy for DRAM access and wordline transistors.
+ curr_v_th_dram_access_transistor = 0.44559;
+ width_dram_access_transistor = 0.079;
+ curr_I_on_dram_cell = 36e-6;//A
+ curr_I_off_dram_cell_worst_case_length_temp = 19.5e-12;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = width_dram_access_transistor * Lphy[3] * 10.0;
+ curr_asp_ratio_cell_dram = 1.46;
+ curr_c_dram_cell = 20e-15;
+
+ //LP-DRAM wordline transistor parameters
+ curr_vpp = 1.5;
+ t_ox[3] = 2.1e-3;
+ v_th[3] = 0.44559;
+ c_ox[3] = 1.41e-14;
+ mobility_eff[3] = 426.30 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.181;
+ c_g_ideal[3] = 1.10e-15;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 456e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.65;
+ n_to_p_eff_curr_drv_ratio[3] = 2.05;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 2.54e-11;
+ I_off_n[3][10] = 3.94e-11;
+ I_off_n[3][20] = 5.95e-11;
+ I_off_n[3][30] = 8.79e-11;
+ I_off_n[3][40] = 1.27e-10;
+ I_off_n[3][50] = 1.79e-10;
+ I_off_n[3][60] = 2.47e-10;
+ I_off_n[3][70] = 3.31e-10;
+ I_off_n[3][80] = 4.26e-10;
+ I_off_n[3][90] = 5.27e-10;
+ I_off_n[3][100] = 6.46e-10;
+ }
+ else if (ram_cell_tech_type == comm_dram)
+ {
+ //COMM-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.1;
+ Lphy[3] = 0.045;
+ Lelec[3] = 0.0298;
+ curr_v_th_dram_access_transistor = 1;
+ width_dram_access_transistor = 0.045;
+ curr_I_on_dram_cell = 20e-6;//A
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.045*0.045;
+ curr_asp_ratio_cell_dram = 1.5;
+ curr_c_dram_cell = 30e-15;
+
+ //COMM-DRAM wordline transistor parameters
+ curr_vpp = 2.7;
+ t_ox[3] = 4e-3;
+ v_th[3] = 1.0;
+ c_ox[3] = 7.98e-15;
+ mobility_eff[3] = 368.58 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.147;
+ c_g_ideal[3] = 3.59e-16;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 999.4e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.69;
+ n_to_p_eff_curr_drv_ratio[3] = 1.95;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 1.31e-14;
+ I_off_n[3][10] = 2.68e-14;
+ I_off_n[3][20] = 5.25e-14;
+ I_off_n[3][30] = 9.88e-14;
+ I_off_n[3][40] = 1.79e-13;
+ I_off_n[3][50] = 3.15e-13;
+ I_off_n[3][60] = 5.36e-13;
+ I_off_n[3][70] = 8.86e-13;
+ I_off_n[3][80] = 1.42e-12;
+ I_off_n[3][90] = 2.20e-12;
+ I_off_n[3][100] = 3.29e-12;
+ }
+
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_cam = 2.92;
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 0.7*0.7;
+ curr_core_tx_density = 1.25;
+ curr_sckt_co_eff = 1.1387;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+ }
+
+ if (tech == 32)
+ {
+ SENSE_AMP_D = .03e-9; // s
+ SENSE_AMP_P = 2.16e-15; // J
+ //For 2013, MPU/ASIC stagger-contacted M1 half-pitch is 32 nm (so this is 32 nm
+ //technology i.e. FEATURESIZE = 0.032). Using the SOI process numbers for
+ //HP and LSTP.
+ vdd[0] = 0.9;
+ Lphy[0] = 0.013;
+ Lelec[0] = 0.01013;
+ t_ox[0] = 0.5e-3;
+ v_th[0] = 0.21835;
+ c_ox[0] = 4.11e-14;
+ mobility_eff[0] = 361.84 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[0] = 5.09E-2;
+ c_g_ideal[0] = 5.34e-16;
+ c_fringe[0] = 0.04e-15;
+ c_junc[0] = 1e-15;
+ I_on_n[0] = 2211.7e-6;
+ I_on_p[0] = I_on_n[0] / 2;
+ nmos_effective_resistance_multiplier = 1.49;
+ n_to_p_eff_curr_drv_ratio[0] = 2.41;
+ gmp_to_gmn_multiplier[0] = 1.38;
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
+ long_channel_leakage_reduction[0] = 1/3.706;
+ //Using MASTAR, @300K (380K does not work in MASTAR), increase Lgate until Ion reduces to 95% or Lgate increase by 5% (DG device can only increase by 5%),
+ //whichever comes first
+ I_off_n[0][0] = 1.52e-7;
+ I_off_n[0][10] = 1.55e-7;
+ I_off_n[0][20] = 1.59e-7;
+ I_off_n[0][30] = 1.68e-7;
+ I_off_n[0][40] = 1.90e-7;
+ I_off_n[0][50] = 2.69e-7;
+ I_off_n[0][60] = 5.32e-7;
+ I_off_n[0][70] = 1.02e-6;
+ I_off_n[0][80] = 1.62e-6;
+ I_off_n[0][90] = 2.73e-6;
+ I_off_n[0][100] = 6.1e-6;
+
+ I_g_on_n[0][0] = 6.55e-8;//A/micron
+ I_g_on_n[0][10] = 6.55e-8;
+ I_g_on_n[0][20] = 6.55e-8;
+ I_g_on_n[0][30] = 6.55e-8;
+ I_g_on_n[0][40] = 6.55e-8;
+ I_g_on_n[0][50] = 6.55e-8;
+ I_g_on_n[0][60] = 6.55e-8;
+ I_g_on_n[0][70] = 6.55e-8;
+ I_g_on_n[0][80] = 6.55e-8;
+ I_g_on_n[0][90] = 6.55e-8;
+ I_g_on_n[0][100] = 6.55e-8;
+
+// 32 DG
+// I_g_on_n[0][0] = 2.71e-9;//A/micron
+// I_g_on_n[0][10] = 2.71e-9;
+// I_g_on_n[0][20] = 2.71e-9;
+// I_g_on_n[0][30] = 2.71e-9;
+// I_g_on_n[0][40] = 2.71e-9;
+// I_g_on_n[0][50] = 2.71e-9;
+// I_g_on_n[0][60] = 2.71e-9;
+// I_g_on_n[0][70] = 2.71e-9;
+// I_g_on_n[0][80] = 2.71e-9;
+// I_g_on_n[0][90] = 2.71e-9;
+// I_g_on_n[0][100] = 2.71e-9;
+
+ //LSTP device type
+ vdd[1] = 1;
+ Lphy[1] = 0.020;
+ Lelec[1] = 0.0173;
+ t_ox[1] = 1.2e-3;
+ v_th[1] = 0.513;
+ c_ox[1] = 2.29e-14;
+ mobility_eff[1] = 347.46 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[1] = 8.64e-2;
+ c_g_ideal[1] = 4.58e-16;
+ c_fringe[1] = 0.053e-15;
+ c_junc[1] = 1e-15;
+ I_on_n[1] = 683.6e-6;
+ I_on_p[1] = I_on_n[1] / 2;
+ nmos_effective_resistance_multiplier = 1.99;
+ n_to_p_eff_curr_drv_ratio[1] = 2.23;
+ gmp_to_gmn_multiplier[1] = 0.99;
+ Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
+ Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
+ long_channel_leakage_reduction[1] = 1/1.93;
+ I_off_n[1][0] = 2.06e-11;
+ I_off_n[1][10] = 3.30e-11;
+ I_off_n[1][20] = 5.15e-11;
+ I_off_n[1][30] = 7.83e-11;
+ I_off_n[1][40] = 1.16e-10;
+ I_off_n[1][50] = 1.69e-10;
+ I_off_n[1][60] = 2.40e-10;
+ I_off_n[1][70] = 3.34e-10;
+ I_off_n[1][80] = 4.54e-10;
+ I_off_n[1][90] = 5.96e-10;
+ I_off_n[1][100] = 7.44e-10;
+
+ I_g_on_n[1][0] = 3.73e-11;//A/micron
+ I_g_on_n[1][10] = 3.73e-11;
+ I_g_on_n[1][20] = 3.73e-11;
+ I_g_on_n[1][30] = 3.73e-11;
+ I_g_on_n[1][40] = 3.73e-11;
+ I_g_on_n[1][50] = 3.73e-11;
+ I_g_on_n[1][60] = 3.73e-11;
+ I_g_on_n[1][70] = 3.73e-11;
+ I_g_on_n[1][80] = 3.73e-11;
+ I_g_on_n[1][90] = 3.73e-11;
+ I_g_on_n[1][100] = 3.73e-11;
+
+
+ //LOP device type
+ vdd[2] = 0.6;
+ Lphy[2] = 0.016;
+ Lelec[2] = 0.01232;
+ t_ox[2] = 0.9e-3;
+ v_th[2] = 0.24227;
+ c_ox[2] = 2.84e-14;
+ mobility_eff[2] = 513.52 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[2] = 4.64e-2;
+ c_g_ideal[2] = 4.54e-16;
+ c_fringe[2] = 0.057e-15;
+ c_junc[2] = 1e-15;
+ I_on_n[2] = 827.8e-6;
+ I_on_p[2] = I_on_n[2] / 2;
+ nmos_effective_resistance_multiplier = 1.73;
+ n_to_p_eff_curr_drv_ratio[2] = 2.28;
+ gmp_to_gmn_multiplier[2] = 1.11;
+ Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
+ Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
+ long_channel_leakage_reduction[2] = 1/1.89;
+ I_off_n[2][0] = 5.94e-8;
+ I_off_n[2][10] = 7.23e-8;
+ I_off_n[2][20] = 8.7e-8;
+ I_off_n[2][30] = 1.04e-7;
+ I_off_n[2][40] = 1.22e-7;
+ I_off_n[2][50] = 1.43e-7;
+ I_off_n[2][60] = 1.65e-7;
+ I_off_n[2][70] = 1.90e-7;
+ I_off_n[2][80] = 2.15e-7;
+ I_off_n[2][90] = 2.39e-7;
+ I_off_n[2][100] = 2.63e-7;
+
+ I_g_on_n[2][0] = 2.93e-9;//A/micron
+ I_g_on_n[2][10] = 2.93e-9;
+ I_g_on_n[2][20] = 2.93e-9;
+ I_g_on_n[2][30] = 2.93e-9;
+ I_g_on_n[2][40] = 2.93e-9;
+ I_g_on_n[2][50] = 2.93e-9;
+ I_g_on_n[2][60] = 2.93e-9;
+ I_g_on_n[2][70] = 2.93e-9;
+ I_g_on_n[2][80] = 2.93e-9;
+ I_g_on_n[2][90] = 2.93e-9;
+ I_g_on_n[2][100] = 2.93e-9;
+
+ if (ram_cell_tech_type == lp_dram)
+ {
+ //LP-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.0;
+ Lphy[3] = 0.056;
+ Lelec[3] = 0.0419;//Assume Lelec is 30% lesser than Lphy for DRAM access and wordline transistors.
+ curr_v_th_dram_access_transistor = 0.44129;
+ width_dram_access_transistor = 0.056;
+ curr_I_on_dram_cell = 36e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 18.9e-12;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = width_dram_access_transistor * Lphy[3] * 10.0;
+ curr_asp_ratio_cell_dram = 1.46;
+ curr_c_dram_cell = 20e-15;
+
+ //LP-DRAM wordline transistor parameters
+ curr_vpp = 1.5;
+ t_ox[3] = 2e-3;
+ v_th[3] = 0.44467;
+ c_ox[3] = 1.48e-14;
+ mobility_eff[3] = 408.12 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.174;
+ c_g_ideal[3] = 7.45e-16;
+ c_fringe[3] = 0.053e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 1055.4e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.65;
+ n_to_p_eff_curr_drv_ratio[3] = 2.05;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 3.57e-11;
+ I_off_n[3][10] = 5.51e-11;
+ I_off_n[3][20] = 8.27e-11;
+ I_off_n[3][30] = 1.21e-10;
+ I_off_n[3][40] = 1.74e-10;
+ I_off_n[3][50] = 2.45e-10;
+ I_off_n[3][60] = 3.38e-10;
+ I_off_n[3][70] = 4.53e-10;
+ I_off_n[3][80] = 5.87e-10;
+ I_off_n[3][90] = 7.29e-10;
+ I_off_n[3][100] = 8.87e-10;
+ }
+ else if (ram_cell_tech_type == comm_dram)
+ {
+ //COMM-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.0;
+ Lphy[3] = 0.032;
+ Lelec[3] = 0.0205;//Assume Lelec is 30% lesser than Lphy for DRAM access and wordline transistors.
+ curr_v_th_dram_access_transistor = 1;
+ width_dram_access_transistor = 0.032;
+ curr_I_on_dram_cell = 20e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.032*0.032;
+ curr_asp_ratio_cell_dram = 1.5;
+ curr_c_dram_cell = 30e-15;
+
+ //COMM-DRAM wordline transistor parameters
+ curr_vpp = 2.6;
+ t_ox[3] = 4e-3;
+ v_th[3] = 1.0;
+ c_ox[3] = 7.99e-15;
+ mobility_eff[3] = 380.76 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.129;
+ c_g_ideal[3] = 2.56e-16;
+ c_fringe[3] = 0.053e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 1024.5e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.69;
+ n_to_p_eff_curr_drv_ratio[3] = 1.95;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 3.63e-14;
+ I_off_n[3][10] = 7.18e-14;
+ I_off_n[3][20] = 1.36e-13;
+ I_off_n[3][30] = 2.49e-13;
+ I_off_n[3][40] = 4.41e-13;
+ I_off_n[3][50] = 7.55e-13;
+ I_off_n[3][60] = 1.26e-12;
+ I_off_n[3][70] = 2.03e-12;
+ I_off_n[3][80] = 3.19e-12;
+ I_off_n[3][90] = 4.87e-12;
+ I_off_n[3][100] = 7.16e-12;
+ }
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_cam = 2.92;
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 0.7*0.7*0.7;
+ curr_core_tx_density = 1.25/0.7;
+ curr_sckt_co_eff = 1.1111;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+ }
+
+ if(tech == 22){
+ SENSE_AMP_D = .03e-9; // s
+ SENSE_AMP_P = 2.16e-15; // J
+ //For 2016, MPU/ASIC stagger-contacted M1 half-pitch is 22 nm (so this is 22 nm
+ //technology i.e. FEATURESIZE = 0.022). Using the DG process numbers for HP.
+ //22 nm HP
+ vdd[0] = 0.8;
+ Lphy[0] = 0.009;//Lphy is the physical gate-length.
+ Lelec[0] = 0.00468;//Lelec is the electrical gate-length.
+ t_ox[0] = 0.55e-3;//micron
+ v_th[0] = 0.1395;//V
+ c_ox[0] = 3.63e-14;//F/micron2
+ mobility_eff[0] = 426.07 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[0] = 2.33e-2; //V/micron
+ c_g_ideal[0] = 3.27e-16;//F/micron
+ c_fringe[0] = 0.06e-15;//F/micron
+ c_junc[0] = 0;//F/micron2
+ I_on_n[0] = 2626.4e-6;//A/micron
+ I_on_p[0] = I_on_n[0] / 2;//A/micron //This value for I_on_p is not really used.
+ nmos_effective_resistance_multiplier = 1.45;
+ n_to_p_eff_curr_drv_ratio[0] = 2; //Wpmos/Wnmos = 2 in 2007 MASTAR. Look in
+ //"Dynamic" tab of Device workspace.
+ gmp_to_gmn_multiplier[0] = 1.38; //Just using the 32nm SOI value.
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
+ long_channel_leakage_reduction[0] = 1/3.274;
+ I_off_n[0][0] = 1.52e-7/1.5*1.2;//From 22nm, leakage current are directly from ITRS report rather than MASTAR, since MASTAR has serious bugs there.
+ I_off_n[0][10] = 1.55e-7/1.5*1.2;
+ I_off_n[0][20] = 1.59e-7/1.5*1.2;
+ I_off_n[0][30] = 1.68e-7/1.5*1.2;
+ I_off_n[0][40] = 1.90e-7/1.5*1.2;
+ I_off_n[0][50] = 2.69e-7/1.5*1.2;
+ I_off_n[0][60] = 5.32e-7/1.5*1.2;
+ I_off_n[0][70] = 1.02e-6/1.5*1.2;
+ I_off_n[0][80] = 1.62e-6/1.5*1.2;
+ I_off_n[0][90] = 2.73e-6/1.5*1.2;
+ I_off_n[0][100] = 6.1e-6/1.5*1.2;
+ //for 22nm DG HP
+ I_g_on_n[0][0] = 1.81e-9;//A/micron
+ I_g_on_n[0][10] = 1.81e-9;
+ I_g_on_n[0][20] = 1.81e-9;
+ I_g_on_n[0][30] = 1.81e-9;
+ I_g_on_n[0][40] = 1.81e-9;
+ I_g_on_n[0][50] = 1.81e-9;
+ I_g_on_n[0][60] = 1.81e-9;
+ I_g_on_n[0][70] = 1.81e-9;
+ I_g_on_n[0][80] = 1.81e-9;
+ I_g_on_n[0][90] = 1.81e-9;
+ I_g_on_n[0][100] = 1.81e-9;
+
+ //22 nm LSTP DG
+ vdd[1] = 0.8;
+ Lphy[1] = 0.014;
+ Lelec[1] = 0.008;//Lelec is the electrical gate-length.
+ t_ox[1] = 1.1e-3;//micron
+ v_th[1] = 0.40126;//V
+ c_ox[1] = 2.30e-14;//F/micron2
+ mobility_eff[1] = 738.09 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[1] = 6.64e-2; //V/micron
+ c_g_ideal[1] = 3.22e-16;//F/micron
+ c_fringe[1] = 0.08e-15;
+ c_junc[1] = 0;//F/micron2
+ I_on_n[1] = 727.6e-6;//A/micron
+ I_on_p[1] = I_on_n[1] / 2;
+ nmos_effective_resistance_multiplier = 1.99;
+ n_to_p_eff_curr_drv_ratio[1] = 2;
+ gmp_to_gmn_multiplier[1] = 0.99;
+ Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];//ohm-micron
+ Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];//ohm-micron
+ long_channel_leakage_reduction[1] = 1/1.89;
+ I_off_n[1][0] = 2.43e-11;
+ I_off_n[1][10] = 4.85e-11;
+ I_off_n[1][20] = 9.68e-11;
+ I_off_n[1][30] = 1.94e-10;
+ I_off_n[1][40] = 3.87e-10;
+ I_off_n[1][50] = 7.73e-10;
+ I_off_n[1][60] = 3.55e-10;
+ I_off_n[1][70] = 3.09e-9;
+ I_off_n[1][80] = 6.19e-9;
+ I_off_n[1][90] = 1.24e-8;
+ I_off_n[1][100]= 2.48e-8;
+
+ I_g_on_n[1][0] = 4.51e-10;//A/micron
+ I_g_on_n[1][10] = 4.51e-10;
+ I_g_on_n[1][20] = 4.51e-10;
+ I_g_on_n[1][30] = 4.51e-10;
+ I_g_on_n[1][40] = 4.51e-10;
+ I_g_on_n[1][50] = 4.51e-10;
+ I_g_on_n[1][60] = 4.51e-10;
+ I_g_on_n[1][70] = 4.51e-10;
+ I_g_on_n[1][80] = 4.51e-10;
+ I_g_on_n[1][90] = 4.51e-10;
+ I_g_on_n[1][100] = 4.51e-10;
+
+ //22 nm LOP
+ vdd[2] = 0.6;
+ Lphy[2] = 0.011;
+ Lelec[2] = 0.00604;//Lelec is the electrical gate-length.
+ t_ox[2] = 0.8e-3;//micron
+ v_th[2] = 0.2315;//V
+ c_ox[2] = 2.87e-14;//F/micron2
+ mobility_eff[2] = 698.37 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[2] = 1.81e-2; //V/micron
+ c_g_ideal[2] = 3.16e-16;//F/micron
+ c_fringe[2] = 0.08e-15;
+ c_junc[2] = 0;//F/micron2 This is Cj0 not Cjunc in MASTAR results->Dynamic Tab
+ I_on_n[2] = 916.1e-6;//A/micron
+ I_on_p[2] = I_on_n[2] / 2;
+ nmos_effective_resistance_multiplier = 1.73;
+ n_to_p_eff_curr_drv_ratio[2] = 2;
+ gmp_to_gmn_multiplier[2] = 1.11;
+ Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];//ohm-micron
+ Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];//ohm-micron
+ long_channel_leakage_reduction[2] = 1/2.38;
+
+ I_off_n[2][0] = 1.31e-8;
+ I_off_n[2][10] = 2.60e-8;
+ I_off_n[2][20] = 5.14e-8;
+ I_off_n[2][30] = 1.02e-7;
+ I_off_n[2][40] = 2.02e-7;
+ I_off_n[2][50] = 3.99e-7;
+ I_off_n[2][60] = 7.91e-7;
+ I_off_n[2][70] = 1.09e-6;
+ I_off_n[2][80] = 2.09e-6;
+ I_off_n[2][90] = 4.04e-6;
+ I_off_n[2][100]= 4.48e-6;
+
+ I_g_on_n[2][0] = 2.74e-9;//A/micron
+ I_g_on_n[2][10] = 2.74e-9;
+ I_g_on_n[2][20] = 2.74e-9;
+ I_g_on_n[2][30] = 2.74e-9;
+ I_g_on_n[2][40] = 2.74e-9;
+ I_g_on_n[2][50] = 2.74e-9;
+ I_g_on_n[2][60] = 2.74e-9;
+ I_g_on_n[2][70] = 2.74e-9;
+ I_g_on_n[2][80] = 2.74e-9;
+ I_g_on_n[2][90] = 2.74e-9;
+ I_g_on_n[2][100] = 2.74e-9;
+
+
+
+ if (ram_cell_tech_type == 3)
+ {}
+ else if (ram_cell_tech_type == 4)
+ {
+ //22 nm commodity DRAM cell access transistor technology parameters.
+ //parameters
+ curr_vdd_dram_cell = 0.9;//0.45;//This value has reduced greatly in 2007 ITRS for all technology nodes. In
+ //2005 ITRS, the value was about twice the value in 2007 ITRS
+ Lphy[3] = 0.022;//micron
+ Lelec[3] = 0.0181;//micron.
+ curr_v_th_dram_access_transistor = 1;//V
+ width_dram_access_transistor = 0.022;//micron
+ curr_I_on_dram_cell = 20e-6; //This is a typical value that I have always
+ //kept constant. In reality this could perhaps be lower
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;//A
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.022*0.022;//micron2.
+ curr_asp_ratio_cell_dram = 0.667;
+ curr_c_dram_cell = 30e-15;//This is a typical value that I have alwaus
+ //kept constant.
+
+ //22 nm commodity DRAM wordline transistor parameters obtained using MASTAR.
+ curr_vpp = 2.3;//vpp. V
+ t_ox[3] = 3.5e-3;//micron
+ v_th[3] = 1.0;//V
+ c_ox[3] = 9.06e-15;//F/micron2
+ mobility_eff[3] = 367.29 * (1e-2 * 1e6 * 1e-2 * 1e6);//micron2 / Vs
+ Vdsat[3] = 0.0972; //V/micron
+ c_g_ideal[3] = 1.99e-16;//F/micron
+ c_fringe[3] = 0.053e-15;//F/micron
+ c_junc[3] = 1e-15;//F/micron2
+ I_on_n[3] = 910.5e-6;//A/micron
+ I_on_p[3] = I_on_n[3] / 2;//This value for I_on_p is not really used.
+ nmos_effective_resistance_multiplier = 1.69;//Using the value from 32nm.
+ //
+ n_to_p_eff_curr_drv_ratio[3] = 1.95;//Using the value from 32nm
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];//ohm-micron
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];//ohm-micron
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 1.1e-13; //A/micron
+ I_off_n[3][10] = 2.11e-13;
+ I_off_n[3][20] = 3.88e-13;
+ I_off_n[3][30] = 6.9e-13;
+ I_off_n[3][40] = 1.19e-12;
+ I_off_n[3][50] = 1.98e-12;
+ I_off_n[3][60] = 3.22e-12;
+ I_off_n[3][70] = 5.09e-12;
+ I_off_n[3][80] = 7.85e-12;
+ I_off_n[3][90] = 1.18e-11;
+ I_off_n[3][100] = 1.72e-11;
+
+ }
+ else
+ {
+ //some error handler
+ }
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_cam = 2.92;
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 0.7*0.7*0.7*0.7;
+ curr_core_tx_density = 1.25/0.7/0.7;
+ curr_sckt_co_eff = 1.1296;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+ }
+
+ if(tech == 16){
+ //For 2019, MPU/ASIC stagger-contacted M1 half-pitch is 16 nm (so this is 16 nm
+ //technology i.e. FEATURESIZE = 0.016). Using the DG process numbers for HP.
+ //16 nm HP
+ vdd[0] = 0.7;
+ Lphy[0] = 0.006;//Lphy is the physical gate-length.
+ Lelec[0] = 0.00315;//Lelec is the electrical gate-length.
+ t_ox[0] = 0.5e-3;//micron
+ v_th[0] = 0.1489;//V
+ c_ox[0] = 3.83e-14;//F/micron2 Cox_elec in MASTAR
+ mobility_eff[0] = 476.15 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[0] = 1.42e-2; //V/micron calculated in spreadsheet
+ c_g_ideal[0] = 2.30e-16;//F/micron
+ c_fringe[0] = 0.06e-15;//F/micron MASTAR inputdynamic/3
+ c_junc[0] = 0;//F/micron2 MASTAR result dynamic
+ I_on_n[0] = 2768.4e-6;//A/micron
+ I_on_p[0] = I_on_n[0] / 2;//A/micron //This value for I_on_p is not really used.
+ nmos_effective_resistance_multiplier = 1.48;//nmos_effective_resistance_multiplier is the ratio of Ieff to Idsat where Ieff is the effective NMOS current and Idsat is the saturation current.
+ n_to_p_eff_curr_drv_ratio[0] = 2; //Wpmos/Wnmos = 2 in 2007 MASTAR. Look in
+ //"Dynamic" tab of Device workspace.
+ gmp_to_gmn_multiplier[0] = 1.38; //Just using the 32nm SOI value.
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
+ long_channel_leakage_reduction[0] = 1/2.655;
+ I_off_n[0][0] = 1.52e-7/1.5*1.2*1.07;
+ I_off_n[0][10] = 1.55e-7/1.5*1.2*1.07;
+ I_off_n[0][20] = 1.59e-7/1.5*1.2*1.07;
+ I_off_n[0][30] = 1.68e-7/1.5*1.2*1.07;
+ I_off_n[0][40] = 1.90e-7/1.5*1.2*1.07;
+ I_off_n[0][50] = 2.69e-7/1.5*1.2*1.07;
+ I_off_n[0][60] = 5.32e-7/1.5*1.2*1.07;
+ I_off_n[0][70] = 1.02e-6/1.5*1.2*1.07;
+ I_off_n[0][80] = 1.62e-6/1.5*1.2*1.07;
+ I_off_n[0][90] = 2.73e-6/1.5*1.2*1.07;
+ I_off_n[0][100] = 6.1e-6/1.5*1.2*1.07;
+ //for 16nm DG HP
+ I_g_on_n[0][0] = 1.07e-9;//A/micron
+ I_g_on_n[0][10] = 1.07e-9;
+ I_g_on_n[0][20] = 1.07e-9;
+ I_g_on_n[0][30] = 1.07e-9;
+ I_g_on_n[0][40] = 1.07e-9;
+ I_g_on_n[0][50] = 1.07e-9;
+ I_g_on_n[0][60] = 1.07e-9;
+ I_g_on_n[0][70] = 1.07e-9;
+ I_g_on_n[0][80] = 1.07e-9;
+ I_g_on_n[0][90] = 1.07e-9;
+ I_g_on_n[0][100] = 1.07e-9;
+
+// //16 nm LSTP DG
+// vdd[1] = 0.8;
+// Lphy[1] = 0.014;
+// Lelec[1] = 0.008;//Lelec is the electrical gate-length.
+// t_ox[1] = 1.1e-3;//micron
+// v_th[1] = 0.40126;//V
+// c_ox[1] = 2.30e-14;//F/micron2
+// mobility_eff[1] = 738.09 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+// Vdsat[1] = 6.64e-2; //V/micron
+// c_g_ideal[1] = 3.22e-16;//F/micron
+// c_fringe[1] = 0.008e-15;
+// c_junc[1] = 0;//F/micron2
+// I_on_n[1] = 727.6e-6;//A/micron
+// I_on_p[1] = I_on_n[1] / 2;
+// nmos_effective_resistance_multiplier = 1.99;
+// n_to_p_eff_curr_drv_ratio[1] = 2;
+// gmp_to_gmn_multiplier[1] = 0.99;
+// Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];//ohm-micron
+// Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];//ohm-micron
+// I_off_n[1][0] = 2.43e-11;
+// I_off_n[1][10] = 4.85e-11;
+// I_off_n[1][20] = 9.68e-11;
+// I_off_n[1][30] = 1.94e-10;
+// I_off_n[1][40] = 3.87e-10;
+// I_off_n[1][50] = 7.73e-10;
+// I_off_n[1][60] = 3.55e-10;
+// I_off_n[1][70] = 3.09e-9;
+// I_off_n[1][80] = 6.19e-9;
+// I_off_n[1][90] = 1.24e-8;
+// I_off_n[1][100]= 2.48e-8;
+//
+// // for 22nm LSTP HP
+// I_g_on_n[1][0] = 4.51e-10;//A/micron
+// I_g_on_n[1][10] = 4.51e-10;
+// I_g_on_n[1][20] = 4.51e-10;
+// I_g_on_n[1][30] = 4.51e-10;
+// I_g_on_n[1][40] = 4.51e-10;
+// I_g_on_n[1][50] = 4.51e-10;
+// I_g_on_n[1][60] = 4.51e-10;
+// I_g_on_n[1][70] = 4.51e-10;
+// I_g_on_n[1][80] = 4.51e-10;
+// I_g_on_n[1][90] = 4.51e-10;
+// I_g_on_n[1][100] = 4.51e-10;
+
+
+ if (ram_cell_tech_type == 3)
+ {}
+ else if (ram_cell_tech_type == 4)
+ {
+ //22 nm commodity DRAM cell access transistor technology parameters.
+ //parameters
+ curr_vdd_dram_cell = 0.9;//0.45;//This value has reduced greatly in 2007 ITRS for all technology nodes. In
+ //2005 ITRS, the value was about twice the value in 2007 ITRS
+ Lphy[3] = 0.022;//micron
+ Lelec[3] = 0.0181;//micron.
+ curr_v_th_dram_access_transistor = 1;//V
+ width_dram_access_transistor = 0.022;//micron
+ curr_I_on_dram_cell = 20e-6; //This is a typical value that I have always
+ //kept constant. In reality this could perhaps be lower
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;//A
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.022*0.022;//micron2.
+ curr_asp_ratio_cell_dram = 0.667;
+ curr_c_dram_cell = 30e-15;//This is a typical value that I have alwaus
+ //kept constant.
+
+ //22 nm commodity DRAM wordline transistor parameters obtained using MASTAR.
+ curr_vpp = 2.3;//vpp. V
+ t_ox[3] = 3.5e-3;//micron
+ v_th[3] = 1.0;//V
+ c_ox[3] = 9.06e-15;//F/micron2
+ mobility_eff[3] = 367.29 * (1e-2 * 1e6 * 1e-2 * 1e6);//micron2 / Vs
+ Vdsat[3] = 0.0972; //V/micron
+ c_g_ideal[3] = 1.99e-16;//F/micron
+ c_fringe[3] = 0.053e-15;//F/micron
+ c_junc[3] = 1e-15;//F/micron2
+ I_on_n[3] = 910.5e-6;//A/micron
+ I_on_p[3] = I_on_n[3] / 2;//This value for I_on_p is not really used.
+ nmos_effective_resistance_multiplier = 1.69;//Using the value from 32nm.
+ //
+ n_to_p_eff_curr_drv_ratio[3] = 1.95;//Using the value from 32nm
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];//ohm-micron
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];//ohm-micron
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 1.1e-13; //A/micron
+ I_off_n[3][10] = 2.11e-13;
+ I_off_n[3][20] = 3.88e-13;
+ I_off_n[3][30] = 6.9e-13;
+ I_off_n[3][40] = 1.19e-12;
+ I_off_n[3][50] = 1.98e-12;
+ I_off_n[3][60] = 3.22e-12;
+ I_off_n[3][70] = 5.09e-12;
+ I_off_n[3][80] = 7.85e-12;
+ I_off_n[3][90] = 1.18e-11;
+ I_off_n[3][100] = 1.72e-11;
+
+ }
+ else
+ {
+ //some error handler
+ }
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_cam = 2.92;
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 0.7*0.7*0.7*0.7*0.7;
+ curr_core_tx_density = 1.25/0.7/0.7/0.7;
+ curr_sckt_co_eff = 1.1296;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+ }
+
+
+ g_tp.peri_global.Vdd += curr_alpha * vdd[peri_global_tech_type];
+ g_tp.peri_global.t_ox += curr_alpha * t_ox[peri_global_tech_type];
+ g_tp.peri_global.Vth += curr_alpha * v_th[peri_global_tech_type];
+ g_tp.peri_global.C_ox += curr_alpha * c_ox[peri_global_tech_type];
+ g_tp.peri_global.C_g_ideal += curr_alpha * c_g_ideal[peri_global_tech_type];
+ g_tp.peri_global.C_fringe += curr_alpha * c_fringe[peri_global_tech_type];
+ g_tp.peri_global.C_junc += curr_alpha * c_junc[peri_global_tech_type];
+ g_tp.peri_global.C_junc_sidewall = 0.25e-15; // F/micron
+ g_tp.peri_global.l_phy += curr_alpha * Lphy[peri_global_tech_type];
+ g_tp.peri_global.l_elec += curr_alpha * Lelec[peri_global_tech_type];
+ g_tp.peri_global.I_on_n += curr_alpha * I_on_n[peri_global_tech_type];
+ g_tp.peri_global.R_nch_on += curr_alpha * Rnchannelon[peri_global_tech_type];
+ g_tp.peri_global.R_pch_on += curr_alpha * Rpchannelon[peri_global_tech_type];
+ g_tp.peri_global.n_to_p_eff_curr_drv_ratio
+ += curr_alpha * n_to_p_eff_curr_drv_ratio[peri_global_tech_type];
+ g_tp.peri_global.long_channel_leakage_reduction
+ += curr_alpha * long_channel_leakage_reduction[peri_global_tech_type];
+ g_tp.peri_global.I_off_n += curr_alpha * I_off_n[peri_global_tech_type][g_ip->temp - 300];
+ g_tp.peri_global.I_off_p += curr_alpha * I_off_n[peri_global_tech_type][g_ip->temp - 300];
+ g_tp.peri_global.I_g_on_n += curr_alpha * I_g_on_n[peri_global_tech_type][g_ip->temp - 300];
+ g_tp.peri_global.I_g_on_p += curr_alpha * I_g_on_n[peri_global_tech_type][g_ip->temp - 300];
+ gmp_to_gmn_multiplier_periph_global += curr_alpha * gmp_to_gmn_multiplier[peri_global_tech_type];
+
+ g_tp.sram_cell.Vdd += curr_alpha * vdd[ram_cell_tech_type];
+ g_tp.sram_cell.l_phy += curr_alpha * Lphy[ram_cell_tech_type];
+ g_tp.sram_cell.l_elec += curr_alpha * Lelec[ram_cell_tech_type];
+ g_tp.sram_cell.t_ox += curr_alpha * t_ox[ram_cell_tech_type];
+ g_tp.sram_cell.Vth += curr_alpha * v_th[ram_cell_tech_type];
+ g_tp.sram_cell.C_g_ideal += curr_alpha * c_g_ideal[ram_cell_tech_type];
+ g_tp.sram_cell.C_fringe += curr_alpha * c_fringe[ram_cell_tech_type];
+ g_tp.sram_cell.C_junc += curr_alpha * c_junc[ram_cell_tech_type];
+ g_tp.sram_cell.C_junc_sidewall = 0.25e-15; // F/micron
+ g_tp.sram_cell.I_on_n += curr_alpha * I_on_n[ram_cell_tech_type];
+ g_tp.sram_cell.R_nch_on += curr_alpha * Rnchannelon[ram_cell_tech_type];
+ g_tp.sram_cell.R_pch_on += curr_alpha * Rpchannelon[ram_cell_tech_type];
+ g_tp.sram_cell.n_to_p_eff_curr_drv_ratio += curr_alpha * n_to_p_eff_curr_drv_ratio[ram_cell_tech_type];
+ g_tp.sram_cell.long_channel_leakage_reduction += curr_alpha * long_channel_leakage_reduction[ram_cell_tech_type];
+ g_tp.sram_cell.I_off_n += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.sram_cell.I_off_p += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.sram_cell.I_g_on_n += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.sram_cell.I_g_on_p += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
+
+ g_tp.dram_cell_Vdd += curr_alpha * curr_vdd_dram_cell;
+ g_tp.dram_acc.Vth += curr_alpha * curr_v_th_dram_access_transistor;
+ g_tp.dram_acc.l_phy += curr_alpha * Lphy[dram_cell_tech_flavor];
+ g_tp.dram_acc.l_elec += curr_alpha * Lelec[dram_cell_tech_flavor];
+ g_tp.dram_acc.C_g_ideal += curr_alpha * c_g_ideal[dram_cell_tech_flavor];
+ g_tp.dram_acc.C_fringe += curr_alpha * c_fringe[dram_cell_tech_flavor];
+ g_tp.dram_acc.C_junc += curr_alpha * c_junc[dram_cell_tech_flavor];
+ g_tp.dram_acc.C_junc_sidewall = 0.25e-15; // F/micron
+ g_tp.dram_cell_I_on += curr_alpha * curr_I_on_dram_cell;
+ g_tp.dram_cell_I_off_worst_case_len_temp += curr_alpha * curr_I_off_dram_cell_worst_case_length_temp;
+ g_tp.dram_acc.I_on_n += curr_alpha * I_on_n[dram_cell_tech_flavor];
+ g_tp.dram_cell_C += curr_alpha * curr_c_dram_cell;
+ g_tp.vpp += curr_alpha * curr_vpp;
+ g_tp.dram_wl.l_phy += curr_alpha * Lphy[dram_cell_tech_flavor];
+ g_tp.dram_wl.l_elec += curr_alpha * Lelec[dram_cell_tech_flavor];
+ g_tp.dram_wl.C_g_ideal += curr_alpha * c_g_ideal[dram_cell_tech_flavor];
+ g_tp.dram_wl.C_fringe += curr_alpha * c_fringe[dram_cell_tech_flavor];
+ g_tp.dram_wl.C_junc += curr_alpha * c_junc[dram_cell_tech_flavor];
+ g_tp.dram_wl.C_junc_sidewall = 0.25e-15; // F/micron
+ g_tp.dram_wl.I_on_n += curr_alpha * I_on_n[dram_cell_tech_flavor];
+ g_tp.dram_wl.R_nch_on += curr_alpha * Rnchannelon[dram_cell_tech_flavor];
+ g_tp.dram_wl.R_pch_on += curr_alpha * Rpchannelon[dram_cell_tech_flavor];
+ g_tp.dram_wl.n_to_p_eff_curr_drv_ratio += curr_alpha * n_to_p_eff_curr_drv_ratio[dram_cell_tech_flavor];
+ g_tp.dram_wl.long_channel_leakage_reduction += curr_alpha * long_channel_leakage_reduction[dram_cell_tech_flavor];
+ g_tp.dram_wl.I_off_n += curr_alpha * I_off_n[dram_cell_tech_flavor][g_ip->temp - 300];
+ g_tp.dram_wl.I_off_p += curr_alpha * I_off_n[dram_cell_tech_flavor][g_ip->temp - 300];
+
+ g_tp.cam_cell.Vdd += curr_alpha * vdd[ram_cell_tech_type];
+ g_tp.cam_cell.l_phy += curr_alpha * Lphy[ram_cell_tech_type];
+ g_tp.cam_cell.l_elec += curr_alpha * Lelec[ram_cell_tech_type];
+ g_tp.cam_cell.t_ox += curr_alpha * t_ox[ram_cell_tech_type];
+ g_tp.cam_cell.Vth += curr_alpha * v_th[ram_cell_tech_type];
+ g_tp.cam_cell.C_g_ideal += curr_alpha * c_g_ideal[ram_cell_tech_type];
+ g_tp.cam_cell.C_fringe += curr_alpha * c_fringe[ram_cell_tech_type];
+ g_tp.cam_cell.C_junc += curr_alpha * c_junc[ram_cell_tech_type];
+ g_tp.cam_cell.C_junc_sidewall = 0.25e-15; // F/micron
+ g_tp.cam_cell.I_on_n += curr_alpha * I_on_n[ram_cell_tech_type];
+ g_tp.cam_cell.R_nch_on += curr_alpha * Rnchannelon[ram_cell_tech_type];
+ g_tp.cam_cell.R_pch_on += curr_alpha * Rpchannelon[ram_cell_tech_type];
+ g_tp.cam_cell.n_to_p_eff_curr_drv_ratio += curr_alpha * n_to_p_eff_curr_drv_ratio[ram_cell_tech_type];
+ g_tp.cam_cell.long_channel_leakage_reduction += curr_alpha * long_channel_leakage_reduction[ram_cell_tech_type];
+ g_tp.cam_cell.I_off_n += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.cam_cell.I_off_p += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.cam_cell.I_g_on_n += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.cam_cell.I_g_on_p += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
+
+ g_tp.dram.cell_a_w += curr_alpha * curr_Wmemcella_dram;
+ g_tp.dram.cell_pmos_w += curr_alpha * curr_Wmemcellpmos_dram;
+ g_tp.dram.cell_nmos_w += curr_alpha * curr_Wmemcellnmos_dram;
+ area_cell_dram += curr_alpha * curr_area_cell_dram;
+ asp_ratio_cell_dram += curr_alpha * curr_asp_ratio_cell_dram;
+
+ g_tp.sram.cell_a_w += curr_alpha * curr_Wmemcella_sram;
+ g_tp.sram.cell_pmos_w += curr_alpha * curr_Wmemcellpmos_sram;
+ g_tp.sram.cell_nmos_w += curr_alpha * curr_Wmemcellnmos_sram;
+ area_cell_sram += curr_alpha * curr_area_cell_sram;
+ asp_ratio_cell_sram += curr_alpha * curr_asp_ratio_cell_sram;
+
+ g_tp.cam.cell_a_w += curr_alpha * curr_Wmemcella_cam;//sheng
+ g_tp.cam.cell_pmos_w += curr_alpha * curr_Wmemcellpmos_cam;
+ g_tp.cam.cell_nmos_w += curr_alpha * curr_Wmemcellnmos_cam;
+ area_cell_cam += curr_alpha * curr_area_cell_cam;
+ asp_ratio_cell_cam += curr_alpha * curr_asp_ratio_cell_cam;
+
+ //Sense amplifier latch Gm calculation
+ mobility_eff_periph_global += curr_alpha * mobility_eff[peri_global_tech_type];
+ Vdsat_periph_global += curr_alpha * Vdsat[peri_global_tech_type];
+
+ //Empirical undifferetiated core/FU coefficient
+ g_tp.scaling_factor.logic_scaling_co_eff += curr_alpha * curr_logic_scaling_co_eff;
+ g_tp.scaling_factor.core_tx_density += curr_alpha * curr_core_tx_density;
+ g_tp.chip_layout_overhead += curr_alpha * curr_chip_layout_overhead;
+ g_tp.macro_layout_overhead += curr_alpha * curr_macro_layout_overhead;
+ g_tp.sckt_co_eff += curr_alpha * curr_sckt_co_eff;
+ }
+
+
+ //Currently we are not modeling the resistance/capacitance of poly anywhere.
+ //Continuous function (or date have been processed) does not need linear interpolation
+ g_tp.w_comp_inv_p1 = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ g_tp.w_comp_inv_n1 = 7.5 * g_ip->F_sz_um;//this was 6 micron for the 0.8 micron process
+ g_tp.w_comp_inv_p2 = 25 * g_ip->F_sz_um;//this was 20 micron for the 0.8 micron process
+ g_tp.w_comp_inv_n2 = 15 * g_ip->F_sz_um;//this was 12 micron for the 0.8 micron process
+ g_tp.w_comp_inv_p3 = 50 * g_ip->F_sz_um;//this was 40 micron for the 0.8 micron process
+ g_tp.w_comp_inv_n3 = 30 * g_ip->F_sz_um;//this was 24 micron for the 0.8 micron process
+ g_tp.w_eval_inv_p = 100 * g_ip->F_sz_um;//this was 80 micron for the 0.8 micron process
+ g_tp.w_eval_inv_n = 50 * g_ip->F_sz_um;//this was 40 micron for the 0.8 micron process
+ g_tp.w_comp_n = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ g_tp.w_comp_p = 37.5 * g_ip->F_sz_um;//this was 30 micron for the 0.8 micron process
+
+ g_tp.MIN_GAP_BET_P_AND_N_DIFFS = 5 * g_ip->F_sz_um;
+ g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS = 1.5 * g_ip->F_sz_um;
+ g_tp.HPOWERRAIL = 2 * g_ip->F_sz_um;
+ g_tp.cell_h_def = 50 * g_ip->F_sz_um;
+ g_tp.w_poly_contact = g_ip->F_sz_um;
+ g_tp.spacing_poly_to_contact = g_ip->F_sz_um;
+ g_tp.spacing_poly_to_poly = 1.5 * g_ip->F_sz_um;
+ g_tp.ram_wl_stitching_overhead_ = 7.5 * g_ip->F_sz_um;
+
+ g_tp.min_w_nmos_ = 3 * g_ip->F_sz_um / 2;
+ g_tp.max_w_nmos_ = 100 * g_ip->F_sz_um;
+ g_tp.w_iso = 12.5*g_ip->F_sz_um;//was 10 micron for the 0.8 micron process
+ g_tp.w_sense_n = 3.75*g_ip->F_sz_um; // sense amplifier N-trans; was 3 micron for the 0.8 micron process
+ g_tp.w_sense_p = 7.5*g_ip->F_sz_um; // sense amplifier P-trans; was 6 micron for the 0.8 micron process
+ g_tp.w_sense_en = 5*g_ip->F_sz_um; // Sense enable transistor of the sense amplifier; was 4 micron for the 0.8 micron process
+ g_tp.w_nmos_b_mux = 6 * g_tp.min_w_nmos_;
+ g_tp.w_nmos_sa_mux = 6 * g_tp.min_w_nmos_;
+
+ if (ram_cell_tech_type == comm_dram)
+ {
+ g_tp.max_w_nmos_dec = 8 * g_ip->F_sz_um;
+ g_tp.h_dec = 8; // in the unit of memory cell height
+ }
+ else
+ {
+ g_tp.max_w_nmos_dec = g_tp.max_w_nmos_;
+ g_tp.h_dec = 4; // in the unit of memory cell height
+ }
+
+ g_tp.peri_global.C_overlap = 0.2 * g_tp.peri_global.C_g_ideal;
+ g_tp.sram_cell.C_overlap = 0.2 * g_tp.sram_cell.C_g_ideal;
+ g_tp.cam_cell.C_overlap = 0.2 * g_tp.cam_cell.C_g_ideal;
+
+ g_tp.dram_acc.C_overlap = 0.2 * g_tp.dram_acc.C_g_ideal;
+ g_tp.dram_acc.R_nch_on = g_tp.dram_cell_Vdd / g_tp.dram_acc.I_on_n;
+ //g_tp.dram_acc.R_pch_on = g_tp.dram_cell_Vdd / g_tp.dram_acc.I_on_p;
+
+ g_tp.dram_wl.C_overlap = 0.2 * g_tp.dram_wl.C_g_ideal;
+
+ double gmn_sense_amp_latch = (mobility_eff_periph_global / 2) * g_tp.peri_global.C_ox * (g_tp.w_sense_n / g_tp.peri_global.l_elec) * Vdsat_periph_global;
+ double gmp_sense_amp_latch = gmp_to_gmn_multiplier_periph_global * gmn_sense_amp_latch;
+ g_tp.gm_sense_amp_latch = gmn_sense_amp_latch + gmp_sense_amp_latch;
+
+ g_tp.dram.b_w = sqrt(area_cell_dram / (asp_ratio_cell_dram));
+ g_tp.dram.b_h = asp_ratio_cell_dram * g_tp.dram.b_w;
+ g_tp.sram.b_w = sqrt(area_cell_sram / (asp_ratio_cell_sram));
+ g_tp.sram.b_h = asp_ratio_cell_sram * g_tp.sram.b_w;
+ g_tp.cam.b_w = sqrt(area_cell_cam / (asp_ratio_cell_cam));//Sheng
+ g_tp.cam.b_h = asp_ratio_cell_cam * g_tp.cam.b_w;
+
+ g_tp.dram.Vbitpre = g_tp.dram_cell_Vdd;
+ g_tp.sram.Vbitpre = vdd[ram_cell_tech_type];
+ g_tp.cam.Vbitpre = vdd[ram_cell_tech_type];//Sheng
+ pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
+ g_tp.w_pmos_bl_precharge = 6 * pmos_to_nmos_sizing_r * g_tp.min_w_nmos_;
+ g_tp.w_pmos_bl_eq = pmos_to_nmos_sizing_r * g_tp.min_w_nmos_;
+
+
+ double wire_pitch [NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ wire_r_per_micron[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ wire_c_per_micron[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ horiz_dielectric_constant[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ vert_dielectric_constant[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ aspect_ratio[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ miller_value[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ ild_thickness[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES];
+
+ for (iter=0; iter<=1; ++iter)
+ {
+ // linear interpolation
+ if (iter == 0)
+ {
+ tech = tech_lo;
+ if (tech_lo == tech_hi)
+ {
+ curr_alpha = 1;
+ }
+ else
+ {
+ curr_alpha = (technology - tech_hi)/(tech_lo - tech_hi);
+ }
+ }
+ else
+ {
+ tech = tech_hi;
+ if (tech_lo == tech_hi)
+ {
+ break;
+ }
+ else
+ {
+ curr_alpha = (tech_lo - technology)/(tech_lo - tech_hi);
+ }
+ }
+
+ if (tech == 180)
+ {
+ //Aggressive projections
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//micron
+ aspect_ratio[0][0] = 2.0;
+ wire_width = wire_pitch[0][0] / 2; //micron
+ wire_thickness = aspect_ratio[0][0] * wire_width;//micron
+ wire_spacing = wire_pitch[0][0] - wire_width;//micron
+ barrier_thickness = 0.017;//micron
+ dishing_thickness = 0;//micron
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);//ohm/micron
+ ild_thickness[0][0] = 0.75;//micron
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 2.709;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15; //F/micron
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0],
+ vert_dielectric_constant[0][0],
+ fringe_cap);//F/micron.
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 2.4;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.75;//micron
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 2.709;
+ vert_dielectric_constant[0][1] = 3.9;
+ fringe_cap = 0.115e-15; //F/micron
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1],
+ vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[0][2] = 2.2;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 1.5;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 2.709;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0]= 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.017;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.75;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 3.038;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0],
+ vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.75;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 3.038;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1],
+ vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 1.98;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 3.038;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2] , miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.18;
+ wire_c_per_micron[1][3] = 60e-15 / (256 * 2 * 0.18);
+ wire_r_per_micron[1][3] = 12 / 0.18;
+ }
+ else if (tech == 90)
+ {
+ //Aggressive projections
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//micron
+ aspect_ratio[0][0] = 2.4;
+ wire_width = wire_pitch[0][0] / 2; //micron
+ wire_thickness = aspect_ratio[0][0] * wire_width;//micron
+ wire_spacing = wire_pitch[0][0] - wire_width;//micron
+ barrier_thickness = 0.01;//micron
+ dishing_thickness = 0;//micron
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);//ohm/micron
+ ild_thickness[0][0] = 0.48;//micron
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 2.709;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15; //F/micron
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0],
+ vert_dielectric_constant[0][0],
+ fringe_cap);//F/micron.
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 2.4;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.48;//micron
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 2.709;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1],
+ vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[0][2] = 2.7;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.96;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 2.709;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.008;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.48;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 3.038;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0],
+ vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.48;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 3.038;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1],
+ vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 1.1;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 3.038;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2] , miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.09;
+ wire_c_per_micron[1][3] = 60e-15 / (256 * 2 * 0.09);
+ wire_r_per_micron[1][3] = 12 / 0.09;
+ }
+ else if (tech == 65)
+ {
+ //Aggressive projections
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[0][0] = 2.7;
+ wire_width = wire_pitch[0][0] / 2;
+ wire_thickness = aspect_ratio[0][0] * wire_width;
+ wire_spacing = wire_pitch[0][0] - wire_width;
+ barrier_thickness = 0;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][0] = 0.405;
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 2.303;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0] , miller_value[0][0] , horiz_dielectric_constant[0][0] , vert_dielectric_constant[0][0] ,
+ fringe_cap);
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 2.7;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.405;
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 2.303;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1],
+ vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[0][2] = 2.8;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.81;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 2.303;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.006;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.405;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 2.734;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.405;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 2.734;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 0.77;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 2.734;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.065;
+ wire_c_per_micron[1][3] = 52.5e-15 / (256 * 2 * 0.065);
+ wire_r_per_micron[1][3] = 12 / 0.065;
+ }
+ else if (tech == 45)
+ {
+ //Aggressive projections.
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[0][0] = 3.0;
+ wire_width = wire_pitch[0][0] / 2;
+ wire_thickness = aspect_ratio[0][0] * wire_width;
+ wire_spacing = wire_pitch[0][0] - wire_width;
+ barrier_thickness = 0;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][0] = 0.315;
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 1.958;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0] , miller_value[0][0] , horiz_dielectric_constant[0][0] , vert_dielectric_constant[0][0] ,
+ fringe_cap);
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 3.0;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.315;
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 1.958;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[0][2] = 3.0;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.63;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 1.958;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.004;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.315;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 2.46;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.315;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 2.46;
+ vert_dielectric_constant[1][1] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 0.55;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 2.46;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.045;
+ wire_c_per_micron[1][3] = 37.5e-15 / (256 * 2 * 0.045);
+ wire_r_per_micron[1][3] = 12 / 0.045;
+ }
+ else if (tech == 32)
+ {
+ //Aggressive projections.
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[0][0] = 3.0;
+ wire_width = wire_pitch[0][0] / 2;
+ wire_thickness = aspect_ratio[0][0] * wire_width;
+ wire_spacing = wire_pitch[0][0] - wire_width;
+ barrier_thickness = 0;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][0] = 0.21;
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 1.664;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0], vert_dielectric_constant[0][0],
+ fringe_cap);
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 3.0;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.21;
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 1.664;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[0][2] = 3.0;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.42;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 1.664;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.003;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.21;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 2.214;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ aspect_ratio[1][1] = 2.0;
+ wire_width = wire_pitch[1][1] / 2;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.21;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 2.214;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 0.385;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 2.214;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.032;//micron
+ wire_c_per_micron[1][3] = 31e-15 / (256 * 2 * 0.032);//F/micron
+ wire_r_per_micron[1][3] = 12 / 0.032;//ohm/micron
+ }
+ else if (tech == 22)
+ {
+ //Aggressive projections.
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//local
+ aspect_ratio[0][0] = 3.0;
+ wire_width = wire_pitch[0][0] / 2;
+ wire_thickness = aspect_ratio[0][0] * wire_width;
+ wire_spacing = wire_pitch[0][0] - wire_width;
+ barrier_thickness = 0;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][0] = 0.15;
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 1.414;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0], vert_dielectric_constant[0][0],
+ fringe_cap);
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;//semi-global
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 3.0;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.15;
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 1.414;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;//global
+ aspect_ratio[0][2] = 3.0;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.3;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 1.414;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+// //*************************
+// wire_pitch[0][4] = 16 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][4] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][4] - wire_width;
+// wire_r_per_micron[0][4] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][4] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[0][5] = 24 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][5] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][5] - wire_width;
+// wire_r_per_micron[0][5] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][5] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[0][6] = 32 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][6] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][6] - wire_width;
+// wire_r_per_micron[0][6] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][6] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+ //*************************
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.003;
+ dishing_thickness = 0;
+ alpha_scatter = 1.05;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.15;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 2.104;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.15;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 2.104;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 0.275;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 2.104;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.022;//micron
+ wire_c_per_micron[1][3] = 31e-15 / (256 * 2 * 0.022);//F/micron
+ wire_r_per_micron[1][3] = 12 / 0.022;//ohm/micron
+
+ //******************
+// wire_pitch[1][4] = 16 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][4] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][4] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][4] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][4] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[1][5] = 24 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][5] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][5] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][5] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][5] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[1][6] = 32 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][6] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][6] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][6] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][6] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+ }
+
+ else if (tech == 16)
+ {
+ //Aggressive projections.
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//local
+ aspect_ratio[0][0] = 3.0;
+ wire_width = wire_pitch[0][0] / 2;
+ wire_thickness = aspect_ratio[0][0] * wire_width;
+ wire_spacing = wire_pitch[0][0] - wire_width;
+ barrier_thickness = 0;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][0] = 0.108;
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 1.202;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0], vert_dielectric_constant[0][0],
+ fringe_cap);
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;//semi-global
+ aspect_ratio[0][1] = 3.0;
+ wire_width = wire_pitch[0][1] / 2;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.108;
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 1.202;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;//global
+ aspect_ratio[0][2] = 3.0;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.216;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 1.202;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+// //*************************
+// wire_pitch[0][4] = 16 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][4] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][4] - wire_width;
+// wire_r_per_micron[0][4] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][4] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[0][5] = 24 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][5] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][5] - wire_width;
+// wire_r_per_micron[0][5] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][5] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[0][6] = 32 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][6] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][6] - wire_width;
+// wire_r_per_micron[0][6] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][6] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+ //*************************
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.002;
+ dishing_thickness = 0;
+ alpha_scatter = 1.05;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.108;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 1.998;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.108;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 1.998;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 0.198;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 1.998;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.016;//micron
+ wire_c_per_micron[1][3] = 31e-15 / (256 * 2 * 0.016);//F/micron
+ wire_r_per_micron[1][3] = 12 / 0.016;//ohm/micron
+
+ //******************
+// wire_pitch[1][4] = 16 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][4] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][4] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][4] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][4] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[1][5] = 24 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][5] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][5] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][5] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][5] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[1][6] = 32 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][6] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][6] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][6] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][6] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+ }
+ g_tp.wire_local.pitch += curr_alpha * wire_pitch[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.R_per_um += curr_alpha * wire_r_per_micron[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.C_per_um += curr_alpha * wire_c_per_micron[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.aspect_ratio += curr_alpha * aspect_ratio[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.ild_thickness += curr_alpha * ild_thickness[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.miller_value += curr_alpha * miller_value[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.horiz_dielectric_constant += curr_alpha* horiz_dielectric_constant[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.vert_dielectric_constant += curr_alpha* vert_dielectric_constant [g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+
+ g_tp.wire_inside_mat.pitch += curr_alpha * wire_pitch[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.R_per_um += curr_alpha* wire_r_per_micron[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.C_per_um += curr_alpha* wire_c_per_micron[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.aspect_ratio += curr_alpha * aspect_ratio[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.ild_thickness += curr_alpha * ild_thickness[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.miller_value += curr_alpha * miller_value[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.horiz_dielectric_constant += curr_alpha* horiz_dielectric_constant[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.vert_dielectric_constant += curr_alpha* vert_dielectric_constant [g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+
+ g_tp.wire_outside_mat.pitch += curr_alpha * wire_pitch[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.R_per_um += curr_alpha*wire_r_per_micron[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.C_per_um += curr_alpha*wire_c_per_micron[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.aspect_ratio += curr_alpha * aspect_ratio[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.ild_thickness += curr_alpha * ild_thickness[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.miller_value += curr_alpha * miller_value[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.horiz_dielectric_constant += curr_alpha* horiz_dielectric_constant[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.vert_dielectric_constant += curr_alpha* vert_dielectric_constant [g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+
+ g_tp.unit_len_wire_del = g_tp.wire_inside_mat.R_per_um * g_tp.wire_inside_mat.C_per_um / 2;
+
+ g_tp.sense_delay += curr_alpha *SENSE_AMP_D;
+ g_tp.sense_dy_power += curr_alpha *SENSE_AMP_P;
+// g_tp.horiz_dielectric_constant += horiz_dielectric_constant;
+// g_tp.vert_dielectric_constant += vert_dielectric_constant;
+// g_tp.aspect_ratio += aspect_ratio;
+// g_tp.miller_value += miller_value;
+// g_tp.ild_thickness += ild_thickness;
+
+ }
+ g_tp.fringe_cap = fringe_cap;
+
+ double rd = tr_R_on(g_tp.min_w_nmos_, NCH, 1);
+ double p_to_n_sizing_r = pmos_to_nmos_sz_ratio();
+ double c_load = gate_C(g_tp.min_w_nmos_ * (1 + p_to_n_sizing_r), 0.0);
+ double tf = rd * c_load;
+ g_tp.kinv = horowitz(0, tf, 0.5, 0.5, RISE);
+ double KLOAD = 1;
+ c_load = KLOAD * (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(g_tp.min_w_nmos_ * p_to_n_sizing_r, PCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(g_tp.min_w_nmos_ * 4 * (1 + p_to_n_sizing_r), 0.0));
+ tf = rd * c_load;
+ g_tp.FO4 = horowitz(0, tf, 0.5, 0.5, RISE);
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include <cmath>
+#include <iostream>
+
+#include "uca.h"
+
+UCA::UCA(const DynamicParameter & dyn_p)
+ :dp(dyn_p), bank(dp), nbanks(g_ip->nbanks), refresh_power(0)
+{
+ int num_banks_ver_dir = 1 << ((bank.area.h > bank.area.w) ? _log2(nbanks)/2 : (_log2(nbanks) - _log2(nbanks)/2));
+ int num_banks_hor_dir = nbanks/num_banks_ver_dir;
+
+ if (dp.use_inp_params)
+ {
+ RWP = dp.num_rw_ports;
+ ERP = dp.num_rd_ports;
+ EWP = dp.num_wr_ports;
+ SCHP = dp.num_search_ports;
+ }
+ else
+ {
+ RWP = g_ip->num_rw_ports;
+ ERP = g_ip->num_rd_ports;
+ EWP = g_ip->num_wr_ports;
+ SCHP = g_ip->num_search_ports;
+ }
+
+ num_addr_b_bank = (dp.number_addr_bits_mat + dp.number_subbanks_decode)*(RWP+ERP+EWP);
+ num_di_b_bank = dp.num_di_b_bank_per_port * (RWP + EWP);
+ num_do_b_bank = dp.num_do_b_bank_per_port * (RWP + ERP);
+ num_si_b_bank = dp.num_si_b_bank_per_port * SCHP;
+ num_so_b_bank = dp.num_so_b_bank_per_port * SCHP;
+
+ if (!dp.fully_assoc && !dp.pure_cam)
+ {
+
+ if (g_ip->fast_access && dp.is_tag == false)
+ {
+ num_do_b_bank *= g_ip->data_assoc;
+ }
+
+ htree_in_add = new Htree2(g_ip->wt, bank.area.w, bank.area.h,
+ num_addr_b_bank, num_di_b_bank,0, num_do_b_bank,0,num_banks_ver_dir*2, num_banks_hor_dir*2, Add_htree, true);
+ htree_in_data = new Htree2(g_ip->wt, bank.area.w, bank.area.h,
+ num_addr_b_bank, num_di_b_bank, 0, num_do_b_bank, 0, num_banks_ver_dir*2, num_banks_hor_dir*2, Data_in_htree, true);
+ htree_out_data = new Htree2(g_ip->wt, bank.area.w, bank.area.h,
+ num_addr_b_bank, num_di_b_bank, 0, num_do_b_bank, 0, num_banks_ver_dir*2, num_banks_hor_dir*2, Data_out_htree, true);
+ }
+
+ else
+ {
+
+ htree_in_add = new Htree2(g_ip->wt, bank.area.w, bank.area.h,
+ num_addr_b_bank, num_di_b_bank, num_si_b_bank, num_do_b_bank, num_so_b_bank, num_banks_ver_dir*2, num_banks_hor_dir*2, Add_htree, true);
+ htree_in_data = new Htree2(g_ip->wt, bank.area.w, bank.area.h,
+ num_addr_b_bank, num_di_b_bank,num_si_b_bank, num_do_b_bank, num_so_b_bank, num_banks_ver_dir*2, num_banks_hor_dir*2, Data_in_htree, true);
+ htree_out_data = new Htree2(g_ip->wt, bank.area.w, bank.area.h,
+ num_addr_b_bank, num_di_b_bank,num_si_b_bank, num_do_b_bank, num_so_b_bank, num_banks_ver_dir*2, num_banks_hor_dir*2, Data_out_htree, true);
+ htree_in_search = new Htree2(g_ip->wt, bank.area.w, bank.area.h,
+ num_addr_b_bank, num_di_b_bank,num_si_b_bank, num_do_b_bank, num_so_b_bank, num_banks_ver_dir*2, num_banks_hor_dir*2, Data_in_htree, true);
+ htree_out_search = new Htree2(g_ip->wt, bank.area.w, bank.area.h,
+ num_addr_b_bank, num_di_b_bank,num_si_b_bank, num_do_b_bank, num_so_b_bank, num_banks_ver_dir*2, num_banks_hor_dir*2, Data_out_htree, true);
+ }
+
+ area.w = htree_in_data->area.w;
+ area.h = htree_in_data->area.h;
+
+ area_all_dataramcells = bank.mat.subarray.get_total_cell_area() * dp.num_subarrays * g_ip->nbanks;
+// cout<<"area cell"<<area_all_dataramcells<<endl;
+// cout<<area.get_area()<<endl;
+ // delay calculation
+ double inrisetime = 0.0;
+ compute_delays(inrisetime);
+ compute_power_energy();
+}
+
+
+
+UCA::~UCA()
+{
+ delete htree_in_add;
+ delete htree_in_data;
+ delete htree_out_data;
+}
+
+
+
+double UCA::compute_delays(double inrisetime)
+{
+ double outrisetime = bank.compute_delays(inrisetime);
+
+ double delay_array_to_mat = htree_in_add->delay + bank.htree_in_add->delay;
+ double max_delay_before_row_decoder = delay_array_to_mat + bank.mat.r_predec->delay;
+ delay_array_to_sa_mux_lev_1_decoder = delay_array_to_mat +
+ bank.mat.sa_mux_lev_1_predec->delay +
+ bank.mat.sa_mux_lev_1_dec->delay;
+ delay_array_to_sa_mux_lev_2_decoder = delay_array_to_mat +
+ bank.mat.sa_mux_lev_2_predec->delay +
+ bank.mat.sa_mux_lev_2_dec->delay;
+ double delay_inside_mat = bank.mat.row_dec->delay + bank.mat.delay_bitline + bank.mat.delay_sa;
+
+ delay_before_subarray_output_driver =
+ MAX(MAX(max_delay_before_row_decoder + delay_inside_mat, // row_path
+ delay_array_to_mat + bank.mat.b_mux_predec->delay + bank.mat.bit_mux_dec->delay + bank.mat.delay_sa), // col_path
+ MAX(delay_array_to_sa_mux_lev_1_decoder, // sa_mux_lev_1_path
+ delay_array_to_sa_mux_lev_2_decoder)); // sa_mux_lev_2_path
+ delay_from_subarray_out_drv_to_out = bank.mat.delay_subarray_out_drv_htree +
+ bank.htree_out_data->delay + htree_out_data->delay;
+ access_time = bank.mat.delay_comparator;
+
+ double ram_delay_inside_mat;
+ if (dp.fully_assoc)
+ {
+ //delay of FA contains both CAM tag and RAM data
+ { //delay of CAM
+ ram_delay_inside_mat = bank.mat.delay_bitline + bank.mat.delay_matchchline;
+ access_time = htree_in_add->delay + bank.htree_in_add->delay;
+ //delay of fully-associative data array
+ access_time += ram_delay_inside_mat + delay_from_subarray_out_drv_to_out;
+ }
+ }
+ else
+ {
+ access_time = delay_before_subarray_output_driver + delay_from_subarray_out_drv_to_out; //data_acc_path
+ }
+
+ if (dp.is_main_mem)
+ {
+ double t_rcd = max_delay_before_row_decoder + delay_inside_mat;
+ double cas_latency = MAX(delay_array_to_sa_mux_lev_1_decoder, delay_array_to_sa_mux_lev_2_decoder) +
+ delay_from_subarray_out_drv_to_out;
+ access_time = t_rcd + cas_latency;
+ }
+
+ double temp;
+
+ if (!dp.fully_assoc)
+ {
+ temp = delay_inside_mat + bank.mat.delay_wl_reset + bank.mat.delay_bl_restore;//TODO: Sheng: revisit
+ if (dp.is_dram)
+ {
+ temp += bank.mat.delay_writeback; // temp stores random cycle time
+ }
+
+
+ temp = MAX(temp, bank.mat.r_predec->delay);
+ temp = MAX(temp, bank.mat.b_mux_predec->delay);
+ temp = MAX(temp, bank.mat.sa_mux_lev_1_predec->delay);
+ temp = MAX(temp, bank.mat.sa_mux_lev_2_predec->delay);
+ }
+ else
+ {
+ ram_delay_inside_mat = bank.mat.delay_bitline + bank.mat.delay_matchchline;
+ temp = ram_delay_inside_mat + bank.mat.delay_cam_sl_restore + bank.mat.delay_cam_ml_reset + bank.mat.delay_bl_restore
+ + bank.mat.delay_hit_miss_reset + bank.mat.delay_wl_reset;
+
+ temp = MAX(temp, bank.mat.b_mux_predec->delay);//TODO: Sheng revisit whether distinguish cam and ram bitline etc.
+ temp = MAX(temp, bank.mat.sa_mux_lev_1_predec->delay);
+ temp = MAX(temp, bank.mat.sa_mux_lev_2_predec->delay);
+ }
+
+ // The following is true only if the input parameter "repeaters_in_htree" is set to false --Nav
+ if (g_ip->rpters_in_htree == false)
+ {
+ temp = MAX(temp, bank.htree_in_add->max_unpipelined_link_delay);
+ }
+ cycle_time = temp;
+
+ double delay_req_network = max_delay_before_row_decoder;
+ double delay_rep_network = delay_from_subarray_out_drv_to_out;
+ multisubbank_interleave_cycle_time = MAX(delay_req_network, delay_rep_network);
+
+ if (dp.is_main_mem)
+ {
+ multisubbank_interleave_cycle_time = htree_in_add->delay;
+ precharge_delay = htree_in_add->delay +
+ bank.htree_in_add->delay + bank.mat.delay_writeback +
+ bank.mat.delay_wl_reset + bank.mat.delay_bl_restore;
+ cycle_time = access_time + precharge_delay;
+ }
+ else
+ {
+ precharge_delay = 0;
+ }
+
+ double dram_array_availability = 0;
+ if (dp.is_dram)
+ {
+ dram_array_availability = (1 - dp.num_r_subarray * cycle_time / dp.dram_refresh_period) * 100;
+ }
+
+ return outrisetime;
+}
+
+
+
+// note: currently, power numbers are for a bank of an array
+void UCA::compute_power_energy()
+{
+ bank.compute_power_energy();
+ power = bank.power;
+
+ power_routing_to_bank.readOp.dynamic = htree_in_add->power.readOp.dynamic + htree_out_data->power.readOp.dynamic;
+ power_routing_to_bank.writeOp.dynamic = htree_in_add->power.readOp.dynamic + htree_in_data->power.readOp.dynamic;
+ if (dp.fully_assoc || dp.pure_cam)
+ power_routing_to_bank.searchOp.dynamic= htree_in_search->power.searchOp.dynamic + htree_out_search->power.searchOp.dynamic;
+
+ power_routing_to_bank.readOp.leakage += htree_in_add->power.readOp.leakage +
+ htree_in_data->power.readOp.leakage +
+ htree_out_data->power.readOp.leakage;
+
+ power_routing_to_bank.readOp.gate_leakage += htree_in_add->power.readOp.gate_leakage +
+ htree_in_data->power.readOp.gate_leakage +
+ htree_out_data->power.readOp.gate_leakage;
+ if (dp.fully_assoc || dp.pure_cam)
+ {
+ power_routing_to_bank.readOp.leakage += htree_in_search->power.readOp.leakage + htree_out_search->power.readOp.leakage;
+ power_routing_to_bank.readOp.gate_leakage += htree_in_search->power.readOp.gate_leakage + htree_out_search->power.readOp.gate_leakage;
+ }
+
+ power.searchOp.dynamic += power_routing_to_bank.searchOp.dynamic;
+ power.readOp.dynamic += power_routing_to_bank.readOp.dynamic;
+ power.readOp.leakage += power_routing_to_bank.readOp.leakage;
+ power.readOp.gate_leakage += power_routing_to_bank.readOp.gate_leakage;
+
+ // calculate total write energy per access
+ power.writeOp.dynamic = power.readOp.dynamic
+ - bank.mat.power_bitline.readOp.dynamic * dp.num_act_mats_hor_dir
+ + bank.mat.power_bitline.writeOp.dynamic * dp.num_act_mats_hor_dir
+ - power_routing_to_bank.readOp.dynamic
+ + power_routing_to_bank.writeOp.dynamic
+ + bank.htree_in_data->power.readOp.dynamic
+ - bank.htree_out_data->power.readOp.dynamic;
+
+ if (dp.is_dram == false)
+ {
+ power.writeOp.dynamic -= bank.mat.power_sa.readOp.dynamic * dp.num_act_mats_hor_dir;
+ }
+
+ dyn_read_energy_from_closed_page = power.readOp.dynamic;
+ dyn_read_energy_from_open_page = power.readOp.dynamic -
+ (bank.mat.r_predec->power.readOp.dynamic +
+ bank.mat.power_row_decoders.readOp.dynamic +
+ bank.mat.power_bl_precharge_eq_drv.readOp.dynamic +
+ bank.mat.power_sa.readOp.dynamic +
+ bank.mat.power_bitline.readOp.dynamic) * dp.num_act_mats_hor_dir;
+
+ dyn_read_energy_remaining_words_in_burst =
+ (MAX((g_ip->burst_len / g_ip->int_prefetch_w), 1) - 1) *
+ ((bank.mat.sa_mux_lev_1_predec->power.readOp.dynamic +
+ bank.mat.sa_mux_lev_2_predec->power.readOp.dynamic +
+ bank.mat.power_sa_mux_lev_1_decoders.readOp.dynamic +
+ bank.mat.power_sa_mux_lev_2_decoders.readOp.dynamic +
+ bank.mat.power_subarray_out_drv.readOp.dynamic) * dp.num_act_mats_hor_dir +
+ bank.htree_out_data->power.readOp.dynamic +
+ power_routing_to_bank.readOp.dynamic);
+ dyn_read_energy_from_closed_page += dyn_read_energy_remaining_words_in_burst;
+ dyn_read_energy_from_open_page += dyn_read_energy_remaining_words_in_burst;
+
+ activate_energy = htree_in_add->power.readOp.dynamic +
+ bank.htree_in_add->power_bit.readOp.dynamic * bank.num_addr_b_routed_to_mat_for_act +
+ (bank.mat.r_predec->power.readOp.dynamic +
+ bank.mat.power_row_decoders.readOp.dynamic +
+ bank.mat.power_sa.readOp.dynamic) * dp.num_act_mats_hor_dir;
+ read_energy = (htree_in_add->power.readOp.dynamic +
+ bank.htree_in_add->power_bit.readOp.dynamic * bank.num_addr_b_routed_to_mat_for_rd_or_wr +
+ (bank.mat.sa_mux_lev_1_predec->power.readOp.dynamic +
+ bank.mat.sa_mux_lev_2_predec->power.readOp.dynamic +
+ bank.mat.power_sa_mux_lev_1_decoders.readOp.dynamic +
+ bank.mat.power_sa_mux_lev_2_decoders.readOp.dynamic +
+ bank.mat.power_subarray_out_drv.readOp.dynamic) * dp.num_act_mats_hor_dir +
+ bank.htree_out_data->power.readOp.dynamic +
+ htree_in_data->power.readOp.dynamic) * g_ip->burst_len;
+ write_energy = (htree_in_add->power.readOp.dynamic +
+ bank.htree_in_add->power_bit.readOp.dynamic * bank.num_addr_b_routed_to_mat_for_rd_or_wr +
+ htree_in_data->power.readOp.dynamic +
+ bank.htree_in_data->power.readOp.dynamic +
+ (bank.mat.sa_mux_lev_1_predec->power.readOp.dynamic +
+ bank.mat.sa_mux_lev_2_predec->power.readOp.dynamic +
+ bank.mat.power_sa_mux_lev_1_decoders.readOp.dynamic +
+ bank.mat.power_sa_mux_lev_2_decoders.readOp.dynamic) * dp.num_act_mats_hor_dir) * g_ip->burst_len;
+ precharge_energy = (bank.mat.power_bitline.readOp.dynamic +
+ bank.mat.power_bl_precharge_eq_drv.readOp.dynamic) * dp.num_act_mats_hor_dir;
+
+ leak_power_subbank_closed_page =
+ (bank.mat.r_predec->power.readOp.leakage +
+ bank.mat.b_mux_predec->power.readOp.leakage +
+ bank.mat.sa_mux_lev_1_predec->power.readOp.leakage +
+ bank.mat.sa_mux_lev_2_predec->power.readOp.leakage +
+ bank.mat.power_row_decoders.readOp.leakage +
+ bank.mat.power_bit_mux_decoders.readOp.leakage +
+ bank.mat.power_sa_mux_lev_1_decoders.readOp.leakage +
+ bank.mat.power_sa_mux_lev_2_decoders.readOp.leakage +
+ bank.mat.leak_power_sense_amps_closed_page_state) * dp.num_act_mats_hor_dir;
+
+ leak_power_subbank_closed_page +=
+ (bank.mat.r_predec->power.readOp.gate_leakage +
+ bank.mat.b_mux_predec->power.readOp.gate_leakage +
+ bank.mat.sa_mux_lev_1_predec->power.readOp.gate_leakage +
+ bank.mat.sa_mux_lev_2_predec->power.readOp.gate_leakage +
+ bank.mat.power_row_decoders.readOp.gate_leakage +
+ bank.mat.power_bit_mux_decoders.readOp.gate_leakage +
+ bank.mat.power_sa_mux_lev_1_decoders.readOp.gate_leakage +
+ bank.mat.power_sa_mux_lev_2_decoders.readOp.gate_leakage) * dp.num_act_mats_hor_dir; //+
+ //bank.mat.leak_power_sense_amps_closed_page_state) * dp.num_act_mats_hor_dir;
+
+ leak_power_subbank_open_page =
+ (bank.mat.r_predec->power.readOp.leakage +
+ bank.mat.b_mux_predec->power.readOp.leakage +
+ bank.mat.sa_mux_lev_1_predec->power.readOp.leakage +
+ bank.mat.sa_mux_lev_2_predec->power.readOp.leakage +
+ bank.mat.power_row_decoders.readOp.leakage +
+ bank.mat.power_bit_mux_decoders.readOp.leakage +
+ bank.mat.power_sa_mux_lev_1_decoders.readOp.leakage +
+ bank.mat.power_sa_mux_lev_2_decoders.readOp.leakage +
+ bank.mat.leak_power_sense_amps_open_page_state) * dp.num_act_mats_hor_dir;
+
+ leak_power_subbank_open_page +=
+ (bank.mat.r_predec->power.readOp.gate_leakage +
+ bank.mat.b_mux_predec->power.readOp.gate_leakage +
+ bank.mat.sa_mux_lev_1_predec->power.readOp.gate_leakage +
+ bank.mat.sa_mux_lev_2_predec->power.readOp.gate_leakage +
+ bank.mat.power_row_decoders.readOp.gate_leakage +
+ bank.mat.power_bit_mux_decoders.readOp.gate_leakage +
+ bank.mat.power_sa_mux_lev_1_decoders.readOp.gate_leakage +
+ bank.mat.power_sa_mux_lev_2_decoders.readOp.gate_leakage ) * dp.num_act_mats_hor_dir;
+ //bank.mat.leak_power_sense_amps_open_page_state) * dp.num_act_mats_hor_dir;
+
+ leak_power_request_and_reply_networks =
+ power_routing_to_bank.readOp.leakage +
+ bank.htree_in_add->power.readOp.leakage +
+ bank.htree_in_data->power.readOp.leakage +
+ bank.htree_out_data->power.readOp.leakage;
+
+ leak_power_request_and_reply_networks +=
+ power_routing_to_bank.readOp.gate_leakage +
+ bank.htree_in_add->power.readOp.gate_leakage +
+ bank.htree_in_data->power.readOp.gate_leakage +
+ bank.htree_out_data->power.readOp.gate_leakage;
+
+ if (dp.fully_assoc || dp.pure_cam)
+ {
+ leak_power_request_and_reply_networks += htree_in_search->power.readOp.leakage + htree_out_search->power.readOp.leakage;
+ leak_power_request_and_reply_networks += htree_in_search->power.readOp.gate_leakage + htree_out_search->power.readOp.gate_leakage;
+ }
+
+
+ if (dp.is_dram)
+ { // if DRAM, add contribution of power spent in row predecoder drivers, blocks and decoders to refresh power
+ refresh_power = (bank.mat.r_predec->power.readOp.dynamic * dp.num_act_mats_hor_dir +
+ bank.mat.row_dec->power.readOp.dynamic) * dp.num_r_subarray * dp.num_subarrays;
+ refresh_power += bank.mat.per_bitline_read_energy * dp.num_c_subarray * dp.num_r_subarray * dp.num_subarrays;
+ refresh_power += bank.mat.power_bl_precharge_eq_drv.readOp.dynamic * dp.num_act_mats_hor_dir;
+ refresh_power += bank.mat.power_sa.readOp.dynamic * dp.num_act_mats_hor_dir;
+ refresh_power /= dp.dram_refresh_period;
+ }
+
+
+ if (dp.is_tag == false)
+ {
+ power.readOp.dynamic = dyn_read_energy_from_closed_page;
+ power.writeOp.dynamic = dyn_read_energy_from_closed_page
+ - dyn_read_energy_remaining_words_in_burst
+ - bank.mat.power_bitline.readOp.dynamic * dp.num_act_mats_hor_dir
+ + bank.mat.power_bitline.writeOp.dynamic * dp.num_act_mats_hor_dir
+ + (power_routing_to_bank.writeOp.dynamic -
+ power_routing_to_bank.readOp.dynamic -
+ bank.htree_out_data->power.readOp.dynamic +
+ bank.htree_in_data->power.readOp.dynamic) *
+ (MAX((g_ip->burst_len / g_ip->int_prefetch_w), 1) - 1); //FIXME
+
+ if (dp.is_dram == false)
+ {
+ power.writeOp.dynamic -= bank.mat.power_sa.readOp.dynamic * dp.num_act_mats_hor_dir;
+ }
+ }
+
+ // if DRAM, add refresh power to total leakage
+ if (dp.is_dram)
+ {
+ power.readOp.leakage += refresh_power;
+ }
+
+ // TODO: below should be avoided.
+ /*if (dp.is_main_mem)
+ {
+ power.readOp.leakage += MAIN_MEM_PER_CHIP_STANDBY_CURRENT_mA * 1e-3 * g_tp.peri_global.Vdd / g_ip->nbanks;
+ }*/
+
+ assert(power.readOp.dynamic > 0);
+ assert(power.writeOp.dynamic > 0);
+ assert(power.readOp.leakage > 0);
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __UCA_H__
+#define __UCA_H__
+
+#include "area.h"
+#include "bank.h"
+#include "component.h"
+#include "htree2.h"
+#include "parameter.h"
+
+class UCA : public Component
+{
+ public:
+ UCA(const DynamicParameter & dyn_p);
+ ~UCA();
+ double compute_delays(double inrisetime); // returns outrisetime
+ void compute_power_energy();
+
+ DynamicParameter dp;
+ Bank bank;
+
+ Htree2 * htree_in_add;
+ Htree2 * htree_in_data;
+ Htree2 * htree_out_data;
+ Htree2 * htree_in_search;
+ Htree2 * htree_out_search;
+
+ powerDef power_routing_to_bank;
+
+ uint32_t nbanks;
+
+ int num_addr_b_bank;
+ int num_di_b_bank;
+ int num_do_b_bank;
+ int num_si_b_bank;
+ int num_so_b_bank;
+ int RWP, ERP, EWP,SCHP;
+ double area_all_dataramcells;
+
+ double dyn_read_energy_from_closed_page;
+ double dyn_read_energy_from_open_page;
+ double dyn_read_energy_remaining_words_in_burst;
+
+ double refresh_power; // only for DRAM
+ double activate_energy;
+ double read_energy;
+ double write_energy;
+ double precharge_energy;
+ double leak_power_subbank_closed_page;
+ double leak_power_subbank_open_page;
+ double leak_power_request_and_reply_networks;
+
+ double delay_array_to_sa_mux_lev_1_decoder;
+ double delay_array_to_sa_mux_lev_2_decoder;
+ double delay_before_subarray_output_driver;
+ double delay_from_subarray_out_drv_to_out;
+ double access_time;
+ double precharge_delay;
+ double multisubbank_interleave_cycle_time;
+};
+
+#endif
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#include "wire.h"
+#include "cmath"
+// use this constructor to calculate wire stats
+Wire::Wire(
+ enum Wire_type wire_model,
+ double wl,
+ int n,
+ double w_s,
+ double s_s,
+ enum Wire_placement wp,
+ double resistivity,
+ TechnologyParameter::DeviceType *dt
+ ):wt(wire_model), wire_length(wl*1e-6), nsense(n), w_scale(w_s), s_scale(s_s),
+ resistivity(resistivity), deviceType(dt)
+{
+ wire_placement = wp;
+ min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio*g_tp.min_w_nmos_;
+ in_rise_time = 0;
+ out_rise_time = 0;
+ if (initialized != 1) {
+ cout << "Wire not initialized. Initializing it with default values\n";
+ Wire winit;
+ }
+ calculate_wire_stats();
+ // change everything back to seconds, microns, and Joules
+ repeater_spacing *= 1e6;
+ wire_length *= 1e6;
+ wire_width *= 1e6;
+ wire_spacing *= 1e6;
+ assert(wire_length > 0);
+ assert(power.readOp.dynamic > 0);
+ assert(power.readOp.leakage > 0);
+ assert(power.readOp.gate_leakage > 0);
+}
+
+ // the following values are for peripheral global technology
+ // specified in the input config file
+ Component Wire::global;
+ Component Wire::global_5;
+ Component Wire::global_10;
+ Component Wire::global_20;
+ Component Wire::global_30;
+ Component Wire::low_swing;
+
+ int Wire::initialized;
+ double Wire::wire_width_init;
+ double Wire::wire_spacing_init;
+
+
+Wire::Wire(double w_s, double s_s, enum Wire_placement wp, double resis, TechnologyParameter::DeviceType *dt)
+{
+ w_scale = w_s;
+ s_scale = s_s;
+ deviceType = dt;
+ wire_placement = wp;
+ resistivity = resis;
+ min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * g_tp.min_w_nmos_;
+ in_rise_time = 0;
+ out_rise_time = 0;
+
+ switch (wire_placement)
+ {
+ case outside_mat: wire_width = g_tp.wire_outside_mat.pitch; break;
+ case inside_mat : wire_width = g_tp.wire_inside_mat.pitch; break;
+ default: wire_width = g_tp.wire_local.pitch; break;
+ }
+
+ wire_spacing = wire_width;
+
+ wire_width *= (w_scale * 1e-6/2) /* (m) */;
+ wire_spacing *= (s_scale * 1e-6/2) /* (m) */;
+
+ initialized = 1;
+ init_wire();
+ wire_width_init = wire_width;
+ wire_spacing_init = wire_spacing;
+
+ assert(power.readOp.dynamic > 0);
+ assert(power.readOp.leakage > 0);
+ assert(power.readOp.gate_leakage > 0);
+}
+
+
+
+Wire::~Wire()
+{
+}
+
+
+
+void
+Wire::calculate_wire_stats()
+{
+
+ if (wire_placement == outside_mat) {
+ wire_width = g_tp.wire_outside_mat.pitch;
+ }
+ else if (wire_placement == inside_mat) {
+ wire_width = g_tp.wire_inside_mat.pitch;
+ }
+ else {
+ wire_width = g_tp.wire_local.pitch;
+ }
+
+ wire_spacing = wire_width;
+
+ wire_width *= (w_scale * 1e-6/2) /* (m) */;
+ wire_spacing *= (s_scale * 1e-6/2) /* (m) */;
+
+
+ if (wt != Low_swing) {
+
+ // delay_optimal_wire();
+
+ if (wt == Global) {
+ delay = global.delay * wire_length;
+ power.readOp.dynamic = global.power.readOp.dynamic * wire_length;
+ power.readOp.leakage = global.power.readOp.leakage * wire_length;
+ power.readOp.gate_leakage = global.power.readOp.gate_leakage * wire_length;
+ repeater_spacing = global.area.w;
+ repeater_size = global.area.h;
+ area.set_area((wire_length/repeater_spacing) *
+ compute_gate_area(INV, 1, min_w_pmos * repeater_size,
+ g_tp.min_w_nmos_ * repeater_size, g_tp.cell_h_def));
+ }
+ else if (wt == Global_5) {
+ delay = global_5.delay * wire_length;
+ power.readOp.dynamic = global_5.power.readOp.dynamic * wire_length;
+ power.readOp.leakage = global_5.power.readOp.leakage * wire_length;
+ power.readOp.gate_leakage = global_5.power.readOp.gate_leakage * wire_length;
+ repeater_spacing = global_5.area.w;
+ repeater_size = global_5.area.h;
+ area.set_area((wire_length/repeater_spacing) *
+ compute_gate_area(INV, 1, min_w_pmos * repeater_size,
+ g_tp.min_w_nmos_ * repeater_size, g_tp.cell_h_def));
+ }
+ else if (wt == Global_10) {
+ delay = global_10.delay * wire_length;
+ power.readOp.dynamic = global_10.power.readOp.dynamic * wire_length;
+ power.readOp.leakage = global_10.power.readOp.leakage * wire_length;
+ power.readOp.gate_leakage = global_10.power.readOp.gate_leakage * wire_length;
+ repeater_spacing = global_10.area.w;
+ repeater_size = global_10.area.h;
+ area.set_area((wire_length/repeater_spacing) *
+ compute_gate_area(INV, 1, min_w_pmos * repeater_size,
+ g_tp.min_w_nmos_ * repeater_size, g_tp.cell_h_def));
+ }
+ else if (wt == Global_20) {
+ delay = global_20.delay * wire_length;
+ power.readOp.dynamic = global_20.power.readOp.dynamic * wire_length;
+ power.readOp.leakage = global_20.power.readOp.leakage * wire_length;
+ power.readOp.gate_leakage = global_20.power.readOp.gate_leakage * wire_length;
+ repeater_spacing = global_20.area.w;
+ repeater_size = global_20.area.h;
+ area.set_area((wire_length/repeater_spacing) *
+ compute_gate_area(INV, 1, min_w_pmos * repeater_size,
+ g_tp.min_w_nmos_ * repeater_size, g_tp.cell_h_def));
+ }
+ else if (wt == Global_30) {
+ delay = global_30.delay * wire_length;
+ power.readOp.dynamic = global_30.power.readOp.dynamic * wire_length;
+ power.readOp.leakage = global_30.power.readOp.leakage * wire_length;
+ power.readOp.gate_leakage = global_30.power.readOp.gate_leakage * wire_length;
+ repeater_spacing = global_30.area.w;
+ repeater_size = global_30.area.h;
+ area.set_area((wire_length/repeater_spacing) *
+ compute_gate_area(INV, 1, min_w_pmos * repeater_size,
+ g_tp.min_w_nmos_ * repeater_size, g_tp.cell_h_def));
+ }
+ out_rise_time = delay*repeater_spacing/deviceType->Vth;
+ }
+ else if (wt == Low_swing) {
+ low_swing_model ();
+ repeater_spacing = wire_length;
+ repeater_size = 1;
+ }
+ else {
+ assert(0);
+ }
+}
+
+
+
+/*
+ * The fall time of an input signal to the first stage of a circuit is
+ * assumed to be same as the fall time of the output signal of two
+ * inverters connected in series (refer: CACTI 1 Technical report,
+ * section 6.1.3)
+ */
+ double
+Wire::signal_fall_time ()
+{
+
+ /* rise time of inverter 1's output */
+ double rt;
+ /* fall time of inverter 2's output */
+ double ft;
+ double timeconst;
+
+ timeconst = (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(min_w_pmos + g_tp.min_w_nmos_, 0)) *
+ tr_R_on(min_w_pmos, PCH, 1);
+ rt = horowitz (0, timeconst, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, FALL) / (deviceType->Vdd - deviceType->Vth);
+ timeconst = (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(min_w_pmos + g_tp.min_w_nmos_, 0)) *
+ tr_R_on(g_tp.min_w_nmos_, NCH, 1);
+ ft = horowitz (rt, timeconst, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE) / deviceType->Vth;
+ return ft;
+}
+
+
+
+double Wire::signal_rise_time ()
+{
+
+ /* rise time of inverter 1's output */
+ double ft;
+ /* fall time of inverter 2's output */
+ double rt;
+ double timeconst;
+
+ timeconst = (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(min_w_pmos + g_tp.min_w_nmos_, 0)) *
+ tr_R_on(g_tp.min_w_nmos_, NCH, 1);
+ rt = horowitz (0, timeconst, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE) / deviceType->Vth;
+ timeconst = (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(min_w_pmos + g_tp.min_w_nmos_, 0)) *
+ tr_R_on(min_w_pmos, PCH, 1);
+ ft = horowitz (rt, timeconst, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, FALL) / (deviceType->Vdd - deviceType->Vth);
+ return ft; //sec
+}
+
+
+
+/* Wire resistance and capacitance calculations
+ * wire width
+ *
+ * /__/
+ * | |
+ * | | height = ASPECT_RATIO*wire width (ASPECT_RATIO = 2.2, ref: ITRS)
+ * |__|/
+ *
+ * spacing between wires in same level = wire width
+ * spacing between wires in adjacent levels = wire width---this is incorrect,
+ * according to R.Ho's paper and thesis. ILD != wire width
+ *
+ */
+
+double Wire::wire_cap (double len /* in m */, bool call_from_outside)
+{
+ //TODO: this should be consistent with the wire_res in technology file
+ double sidewall, adj, tot_cap;
+ double wire_height;
+ double epsilon0 = 8.8542e-12;
+ double aspect_ratio, horiz_dielectric_constant, vert_dielectric_constant, miller_value,ild_thickness;
+
+ switch (wire_placement)
+ {
+ case outside_mat:
+ {
+ aspect_ratio = g_tp.wire_outside_mat.aspect_ratio;
+ horiz_dielectric_constant = g_tp.wire_outside_mat.horiz_dielectric_constant;
+ vert_dielectric_constant = g_tp.wire_outside_mat.vert_dielectric_constant;
+ miller_value = g_tp.wire_outside_mat.miller_value;
+ ild_thickness = g_tp.wire_outside_mat.ild_thickness;
+ break;
+ }
+ case inside_mat :
+ {
+ aspect_ratio = g_tp.wire_inside_mat.aspect_ratio;
+ horiz_dielectric_constant = g_tp.wire_inside_mat.horiz_dielectric_constant;
+ vert_dielectric_constant = g_tp.wire_inside_mat.vert_dielectric_constant;
+ miller_value = g_tp.wire_inside_mat.miller_value;
+ ild_thickness = g_tp.wire_inside_mat.ild_thickness;
+ break;
+ }
+ default:
+ {
+ aspect_ratio = g_tp.wire_local.aspect_ratio;
+ horiz_dielectric_constant = g_tp.wire_local.horiz_dielectric_constant;
+ vert_dielectric_constant = g_tp.wire_local.vert_dielectric_constant;
+ miller_value = g_tp.wire_local.miller_value;
+ ild_thickness = g_tp.wire_local.ild_thickness;
+ break;
+ }
+ }
+
+ if (call_from_outside)
+ {
+ wire_width *= 1e-6;
+ wire_spacing *= 1e-6;
+ }
+ wire_height = wire_width/w_scale*aspect_ratio;
+ /*
+ * assuming height does not change. wire_width = width_original*w_scale
+ * So wire_height does not change as wire width increases
+ */
+
+// capacitance between wires in the same level
+// sidewall = 2*miller_value * horiz_dielectric_constant * (wire_height/wire_spacing)
+// * epsilon0;
+
+ sidewall = miller_value * horiz_dielectric_constant * (wire_height/wire_spacing)
+ * epsilon0;
+
+
+ // capacitance between wires in adjacent levels
+ //adj = miller_value * vert_dielectric_constant *w_scale * epsilon0;
+ //adj = 2*vert_dielectric_constant *wire_width/(ild_thickness*1e-6) * epsilon0;
+
+ adj = miller_value *vert_dielectric_constant *wire_width/(ild_thickness*1e-6) * epsilon0;
+ //Change ild_thickness from micron to M
+
+ //tot_cap = (sidewall + adj + (deviceType->C_fringe * 1e6)); //F/m
+ tot_cap = (sidewall + adj + (g_tp.fringe_cap * 1e6)); //F/m
+
+ if (call_from_outside)
+ {
+ wire_width *= 1e6;
+ wire_spacing *= 1e6;
+ }
+ return (tot_cap*len); // (F)
+}
+
+
+ double
+Wire::wire_res (double len /*(in m)*/)
+{
+
+ double aspect_ratio,alpha_scatter =1.05, dishing_thickness=0, barrier_thickness=0;
+ //TODO: this should be consistent with the wire_res in technology file
+ //The whole computation should be consistent with the wire_res in technology.cc too!
+
+ switch (wire_placement)
+ {
+ case outside_mat:
+ {
+ aspect_ratio = g_tp.wire_outside_mat.aspect_ratio;
+ break;
+ }
+ case inside_mat :
+ {
+ aspect_ratio = g_tp.wire_inside_mat.aspect_ratio;
+ break;
+ }
+ default:
+ {
+ aspect_ratio = g_tp.wire_local.aspect_ratio;
+ break;
+ }
+ }
+ return (alpha_scatter * resistivity * 1e-6 * len/((aspect_ratio*wire_width/w_scale-dishing_thickness - barrier_thickness)*
+ (wire_width-2*barrier_thickness)));
+}
+
+/*
+ * Calculates the delay, power and area of the transmitter circuit.
+ *
+ * The transmitter delay is the sum of nand gate delay, inverter delay
+ * low swing nmos delay, and the wire delay
+ * (ref: Technical report 6)
+ */
+ void
+Wire::low_swing_model()
+{
+ double len = wire_length;
+ double beta = pmos_to_nmos_sz_ratio();
+
+
+ double inputrise = (in_rise_time == 0) ? signal_rise_time() : in_rise_time;
+
+ /* Final nmos low swing driver size calculation:
+ * Try to size the driver such that the delay
+ * is less than 8FO4.
+ * If the driver size is greater than
+ * the max allowable size, assume max size for the driver.
+ * In either case, recalculate the delay using
+ * the final driver size assuming slow input with
+ * finite rise time instead of ideal step input
+ *
+ * (ref: Technical report 6)
+ */
+ double cwire = wire_cap(len); /* load capacitance */
+ double rwire = wire_res(len);
+
+#define RES_ADJ (8.6) // Increase in resistance due to low driving vol.
+
+ double driver_res = (-8*g_tp.FO4/(log(0.5) * cwire))/RES_ADJ;
+ double nsize = R_to_w(driver_res, NCH);
+
+ nsize = MIN(nsize, g_tp.max_w_nmos_);
+ nsize = MAX(nsize, g_tp.min_w_nmos_);
+
+ if(rwire*cwire > 8*g_tp.FO4)
+ {
+ nsize = g_tp.max_w_nmos_;
+ }
+
+ // size the inverter appropriately to minimize the transmitter delay
+ // Note - In order to minimize leakage, we are not adding a set of inverters to
+ // bring down delay. Instead, we are sizing the single gate
+ // based on the logical effort.
+ double st_eff = sqrt((2+beta/1+beta)*gate_C(nsize, 0)/(gate_C(2*g_tp.min_w_nmos_, 0)
+ + gate_C(2*min_w_pmos, 0)));
+ double req_cin = ((2+beta/1+beta)*gate_C(nsize, 0))/st_eff;
+ double inv_size = req_cin/(gate_C(min_w_pmos, 0) + gate_C(g_tp.min_w_nmos_, 0));
+ inv_size = MAX(inv_size, 1);
+
+ /* nand gate delay */
+ double res_eq = (2 * tr_R_on(g_tp.min_w_nmos_, NCH, 1));
+ double cap_eq = 2 * drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(2*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(inv_size*g_tp.min_w_nmos_, 0) +
+ gate_C(inv_size*min_w_pmos, 0);
+
+ double timeconst = res_eq * cap_eq;
+
+ delay = horowitz(inputrise, timeconst, deviceType->Vth/deviceType->Vdd,
+ deviceType->Vth/deviceType->Vdd, RISE);
+ double temp_power = cap_eq*deviceType->Vdd*deviceType->Vdd;
+
+ inputrise = delay / (deviceType->Vdd - deviceType->Vth); /* for the next stage */
+
+ /* Inverter delay:
+ * The load capacitance of this inv depends on
+ * the gate capacitance of the final stage nmos
+ * transistor which in turn depends on nsize
+ */
+ res_eq = tr_R_on(inv_size*min_w_pmos, PCH, 1);
+ cap_eq = drain_C_(inv_size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(inv_size*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(nsize, 0);
+ timeconst = res_eq * cap_eq;
+
+ delay += horowitz(inputrise, timeconst, deviceType->Vth/deviceType->Vdd,
+ deviceType->Vth/deviceType->Vdd, FALL);
+ temp_power += cap_eq*deviceType->Vdd*deviceType->Vdd;
+
+
+ transmitter.delay = delay;
+ transmitter.power.readOp.dynamic = temp_power*2; /* since it is a diff. model*/
+ transmitter.power.readOp.leakage = deviceType->Vdd *
+ (4 * cmos_Isub_leakage(g_tp.min_w_nmos_, min_w_pmos, 2, nand) +
+ 4 * cmos_Isub_leakage(g_tp.min_w_nmos_, min_w_pmos, 1, inv));
+
+ transmitter.power.readOp.gate_leakage = deviceType->Vdd *
+ (4 * cmos_Ig_leakage(g_tp.min_w_nmos_, min_w_pmos, 2, nand) +
+ 4 * cmos_Ig_leakage(g_tp.min_w_nmos_, min_w_pmos, 1, inv));
+
+ inputrise = delay / deviceType->Vth;
+
+ /* nmos delay + wire delay */
+ cap_eq = cwire + drain_C_(nsize, NCH, 1, 1, g_tp.cell_h_def)*2 +
+ nsense * sense_amp_input_cap(); //+receiver cap
+ /*
+ * NOTE: nmos is used as both pull up and pull down transistor
+ * in the transmitter. This is because for low voltage swing, drive
+ * resistance of nmos is less than pmos
+ * (for a detailed graph ref: On-Chip Wires: Scaling and Efficiency)
+ */
+ timeconst = (tr_R_on(nsize, NCH, 1)*RES_ADJ) * (cwire +
+ drain_C_(nsize, NCH, 1, 1, g_tp.cell_h_def)*2) +
+ rwire*cwire/2 +
+ (tr_R_on(nsize, NCH, 1)*RES_ADJ + rwire) *
+ nsense * sense_amp_input_cap();
+
+ /*
+ * since we are pre-equalizing and overdriving the low
+ * swing wires, the net time constant is less
+ * than the actual value
+ */
+ delay += horowitz(inputrise, timeconst, deviceType->Vth/deviceType->Vdd, .25, 0);
+#define VOL_SWING .1
+ temp_power += cap_eq*VOL_SWING*.400; /* .4v is the over drive voltage */
+ temp_power *= 2; /* differential wire */
+
+ l_wire.delay = delay - transmitter.delay;
+ l_wire.power.readOp.dynamic = temp_power - transmitter.power.readOp.dynamic;
+ l_wire.power.readOp.leakage = deviceType->Vdd*
+ (4* cmos_Isub_leakage(nsize, 0, 1, nmos));
+
+ l_wire.power.readOp.gate_leakage = deviceType->Vdd*
+ (4* cmos_Ig_leakage(nsize, 0, 1, nmos));
+
+ //double rt = horowitz(inputrise, timeconst, deviceType->Vth/deviceType->Vdd,
+ // deviceType->Vth/deviceType->Vdd, RISE)/deviceType->Vth;
+
+ delay += g_tp.sense_delay;
+
+ sense_amp.delay = g_tp.sense_delay;
+ out_rise_time = g_tp.sense_delay/(deviceType->Vth);
+ sense_amp.power.readOp.dynamic = g_tp.sense_dy_power;
+ sense_amp.power.readOp.leakage = 0; //FIXME
+ sense_amp.power.readOp.gate_leakage = 0;
+
+ power.readOp.dynamic = temp_power + sense_amp.power.readOp.dynamic;
+ power.readOp.leakage = transmitter.power.readOp.leakage +
+ l_wire.power.readOp.leakage +
+ sense_amp.power.readOp.leakage;
+ power.readOp.gate_leakage = transmitter.power.readOp.gate_leakage +
+ l_wire.power.readOp.gate_leakage +
+ sense_amp.power.readOp.gate_leakage;
+}
+
+ double
+Wire::sense_amp_input_cap()
+{
+ return drain_C_(g_tp.w_iso, PCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(g_tp.w_sense_en + g_tp.w_sense_n, 0) +
+ drain_C_(g_tp.w_sense_n, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(g_tp.w_sense_p, PCH, 1, 1, g_tp.cell_h_def);
+}
+
+
+void Wire::delay_optimal_wire ()
+{
+ double len = wire_length;
+ //double min_wire_width = wire_width; //m
+ double beta = pmos_to_nmos_sz_ratio();
+ double switching = 0; // switching energy
+ double short_ckt = 0; // short-circuit energy
+ double tc = 0; // time constant
+ // input cap of min sized driver
+ double input_cap = gate_C(g_tp.min_w_nmos_ + min_w_pmos, 0);
+
+ // output parasitic capacitance of
+ // the min. sized driver
+ double out_cap = drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def);
+ // drive resistance
+ double out_res = (tr_R_on(g_tp.min_w_nmos_, NCH, 1) +
+ tr_R_on(min_w_pmos, PCH, 1))/2;
+ double wr = wire_res(len); //ohm
+
+ // wire cap /m
+ double wc = wire_cap(len);
+
+ // size the repeater such that the delay of the wire is minimum
+ double repeater_scaling = sqrt(out_res*wc/(wr*input_cap)); // len will cancel
+
+ // calc the optimum spacing between the repeaters (m)
+
+ repeater_spacing = sqrt(2 * out_res * (out_cap + input_cap)/
+ ((wr/len)*(wc/len)));
+ repeater_size = repeater_scaling;
+
+ switching = (repeater_scaling * (input_cap + out_cap) +
+ repeater_spacing * (wc/len)) * deviceType->Vdd * deviceType->Vdd;
+
+ tc = out_res * (input_cap + out_cap) +
+ out_res * wc/len * repeater_spacing/repeater_scaling +
+ wr/len * repeater_spacing * input_cap * repeater_scaling +
+ 0.5 * (wr/len) * (wc/len)* repeater_spacing * repeater_spacing;
+
+ delay = 0.693 * tc * len/repeater_spacing;
+
+#define Ishort_ckt 65e-6 /* across all tech Ref:Banerjee et al. {IEEE TED} */
+ short_ckt = deviceType->Vdd * g_tp.min_w_nmos_ * Ishort_ckt * 1.0986 *
+ repeater_scaling * tc;
+
+ area.set_area((len/repeater_spacing) *
+ compute_gate_area(INV, 1, min_w_pmos * repeater_scaling,
+ g_tp.min_w_nmos_ * repeater_scaling, g_tp.cell_h_def));
+ power.readOp.dynamic = ((len/repeater_spacing)*(switching + short_ckt));
+ power.readOp.leakage = ((len/repeater_spacing)*
+ deviceType->Vdd*
+ cmos_Isub_leakage(g_tp.min_w_nmos_*repeater_scaling, beta*g_tp.min_w_nmos_*repeater_scaling, 1, inv));
+ power.readOp.gate_leakage = ((len/repeater_spacing)*
+ deviceType->Vdd*
+ cmos_Ig_leakage(g_tp.min_w_nmos_*repeater_scaling, beta*g_tp.min_w_nmos_*repeater_scaling, 1, inv));
+}
+
+
+
+// calculate power/delay values for wires with suboptimal repeater sizing/spacing
+void
+Wire::init_wire(){
+ wire_length = 1;
+ delay_optimal_wire();
+ double sp, si;
+ powerDef pow;
+ si = repeater_size;
+ sp = repeater_spacing;
+ sp *= 1e6; // in microns
+
+ double i, j, del;
+ repeated_wire.push_back(Component());
+ for (j=sp; j < 4*sp; j+=100) {
+ for (i = si; i > 1; i--) {
+ pow = wire_model(j*1e-6, i, &del);
+ if (j == sp && i == si) {
+ global.delay = del;
+ global.power = pow;
+ global.area.h = si;
+ global.area.w = sp*1e-6; // m
+ }
+// cout << "Repeater size - "<< i <<
+// " Repeater spacing - " << j <<
+// " Delay - " << del <<
+// " PowerD - " << pow.readOp.dynamic <<
+// " PowerL - " << pow.readOp.leakage <<endl;
+ repeated_wire.back().delay = del;
+ repeated_wire.back().power.readOp = pow.readOp;
+ repeated_wire.back().area.w = j*1e-6; //m
+ repeated_wire.back().area.h = i;
+ repeated_wire.push_back(Component());
+
+ }
+ }
+ repeated_wire.pop_back();
+ update_fullswing();
+ Wire *l_wire = new Wire(Low_swing, 0.001/* 1 mm*/, 1);
+ low_swing.delay = l_wire->delay;
+ low_swing.power = l_wire->power;
+ delete l_wire;
+}
+
+
+
+void Wire::update_fullswing()
+{
+
+ list<Component>::iterator citer;
+ double del[4];
+ del[3] = this->global.delay + this->global.delay*.3;
+ del[2] = global.delay + global.delay*.2;
+ del[1] = global.delay + global.delay*.1;
+ del[0] = global.delay + global.delay*.05;
+ double threshold;
+ double ncost;
+ double cost;
+ int i = 4;
+ while (i>0) {
+ threshold = del[i-1];
+ cost = BIGNUM;
+ for (citer = repeated_wire.begin(); citer != repeated_wire.end(); citer++)
+ {
+ if (citer->delay > threshold) {
+ citer = repeated_wire.erase(citer);
+ citer --;
+ }
+ else {
+ ncost = citer->power.readOp.dynamic/global.power.readOp.dynamic +
+ citer->power.readOp.leakage/global.power.readOp.leakage;
+ if(ncost < cost)
+ {
+ cost = ncost;
+ if (i == 4) {
+ global_30.delay = citer->delay;
+ global_30.power = citer->power;
+ global_30.area = citer->area;
+ }
+ else if (i==3) {
+ global_20.delay = citer->delay;
+ global_20.power = citer->power;
+ global_20.area = citer->area;
+ }
+ else if(i==2) {
+ global_10.delay = citer->delay;
+ global_10.power = citer->power;
+ global_10.area = citer->area;
+ }
+ else if(i==1) {
+ global_5.delay = citer->delay;
+ global_5.power = citer->power;
+ global_5.area = citer->area;
+ }
+ }
+ }
+ }
+ i--;
+ }
+}
+
+
+
+powerDef Wire::wire_model (double space, double size, double *delay)
+{
+ powerDef ptemp;
+ double len = 1;
+ //double min_wire_width = wire_width; //m
+ double beta = pmos_to_nmos_sz_ratio();
+ // switching energy
+ double switching = 0;
+ // short-circuit energy
+ double short_ckt = 0;
+ // time constant
+ double tc = 0;
+ // input cap of min sized driver
+ double input_cap = gate_C (g_tp.min_w_nmos_ +
+ min_w_pmos, 0);
+
+ // output parasitic capacitance of
+ // the min. sized driver
+ double out_cap = drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def);
+ // drive resistance
+ double out_res = (tr_R_on(g_tp.min_w_nmos_, NCH, 1) +
+ tr_R_on(min_w_pmos, PCH, 1))/2;
+ double wr = wire_res(len); //ohm
+
+ // wire cap /m
+ double wc = wire_cap(len);
+
+ repeater_spacing = space;
+ repeater_size = size;
+
+ switching = (repeater_size * (input_cap + out_cap) +
+ repeater_spacing * (wc/len)) * deviceType->Vdd * deviceType->Vdd;
+
+ tc = out_res * (input_cap + out_cap) +
+ out_res * wc/len * repeater_spacing/repeater_size +
+ wr/len * repeater_spacing * out_cap * repeater_size +
+ 0.5 * (wr/len) * (wc/len)* repeater_spacing * repeater_spacing;
+
+ *delay = 0.693 * tc * len/repeater_spacing;
+
+#define Ishort_ckt 65e-6 /* across all tech Ref:Banerjee et al. {IEEE TED} */
+ short_ckt = deviceType->Vdd * g_tp.min_w_nmos_ * Ishort_ckt * 1.0986 *
+ repeater_size * tc;
+
+ ptemp.readOp.dynamic = ((len/repeater_spacing)*(switching + short_ckt));
+ ptemp.readOp.leakage = ((len/repeater_spacing)*
+ deviceType->Vdd*
+ cmos_Isub_leakage(g_tp.min_w_nmos_*repeater_size, beta*g_tp.min_w_nmos_*repeater_size, 1, inv));
+
+ ptemp.readOp.gate_leakage = ((len/repeater_spacing)*
+ deviceType->Vdd*
+ cmos_Ig_leakage(g_tp.min_w_nmos_*repeater_size, beta*g_tp.min_w_nmos_*repeater_size, 1, inv));
+
+ return ptemp;
+}
+
+void
+Wire::print_wire()
+{
+
+ cout << "\nWire Properties:\n\n";
+ cout << " Delay Optimal\n\tRepeater size - "<< global.area.h <<
+ " \n\tRepeater spacing - " << global.area.w*1e3 << " (mm)"
+ " \n\tDelay - " << global.delay*1e6 << " (ns/mm)"
+ " \n\tPowerD - " << global.power.readOp.dynamic *1e6<< " (nJ/mm)"
+ " \n\tPowerL - " << global.power.readOp.leakage << " (mW/mm)"
+ " \n\tPowerLgate - " << global.power.readOp.gate_leakage << " (mW/mm)\n";
+ cout << "\tWire width - " <<wire_width_init*1e6 << " microns\n";
+ cout << "\tWire spacing - " <<wire_spacing_init*1e6 << " microns\n";
+ cout <<endl;
+
+ cout << " 5% Overhead\n\tRepeater size - "<< global_5.area.h <<
+ " \n\tRepeater spacing - " << global_5.area.w*1e3 << " (mm)"
+ " \n\tDelay - " << global_5.delay *1e6<< " (ns/mm)"
+ " \n\tPowerD - " << global_5.power.readOp.dynamic *1e6<< " (nJ/mm)"
+ " \n\tPowerL - " << global_5.power.readOp.leakage << " (mW/mm)"
+ " \n\tPowerLgate - " << global_5.power.readOp.gate_leakage << " (mW/mm)\n";
+ cout << "\tWire width - " <<wire_width_init*1e6 << " microns\n";
+ cout << "\tWire spacing - " <<wire_spacing_init*1e6 << " microns\n";
+ cout <<endl;
+ cout << " 10% Overhead\n\tRepeater size - "<< global_10.area.h <<
+ " \n\tRepeater spacing - " << global_10.area.w*1e3 << " (mm)"
+ " \n\tDelay - " << global_10.delay *1e6<< " (ns/mm)"
+ " \n\tPowerD - " << global_10.power.readOp.dynamic *1e6<< " (nJ/mm)"
+ " \n\tPowerL - " << global_10.power.readOp.leakage << " (mW/mm)"
+ " \n\tPowerLgate - " << global_10.power.readOp.gate_leakage << " (mW/mm)\n";
+ cout << "\tWire width - " <<wire_width_init*1e6 << " microns\n";
+ cout << "\tWire spacing - " <<wire_spacing_init*1e6 << " microns\n";
+ cout <<endl;
+ cout << " 20% Overhead\n\tRepeater size - "<< global_20.area.h <<
+ " \n\tRepeater spacing - " << global_20.area.w*1e3 << " (mm)"
+ " \n\tDelay - " << global_20.delay *1e6<< " (ns/mm)"
+ " \n\tPowerD - " << global_20.power.readOp.dynamic *1e6<< " (nJ/mm)"
+ " \n\tPowerL - " << global_20.power.readOp.leakage << " (mW/mm)"
+ " \n\tPowerLgate - " << global_20.power.readOp.gate_leakage << " (mW/mm)\n";
+ cout << "\tWire width - " <<wire_width_init*1e6 << " microns\n";
+ cout << "\tWire spacing - " <<wire_spacing_init*1e6 << " microns\n";
+ cout <<endl;
+ cout << " 30% Overhead\n\tRepeater size - "<< global_30.area.h <<
+ " \n\tRepeater spacing - " << global_30.area.w*1e3 << " (mm)"
+ " \n\tDelay - " << global_30.delay *1e6<< " (ns/mm)"
+ " \n\tPowerD - " << global_30.power.readOp.dynamic *1e6<< " (nJ/mm)"
+ " \n\tPowerL - " << global_30.power.readOp.leakage << " (mW/mm)"
+ " \n\tPowerLgate - " << global_30.power.readOp.gate_leakage << " (mW/mm)\n";
+ cout << "\tWire width - " <<wire_width_init*1e6 << " microns\n";
+ cout << "\tWire spacing - " <<wire_spacing_init*1e6 << " microns\n";
+ cout <<endl;
+ cout << " Low-swing wire (1 mm) - Note: Unlike repeated wires, \n\tdelay and power "
+ "values of low-swing wires do not\n\thave a linear relationship with length." <<
+ " \n\tdelay - " << low_swing.delay *1e9<< " (ns)"
+ " \n\tpowerD - " << low_swing.power.readOp.dynamic *1e9<< " (nJ)"
+ " \n\tPowerL - " << low_swing.power.readOp.leakage << " (mW)"
+ " \n\tPowerLgate - " << low_swing.power.readOp.gate_leakage << " (mW)\n";
+ cout << "\tWire width - " <<wire_width_init * 2 /* differential */<< " microns\n";
+ cout << "\tWire spacing - " <<wire_spacing_init * 2 /* differential */<< " microns\n";
+ cout <<endl;
+ cout <<endl;
+
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#ifndef __WIRE_H__
+#define __WIRE_H__
+
+#include <iostream>
+#include <list>
+
+#include "assert.h"
+#include "basic_circuit.h"
+#include "cacti_interface.h"
+#include "component.h"
+#include "parameter.h"
+
+class Wire : public Component
+{
+ public:
+ Wire(enum Wire_type wire_model, double len /* in u*/,
+ int nsense = 1/* no. of sense amps connected to the low-swing wire */,
+ double width_scaling = 1,
+ double spacing_scaling = 1,
+ enum Wire_placement wire_placement = outside_mat,
+ double resistivity = CU_RESISTIVITY,
+ TechnologyParameter::DeviceType *dt = &(g_tp.peri_global));
+ ~Wire();
+
+ Wire( double width_scaling = 1,
+ double spacing_scaling = 1,
+ enum Wire_placement wire_placement = outside_mat,
+ double resistivity = CU_RESISTIVITY,
+ TechnologyParameter::DeviceType *dt = &(g_tp.peri_global)
+ ); // should be used only once for initializing static members
+ void init_wire();
+
+ void calculate_wire_stats();
+ void delay_optimal_wire();
+ double wire_cap(double len, bool call_from_outside=false);
+ double wire_res(double len);
+ void low_swing_model();
+ double signal_fall_time();
+ double signal_rise_time();
+ double sense_amp_input_cap();
+
+ enum Wire_type wt;
+ double wire_spacing;
+ double wire_width;
+ enum Wire_placement wire_placement;
+ double repeater_size;
+ double repeater_spacing;
+ double wire_length;
+ double in_rise_time, out_rise_time;
+
+ void set_in_rise_time(double rt)
+ {
+ in_rise_time = rt;
+ }
+ static Component global;
+ static Component global_5;
+ static Component global_10;
+ static Component global_20;
+ static Component global_30;
+ static Component low_swing;
+ static double wire_width_init;
+ static double wire_spacing_init;
+ void print_wire();
+
+ private:
+
+ int nsense; // no. of sense amps connected to a low-swing wire if it
+ // is broadcasting data to multiple destinations
+ // width and spacing scaling factor can be used
+ // to model low level wires or special
+ // fat wires
+ double w_scale, s_scale;
+ double resistivity;
+ powerDef wire_model (double space, double size, double *delay);
+ list <Component> repeated_wire;
+ void update_fullswing();
+ static int initialized;
+
+
+ //low-swing
+ Component transmitter;
+ Component l_wire;
+ Component sense_amp;
+
+ double min_w_pmos;
+
+ TechnologyParameter::DeviceType *deviceType;
+
+};
+
+#endif
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <iostream>
+#include <string>
+
+#include "XML_Parse.h"
+#include "basic_circuit.h"
+#include "const.h"
+#include "core.h"
+#include "io.h"
+#include "parameter.h"
+//#include "globalvar.h"
+
+InstFetchU::InstFetchU(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_, bool exist_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ coredynp(dyn_p_),
+ IB (0),
+ BTB (0),
+ ID_inst (0),
+ ID_operand (0),
+ ID_misc (0),
+ exist(exist_)
+{
+ if (!exist) return;
+ int idx, tag, data, size, line, assoc, banks;
+ bool debug= false, is_default = true;
+
+ clockRate = coredynp.clockRate;
+ executionTime = coredynp.executionTime;
+ cache_p = (Cache_policy)XML->sys.core[ithCore].icache.icache_config[7];
+ //Assuming all L1 caches are virtually idxed physically tagged.
+ //cache
+
+ size = (int)XML->sys.core[ithCore].icache.icache_config[0];
+ line = (int)XML->sys.core[ithCore].icache.icache_config[1];
+ assoc = (int)XML->sys.core[ithCore].icache.icache_config[2];
+ banks = (int)XML->sys.core[ithCore].icache.icache_config[3];
+ idx = debug?9:int(ceil(log2(size/line/assoc)));
+ tag = debug?51:(int)XML->sys.physical_address_width-idx-int(ceil(log2(line))) + EXTRA_TAG_BITS;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.cache_sz = debug?32768:(int)XML->sys.core[ithCore].icache.icache_config[0];
+ interface_ip.line_sz = debug?64:(int)XML->sys.core[ithCore].icache.icache_config[1];
+ interface_ip.assoc = debug?8:(int)XML->sys.core[ithCore].icache.icache_config[2];
+ interface_ip.nbanks = debug?1:(int)XML->sys.core[ithCore].icache.icache_config[3];
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;//debug?0:XML->sys.core[ithCore].icache.icache_config[5];
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].icache.icache_config[4]/clockRate;
+ interface_ip.latency = debug?3.0/clockRate:XML->sys.core[ithCore].icache.icache_config[5]/clockRate;
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ // interface_ip.obj_func_dyn_energy = 0;
+ // interface_ip.obj_func_dyn_power = 0;
+ // interface_ip.obj_func_leak_power = 0;
+ // interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = debug?1:XML->sys.core[ithCore].number_instruction_fetch_ports;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ icache.caches = new ArrayST(&interface_ip, "icache", Core_device, coredynp.opt_local, coredynp.core_ty);
+ scktRatio = g_tp.sckt_co_eff;
+ chip_PR_overhead = g_tp.chip_layout_overhead;
+ macro_PR_overhead = g_tp.macro_layout_overhead;
+ icache.area.set_area(icache.area.get_area()+ icache.caches->local_result.area);
+ area.set_area(area.get_area()+ icache.caches->local_result.area);
+ //output_data_csv(icache.caches.local_result);
+
+
+ /*
+ *iCache controllers
+ *miss buffer Each MSHR contains enough state
+ *to handle one or more accesses of any type to a single memory line.
+ *Due to the generality of the MSHR mechanism,
+ *the amount of state involved is non-trivial:
+ *including the address, pointers to the cache entry and destination register,
+ *written data, and various other pieces of state.
+ */
+ interface_ip.num_search_ports = debug?1:XML->sys.core[ithCore].number_instruction_fetch_ports;
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = (XML->sys.physical_address_width) + int(ceil(log2(size/line))) + icache.caches->l_ip.line_sz*8;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = int(ceil(data/8.0));//int(ceil(pow(2.0,ceil(log2(data)))/8.0));
+ interface_ip.cache_sz = XML->sys.core[ithCore].icache.buffer_sizes[0]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].icache.icache_config[4]/clockRate;//means cycle time
+ interface_ip.latency = debug?1.0/clockRate:XML->sys.core[ithCore].icache.icache_config[5]/clockRate;//means access time
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = debug?1:XML->sys.core[ithCore].number_instruction_fetch_ports;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = XML->sys.core[ithCore].number_instruction_fetch_ports;
+ icache.missb = new ArrayST(&interface_ip, "icacheMissBuffer", Core_device, coredynp.opt_local, coredynp.core_ty);
+ icache.area.set_area(icache.area.get_area()+ icache.missb->local_result.area);
+ area.set_area(area.get_area()+ icache.missb->local_result.area);
+ //output_data_csv(icache.missb.local_result);
+
+ //fill buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = icache.caches->l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;//int(pow(2.0,ceil(log2(data))));
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].icache.buffer_sizes[1];
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].icache.icache_config[4]/clockRate;
+ interface_ip.latency = debug?1.0/clockRate:XML->sys.core[ithCore].icache.icache_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = debug?1:XML->sys.core[ithCore].number_instruction_fetch_ports;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = XML->sys.core[ithCore].number_instruction_fetch_ports;
+ icache.ifb = new ArrayST(&interface_ip, "icacheFillBuffer", Core_device, coredynp.opt_local, coredynp.core_ty);
+ icache.area.set_area(icache.area.get_area()+ icache.ifb->local_result.area);
+ area.set_area(area.get_area()+ icache.ifb->local_result.area);
+ //output_data_csv(icache.ifb.local_result);
+
+ //prefetch buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;//check with previous entries to decide wthether to merge.
+ data = icache.caches->l_ip.line_sz;//separate queue to prevent from cache polution.
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;//int(pow(2.0,ceil(log2(data))));
+ interface_ip.cache_sz = XML->sys.core[ithCore].icache.buffer_sizes[2]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].icache.icache_config[4]/clockRate;
+ interface_ip.latency = debug?1.0/clockRate:XML->sys.core[ithCore].icache.icache_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = debug?1:XML->sys.core[ithCore].number_instruction_fetch_ports;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = XML->sys.core[ithCore].number_instruction_fetch_ports;
+ icache.prefetchb = new ArrayST(&interface_ip, "icacheprefetchBuffer", Core_device, coredynp.opt_local, coredynp.core_ty);
+ icache.area.set_area(icache.area.get_area()+ icache.prefetchb->local_result.area);
+ area.set_area(area.get_area()+ icache.prefetchb->local_result.area);
+ //output_data_csv(icache.prefetchb.local_result);
+
+ //Instruction buffer
+ data = XML->sys.core[ithCore].instruction_length*XML->sys.core[ithCore].peak_issue_width;//icache.caches.l_ip.line_sz; //multiple threads timing sharing the instruction buffer.
+ interface_ip.is_cache = false;
+ interface_ip.pure_ram = true;
+ interface_ip.pure_cam = false;
+ interface_ip.line_sz = int(ceil(data/8.0));
+ interface_ip.cache_sz = XML->sys.core[ithCore].number_hardware_threads*XML->sys.core[ithCore].instruction_buffer_size*interface_ip.line_sz>64?
+ XML->sys.core[ithCore].number_hardware_threads*XML->sys.core[ithCore].instruction_buffer_size*interface_ip.line_sz:64;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ //NOTE: Assuming IB is time slice shared among threads, every fetch op will at least fetch "fetch width" instructions.
+ interface_ip.num_rw_ports = debug?1:XML->sys.core[ithCore].number_instruction_fetch_ports;//XML->sys.core[ithCore].fetch_width;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ IB = new ArrayST(&interface_ip, "InstBuffer", Core_device, coredynp.opt_local, coredynp.core_ty);
+ IB->area.set_area(IB->area.get_area()+ IB->local_result.area);
+ area.set_area(area.get_area()+ IB->local_result.area);
+ //output_data_csv(IB.IB.local_result);
+
+ // inst_decoder.opcode_length = XML->sys.core[ithCore].opcode_width;
+ // inst_decoder.init_decoder(is_default, &interface_ip);
+ // inst_decoder.full_decoder_power();
+
+ if (coredynp.predictionW>0)
+ {
+ /*
+ * BTB branch target buffer, accessed during IF stage. Virtually indexed and virtually tagged
+ * It is only a cache without all the buffers in the cache controller since it is more like a
+ * look up table than a cache with cache controller. When access miss, no load from other places
+ * such as main memory (not actively fill the misses), it is passively updated under two circumstances:
+ * 1) when BPT@ID stage finds out current is a taken branch while BTB missed
+ * 2) When BPT@ID stage predicts differently than BTB
+ * 3) When ID stage finds out current instruction is not a branch while BTB had a hit.(mark as invalid)
+ * 4) when EXEU find out wrong target has been provided from BTB.
+ *
+ */
+ size = XML->sys.core[ithCore].BTB.BTB_config[0];
+ line = XML->sys.core[ithCore].BTB.BTB_config[1];
+ assoc = XML->sys.core[ithCore].BTB.BTB_config[2];
+ banks = XML->sys.core[ithCore].BTB.BTB_config[3];
+ idx = debug?9:int(ceil(log2(size/line/assoc)));
+// tag = debug?51:XML->sys.virtual_address_width-idx-int(ceil(log2(line))) + int(ceil(log2(XML->sys.core[ithCore].number_hardware_threads))) +EXTRA_TAG_BITS;
+ tag = debug?51:XML->sys.virtual_address_width + int(ceil(log2(XML->sys.core[ithCore].number_hardware_threads))) +EXTRA_TAG_BITS;
+ interface_ip.is_cache = true;
+ interface_ip.pure_ram = false;
+ interface_ip.pure_cam = false;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.cache_sz = debug?32768:size;
+ interface_ip.line_sz = debug?64:line;
+ interface_ip.assoc = debug?8:assoc;
+ interface_ip.nbanks = debug?1:banks;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;//debug?0:XML->sys.core[ithCore].dcache.dcache_config[5];
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].BTB.BTB_config[4]/clockRate;
+ interface_ip.latency = debug?3.0/clockRate:XML->sys.core[ithCore].BTB.BTB_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = coredynp.predictionW;
+ interface_ip.num_wr_ports = coredynp.predictionW;
+ interface_ip.num_se_rd_ports = 0;
+ BTB = new ArrayST(&interface_ip, "Branch Target Buffer", Core_device, coredynp.opt_local, coredynp.core_ty);
+ BTB->area.set_area(BTB->area.get_area()+ BTB->local_result.area);
+ area.set_area(area.get_area()+ BTB->local_result.area);
+ ///cout<<"area="<<area<<endl;
+
+ BPT = new BranchPredictor(XML, ithCore, &interface_ip,coredynp);
+ area.set_area(area.get_area()+ BPT->area.get_area());
+ }
+
+ ID_inst = new inst_decoder(is_default, &interface_ip,
+ coredynp.opcode_length, 1/*Decoder should not know how many by itself*/,
+ coredynp.x86,
+ Core_device, coredynp.core_ty);
+
+ ID_operand = new inst_decoder(is_default, &interface_ip,
+ coredynp.arch_ireg_width, 1,
+ coredynp.x86,
+ Core_device, coredynp.core_ty);
+
+ ID_misc = new inst_decoder(is_default, &interface_ip,
+ 8/* Prefix field etc upto 14B*/, 1,
+ coredynp.x86,
+ Core_device, coredynp.core_ty);
+ //TODO: X86 decoder should decode the inst in cyclic mode under the control of squencer.
+ //So the dynamic power should be multiplied by a few times.
+ area.set_area(area.get_area()+ (ID_inst->area.get_area()
+ +ID_operand->area.get_area()
+ +ID_misc->area.get_area())*coredynp.decodeW);
+
+}
+
+
+BranchPredictor::BranchPredictor(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_, bool exist_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ coredynp(dyn_p_),
+ globalBPT(0),
+ localBPT(0),
+ L1_localBPT(0),
+ L2_localBPT(0),
+ chooser(0),
+ RAS(0),
+ exist(exist_)
+{
+ /*
+ * Branch Predictor, accessed during ID stage.
+ * McPAT's branch predictor model is the tournament branch predictor used in Alpha 21264,
+ * including global predictor, local two level predictor, and Chooser.
+ * The Branch predictor also includes a RAS (return address stack) for function calls
+ * Branch predictors are tagged by thread ID and modeled as 1-way associative $
+ * However RAS return address stacks are duplicated for each thread.
+ * TODO:Data Width need to be computed more precisely *
+ */
+ if (!exist) return;
+ int tag, data;
+
+ clockRate = coredynp.clockRate;
+ executionTime = coredynp.executionTime;
+ interface_ip.assoc = 1;
+ interface_ip.pure_cam = false;
+ if (coredynp.multithreaded)
+ {
+
+ tag = int(log2(coredynp.num_hthreads)+ EXTRA_TAG_BITS);
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+
+ interface_ip.is_cache = true;
+ interface_ip.pure_ram = false;
+ }
+ else
+ {
+ interface_ip.is_cache = false;
+ interface_ip.pure_ram = true;
+
+ }
+ //Global predictor
+ data = int(ceil(XML->sys.core[ithCore].predictor.global_predictor_bits/8.0));
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].predictor.global_predictor_entries;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = coredynp.predictionW;
+ interface_ip.num_wr_ports = coredynp.predictionW;
+ interface_ip.num_se_rd_ports = 0;
+ globalBPT = new ArrayST(&interface_ip, "Global Predictor", Core_device, coredynp.opt_local, coredynp.core_ty);
+ globalBPT->area.set_area(globalBPT->area.get_area()+ globalBPT->local_result.area);
+ area.set_area(area.get_area()+ globalBPT->local_result.area);
+
+ //Local BPT (Level 1)
+ data = int(ceil(XML->sys.core[ithCore].predictor.local_predictor_size[0]/8.0));
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].predictor.local_predictor_entries;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = coredynp.predictionW;
+ interface_ip.num_wr_ports = coredynp.predictionW;
+ interface_ip.num_se_rd_ports = 0;
+ L1_localBPT = new ArrayST(&interface_ip, "L1 local Predictor", Core_device, coredynp.opt_local, coredynp.core_ty);
+ L1_localBPT->area.set_area(L1_localBPT->area.get_area()+ L1_localBPT->local_result.area);
+ area.set_area(area.get_area()+ L1_localBPT->local_result.area);
+
+ //Local BPT (Level 2)
+ data = int(ceil(XML->sys.core[ithCore].predictor.local_predictor_size[1]/8.0));
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].predictor.local_predictor_entries;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = coredynp.predictionW;
+ interface_ip.num_wr_ports = coredynp.predictionW;
+ interface_ip.num_se_rd_ports = 0;
+ L2_localBPT = new ArrayST(&interface_ip, "L2 local Predictor", Core_device, coredynp.opt_local, coredynp.core_ty);
+ L2_localBPT->area.set_area(L2_localBPT->area.get_area()+ L2_localBPT->local_result.area);
+ area.set_area(area.get_area()+ L2_localBPT->local_result.area);
+
+ //Chooser
+ data = int(ceil(XML->sys.core[ithCore].predictor.chooser_predictor_bits/8.0));
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].predictor.chooser_predictor_entries;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = coredynp.predictionW;
+ interface_ip.num_wr_ports = coredynp.predictionW;
+ interface_ip.num_se_rd_ports = 0;
+ chooser = new ArrayST(&interface_ip, "Predictor Chooser", Core_device, coredynp.opt_local, coredynp.core_ty);
+ chooser->area.set_area(chooser->area.get_area()+ chooser->local_result.area);
+ area.set_area(area.get_area()+ chooser->local_result.area);
+
+ //RAS return address stacks are Duplicated for each thread.
+ interface_ip.is_cache = false;
+ interface_ip.pure_ram = true;
+ data = int(ceil(coredynp.pc_width/8.0));
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].RAS_size;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = coredynp.predictionW;
+ interface_ip.num_wr_ports = coredynp.predictionW;
+ interface_ip.num_se_rd_ports = 0;
+ RAS = new ArrayST(&interface_ip, "RAS", Core_device, coredynp.opt_local, coredynp.core_ty);
+ RAS->area.set_area(RAS->area.get_area()+ RAS->local_result.area*coredynp.num_hthreads);
+ area.set_area(area.get_area()+ RAS->local_result.area*coredynp.num_hthreads);
+
+}
+
+SchedulerU::SchedulerU(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_, bool exist_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ coredynp(dyn_p_),
+ int_inst_window(0),
+ fp_inst_window(0),
+ ROB(0),
+ instruction_selection(0),
+ exist(exist_)
+ {
+ if (!exist) return;
+ int tag, data;
+ bool is_default=true;
+ string tmp_name;
+
+ clockRate = coredynp.clockRate;
+ executionTime = coredynp.executionTime;
+ if ((coredynp.core_ty==Inorder && coredynp.multithreaded))
+ {
+ //Instruction issue queue, in-order multi-issue or multithreaded processor also has this structure. Unified window for Inorder processors
+ tag = int(log2(XML->sys.core[ithCore].number_hardware_threads)*coredynp.perThreadState);//This is the normal thread state bits based on Niagara Design
+ data = XML->sys.core[ithCore].instruction_length;
+ //NOTE: x86 inst can be very lengthy, up to 15B. Source: Intel® 64 and IA-32 Architectures
+ //Software Developer’s Manual
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.line_sz = int(ceil(data/8.0));
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.cache_sz = XML->sys.core[ithCore].instruction_window_size*interface_ip.line_sz>64?XML->sys.core[ithCore].instruction_window_size*interface_ip.line_sz:64;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = coredynp.peak_issueW;
+ interface_ip.num_wr_ports = coredynp.peak_issueW;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = coredynp.peak_issueW;
+ int_inst_window = new ArrayST(&interface_ip, "InstFetchQueue", Core_device, coredynp.opt_local, coredynp.core_ty);
+ int_inst_window->area.set_area(int_inst_window->area.get_area()+ int_inst_window->local_result.area*coredynp.num_pipelines);
+ area.set_area(area.get_area()+ int_inst_window->local_result.area*coredynp.num_pipelines);
+ //output_data_csv(iRS.RS.local_result);
+ Iw_height =int_inst_window->local_result.cache_ht;
+
+ /*
+ * selection logic
+ * In a single-issue Inorder multithreaded processor like Niagara, issue width=1*number_of_threads since the processor does need to pick up
+ * instructions from multiple ready ones(although these ready ones are from different threads).While SMT processors do not distinguish which thread belongs to who
+ * at the issue stage.
+ */
+
+ instruction_selection = new selection_logic(is_default, XML->sys.core[ithCore].instruction_window_size,
+ coredynp.peak_issueW*XML->sys.core[ithCore].number_hardware_threads,
+ &interface_ip, Core_device, coredynp.core_ty);
+ }
+
+ if (coredynp.core_ty==OOO)
+ {
+ /*
+ * CAM based instruction window
+ * For physicalRegFilebased OOO it is the instruction issue queue, where only tags of phy regs are stored
+ * For RS based OOO it is the Reservation station, where both tags and values of phy regs are stored
+ * It is written once and read twice(two operands) before an instruction can be issued.
+ * X86 instruction can be very long up to 15B. add instruction length in XML
+ */
+ if(coredynp.scheu_ty==PhysicalRegFile)
+ {
+ tag = coredynp.phy_ireg_width;
+ // Each time only half of the tag is compared, but two tag should be stored.
+ // This underestimate the search power
+ data = int((ceil((coredynp.instruction_length+2*(coredynp.phy_ireg_width - coredynp.arch_ireg_width))/2.0)/8.0));
+ //Data width being divided by 2 means only after both operands available the whole data will be read out.
+ //This is modeled using two equivalent readouts with half of the data width
+ tmp_name = "InstIssueQueue";
+ }
+ else
+ {
+ tag = coredynp.phy_ireg_width;
+ // Each time only half of the tag is compared, but two tag should be stored.
+ // This underestimate the search power
+ data = int(ceil(((coredynp.instruction_length+2*(coredynp.phy_ireg_width - coredynp.arch_ireg_width)+
+ 2*coredynp.int_data_width)/2.0)/8.0));
+ //Data width being divided by 2 means only after both operands available the whole data will be read out.
+ //This is modeled using two equivalent readouts with half of the data width
+
+ tmp_name = "IntReservationStation";
+ }
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].instruction_window_size;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = 2*1.0/clockRate;
+ interface_ip.latency = 2*1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = coredynp.peak_issueW;
+ interface_ip.num_wr_ports = coredynp.peak_issueW;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = coredynp.peak_issueW;
+ int_inst_window = new ArrayST(&interface_ip, tmp_name, Core_device, coredynp.opt_local, coredynp.core_ty);
+ int_inst_window->area.set_area(int_inst_window->area.get_area()+ int_inst_window->local_result.area*coredynp.num_pipelines);
+ area.set_area(area.get_area()+ int_inst_window->local_result.area*coredynp.num_pipelines);
+ Iw_height =int_inst_window->local_result.cache_ht;
+ //FU inst window
+ if(coredynp.scheu_ty==PhysicalRegFile)
+ {
+ tag = 2*coredynp.phy_freg_width;// TODO: each time only half of the tag is compared
+ data = int(ceil((coredynp.instruction_length+2*(coredynp.phy_freg_width - coredynp.arch_freg_width))/8.0));
+ tmp_name = "FPIssueQueue";
+ }
+ else
+ {
+ tag = 2*coredynp.phy_ireg_width;
+ data = int(ceil((coredynp.instruction_length+2*(coredynp.phy_freg_width - coredynp.arch_freg_width)+
+ 2*coredynp.fp_data_width)/8.0));
+ tmp_name = "FPReservationStation";
+ }
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].fp_instruction_window_size;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = coredynp.fp_issueW;
+ interface_ip.num_wr_ports = coredynp.fp_issueW;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = coredynp.fp_issueW;
+ fp_inst_window = new ArrayST(&interface_ip, tmp_name, Core_device, coredynp.opt_local, coredynp.core_ty);
+ fp_inst_window->area.set_area(fp_inst_window->area.get_area()+ fp_inst_window->local_result.area*coredynp.num_fp_pipelines);
+ area.set_area(area.get_area()+ fp_inst_window->local_result.area*coredynp.num_fp_pipelines);
+ fp_Iw_height =fp_inst_window->local_result.cache_ht;
+
+ if (XML->sys.core[ithCore].ROB_size >0)
+ {
+ /*
+ * if ROB_size = 0, then the target processor does not support hardware-based
+ * speculation, i.e. , the processor allow OOO issue as well as OOO completion, which
+ * means branch must be resolved before instruction issued into instruction window, since
+ * there is no change to flush miss-predict branch path after instructions are issued in this situation.
+ *
+ * ROB.ROB size = inflight inst. ROB is unified for int and fp inst.
+ * One old approach is to combine the RAT and ROB as a huge CAM structure as in AMD K7.
+ * However, this approach is abandoned due to its high power and poor scalablility.
+ * McPAT uses current implementation of ROB as circular buffer.
+ * ROB is written once when instruction is issued and read once when the instruction is committed. *
+ */
+ int robExtra = int(ceil(5 + log2(coredynp.num_hthreads)));
+ //5 bits are: busy, Issued, Finished, speculative, valid
+ if(coredynp.scheu_ty==PhysicalRegFile)
+ {
+ //PC is to id the instruction for recover exception.
+ //inst is used to map the renamed dest. registers.so that commit stage can know which reg/RRAT to update
+// data = int(ceil((robExtra+coredynp.pc_width +
+// coredynp.instruction_length + 2*coredynp.phy_ireg_width)/8.0));
+ data = int(ceil((robExtra+coredynp.pc_width +
+ coredynp.phy_ireg_width)/8.0));
+ }
+ else
+ {
+ //in RS based OOO, ROB also contains value of destination reg
+// data = int(ceil((robExtra+coredynp.pc_width +
+// coredynp.instruction_length + 2*coredynp.phy_ireg_width + coredynp.fp_data_width)/8.0));
+ data = int(ceil((robExtra + coredynp.pc_width +
+ coredynp.phy_ireg_width + coredynp.fp_data_width)/8.0));
+ }
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].ROB_size;//The XML ROB size is for all threads
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = coredynp.peak_commitW;
+ interface_ip.num_wr_ports = coredynp.peak_issueW;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = 0;
+ ROB = new ArrayST(&interface_ip, "ReorderBuffer", Core_device, coredynp.opt_local, coredynp.core_ty);
+ ROB->area.set_area(ROB->area.get_area()+ ROB->local_result.area*coredynp.num_pipelines);
+ area.set_area(area.get_area()+ ROB->local_result.area*coredynp.num_pipelines);
+ ROB_height =ROB->local_result.cache_ht;
+ }
+
+ instruction_selection = new selection_logic(is_default, XML->sys.core[ithCore].instruction_window_size,
+ coredynp.peak_issueW, &interface_ip, Core_device, coredynp.core_ty);
+ }
+}
+
+LoadStoreU::LoadStoreU(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_,bool exist_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ coredynp(dyn_p_),
+ LSQ(0),
+ exist(exist_)
+{
+ if (!exist) return;
+ int idx, tag, data, size, line, assoc, banks;
+ bool debug= false;
+ int ldst_opcode = XML->sys.core[ithCore].opcode_width;//16;
+
+ clockRate = coredynp.clockRate;
+ executionTime = coredynp.executionTime;
+ cache_p = (Cache_policy)XML->sys.core[ithCore].dcache.dcache_config[7];
+
+ interface_ip.num_search_ports = XML->sys.core[ithCore].memory_ports;
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ //Dcache
+ size = (int)XML->sys.core[ithCore].dcache.dcache_config[0];
+ line = (int)XML->sys.core[ithCore].dcache.dcache_config[1];
+ assoc = (int)XML->sys.core[ithCore].dcache.dcache_config[2];
+ banks = (int)XML->sys.core[ithCore].dcache.dcache_config[3];
+ idx = debug?9:int(ceil(log2(size/line/assoc)));
+ tag = debug?51:XML->sys.physical_address_width-idx-int(ceil(log2(line))) + EXTRA_TAG_BITS;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.cache_sz = debug?32768:(int)XML->sys.core[ithCore].dcache.dcache_config[0];
+ interface_ip.line_sz = debug?64:(int)XML->sys.core[ithCore].dcache.dcache_config[1];
+ interface_ip.assoc = debug?8:(int)XML->sys.core[ithCore].dcache.dcache_config[2];
+ interface_ip.nbanks = debug?1:(int)XML->sys.core[ithCore].dcache.dcache_config[3];
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;//debug?0:XML->sys.core[ithCore].dcache.dcache_config[5];
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[4]/clockRate;
+ interface_ip.latency = debug?3.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[5]/clockRate;
+ interface_ip.is_cache = true;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = debug?1:XML->sys.core[ithCore].memory_ports;//usually In-order has 1 and OOO has 2 at least.
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ dcache.caches = new ArrayST(&interface_ip, "dcache", Core_device, coredynp.opt_local, coredynp.core_ty);
+ dcache.area.set_area(dcache.area.get_area()+ dcache.caches->local_result.area);
+ area.set_area(area.get_area()+ dcache.caches->local_result.area);
+ //output_data_csv(dcache.caches.local_result);
+
+ //dCache controllers
+ //miss buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = (XML->sys.physical_address_width) + int(ceil(log2(size/line))) + dcache.caches->l_ip.line_sz*8;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = int(ceil(data/8.0));//int(ceil(pow(2.0,ceil(log2(data)))/8.0));
+ interface_ip.cache_sz = XML->sys.core[ithCore].dcache.buffer_sizes[0]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[4]/clockRate;
+ interface_ip.latency = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = debug?1:XML->sys.core[ithCore].memory_ports;;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ dcache.missb = new ArrayST(&interface_ip, "dcacheMissBuffer", Core_device, coredynp.opt_local, coredynp.core_ty);
+ dcache.area.set_area(dcache.area.get_area()+ dcache.missb->local_result.area);
+ area.set_area(area.get_area()+ dcache.missb->local_result.area);
+ //output_data_csv(dcache.missb.local_result);
+
+ //fill buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = dcache.caches->l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;//int(pow(2.0,ceil(log2(data))));
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].dcache.buffer_sizes[1];
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[4]/clockRate;
+ interface_ip.latency = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = debug?1:XML->sys.core[ithCore].memory_ports;;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ dcache.ifb = new ArrayST(&interface_ip, "dcacheFillBuffer", Core_device, coredynp.opt_local, coredynp.core_ty);
+ dcache.area.set_area(dcache.area.get_area()+ dcache.ifb->local_result.area);
+ area.set_area(area.get_area()+ dcache.ifb->local_result.area);
+ //output_data_csv(dcache.ifb.local_result);
+
+ //prefetch buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;//check with previous entries to decide wthether to merge.
+ data = dcache.caches->l_ip.line_sz;//separate queue to prevent from cache polution.
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;//int(pow(2.0,ceil(log2(data))));
+ interface_ip.cache_sz = XML->sys.core[ithCore].dcache.buffer_sizes[2]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[4]/clockRate;
+ interface_ip.latency = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = debug?1:XML->sys.core[ithCore].memory_ports;;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ dcache.prefetchb = new ArrayST(&interface_ip, "dcacheprefetchBuffer", Core_device, coredynp.opt_local, coredynp.core_ty);
+ dcache.area.set_area(dcache.area.get_area()+ dcache.prefetchb->local_result.area);
+ area.set_area(area.get_area()+ dcache.prefetchb->local_result.area);
+ //output_data_csv(dcache.prefetchb.local_result);
+
+ //WBB
+
+ if (cache_p==Write_back)
+ {
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = dcache.caches->l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = XML->sys.core[ithCore].dcache.buffer_sizes[3]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[4]/clockRate;
+ interface_ip.latency = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = XML->sys.core[ithCore].memory_ports;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ dcache.wbb = new ArrayST(&interface_ip, "dcacheWBB", Core_device, coredynp.opt_local, coredynp.core_ty);
+ dcache.area.set_area(dcache.area.get_area()+ dcache.wbb->local_result.area);
+ area.set_area(area.get_area()+ dcache.wbb->local_result.area);
+ //output_data_csv(dcache.wbb.local_result);
+ }
+
+ /*
+ * LSU--in-order processors do not have separate load queue: unified lsq
+ * partitioned among threads
+ * it is actually the store queue but for inorder processors it serves as both loadQ and StoreQ
+ */
+ tag = ldst_opcode+XML->sys.virtual_address_width +int(ceil(log2(XML->sys.core[ithCore].number_hardware_threads))) + EXTRA_TAG_BITS;
+ data = XML->sys.machine_bits;
+ interface_ip.is_cache = true;
+ interface_ip.line_sz = int(ceil(data/32.0))*4;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.cache_sz = XML->sys.core[ithCore].store_buffer_size*interface_ip.line_sz*XML->sys.core[ithCore].number_hardware_threads;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = XML->sys.core[ithCore].memory_ports;
+ interface_ip.num_wr_ports = XML->sys.core[ithCore].memory_ports;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports =XML->sys.core[ithCore].memory_ports;
+ LSQ = new ArrayST(&interface_ip, "Load(Store)Queue", Core_device, coredynp.opt_local, coredynp.core_ty);
+ LSQ->area.set_area(LSQ->area.get_area()+ LSQ->local_result.area);
+ area.set_area(area.get_area()+ LSQ->local_result.area);
+ area.set_area(area.get_area()*cdb_overhead);
+ //output_data_csv(LSQ.LSQ.local_result);
+ lsq_height=LSQ->local_result.cache_ht*sqrt(cdb_overhead);/*XML->sys.core[ithCore].number_hardware_threads*/
+
+ if ((coredynp.core_ty==OOO) && (XML->sys.core[ithCore].load_buffer_size >0))
+ {
+ interface_ip.line_sz = int(ceil(data/32.0))*4;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.cache_sz = XML->sys.core[ithCore].load_buffer_size*interface_ip.line_sz*XML->sys.core[ithCore].number_hardware_threads;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = XML->sys.core[ithCore].memory_ports;
+ interface_ip.num_wr_ports = XML->sys.core[ithCore].memory_ports;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports =XML->sys.core[ithCore].memory_ports;
+ LoadQ = new ArrayST(&interface_ip, "LoadQueue", Core_device, coredynp.opt_local, coredynp.core_ty);
+ LoadQ->area.set_area(LoadQ->area.get_area()+ LoadQ->local_result.area);
+ area.set_area(area.get_area()+ LoadQ->local_result.area);
+ area.set_area(area.get_area()*cdb_overhead);
+ //output_data_csv(LoadQ.LoadQ.local_result);
+ lsq_height=(LSQ->local_result.cache_ht + LoadQ->local_result.cache_ht)*sqrt(cdb_overhead);/*XML->sys.core[ithCore].number_hardware_threads*/
+ }
+
+}
+
+MemManU::MemManU(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_,bool exist_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ coredynp(dyn_p_),
+ itlb(0),
+ dtlb(0),
+ exist(exist_)
+{
+ if (!exist) return;
+ int tag, data;
+ bool debug= false;
+
+ clockRate = coredynp.clockRate;
+ executionTime = coredynp.executionTime;
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.specific_tag = 1;
+ //Itlb TLBs are partioned among threads according to Nigara and Nehalem
+ tag = XML->sys.virtual_address_width- int(floor(log2(XML->sys.virtual_memory_page_size))) + int(ceil(log2(XML->sys.core[ithCore].number_hardware_threads)))+ EXTRA_TAG_BITS;
+ data = XML->sys.physical_address_width- int(floor(log2(XML->sys.virtual_memory_page_size)));
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = int(ceil(data/8.0));//int(ceil(pow(2.0,ceil(log2(data)))/8.0));
+ interface_ip.cache_sz = XML->sys.core[ithCore].itlb.number_entries*interface_ip.line_sz;//*XML->sys.core[ithCore].number_hardware_threads;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].icache.icache_config[4]/clockRate;
+ interface_ip.latency = debug?1.0/clockRate:XML->sys.core[ithCore].icache.icache_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = debug?1:XML->sys.core[ithCore].number_instruction_fetch_ports;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = debug?1:XML->sys.core[ithCore].number_instruction_fetch_ports;
+ itlb = new ArrayST(&interface_ip, "ITLB", Core_device, coredynp.opt_local, coredynp.core_ty);
+ itlb->area.set_area(itlb->area.get_area()+ itlb->local_result.area);
+ area.set_area(area.get_area()+ itlb->local_result.area);
+ //output_data_csv(itlb.tlb.local_result);
+
+ //dtlb
+ tag = XML->sys.virtual_address_width- int(floor(log2(XML->sys.virtual_memory_page_size))) +int(ceil(log2(XML->sys.core[ithCore].number_hardware_threads)))+ EXTRA_TAG_BITS;
+ data = XML->sys.physical_address_width- int(floor(log2(XML->sys.virtual_memory_page_size)));
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = int(ceil(data/8.0));//int(ceil(pow(2.0,ceil(log2(data)))/8.0));
+ interface_ip.cache_sz = XML->sys.core[ithCore].dtlb.number_entries*interface_ip.line_sz;//*XML->sys.core[ithCore].number_hardware_threads;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[4]/clockRate;
+ interface_ip.latency = debug?1.0/clockRate:XML->sys.core[ithCore].dcache.dcache_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = XML->sys.core[ithCore].memory_ports;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = XML->sys.core[ithCore].memory_ports;
+ dtlb = new ArrayST(&interface_ip, "DTLB", Core_device, coredynp.opt_local, coredynp.core_ty);
+ dtlb->area.set_area(dtlb->area.get_area()+ dtlb->local_result.area);
+ area.set_area(area.get_area()+ dtlb->local_result.area);
+ //output_data_csv(dtlb.tlb.local_result);
+
+}
+
+RegFU::RegFU(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_,bool exist_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ coredynp(dyn_p_),
+ IRF (0),
+ FRF (0),
+ RFWIN (0),
+ exist(exist_)
+ {
+ /*
+ * processors have separate architectural register files for each thread.
+ * therefore, the bypass buses need to travel across all the register files.
+ */
+ if (!exist) return;
+ int data;
+
+ clockRate = coredynp.clockRate;
+ executionTime = coredynp.executionTime;
+ //**********************************IRF***************************************
+ data = coredynp.int_data_width;
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = int(ceil(data/32.0))*4;
+ interface_ip.cache_sz = coredynp.num_IRF_entry*interface_ip.line_sz;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//this is the transfer port for saving/restoring states when exceptions happen.
+ interface_ip.num_rd_ports = 2*coredynp.peak_issueW;
+ interface_ip.num_wr_ports = coredynp.peak_issueW;
+ interface_ip.num_se_rd_ports = 0;
+ IRF = new ArrayST(&interface_ip, "Integer Register File", Core_device, coredynp.opt_local, coredynp.core_ty);
+ IRF->area.set_area(IRF->area.get_area()+ IRF->local_result.area*XML->sys.core[ithCore].number_hardware_threads*coredynp.num_pipelines*cdb_overhead);
+ area.set_area(area.get_area()+ IRF->local_result.area*XML->sys.core[ithCore].number_hardware_threads*coredynp.num_pipelines*cdb_overhead);
+ //area.set_area(area.get_area()*cdb_overhead);
+ //output_data_csv(IRF.RF.local_result);
+
+ //**********************************FRF***************************************
+ data = coredynp.fp_data_width;
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = int(ceil(data/32.0))*4;
+ interface_ip.cache_sz = coredynp.num_FRF_entry*interface_ip.line_sz;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//this is the transfer port for saving/restoring states when exceptions happen.
+ interface_ip.num_rd_ports = 2*XML->sys.core[ithCore].issue_width;
+ interface_ip.num_wr_ports = XML->sys.core[ithCore].issue_width;
+ interface_ip.num_se_rd_ports = 0;
+ FRF = new ArrayST(&interface_ip, "Floating point Register File", Core_device, coredynp.opt_local, coredynp.core_ty);
+ FRF->area.set_area(FRF->area.get_area()+ FRF->local_result.area*XML->sys.core[ithCore].number_hardware_threads*coredynp.num_fp_pipelines*cdb_overhead);
+ area.set_area(area.get_area()+ FRF->local_result.area*XML->sys.core[ithCore].number_hardware_threads*coredynp.num_fp_pipelines*cdb_overhead);
+ //area.set_area(area.get_area()*cdb_overhead);
+ //output_data_csv(FRF.RF.local_result);
+ int_regfile_height= IRF->local_result.cache_ht*XML->sys.core[ithCore].number_hardware_threads*sqrt(cdb_overhead);
+ fp_regfile_height = FRF->local_result.cache_ht*XML->sys.core[ithCore].number_hardware_threads*sqrt(cdb_overhead);
+ //since a EXU is associated with each pipeline, the cdb should not have longer length.
+ if (coredynp.regWindowing)
+ {
+ //*********************************REG_WIN************************************
+ data = coredynp.int_data_width; //ECC, and usually 2 regs are transfered together during window shifting.Niagara Mega cell
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = int(ceil(data/8.0));
+ interface_ip.cache_sz = XML->sys.core[ithCore].register_windows_size*IRF->l_ip.cache_sz*XML->sys.core[ithCore].number_hardware_threads;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 4.0/clockRate;
+ interface_ip.latency = 4.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//this is the transfer port for saving/restoring states when exceptions happen.
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ RFWIN = new ArrayST(&interface_ip, "RegWindow", Core_device, coredynp.opt_local, coredynp.core_ty);
+ RFWIN->area.set_area(RFWIN->area.get_area()+ RFWIN->local_result.area*coredynp.num_pipelines);
+ area.set_area(area.get_area()+ RFWIN->local_result.area*coredynp.num_pipelines);
+ //output_data_csv(RFWIN.RF.local_result);
+ }
+
+
+ }
+
+EXECU::EXECU(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, double lsq_height_, const CoreDynParam & dyn_p_, bool exist_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ lsq_height(lsq_height_),
+ coredynp(dyn_p_),
+ rfu(0),
+ scheu(0),
+ fp_u(0),
+ exeu(0),
+ mul(0),
+ int_bypass(0),
+ intTagBypass(0),
+ int_mul_bypass(0),
+ intTag_mul_Bypass(0),
+ fp_bypass(0),
+ fpTagBypass(0),
+ exist(exist_)
+{
+ if (!exist) return;
+ double fu_height = 0.0;
+ clockRate = coredynp.clockRate;
+ executionTime = coredynp.executionTime;
+ rfu = new RegFU(XML, ithCore, &interface_ip,coredynp);
+ scheu = new SchedulerU(XML, ithCore, &interface_ip,coredynp);
+ exeu = new FunctionalUnit(XML, ithCore,&interface_ip, coredynp, ALU);
+ area.set_area(area.get_area()+ exeu->area.get_area() + rfu->area.get_area() +scheu->area.get_area() );
+ fu_height = exeu->FU_height;
+ if (coredynp.num_fpus >0)
+ {
+ fp_u = new FunctionalUnit(XML, ithCore,&interface_ip, coredynp, FPU);
+ area.set_area(area.get_area()+ fp_u->area.get_area());
+ }
+ if (coredynp.num_muls >0)
+ {
+ mul = new FunctionalUnit(XML, ithCore,&interface_ip, coredynp, MUL);
+ area.set_area(area.get_area()+ mul->area.get_area());
+ fu_height += mul->FU_height;
+ }
+ /*
+ * broadcast logic, including int-broadcast; int_tag-broadcast; fp-broadcast; fp_tag-broadcast
+ * integer by pass has two paths and fp has 3 paths.
+ * on the same bus there are multiple tri-state drivers and muxes that go to different components on the same bus
+ */
+ if (XML->sys.Embedded)
+ {
+ interface_ip.wt =Global_30;
+ interface_ip.wire_is_mat_type = 0;
+ interface_ip.wire_os_mat_type = 0;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ }
+ else
+ {
+ interface_ip.wt =Global;
+ interface_ip.wire_is_mat_type = 2;//start from semi-global since local wires are already used
+ interface_ip.wire_os_mat_type = 2;
+ interface_ip.throughput = 10.0/clockRate; //Do not care
+ interface_ip.latency = 10.0/clockRate;
+ }
+
+ if (coredynp.core_ty==Inorder)
+ {
+ int_bypass = new interconnect("Int Bypass Data", Core_device, 1, 1, int(ceil(XML->sys.machine_bits/32.0)*32),
+ rfu->int_regfile_height + exeu->FU_height + lsq_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() + int_bypass->area.get_area());
+ intTagBypass = new interconnect("Int Bypass tag" , Core_device, 1, 1, coredynp.perThreadState,
+ rfu->int_regfile_height + exeu->FU_height + lsq_height + scheu->Iw_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +intTagBypass->area.get_area());
+
+ if (coredynp.num_muls>0)
+ {
+ int_mul_bypass = new interconnect("Mul Bypass Data" , Core_device, 1, 1, int(ceil(XML->sys.machine_bits/32.0)*32*1.5),
+ rfu->fp_regfile_height + exeu->FU_height + mul->FU_height + lsq_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +int_mul_bypass->area.get_area());
+ intTag_mul_Bypass = new interconnect("Mul Bypass tag" , Core_device, 1, 1, coredynp.perThreadState,
+ rfu->fp_regfile_height + exeu->FU_height + mul->FU_height + lsq_height + scheu->Iw_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +intTag_mul_Bypass->area.get_area());
+ }
+
+ if (coredynp.num_fpus>0)
+ {
+ fp_bypass = new interconnect("FP Bypass Data" , Core_device, 1, 1, int(ceil(XML->sys.machine_bits/32.0)*32*1.5),
+ rfu->fp_regfile_height + fp_u->FU_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +fp_bypass->area.get_area());
+ fpTagBypass = new interconnect("FP Bypass tag" , Core_device, 1, 1, coredynp.perThreadState,
+ rfu->fp_regfile_height + fp_u->FU_height + lsq_height + scheu->Iw_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +fpTagBypass->area.get_area());
+ }
+ }
+ else
+ {//OOO
+ if (coredynp.scheu_ty==PhysicalRegFile)
+ {
+ /* For physical register based OOO,
+ * data broadcast interconnects cover across functional units, lsq, inst windows and register files,
+ * while tag broadcast interconnects also cover across ROB
+ */
+ int_bypass = new interconnect("Int Bypass Data", Core_device, 1, 1, int(ceil(coredynp.int_data_width)),
+ rfu->int_regfile_height + exeu->FU_height + lsq_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +int_bypass->area.get_area());
+ intTagBypass = new interconnect("Int Bypass tag" , Core_device, 1, 1, coredynp.phy_ireg_width,
+ rfu->int_regfile_height + exeu->FU_height + lsq_height + scheu->Iw_height + scheu->ROB_height , &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+
+ if (coredynp.num_muls>0)
+ {
+ int_mul_bypass = new interconnect("Mul Bypass Data", Core_device, 1, 1, int(ceil(coredynp.int_data_width)),
+ rfu->int_regfile_height + exeu->FU_height + mul->FU_height + lsq_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ intTag_mul_Bypass = new interconnect("Mul Bypass tag" , Core_device, 1, 1, coredynp.phy_ireg_width,
+ rfu->int_regfile_height + exeu->FU_height + mul->FU_height + lsq_height + scheu->Iw_height + scheu->ROB_height , &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +int_mul_bypass->area.get_area());
+ bypass.area.set_area(bypass.area.get_area() +intTag_mul_Bypass->area.get_area());
+ }
+
+ if (coredynp.num_fpus>0)
+ {
+ fp_bypass = new interconnect("FP Bypass Data" , Core_device, 1, 1, int(ceil(coredynp.fp_data_width)),
+ rfu->fp_regfile_height + fp_u->FU_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ fpTagBypass = new interconnect("FP Bypass tag" , Core_device, 1, 1, coredynp.phy_freg_width,
+ rfu->fp_regfile_height + fp_u->FU_height + lsq_height + scheu->fp_Iw_height + scheu->ROB_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +fp_bypass->area.get_area());
+ bypass.area.set_area(bypass.area.get_area() +fpTagBypass->area.get_area());
+ }
+ }
+ else
+ {
+ /*
+ * In RS based processor both data and tag are broadcast together,
+ * covering functional units, lsq, nst windows, register files, and ROBs
+ */
+ int_bypass = new interconnect("Int Bypass Data", Core_device, 1, 1, int(ceil(coredynp.int_data_width)),
+ rfu->int_regfile_height + exeu->FU_height + lsq_height + scheu->Iw_height + scheu->ROB_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ intTagBypass = new interconnect("Int Bypass tag" , Core_device, 1, 1, coredynp.phy_ireg_width,
+ rfu->int_regfile_height + exeu->FU_height + lsq_height + scheu->Iw_height + scheu->ROB_height , &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +int_bypass->area.get_area());
+ bypass.area.set_area(bypass.area.get_area() +intTagBypass->area.get_area());
+ if (coredynp.num_muls>0)
+ {
+ int_mul_bypass = new interconnect("Mul Bypass Data", Core_device, 1, 1, int(ceil(coredynp.int_data_width)),
+ rfu->int_regfile_height + exeu->FU_height + mul->FU_height + lsq_height + scheu->Iw_height + scheu->ROB_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ intTag_mul_Bypass = new interconnect("Mul Bypass tag" , Core_device, 1, 1, coredynp.phy_ireg_width,
+ rfu->int_regfile_height + exeu->FU_height + mul->FU_height + lsq_height + scheu->Iw_height + scheu->ROB_height , &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +int_mul_bypass->area.get_area());
+ bypass.area.set_area(bypass.area.get_area() +intTag_mul_Bypass->area.get_area());
+ }
+
+ if (coredynp.num_fpus>0)
+ {
+ fp_bypass = new interconnect("FP Bypass Data" , Core_device, 1, 1, int(ceil(coredynp.fp_data_width)),
+ rfu->fp_regfile_height + fp_u->FU_height + lsq_height + scheu->fp_Iw_height + scheu->ROB_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ fpTagBypass = new interconnect("FP Bypass tag" , Core_device, 1, 1, coredynp.phy_freg_width,
+ rfu->fp_regfile_height + fp_u->FU_height + lsq_height + scheu->fp_Iw_height + scheu->ROB_height, &interface_ip, 3,
+ false, 1.0, coredynp.opt_local, coredynp.core_ty);
+ bypass.area.set_area(bypass.area.get_area() +fp_bypass->area.get_area());
+ bypass.area.set_area(bypass.area.get_area() +fpTagBypass->area.get_area());
+ }
+ }
+
+
+ }
+ area.set_area(area.get_area()+ bypass.area.get_area());
+}
+
+RENAMINGU::RENAMINGU(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_,bool exist_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ coredynp(dyn_p_),
+ iFRAT(0),
+ fFRAT(0),
+ iRRAT(0),
+ fRRAT(0),
+ ifreeL(0),
+ ffreeL(0),
+ idcl(0),
+ fdcl(0),
+ RAHT(0),
+ exist(exist_)
+ {
+ /*
+ * Although renaming logic maybe be used in in-order processors,
+ * McPAT assumes no renaming logic is used since the performance gain is very limited and
+ * the only major inorder processor with renaming logic is Itainium
+ * that is a VLIW processor and different from current McPAT's model.
+ * physical register base OOO must have Dual-RAT architecture or equivalent structure.FRAT:FrontRAT, RRAT:RetireRAT;
+ * i,f prefix mean int and fp
+ * RAT for all Renaming logic, random accessible checkpointing is used, but only update when instruction retires.
+ * FRAT will be read twice and written once per instruction;
+ * RRAT will be write once per instruction when committing and reads out all when context switch
+ * checkpointing is implicit
+ * Renaming logic is duplicated for each different hardware threads
+ *
+ * No Dual-RAT is needed in RS-based OOO processors,
+ * however, RAT needs to do associative search in RAT, when instruction commits and ROB release the entry,
+ * to make sure all the renamings associated with the ROB to be released are updated at the same time.
+ * RAM scheme has # ARchi Reg entry with each entry hold phy reg tag,
+ * CAM scheme has # Phy Reg entry with each entry hold ARchi reg tag,
+ *
+ * Both RAM and CAM have same DCL
+ */
+ if (!exist) return;
+ int tag, data, out_w;
+// interface_ip.wire_is_mat_type = 0;
+// interface_ip.wire_os_mat_type = 0;
+// interface_ip.wt = Global_30;
+ clockRate = coredynp.clockRate;
+ executionTime = coredynp.executionTime;
+ if (coredynp.core_ty==OOO)
+ {
+ //integer pipeline
+ if (coredynp.scheu_ty==PhysicalRegFile)
+ {
+ if (coredynp.rm_ty ==RAMbased)
+ { //FRAT with global checkpointing (GCs) please see paper tech report for detailed explaintions
+ data = 33;//int(ceil(coredynp.phy_ireg_width*(1+coredynp.globalCheckpoint)/8.0));
+// data = int(ceil(coredynp.phy_ireg_width/8.0));
+ out_w = 1;//int(ceil(coredynp.phy_ireg_width/8.0));
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].archi_Regs_IRF_size;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = out_w*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//the extra one port is for GCs
+ interface_ip.num_rd_ports = 2*coredynp.decodeW;
+ interface_ip.num_wr_ports = coredynp.decodeW;
+ interface_ip.num_se_rd_ports = 0;
+ iFRAT = new ArrayST(&interface_ip, "Int FrontRAT", Core_device, coredynp.opt_local, coredynp.core_ty);
+ iFRAT->area.set_area(iFRAT->area.get_area()+ iFRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ iFRAT->area.get_area());
+
+// //RAHT According to Intel, combine GC with FRAT is very costly.
+// data = int(ceil(coredynp.phy_ireg_width/8.0)*coredynp.num_IRF_entry);
+// out_w = data;
+// interface_ip.is_cache = false;
+// interface_ip.pure_cam = false;
+// interface_ip.pure_ram = true;
+// interface_ip.line_sz = data;
+// interface_ip.cache_sz = data*coredynp.globalCheckpoint;
+// interface_ip.assoc = 1;
+// interface_ip.nbanks = 1;
+// interface_ip.out_w = out_w*8;
+// interface_ip.access_mode = 0;
+// interface_ip.throughput = 1.0/clockRate;
+// interface_ip.latency = 1.0/clockRate;
+// interface_ip.obj_func_dyn_energy = 0;
+// interface_ip.obj_func_dyn_power = 0;
+// interface_ip.obj_func_leak_power = 0;
+// interface_ip.obj_func_cycle_t = 1;
+// interface_ip.num_rw_ports = 1;//the extra one port is for GCs
+// interface_ip.num_rd_ports = 2*coredynp.decodeW;
+// interface_ip.num_wr_ports = coredynp.decodeW;
+// interface_ip.num_se_rd_ports = 0;
+// iFRAT = new ArrayST(&interface_ip, "Int FrontRAT");
+// iFRAT->area.set_area(iFRAT->area.get_area()+ iFRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+// area.set_area(area.get_area()+ iFRAT->area.get_area());
+
+ //FRAT floating point
+ data = int(ceil(coredynp.phy_freg_width*(1+coredynp.globalCheckpoint)/8.0));
+ out_w = int(ceil(coredynp.phy_freg_width/8.0));
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].archi_Regs_FRF_size;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = out_w*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//the extra one port is for GCs
+ interface_ip.num_rd_ports = 2*coredynp.fp_decodeW;
+ interface_ip.num_wr_ports = coredynp.fp_decodeW;
+ interface_ip.num_se_rd_ports = 0;
+ fFRAT = new ArrayST(&interface_ip, "Int FrontRAT", Core_device, coredynp.opt_local, coredynp.core_ty);
+ fFRAT->area.set_area(fFRAT->area.get_area()+ fFRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ fFRAT->area.get_area());
+
+ }
+ else if ((coredynp.rm_ty ==CAMbased))
+ {
+ //FRAT
+ tag = coredynp.arch_ireg_width;
+ data = int(ceil ((coredynp.arch_ireg_width+1*coredynp.globalCheckpoint)/8.0));//the address of CAM needed to be sent out
+ out_w = int(ceil (coredynp.arch_ireg_width/8.0));
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].phy_Regs_IRF_size;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = out_w*8;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//for GCs
+ interface_ip.num_rd_ports = coredynp.decodeW;
+ interface_ip.num_wr_ports = coredynp.decodeW;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports= 2*coredynp.decodeW;
+ iFRAT = new ArrayST(&interface_ip, "Int FrontRAT", Core_device, coredynp.opt_local, coredynp.core_ty);
+ iFRAT->area.set_area(iFRAT->area.get_area()+ iFRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ iFRAT->area.get_area());
+
+ //FRAT for FP
+ tag = coredynp.arch_freg_width;
+ data = int(ceil ((coredynp.arch_freg_width+1*coredynp.globalCheckpoint)/8.0));//the address of CAM needed to be sent out
+ out_w = int(ceil (coredynp.arch_freg_width/8.0));
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].phy_Regs_FRF_size;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = out_w*8;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//for GCs
+ interface_ip.num_rd_ports = coredynp.fp_decodeW;
+ interface_ip.num_wr_ports = coredynp.fp_decodeW;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports= 2*coredynp.fp_decodeW;
+ fFRAT = new ArrayST(&interface_ip, "Int FrontRAT", Core_device, coredynp.opt_local, coredynp.core_ty);
+ fFRAT->area.set_area(fFRAT->area.get_area()+ fFRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ fFRAT->area.get_area());
+
+ }
+
+ //RRAT is always RAM based, does not have GCs, and is used only for record latest non-speculative mapping
+ data = int(ceil(coredynp.phy_ireg_width/8.0));
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].archi_Regs_IRF_size*2;//HACK to make it as least 64B
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = XML->sys.core[ithCore].commit_width;
+ interface_ip.num_wr_ports = XML->sys.core[ithCore].commit_width;
+ interface_ip.num_se_rd_ports = 0;
+ iRRAT = new ArrayST(&interface_ip, "Int RetireRAT", Core_device, coredynp.opt_local, coredynp.core_ty);
+ iRRAT->area.set_area(iRRAT->area.get_area()+ iRRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ iRRAT->area.get_area());
+
+ //RRAT for FP
+ data = int(ceil(coredynp.phy_freg_width/8.0));
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].archi_Regs_FRF_size*2;//HACK to make it as least 64B
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = coredynp.fp_decodeW;
+ interface_ip.num_wr_ports = coredynp.fp_decodeW;
+ interface_ip.num_se_rd_ports = 0;
+ fRRAT = new ArrayST(&interface_ip, "Int RetireRAT", Core_device, coredynp.opt_local, coredynp.core_ty);
+ fRRAT->area.set_area(fRRAT->area.get_area()+ fRRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ fRRAT->area.get_area());
+
+ //Freelist of renaming unit always RAM based
+ //Recycle happens at two places: 1)when DCL check there are WAW, the Phyregisters/ROB directly recycles into freelist
+ // 2)When instruction commits the Phyregisters/ROB needed to be recycled.
+ //therefore num_wr port = decode-1(-1 means at least one phy reg will be used for the current renaming group) + commit width
+ data = int(ceil(coredynp.phy_ireg_width/8.0));
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*coredynp.num_ifreelist_entries;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//TODO
+ interface_ip.num_rd_ports = coredynp.decodeW;
+ interface_ip.num_wr_ports = coredynp.decodeW -1 + XML->sys.core[ithCore].commit_width;
+ //every cycle, (coredynp.decodeW -1) inst may need to send back it dest tags, committW insts needs to update freelist buffers
+ interface_ip.num_se_rd_ports = 0;
+ ifreeL = new ArrayST(&interface_ip, "Int Free List", Core_device, coredynp.opt_local, coredynp.core_ty);
+ ifreeL->area.set_area(ifreeL->area.get_area()+ ifreeL->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ ifreeL->area.get_area());
+
+ //freelist for FP
+ data = int(ceil(coredynp.phy_freg_width/8.0));
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*coredynp.num_ffreelist_entries;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = coredynp.fp_decodeW;
+ interface_ip.num_wr_ports = coredynp.fp_decodeW -1 + XML->sys.core[ithCore].commit_width;
+ interface_ip.num_se_rd_ports = 0;
+ ffreeL = new ArrayST(&interface_ip, "Int Free List", Core_device, coredynp.opt_local, coredynp.core_ty);
+ ffreeL->area.set_area(ffreeL->area.get_area()+ ffreeL->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ ffreeL->area.get_area());
+
+ idcl = new dep_resource_conflict_check(&interface_ip,coredynp,coredynp.phy_ireg_width);//TODO:Separate 2 sections See TR
+ fdcl = new dep_resource_conflict_check(&interface_ip,coredynp,coredynp.phy_freg_width);
+
+ }
+ else if (coredynp.scheu_ty==ReservationStation){
+ if (coredynp.rm_ty ==RAMbased){
+ /*
+ * however, RAT needs to do associative search in RAT, when instruction commits and ROB release the entry,
+ * to make sure all the renamings associated with the ROB to be released are updated to ARF at the same time.
+ * RAM based RAT for RS base OOO does not save the search operations. Its advantage is to have less entries than
+ * CAM based RAT so that it is more scalable as number of ROB/physical regs increases.
+ */
+ tag = coredynp.phy_ireg_width;
+ data = int(ceil(coredynp.phy_ireg_width*(1+coredynp.globalCheckpoint)/8.0));
+ out_w = int(ceil(coredynp.phy_ireg_width/8.0));
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].archi_Regs_IRF_size;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = out_w*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//the extra one port is for GCs
+ interface_ip.num_rd_ports = 2*coredynp.decodeW;
+ interface_ip.num_wr_ports = coredynp.decodeW;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports= coredynp.commitW;//TODO
+ iFRAT = new ArrayST(&interface_ip, "Int FrontRAT", Core_device, coredynp.opt_local, coredynp.core_ty);
+ iFRAT->local_result.adjust_area();
+ iFRAT->area.set_area(iFRAT->area.get_area()+ iFRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ iFRAT->area.get_area());
+
+ //FP
+ tag = coredynp.phy_freg_width;
+ data = int(ceil(coredynp.phy_freg_width*(1+coredynp.globalCheckpoint)/8.0));
+ out_w = int(ceil(coredynp.phy_freg_width/8.0));
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].archi_Regs_FRF_size;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = out_w*8;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//the extra one port is for GCs
+ interface_ip.num_rd_ports = 2*coredynp.fp_decodeW;
+ interface_ip.num_wr_ports = coredynp.fp_decodeW;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports= coredynp.fp_decodeW;//actually is fp commit width
+ fFRAT = new ArrayST(&interface_ip, "Int FrontRAT", Core_device, coredynp.opt_local, coredynp.core_ty);
+ fFRAT->local_result.adjust_area();
+ fFRAT->area.set_area(fFRAT->area.get_area()+ fFRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ fFRAT->area.get_area());
+
+ }
+ else if ((coredynp.rm_ty ==CAMbased))
+ {
+ //FRAT
+ tag = coredynp.arch_ireg_width;
+ data = int(ceil (coredynp.arch_ireg_width+1*coredynp.globalCheckpoint/8.0));//the address of CAM needed to be sent out
+ out_w = int(ceil (coredynp.arch_ireg_width/8.0));
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].phy_Regs_IRF_size;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = out_w*8;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//for GCs
+ interface_ip.num_rd_ports = XML->sys.core[ithCore].decode_width;//0;TODO
+ interface_ip.num_wr_ports = XML->sys.core[ithCore].decode_width;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports= 2*XML->sys.core[ithCore].decode_width;
+ iFRAT = new ArrayST(&interface_ip, "Int FrontRAT", Core_device, coredynp.opt_local, coredynp.core_ty);
+ iFRAT->area.set_area(iFRAT->area.get_area()+ iFRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ iFRAT->area.get_area());
+
+ //FRAT
+ tag = coredynp.arch_freg_width;
+ data = int(ceil (coredynp.arch_freg_width+1*coredynp.globalCheckpoint/8.0));//the address of CAM needed to be sent out
+ out_w = int(ceil (coredynp.arch_freg_width/8.0));
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*XML->sys.core[ithCore].phy_Regs_FRF_size;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = out_w*8;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.access_mode = 2;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//for GCs
+ interface_ip.num_rd_ports = XML->sys.core[ithCore].decode_width;//0;TODO;
+ interface_ip.num_wr_ports = coredynp.fp_decodeW;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports= 2*coredynp.fp_decodeW;
+ fFRAT = new ArrayST(&interface_ip, "Int FrontRAT", Core_device, coredynp.opt_local, coredynp.core_ty);
+ fFRAT->area.set_area(fFRAT->area.get_area()+ fFRAT->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ fFRAT->area.get_area());
+
+ }
+ //No RRAT for RS based OOO
+ //Freelist of renaming unit of RS based OOO is unifed for both int and fp renaming unit since the ROB is unified
+ data = int(ceil(coredynp.phy_ireg_width/8.0));
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = data*coredynp.num_ifreelist_entries;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/clockRate;
+ interface_ip.latency = 1.0/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//TODO
+ interface_ip.num_rd_ports = XML->sys.core[ithCore].decode_width;
+ interface_ip.num_wr_ports = XML->sys.core[ithCore].decode_width -1 + XML->sys.core[ithCore].commit_width;
+ interface_ip.num_se_rd_ports = 0;
+ ifreeL = new ArrayST(&interface_ip, "Unified Free List", Core_device, coredynp.opt_local, coredynp.core_ty);
+ ifreeL->area.set_area(ifreeL->area.get_area()+ ifreeL->local_result.area*XML->sys.core[ithCore].number_hardware_threads);
+ area.set_area(area.get_area()+ ifreeL->area.get_area());
+
+ idcl = new dep_resource_conflict_check(&interface_ip,coredynp,coredynp.phy_ireg_width);//TODO:Separate 2 sections See TR
+ fdcl = new dep_resource_conflict_check(&interface_ip,coredynp,coredynp.phy_freg_width);
+ }
+
+}
+ if (coredynp.core_ty==Inorder&& coredynp.issueW>1)
+ {
+ /* Dependency check logic will only present when decode(issue) width>1.
+ * Multiple issue in order processor can do without renaming, but dcl is a must.
+ */
+ idcl = new dep_resource_conflict_check(&interface_ip,coredynp,coredynp.phy_ireg_width);//TODO:Separate 2 sections See TR
+ fdcl = new dep_resource_conflict_check(&interface_ip,coredynp,coredynp.phy_freg_width);
+ }
+}
+
+Core::Core(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ ifu (0),
+ lsu (0),
+ mmu (0),
+ exu (0),
+ rnu (0),
+ corepipe (0),
+ undiffCore (0),
+ l2cache (0)
+{
+ /*
+ * initialize, compute and optimize individual components.
+ */
+
+ double pipeline_area_per_unit;
+ if (XML->sys.Private_L2)
+ {
+ l2cache = new SharedCache(XML,ithCore, &interface_ip);
+
+ }
+// interface_ip.wire_is_mat_type = 2;
+// interface_ip.wire_os_mat_type = 2;
+// interface_ip.wt =Global_30;
+ set_core_param();
+ clockRate = coredynp.clockRate;
+ executionTime = coredynp.executionTime;
+ ifu = new InstFetchU(XML, ithCore, &interface_ip,coredynp);
+ lsu = new LoadStoreU(XML, ithCore, &interface_ip,coredynp);
+ mmu = new MemManU (XML, ithCore, &interface_ip,coredynp);
+ exu = new EXECU (XML, ithCore, &interface_ip,lsu->lsq_height, coredynp);
+ undiffCore = new UndiffCore(XML, ithCore, &interface_ip,coredynp);
+ if (coredynp.core_ty==OOO)
+ {
+ rnu = new RENAMINGU(XML, ithCore, &interface_ip,coredynp);
+ }
+ corepipe = new Pipeline(&interface_ip,coredynp);
+
+ if (coredynp.core_ty==OOO)
+ {
+ pipeline_area_per_unit = (corepipe->area.get_area()*coredynp.num_pipelines)/5.0;
+ if (rnu->exist)
+ {
+ rnu->area.set_area(rnu->area.get_area() + pipeline_area_per_unit);
+ }
+ }
+ else {
+ pipeline_area_per_unit = (corepipe->area.get_area()*coredynp.num_pipelines)/4.0;
+ }
+
+ //area.set_area(area.get_area()+ corepipe->area.get_area());
+ if (ifu->exist)
+ {
+ ifu->area.set_area(ifu->area.get_area() + pipeline_area_per_unit);
+ area.set_area(area.get_area() + ifu->area.get_area());
+ }
+ if (lsu->exist)
+ {
+ lsu->area.set_area(lsu->area.get_area() + pipeline_area_per_unit);
+ area.set_area(area.get_area() + lsu->area.get_area());
+ }
+ if (exu->exist)
+ {
+ exu->area.set_area(exu->area.get_area() + pipeline_area_per_unit);
+ area.set_area(area.get_area()+exu->area.get_area());
+ }
+ if (mmu->exist)
+ {
+ mmu->area.set_area(mmu->area.get_area() + pipeline_area_per_unit);
+ area.set_area(area.get_area()+mmu->area.get_area());
+ }
+
+ if (coredynp.core_ty==OOO)
+ {
+ if (rnu->exist)
+ {
+
+ area.set_area(area.get_area() + rnu->area.get_area());
+ }
+ }
+
+ if (undiffCore->exist)
+ {
+ area.set_area(area.get_area() + undiffCore->area.get_area());
+ }
+
+ if (XML->sys.Private_L2)
+ {
+ area.set_area(area.get_area() + l2cache->area.get_area());
+
+ }
+// //clock power
+// clockNetwork.init_wire_external(is_default, &interface_ip);
+// clockNetwork.clk_area =area*1.1;//10% of placement overhead. rule of thumb
+// clockNetwork.end_wiring_level =5;//toplevel metal
+// clockNetwork.start_wiring_level =5;//toplevel metal
+// clockNetwork.num_regs = corepipe.tot_stage_vector;
+// clockNetwork.optimize_wire();
+}
+
+
+void BranchPredictor::computeEnergy(bool is_tdp)
+{
+ if (!exist) return;
+ double r_access;
+ double w_access;
+ if (is_tdp)
+ {
+ r_access = coredynp.predictionW*coredynp.BR_duty_cycle;
+ w_access = 0*coredynp.BR_duty_cycle;
+ globalBPT->stats_t.readAc.access = r_access;
+ globalBPT->stats_t.writeAc.access = w_access;
+ globalBPT->tdp_stats = globalBPT->stats_t;
+
+ L1_localBPT->stats_t.readAc.access = r_access;
+ L1_localBPT->stats_t.writeAc.access = w_access;
+ L1_localBPT->tdp_stats = L1_localBPT->stats_t;
+
+ L2_localBPT->stats_t.readAc.access = r_access;
+ L2_localBPT->stats_t.writeAc.access = w_access;
+ L2_localBPT->tdp_stats = L2_localBPT->stats_t;
+
+ chooser->stats_t.readAc.access = r_access;
+ chooser->stats_t.writeAc.access = w_access;
+ chooser->tdp_stats = chooser->stats_t;
+
+ RAS->stats_t.readAc.access = r_access;
+ RAS->stats_t.writeAc.access = w_access;
+ RAS->tdp_stats = RAS->stats_t;
+ }
+ else
+ {
+ //The resolution of BPT accesses is coarse, but this is
+ //because most simulators cannot track finer grained details
+ r_access = XML->sys.core[ithCore].branch_instructions;
+ w_access = XML->sys.core[ithCore].branch_mispredictions + 0.1*XML->sys.core[ithCore].branch_instructions;//10% of BR will flip internal bits//0
+ globalBPT->stats_t.readAc.access = r_access;
+ globalBPT->stats_t.writeAc.access = w_access;
+ globalBPT->rtp_stats = globalBPT->stats_t;
+
+ L1_localBPT->stats_t.readAc.access = r_access;
+ L1_localBPT->stats_t.writeAc.access = w_access;
+ L1_localBPT->rtp_stats = L1_localBPT->stats_t;
+
+ L2_localBPT->stats_t.readAc.access = r_access;
+ L2_localBPT->stats_t.writeAc.access = w_access;
+ L2_localBPT->rtp_stats = L2_localBPT->stats_t;
+
+ chooser->stats_t.readAc.access = r_access;
+ chooser->stats_t.writeAc.access = w_access;
+ chooser->rtp_stats = chooser->stats_t;
+
+ RAS->stats_t.readAc.access = XML->sys.core[ithCore].function_calls;
+ RAS->stats_t.writeAc.access = XML->sys.core[ithCore].function_calls;
+ RAS->rtp_stats = RAS->stats_t;
+ }
+
+ globalBPT->power_t.reset();
+ L1_localBPT->power_t.reset();
+ L2_localBPT->power_t.reset();
+ chooser->power_t.reset();
+ RAS->power_t.reset();
+
+ globalBPT->power_t.readOp.dynamic += globalBPT->local_result.power.readOp.dynamic*globalBPT->stats_t.readAc.access +
+ globalBPT->stats_t.writeAc.access*globalBPT->local_result.power.writeOp.dynamic;
+ L1_localBPT->power_t.readOp.dynamic += L1_localBPT->local_result.power.readOp.dynamic*L1_localBPT->stats_t.readAc.access +
+ L1_localBPT->stats_t.writeAc.access*L1_localBPT->local_result.power.writeOp.dynamic;
+
+ L2_localBPT->power_t.readOp.dynamic += L2_localBPT->local_result.power.readOp.dynamic*L2_localBPT->stats_t.readAc.access +
+ L2_localBPT->stats_t.writeAc.access*L2_localBPT->local_result.power.writeOp.dynamic;
+
+ chooser->power_t.readOp.dynamic += chooser->local_result.power.readOp.dynamic*chooser->stats_t.readAc.access +
+ chooser->stats_t.writeAc.access*chooser->local_result.power.writeOp.dynamic;
+ RAS->power_t.readOp.dynamic += RAS->local_result.power.readOp.dynamic*RAS->stats_t.readAc.access +
+ RAS->stats_t.writeAc.access*RAS->local_result.power.writeOp.dynamic;
+
+ if (is_tdp)
+ {
+ globalBPT->power = globalBPT->power_t + globalBPT->local_result.power*pppm_lkg;
+ L1_localBPT->power = L1_localBPT->power_t + L1_localBPT->local_result.power*pppm_lkg;
+ L2_localBPT->power = L2_localBPT->power_t + L2_localBPT->local_result.power*pppm_lkg;
+ chooser->power = chooser->power_t + chooser->local_result.power*pppm_lkg;
+ RAS->power = RAS->power_t + RAS->local_result.power*coredynp.pppm_lkg_multhread;
+
+ power = power + globalBPT->power + L1_localBPT->power + chooser->power + RAS->power;
+ }
+ else
+ {
+ globalBPT->rt_power = globalBPT->power_t + globalBPT->local_result.power*pppm_lkg;
+ L1_localBPT->rt_power = L1_localBPT->power_t + L1_localBPT->local_result.power*pppm_lkg;
+ L2_localBPT->rt_power = L2_localBPT->power_t + L2_localBPT->local_result.power*pppm_lkg;
+ chooser->rt_power = chooser->power_t + chooser->local_result.power*pppm_lkg;
+ RAS->rt_power = RAS->power_t + RAS->local_result.power*coredynp.pppm_lkg_multhread;
+ rt_power = rt_power + globalBPT->rt_power + L1_localBPT->rt_power + chooser->rt_power + RAS->rt_power;
+ }
+}
+
+void BranchPredictor::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ if (!exist) return;
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+ if (is_tdp)
+ {
+ cout << indent_str<< "Global Predictor:" << endl;
+ cout << indent_str_next << "Area = " << globalBPT->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << globalBPT->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? globalBPT->power.readOp.longer_channel_leakage:globalBPT->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << globalBPT->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << globalBPT->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str << "Local Predictor:" << endl;
+ cout << indent_str << "L1_Local Predictor:" << endl;
+ cout << indent_str_next << "Area = " << L1_localBPT->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << L1_localBPT->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? L1_localBPT->power.readOp.longer_channel_leakage:L1_localBPT->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << L1_localBPT->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << L1_localBPT->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str << "L2_Local Predictor:" << endl;
+ cout << indent_str_next << "Area = " << L2_localBPT->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << L2_localBPT->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? L2_localBPT->power.readOp.longer_channel_leakage:L2_localBPT->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << L2_localBPT->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << L2_localBPT->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+
+ cout << indent_str << "Chooser:" << endl;
+ cout << indent_str_next << "Area = " << chooser->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << chooser->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? chooser->power.readOp.longer_channel_leakage:chooser->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << chooser->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << chooser->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str << "RAS:" << endl;
+ cout << indent_str_next << "Area = " << RAS->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << RAS->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? RAS->power.readOp.longer_channel_leakage:RAS->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << RAS->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << RAS->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ else
+ {
+// cout << indent_str_next << "Global Predictor Peak Dynamic = " << globalBPT->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Global Predictor Subthreshold Leakage = " << globalBPT->rt_power.readOp.leakage <<" W" << endl;
+// cout << indent_str_next << "Global Predictor Gate Leakage = " << globalBPT->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Local Predictor Peak Dynamic = " << L1_localBPT->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Local Predictor Subthreshold Leakage = " << L1_localBPT->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Local Predictor Gate Leakage = " << L1_localBPT->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Chooser Peak Dynamic = " << chooser->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Chooser Subthreshold Leakage = " << chooser->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Chooser Gate Leakage = " << chooser->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "RAS Peak Dynamic = " << RAS->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "RAS Subthreshold Leakage = " << RAS->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "RAS Gate Leakage = " << RAS->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+
+}
+
+void InstFetchU::computeEnergy(bool is_tdp)
+{
+ if (!exist) return;
+ if (is_tdp)
+ {
+ //init stats for Peak
+ icache.caches->stats_t.readAc.access = icache.caches->l_ip.num_rw_ports*coredynp.IFU_duty_cycle;
+ icache.caches->stats_t.readAc.miss = 0;
+ icache.caches->stats_t.readAc.hit = icache.caches->stats_t.readAc.access - icache.caches->stats_t.readAc.miss;
+ icache.caches->tdp_stats = icache.caches->stats_t;
+
+ icache.missb->stats_t.readAc.access = icache.missb->stats_t.readAc.hit= icache.missb->l_ip.num_search_ports;
+ icache.missb->stats_t.writeAc.access = icache.missb->stats_t.writeAc.hit= icache.missb->l_ip.num_search_ports;
+ icache.missb->tdp_stats = icache.missb->stats_t;
+
+ icache.ifb->stats_t.readAc.access = icache.ifb->stats_t.readAc.hit= icache.ifb->l_ip.num_search_ports;
+ icache.ifb->stats_t.writeAc.access = icache.ifb->stats_t.writeAc.hit= icache.ifb->l_ip.num_search_ports;
+ icache.ifb->tdp_stats = icache.ifb->stats_t;
+
+ icache.prefetchb->stats_t.readAc.access = icache.prefetchb->stats_t.readAc.hit= icache.prefetchb->l_ip.num_search_ports;
+ icache.prefetchb->stats_t.writeAc.access = icache.ifb->stats_t.writeAc.hit= icache.ifb->l_ip.num_search_ports;
+ icache.prefetchb->tdp_stats = icache.prefetchb->stats_t;
+
+ IB->stats_t.readAc.access = IB->stats_t.writeAc.access = XML->sys.core[ithCore].peak_issue_width;
+ IB->tdp_stats = IB->stats_t;
+
+ if (coredynp.predictionW>0)
+ {
+ BTB->stats_t.readAc.access = coredynp.predictionW;//XML->sys.core[ithCore].BTB.read_accesses;
+ BTB->stats_t.writeAc.access = 0;//XML->sys.core[ithCore].BTB.write_accesses;
+ }
+
+ ID_inst->stats_t.readAc.access = coredynp.decodeW;
+ ID_operand->stats_t.readAc.access = coredynp.decodeW;
+ ID_misc->stats_t.readAc.access = coredynp.decodeW;
+ ID_inst->tdp_stats = ID_inst->stats_t;
+ ID_operand->tdp_stats = ID_operand->stats_t;
+ ID_misc->tdp_stats = ID_misc->stats_t;
+
+
+ }
+ else
+ {
+ //init stats for Runtime Dynamic (RTP)
+ icache.caches->stats_t.readAc.access = XML->sys.core[ithCore].icache.read_accesses;
+ icache.caches->stats_t.readAc.miss = XML->sys.core[ithCore].icache.read_misses;
+ icache.caches->stats_t.readAc.hit = icache.caches->stats_t.readAc.access - icache.caches->stats_t.readAc.miss;
+ icache.caches->rtp_stats = icache.caches->stats_t;
+
+ icache.missb->stats_t.readAc.access = icache.caches->stats_t.readAc.miss;
+ icache.missb->stats_t.writeAc.access = icache.caches->stats_t.readAc.miss;
+ icache.missb->rtp_stats = icache.missb->stats_t;
+
+ icache.ifb->stats_t.readAc.access = icache.caches->stats_t.readAc.miss;
+ icache.ifb->stats_t.writeAc.access = icache.caches->stats_t.readAc.miss;
+ icache.ifb->rtp_stats = icache.ifb->stats_t;
+
+ icache.prefetchb->stats_t.readAc.access = icache.caches->stats_t.readAc.miss;
+ icache.prefetchb->stats_t.writeAc.access = icache.caches->stats_t.readAc.miss;
+ icache.prefetchb->rtp_stats = icache.prefetchb->stats_t;
+
+ IB->stats_t.readAc.access = IB->stats_t.writeAc.access = XML->sys.core[ithCore].total_instructions;
+ IB->rtp_stats = IB->stats_t;
+
+ if (coredynp.predictionW>0)
+ {
+ BTB->stats_t.readAc.access = XML->sys.core[ithCore].BTB.read_accesses;//XML->sys.core[ithCore].branch_instructions;
+ BTB->stats_t.writeAc.access = XML->sys.core[ithCore].BTB.write_accesses;//XML->sys.core[ithCore].branch_mispredictions;
+ BTB->rtp_stats = BTB->stats_t;
+ }
+
+ ID_inst->stats_t.readAc.access = XML->sys.core[ithCore].total_instructions;
+ ID_operand->stats_t.readAc.access = XML->sys.core[ithCore].total_instructions;
+ ID_misc->stats_t.readAc.access = XML->sys.core[ithCore].total_instructions;
+ ID_inst->rtp_stats = ID_inst->stats_t;
+ ID_operand->rtp_stats = ID_operand->stats_t;
+ ID_misc->rtp_stats = ID_misc->stats_t;
+
+ }
+
+ icache.power_t.reset();
+ IB->power_t.reset();
+// ID_inst->power_t.reset();
+// ID_operand->power_t.reset();
+// ID_misc->power_t.reset();
+ if (coredynp.predictionW>0)
+ {
+ BTB->power_t.reset();
+ }
+
+ icache.power_t.readOp.dynamic += (icache.caches->stats_t.readAc.hit*icache.caches->local_result.power.readOp.dynamic+
+ //icache.caches->stats_t.readAc.miss*icache.caches->local_result.tag_array2->power.readOp.dynamic+
+ icache.caches->stats_t.readAc.miss*icache.caches->local_result.power.readOp.dynamic+ //assume tag data accessed in parallel
+ icache.caches->stats_t.readAc.miss*icache.caches->local_result.power.writeOp.dynamic); //read miss in Icache cause a write to Icache
+ icache.power_t.readOp.dynamic += icache.missb->stats_t.readAc.access*icache.missb->local_result.power.searchOp.dynamic +
+ icache.missb->stats_t.writeAc.access*icache.missb->local_result.power.writeOp.dynamic;//each access to missb involves a CAM and a write
+ icache.power_t.readOp.dynamic += icache.ifb->stats_t.readAc.access*icache.ifb->local_result.power.searchOp.dynamic +
+ icache.ifb->stats_t.writeAc.access*icache.ifb->local_result.power.writeOp.dynamic;
+ icache.power_t.readOp.dynamic += icache.prefetchb->stats_t.readAc.access*icache.prefetchb->local_result.power.searchOp.dynamic +
+ icache.prefetchb->stats_t.writeAc.access*icache.prefetchb->local_result.power.writeOp.dynamic;
+
+ IB->power_t.readOp.dynamic += IB->local_result.power.readOp.dynamic*IB->stats_t.readAc.access +
+ IB->stats_t.writeAc.access*IB->local_result.power.writeOp.dynamic;
+
+ if (coredynp.predictionW>0)
+ {
+ BTB->power_t.readOp.dynamic += BTB->local_result.power.readOp.dynamic*BTB->stats_t.readAc.access +
+ BTB->stats_t.writeAc.access*BTB->local_result.power.writeOp.dynamic;
+
+ BPT->computeEnergy(is_tdp);
+ }
+
+ if (is_tdp)
+ {
+// icache.power = icache.power_t +
+// (icache.caches->local_result.power)*pppm_lkg +
+// (icache.missb->local_result.power +
+// icache.ifb->local_result.power +
+// icache.prefetchb->local_result.power)*pppm_Isub;
+ icache.power = icache.power_t +
+ (icache.caches->local_result.power +
+ icache.missb->local_result.power +
+ icache.ifb->local_result.power +
+ icache.prefetchb->local_result.power)*pppm_lkg;
+
+ IB->power = IB->power_t + IB->local_result.power*pppm_lkg;
+ power = power + icache.power + IB->power;
+ if (coredynp.predictionW>0)
+ {
+ BTB->power = BTB->power_t + BTB->local_result.power*pppm_lkg;
+ power = power + BTB->power + BPT->power;
+ }
+
+ ID_inst->power_t.readOp.dynamic = ID_inst->power.readOp.dynamic;
+ ID_operand->power_t.readOp.dynamic = ID_operand->power.readOp.dynamic;
+ ID_misc->power_t.readOp.dynamic = ID_misc->power.readOp.dynamic;
+
+ ID_inst->power.readOp.dynamic *= ID_inst->tdp_stats.readAc.access;
+ ID_operand->power.readOp.dynamic *= ID_operand->tdp_stats.readAc.access;
+ ID_misc->power.readOp.dynamic *= ID_misc->tdp_stats.readAc.access;
+
+ power = power + (ID_inst->power +
+ ID_operand->power +
+ ID_misc->power);
+ }
+ else
+ {
+// icache.rt_power = icache.power_t +
+// (icache.caches->local_result.power)*pppm_lkg +
+// (icache.missb->local_result.power +
+// icache.ifb->local_result.power +
+// icache.prefetchb->local_result.power)*pppm_Isub;
+
+ icache.rt_power = icache.power_t +
+ (icache.caches->local_result.power +
+ icache.missb->local_result.power +
+ icache.ifb->local_result.power +
+ icache.prefetchb->local_result.power)*pppm_lkg;
+
+ IB->rt_power = IB->power_t + IB->local_result.power*pppm_lkg;
+ rt_power = rt_power + icache.rt_power + IB->rt_power;
+ if (coredynp.predictionW>0)
+ {
+ BTB->rt_power = BTB->power_t + BTB->local_result.power*pppm_lkg;
+ rt_power = rt_power + BTB->rt_power + BPT->rt_power;
+ }
+
+ ID_inst->rt_power.readOp.dynamic = ID_inst->power_t.readOp.dynamic*ID_inst->rtp_stats.readAc.access;
+ ID_operand->rt_power.readOp.dynamic = ID_operand->power_t.readOp.dynamic * ID_operand->rtp_stats.readAc.access;
+ ID_misc->rt_power.readOp.dynamic = ID_misc->power_t.readOp.dynamic * ID_misc->rtp_stats.readAc.access;
+
+ rt_power = rt_power + (ID_inst->rt_power +
+ ID_operand->rt_power +
+ ID_misc->rt_power);
+ }
+}
+
+void InstFetchU::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ if (!exist) return;
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+
+ if (is_tdp)
+ {
+
+ cout << indent_str<< "Instruction Cache:" << endl;
+ cout << indent_str_next << "Area = " << icache.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << icache.power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? icache.power.readOp.longer_channel_leakage:icache.power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << icache.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << icache.rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (coredynp.predictionW>0)
+ {
+ cout << indent_str<< "Branch Target Buffer:" << endl;
+ cout << indent_str_next << "Area = " << BTB->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << BTB->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? BTB->power.readOp.longer_channel_leakage:BTB->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << BTB->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << BTB->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (BPT->exist)
+ {
+ cout << indent_str<< "Branch Predictor:" << endl;
+ cout << indent_str_next << "Area = " << BPT->area.get_area() *1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << BPT->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? BPT->power.readOp.longer_channel_leakage:BPT->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << BPT->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << BPT->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (plevel>3)
+ {
+ BPT->displayEnergy(indent+4, plevel, is_tdp);
+ }
+ }
+ }
+ cout << indent_str<< "Instruction Buffer:" << endl;
+ cout << indent_str_next << "Area = " << IB->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << IB->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? IB->power.readOp.longer_channel_leakage:IB->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << IB->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << IB->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str<< "Instruction Decoder:" << endl;
+ cout << indent_str_next << "Area = " << (ID_inst->area.get_area() +
+ ID_operand->area.get_area() +
+ ID_misc->area.get_area())*coredynp.decodeW*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << (ID_inst->power.readOp.dynamic +
+ ID_operand->power.readOp.dynamic +
+ ID_misc->power.readOp.dynamic)*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? (ID_inst->power.readOp.longer_channel_leakage +
+ ID_operand->power.readOp.longer_channel_leakage +
+ ID_misc->power.readOp.longer_channel_leakage):
+ (ID_inst->power.readOp.leakage +
+ ID_operand->power.readOp.leakage +
+ ID_misc->power.readOp.leakage)) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << (ID_inst->power.readOp.gate_leakage +
+ ID_operand->power.readOp.gate_leakage +
+ ID_misc->power.readOp.gate_leakage) << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << (ID_inst->rt_power.readOp.dynamic +
+ ID_operand->rt_power.readOp.dynamic +
+ ID_misc->rt_power.readOp.dynamic)/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ else
+ {
+// cout << indent_str_next << "Instruction Cache Peak Dynamic = " << icache.rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Instruction Cache Subthreshold Leakage = " << icache.rt_power.readOp.leakage <<" W" << endl;
+// cout << indent_str_next << "Instruction Cache Gate Leakage = " << icache.rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Instruction Buffer Peak Dynamic = " << IB->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Instruction Buffer Subthreshold Leakage = " << IB->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Instruction Buffer Gate Leakage = " << IB->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Branch Target Buffer Peak Dynamic = " << BTB->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Branch Target Buffer Subthreshold Leakage = " << BTB->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Branch Target Buffer Gate Leakage = " << BTB->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Branch Predictor Peak Dynamic = " << BPT->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Branch Predictor Subthreshold Leakage = " << BPT->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Branch Predictor Gate Leakage = " << BPT->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+
+}
+
+void RENAMINGU::computeEnergy(bool is_tdp)
+{
+ if (!exist) return;
+ double pppm_t[4] = {1,1,1,1};
+ if (is_tdp)
+ {//init stats for Peak
+ if (coredynp.core_ty==OOO){
+ if (coredynp.scheu_ty==PhysicalRegFile)
+ {
+ if (coredynp.rm_ty ==RAMbased)
+ {
+ iFRAT->stats_t.readAc.access = iFRAT->l_ip.num_rd_ports;
+ iFRAT->stats_t.writeAc.access = iFRAT->l_ip.num_wr_ports;
+ iFRAT->tdp_stats = iFRAT->stats_t;
+
+ fFRAT->stats_t.readAc.access = fFRAT->l_ip.num_rd_ports;
+ fFRAT->stats_t.writeAc.access = fFRAT->l_ip.num_wr_ports;
+ fFRAT->tdp_stats = fFRAT->stats_t;
+
+ }
+ else if ((coredynp.rm_ty ==CAMbased))
+ {
+ iFRAT->stats_t.readAc.access = iFRAT->l_ip.num_search_ports;
+ iFRAT->stats_t.writeAc.access = iFRAT->l_ip.num_wr_ports;
+ iFRAT->tdp_stats = iFRAT->stats_t;
+
+ fFRAT->stats_t.readAc.access = fFRAT->l_ip.num_search_ports;
+ fFRAT->stats_t.writeAc.access = fFRAT->l_ip.num_wr_ports;
+ fFRAT->tdp_stats = fFRAT->stats_t;
+ }
+
+ iRRAT->stats_t.readAc.access = iRRAT->l_ip.num_rd_ports;
+ iRRAT->stats_t.writeAc.access = iRRAT->l_ip.num_wr_ports;
+ iRRAT->tdp_stats = iRRAT->stats_t;
+
+ fRRAT->stats_t.readAc.access = fRRAT->l_ip.num_rd_ports;
+ fRRAT->stats_t.writeAc.access = fRRAT->l_ip.num_wr_ports;
+ fRRAT->tdp_stats = fRRAT->stats_t;
+
+ ifreeL->stats_t.readAc.access = coredynp.decodeW;//ifreeL->l_ip.num_rd_ports;;
+ ifreeL->stats_t.writeAc.access = coredynp.decodeW;//ifreeL->l_ip.num_wr_ports;
+ ifreeL->tdp_stats = ifreeL->stats_t;
+
+ ffreeL->stats_t.readAc.access = coredynp.decodeW;//ffreeL->l_ip.num_rd_ports;
+ ffreeL->stats_t.writeAc.access = coredynp.decodeW;//ffreeL->l_ip.num_wr_ports;
+ ffreeL->tdp_stats = ffreeL->stats_t;
+ }
+ else if (coredynp.scheu_ty==ReservationStation){
+ if (coredynp.rm_ty ==RAMbased)
+ {
+ iFRAT->stats_t.readAc.access = iFRAT->l_ip.num_rd_ports;
+ iFRAT->stats_t.writeAc.access = iFRAT->l_ip.num_wr_ports;
+ iFRAT->stats_t.searchAc.access = iFRAT->l_ip.num_search_ports;
+ iFRAT->tdp_stats = iFRAT->stats_t;
+
+ fFRAT->stats_t.readAc.access = fFRAT->l_ip.num_rd_ports;
+ fFRAT->stats_t.writeAc.access = fFRAT->l_ip.num_wr_ports;
+ fFRAT->stats_t.searchAc.access = fFRAT->l_ip.num_search_ports;
+ fFRAT->tdp_stats = fFRAT->stats_t;
+
+ }
+ else if ((coredynp.rm_ty ==CAMbased))
+ {
+ iFRAT->stats_t.readAc.access = iFRAT->l_ip.num_search_ports;
+ iFRAT->stats_t.writeAc.access = iFRAT->l_ip.num_wr_ports;
+ iFRAT->tdp_stats = iFRAT->stats_t;
+
+ fFRAT->stats_t.readAc.access = fFRAT->l_ip.num_search_ports;
+ fFRAT->stats_t.writeAc.access = fFRAT->l_ip.num_wr_ports;
+ fFRAT->tdp_stats = fFRAT->stats_t;
+ }
+ //Unified free list for both int and fp
+ ifreeL->stats_t.readAc.access = coredynp.decodeW;//ifreeL->l_ip.num_rd_ports;
+ ifreeL->stats_t.writeAc.access = coredynp.decodeW;//ifreeL->l_ip.num_wr_ports;
+ ifreeL->tdp_stats = ifreeL->stats_t;
+ }
+ idcl->stats_t.readAc.access = coredynp.decodeW;
+ fdcl->stats_t.readAc.access = coredynp.decodeW;
+ idcl->tdp_stats = idcl->stats_t;
+ fdcl->tdp_stats = fdcl->stats_t;
+ }
+ else
+ {
+ if (coredynp.issueW>1)
+ {
+ idcl->stats_t.readAc.access = coredynp.decodeW;
+ fdcl->stats_t.readAc.access = coredynp.decodeW;
+ idcl->tdp_stats = idcl->stats_t;
+ fdcl->tdp_stats = fdcl->stats_t;
+ }
+ }
+
+ }
+ else
+ {//init stats for Runtime Dynamic (RTP)
+ if (coredynp.core_ty==OOO){
+ if (coredynp.scheu_ty==PhysicalRegFile)
+ {
+ if (coredynp.rm_ty ==RAMbased)
+ {
+ iFRAT->stats_t.readAc.access = XML->sys.core[ithCore].rename_reads;
+ iFRAT->stats_t.writeAc.access = XML->sys.core[ithCore].rename_writes;
+ iFRAT->rtp_stats = iFRAT->stats_t;
+
+ fFRAT->stats_t.readAc.access = XML->sys.core[ithCore].fp_rename_reads;
+ fFRAT->stats_t.writeAc.access = XML->sys.core[ithCore].fp_rename_writes;
+ fFRAT->rtp_stats = fFRAT->stats_t;
+ }
+ else if ((coredynp.rm_ty ==CAMbased))
+ {
+ iFRAT->stats_t.readAc.access = XML->sys.core[ithCore].rename_reads;
+ iFRAT->stats_t.writeAc.access = XML->sys.core[ithCore].rename_writes;
+ iFRAT->rtp_stats = iFRAT->stats_t;
+
+ fFRAT->stats_t.readAc.access = XML->sys.core[ithCore].fp_rename_reads;
+ fFRAT->stats_t.writeAc.access = XML->sys.core[ithCore].fp_rename_writes;
+ fFRAT->rtp_stats = fFRAT->stats_t;
+ }
+
+ iRRAT->stats_t.readAc.access = XML->sys.core[ithCore].rename_writes;//Hack, should be (context switch + branch mispredictions)*16
+ iRRAT->stats_t.writeAc.access = XML->sys.core[ithCore].rename_writes;
+ iRRAT->rtp_stats = iRRAT->stats_t;
+
+ fRRAT->stats_t.readAc.access = XML->sys.core[ithCore].fp_rename_writes;//Hack, should be (context switch + branch mispredictions)*16
+ fRRAT->stats_t.writeAc.access = XML->sys.core[ithCore].fp_rename_writes;
+ fRRAT->rtp_stats = fRRAT->stats_t;
+
+ ifreeL->stats_t.readAc.access = XML->sys.core[ithCore].rename_reads;
+ ifreeL->stats_t.writeAc.access = 2*XML->sys.core[ithCore].rename_writes;
+ ifreeL->rtp_stats = ifreeL->stats_t;
+
+ ffreeL->stats_t.readAc.access = XML->sys.core[ithCore].fp_rename_reads;
+ ffreeL->stats_t.writeAc.access = 2*XML->sys.core[ithCore].fp_rename_writes;
+ ffreeL->rtp_stats = ffreeL->stats_t;
+ }
+ else if (coredynp.scheu_ty==ReservationStation){
+ if (coredynp.rm_ty ==RAMbased)
+ {
+ iFRAT->stats_t.readAc.access = XML->sys.core[ithCore].rename_reads;
+ iFRAT->stats_t.writeAc.access = XML->sys.core[ithCore].rename_writes;
+ iFRAT->stats_t.searchAc.access = XML->sys.core[ithCore].committed_int_instructions;//hack: not all committed instructions use regs.
+ iFRAT->rtp_stats = iFRAT->stats_t;
+
+ fFRAT->stats_t.readAc.access = XML->sys.core[ithCore].fp_rename_reads;
+ fFRAT->stats_t.writeAc.access = XML->sys.core[ithCore].fp_rename_writes;
+ fFRAT->stats_t.searchAc.access = XML->sys.core[ithCore].committed_fp_instructions;
+ fFRAT->rtp_stats = fFRAT->stats_t;
+ }
+ else if ((coredynp.rm_ty ==CAMbased))
+ {
+ iFRAT->stats_t.readAc.access = XML->sys.core[ithCore].rename_reads;
+ iFRAT->stats_t.writeAc.access = XML->sys.core[ithCore].rename_writes;
+ iFRAT->rtp_stats = iFRAT->stats_t;
+
+ fFRAT->stats_t.readAc.access = XML->sys.core[ithCore].fp_rename_reads;
+ fFRAT->stats_t.writeAc.access = XML->sys.core[ithCore].fp_rename_writes;
+ fFRAT->rtp_stats = fFRAT->stats_t;
+ }
+ //Unified free list for both int and fp since the ROB act as physcial registers
+ ifreeL->stats_t.readAc.access = XML->sys.core[ithCore].rename_reads +
+ XML->sys.core[ithCore].fp_rename_reads;
+ ifreeL->stats_t.writeAc.access = 2*(XML->sys.core[ithCore].rename_writes +
+ XML->sys.core[ithCore].fp_rename_writes);//HACK: 2-> since some of renaming in the same group
+ //are terminated early
+ ifreeL->rtp_stats = ifreeL->stats_t;
+ }
+ idcl->stats_t.readAc.access = 3*coredynp.decodeW*coredynp.decodeW*XML->sys.core[ithCore].rename_reads;
+ fdcl->stats_t.readAc.access = 3*coredynp.fp_issueW*coredynp.fp_issueW*XML->sys.core[ithCore].fp_rename_writes;
+ idcl->rtp_stats = idcl->stats_t;
+ fdcl->rtp_stats = fdcl->stats_t;
+ }
+ else
+ {
+ if (coredynp.issueW>1)
+ {
+ idcl->stats_t.readAc.access = 2*XML->sys.core[ithCore].int_instructions;
+ fdcl->stats_t.readAc.access = XML->sys.core[ithCore].fp_instructions;
+ idcl->rtp_stats = idcl->stats_t;
+ fdcl->rtp_stats = fdcl->stats_t;
+ }
+ }
+
+ }
+ /* Compute engine */
+ if (coredynp.core_ty==OOO)
+ {
+ if (coredynp.scheu_ty==PhysicalRegFile)
+ {
+ if (coredynp.rm_ty ==RAMbased)
+ {
+ iFRAT->power_t.reset();
+ fFRAT->power_t.reset();
+
+ iFRAT->power_t.readOp.dynamic += (iFRAT->stats_t.readAc.access
+ *(iFRAT->local_result.power.readOp.dynamic + idcl->power.readOp.dynamic)
+ +iFRAT->stats_t.writeAc.access*iFRAT->local_result.power.writeOp.dynamic);
+ fFRAT->power_t.readOp.dynamic += (fFRAT->stats_t.readAc.access
+ *(fFRAT->local_result.power.readOp.dynamic + fdcl->power.readOp.dynamic)
+ +fFRAT->stats_t.writeAc.access*fFRAT->local_result.power.writeOp.dynamic);
+ }
+ else if ((coredynp.rm_ty ==CAMbased))
+ {
+ iFRAT->power_t.reset();
+ fFRAT->power_t.reset();
+ iFRAT->power_t.readOp.dynamic += (iFRAT->stats_t.readAc.access
+ *(iFRAT->local_result.power.searchOp.dynamic + idcl->power.readOp.dynamic)
+ +iFRAT->stats_t.writeAc.access*iFRAT->local_result.power.writeOp.dynamic);
+ fFRAT->power_t.readOp.dynamic += (fFRAT->stats_t.readAc.access
+ *(fFRAT->local_result.power.searchOp.dynamic + fdcl->power.readOp.dynamic)
+ +fFRAT->stats_t.writeAc.access*fFRAT->local_result.power.writeOp.dynamic);
+ }
+
+ iRRAT->power_t.reset();
+ fRRAT->power_t.reset();
+ ifreeL->power_t.reset();
+ ffreeL->power_t.reset();
+
+ iRRAT->power_t.readOp.dynamic += (iRRAT->stats_t.readAc.access*iRRAT->local_result.power.readOp.dynamic
+ +iRRAT->stats_t.writeAc.access*iRRAT->local_result.power.writeOp.dynamic);
+ fRRAT->power_t.readOp.dynamic += (fRRAT->stats_t.readAc.access*fRRAT->local_result.power.readOp.dynamic
+ +fRRAT->stats_t.writeAc.access*fRRAT->local_result.power.writeOp.dynamic);
+ ifreeL->power_t.readOp.dynamic += (ifreeL->stats_t.readAc.access*ifreeL->local_result.power.readOp.dynamic
+ +ifreeL->stats_t.writeAc.access*ifreeL->local_result.power.writeOp.dynamic);
+ ffreeL->power_t.readOp.dynamic += (ffreeL->stats_t.readAc.access*ffreeL->local_result.power.readOp.dynamic
+ +ffreeL->stats_t.writeAc.access*ffreeL->local_result.power.writeOp.dynamic);
+
+ }
+ else if (coredynp.scheu_ty==ReservationStation)
+ {
+ if (coredynp.rm_ty ==RAMbased)
+ {
+ iFRAT->power_t.reset();
+ fFRAT->power_t.reset();
+
+ iFRAT->power_t.readOp.dynamic += (iFRAT->stats_t.readAc.access
+ *(iFRAT->local_result.power.readOp.dynamic + idcl->power.readOp.dynamic)
+ +iFRAT->stats_t.writeAc.access*iFRAT->local_result.power.writeOp.dynamic
+ +iFRAT->stats_t.searchAc.access*iFRAT->local_result.power.searchOp.dynamic);
+ fFRAT->power_t.readOp.dynamic += (fFRAT->stats_t.readAc.access
+ *(fFRAT->local_result.power.readOp.dynamic + fdcl->power.readOp.dynamic)
+ +fFRAT->stats_t.writeAc.access*fFRAT->local_result.power.writeOp.dynamic
+ +fFRAT->stats_t.searchAc.access*fFRAT->local_result.power.searchOp.dynamic);
+ }
+ else if ((coredynp.rm_ty ==CAMbased))
+ {
+ iFRAT->power_t.reset();
+ fFRAT->power_t.reset();
+ iFRAT->power_t.readOp.dynamic += (iFRAT->stats_t.readAc.access
+ *(iFRAT->local_result.power.searchOp.dynamic + idcl->power.readOp.dynamic)
+ +iFRAT->stats_t.writeAc.access*iFRAT->local_result.power.writeOp.dynamic);
+ fFRAT->power_t.readOp.dynamic += (fFRAT->stats_t.readAc.access
+ *(fFRAT->local_result.power.searchOp.dynamic + fdcl->power.readOp.dynamic)
+ +fFRAT->stats_t.writeAc.access*fFRAT->local_result.power.writeOp.dynamic);
+ }
+ ifreeL->power_t.reset();
+ ifreeL->power_t.readOp.dynamic += (ifreeL->stats_t.readAc.access*ifreeL->local_result.power.readOp.dynamic
+ +ifreeL->stats_t.writeAc.access*ifreeL->local_result.power.writeOp.dynamic);
+ }
+
+ }
+ else
+ {
+ if (coredynp.issueW>1)
+ {
+ idcl->power_t.reset();
+ fdcl->power_t.reset();
+ set_pppm(pppm_t, idcl->stats_t.readAc.access, coredynp.num_hthreads, coredynp.num_hthreads, idcl->stats_t.readAc.access);
+ idcl->power_t = idcl->power * pppm_t;
+ set_pppm(pppm_t, fdcl->stats_t.readAc.access, coredynp.num_hthreads, coredynp.num_hthreads, idcl->stats_t.readAc.access);
+ fdcl->power_t = fdcl->power * pppm_t;
+ }
+
+ }
+
+ //assign value to tpd and rtp
+ if (is_tdp)
+ {
+ if (coredynp.core_ty==OOO)
+ {
+ if (coredynp.scheu_ty==PhysicalRegFile)
+ {
+ iFRAT->power = iFRAT->power_t + (iFRAT->local_result.power ) * coredynp.pppm_lkg_multhread + idcl->power_t;
+ fFRAT->power = fFRAT->power_t + (fFRAT->local_result.power ) * coredynp.pppm_lkg_multhread + fdcl->power_t;
+ iRRAT->power = iRRAT->power_t + iRRAT->local_result.power * coredynp.pppm_lkg_multhread;
+ fRRAT->power = fRRAT->power_t + fRRAT->local_result.power * coredynp.pppm_lkg_multhread;
+ ifreeL->power = ifreeL->power_t + ifreeL->local_result.power * coredynp.pppm_lkg_multhread;
+ ffreeL->power = ffreeL->power_t + ffreeL->local_result.power * coredynp.pppm_lkg_multhread;
+ power = power + (iFRAT->power + fFRAT->power)
+ + (iRRAT->power + fRRAT->power)
+ + (ifreeL->power + ffreeL->power);
+ }
+ else if (coredynp.scheu_ty==ReservationStation)
+ {
+ iFRAT->power = iFRAT->power_t + (iFRAT->local_result.power ) * coredynp.pppm_lkg_multhread + idcl->power_t;
+ fFRAT->power = fFRAT->power_t + (fFRAT->local_result.power ) * coredynp.pppm_lkg_multhread + fdcl->power_t;
+ ifreeL->power = ifreeL->power_t + ifreeL->local_result.power * coredynp.pppm_lkg_multhread;
+ power = power + (iFRAT->power + fFRAT->power)
+ + ifreeL->power;
+ }
+ }
+ else
+ {
+ power = power + idcl->power_t + fdcl->power_t;
+ }
+
+ }
+ else
+ {
+ if (coredynp.core_ty==OOO)
+ {
+ if (coredynp.scheu_ty==PhysicalRegFile)
+ {
+ iFRAT->rt_power = iFRAT->power_t + (iFRAT->local_result.power ) * coredynp.pppm_lkg_multhread + idcl->power_t;
+ fFRAT->rt_power = fFRAT->power_t + (fFRAT->local_result.power ) * coredynp.pppm_lkg_multhread + fdcl->power_t;
+ iRRAT->rt_power = iRRAT->power_t + iRRAT->local_result.power * coredynp.pppm_lkg_multhread;
+ fRRAT->rt_power = fRRAT->power_t + fRRAT->local_result.power * coredynp.pppm_lkg_multhread;
+ ifreeL->rt_power = ifreeL->power_t + ifreeL->local_result.power * coredynp.pppm_lkg_multhread;
+ ffreeL->rt_power = ffreeL->power_t + ffreeL->local_result.power * coredynp.pppm_lkg_multhread;
+ rt_power = rt_power + (iFRAT->rt_power + fFRAT->rt_power)
+ + (iRRAT->rt_power + fRRAT->rt_power)
+ + (ifreeL->rt_power + ffreeL->rt_power);
+ }
+ else if (coredynp.scheu_ty==ReservationStation)
+ {
+ iFRAT->rt_power = iFRAT->power_t + (iFRAT->local_result.power ) * coredynp.pppm_lkg_multhread + idcl->power_t;
+ fFRAT->rt_power = fFRAT->power_t + (fFRAT->local_result.power ) * coredynp.pppm_lkg_multhread + fdcl->power_t;
+ ifreeL->rt_power = ifreeL->power_t + ifreeL->local_result.power * coredynp.pppm_lkg_multhread;
+ rt_power = rt_power + (iFRAT->rt_power + fFRAT->rt_power)
+ + ifreeL->rt_power;
+ }
+ }
+ else
+ {
+ rt_power = rt_power + idcl->power_t + fdcl->power_t;
+ }
+
+ }
+}
+
+void RENAMINGU::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ if (!exist) return;
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+
+ if (is_tdp)
+ {
+
+ if (coredynp.core_ty==OOO)
+ {
+ cout << indent_str<< "Int Front End RAT:" << endl;
+ cout << indent_str_next << "Area = " << iFRAT->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << iFRAT->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? iFRAT->power.readOp.longer_channel_leakage:iFRAT->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << iFRAT->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << iFRAT->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str<< "FP Front End RAT:" << endl;
+ cout << indent_str_next << "Area = " << fFRAT->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << fFRAT->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? fFRAT->power.readOp.longer_channel_leakage:fFRAT->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << fFRAT->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << fFRAT->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str<<"Free List:" << endl;
+ cout << indent_str_next << "Area = " << ifreeL->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << ifreeL->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? ifreeL->power.readOp.longer_channel_leakage:ifreeL->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << ifreeL->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << ifreeL->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+
+ if (coredynp.scheu_ty==PhysicalRegFile)
+ {
+ cout << indent_str<< "Int Retire RAT: " << endl;
+ cout << indent_str_next << "Area = " << iRRAT->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << iRRAT->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? iRRAT->power.readOp.longer_channel_leakage:iRRAT->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << iRRAT->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << iRRAT->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str<< "FP Retire RAT:" << endl;
+ cout << indent_str_next << "Area = " << fRRAT->area.get_area() *1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << fRRAT->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? fRRAT->power.readOp.longer_channel_leakage:fRRAT->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << fRRAT->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << fRRAT->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str<< "FP Free List:" << endl;
+ cout << indent_str_next << "Area = " << ffreeL->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << ffreeL->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? ffreeL->power.readOp.longer_channel_leakage:ffreeL->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << ffreeL->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << ffreeL->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ }
+ else
+ {
+ cout << indent_str<< "Int DCL:" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << idcl->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? idcl->power.readOp.longer_channel_leakage:idcl->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << idcl->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << idcl->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout << indent_str<<"FP DCL:" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << fdcl->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? fdcl->power.readOp.longer_channel_leakage:fdcl->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << fdcl->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << fdcl->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ }
+ }
+ else
+ {
+ if (coredynp.core_ty==OOO)
+ {
+ cout << indent_str_next << "Int Front End RAT Peak Dynamic = " << iFRAT->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Int Front End RAT Subthreshold Leakage = " << iFRAT->rt_power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Int Front End RAT Gate Leakage = " << iFRAT->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "FP Front End RAT Peak Dynamic = " << fFRAT->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "FP Front End RAT Subthreshold Leakage = " << fFRAT->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "FP Front End RAT Gate Leakage = " << fFRAT->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Free List Peak Dynamic = " << ifreeL->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Free List Subthreshold Leakage = " << ifreeL->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Free List Gate Leakage = " << fFRAT->rt_power.readOp.gate_leakage << " W" << endl;
+ if (coredynp.scheu_ty==PhysicalRegFile)
+ {
+ cout << indent_str_next << "Int Retire RAT Peak Dynamic = " << iRRAT->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Int Retire RAT Subthreshold Leakage = " << iRRAT->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Int Retire RAT Gate Leakage = " << iRRAT->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "FP Retire RAT Peak Dynamic = " << fRRAT->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "FP Retire RAT Subthreshold Leakage = " << fRRAT->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "FP Retire RAT Gate Leakage = " << fRRAT->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "FP Free List Peak Dynamic = " << ffreeL->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "FP Free List Subthreshold Leakage = " << ffreeL->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "FP Free List Gate Leakage = " << fFRAT->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+ }
+ else
+ {
+ cout << indent_str_next << "Int DCL Peak Dynamic = " << idcl->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Int DCL Subthreshold Leakage = " << idcl->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Int DCL Gate Leakage = " << idcl->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "FP DCL Peak Dynamic = " << fdcl->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "FP DCL Subthreshold Leakage = " << fdcl->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "FP DCL Gate Leakage = " << fdcl->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+ }
+
+}
+
+
+void SchedulerU::computeEnergy(bool is_tdp)
+{
+ if (!exist) return;
+ double ROB_duty_cycle;
+// ROB_duty_cycle = ((coredynp.ALU_duty_cycle + coredynp.num_muls>0?coredynp.MUL_duty_cycle:0
+// + coredynp.num_fpus>0?coredynp.FPU_duty_cycle:0))*1.1<1 ? (coredynp.ALU_duty_cycle + coredynp.num_muls>0?coredynp.MUL_duty_cycle:0
+// + coredynp.num_fpus>0?coredynp.FPU_duty_cycle:0)*1.1:1;
+ ROB_duty_cycle = 1;
+ //init stats
+ if (is_tdp)
+ {
+ if (coredynp.core_ty==OOO)
+ {
+ int_inst_window->stats_t.readAc.access = coredynp.issueW*coredynp.num_pipelines;//int_inst_window->l_ip.num_search_ports;
+ int_inst_window->stats_t.writeAc.access = coredynp.issueW*coredynp.num_pipelines;//int_inst_window->l_ip.num_wr_ports;
+ int_inst_window->stats_t.searchAc.access = coredynp.issueW*coredynp.num_pipelines;
+ int_inst_window->tdp_stats = int_inst_window->stats_t;
+ fp_inst_window->stats_t.readAc.access = fp_inst_window->l_ip.num_rd_ports*coredynp.num_fp_pipelines;
+ fp_inst_window->stats_t.writeAc.access = fp_inst_window->l_ip.num_wr_ports*coredynp.num_fp_pipelines;
+ fp_inst_window->stats_t.searchAc.access = fp_inst_window->l_ip.num_search_ports*coredynp.num_fp_pipelines;
+ fp_inst_window->tdp_stats = fp_inst_window->stats_t;
+
+ if (XML->sys.core[ithCore].ROB_size >0)
+ {
+ ROB->stats_t.readAc.access = coredynp.commitW*coredynp.num_pipelines*ROB_duty_cycle;
+ ROB->stats_t.writeAc.access = coredynp.issueW*coredynp.num_pipelines*ROB_duty_cycle;
+ ROB->tdp_stats = ROB->stats_t;
+
+ /*
+ * When inst commits, ROB must be read.
+ * Because for Physcial register based cores, physical register tag in ROB
+ * need to be read out and write into RRAT/CAM based RAT.
+ * For RS based cores, register content that stored in ROB must be
+ * read out and stored in architectural registers.
+ *
+ * if no-register is involved, the ROB read out operation when instruction commits can be ignored.
+ * assuming 20% insts. belong this type.
+ * TODO: ROB duty_cycle need to be revisited
+ */
+ }
+
+ }
+ else if (coredynp.multithreaded)
+ {
+ int_inst_window->stats_t.readAc.access = coredynp.issueW*coredynp.num_pipelines;//int_inst_window->l_ip.num_search_ports;
+ int_inst_window->stats_t.writeAc.access = coredynp.issueW*coredynp.num_pipelines;//int_inst_window->l_ip.num_wr_ports;
+ int_inst_window->stats_t.searchAc.access = coredynp.issueW*coredynp.num_pipelines;
+ int_inst_window->tdp_stats = int_inst_window->stats_t;
+ }
+
+ }
+ else
+ {//rtp
+ if (coredynp.core_ty==OOO)
+ {
+ int_inst_window->stats_t.readAc.access = XML->sys.core[ithCore].inst_window_reads;
+ int_inst_window->stats_t.writeAc.access = XML->sys.core[ithCore].inst_window_writes;
+ int_inst_window->stats_t.searchAc.access = XML->sys.core[ithCore].inst_window_wakeup_accesses;
+ int_inst_window->rtp_stats = int_inst_window->stats_t;
+ fp_inst_window->stats_t.readAc.access = XML->sys.core[ithCore].fp_inst_window_reads;
+ fp_inst_window->stats_t.writeAc.access = XML->sys.core[ithCore].fp_inst_window_writes;
+ fp_inst_window->stats_t.searchAc.access = XML->sys.core[ithCore].fp_inst_window_wakeup_accesses;
+ fp_inst_window->rtp_stats = fp_inst_window->stats_t;
+
+ if (XML->sys.core[ithCore].ROB_size >0)
+ {
+
+ ROB->stats_t.readAc.access = XML->sys.core[ithCore].ROB_reads;
+ ROB->stats_t.writeAc.access = XML->sys.core[ithCore].ROB_writes;
+ /* ROB need to be updated in RS based OOO when new values are produced,
+ * this update may happen before the commit stage when ROB entry is released
+ * 1. ROB write at instruction inserted in
+ * 2. ROB write as results produced (for RS based OOO only)
+ * 3. ROB read as instruction committed. For RS based OOO, data values are read out and sent to ARF
+ * For Physical reg based OOO, no data stored in ROB, but register tags need to be
+ * read out and used to set the RRAT and to recycle the register tag to free list buffer
+ */
+ ROB->rtp_stats = ROB->stats_t;
+ }
+
+ }
+ else if (coredynp.multithreaded)
+ {
+ int_inst_window->stats_t.readAc.access = XML->sys.core[ithCore].int_instructions + XML->sys.core[ithCore].fp_instructions;
+ int_inst_window->stats_t.writeAc.access = XML->sys.core[ithCore].int_instructions + XML->sys.core[ithCore].fp_instructions;
+ int_inst_window->stats_t.searchAc.access = 2*(XML->sys.core[ithCore].int_instructions + XML->sys.core[ithCore].fp_instructions);
+ int_inst_window->rtp_stats = int_inst_window->stats_t;
+ }
+ }
+
+ //computation engine
+ if (coredynp.core_ty==OOO)
+ {
+ int_inst_window->power_t.reset();
+ fp_inst_window->power_t.reset();
+
+ /* each instruction needs to write to scheduler, read out when all resources and source operands are ready
+ * two search ops with one for each source operand
+ *
+ */
+ int_inst_window->power_t.readOp.dynamic += int_inst_window->local_result.power.readOp.dynamic * int_inst_window->stats_t.readAc.access
+ + int_inst_window->local_result.power.searchOp.dynamic * int_inst_window->stats_t.searchAc.access
+ + int_inst_window->local_result.power.writeOp.dynamic * int_inst_window->stats_t.writeAc.access
+ + int_inst_window->stats_t.readAc.access * instruction_selection->power.readOp.dynamic;
+
+ fp_inst_window->power_t.readOp.dynamic += fp_inst_window->local_result.power.readOp.dynamic * fp_inst_window->stats_t.readAc.access
+ + fp_inst_window->local_result.power.searchOp.dynamic * fp_inst_window->stats_t.searchAc.access
+ + fp_inst_window->local_result.power.writeOp.dynamic * fp_inst_window->stats_t.writeAc.access
+ + fp_inst_window->stats_t.writeAc.access * instruction_selection->power.readOp.dynamic;
+
+ if (XML->sys.core[ithCore].ROB_size >0)
+ {
+ ROB->power_t.reset();
+ ROB->power_t.readOp.dynamic += ROB->local_result.power.readOp.dynamic*ROB->stats_t.readAc.access +
+ ROB->stats_t.writeAc.access*ROB->local_result.power.writeOp.dynamic;
+ }
+
+
+
+
+ }
+ else if (coredynp.multithreaded)
+ {
+ int_inst_window->power_t.reset();
+ int_inst_window->power_t.readOp.dynamic += int_inst_window->local_result.power.readOp.dynamic * int_inst_window->stats_t.readAc.access
+ + int_inst_window->local_result.power.searchOp.dynamic * int_inst_window->stats_t.searchAc.access
+ + int_inst_window->local_result.power.writeOp.dynamic * int_inst_window->stats_t.writeAc.access
+ + int_inst_window->stats_t.writeAc.access * instruction_selection->power.readOp.dynamic;
+ }
+
+ //assign values
+ if (is_tdp)
+ {
+ if (coredynp.core_ty==OOO)
+ {
+ int_inst_window->power = int_inst_window->power_t + (int_inst_window->local_result.power +instruction_selection->power) *pppm_lkg;
+ fp_inst_window->power = fp_inst_window->power_t + (fp_inst_window->local_result.power +instruction_selection->power) *pppm_lkg;
+ power = power + int_inst_window->power + fp_inst_window->power;
+ if (XML->sys.core[ithCore].ROB_size >0)
+ {
+ ROB->power = ROB->power_t + ROB->local_result.power*pppm_lkg;
+ power = power + ROB->power;
+ }
+
+ }
+ else if (coredynp.multithreaded)
+ {
+ // set_pppm(pppm_t, XML->sys.core[ithCore].issue_width,1, 1, 1);
+ int_inst_window->power = int_inst_window->power_t + (int_inst_window->local_result.power +instruction_selection->power) *pppm_lkg;
+ power = power + int_inst_window->power;
+ }
+
+ }
+ else
+ {//rtp
+ if (coredynp.core_ty==OOO)
+ {
+ int_inst_window->rt_power = int_inst_window->power_t + (int_inst_window->local_result.power +instruction_selection->power) *pppm_lkg;
+ fp_inst_window->rt_power = fp_inst_window->power_t + (fp_inst_window->local_result.power +instruction_selection->power) *pppm_lkg;
+ rt_power = rt_power + int_inst_window->rt_power + fp_inst_window->rt_power;
+ if (XML->sys.core[ithCore].ROB_size >0)
+ {
+ ROB->rt_power = ROB->power_t + ROB->local_result.power*pppm_lkg;
+ rt_power = rt_power + ROB->rt_power;
+ }
+
+ }
+ else if (coredynp.multithreaded)
+ {
+ // set_pppm(pppm_t, XML->sys.core[ithCore].issue_width,1, 1, 1);
+ int_inst_window->rt_power = int_inst_window->power_t + (int_inst_window->local_result.power +instruction_selection->power) *pppm_lkg;
+ rt_power = rt_power + int_inst_window->rt_power;
+ }
+ }
+// set_pppm(pppm_t, XML->sys.core[ithCore].issue_width,1, 1, 1);
+// cout<<"Scheduler power="<<power.readOp.dynamic<<"leakage="<<power.readOp.leakage<<endl;
+// cout<<"IW="<<int_inst_window->local_result.power.searchOp.dynamic * int_inst_window->stats_t.readAc.access +
+// + int_inst_window->local_result.power.writeOp.dynamic * int_inst_window->stats_t.writeAc.access<<"leakage="<<int_inst_window->local_result.power.readOp.leakage<<endl;
+// cout<<"selection"<<instruction_selection->power.readOp.dynamic<<"leakage"<<instruction_selection->power.readOp.leakage<<endl;
+}
+
+void SchedulerU::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ if (!exist) return;
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+
+ if (is_tdp)
+ {
+ if (coredynp.core_ty==OOO)
+ {
+ cout << indent_str << "Instruction Window:" << endl;
+ cout << indent_str_next << "Area = " << int_inst_window->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << int_inst_window->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? int_inst_window->power.readOp.longer_channel_leakage:int_inst_window->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << int_inst_window->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << int_inst_window->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str << "FP Instruction Window:" << endl;
+ cout << indent_str_next << "Area = " << fp_inst_window->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << fp_inst_window->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? fp_inst_window->power.readOp.longer_channel_leakage:fp_inst_window->power.readOp.leakage ) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << fp_inst_window->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << fp_inst_window->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (XML->sys.core[ithCore].ROB_size >0)
+ {
+ cout << indent_str<<"ROB:" << endl;
+ cout << indent_str_next << "Area = " << ROB->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << ROB->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? ROB->power.readOp.longer_channel_leakage:ROB->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << ROB->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << ROB->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ }
+ else if (coredynp.multithreaded)
+ {
+ cout << indent_str << "Instruction Window:" << endl;
+ cout << indent_str_next << "Area = " << int_inst_window->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << int_inst_window->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? int_inst_window->power.readOp.longer_channel_leakage:int_inst_window->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << int_inst_window->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << int_inst_window->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ }
+ else
+ {
+ if (coredynp.core_ty==OOO)
+ {
+ cout << indent_str_next << "Instruction Window Peak Dynamic = " << int_inst_window->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Instruction Window Subthreshold Leakage = " << int_inst_window->rt_power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Instruction Window Gate Leakage = " << int_inst_window->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "FP Instruction Window Peak Dynamic = " << fp_inst_window->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "FP Instruction Window Subthreshold Leakage = " << fp_inst_window->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "FP Instruction Window Gate Leakage = " << fp_inst_window->rt_power.readOp.gate_leakage << " W" << endl;
+ if (XML->sys.core[ithCore].ROB_size >0)
+ {
+ cout << indent_str_next << "ROB Peak Dynamic = " << ROB->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "ROB Subthreshold Leakage = " << ROB->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "ROB Gate Leakage = " << ROB->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+ }
+ else if (coredynp.multithreaded)
+ {
+ cout << indent_str_next << "Instruction Window Peak Dynamic = " << int_inst_window->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Instruction Window Subthreshold Leakage = " << int_inst_window->rt_power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Instruction Window Gate Leakage = " << int_inst_window->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+ }
+
+}
+
+void LoadStoreU::computeEnergy(bool is_tdp)
+{
+ if (!exist) return;
+ if (is_tdp)
+ {
+ //init stats for Peak
+ dcache.caches->stats_t.readAc.access = 0.67*dcache.caches->l_ip.num_rw_ports*coredynp.LSU_duty_cycle;
+ dcache.caches->stats_t.readAc.miss = 0;
+ dcache.caches->stats_t.readAc.hit = dcache.caches->stats_t.readAc.access - dcache.caches->stats_t.readAc.miss;
+ dcache.caches->stats_t.writeAc.access = 0.33*dcache.caches->l_ip.num_rw_ports*coredynp.LSU_duty_cycle;
+ dcache.caches->stats_t.writeAc.miss = 0;
+ dcache.caches->stats_t.writeAc.hit = dcache.caches->stats_t.writeAc.access - dcache.caches->stats_t.writeAc.miss;
+ dcache.caches->tdp_stats = dcache.caches->stats_t;
+
+ dcache.missb->stats_t.readAc.access = dcache.missb->l_ip.num_search_ports;
+ dcache.missb->stats_t.writeAc.access = dcache.missb->l_ip.num_search_ports;
+ dcache.missb->tdp_stats = dcache.missb->stats_t;
+
+ dcache.ifb->stats_t.readAc.access = dcache.ifb->l_ip.num_search_ports;
+ dcache.ifb->stats_t.writeAc.access = dcache.ifb->l_ip.num_search_ports;
+ dcache.ifb->tdp_stats = dcache.ifb->stats_t;
+
+ dcache.prefetchb->stats_t.readAc.access = dcache.prefetchb->l_ip.num_search_ports;
+ dcache.prefetchb->stats_t.writeAc.access = dcache.ifb->l_ip.num_search_ports;
+ dcache.prefetchb->tdp_stats = dcache.prefetchb->stats_t;
+ if (cache_p==Write_back)
+ {
+ dcache.wbb->stats_t.readAc.access = dcache.wbb->l_ip.num_search_ports;
+ dcache.wbb->stats_t.writeAc.access = dcache.wbb->l_ip.num_search_ports;
+ dcache.wbb->tdp_stats = dcache.wbb->stats_t;
+ }
+
+ LSQ->stats_t.readAc.access = LSQ->stats_t.writeAc.access = LSQ->l_ip.num_search_ports*coredynp.LSU_duty_cycle;
+ LSQ->tdp_stats = LSQ->stats_t;
+ if ((coredynp.core_ty==OOO) && (XML->sys.core[ithCore].load_buffer_size >0))
+ {
+ LoadQ->stats_t.readAc.access = LoadQ->stats_t.writeAc.access = LoadQ->l_ip.num_search_ports*coredynp.LSU_duty_cycle;
+ LoadQ->tdp_stats = LoadQ->stats_t;
+ }
+ }
+ else
+ {
+ //init stats for Runtime Dynamic (RTP)
+ dcache.caches->stats_t.readAc.access = XML->sys.core[ithCore].dcache.read_accesses;
+ dcache.caches->stats_t.readAc.miss = XML->sys.core[ithCore].dcache.read_misses;
+ dcache.caches->stats_t.readAc.hit = dcache.caches->stats_t.readAc.access - dcache.caches->stats_t.readAc.miss;
+ dcache.caches->stats_t.writeAc.access = XML->sys.core[ithCore].dcache.write_accesses;
+ dcache.caches->stats_t.writeAc.miss = XML->sys.core[ithCore].dcache.write_misses;
+ dcache.caches->stats_t.writeAc.hit = dcache.caches->stats_t.writeAc.access - dcache.caches->stats_t.writeAc.miss;
+ dcache.caches->rtp_stats = dcache.caches->stats_t;
+
+ if (cache_p==Write_back)
+ {
+ dcache.missb->stats_t.readAc.access = dcache.caches->stats_t.writeAc.miss;
+ dcache.missb->stats_t.writeAc.access = dcache.caches->stats_t.writeAc.miss;
+ dcache.missb->rtp_stats = dcache.missb->stats_t;
+
+ dcache.ifb->stats_t.readAc.access = dcache.caches->stats_t.writeAc.miss;
+ dcache.ifb->stats_t.writeAc.access = dcache.caches->stats_t.writeAc.miss;
+ dcache.ifb->rtp_stats = dcache.ifb->stats_t;
+
+ dcache.prefetchb->stats_t.readAc.access = dcache.caches->stats_t.writeAc.miss;
+ dcache.prefetchb->stats_t.writeAc.access = dcache.caches->stats_t.writeAc.miss;
+ dcache.prefetchb->rtp_stats = dcache.prefetchb->stats_t;
+
+ dcache.wbb->stats_t.readAc.access = dcache.caches->stats_t.writeAc.miss;
+ dcache.wbb->stats_t.writeAc.access = dcache.caches->stats_t.writeAc.miss;
+ dcache.wbb->rtp_stats = dcache.wbb->stats_t;
+ }
+ else
+ {
+ dcache.missb->stats_t.readAc.access = dcache.caches->stats_t.readAc.miss;
+ dcache.missb->stats_t.writeAc.access = dcache.caches->stats_t.readAc.miss;
+ dcache.missb->rtp_stats = dcache.missb->stats_t;
+
+ dcache.ifb->stats_t.readAc.access = dcache.caches->stats_t.readAc.miss;
+ dcache.ifb->stats_t.writeAc.access = dcache.caches->stats_t.readAc.miss;
+ dcache.ifb->rtp_stats = dcache.ifb->stats_t;
+
+ dcache.prefetchb->stats_t.readAc.access = dcache.caches->stats_t.readAc.miss;
+ dcache.prefetchb->stats_t.writeAc.access = dcache.caches->stats_t.readAc.miss;
+ dcache.prefetchb->rtp_stats = dcache.prefetchb->stats_t;
+ }
+
+ LSQ->stats_t.readAc.access = (XML->sys.core[ithCore].load_instructions + XML->sys.core[ithCore].store_instructions)*2;//flush overhead considered
+ LSQ->stats_t.writeAc.access = (XML->sys.core[ithCore].load_instructions + XML->sys.core[ithCore].store_instructions)*2;
+ LSQ->rtp_stats = LSQ->stats_t;
+
+ if ((coredynp.core_ty==OOO) && (XML->sys.core[ithCore].load_buffer_size >0))
+ {
+ LoadQ->stats_t.readAc.access = XML->sys.core[ithCore].load_instructions + XML->sys.core[ithCore].store_instructions;
+ LoadQ->stats_t.writeAc.access = XML->sys.core[ithCore].load_instructions + XML->sys.core[ithCore].store_instructions;
+ LoadQ->rtp_stats = LoadQ->stats_t;
+ }
+
+ }
+
+ dcache.power_t.reset();
+ LSQ->power_t.reset();
+ dcache.power_t.readOp.dynamic += (dcache.caches->stats_t.readAc.hit*dcache.caches->local_result.power.readOp.dynamic+
+ dcache.caches->stats_t.readAc.miss*dcache.caches->local_result.power.readOp.dynamic+
+ dcache.caches->stats_t.writeAc.miss*dcache.caches->local_result.tag_array2->power.readOp.dynamic+
+ dcache.caches->stats_t.writeAc.access*dcache.caches->local_result.power.writeOp.dynamic);
+
+ if (cache_p==Write_back)
+ {//write miss will generate a write later
+ dcache.power_t.readOp.dynamic += dcache.caches->stats_t.writeAc.miss*dcache.caches->local_result.power.writeOp.dynamic;
+ }
+
+ dcache.power_t.readOp.dynamic += dcache.missb->stats_t.readAc.access*dcache.missb->local_result.power.searchOp.dynamic +
+ dcache.missb->stats_t.writeAc.access*dcache.missb->local_result.power.writeOp.dynamic;//each access to missb involves a CAM and a write
+ dcache.power_t.readOp.dynamic += dcache.ifb->stats_t.readAc.access*dcache.ifb->local_result.power.searchOp.dynamic +
+ dcache.ifb->stats_t.writeAc.access*dcache.ifb->local_result.power.writeOp.dynamic;
+ dcache.power_t.readOp.dynamic += dcache.prefetchb->stats_t.readAc.access*dcache.prefetchb->local_result.power.searchOp.dynamic +
+ dcache.prefetchb->stats_t.writeAc.access*dcache.prefetchb->local_result.power.writeOp.dynamic;
+ if (cache_p==Write_back)
+ {
+ dcache.power_t.readOp.dynamic += dcache.wbb->stats_t.readAc.access*dcache.wbb->local_result.power.searchOp.dynamic
+ + dcache.wbb->stats_t.writeAc.access*dcache.wbb->local_result.power.writeOp.dynamic;
+ }
+
+ if ((coredynp.core_ty==OOO) && (XML->sys.core[ithCore].load_buffer_size >0))
+ {
+ LoadQ->power_t.reset();
+ LoadQ->power_t.readOp.dynamic += LoadQ->stats_t.readAc.access*(LoadQ->local_result.power.searchOp.dynamic+ LoadQ->local_result.power.readOp.dynamic)+
+ LoadQ->stats_t.writeAc.access*LoadQ->local_result.power.writeOp.dynamic;//every memory access invloves at least two operations on LoadQ
+
+ LSQ->power_t.readOp.dynamic += LSQ->stats_t.readAc.access*(LSQ->local_result.power.searchOp.dynamic + LSQ->local_result.power.readOp.dynamic)
+ + LSQ->stats_t.writeAc.access*LSQ->local_result.power.writeOp.dynamic;//every memory access invloves at least two operations on LSQ
+
+ }
+ else
+ {
+ LSQ->power_t.readOp.dynamic += LSQ->stats_t.readAc.access*(LSQ->local_result.power.searchOp.dynamic + LSQ->local_result.power.readOp.dynamic)
+ + LSQ->stats_t.writeAc.access*LSQ->local_result.power.writeOp.dynamic;//every memory access invloves at least two operations on LSQ
+
+ }
+
+ if (is_tdp)
+ {
+// dcache.power = dcache.power_t + (dcache.caches->local_result.power)*pppm_lkg +
+// (dcache.missb->local_result.power +
+// dcache.ifb->local_result.power +
+// dcache.prefetchb->local_result.power +
+// dcache.wbb->local_result.power)*pppm_Isub;
+ dcache.power = dcache.power_t + (dcache.caches->local_result.power +
+ dcache.missb->local_result.power +
+ dcache.ifb->local_result.power +
+ dcache.prefetchb->local_result.power) *pppm_lkg;
+ if (cache_p==Write_back)
+ {
+ dcache.power = dcache.power + dcache.wbb->local_result.power*pppm_lkg;
+ }
+
+ LSQ->power = LSQ->power_t + LSQ->local_result.power *pppm_lkg;
+ power = power + dcache.power + LSQ->power;
+
+ if ((coredynp.core_ty==OOO) && (XML->sys.core[ithCore].load_buffer_size >0))
+ {
+ LoadQ->power = LoadQ->power_t + LoadQ->local_result.power *pppm_lkg;
+ power = power + LoadQ->power;
+ }
+ }
+ else
+ {
+// dcache.rt_power = dcache.power_t + (dcache.caches->local_result.power +
+// dcache.missb->local_result.power +
+// dcache.ifb->local_result.power +
+// dcache.prefetchb->local_result.power +
+// dcache.wbb->local_result.power)*pppm_lkg;
+ dcache.rt_power = dcache.power_t + (dcache.caches->local_result.power +
+ dcache.missb->local_result.power +
+ dcache.ifb->local_result.power +
+ dcache.prefetchb->local_result.power )*pppm_lkg;
+
+ if (cache_p==Write_back)
+ {
+ dcache.rt_power = dcache.rt_power + dcache.wbb->local_result.power*pppm_lkg;
+ }
+
+ LSQ->rt_power = LSQ->power_t + LSQ->local_result.power *pppm_lkg;
+ rt_power = rt_power + dcache.rt_power + LSQ->rt_power;
+
+ if ((coredynp.core_ty==OOO) && (XML->sys.core[ithCore].load_buffer_size >0))
+ {
+ LoadQ->rt_power = LoadQ->power_t + LoadQ->local_result.power *pppm_lkg;
+ rt_power = rt_power + LoadQ->rt_power;
+ }
+ }
+}
+
+
+void LoadStoreU::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ if (!exist) return;
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+
+ if (is_tdp)
+ {
+ cout << indent_str << "Data Cache:" << endl;
+ cout << indent_str_next << "Area = " << dcache.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << dcache.power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? dcache.power.readOp.longer_channel_leakage:dcache.power.readOp.leakage )<<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << dcache.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << dcache.rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (coredynp.core_ty==Inorder)
+ {
+ cout << indent_str << "Load/Store Queue:" << endl;
+ cout << indent_str_next << "Area = " << LSQ->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << LSQ->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? LSQ->power.readOp.longer_channel_leakage:LSQ->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << LSQ->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << LSQ->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ else
+
+ {
+ if (XML->sys.core[ithCore].load_buffer_size >0)
+ {
+ cout << indent_str << "LoadQ:" << endl;
+ cout << indent_str_next << "Area = " << LoadQ->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << LoadQ->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? LoadQ->power.readOp.longer_channel_leakage:LoadQ->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << LoadQ->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << LoadQ->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ cout << indent_str<< "StoreQ:" << endl;
+ cout << indent_str_next << "Area = " << LSQ->area.get_area() *1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << LSQ->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? LSQ->power.readOp.longer_channel_leakage:LSQ->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << LSQ->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << LSQ->rt_power.readOp.dynamic/executionTime<< " W" << endl;
+ cout <<endl;
+ }
+ }
+ else
+ {
+ cout << indent_str_next << "Data Cache Peak Dynamic = " << dcache.rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Data Cache Subthreshold Leakage = " << dcache.rt_power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Data Cache Gate Leakage = " << dcache.rt_power.readOp.gate_leakage << " W" << endl;
+ if (coredynp.core_ty==Inorder)
+ {
+ cout << indent_str_next << "Load/Store Queue Peak Dynamic = " << LSQ->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Load/Store Queue Subthreshold Leakage = " << LSQ->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Load/Store Queue Gate Leakage = " << LSQ->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+ else
+ {
+ cout << indent_str_next << "LoadQ Peak Dynamic = " << LoadQ->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "LoadQ Subthreshold Leakage = " << LoadQ->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "LoadQ Gate Leakage = " << LoadQ->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "StoreQ Peak Dynamic = " << LSQ->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "StoreQ Subthreshold Leakage = " << LSQ->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "StoreQ Gate Leakage = " << LSQ->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+ }
+
+}
+
+void MemManU::computeEnergy(bool is_tdp)
+{
+
+ if (!exist) return;
+ if (is_tdp)
+ {
+ //init stats for Peak
+ itlb->stats_t.readAc.access = itlb->l_ip.num_search_ports;
+ itlb->stats_t.readAc.miss = 0;
+ itlb->stats_t.readAc.hit = itlb->stats_t.readAc.access - itlb->stats_t.readAc.miss;
+ itlb->tdp_stats = itlb->stats_t;
+
+ dtlb->stats_t.readAc.access = dtlb->l_ip.num_search_ports*coredynp.LSU_duty_cycle;
+ dtlb->stats_t.readAc.miss = 0;
+ dtlb->stats_t.readAc.hit = dtlb->stats_t.readAc.access - dtlb->stats_t.readAc.miss;
+ dtlb->tdp_stats = dtlb->stats_t;
+ }
+ else
+ {
+ //init stats for Runtime Dynamic (RTP)
+ itlb->stats_t.readAc.access = XML->sys.core[ithCore].itlb.total_accesses;
+ itlb->stats_t.readAc.miss = XML->sys.core[ithCore].itlb.total_misses;
+ itlb->stats_t.readAc.hit = itlb->stats_t.readAc.access - itlb->stats_t.readAc.miss;
+ itlb->rtp_stats = itlb->stats_t;
+
+ dtlb->stats_t.readAc.access = XML->sys.core[ithCore].dtlb.total_accesses;
+ dtlb->stats_t.readAc.miss = XML->sys.core[ithCore].dtlb.total_misses;
+ dtlb->stats_t.readAc.hit = dtlb->stats_t.readAc.access - dtlb->stats_t.readAc.miss;
+ dtlb->rtp_stats = dtlb->stats_t;
+ }
+
+ itlb->power_t.reset();
+ dtlb->power_t.reset();
+ itlb->power_t.readOp.dynamic += itlb->stats_t.readAc.access*itlb->local_result.power.searchOp.dynamic//FA spent most power in tag, so use total access not hits
+ +itlb->stats_t.readAc.miss*itlb->local_result.power.writeOp.dynamic;
+ dtlb->power_t.readOp.dynamic += dtlb->stats_t.readAc.access*dtlb->local_result.power.searchOp.dynamic//FA spent most power in tag, so use total access not hits
+ +dtlb->stats_t.readAc.miss*dtlb->local_result.power.writeOp.dynamic;
+
+ if (is_tdp)
+ {
+ itlb->power = itlb->power_t + itlb->local_result.power *pppm_lkg;
+ dtlb->power = dtlb->power_t + dtlb->local_result.power *pppm_lkg;
+ power = power + itlb->power + dtlb->power;
+ }
+ else
+ {
+ itlb->rt_power = itlb->power_t + itlb->local_result.power *pppm_lkg;
+ dtlb->rt_power = dtlb->power_t + dtlb->local_result.power *pppm_lkg;
+ rt_power = rt_power + itlb->rt_power + dtlb->rt_power;
+ }
+}
+
+void MemManU::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ if (!exist) return;
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+
+
+
+ if (is_tdp)
+ {
+ cout << indent_str << "Itlb:" << endl;
+ cout << indent_str_next << "Area = " << itlb->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << itlb->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? itlb->power.readOp.longer_channel_leakage:itlb->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << itlb->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << itlb->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str<< "Dtlb:" << endl;
+ cout << indent_str_next << "Area = " << dtlb->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << dtlb->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? dtlb->power.readOp.longer_channel_leakage:dtlb->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << dtlb->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << dtlb->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ else
+ {
+ cout << indent_str_next << "Itlb Peak Dynamic = " << itlb->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Itlb Subthreshold Leakage = " << itlb->rt_power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Itlb Gate Leakage = " << itlb->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Dtlb Peak Dynamic = " << dtlb->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Dtlb Subthreshold Leakage = " << dtlb->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Dtlb Gate Leakage = " << dtlb->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+
+}
+
+void RegFU::computeEnergy(bool is_tdp)
+{
+/*
+ * Architecture RF and physical RF cannot be present at the same time.
+ * Therefore, the RF stats can only refer to either ARF or PRF;
+ * And the same stats can be used for both.
+ */
+ if (!exist) return;
+ if (is_tdp)
+ {
+ //init stats for Peak
+ IRF->stats_t.readAc.access = coredynp.issueW*2*(coredynp.ALU_duty_cycle*1.1+
+ (coredynp.num_muls>0?coredynp.MUL_duty_cycle:0))*coredynp.num_pipelines;
+ IRF->stats_t.writeAc.access = coredynp.issueW*(coredynp.ALU_duty_cycle*1.1+
+ (coredynp.num_muls>0?coredynp.MUL_duty_cycle:0))*coredynp.num_pipelines;
+ //Rule of Thumb: about 10% RF related instructions do not need to access ALUs
+ IRF->tdp_stats = IRF->stats_t;
+
+ FRF->stats_t.readAc.access = FRF->l_ip.num_rd_ports*coredynp.FPU_duty_cycle*1.05*coredynp.num_fp_pipelines;
+ FRF->stats_t.writeAc.access = FRF->l_ip.num_wr_ports*coredynp.FPU_duty_cycle*1.05*coredynp.num_fp_pipelines;
+ FRF->tdp_stats = FRF->stats_t;
+ if (coredynp.regWindowing)
+ {
+ RFWIN->stats_t.readAc.access = 0;//0.5*RFWIN->l_ip.num_rw_ports;
+ RFWIN->stats_t.writeAc.access = 0;//0.5*RFWIN->l_ip.num_rw_ports;
+ RFWIN->tdp_stats = RFWIN->stats_t;
+ }
+ }
+ else
+ {
+ //init stats for Runtime Dynamic (RTP)
+ IRF->stats_t.readAc.access = XML->sys.core[ithCore].int_regfile_reads;//TODO: no diff on archi and phy
+ IRF->stats_t.writeAc.access = XML->sys.core[ithCore].int_regfile_writes;
+ IRF->rtp_stats = IRF->stats_t;
+
+ FRF->stats_t.readAc.access = XML->sys.core[ithCore].float_regfile_reads;
+ FRF->stats_t.writeAc.access = XML->sys.core[ithCore].float_regfile_writes;
+ FRF->rtp_stats = FRF->stats_t;
+ if (coredynp.regWindowing)
+ {
+ RFWIN->stats_t.readAc.access = XML->sys.core[ithCore].function_calls*16;
+ RFWIN->stats_t.writeAc.access = XML->sys.core[ithCore].function_calls*16;
+ RFWIN->rtp_stats = RFWIN->stats_t;
+
+ IRF->stats_t.readAc.access = XML->sys.core[ithCore].int_regfile_reads +
+ XML->sys.core[ithCore].function_calls*16;
+ IRF->stats_t.writeAc.access = XML->sys.core[ithCore].int_regfile_writes +
+ XML->sys.core[ithCore].function_calls*16;
+ IRF->rtp_stats = IRF->stats_t;
+
+ FRF->stats_t.readAc.access = XML->sys.core[ithCore].float_regfile_reads +
+ XML->sys.core[ithCore].function_calls*16;;
+ FRF->stats_t.writeAc.access = XML->sys.core[ithCore].float_regfile_writes+
+ XML->sys.core[ithCore].function_calls*16;;
+ FRF->rtp_stats = FRF->stats_t;
+ }
+ }
+ IRF->power_t.reset();
+ FRF->power_t.reset();
+ IRF->power_t.readOp.dynamic += (IRF->stats_t.readAc.access*IRF->local_result.power.readOp.dynamic
+ +IRF->stats_t.writeAc.access*IRF->local_result.power.writeOp.dynamic);
+ FRF->power_t.readOp.dynamic += (FRF->stats_t.readAc.access*FRF->local_result.power.readOp.dynamic
+ +FRF->stats_t.writeAc.access*FRF->local_result.power.writeOp.dynamic);
+ if (coredynp.regWindowing)
+ {
+ RFWIN->power_t.reset();
+ RFWIN->power_t.readOp.dynamic += (RFWIN->stats_t.readAc.access*RFWIN->local_result.power.readOp.dynamic +
+ RFWIN->stats_t.writeAc.access*RFWIN->local_result.power.writeOp.dynamic);
+ }
+
+ if (is_tdp)
+ {
+ IRF->power = IRF->power_t + IRF->local_result.power *coredynp.pppm_lkg_multhread;
+ FRF->power = FRF->power_t + FRF->local_result.power *coredynp.pppm_lkg_multhread;
+ power = power + (IRF->power + FRF->power);
+ if (coredynp.regWindowing)
+ {
+ RFWIN->power = RFWIN->power_t + RFWIN->local_result.power *pppm_lkg;
+ power = power + RFWIN->power;
+ }
+ }
+ else
+ {
+ IRF->rt_power = IRF->power_t + IRF->local_result.power *coredynp.pppm_lkg_multhread;
+ FRF->rt_power = FRF->power_t + FRF->local_result.power *coredynp.pppm_lkg_multhread;
+ rt_power = rt_power + (IRF->power_t + FRF->power_t);
+ if (coredynp.regWindowing)
+ {
+ RFWIN->rt_power = RFWIN->power_t + RFWIN->local_result.power *pppm_lkg;
+ rt_power = rt_power + RFWIN->rt_power;
+ }
+ }
+}
+
+
+void RegFU::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ if (!exist) return;
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+ if (is_tdp)
+ { cout << indent_str << "Integer RF:" << endl;
+ cout << indent_str_next << "Area = " << IRF->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << IRF->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? IRF->power.readOp.longer_channel_leakage:IRF->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << IRF->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << IRF->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str<< "Floating Point RF:" << endl;
+ cout << indent_str_next << "Area = " << FRF->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << FRF->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? FRF->power.readOp.longer_channel_leakage:FRF->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << FRF->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << FRF->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (coredynp.regWindowing)
+ {
+ cout << indent_str << "Register Windows:" << endl;
+ cout << indent_str_next << "Area = " << RFWIN->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << RFWIN->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? RFWIN->power.readOp.longer_channel_leakage:RFWIN->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << RFWIN->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << RFWIN->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ }
+ else
+ {
+ cout << indent_str_next << "Integer RF Peak Dynamic = " << IRF->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Integer RF Subthreshold Leakage = " << IRF->rt_power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Integer RF Gate Leakage = " << IRF->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Floating Point RF Peak Dynamic = " << FRF->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Floating Point RF Subthreshold Leakage = " << FRF->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Floating Point RF Gate Leakage = " << FRF->rt_power.readOp.gate_leakage << " W" << endl;
+ if (coredynp.regWindowing)
+ {
+ cout << indent_str_next << "Register Windows Peak Dynamic = " << RFWIN->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Register Windows Subthreshold Leakage = " << RFWIN->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Register Windows Gate Leakage = " << RFWIN->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+ }
+}
+
+
+void EXECU::computeEnergy(bool is_tdp)
+{
+ if (!exist) return;
+ double pppm_t[4] = {1,1,1,1};
+// rfu->power.reset();
+// rfu->rt_power.reset();
+// scheu->power.reset();
+// scheu->rt_power.reset();
+// exeu->power.reset();
+// exeu->rt_power.reset();
+
+ rfu->computeEnergy(is_tdp);
+ scheu->computeEnergy(is_tdp);
+ exeu->computeEnergy(is_tdp);
+ if (coredynp.num_fpus >0)
+ {
+ fp_u->computeEnergy(is_tdp);
+ }
+ if (coredynp.num_muls >0)
+ {
+ mul->computeEnergy(is_tdp);
+ }
+
+ if (is_tdp)
+ {
+ set_pppm(pppm_t, 2*coredynp.ALU_cdb_duty_cycle, 2, 2, 2*coredynp.ALU_cdb_duty_cycle);//2 means two source operands needs to be passed for each int instruction.
+ bypass.power = bypass.power + intTagBypass->power*pppm_t + int_bypass->power*pppm_t;
+ if (coredynp.num_muls >0)
+ {
+ set_pppm(pppm_t, 2*coredynp.MUL_cdb_duty_cycle, 2, 2, 2*coredynp.MUL_cdb_duty_cycle);//2 means two source operands needs to be passed for each int instruction.
+ bypass.power = bypass.power + intTag_mul_Bypass->power*pppm_t + int_mul_bypass->power*pppm_t;
+ power = power + mul->power;
+ }
+ if (coredynp.num_fpus>0)
+ {
+ set_pppm(pppm_t, 3*coredynp.FPU_cdb_duty_cycle, 3, 3, 3*coredynp.FPU_cdb_duty_cycle);//3 means three source operands needs to be passed for each fp instruction.
+ bypass.power = bypass.power + fp_bypass->power*pppm_t + fpTagBypass->power*pppm_t ;
+ power = power + fp_u->power;
+ }
+
+ power = power + rfu->power + exeu->power + bypass.power + scheu->power;
+ }
+ else
+ {
+ set_pppm(pppm_t, XML->sys.core[ithCore].cdb_alu_accesses, 2, 2, XML->sys.core[ithCore].cdb_alu_accesses);
+ bypass.rt_power = bypass.rt_power + intTagBypass->power*pppm_t;
+ bypass.rt_power = bypass.rt_power + int_bypass->power*pppm_t;
+
+ if (coredynp.num_muls >0)
+ {
+ set_pppm(pppm_t, XML->sys.core[ithCore].cdb_mul_accesses, 2, 2, XML->sys.core[ithCore].cdb_mul_accesses);//2 means two source operands needs to be passed for each int instruction.
+ bypass.rt_power = bypass.rt_power + intTag_mul_Bypass->power*pppm_t + int_mul_bypass->power*pppm_t;
+ rt_power = rt_power + mul->rt_power;
+ }
+
+ if (coredynp.num_fpus>0)
+ {
+ set_pppm(pppm_t, XML->sys.core[ithCore].cdb_fpu_accesses, 3, 3, XML->sys.core[ithCore].cdb_fpu_accesses);
+ bypass.rt_power = bypass.rt_power + fp_bypass->power*pppm_t;
+ bypass.rt_power = bypass.rt_power + fpTagBypass->power*pppm_t;
+ rt_power = rt_power + fp_u->rt_power;
+ }
+ rt_power = rt_power + rfu->rt_power + exeu->rt_power + bypass.rt_power + scheu->rt_power;
+ }
+}
+
+void EXECU::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ if (!exist) return;
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+
+// cout << indent_str_next << "Results Broadcast Bus Area = " << bypass->area.get_area() *1e-6 << " mm^2" << endl;
+ if (is_tdp)
+ {
+ cout << indent_str << "Register Files:" << endl;
+ cout << indent_str_next << "Area = " << rfu->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << rfu->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? rfu->power.readOp.longer_channel_leakage:rfu->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << rfu->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << rfu->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (plevel>3){
+ rfu->displayEnergy(indent+4,is_tdp);
+ }
+ cout << indent_str << "Instruction Scheduler:" << endl;
+ cout << indent_str_next << "Area = " << scheu->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << scheu->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? scheu->power.readOp.longer_channel_leakage:scheu->power.readOp.leakage) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << scheu->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << scheu->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (plevel>3){
+ scheu->displayEnergy(indent+4,is_tdp);
+ }
+ exeu->displayEnergy(indent,is_tdp);
+ if (coredynp.num_fpus>0)
+ {
+ fp_u->displayEnergy(indent,is_tdp);
+ }
+ if (coredynp.num_muls >0)
+ {
+ mul->displayEnergy(indent,is_tdp);
+ }
+ cout << indent_str << "Results Broadcast Bus:" << endl;
+ cout << indent_str_next << "Area Overhead = " << bypass.area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << bypass.power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? bypass.power.readOp.longer_channel_leakage:bypass.power.readOp.leakage ) << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << bypass.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << bypass.rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ else
+ {
+ cout << indent_str_next << "Register Files Peak Dynamic = " << rfu->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Register Files Subthreshold Leakage = " << rfu->rt_power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Register Files Gate Leakage = " << rfu->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Instruction Sheduler Peak Dynamic = " << scheu->rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Instruction Sheduler Subthreshold Leakage = " << scheu->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Instruction Sheduler Gate Leakage = " << scheu->rt_power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Results Broadcast Bus Peak Dynamic = " << bypass.rt_power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Results Broadcast Bus Subthreshold Leakage = " << bypass.rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Results Broadcast Bus Gate Leakage = " << bypass.rt_power.readOp.gate_leakage << " W" << endl;
+ }
+
+}
+
+void Core::computeEnergy(bool is_tdp)
+{
+ //power_point_product_masks
+ double pppm_t[4] = {1,1,1,1};
+ double rtp_pipeline_coe;
+ double num_units = 4.0;
+ if (is_tdp)
+ {
+ ifu->computeEnergy(is_tdp);
+ lsu->computeEnergy(is_tdp);
+ mmu->computeEnergy(is_tdp);
+ exu->computeEnergy(is_tdp);
+
+ if (coredynp.core_ty==OOO)
+ {
+ num_units = 5.0;
+ rnu->computeEnergy(is_tdp);
+ set_pppm(pppm_t, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units);
+ if (rnu->exist)
+ {
+ rnu->power = rnu->power + corepipe->power*pppm_t;
+ power = power + rnu->power;
+ }
+ }
+
+ if (ifu->exist)
+ {
+ set_pppm(pppm_t, coredynp.num_pipelines/num_units*coredynp.IFU_duty_cycle, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units);
+// cout << "IFU = " << ifu->power.readOp.dynamic*clockRate << " W" << endl;
+ ifu->power = ifu->power + corepipe->power*pppm_t;
+// cout << "IFU = " << ifu->power.readOp.dynamic*clockRate << " W" << endl;
+// cout << "1/4 pipe = " << corepipe->power.readOp.dynamic*clockRate/num_units << " W" << endl;
+ power = power + ifu->power;
+// cout << "core = " << power.readOp.dynamic*clockRate << " W" << endl;
+ }
+ if (lsu->exist)
+ {
+ set_pppm(pppm_t, coredynp.num_pipelines/num_units*coredynp.LSU_duty_cycle, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units);
+ lsu->power = lsu->power + corepipe->power*pppm_t;
+// cout << "LSU = " << lsu->power.readOp.dynamic*clockRate << " W" << endl;
+ power = power + lsu->power;
+// cout << "core = " << power.readOp.dynamic*clockRate << " W" << endl;
+ }
+ if (exu->exist)
+ {
+ set_pppm(pppm_t, coredynp.num_pipelines/num_units*coredynp.ALU_duty_cycle, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units);
+ exu->power = exu->power + corepipe->power*pppm_t;
+// cout << "EXE = " << exu->power.readOp.dynamic*clockRate << " W" << endl;
+ power = power + exu->power;
+// cout << "core = " << power.readOp.dynamic*clockRate << " W" << endl;
+ }
+ if (mmu->exist)
+ {
+ set_pppm(pppm_t, coredynp.num_pipelines/num_units*(0.5+0.5*coredynp.LSU_duty_cycle), coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units);
+ mmu->power = mmu->power + corepipe->power*pppm_t;
+// cout << "MMU = " << mmu->power.readOp.dynamic*clockRate << " W" << endl;
+ power = power + mmu->power;
+// cout << "core = " << power.readOp.dynamic*clockRate << " W" << endl;
+ }
+
+ power = power + undiffCore->power;
+
+ if (XML->sys.Private_L2)
+ {
+
+ l2cache->computeEnergy(is_tdp);
+ set_pppm(pppm_t,l2cache->cachep.clockRate/clockRate, 1,1,1);
+ //l2cache->power = l2cache->power*pppm_t;
+ power = power + l2cache->power*pppm_t;
+ }
+ }
+ else
+ {
+ ifu->computeEnergy(is_tdp);
+ lsu->computeEnergy(is_tdp);
+ mmu->computeEnergy(is_tdp);
+ exu->computeEnergy(is_tdp);
+ if (coredynp.core_ty==OOO)
+ {
+ num_units = 5.0;
+ rnu->computeEnergy(is_tdp);
+ set_pppm(pppm_t, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units);
+ if (rnu->exist)
+ {
+ rnu->rt_power = rnu->rt_power + corepipe->power*pppm_t;
+
+ rt_power = rt_power + rnu->rt_power;
+ }
+ }
+ else
+ {
+ if (XML->sys.homogeneous_cores==1)
+ {
+ rtp_pipeline_coe = coredynp.pipeline_duty_cycle * XML->sys.total_cycles * XML->sys.number_of_cores;
+ }
+ else
+ {
+ rtp_pipeline_coe = coredynp.pipeline_duty_cycle * coredynp.total_cycles;
+ }
+ set_pppm(pppm_t, coredynp.num_pipelines*rtp_pipeline_coe/num_units, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units, coredynp.num_pipelines/num_units);
+ }
+
+ if (ifu->exist)
+ {
+ ifu->rt_power = ifu->rt_power + corepipe->power*pppm_t;
+ rt_power = rt_power + ifu->rt_power ;
+ }
+ if (lsu->exist)
+ {
+ lsu->rt_power = lsu->rt_power + corepipe->power*pppm_t;
+ rt_power = rt_power + lsu->rt_power;
+ }
+ if (exu->exist)
+ {
+ exu->rt_power = exu->rt_power + corepipe->power*pppm_t;
+ rt_power = rt_power + exu->rt_power;
+ }
+ if (mmu->exist)
+ {
+ mmu->rt_power = mmu->rt_power + corepipe->power*pppm_t;
+ rt_power = rt_power + mmu->rt_power ;
+ }
+
+ rt_power = rt_power + undiffCore->power;
+// cout << "EXE = " << exu->power.readOp.dynamic*clockRate << " W" << endl;
+ if (XML->sys.Private_L2)
+ {
+
+ l2cache->computeEnergy(is_tdp);
+ //set_pppm(pppm_t,1/l2cache->cachep.executionTime, 1,1,1);
+ //l2cache->rt_power = l2cache->rt_power*pppm_t;
+ rt_power = rt_power + l2cache->rt_power;
+ }
+ }
+
+}
+
+void Core::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+ if (is_tdp)
+ {
+ cout << "Core:" << endl;
+ cout << indent_str << "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str << "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str << "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout<<endl;
+ if (ifu->exist)
+ {
+ cout << indent_str << "Instruction Fetch Unit:" << endl;
+ cout << indent_str_next << "Area = " << ifu->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << ifu->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? ifu->power.readOp.longer_channel_leakage:ifu->power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << ifu->power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << ifu->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << ifu->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (plevel >2){
+ ifu->displayEnergy(indent+4,plevel,is_tdp);
+ }
+ }
+ if (coredynp.core_ty==OOO)
+ {
+ if (rnu->exist)
+ {
+ cout << indent_str<< "Renaming Unit:" << endl;
+ cout << indent_str_next << "Area = " << rnu->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << rnu->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? rnu->power.readOp.longer_channel_leakage:rnu->power.readOp.leakage) << " W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << rnu->power.readOp.longer_channel_leakage << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << rnu->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << rnu->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (plevel >2){
+ rnu->displayEnergy(indent+4,plevel,is_tdp);
+ }
+ }
+
+ }
+ if (lsu->exist)
+ {
+ cout << indent_str<< "Load Store Unit:" << endl;
+ cout << indent_str_next << "Area = " << lsu->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << lsu->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? lsu->power.readOp.longer_channel_leakage:lsu->power.readOp.leakage ) << " W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << lsu->power.readOp.longer_channel_leakage << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << lsu->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << lsu->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (plevel >2){
+ lsu->displayEnergy(indent+4,plevel,is_tdp);
+ }
+ }
+ if (mmu->exist)
+ {
+ cout << indent_str<< "Memory Management Unit:" << endl;
+ cout << indent_str_next << "Area = " << mmu->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << mmu->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? mmu->power.readOp.longer_channel_leakage:mmu->power.readOp.leakage) << " W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << mmu->power.readOp.longer_channel_leakage << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << mmu->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << mmu->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (plevel >2){
+ mmu->displayEnergy(indent+4,plevel,is_tdp);
+ }
+ }
+ if (exu->exist)
+ {
+ cout << indent_str<< "Execution Unit:" << endl;
+ cout << indent_str_next << "Area = " << exu->area.get_area() *1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << exu->power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? exu->power.readOp.longer_channel_leakage:exu->power.readOp.leakage) << " W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << exu->power.readOp.longer_channel_leakage << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << exu->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << exu->rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ if (plevel >2){
+ exu->displayEnergy(indent+4,plevel,is_tdp);
+ }
+ }
+// if (plevel >2)
+// {
+// if (undiffCore->exist)
+// {
+// cout << indent_str << "Undifferentiated Core" << endl;
+// cout << indent_str_next << "Area = " << undiffCore->area.get_area()*1e-6<< " mm^2" << endl;
+// cout << indent_str_next << "Peak Dynamic = " << undiffCore->power.readOp.dynamic*clockRate << " W" << endl;
+//// cout << indent_str_next << "Subthreshold Leakage = " << undiffCore->power.readOp.leakage <<" W" << endl;
+// cout << indent_str_next << "Subthreshold Leakage = "
+// << (long_channel? undiffCore->power.readOp.longer_channel_leakage:undiffCore->power.readOp.leakage) << " W" << endl;
+// cout << indent_str_next << "Gate Leakage = " << undiffCore->power.readOp.gate_leakage << " W" << endl;
+// // cout << indent_str_next << "Runtime Dynamic = " << undiffCore->rt_power.readOp.dynamic/executionTime << " W" << endl;
+// cout <<endl;
+// }
+// }
+ if (XML->sys.Private_L2)
+ {
+
+ l2cache->displayEnergy(4,is_tdp);
+ }
+
+ }
+ else
+ {
+// cout << indent_str_next << "Instruction Fetch Unit Peak Dynamic = " << ifu->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Instruction Fetch Unit Subthreshold Leakage = " << ifu->rt_power.readOp.leakage <<" W" << endl;
+// cout << indent_str_next << "Instruction Fetch Unit Gate Leakage = " << ifu->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Load Store Unit Peak Dynamic = " << lsu->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Load Store Unit Subthreshold Leakage = " << lsu->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Load Store Unit Gate Leakage = " << lsu->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Memory Management Unit Peak Dynamic = " << mmu->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Memory Management Unit Subthreshold Leakage = " << mmu->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Memory Management Unit Gate Leakage = " << mmu->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Execution Unit Peak Dynamic = " << exu->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Execution Unit Subthreshold Leakage = " << exu->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Execution Unit Gate Leakage = " << exu->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+}
+InstFetchU ::~InstFetchU(){
+
+ if (!exist) return;
+ if(IB) {delete IB; IB = 0;}
+ if(ID_inst) {delete ID_inst; ID_inst = 0;}
+ if(ID_operand) {delete ID_operand; ID_operand = 0;}
+ if(ID_misc) {delete ID_misc; ID_misc = 0;}
+ if (coredynp.predictionW>0)
+ {
+ if(BTB) {delete BTB; BTB = 0;}
+ if(BPT) {delete BPT; BPT = 0;}
+ }
+}
+
+BranchPredictor ::~BranchPredictor(){
+
+ if (!exist) return;
+ if(globalBPT) {delete globalBPT; globalBPT = 0;}
+ if(localBPT) {delete localBPT; localBPT = 0;}
+ if(L1_localBPT) {delete L1_localBPT; L1_localBPT = 0;}
+ if(L2_localBPT) {delete L2_localBPT; L2_localBPT = 0;}
+ if(chooser) {delete chooser; chooser = 0;}
+ if(RAS) {delete RAS; RAS = 0;}
+ }
+
+RENAMINGU ::~RENAMINGU(){
+
+ if (!exist) return;
+ if(iFRAT ) {delete iFRAT; iFRAT = 0;}
+ if(fFRAT ) {delete fFRAT; fFRAT =0;}
+ if(iRRAT) {delete iRRAT; iRRAT = 0;}
+ if(iFRAT) {delete iFRAT; iFRAT = 0;}
+ if(ifreeL) {delete ifreeL;ifreeL= 0;}
+ if(ffreeL) {delete ffreeL;ffreeL= 0;}
+ if(idcl) {delete idcl; idcl = 0;}
+ if(fdcl) {delete fdcl; fdcl = 0;}
+ if(RAHT) {delete RAHT; RAHT = 0;}
+ }
+
+LoadStoreU ::~LoadStoreU(){
+
+ if (!exist) return;
+ if(LSQ) {delete LSQ; LSQ = 0;}
+ }
+
+MemManU ::~MemManU(){
+
+ if (!exist) return;
+ if(itlb) {delete itlb; itlb = 0;}
+ if(dtlb) {delete dtlb; dtlb = 0;}
+ }
+
+RegFU ::~RegFU(){
+
+ if (!exist) return;
+ if(IRF) {delete IRF; IRF = 0;}
+ if(FRF) {delete FRF; FRF = 0;}
+ if(RFWIN) {delete RFWIN; RFWIN = 0;}
+ }
+
+SchedulerU ::~SchedulerU(){
+
+ if (!exist) return;
+ if(int_inst_window) {delete int_inst_window; int_inst_window = 0;}
+ if(fp_inst_window) {delete int_inst_window; int_inst_window = 0;}
+ if(ROB) {delete ROB; ROB = 0;}
+ if(instruction_selection) {delete instruction_selection;instruction_selection = 0;}
+ }
+
+EXECU ::~EXECU(){
+
+ if (!exist) return;
+ if(int_bypass) {delete int_bypass; int_bypass = 0;}
+ if(intTagBypass) {delete intTagBypass; intTagBypass =0;}
+ if(int_mul_bypass) {delete int_mul_bypass; int_mul_bypass = 0;}
+ if(intTag_mul_Bypass) {delete intTag_mul_Bypass; intTag_mul_Bypass =0;}
+ if(fp_bypass) {delete fp_bypass;fp_bypass = 0;}
+ if(fpTagBypass) {delete fpTagBypass;fpTagBypass = 0;}
+ if(fp_u) {delete fp_u;fp_u = 0;}
+ if(exeu) {delete exeu;exeu = 0;}
+ if(mul) {delete mul;mul = 0;}
+ if(rfu) {delete rfu;rfu = 0;}
+ if(scheu) {delete scheu; scheu = 0;}
+ }
+
+Core ::~Core(){
+
+ if(ifu) {delete ifu; ifu = 0;}
+ if(lsu) {delete lsu; lsu = 0;}
+ if(rnu) {delete rnu; rnu = 0;}
+ if(mmu) {delete mmu; mmu = 0;}
+ if(exu) {delete exu; exu = 0;}
+ if(corepipe) {delete corepipe; corepipe = 0;}
+ if(undiffCore) {delete undiffCore;undiffCore = 0;}
+ if(l2cache) {delete l2cache;l2cache = 0;}
+ }
+
+void Core::set_core_param()
+{
+ coredynp.opt_local = XML->sys.core[ithCore].opt_local;
+ coredynp.x86 = XML->sys.core[ithCore].x86;
+ coredynp.Embedded = XML->sys.Embedded;
+ coredynp.core_ty = (enum Core_type)XML->sys.core[ithCore].machine_type;
+ coredynp.rm_ty = (enum Renaming_type)XML->sys.core[ithCore].rename_scheme;
+ coredynp.fetchW = XML->sys.core[ithCore].fetch_width;
+ coredynp.decodeW = XML->sys.core[ithCore].decode_width;
+ coredynp.issueW = XML->sys.core[ithCore].issue_width;
+ coredynp.peak_issueW = XML->sys.core[ithCore].peak_issue_width;
+ coredynp.commitW = XML->sys.core[ithCore].commit_width;
+ coredynp.peak_commitW = XML->sys.core[ithCore].peak_issue_width;
+ coredynp.predictionW = XML->sys.core[ithCore].prediction_width;
+ coredynp.fp_issueW = XML->sys.core[ithCore].fp_issue_width;
+ coredynp.fp_decodeW = XML->sys.core[ithCore].fp_issue_width;
+ coredynp.num_alus = XML->sys.core[ithCore].ALU_per_core;
+ coredynp.num_fpus = XML->sys.core[ithCore].FPU_per_core;
+ coredynp.num_muls = XML->sys.core[ithCore].MUL_per_core;
+
+
+ coredynp.num_hthreads = XML->sys.core[ithCore].number_hardware_threads;
+ coredynp.multithreaded = coredynp.num_hthreads>1? true:false;
+ coredynp.instruction_length = XML->sys.core[ithCore].instruction_length;
+ coredynp.pc_width = XML->sys.virtual_address_width;
+
+ coredynp.opcode_length = XML->sys.core[ithCore].opcode_width;
+ coredynp.micro_opcode_length = XML->sys.core[ithCore].micro_opcode_width;
+ coredynp.num_pipelines = XML->sys.core[ithCore].pipelines_per_core[0];
+ coredynp.pipeline_stages = XML->sys.core[ithCore].pipeline_depth[0];
+ coredynp.num_fp_pipelines = XML->sys.core[ithCore].pipelines_per_core[1];
+ coredynp.fp_pipeline_stages = XML->sys.core[ithCore].pipeline_depth[1];
+ coredynp.int_data_width = int(ceil(XML->sys.machine_bits/32.0))*32;
+ coredynp.fp_data_width = coredynp.int_data_width;
+ coredynp.v_address_width = XML->sys.virtual_address_width;
+ coredynp.p_address_width = XML->sys.physical_address_width;
+
+ coredynp.scheu_ty = (enum Scheduler_type)XML->sys.core[ithCore].instruction_window_scheme;
+ coredynp.arch_ireg_width = int(ceil(log2(XML->sys.core[ithCore].archi_Regs_IRF_size)));
+ coredynp.arch_freg_width = int(ceil(log2(XML->sys.core[ithCore].archi_Regs_FRF_size)));
+ coredynp.num_IRF_entry = XML->sys.core[ithCore].archi_Regs_IRF_size;
+ coredynp.num_FRF_entry = XML->sys.core[ithCore].archi_Regs_FRF_size;
+ coredynp.pipeline_duty_cycle = XML->sys.core[ithCore].pipeline_duty_cycle;
+ coredynp.total_cycles = XML->sys.core[ithCore].total_cycles;
+ coredynp.busy_cycles = XML->sys.core[ithCore].busy_cycles;
+ coredynp.idle_cycles = XML->sys.core[ithCore].idle_cycles;
+
+ //Max power duty cycle for peak power estimation
+// if (coredynp.core_ty==OOO)
+// {
+// coredynp.IFU_duty_cycle = 1;
+// coredynp.LSU_duty_cycle = 1;
+// coredynp.MemManU_I_duty_cycle =1;
+// coredynp.MemManU_D_duty_cycle =1;
+// coredynp.ALU_duty_cycle =1;
+// coredynp.MUL_duty_cycle =1;
+// coredynp.FPU_duty_cycle =1;
+// coredynp.ALU_cdb_duty_cycle =1;
+// coredynp.MUL_cdb_duty_cycle =1;
+// coredynp.FPU_cdb_duty_cycle =1;
+// }
+// else
+// {
+ coredynp.IFU_duty_cycle = XML->sys.core[ithCore].IFU_duty_cycle;
+ coredynp.BR_duty_cycle = XML->sys.core[ithCore].BR_duty_cycle;
+ coredynp.LSU_duty_cycle = XML->sys.core[ithCore].LSU_duty_cycle;
+ coredynp.MemManU_I_duty_cycle = XML->sys.core[ithCore].MemManU_I_duty_cycle;
+ coredynp.MemManU_D_duty_cycle = XML->sys.core[ithCore].MemManU_D_duty_cycle;
+ coredynp.ALU_duty_cycle = XML->sys.core[ithCore].ALU_duty_cycle;
+ coredynp.MUL_duty_cycle = XML->sys.core[ithCore].MUL_duty_cycle;
+ coredynp.FPU_duty_cycle = XML->sys.core[ithCore].FPU_duty_cycle;
+ coredynp.ALU_cdb_duty_cycle = XML->sys.core[ithCore].ALU_cdb_duty_cycle;
+ coredynp.MUL_cdb_duty_cycle = XML->sys.core[ithCore].MUL_cdb_duty_cycle;
+ coredynp.FPU_cdb_duty_cycle = XML->sys.core[ithCore].FPU_cdb_duty_cycle;
+// }
+
+
+ if (!((coredynp.core_ty==OOO)||(coredynp.core_ty==Inorder)))
+ {
+ cout<<"Invalid Core Type"<<endl;
+ exit(0);
+ }
+// if (coredynp.core_ty==OOO)
+// {
+// cout<<"OOO processor models are being updated and will be available in next release"<<endl;
+// exit(0);
+// }
+ if (!((coredynp.scheu_ty==PhysicalRegFile)||(coredynp.scheu_ty==ReservationStation)))
+ {
+ cout<<"Invalid OOO Scheduler Type"<<endl;
+ exit(0);
+ }
+
+ if (!((coredynp.rm_ty ==RAMbased)||(coredynp.rm_ty ==CAMbased)))
+ {
+ cout<<"Invalid OOO Renaming Type"<<endl;
+ exit(0);
+ }
+
+if (coredynp.core_ty==OOO)
+{
+ if (coredynp.scheu_ty==PhysicalRegFile)
+ {
+ coredynp.phy_ireg_width = int(ceil(log2(XML->sys.core[ithCore].phy_Regs_IRF_size)));
+ coredynp.phy_freg_width = int(ceil(log2(XML->sys.core[ithCore].phy_Regs_FRF_size)));
+ coredynp.num_ifreelist_entries = coredynp.num_IRF_entry = XML->sys.core[ithCore].phy_Regs_IRF_size;
+ coredynp.num_ffreelist_entries = coredynp.num_FRF_entry = XML->sys.core[ithCore].phy_Regs_FRF_size;
+ }
+ else if (coredynp.scheu_ty==ReservationStation)
+ {//ROB serves as Phy RF in RS based OOO
+ coredynp.phy_ireg_width = int(ceil(log2(XML->sys.core[ithCore].ROB_size)));
+ coredynp.phy_freg_width = int(ceil(log2(XML->sys.core[ithCore].ROB_size)));
+ coredynp.num_ifreelist_entries = XML->sys.core[ithCore].ROB_size;
+ coredynp.num_ffreelist_entries = XML->sys.core[ithCore].ROB_size;
+
+ }
+
+}
+ coredynp.globalCheckpoint = 32;//best check pointing entries for a 4~8 issue OOO should be 16~48;See TR for reference.
+ coredynp.perThreadState = 8;
+ coredynp.instruction_length = 32;
+ coredynp.clockRate = XML->sys.core[ithCore].clock_rate;
+ coredynp.clockRate *= 1e6;
+ coredynp.regWindowing= (XML->sys.core[ithCore].register_windows_size>0&&coredynp.core_ty==Inorder)?true:false;
+ coredynp.executionTime = XML->sys.total_cycles/coredynp.clockRate;
+ set_pppm(coredynp.pppm_lkg_multhread, 0, coredynp.num_hthreads, coredynp.num_hthreads, 0);
+}
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#ifndef CORE_H_
+#define CORE_H_
+
+#include "XML_Parse.h"
+#include "array.h"
+#include "basic_components.h"
+#include "interconnect.h"
+#include "logic.h"
+#include "parameter.h"
+#include "sharedcache.h"
+
+class BranchPredictor :public Component {
+ public:
+
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ CoreDynParam coredynp;
+ double clockRate,executionTime;
+ double scktRatio, chip_PR_overhead, macro_PR_overhead;
+ ArrayST * globalBPT;
+ ArrayST * localBPT;
+ ArrayST * L1_localBPT;
+ ArrayST * L2_localBPT;
+ ArrayST * chooser;
+ ArrayST * RAS;
+ bool exist;
+
+ BranchPredictor(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_,const CoreDynParam & dyn_p_, bool exsit=true);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~BranchPredictor();
+};
+
+
+class InstFetchU :public Component {
+ public:
+
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ CoreDynParam coredynp;
+ double clockRate,executionTime;
+ double scktRatio, chip_PR_overhead, macro_PR_overhead;
+ enum Cache_policy cache_p;
+ InstCache icache;
+ ArrayST * IB;
+ ArrayST * BTB;
+ BranchPredictor * BPT;
+ inst_decoder * ID_inst;
+ inst_decoder * ID_operand;
+ inst_decoder * ID_misc;
+ bool exist;
+
+ InstFetchU(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_,const CoreDynParam & dyn_p_, bool exsit=true);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~InstFetchU();
+};
+
+
+class SchedulerU :public Component {
+ public:
+
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ CoreDynParam coredynp;
+ double clockRate,executionTime;
+ double scktRatio, chip_PR_overhead, macro_PR_overhead;
+ double Iw_height, fp_Iw_height,ROB_height;
+ ArrayST * int_inst_window;
+ ArrayST * fp_inst_window;
+ ArrayST * ROB;
+ selection_logic * instruction_selection;
+ bool exist;
+
+ SchedulerU(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_,const CoreDynParam & dyn_p_, bool exist_=true);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~SchedulerU();
+};
+
+class RENAMINGU :public Component {
+ public:
+
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ double clockRate,executionTime;
+ CoreDynParam coredynp;
+ ArrayST * iFRAT;
+ ArrayST * fFRAT;
+ ArrayST * iRRAT;
+ ArrayST * fRRAT;
+ ArrayST * ifreeL;
+ ArrayST * ffreeL;
+ dep_resource_conflict_check * idcl;
+ dep_resource_conflict_check * fdcl;
+ ArrayST * RAHT;//register alias history table Used to store GC
+ bool exist;
+
+
+ RENAMINGU(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_, bool exist_=true);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~RENAMINGU();
+};
+
+class LoadStoreU :public Component {
+ public:
+
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ CoreDynParam coredynp;
+ enum Cache_policy cache_p;
+ double clockRate,executionTime;
+ double scktRatio, chip_PR_overhead, macro_PR_overhead;
+ double lsq_height;
+ DataCache dcache;
+ ArrayST * LSQ;//it is actually the store queue but for inorder processors it serves as both loadQ and StoreQ
+ ArrayST * LoadQ;
+ bool exist;
+
+ LoadStoreU(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_,const CoreDynParam & dyn_p_, bool exist_=true);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~LoadStoreU();
+};
+
+class MemManU :public Component {
+ public:
+
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ CoreDynParam coredynp;
+ double clockRate,executionTime;
+ double scktRatio, chip_PR_overhead, macro_PR_overhead;
+ ArrayST * itlb;
+ ArrayST * dtlb;
+ bool exist;
+
+ MemManU(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_,const CoreDynParam & dyn_p_, bool exist_=true);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~MemManU();
+};
+
+class RegFU :public Component {
+ public:
+
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ CoreDynParam coredynp;
+ double clockRate,executionTime;
+ double scktRatio, chip_PR_overhead, macro_PR_overhead;
+ double int_regfile_height, fp_regfile_height;
+ ArrayST * IRF;
+ ArrayST * FRF;
+ ArrayST * RFWIN;
+ bool exist;
+
+ RegFU(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_,const CoreDynParam & dyn_p_, bool exist_=true);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~RegFU();
+};
+
+class EXECU :public Component {
+ public:
+
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ double clockRate,executionTime;
+ double scktRatio, chip_PR_overhead, macro_PR_overhead;
+ double lsq_height;
+ CoreDynParam coredynp;
+ RegFU * rfu;
+ SchedulerU * scheu;
+ FunctionalUnit * fp_u;
+ FunctionalUnit * exeu;
+ FunctionalUnit * mul;
+ interconnect * int_bypass;
+ interconnect * intTagBypass;
+ interconnect * int_mul_bypass;
+ interconnect * intTag_mul_Bypass;
+ interconnect * fp_bypass;
+ interconnect * fpTagBypass;
+
+ Component bypass;
+ bool exist;
+
+ EXECU(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_, double lsq_height_,const CoreDynParam & dyn_p_, bool exist_=true);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~EXECU();
+};
+
+
+class Core :public Component {
+ public:
+
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ double clockRate,executionTime;
+ double scktRatio, chip_PR_overhead, macro_PR_overhead;
+ InstFetchU * ifu;
+ LoadStoreU * lsu;
+ MemManU * mmu;
+ EXECU * exu;
+ RENAMINGU * rnu;
+ Pipeline * corepipe;
+ UndiffCore * undiffCore;
+ SharedCache * l2cache;
+ CoreDynParam coredynp;
+ //full_decoder inst_decoder;
+ //clock_network clockNetwork;
+ Core(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_);
+ void set_core_param();
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~Core();
+};
+
+#endif /* CORE_H_ */
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#ifndef GLOBALVAR_H_
+#define GLOBALVAR_H_
+
+#ifdef GLOBALVAR
+#define EXTERN
+#else
+#define EXTERN extern
+#endif
+
+EXTERN bool opt_for_clk;
+
+#endif /* GLOBALVAR_H_ */
+
+
+
+
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#include <cassert>
+#include <iostream>
+
+#include "globalvar.h"
+#include "interconnect.h"
+#include "wire.h"
+
+interconnect::interconnect(
+ string name_,
+ enum Device_ty device_ty_,
+ double base_w, double base_h,
+ int data_w, double len,const InputParameter *configure_interface,
+ int start_wiring_level_,
+ bool pipelinable_ ,
+ double route_over_perc_ ,
+ bool opt_local_,
+ enum Core_type core_ty_,
+ enum Wire_type wire_model,
+ double width_s, double space_s,
+ TechnologyParameter::DeviceType *dt
+)
+ :name(name_),
+ device_ty(device_ty_),
+ in_rise_time(0),
+ out_rise_time(0),
+ base_width(base_w),
+ base_height(base_h),
+ data_width(data_w),
+ wt(wire_model),
+ width_scaling(width_s),
+ space_scaling(space_s),
+ start_wiring_level(start_wiring_level_),
+ length(len),
+ //interconnect_latency(1e-12),
+ //interconnect_throughput(1e-12),
+ opt_local(opt_local_),
+ core_ty(core_ty_),
+ pipelinable(pipelinable_),
+ route_over_perc(route_over_perc_),
+ deviceType(dt)
+{
+
+ wt = Global;
+ l_ip=*configure_interface;
+ local_result = init_interface(&l_ip);
+
+
+ max_unpipelined_link_delay = 0; //TODO
+ min_w_nmos = g_tp.min_w_nmos_;
+ min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * min_w_nmos;
+
+
+
+ latency = l_ip.latency;
+ throughput = l_ip.throughput;
+ latency_overflow=false;
+ throughput_overflow=false;
+
+ /*
+ * TODO: Add wiring option from semi-global to global automatically
+ * And directly jump to global if semi-global cannot satisfy timing
+ * Fat wires only available for global wires, thus
+ * if signal wiring layer starts from semi-global,
+ * the next layer up will be global, i.e., semi-global does
+ * not have fat wires.
+ */
+ if (pipelinable == false)
+ //Non-pipelinable wires, such as bypass logic, care latency
+ {
+ compute();
+ if (opt_for_clk && opt_local)
+ {
+ while (delay > latency && width_scaling<3.0)
+ {
+ width_scaling *= 2;
+ space_scaling *= 2;
+ Wire winit(width_scaling, space_scaling);
+ compute();
+ }
+ if (delay > latency)
+ {
+ latency_overflow=true;
+ }
+ }
+ }
+ else //Pipelinable wires, such as bus, does not care latency but throughput
+ {
+ /*
+ * TODO: Add pipe regs power, area, and timing;
+ * Pipelinable wires optimize latency first.
+ */
+ compute();
+ if (opt_for_clk && opt_local)
+ {
+ while (delay > throughput && width_scaling<3.0)
+ {
+ width_scaling *= 2;
+ space_scaling *= 2;
+ Wire winit(width_scaling, space_scaling);
+ compute();
+ }
+ if (delay > throughput)
+ // insert pipeline stages
+ {
+ num_pipe_stages = (int)ceil(delay/throughput);
+ assert(num_pipe_stages>0);
+ delay = delay/num_pipe_stages + num_pipe_stages*0.05*delay;
+ }
+ }
+ }
+
+ power_bit = power;
+ power.readOp.dynamic *= data_width;
+ power.readOp.leakage *= data_width;
+ power.readOp.gate_leakage *= data_width;
+ area.set_area(area.get_area()*data_width);
+ no_device_under_wire_area.h *= data_width;
+
+ if (latency_overflow==true)
+ cout<< "Warning: "<< name <<" wire structure cannot satisfy latency constraint." << endl;
+
+
+ assert(power.readOp.dynamic > 0);
+ assert(power.readOp.leakage > 0);
+ assert(power.readOp.gate_leakage > 0);
+
+ double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
+
+ double sckRation = g_tp.sckt_co_eff;
+ power.readOp.dynamic *= sckRation;
+ power.writeOp.dynamic *= sckRation;
+ power.searchOp.dynamic *= sckRation;
+
+ power.readOp.longer_channel_leakage =
+ power.readOp.leakage*long_channel_device_reduction;
+
+ if (pipelinable)//Only global wires has the option to choose whether routing over or not
+ area.set_area(area.get_area()*route_over_perc + no_device_under_wire_area.get_area()*(1-route_over_perc));
+
+ Wire wreset();
+}
+
+
+
+void
+interconnect::compute()
+{
+
+ Wire *wtemp1 = 0;
+ wtemp1 = new Wire(wt, length, 1, width_scaling, space_scaling);
+ delay = wtemp1->delay;
+ power.readOp.dynamic = wtemp1->power.readOp.dynamic;
+ power.readOp.leakage = wtemp1->power.readOp.leakage;
+ power.readOp.gate_leakage = wtemp1->power.readOp.gate_leakage;
+
+ area.set_area(wtemp1->area.get_area());
+ no_device_under_wire_area.h = (wtemp1->wire_width + wtemp1->wire_spacing);
+ no_device_under_wire_area.w = length;
+
+ if (wtemp1)
+ delete wtemp1;
+
+}
+
+void interconnect::leakage_feedback(double temperature)
+{
+ l_ip.temp = (unsigned int)round(temperature/10.0)*10;
+ uca_org_t init_result = init_interface(&l_ip); // init_result is dummy
+
+ compute();
+
+ power_bit = power;
+ power.readOp.dynamic *= data_width;
+ power.readOp.leakage *= data_width;
+ power.readOp.gate_leakage *= data_width;
+
+ assert(power.readOp.dynamic > 0);
+ assert(power.readOp.leakage > 0);
+ assert(power.readOp.gate_leakage > 0);
+
+ double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
+
+ double sckRation = g_tp.sckt_co_eff;
+ power.readOp.dynamic *= sckRation;
+ power.writeOp.dynamic *= sckRation;
+ power.searchOp.dynamic *= sckRation;
+
+ power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction;
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#ifndef __INTERCONNECT_H__
+#define __INTERCONNECT_H__
+
+#include "assert.h"
+#include "basic_circuit.h"
+#include "basic_components.h"
+#include "cacti_interface.h"
+#include "component.h"
+#include "parameter.h"
+#include "subarray.h"
+#include "wire.h"
+
+// leakge power includes entire htree in a bank (when uca_tree == false)
+// leakge power includes only part to one bank when uca_tree == true
+
+class interconnect : public Component
+{
+ public:
+ interconnect(
+ string name_,
+ enum Device_ty device_ty_,
+ double base_w, double base_h, int data_w, double len,
+ const InputParameter *configure_interface, int start_wiring_level_,
+ bool pipelinable_ = false,
+ double route_over_perc_ =0.5,
+ bool opt_local_=true,
+ enum Core_type core_ty_=Inorder,
+ enum Wire_type wire_model=Global,
+ double width_s=1.0, double space_s=1.0,
+ TechnologyParameter::DeviceType *dt = &(g_tp.peri_global)
+ );
+
+ ~interconnect() {};
+
+ void compute();
+ string name;
+ enum Device_ty device_ty;
+ double in_rise_time, out_rise_time;
+ InputParameter l_ip;
+ uca_org_t local_result;
+ Area no_device_under_wire_area;
+ void set_in_rise_time(double rt)
+ {
+ in_rise_time = rt;
+ }
+
+ void leakage_feedback(double temperature);
+ double max_unpipelined_link_delay;
+ powerDef power_bit;
+
+ double wire_bw;
+ double init_wire_bw; // bus width at root
+ double base_width;
+ double base_height;
+ int data_width;
+ enum Wire_type wt;
+ double width_scaling, space_scaling;
+ int start_wiring_level;
+ double length;
+ double min_w_nmos;
+ double min_w_pmos;
+ double latency, throughput;
+ bool latency_overflow;
+ bool throughput_overflow;
+ double interconnect_latency;
+ double interconnect_throughput;
+ bool opt_local;
+ enum Core_type core_ty;
+ bool pipelinable;
+ double route_over_perc;
+ int num_pipe_stages;
+
+ private:
+ TechnologyParameter::DeviceType *deviceType;
+
+};
+
+#endif
+
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <iostream>
+#include <string>
+
+#include "XML_Parse.h"
+#include "basic_circuit.h"
+#include "basic_components.h"
+#include "const.h"
+#include "io.h"
+#include "iocontrollers.h"
+#include "logic.h"
+#include "parameter.h"
+
+/*
+SUN Niagara 2 I/O power analysis:
+total signal bits: 711
+Total FBDIMM bits: (14+10)*2*8= 384
+PCIe bits: (8 + 8)*2 = 32
+10Gb NIC: (4*2+4*2)*2 = 32
+Debug I/Os: 168
+Other I/Os: 711- 32-32 - 384 - 168 = 95
+
+According to "Implementation of an 8-Core, 64-Thread, Power-Efficient SPARC Server on a Chip"
+90% of I/Os are SerDers (the calucaltion is 384+64/(711-168)=83% about the same as the 90% reported in the paper)
+--> around 80Pins are common I/Os.
+Common I/Os consumes 71mW/Gb/s according to Cadence ChipEstimate @65nm
+Niagara 2 I/O clock is 1/4 of core clock. --> 87pin (<--((711-168)*17%)) * 71mW/Gb/s *0.25*1.4Ghz = 2.17W
+
+Total dynamic power of FBDIMM, NIC, PCIe = 84*0.132 + 84*0.049*0.132 = 11.14 - 2.17 = 8.98
+Further, if assuming I/O logic power is about 50% of I/Os then Total energy of FBDIMM, NIC, PCIe = 11.14 - 2.17*1.5 = 7.89
+ */
+
+/*
+ * A bug in Cadence ChipEstimator: After update the clock rate in the clock tab, a user
+ * need to re-select the IP clock (the same clk) and then click Estimate. if not reselect
+ * the new clock rate may not be propogate into the IPs.
+ *
+ */
+
+NIUController::NIUController(ParseXML *XML_interface,InputParameter* interface_ip_)
+:XML(XML_interface),
+ interface_ip(*interface_ip_)
+ {
+ local_result = init_interface(&interface_ip);
+
+ double frontend_area, phy_area, mac_area, SerDer_area;
+ double frontend_dyn, mac_dyn, SerDer_dyn;
+ double frontend_gates, mac_gates, SerDer_gates;
+ double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
+ double NMOS_sizing, PMOS_sizing;
+
+ set_niu_param();
+
+ if (niup.type == 0) //high performance NIU
+ {
+ //Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate using 65nm.
+ mac_area = (1.53 + 0.3)/2 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
+ //Area estimation based on average of die photo from Niagara 2, ISSCC "An 800mW 10Gb Ethernet Transceiver in 0.13μm CMOS"
+ //and"A 1.2-V-Only 900-mW 10 Gb Ethernet Transceiver and XAUI Interface With Robust VCO Tuning Technique" Frontend is PCS
+ frontend_area = (9.8 + (6 + 18)*65/130*65/130)/3 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
+ //Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate hard IP @65nm.
+ //SerDer is very hard to scale
+ SerDer_area = (1.39 + 0.36) * (interface_ip.F_sz_um/0.065);//* (interface_ip.F_sz_um/0.065);
+ phy_area = frontend_area + SerDer_area;
+ //total area
+ area.set_area((mac_area + frontend_area + SerDer_area)*1e6);
+ //Power
+ //Cadence ChipEstimate using 65nm (mac, front_end are all energy. E=P*T = P/F = 1.37/1Ghz = 1.37e-9);
+ mac_dyn = 2.19e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate; //2.19W@1GHz fully active according to Cadence ChipEstimate @65nm
+ //Cadence ChipEstimate using 65nm soft IP;
+ frontend_dyn = 0.27e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate;
+ //according to "A 100mW 9.6Gb/s Transceiver in 90nm CMOS..." ISSCC 2006
+ //SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
+ SerDer_dyn = 0.01*10*sqrt(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;
+ SerDer_dyn /= niup.clockRate;//covert to energy per clock cycle of whole NIU
+
+ //Cadence ChipEstimate using 65nm
+ mac_gates = 111700;
+ frontend_gates = 320000;
+ SerDer_gates = 200000;
+ NMOS_sizing = 5*g_tp.min_w_nmos_;
+ PMOS_sizing = 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
+
+
+ }
+ else
+ {//Low power implementations are mostly from Cadence ChipEstimator; Ignore the multiple IP effect
+ // ---When there are multiple IP (same kind or not) selected, Cadence ChipEstimator results are not
+ // a simple summation of all IPs. Ignore this effect
+ mac_area = 0.24 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
+ frontend_area = 0.1 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);//Frontend is the PCS layer
+ SerDer_area = 0.35 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
+ //Compare 130um implementation in "A 1.2-V-Only 900-mW 10 Gb Ethernet Transceiver and XAUI Interface With Robust VCO Tuning Technique"
+ //and the ChipEstimator XAUI PHY hard IP, confirm that even PHY can scale perfectly with the technology
+ //total area
+ area.set_area((mac_area + frontend_area + SerDer_area)*1e6);
+ //Power
+ //Cadence ChipEstimate using 65nm (mac, front_end are all energy. E=P*T = P/F = 1.37/1Ghz = 1.37e-9);
+ mac_dyn = 1.257e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate; //2.19W@1GHz fully active according to Cadence ChipEstimate @65nm
+ //Cadence ChipEstimate using 65nm soft IP;
+ frontend_dyn = 0.6e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate;
+ //SerDer_dyn is power not energy, scaling from 216mw/10Gb/s @130nm
+ SerDer_dyn = 0.0216*10*(interface_ip.F_sz_um/0.13)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;
+ SerDer_dyn /= niup.clockRate;//covert to energy per clock cycle of whole NIU
+
+ mac_gates = 111700;
+ frontend_gates = 52000;
+ SerDer_gates = 199260;
+
+ NMOS_sizing = g_tp.min_w_nmos_;
+ PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
+
+ }
+
+ power_t.readOp.dynamic = mac_dyn + frontend_dyn + SerDer_dyn;
+ power_t.readOp.leakage = (mac_gates + frontend_gates + frontend_gates)*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
+ double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device);
+ power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction;
+ power_t.readOp.gate_leakage = (mac_gates + frontend_gates + frontend_gates)*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
+ }
+
+void NIUController::computeEnergy(bool is_tdp)
+{
+ if (is_tdp)
+ {
+
+
+ power = power_t;
+ power.readOp.dynamic *= niup.duty_cycle;
+
+ }
+ else
+ {
+ rt_power = power_t;
+ rt_power.readOp.dynamic *= niup.perc_load;
+ }
+}
+
+void NIUController::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+ if (is_tdp)
+ {
+ cout << "NIU:" << endl;
+ cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic*niup.clockRate << " W" << endl;
+ cout << indent_str<< "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str<< "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic*niup.clockRate << " W" << endl;
+ cout<<endl;
+ }
+ else
+ {
+
+ }
+
+}
+
+void NIUController::set_niu_param()
+{
+ niup.clockRate = XML->sys.niu.clockrate;
+ niup.clockRate *= 1e6;
+ niup.num_units = XML->sys.niu.number_units;
+ niup.duty_cycle = XML->sys.niu.duty_cycle;
+ niup.perc_load = XML->sys.niu.total_load_perc;
+ niup.type = XML->sys.niu.type;
+// niup.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
+}
+
+PCIeController::PCIeController(ParseXML *XML_interface,InputParameter* interface_ip_)
+:XML(XML_interface),
+ interface_ip(*interface_ip_)
+ {
+ local_result = init_interface(&interface_ip);
+ double frontend_area, phy_area, ctrl_area, SerDer_area;
+ double ctrl_dyn, frontend_dyn, SerDer_dyn;
+ double ctrl_gates,frontend_gates, SerDer_gates;
+ double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
+ double NMOS_sizing, PMOS_sizing;
+
+ /* Assuming PCIe is bit-slice based architecture
+ * This is the reason for /8 in both area and power calculation
+ * to get per lane numbers
+ */
+
+ set_pcie_param();
+ if (pciep.type == 0) //high performance NIU
+ {
+ //Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate @ 65nm.
+ ctrl_area = (5.2 + 0.5)/2 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
+ //Area estimation based on average of die photo from Niagara 2, and Cadence ChipEstimate @ 65nm.
+ frontend_area = (5.2 + 0.1)/2 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
+ //Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate hard IP @65nm.
+ //SerDer is very hard to scale
+ SerDer_area = (3.03 + 0.36) * (interface_ip.F_sz_um/0.065);//* (interface_ip.F_sz_um/0.065);
+ phy_area = frontend_area + SerDer_area;
+ //total area
+ //Power
+ //Cadence ChipEstimate using 65nm the controller includes everything: the PHY, the data link and transaction layer
+ ctrl_dyn = 3.75e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
+ // //Cadence ChipEstimate using 65nm soft IP;
+ // frontend_dyn = 0.27e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
+ //SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
+ SerDer_dyn = 0.01*4*(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;//PCIe 2.0 max per lane speed is 4Gb/s
+ SerDer_dyn /= pciep.clockRate;//covert to energy per clock cycle
+
+ //power_t.readOp.dynamic = (ctrl_dyn)*pciep.num_channels;
+ //Cadence ChipEstimate using 65nm
+ ctrl_gates = 900000/8*pciep.num_channels;
+ // frontend_gates = 120000/8;
+ // SerDer_gates = 200000/8;
+ NMOS_sizing = 5*g_tp.min_w_nmos_;
+ PMOS_sizing = 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
+ }
+ else
+ {
+ ctrl_area = 0.412 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
+ //Area estimation based on average of die photo from Niagara 2, and Cadence ChipEstimate @ 65nm.
+ SerDer_area = 0.36 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
+ //total area
+ //Power
+ //Cadence ChipEstimate using 65nm the controller includes everything: the PHY, the data link and transaction layer
+ ctrl_dyn = 2.21e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
+ // //Cadence ChipEstimate using 65nm soft IP;
+ // frontend_dyn = 0.27e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
+ //SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
+ SerDer_dyn = 0.01*4*(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;//PCIe 2.0 max per lane speed is 4Gb/s
+ SerDer_dyn /= pciep.clockRate;//covert to energy per clock cycle
+
+ //Cadence ChipEstimate using 65nm
+ ctrl_gates = 200000/8*pciep.num_channels;
+ // frontend_gates = 120000/8;
+ SerDer_gates = 200000/8*pciep.num_channels;
+ NMOS_sizing = g_tp.min_w_nmos_;
+ PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
+
+ }
+ area.set_area(((ctrl_area + (pciep.withPHY? SerDer_area:0))/8*pciep.num_channels)*1e6);
+ power_t.readOp.dynamic = (ctrl_dyn + (pciep.withPHY? SerDer_dyn:0))*pciep.num_channels;
+ power_t.readOp.leakage = (ctrl_gates + (pciep.withPHY? SerDer_gates:0))*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
+ double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device);
+ power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction;
+ power_t.readOp.gate_leakage = (ctrl_gates + (pciep.withPHY? SerDer_gates:0))*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
+ }
+
+void PCIeController::computeEnergy(bool is_tdp)
+{
+ if (is_tdp)
+ {
+
+
+ power = power_t;
+ power.readOp.dynamic *= pciep.duty_cycle;
+
+ }
+ else
+ {
+ rt_power = power_t;
+ rt_power.readOp.dynamic *= pciep.perc_load;
+ }
+}
+
+void PCIeController::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+ if (is_tdp)
+ {
+ cout << "PCIe:" << endl;
+ cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic*pciep.clockRate << " W" << endl;
+ cout << indent_str<< "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str<< "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic*pciep.clockRate << " W" << endl;
+ cout<<endl;
+ }
+ else
+ {
+
+ }
+
+}
+
+void PCIeController::set_pcie_param()
+{
+ pciep.clockRate = XML->sys.pcie.clockrate;
+ pciep.clockRate *= 1e6;
+ pciep.num_units = XML->sys.pcie.number_units;
+ pciep.num_channels = XML->sys.pcie.num_channels;
+ pciep.duty_cycle = XML->sys.pcie.duty_cycle;
+ pciep.perc_load = XML->sys.pcie.total_load_perc;
+ pciep.type = XML->sys.pcie.type;
+ pciep.withPHY = XML->sys.pcie.withPHY;
+// pciep.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
+
+}
+
+FlashController::FlashController(ParseXML *XML_interface,InputParameter* interface_ip_)
+:XML(XML_interface),
+ interface_ip(*interface_ip_)
+ {
+ local_result = init_interface(&interface_ip);
+ double frontend_area, phy_area, ctrl_area, SerDer_area;
+ double ctrl_dyn, frontend_dyn, SerDer_dyn;
+ double ctrl_gates,frontend_gates, SerDer_gates;
+ double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
+ double NMOS_sizing, PMOS_sizing;
+
+ /* Assuming PCIe is bit-slice based architecture
+ * This is the reason for /8 in both area and power calculation
+ * to get per lane numbers
+ */
+
+ set_fc_param();
+ if (fcp.type == 0) //high performance NIU
+ {
+ cout<<"Current McPAT does not support high performance flash contorller since even low power designs are enough for maintain throughput"<<endl;
+ exit(0);
+ NMOS_sizing = 5*g_tp.min_w_nmos_;
+ PMOS_sizing = 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
+ }
+ else
+ {
+ ctrl_area = 0.243 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
+ //Area estimation based on Cadence ChipEstimate @ 65nm: NANDFLASH-CTRL from CAST
+ SerDer_area = 0.36/8 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
+ //based On PCIe PHY TSMC65GP from Cadence ChipEstimate @ 65nm, it support 8x lanes with each lane
+ //speed up to 250MB/s (PCIe1.1x) This is already saturate the 200MB/s of the flash controller core above.
+ ctrl_gates = 129267;
+ SerDer_gates = 200000/8;
+ NMOS_sizing = g_tp.min_w_nmos_;
+ PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
+
+ //Power
+ //Cadence ChipEstimate using 65nm the controller 125mW for every 200MB/s This is power not energy!
+ ctrl_dyn = 0.125*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
+ //SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
+ SerDer_dyn = 0.01*1.6*(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;
+ //max Per controller speed is 1.6Gb/s (200MB/s)
+ }
+ double number_channel = 1+(fcp.num_channels-1)*0.2;
+ area.set_area((ctrl_area + (fcp.withPHY? SerDer_area:0))*1e6*number_channel);
+ power_t.readOp.dynamic = (ctrl_dyn + (fcp.withPHY? SerDer_dyn:0))*number_channel;
+ power_t.readOp.leakage = ((ctrl_gates + (fcp.withPHY? SerDer_gates:0))*number_channel)*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
+ double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device);
+ power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction;
+ power_t.readOp.gate_leakage = ((ctrl_gates + (fcp.withPHY? SerDer_gates:0))*number_channel)*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
+ }
+
+void FlashController::computeEnergy(bool is_tdp)
+{
+ if (is_tdp)
+ {
+
+
+ power = power_t;
+ power.readOp.dynamic *= fcp.duty_cycle;
+
+ }
+ else
+ {
+ rt_power = power_t;
+ rt_power.readOp.dynamic *= fcp.perc_load;
+ }
+}
+
+void FlashController::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+ if (is_tdp)
+ {
+ cout << "Flash Controller:" << endl;
+ cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic << " W" << endl;//no multiply of clock since this is power already
+ cout << indent_str<< "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str<< "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic << " W" << endl;
+ cout<<endl;
+ }
+ else
+ {
+
+ }
+
+}
+
+void FlashController::set_fc_param()
+{
+// fcp.clockRate = XML->sys.flashc.mc_clock;
+// fcp.clockRate *= 1e6;
+ fcp.peakDataTransferRate = XML->sys.flashc.peak_transfer_rate;
+ fcp.num_channels = ceil(fcp.peakDataTransferRate/200);
+ fcp.num_mcs = XML->sys.flashc.number_mcs;
+ fcp.duty_cycle = XML->sys.flashc.duty_cycle;
+ fcp.perc_load = XML->sys.flashc.total_load_perc;
+ fcp.type = XML->sys.flashc.type;
+ fcp.withPHY = XML->sys.flashc.withPHY;
+// flashcp.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
+
+}
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+#ifndef IOCONTROLLERS_H_
+#define IOCONTROLLERS_H_
+
+
+#endif /* IOCONTROLLERS_H_ */
+
+#include "XML_Parse.h"
+#include "parameter.h"
+//#include "io.h"
+#include "array.h"
+//#include "Undifferentiated_Core_Area.h"
+#include <vector>
+
+#include "basic_components.h"
+
+class NIUController : public Component {
+ public:
+ ParseXML *XML;
+ InputParameter interface_ip;
+ NIUParam niup;
+ powerDef power_t;
+ uca_org_t local_result;
+ NIUController(ParseXML *XML_interface,InputParameter* interface_ip_);
+ void set_niu_param();
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~NIUController(){};
+};
+
+class PCIeController : public Component {
+ public:
+ ParseXML *XML;
+ InputParameter interface_ip;
+ PCIeParam pciep;
+ powerDef power_t;
+ uca_org_t local_result;
+ PCIeController(ParseXML *XML_interface,InputParameter* interface_ip_);
+ void set_pcie_param();
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~PCIeController(){};
+};
+
+class FlashController : public Component {
+ public:
+ ParseXML *XML;
+ InputParameter interface_ip;
+ MCParam fcp;
+ powerDef power_t;
+ uca_org_t local_result;
+ FlashController(ParseXML *XML_interface,InputParameter* interface_ip_);
+ void set_fc_param();
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~FlashController(){};
+};
+
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#include "logic.h"
+
+
+//selection_logic
+selection_logic::selection_logic(
+ bool _is_default,
+ int win_entries_,
+ int issue_width_,
+ const InputParameter *configure_interface,
+ enum Device_ty device_ty_,
+ enum Core_type core_ty_)
+ //const ParseXML *_XML_interface)
+ :is_default(_is_default),
+ win_entries(win_entries_),
+ issue_width(issue_width_),
+ device_ty(device_ty_),
+ core_ty(core_ty_)
+ {
+ //uca_org_t result2;
+ l_ip=*configure_interface;
+ local_result = init_interface(&l_ip);
+ //init_tech_params(l_ip.F_sz_um, false);
+ //win_entries=numIBEntries;//IQentries;
+ //issue_width=issueWidth;
+ selection_power();
+ double sckRation = g_tp.sckt_co_eff;
+ power.readOp.dynamic *= sckRation;
+ power.writeOp.dynamic *= sckRation;
+ power.searchOp.dynamic *= sckRation;
+
+ double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
+ power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction;
+ }
+
+void selection_logic::selection_power()
+{//based on cost effective superscalar processor TR pp27-31
+ double Ctotal, Cor, Cpencode;
+ int num_arbiter;
+ double WSelORn, WSelORprequ, WSelPn, WSelPp, WSelEnn, WSelEnp;
+
+ //TODO: the 0.8um process data is used.
+ WSelORn = 12.5 * l_ip.F_sz_um;//this was 10 micron for the 0.8 micron process
+ WSelORprequ = 50 * l_ip.F_sz_um;//this was 40 micron for the 0.8 micron process
+ WSelPn = 12.5 * l_ip.F_sz_um;//this was 10mcron for the 0.8 micron process
+ WSelPp = 18.75 * l_ip.F_sz_um;//this was 15 micron for the 0.8 micron process
+ WSelEnn = 6.25 * l_ip.F_sz_um;//this was 5 micron for the 0.8 micron process
+ WSelEnp = 12.5 * l_ip.F_sz_um;//this was 10 micron for the 0.8 micron process
+
+
+ Ctotal=0;
+ num_arbiter=1;
+ while(win_entries > 4)
+ {
+ win_entries = (int)ceil((double)win_entries / 4.0);
+ num_arbiter += win_entries;
+ }
+ //the 4-input OR logic to generate anyreq
+ Cor = 4 * drain_C_(WSelORn,NCH,1,1, g_tp.cell_h_def) + drain_C_(WSelORprequ,PCH,1,1, g_tp.cell_h_def);
+ power.readOp.gate_leakage = cmos_Ig_leakage(WSelORn, WSelORprequ, 4, nor)*g_tp.peri_global.Vdd;
+
+ //The total capacity of the 4-bit priority encoder
+ Cpencode = drain_C_(WSelPn,NCH,1, 1, g_tp.cell_h_def) + drain_C_(WSelPp,PCH,1, 1, g_tp.cell_h_def) +
+ 2*drain_C_(WSelPn,NCH,1, 1, g_tp.cell_h_def) + drain_C_(WSelPp,PCH,2, 1, g_tp.cell_h_def) +
+ 3*drain_C_(WSelPn,NCH,1, 1, g_tp.cell_h_def) + drain_C_(WSelPp,PCH,3, 1, g_tp.cell_h_def) +
+ 4*drain_C_(WSelPn,NCH,1, 1, g_tp.cell_h_def) + drain_C_(WSelPp,PCH,4, 1, g_tp.cell_h_def) +//precompute priority logic
+ 2*4*gate_C(WSelEnn+WSelEnp,20.0)+
+ 4*drain_C_(WSelEnn,NCH,1, 1, g_tp.cell_h_def) + 2*4*drain_C_(WSelEnp,PCH,1, 1, g_tp.cell_h_def)+//enable logic
+ (2*4+2*3+2*2+2)*gate_C(WSelPn+WSelPp,10.0);//requests signal
+
+ Ctotal += issue_width * num_arbiter*(Cor+Cpencode);
+
+ power.readOp.dynamic = Ctotal*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*2;//2 means the abitration signal need to travel round trip
+ power.readOp.leakage = issue_width * num_arbiter *
+ (cmos_Isub_leakage(WSelPn, WSelPp, 2, nor)/*approximate precompute with a nor gate*///grant1p
+ + cmos_Isub_leakage(WSelPn, WSelPp, 3, nor)//grant2p
+ + cmos_Isub_leakage(WSelPn, WSelPp, 4, nor)//grant3p
+ + cmos_Isub_leakage(WSelEnn, WSelEnp, 2, nor)*4//enable logic
+ + cmos_Isub_leakage(WSelEnn, WSelEnp, 1, inv)*2*3//for each grant there are two inverters, there are 3 grant sIsubnals
+ )*g_tp.peri_global.Vdd;
+ power.readOp.gate_leakage = issue_width * num_arbiter *
+ (cmos_Ig_leakage(WSelPn, WSelPp, 2, nor)/*approximate precompute with a nor gate*///grant1p
+ + cmos_Ig_leakage(WSelPn, WSelPp, 3, nor)//grant2p
+ + cmos_Ig_leakage(WSelPn, WSelPp, 4, nor)//grant3p
+ + cmos_Ig_leakage(WSelEnn, WSelEnp, 2, nor)*4//enable logic
+ + cmos_Ig_leakage(WSelEnn, WSelEnp, 1, inv)*2*3//for each grant there are two inverters, there are 3 grant signals
+ )*g_tp.peri_global.Vdd;
+}
+
+
+dep_resource_conflict_check::dep_resource_conflict_check(
+ const InputParameter *configure_interface,
+ const CoreDynParam & dyn_p_,
+ int compare_bits_,
+ bool _is_default)
+ : l_ip(*configure_interface),
+ coredynp(dyn_p_),
+ compare_bits(compare_bits_),
+ is_default(_is_default)
+{
+ Wcompn = 25 * l_ip.F_sz_um;//this was 20.0 micron for the 0.8 micron process
+ Wevalinvp = 25 * l_ip.F_sz_um;//this was 20.0 micron for the 0.8 micron process
+ Wevalinvn = 100 * l_ip.F_sz_um;//this was 80.0 mcron for the 0.8 micron process
+ Wcomppreequ = 50 * l_ip.F_sz_um;//this was 40.0 micron for the 0.8 micron process
+ WNORn = 6.75 * l_ip.F_sz_um;//this was 5.4 micron for the 0.8 micron process
+ WNORp = 38.125 * l_ip.F_sz_um;//this was 30.5 micron for the 0.8 micron process
+
+ local_result = init_interface(&l_ip);
+
+ if (coredynp.core_ty==Inorder)
+ compare_bits += 16 + 8 + 8;//TODO: opcode bits + log(shared resources) + REG TAG BITS-->opcode comparator
+ else
+ compare_bits += 16 + 8 + 8;
+
+ conflict_check_power();
+ double sckRation = g_tp.sckt_co_eff;
+ power.readOp.dynamic *= sckRation;
+ power.writeOp.dynamic *= sckRation;
+ power.searchOp.dynamic *= sckRation;
+
+}
+
+void dep_resource_conflict_check::conflict_check_power()
+{
+ double Ctotal;
+ int num_comparators;
+ num_comparators = 3*((coredynp.decodeW) * (coredynp.decodeW)-coredynp.decodeW);//2(N*N-N) is used for source to dest comparison, (N*N-N) is used for dest to dest comparision.
+ //When decode-width ==1, no dcl logic
+
+ Ctotal = num_comparators * compare_cap();
+ //printf("%i,%s\n",XML_interface->sys.core[0].predictor.predictor_entries,XML_interface->sys.core[0].predictor.prediction_scheme);
+
+ power.readOp.dynamic=Ctotal*/*CLOCKRATE*/g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/*AF*/;
+ power.readOp.leakage=num_comparators*compare_bits*2*simplified_nmos_leakage(Wcompn, false);
+
+ double long_channel_device_reduction = longer_channel_device_reduction(Core_device, coredynp.core_ty);
+ power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction;
+ power.readOp.gate_leakage=num_comparators*compare_bits*2*cmos_Ig_leakage(Wcompn, 0, 2, nmos);
+
+}
+
+/* estimate comparator power consumption (this comparator is similar
+ to the tag-match structure in a CAM */
+double dep_resource_conflict_check::compare_cap()
+{
+ double c1, c2;
+
+ WNORp = WNORp * compare_bits/2.0;//resize the big NOR gate at the DCL according to fan in.
+ /* bottom part of comparator */
+ c2 = (compare_bits)*(drain_C_(Wcompn,NCH,1,1, g_tp.cell_h_def)+drain_C_(Wcompn,NCH,2,1, g_tp.cell_h_def))+
+ drain_C_(Wevalinvp,PCH,1,1, g_tp.cell_h_def) + drain_C_(Wevalinvn,NCH,1,1, g_tp.cell_h_def);
+
+ /* top part of comparator */
+ c1 = (compare_bits)*(drain_C_(Wcompn,NCH,1,1, g_tp.cell_h_def)+drain_C_(Wcompn,NCH,2,1, g_tp.cell_h_def)+
+ drain_C_(Wcomppreequ,NCH,1,1, g_tp.cell_h_def)) + gate_C(WNORn + WNORp,10.0) +
+ drain_C_(WNORp,NCH,2,1, g_tp.cell_h_def) + compare_bits*drain_C_(WNORn,NCH,2,1, g_tp.cell_h_def);
+ return(c1 + c2);
+
+}
+
+void dep_resource_conflict_check::leakage_feedback(double temperature)
+{
+ l_ip.temp = (unsigned int)round(temperature/10.0)*10;
+ uca_org_t init_result = init_interface(&l_ip); // init_result is dummy
+
+ // This is part of conflict_check_power()
+ int num_comparators = 3*((coredynp.decodeW) * (coredynp.decodeW)-coredynp.decodeW);//2(N*N-N) is used for source to dest comparison, (N*N-N) is used for dest to dest comparision.
+ power.readOp.leakage=num_comparators*compare_bits*2*simplified_nmos_leakage(Wcompn, false);
+
+ double long_channel_device_reduction = longer_channel_device_reduction(Core_device, coredynp.core_ty);
+ power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction;
+ power.readOp.gate_leakage=num_comparators*compare_bits*2*cmos_Ig_leakage(Wcompn, 0, 2, nmos);
+}
+
+//TODO: add inverter and transmission gate base DFF.
+
+DFFCell::DFFCell(
+ bool _is_dram,
+ double _WdecNANDn,
+ double _WdecNANDp,
+ double _cell_load,
+ const InputParameter *configure_interface)
+:is_dram(_is_dram),
+cell_load(_cell_load),
+WdecNANDn(_WdecNANDn),
+WdecNANDp(_WdecNANDp)
+{//this model is based on the NAND2 based DFF.
+ l_ip=*configure_interface;
+// area.set_area(730*l_ip.F_sz_um*l_ip.F_sz_um);
+ area.set_area(5*compute_gate_area(NAND, 2,WdecNANDn,WdecNANDp, g_tp.cell_h_def)
+ + compute_gate_area(NAND, 2,WdecNANDn,WdecNANDn, g_tp.cell_h_def));
+
+
+}
+
+
+double DFFCell::fpfp_node_cap(unsigned int fan_in, unsigned int fan_out)
+{
+ double Ctotal = 0;
+ //printf("WdecNANDn = %E\n", WdecNANDn);
+
+ /* part 1: drain cap of NAND gate */
+ Ctotal += drain_C_(WdecNANDn, NCH, 2, 1, g_tp.cell_h_def, is_dram) + fan_in * drain_C_(WdecNANDp, PCH, 1, 1, g_tp.cell_h_def, is_dram);
+
+ /* part 2: gate cap of NAND gates */
+ Ctotal += fan_out * gate_C(WdecNANDn + WdecNANDp, 0, is_dram);
+
+ return Ctotal;
+}
+
+
+void DFFCell::compute_DFF_cell()
+{
+ double c1, c2, c3, c4, c5, c6;
+ /* node 5 and node 6 are identical to node 1 in capacitance */
+ c1 = c5 = c6 = fpfp_node_cap(2, 1);
+ c2 = fpfp_node_cap(2, 3);
+ c3 = fpfp_node_cap(3, 2);
+ c4 = fpfp_node_cap(2, 2);
+
+ //cap-load of the clock signal in each Dff, actually the clock signal only connected to one NAND2
+ clock_cap= 2 * gate_C(WdecNANDn + WdecNANDp, 0, is_dram);
+ e_switch.readOp.dynamic += (c4 + c1 + c2 + c3 + c5 + c6 + 2*cell_load)*0.5*g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;;
+
+ /* no 1/2 for e_keep and e_clock because clock signal switches twice in one cycle */
+ e_keep_1.readOp.dynamic += c3 * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd ;
+ e_keep_0.readOp.dynamic += c2 * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd ;
+ e_clock.readOp.dynamic += clock_cap* g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;;
+
+ /* static power */
+ e_switch.readOp.leakage += (cmos_Isub_leakage(WdecNANDn, WdecNANDp, 2, nand)*5//5 NAND2 and 1 NAND3 in a DFF
+ + cmos_Isub_leakage(WdecNANDn, WdecNANDn, 3, nand))*g_tp.peri_global.Vdd;
+ e_switch.readOp.gate_leakage += (cmos_Ig_leakage(WdecNANDn, WdecNANDp, 2, nand)*5//5 NAND2 and 1 NAND3 in a DFF
+ + cmos_Ig_leakage(WdecNANDn, WdecNANDn, 3, nand))*g_tp.peri_global.Vdd;
+ //printf("leakage =%E\n",cmos_Ileak(1, is_dram) );
+}
+
+Pipeline::Pipeline(
+ const InputParameter *configure_interface,
+ const CoreDynParam & dyn_p_,
+ enum Device_ty device_ty_,
+ bool _is_core_pipeline,
+ bool _is_default)
+: l_ip(*configure_interface),
+ coredynp(dyn_p_),
+ device_ty(device_ty_),
+ is_core_pipeline(_is_core_pipeline),
+ is_default(_is_default),
+ num_piperegs(0.0)
+
+ {
+ local_result = init_interface(&l_ip);
+ if (!coredynp.Embedded)
+ process_ind = true;
+ else
+ process_ind = false;
+ WNANDn = (process_ind)? 25 * l_ip.F_sz_um : g_tp.min_w_nmos_ ;//this was 20 micron for the 0.8 micron process
+ WNANDp = (process_ind)? 37.5 * l_ip.F_sz_um : g_tp.min_w_nmos_*pmos_to_nmos_sz_ratio();//this was 30 micron for the 0.8 micron process
+ load_per_pipeline_stage = 2*gate_C(WNANDn + WNANDp, 0, false);
+ compute();
+
+}
+
+void Pipeline::compute()
+{
+ compute_stage_vector();
+ DFFCell pipe_reg(false, WNANDn,WNANDp, load_per_pipeline_stage, &l_ip);
+ pipe_reg.compute_DFF_cell();
+
+ double clock_power_pipereg = num_piperegs * pipe_reg.e_clock.readOp.dynamic;
+ //******************pipeline power: currently, we average all the possibilities of the states of DFFs in the pipeline. A better way to do it is to consider
+ //the harming distance of two consecutive signals, However McPAT does not have plan to do this in near future as it focuses on worst case power.
+ double pipe_reg_power = num_piperegs * (pipe_reg.e_switch.readOp.dynamic+pipe_reg.e_keep_0.readOp.dynamic+pipe_reg.e_keep_1.readOp.dynamic)/3+clock_power_pipereg;
+ double pipe_reg_leakage = num_piperegs * pipe_reg.e_switch.readOp.leakage;
+ double pipe_reg_gate_leakage = num_piperegs * pipe_reg.e_switch.readOp.gate_leakage;
+ power.readOp.dynamic +=pipe_reg_power;
+ power.readOp.leakage +=pipe_reg_leakage;
+ power.readOp.gate_leakage +=pipe_reg_gate_leakage;
+ area.set_area(num_piperegs * pipe_reg.area.get_area());
+
+ double long_channel_device_reduction = longer_channel_device_reduction(device_ty, coredynp.core_ty);
+ power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction;
+
+
+ double sckRation = g_tp.sckt_co_eff;
+ power.readOp.dynamic *= sckRation;
+ power.writeOp.dynamic *= sckRation;
+ power.searchOp.dynamic *= sckRation;
+ double macro_layout_overhead = g_tp.macro_layout_overhead;
+ if (!coredynp.Embedded)
+ area.set_area(area.get_area()*macro_layout_overhead);
+}
+
+void Pipeline::compute_stage_vector()
+{
+ double num_stages, tot_stage_vector, per_stage_vector;
+ int opcode_length = coredynp.x86? coredynp.micro_opcode_length:coredynp.opcode_length;
+ //Hthread = thread_clock_gated? 1:num_thread;
+
+ if (!is_core_pipeline)
+ {
+ num_piperegs=l_ip.pipeline_stages*l_ip.per_stage_vector;//The number of pipeline stages are calculated based on the achievable throughput and required throughput
+ }
+ else
+ {
+ if (coredynp.core_ty==Inorder)
+ {
+ /* assume 6 pipe stages and try to estimate bits per pipe stage */
+ /* pipe stage 0/IF */
+ num_piperegs += coredynp.pc_width*2*coredynp.num_hthreads;
+ /* pipe stage IF/ID */
+ num_piperegs += coredynp.fetchW*(coredynp.instruction_length + coredynp.pc_width)*coredynp.num_hthreads;
+ /* pipe stage IF/ThreadSEL */
+ if (coredynp.multithreaded) num_piperegs += coredynp.num_hthreads*coredynp.perThreadState; //8 bit thread states
+ /* pipe stage ID/EXE */
+ num_piperegs += coredynp.decodeW*(coredynp.instruction_length + coredynp.pc_width + pow(2.0,opcode_length)+ 2*coredynp.int_data_width)*coredynp.num_hthreads;
+ /* pipe stage EXE/MEM */
+ num_piperegs += coredynp.issueW*(3 * coredynp.arch_ireg_width + pow(2.0,opcode_length) + 8*2*coredynp.int_data_width/*+2*powers (2,reg_length)*/);
+ /* pipe stage MEM/WB the 2^opcode_length means the total decoded signal for the opcode*/
+ num_piperegs += coredynp.issueW*(2*coredynp.int_data_width + pow(2.0,opcode_length) + 8*2*coredynp.int_data_width/*+2*powers (2,reg_length)*/);
+// /* pipe stage 5/6 */
+// num_piperegs += issueWidth*(data_width + powers (2,opcode_length)/*+2*powers (2,reg_length)*/);
+// /* pipe stage 6/7 */
+// num_piperegs += issueWidth*(data_width + powers (2,opcode_length)/*+2*powers (2,reg_length)*/);
+// /* pipe stage 7/8 */
+// num_piperegs += issueWidth*(data_width + powers (2,opcode_length)/**2*powers (2,reg_length)*/);
+// /* assume 50% extra in control signals (rule of thumb) */
+ num_stages=6;
+
+ }
+ else
+ {
+ /* assume 12 stage pipe stages and try to estimate bits per pipe stage */
+ /*OOO: Fetch, decode, rename, IssueQ, dispatch, regread, EXE, MEM, WB, CM */
+
+ /* pipe stage 0/1F*/
+ num_piperegs += coredynp.pc_width*2*coredynp.num_hthreads ;//PC and Next PC
+ /* pipe stage IF/ID */
+ num_piperegs += coredynp.fetchW*(coredynp.instruction_length + coredynp.pc_width)*coredynp.num_hthreads;//PC is used to feed branch predictor in ID
+ /* pipe stage 1D/Renaming*/
+ num_piperegs += coredynp.decodeW*(coredynp.instruction_length + coredynp.pc_width)*coredynp.num_hthreads;//PC is for branch exe in later stage.
+ /* pipe stage Renaming/wire_drive */
+ num_piperegs += coredynp.decodeW*(coredynp.instruction_length + coredynp.pc_width);
+ /* pipe stage Renaming/IssueQ */
+ num_piperegs += coredynp.issueW*(coredynp.instruction_length + coredynp.pc_width + 3*coredynp.phy_ireg_width)*coredynp.num_hthreads;//3*coredynp.phy_ireg_width means 2 sources and 1 dest
+ /* pipe stage IssueQ/Dispatch */
+ num_piperegs += coredynp.issueW*(coredynp.instruction_length + 3 * coredynp.phy_ireg_width);
+ /* pipe stage Dispatch/EXE */
+
+ num_piperegs += coredynp.issueW*(3 * coredynp.phy_ireg_width + coredynp.pc_width + pow(2.0,opcode_length)/*+2*powers (2,reg_length)*/);
+ /* 2^opcode_length means the total decoded signal for the opcode*/
+ num_piperegs += coredynp.issueW*(2*coredynp.int_data_width + pow(2.0,opcode_length)/*+2*powers (2,reg_length)*/);
+ /*2 source operands in EXE; Assume 2EXE stages* since we do not really distinguish OP*/
+ num_piperegs += coredynp.issueW*(2*coredynp.int_data_width + pow(2.0,opcode_length)/*+2*powers (2,reg_length)*/);
+ /* pipe stage EXE/MEM, data need to be read/write, address*/
+ num_piperegs += coredynp.issueW*(coredynp.int_data_width + coredynp.v_address_width + pow(2.0,opcode_length)/*+2*powers (2,reg_length)*/);//memory Opcode still need to be passed
+ /* pipe stage MEM/WB; result data, writeback regs */
+ num_piperegs += coredynp.issueW*(coredynp.int_data_width + coredynp.phy_ireg_width /* powers (2,opcode_length) + (2,opcode_length)+2*powers (2,reg_length)*/);
+ /* pipe stage WB/CM ; result data, regs need to be updated, address for resolve memory ops in ROB's top*/
+ num_piperegs += coredynp.commitW*(coredynp.int_data_width + coredynp.v_address_width + coredynp.phy_ireg_width/*+ powers (2,opcode_length)*2*powers (2,reg_length)*/)*coredynp.num_hthreads;
+// if (multithreaded)
+// {
+//
+// }
+ num_stages=12;
+
+ }
+
+ /* assume 50% extra in control registers and interrupt registers (rule of thumb) */
+ num_piperegs = num_piperegs * 1.5;
+ tot_stage_vector=num_piperegs;
+ per_stage_vector=tot_stage_vector/num_stages;
+
+ if (coredynp.core_ty==Inorder)
+ {
+ if (coredynp.pipeline_stages>6)
+ num_piperegs= per_stage_vector*coredynp.pipeline_stages;
+ }
+ else//OOO
+ {
+ if (coredynp.pipeline_stages>12)
+ num_piperegs= per_stage_vector*coredynp.pipeline_stages;
+ }
+ }
+
+}
+
+FunctionalUnit::FunctionalUnit(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_,const CoreDynParam & dyn_p_, enum FU_type fu_type_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ coredynp(dyn_p_),
+ fu_type(fu_type_)
+{
+ double area_t;//, leakage, gate_leakage;
+ double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
+ clockRate = coredynp.clockRate;
+ executionTime = coredynp.executionTime;
+
+ //XML_interface=_XML_interface;
+ uca_org_t result2;
+ result2 = init_interface(&interface_ip);
+ if (XML->sys.Embedded)
+ {
+ if (fu_type == FPU)
+ {
+ num_fu=coredynp.num_fpus;
+ //area_t = 8.47*1e6*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2
+ area_t = 4.47*1e6*(g_ip->F_sz_nm*g_ip->F_sz_nm/90.0/90.0);//this is um^2 The base number
+ //4.47 contains both VFP and NEON processing unit, VFP is about 40% and NEON is about 60%
+ if (g_ip->F_sz_nm>90)
+ area_t = 4.47*1e6*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2
+ leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ gate_leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ //energy = 0.3529/10*1e-9;//this is the energy(nJ) for a FP instruction in FPU usually it can have up to 20 cycles.
+// base_energy = coredynp.core_ty==Inorder? 0: 89e-3*3; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch)
+// base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);
+ base_energy = 0;
+ per_access_energy = 1.15/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per Hz energy(nJ)
+ //FPU power from Sandia's processor sizing tech report
+ FU_height=(18667*num_fu)*interface_ip.F_sz_um;//FPU from Sun's data
+ }
+ else if (fu_type == ALU)
+ {
+ num_fu=coredynp.num_alus;
+ area_t = 280*260*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl
+ leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;
+// base_energy = coredynp.core_ty==Inorder? 0:89e-3; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch)
+// base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);
+ base_energy = 0;
+ per_access_energy = 1.15/3/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per cycle energy(nJ)
+ FU_height=(6222*num_fu)*interface_ip.F_sz_um;//integer ALU
+
+ }
+ else if (fu_type == MUL)
+ {
+ num_fu=coredynp.num_muls;
+ area_t = 280*260*3*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl
+ leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;
+// base_energy = coredynp.core_ty==Inorder? 0:89e-3*2; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch)
+// base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);
+ base_energy = 0;
+ per_access_energy = 1.15*2/3/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per cycle energy(nJ), coefficient based on Wattch
+ FU_height=(9334*num_fu )*interface_ip.F_sz_um;//divider/mul from Sun's data
+ }
+ else
+ {
+ cout<<"Unknown Functional Unit Type"<<endl;
+ exit(0);
+ }
+ per_access_energy *=0.5;//According to ARM data embedded processor has much lower per acc energy
+ }
+ else
+ {
+ if (fu_type == FPU)
+ {
+ num_fu=coredynp.num_fpus;
+ //area_t = 8.47*1e6*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2
+ area_t = 8.47*1e6*(g_ip->F_sz_nm*g_ip->F_sz_nm/90.0/90.0);//this is um^2
+ if (g_ip->F_sz_nm>90)
+ area_t = 8.47*1e6*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2
+ leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ gate_leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ //energy = 0.3529/10*1e-9;//this is the energy(nJ) for a FP instruction in FPU usually it can have up to 20 cycles.
+ base_energy = coredynp.core_ty==Inorder? 0: 89e-3*3; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch)
+ base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);
+ per_access_energy = 1.15*3/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per op energy(nJ)
+ FU_height=(38667*num_fu)*interface_ip.F_sz_um;//FPU from Sun's data
+ }
+ else if (fu_type == ALU)
+ {
+ num_fu=coredynp.num_alus;
+ area_t = 280*260*2*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl
+ leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;
+ base_energy = coredynp.core_ty==Inorder? 0:89e-3; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch)
+ base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);
+ per_access_energy = 1.15/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per cycle energy(nJ)
+ FU_height=(6222*num_fu)*interface_ip.F_sz_um;//integer ALU
+
+ }
+ else if (fu_type == MUL)
+ {
+ num_fu=coredynp.num_muls;
+ area_t = 280*260*2*3*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl
+ leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;
+ base_energy = coredynp.core_ty==Inorder? 0:89e-3*2; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch)
+ base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);
+ per_access_energy = 1.15*2/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per cycle energy(nJ), coefficient based on Wattch
+ FU_height=(9334*num_fu )*interface_ip.F_sz_um;//divider/mul from Sun's data
+ }
+ else
+ {
+ cout<<"Unknown Functional Unit Type"<<endl;
+ exit(0);
+ }
+ }
+ //IEXEU, simple ALU and FPU
+ // double C_ALU, C_EXEU, C_FPU; //Lum Equivalent capacitance of IEXEU and FPU. Based on Intel and Sun 90nm process fabracation.
+ //
+ // C_ALU = 0.025e-9;//F
+ // C_EXEU = 0.05e-9; //F
+ // C_FPU = 0.35e-9;//F
+ area.set_area(area_t*num_fu);
+ leakage *= num_fu;
+ gate_leakage *=num_fu;
+ double macro_layout_overhead = g_tp.macro_layout_overhead;
+// if (!XML->sys.Embedded)
+ area.set_area(area.get_area()*macro_layout_overhead);
+}
+
+void FunctionalUnit::computeEnergy(bool is_tdp)
+{
+ double pppm_t[4] = {1,1,1,1};
+ double FU_duty_cycle;
+ if (is_tdp)
+ {
+
+
+ set_pppm(pppm_t, 2, 2, 2, 2);//2 means two source operands needs to be passed for each int instruction.
+ if (fu_type == FPU)
+ {
+ stats_t.readAc.access = num_fu;
+ tdp_stats = stats_t;
+ FU_duty_cycle = coredynp.FPU_duty_cycle;
+ }
+ else if (fu_type == ALU)
+ {
+ stats_t.readAc.access = 1*num_fu;
+ tdp_stats = stats_t;
+ FU_duty_cycle = coredynp.ALU_duty_cycle;
+ }
+ else if (fu_type == MUL)
+ {
+ stats_t.readAc.access = num_fu;
+ tdp_stats = stats_t;
+ FU_duty_cycle = coredynp.MUL_duty_cycle;
+ }
+
+ //power.readOp.dynamic = base_energy/clockRate + energy*stats_t.readAc.access;
+ power.readOp.dynamic = per_access_energy*stats_t.readAc.access + base_energy/clockRate;
+ double sckRation = g_tp.sckt_co_eff;
+ power.readOp.dynamic *= sckRation*FU_duty_cycle;
+ power.writeOp.dynamic *= sckRation;
+ power.searchOp.dynamic *= sckRation;
+
+ power.readOp.leakage = leakage;
+ power.readOp.gate_leakage = gate_leakage;
+ double long_channel_device_reduction = longer_channel_device_reduction(Core_device, coredynp.core_ty);
+ power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction;
+
+ }
+ else
+ {
+ if (fu_type == FPU)
+ {
+ stats_t.readAc.access = XML->sys.core[ithCore].fpu_accesses;
+ rtp_stats = stats_t;
+ }
+ else if (fu_type == ALU)
+ {
+ stats_t.readAc.access = XML->sys.core[ithCore].ialu_accesses;
+ rtp_stats = stats_t;
+ }
+ else if (fu_type == MUL)
+ {
+ stats_t.readAc.access = XML->sys.core[ithCore].mul_accesses;
+ rtp_stats = stats_t;
+ }
+
+ //rt_power.readOp.dynamic = base_energy*executionTime + energy*stats_t.readAc.access;
+ rt_power.readOp.dynamic = per_access_energy*stats_t.readAc.access + base_energy*executionTime;
+ double sckRation = g_tp.sckt_co_eff;
+ rt_power.readOp.dynamic *= sckRation;
+ rt_power.writeOp.dynamic *= sckRation;
+ rt_power.searchOp.dynamic *= sckRation;
+
+ }
+
+
+}
+
+void FunctionalUnit::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+// cout << indent_str_next << "Results Broadcast Bus Area = " << bypass->area.get_area() *1e-6 << " mm^2" << endl;
+ if (is_tdp)
+ {
+ if (fu_type == FPU)
+ {
+ cout << indent_str << "Floating Point Units (FPUs) (Count: "<< coredynp.num_fpus <<" ):" << endl;
+ cout << indent_str_next << "Area = " << area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage << " W" << endl;
+ cout << indent_str_next<< "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ else if (fu_type == ALU)
+ {
+ cout << indent_str << "Integer ALUs (Count: "<< coredynp.num_alus <<" ):" << endl;
+ cout << indent_str_next << "Area = " << area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage << " W" << endl;
+ cout << indent_str_next<< "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ else if (fu_type == MUL)
+ {
+ cout << indent_str << "Complex ALUs (Mul/Div) (Count: "<< coredynp.num_muls <<" ):" << endl;
+ cout << indent_str_next << "Area = " << area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage << " W" << endl;
+ cout << indent_str_next<< "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+
+ }
+
+ }
+ else
+ {
+ }
+
+}
+
+void FunctionalUnit::leakage_feedback(double temperature)
+{
+ // Update the temperature and initialize the global interfaces.
+ interface_ip.temp = (unsigned int)round(temperature/10.0)*10;
+
+ uca_org_t init_result = init_interface(&interface_ip); // init_result is dummy
+
+ // This is part of FunctionalUnit()
+ double area_t, leakage, gate_leakage;
+ double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
+
+ if (fu_type == FPU)
+ {
+ area_t = 4.47*1e6*(g_ip->F_sz_nm*g_ip->F_sz_nm/90.0/90.0);//this is um^2 The base number
+ if (g_ip->F_sz_nm>90)
+ area_t = 4.47*1e6*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2
+ leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ gate_leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ }
+ else if (fu_type == ALU)
+ {
+ area_t = 280*260*2*num_fu*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl
+ leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;
+ }
+ else if (fu_type == MUL)
+ {
+ area_t = 280*260*2*3*num_fu*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl
+ leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W
+ gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;
+ }
+ else
+ {
+ cout<<"Unknown Functional Unit Type"<<endl;
+ exit(1);
+ }
+
+ power.readOp.leakage = leakage*num_fu;
+ power.readOp.gate_leakage = gate_leakage*num_fu;
+ power.readOp.longer_channel_leakage = longer_channel_device_reduction(Core_device, coredynp.core_ty);
+}
+
+UndiffCore::UndiffCore(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_, bool exist_, bool embedded_)
+:XML(XML_interface),
+ ithCore(ithCore_),
+ interface_ip(*interface_ip_),
+ coredynp(dyn_p_),
+ core_ty(coredynp.core_ty),
+ embedded(XML->sys.Embedded),
+ pipeline_stage(coredynp.pipeline_stages),
+ num_hthreads(coredynp.num_hthreads),
+ issue_width(coredynp.issueW),
+ exist(exist_)
+// is_default(_is_default)
+{
+ if (!exist) return;
+ double undifferentiated_core=0;
+ double core_tx_density=0;
+ double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
+ double undifferentiated_core_coe;
+ //XML_interface=_XML_interface;
+ uca_org_t result2;
+ result2 = init_interface(&interface_ip);
+
+ //Compute undifferentiated core area at 90nm.
+ if (embedded==false)
+ {
+ //Based on the results of polynomial/log curve fitting based on undifferentiated core of Niagara, Niagara2, Merom, Penyrn, Prescott, Opteron die measurements
+ if (core_ty==OOO)
+ {
+ //undifferentiated_core = (0.0764*pipeline_stage*pipeline_stage -2.3685*pipeline_stage + 10.405);//OOO
+ undifferentiated_core = (3.57*log(pipeline_stage)-1.2643)>0?(3.57*log(pipeline_stage)-1.2643):0;
+ }
+ else if (core_ty==Inorder)
+ {
+ //undifferentiated_core = (0.1238*pipeline_stage + 7.2572)*0.9;//inorder
+ undifferentiated_core = (-2.19*log(pipeline_stage)+6.55)>0?(-2.19*log(pipeline_stage)+6.55):0;
+ }
+ else
+ {
+ cout<<"invalid core type"<<endl;
+ exit(0);
+ }
+ undifferentiated_core *= (1+ logtwo(num_hthreads)* 0.0716);
+ }
+ else
+ {
+ //Based on the results in paper "parametrized processor models" Sandia Labs
+ if (XML->sys.opt_clockrate)
+ undifferentiated_core_coe = 0.05;
+ else
+ undifferentiated_core_coe = 0;
+ undifferentiated_core = (0.4109* pipeline_stage - 0.776)*undifferentiated_core_coe;
+ undifferentiated_core *= (1+ logtwo(num_hthreads)* 0.0426);
+ }
+
+ undifferentiated_core *= g_tp.scaling_factor.logic_scaling_co_eff*1e6;//change from mm^2 to um^2
+ core_tx_density = g_tp.scaling_factor.core_tx_density;
+ //undifferentiated_core = 3*1e6;
+ //undifferentiated_core *= g_tp.scaling_factor.logic_scaling_co_eff;//(g_ip->F_sz_um*g_ip->F_sz_um/0.09/0.09)*;
+ power.readOp.leakage = undifferentiated_core*(core_tx_density)*cmos_Isub_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W
+ power.readOp.gate_leakage = undifferentiated_core*(core_tx_density)*cmos_Ig_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;
+
+ double long_channel_device_reduction = longer_channel_device_reduction(Core_device, coredynp.core_ty);
+ power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction;
+ area.set_area(undifferentiated_core);
+
+ scktRatio = g_tp.sckt_co_eff;
+ power.readOp.dynamic *= scktRatio;
+ power.writeOp.dynamic *= scktRatio;
+ power.searchOp.dynamic *= scktRatio;
+ macro_PR_overhead = g_tp.macro_layout_overhead;
+ area.set_area(area.get_area()*macro_PR_overhead);
+
+
+
+// double vt=g_tp.peri_global.Vth;
+// double velocity_index=1.1;
+// double c_in=gate_C(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r , 0.0, false);
+// double c_out= drain_C_(g_tp.min_w_nmos_, NCH, 2, 1, g_tp.cell_h_def, false) + drain_C_(g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, PCH, 1, 1, g_tp.cell_h_def, false) + c_in;
+// double w_nmos=g_tp.min_w_nmos_;
+// double w_pmos=g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
+// double i_on_n=1.0;
+// double i_on_p=1.0;
+// double i_on_n_in=1.0;
+// double i_on_p_in=1;
+// double vdd=g_tp.peri_global.Vdd;
+
+// power.readOp.sc=shortcircuit_simple(vt, velocity_index, c_in, c_out, w_nmos,w_pmos, i_on_n, i_on_p,i_on_n_in, i_on_p_in, vdd);
+// power.readOp.dynamic=c_out*vdd*vdd/2;
+
+// cout<<power.readOp.dynamic << "dynamic" <<endl;
+// cout<<power.readOp.sc << "sc" << endl;
+
+// power.readOp.sc=shortcircuit(vt, velocity_index, c_in, c_out, w_nmos,w_pmos, i_on_n, i_on_p,i_on_n_in, i_on_p_in, vdd);
+// power.readOp.dynamic=c_out*vdd*vdd/2;
+//
+// cout<<power.readOp.dynamic << "dynamic" <<endl;
+// cout<<power.readOp.sc << "sc" << endl;
+
+
+
+}
+
+
+void UndiffCore::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+ if (is_tdp)
+ {
+ cout << indent_str << "UndiffCore:" << endl;
+ cout << indent_str_next << "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next<< "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ //cout << indent_str_next << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+ else
+ {
+ cout << indent_str << "UndiffCore:" << endl;
+ cout << indent_str_next << "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ //cout << indent_str_next << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl;
+ cout <<endl;
+ }
+
+}
+
+inst_decoder::inst_decoder(
+ bool _is_default,
+ const InputParameter *configure_interface,
+ int opcode_length_,
+ int num_decoders_,
+ bool x86_,
+ enum Device_ty device_ty_,
+ enum Core_type core_ty_)
+:is_default(_is_default),
+ opcode_length(opcode_length_),
+ num_decoders(num_decoders_),
+ x86(x86_),
+ device_ty(device_ty_),
+ core_ty(core_ty_)
+ {
+ /*
+ * Instruction decoder is different from n to 2^n decoders
+ * that are commonly used in row decoders in memory arrays.
+ * The RISC instruction decoder is typically a very simple device.
+ * We can decode an instruction by simply
+ * separating the machine word into small parts using wire slices
+ * The RISC instruction decoder can be approximate by the n to 2^n decoders,
+ * although this approximation usually underestimate power since each decoded
+ * instruction normally has more than 1 active signal.
+ *
+ * However, decoding a CISC instruction word is much more difficult
+ * than the RISC case. A CISC decoder is typically set up as a state machine.
+ * The machine reads the opcode field to determine
+ * what type of instruction it is,
+ * and where the other data values are.
+ * The instruction word is read in piece by piece,
+ * and decisions are made at each stage as to
+ * how the remainder of the instruction word will be read.
+ * (sequencer and ROM are usually needed)
+ * An x86 decoder can be even more complex since
+ * it involve both decoding instructions into u-ops and
+ * merge u-ops when doing micro-ops fusion.
+ */
+ bool is_dram=false;
+ double pmos_to_nmos_sizing_r;
+ double load_nmos_width, load_pmos_width;
+ double C_driver_load, R_wire_load;
+ Area cell;
+
+ l_ip=*configure_interface;
+ local_result = init_interface(&l_ip);
+ cell.h =g_tp.cell_h_def;
+ cell.w =g_tp.cell_h_def;
+
+ num_decoder_segments = (int)ceil(opcode_length/18.0);
+ if (opcode_length > 18) opcode_length = 18;
+ num_decoded_signals= (int)pow(2.0,opcode_length);
+ pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
+ load_nmos_width=g_tp.max_w_nmos_ /2;
+ load_pmos_width= g_tp.max_w_nmos_ * pmos_to_nmos_sizing_r;
+ C_driver_load = 1024*gate_C(load_nmos_width + load_pmos_width, 0, is_dram); //TODO: this number 1024 needs to be revisited
+ R_wire_load = 3000*l_ip.F_sz_um * g_tp.wire_outside_mat.R_per_um;
+
+ final_dec = new Decoder(
+ num_decoded_signals,
+ false,
+ C_driver_load,
+ R_wire_load,
+ false/*is_fa*/,
+ false/*is_dram*/,
+ false/*wl_tr*/, //to use peri device
+ cell);
+
+ PredecBlk * predec_blk1 = new PredecBlk(
+ num_decoded_signals,
+ final_dec,
+ 0,//Assuming predec and dec are back to back
+ 0,
+ 1,//Each Predec only drives one final dec
+ false/*is_dram*/,
+ true);
+ PredecBlk * predec_blk2 = new PredecBlk(
+ num_decoded_signals,
+ final_dec,
+ 0,//Assuming predec and dec are back to back
+ 0,
+ 1,//Each Predec only drives one final dec
+ false/*is_dram*/,
+ false);
+
+ PredecBlkDrv * predec_blk_drv1 = new PredecBlkDrv(0, predec_blk1, false);
+ PredecBlkDrv * predec_blk_drv2 = new PredecBlkDrv(0, predec_blk2, false);
+
+ pre_dec = new Predec(predec_blk_drv1, predec_blk_drv2);
+
+ double area_decoder = final_dec->area.get_area() * num_decoded_signals * num_decoder_segments*num_decoders;
+ //double w_decoder = area_decoder / area.get_h();
+ double area_pre_dec = (predec_blk_drv1->area.get_area() +
+ predec_blk_drv2->area.get_area() +
+ predec_blk1->area.get_area() +
+ predec_blk2->area.get_area())*
+ num_decoder_segments*num_decoders;
+ area.set_area(area.get_area()+ area_decoder + area_pre_dec);
+ double macro_layout_overhead = g_tp.macro_layout_overhead;
+ double chip_PR_overhead = g_tp.chip_layout_overhead;
+ area.set_area(area.get_area()*macro_layout_overhead*chip_PR_overhead);
+
+ inst_decoder_delay_power();
+
+ double sckRation = g_tp.sckt_co_eff;
+ power.readOp.dynamic *= sckRation;
+ power.writeOp.dynamic *= sckRation;
+ power.searchOp.dynamic *= sckRation;
+
+ double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
+ power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction;
+
+}
+
+void inst_decoder::inst_decoder_delay_power()
+{
+
+ double dec_outrisetime;
+ double inrisetime=0, outrisetime;
+ double pppm_t[4] = {1,1,1,1};
+ double squencer_passes = x86?2:1;
+
+ outrisetime = pre_dec->compute_delays(inrisetime);
+ dec_outrisetime = final_dec->compute_delays(outrisetime);
+ set_pppm(pppm_t, squencer_passes*num_decoder_segments, num_decoder_segments, squencer_passes*num_decoder_segments, num_decoder_segments);
+ power = power + pre_dec->power*pppm_t;
+ set_pppm(pppm_t, squencer_passes*num_decoder_segments, num_decoder_segments*num_decoded_signals,
+ num_decoder_segments*num_decoded_signals, squencer_passes*num_decoder_segments);
+ power = power + final_dec->power*pppm_t;
+}
+void inst_decoder::leakage_feedback(double temperature)
+{
+ l_ip.temp = (unsigned int)round(temperature/10.0)*10;
+ uca_org_t init_result = init_interface(&l_ip); // init_result is dummy
+
+ final_dec->leakage_feedback(temperature);
+ pre_dec->leakage_feedback(temperature);
+
+ double pppm_t[4] = {1,1,1,1};
+ double squencer_passes = x86?2:1;
+
+ set_pppm(pppm_t, squencer_passes*num_decoder_segments, num_decoder_segments, squencer_passes*num_decoder_segments, num_decoder_segments);
+ power = pre_dec->power*pppm_t;
+
+ set_pppm(pppm_t, squencer_passes*num_decoder_segments, num_decoder_segments*num_decoded_signals,num_decoder_segments*num_decoded_signals, squencer_passes*num_decoder_segments);
+ power = power + final_dec->power*pppm_t;
+
+ double sckRation = g_tp.sckt_co_eff;
+
+ power.readOp.dynamic *= sckRation;
+ power.writeOp.dynamic *= sckRation;
+ power.searchOp.dynamic *= sckRation;
+
+ double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
+ power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction;
+}
+
+inst_decoder::~inst_decoder()
+{
+ local_result.cleanup();
+
+ delete final_dec;
+
+ delete pre_dec->blk1;
+ delete pre_dec->blk2;
+ delete pre_dec->drv1;
+ delete pre_dec->drv2;
+ delete pre_dec;
+}
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+#ifndef LOGIC_H_
+#define LOGIC_H_
+
+#include <cassert>
+#include <cmath>
+#include <cstring>
+#include <iostream>
+
+#include "XML_Parse.h"
+#include "arch_const.h"
+#include "basic_circuit.h"
+#include "basic_components.h"
+#include "cacti_interface.h"
+#include "component.h"
+#include "const.h"
+#include "decoder.h"
+#include "parameter.h"
+#include "xmlParser.h"
+
+using namespace std;
+
+class selection_logic : public Component{
+public:
+ selection_logic(bool _is_default, int win_entries_,
+ int issue_width_, const InputParameter *configure_interface,
+ enum Device_ty device_ty_=Core_device,
+ enum Core_type core_ty_=Inorder);//, const ParseXML *_XML_interface);
+ bool is_default;
+ InputParameter l_ip;
+ uca_org_t local_result;
+ const ParseXML *XML_interface;
+ int win_entries;
+ int issue_width;
+ int num_threads;
+ enum Device_ty device_ty;
+ enum Core_type core_ty;
+
+ void selection_power();
+ void leakage_feedback(double temperature); // TODO
+};
+
+class dep_resource_conflict_check : public Component{
+public:
+ dep_resource_conflict_check(const InputParameter *configure_interface, const CoreDynParam & dyn_p_, int compare_bits_, bool _is_default=true);
+ InputParameter l_ip;
+ uca_org_t local_result;
+ double WNORn, WNORp, Wevalinvp, Wevalinvn, Wcompn, Wcompp, Wcomppreequ;
+ CoreDynParam coredynp;
+ int compare_bits;
+ bool is_default;
+ statsDef tdp_stats;
+ statsDef rtp_stats;
+ statsDef stats_t;
+ powerDef power_t;
+
+ void conflict_check_power();
+ double compare_cap();
+ ~dep_resource_conflict_check(){
+ local_result.cleanup();
+ }
+
+ void leakage_feedback(double temperature);
+};
+
+class inst_decoder: public Component{
+public:
+ inst_decoder(bool _is_default, const InputParameter *configure_interface,
+ int opcode_length_,
+ int num_decoders_,
+ bool x86_,
+ enum Device_ty device_ty_=Core_device,
+ enum Core_type core_ty_=Inorder);
+ inst_decoder();
+ bool is_default;
+ int opcode_length;
+ int num_decoders;
+ bool x86;
+ int num_decoder_segments;
+ int num_decoded_signals;
+ InputParameter l_ip;
+ uca_org_t local_result;
+ enum Device_ty device_ty;
+ enum Core_type core_ty;
+
+ Decoder * final_dec;
+ Predec * pre_dec;
+
+ statsDef tdp_stats;
+ statsDef rtp_stats;
+ statsDef stats_t;
+ powerDef power_t;
+ void inst_decoder_delay_power();
+ ~inst_decoder();
+ void leakage_feedback(double temperature);
+};
+
+class DFFCell : public Component {
+public:
+ DFFCell(bool _is_dram, double _WdecNANDn, double _WdecNANDp,double _cell_load,
+ const InputParameter *configure_interface);
+ InputParameter l_ip;
+ bool is_dram;
+ double cell_load;
+ double WdecNANDn;
+ double WdecNANDp;
+ double clock_cap;
+ int model;
+ int n_switch;
+ int n_keep_1;
+ int n_keep_0;
+ int n_clock;
+ powerDef e_switch;
+ powerDef e_keep_1;
+ powerDef e_keep_0;
+ powerDef e_clock;
+
+ double fpfp_node_cap(unsigned int fan_in, unsigned int fan_out);
+ void compute_DFF_cell(void);
+ };
+
+class Pipeline : public Component{
+public:
+ Pipeline(const InputParameter *configure_interface, const CoreDynParam & dyn_p_, enum Device_ty device_ty_=Core_device, bool _is_core_pipeline=true, bool _is_default=true);
+ InputParameter l_ip;
+ uca_org_t local_result;
+ CoreDynParam coredynp;
+ enum Device_ty device_ty;
+ bool is_core_pipeline, is_default;
+ double num_piperegs;
+// int pipeline_stages;
+// int tot_stage_vector, per_stage_vector;
+ bool process_ind;
+ double WNANDn ;
+ double WNANDp;
+ double load_per_pipeline_stage;
+// int Hthread, num_thread, fetchWidth, decodeWidth, issueWidth, commitWidth, instruction_length;
+// int PC_width, opcode_length, num_arch_reg_tag, data_width,num_phsical_reg_tag, address_width;
+// bool thread_clock_gated;
+// bool in_order, multithreaded;
+ void compute_stage_vector();
+ void compute();
+ ~Pipeline(){
+ local_result.cleanup();
+ };
+
+};
+
+//class core_pipeline :public pipeline{
+//public:
+// int Hthread, num_thread, fetchWidth, decodeWidth, issueWidth, commitWidth, instruction_length;
+// int PC_width, opcode_length, num_arch_reg_tag, data_width,num_phsical_reg_tag, address_width;
+// bool thread_clock_gated;
+// bool in_order, multithreaded;
+// core_pipeline(bool _is_default, const InputParameter *configure_interface);
+// virtual void compute_stage_vector();
+//
+//};
+
+class FunctionalUnit :public Component{
+public:
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ CoreDynParam coredynp;
+ double FU_height;
+ double clockRate,executionTime;
+ double num_fu;
+ double energy, base_energy,per_access_energy, leakage, gate_leakage;
+ bool is_default;
+ enum FU_type fu_type;
+ statsDef tdp_stats;
+ statsDef rtp_stats;
+ statsDef stats_t;
+ powerDef power_t;
+
+ FunctionalUnit(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_,const CoreDynParam & dyn_p_, enum FU_type fu_type);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ void leakage_feedback(double temperature);
+
+};
+
+class UndiffCore :public Component{
+public:
+ UndiffCore(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_, bool exist_=true, bool embedded_=false);
+ ParseXML *XML;
+ int ithCore;
+ InputParameter interface_ip;
+ CoreDynParam coredynp;
+ double clockRate,executionTime;
+ double scktRatio, chip_PR_overhead, macro_PR_overhead;
+ enum Core_type core_ty;
+ bool opt_performance, embedded;
+ double pipeline_stage,num_hthreads,issue_width;
+ bool is_default;
+
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~UndiffCore(){};
+ bool exist;
+
+
+};
+#endif /* LOGIC_H_ */
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+#include <iostream>
+
+#include "XML_Parse.h"
+#include "globalvar.h"
+#include "io.h"
+#include "processor.h"
+#include "version.h"
+#include "xmlParser.h"
+
+using namespace std;
+
+void print_usage(char * argv0);
+
+int main(int argc,char *argv[])
+{
+ char * fb ;
+ bool infile_specified = false;
+ int plevel = 2;
+ opt_for_clk =true;
+ //cout.precision(10);
+ if (argc <= 1 || argv[1] == string("-h") || argv[1] == string("--help"))
+ {
+ print_usage(argv[0]);
+ }
+
+ for (int32_t i = 0; i < argc; i++)
+ {
+ if (argv[i] == string("-infile"))
+ {
+ infile_specified = true;
+ i++;
+ fb = argv[ i];
+ }
+
+ if (argv[i] == string("-print_level"))
+ {
+ i++;
+ plevel = atoi(argv[i]);
+ }
+
+ if (argv[i] == string("-opt_for_clk"))
+ {
+ i++;
+ opt_for_clk = (bool)atoi(argv[i]);
+ }
+ }
+ if (infile_specified == false)
+ {
+ print_usage(argv[0]);
+ }
+
+
+ cout<<"McPAT (version "<< VER_MAJOR <<"."<< VER_MINOR
+ << " of " << VER_UPDATE << ") is computing the target processor...\n "<<endl;
+
+ //parse XML-based interface
+ ParseXML *p1= new ParseXML();
+ p1->parse(fb);
+ Processor proc(p1);
+ proc.displayEnergy(2, plevel);
+ delete p1;
+ return 0;
+}
+
+void print_usage(char * argv0)
+{
+ cerr << "How to use McPAT:" << endl;
+ cerr << " mcpat -infile <input file name> -print_level < level of details 0~5 > -opt_for_clk < 0 (optimize for ED^2P only)/1 (optimzed for target clock rate)>"<< endl;
+ //cerr << " Note:default print level is at processor level, please increase it to see the details" << endl;
+ exit(1);
+}
--- /dev/null
+TAR = mcpat
+
+.PHONY: dbg opt depend clean clean_dbg clean_opt
+
+all: opt
+
+dbg: $(TAR).mk obj_dbg
+ @$(MAKE) TAG=dbg -C . -f $(TAR).mk
+
+opt: $(TAR).mk obj_opt
+ @$(MAKE) TAG=opt -C . -f $(TAR).mk
+
+obj_dbg:
+ mkdir $@
+
+obj_opt:
+ mkdir $@
+
+clean: clean_dbg clean_opt
+
+clean_dbg: obj_dbg
+ @$(MAKE) TAG=dbg -C . -f $(TAR).mk clean
+ rm -rf $<
+
+clean_opt: obj_opt
+ @$(MAKE) TAG=opt -C . -f $(TAR).mk clean
+ rm -rf $<
+
--- /dev/null
+TARGET = mcpat
+SHELL = /bin/sh
+.PHONY: all depend clean
+.SUFFIXES: .cc .o
+
+ifndef NTHREADS
+ NTHREADS = 4
+endif
+
+
+LIBS =
+INCS = -lm
+
+ifeq ($(TAG),dbg)
+ DBG = -Wall
+ OPT = -ggdb -g -O0 -DNTHREADS=1 -Icacti
+else
+ DBG =
+ OPT = -O3 -msse2 -mfpmath=sse -DNTHREADS=$(NTHREADS) -Icacti
+ #OPT = -O0 -DNTHREADS=$(NTHREADS)
+endif
+
+#CXXFLAGS = -Wall -Wno-unknown-pragmas -Winline $(DBG) $(OPT)
+CXXFLAGS = -Wno-unknown-pragmas $(DBG) $(OPT)
+CXX = g++ -m32
+CC = gcc -m32
+
+VPATH = cacti
+
+SRCS = \
+ Ucache.cc \
+ XML_Parse.cc \
+ arbiter.cc \
+ area.cc \
+ array.cc \
+ bank.cc \
+ basic_circuit.cc \
+ basic_components.cc \
+ cacti_interface.cc \
+ component.cc \
+ core.cc \
+ crossbar.cc \
+ decoder.cc \
+ htree2.cc \
+ interconnect.cc \
+ io.cc \
+ iocontrollers.cc \
+ logic.cc \
+ main.cc \
+ mat.cc \
+ memoryctrl.cc \
+ noc.cc \
+ nuca.cc \
+ parameter.cc \
+ processor.cc \
+ router.cc \
+ sharedcache.cc \
+ subarray.cc \
+ technology.cc \
+ uca.cc \
+ wire.cc \
+ xmlParser.cc
+
+OBJS = $(patsubst %.cc,obj_$(TAG)/%.o,$(SRCS))
+
+all: obj_$(TAG)/$(TARGET)
+ cp -f obj_$(TAG)/$(TARGET) $(TARGET)
+
+obj_$(TAG)/$(TARGET) : $(OBJS)
+ $(CXX) $(OBJS) -o $@ $(INCS) $(CXXFLAGS) $(LIBS) -pthread
+
+#obj_$(TAG)/%.o : %.cc
+# $(CXX) -c $(CXXFLAGS) $(INCS) -o $@ $<
+
+obj_$(TAG)/%.o : %.cc
+ $(CXX) $(CXXFLAGS) -c $< -o $@
+
+clean:
+ -rm -f *.o $(TARGET)
+
+
--- /dev/null
+TARGET = mcpatXeonCore
+SHELL = /bin/sh
+.PHONY: all depend clean
+.SUFFIXES: .cc .o
+
+ifndef NTHREADS
+ NTHREADS = 4
+endif
+
+
+LIBS =
+INCS = -lm
+
+ifeq ($(TAG),dbg)
+ DBG = -Wall
+ OPT = -ggdb -g -O0 -DNTHREADS=1 -Icacti
+else
+ DBG =
+ OPT = -O3 -msse2 -mfpmath=sse -DNTHREADS=$(NTHREADS) -Icacti
+ #OPT = -O0 -DNTHREADS=$(NTHREADS)
+endif
+
+#CXXFLAGS = -Wall -Wno-unknown-pragmas -Winline $(DBG) $(OPT)
+CXXFLAGS = -Wno-unknown-pragmas $(DBG) $(OPT)
+CXX = g++ -m32
+CC = gcc -m32
+
+VPATH = cacti
+
+SRCS = \
+ Ucache.cc \
+ XML_Parse.cc \
+ arbiter.cc \
+ area.cc \
+ array.cc \
+ bank.cc \
+ basic_circuit.cc \
+ basic_components.cc \
+ cacti_interface.cc \
+ component.cc \
+ core.cc \
+ crossbar.cc \
+ decoder.cc \
+ htree2.cc \
+ interconnect.cc \
+ io.cc \
+ iocontrollers.cc \
+ logic.cc \
+ main.cc \
+ mat.cc \
+ memoryctrl.cc \
+ noc.cc \
+ nuca.cc \
+ parameter.cc \
+ processor.cc \
+ router.cc \
+ sharedcache.cc \
+ subarray.cc \
+ technology_xeon_core.cc \
+ uca.cc \
+ wire.cc \
+ xmlParser.cc
+
+OBJS = $(patsubst %.cc,obj_$(TAG)/%.o,$(SRCS))
+
+all: obj_$(TAG)/$(TARGET)
+ cp -f obj_$(TAG)/$(TARGET) $(TARGET)
+
+obj_$(TAG)/$(TARGET) : $(OBJS)
+ $(CXX) $(OBJS) -o $@ $(INCS) $(CXXFLAGS) $(LIBS) -pthread
+
+#obj_$(TAG)/%.o : %.cc
+# $(CXX) -c $(CXXFLAGS) $(INCS) -o $@ $<
+
+obj_$(TAG)/%.o : %.cc
+ $(CXX) $(CXXFLAGS) -c $< -o $@
+
+clean:
+ -rm -f *.o $(TARGET)
+
+
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <iostream>
+#include <string>
+
+#include "XML_Parse.h"
+#include "basic_circuit.h"
+#include "basic_components.h"
+#include "const.h"
+#include "io.h"
+#include "logic.h"
+#include "memoryctrl.h"
+#include "parameter.h"
+
+/* overview of MC models:
+ * McPAT memory controllers are modeled according to large number of industrial data points.
+ * The Basic memory controller architecture is base on the Synopsis designs
+ * (DesignWare DDR2/DDR3-Lite memory controllers and DDR2/DDR3-Lite protocol controllers)
+ * as in Cadence ChipEstimator Tool
+ *
+ * An MC has 3 parts as shown in this design. McPAT models both high performance MC
+ * based on Niagara processor designs and curving and low power MC based on data points in
+ * Cadence ChipEstimator Tool.
+ *
+ * The frontend is modeled analytically, the backend is modeled empirically according to
+ * DDR2/DDR3-Lite protocol controllers in Cadence ChipEstimator Tool
+ * The PHY is modeled based on
+ * "A 100mW 9.6Gb/s Transceiver in 90nm CMOS for next-generation memory interfaces ," ISSCC 2006,
+ * and A 14mW 6.25Gb/s Transceiver in 90nm CMOS for Serial Chip-to-Chip Communication," ISSCC 2007
+ *
+ * In Cadence ChipEstimator Tool there are two types of memory controllers: the full memory controllers
+ * that includes the frontend as the DesignWare DDR2/DDR3-Lite memory controllers and the backend only
+ * memory controllers as the DDR2/DDR3-Lite protocol controllers (except DesignWare DDR2/DDR3-Lite memory
+ * controllers, all memory controller IP in Cadence ChipEstimator Tool are backend memory controllers such as
+ * DDRC 1600A and DDRC 800A). Thus,to some extend the area and power difference between DesignWare
+ * DDR2/DDR3-Lite memory controllers and DDR2/DDR3-Lite protocol controllers can be an estimation to the
+ * frontend power and area, which is very close the analitically modeled results of the frontend for Niagara2@65nm
+ *
+ */
+
+MCBackend::MCBackend(InputParameter* interface_ip_, const MCParam & mcp_, enum MemoryCtrl_type mc_type_)
+:l_ip(*interface_ip_),
+ mc_type(mc_type_),
+ mcp(mcp_)
+{
+
+ local_result = init_interface(&l_ip);
+ compute();
+
+}
+
+
+void MCBackend::compute()
+{
+ //double max_row_addr_width = 20.0;//Current address 12~18bits
+ double C_MCB, mc_power, backend_dyn, backend_gates;//, refresh_period,refresh_freq;//Equivalent per bit Cap for backend,
+ double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
+ double NMOS_sizing, PMOS_sizing;
+
+ if (mc_type == MC)
+ {
+ if (mcp.type == 0)
+ {
+ //area = (2.2927*log(peakDataTransferRate)-14.504)*memDataWidth/144.0*(l_ip.F_sz_um/0.09);
+ area.set_area((2.7927*log(mcp.peakDataTransferRate*2)-19.862)/2.0*mcp.dataBusWidth/128.0*(l_ip.F_sz_um/0.09)*mcp.num_channels*1e6);//um^2
+ //assuming the approximately same scaling factor as seen in processors.
+ //C_MCB=0.2/1.3/1.3/266/64/0.09*g_ip.F_sz_um;//based on AMD Geode processor which has a very basic mc on chip.
+ //C_MCB = 1.6/200/1e6/144/1.2/1.2*g_ip.F_sz_um/0.19;//Based on Niagara power numbers.The base power (W) is divided by device frequency and vdd and scale to target process.
+ //mc_power = 0.0291*2;//29.1mW@200MHz @130nm From Power Analysis of SystemLevel OnChip Communication Architectures by Lahiri et
+ mc_power = 4.32*0.1;//4.32W@1GhzMHz @65nm Cadence ChipEstimator 10% for backend
+ C_MCB = mc_power/1e9/72/1.1/1.1*l_ip.F_sz_um/0.065;
+ power_t.readOp.dynamic = C_MCB*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(mcp.dataBusWidth/*+mcp.addressBusWidth*/);//per access energy in memory controller
+ power_t.readOp.leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W
+ power_t.readOp.gate_leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W
+
+ }
+ else
+ { NMOS_sizing = g_tp.min_w_nmos_;
+ PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
+ area.set_area(0.15*mcp.dataBusWidth/72.0*(l_ip.F_sz_um/0.065)* (l_ip.F_sz_um/0.065)*mcp.num_channels*1e6);//um^2
+ backend_dyn = 0.9e-9/800e6*mcp.clockRate/12800*mcp.peakDataTransferRate*mcp.dataBusWidth/72.0*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(l_ip.F_sz_nm/65.0);//Average on DDR2/3 protocol controller and DDRC 1600/800A in Cadence ChipEstimate
+ //Scaling to technology and DIMM feature. The base IP support DDR3-1600(PC3 12800)
+ backend_gates = 50000*mcp.dataBusWidth/64.0;//5000 is from Cadence ChipEstimator
+
+ power_t.readOp.dynamic = backend_dyn;
+ power_t.readOp.leakage = (backend_gates)*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
+ power_t.readOp.gate_leakage = (backend_gates)*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
+
+ }
+ }
+ else
+ {//skip old model
+ cout<<"Unknown memory controllers"<<endl;exit(0);
+ area.set_area(0.243*mcp.dataBusWidth/8);//area based on Cadence ChipEstimator for 8bit bus
+ //mc_power = 4.32*0.1;//4.32W@1GhzMHz @65nm Cadence ChipEstimator 10% for backend
+ C_MCB = mc_power/1e9/72/1.1/1.1*l_ip.F_sz_um/0.065;
+ power_t.readOp.leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W
+ power_t.readOp.gate_leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W
+ power_t.readOp.dynamic *= 1.2;
+ power_t.readOp.leakage *= 1.2;
+ power_t.readOp.gate_leakage *= 1.2;
+ //flash controller has about 20% more backend power since BCH ECC in flash is complex and power hungry
+ }
+ double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device);
+ power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction;
+}
+
+void MCBackend::computeEnergy(bool is_tdp)
+{
+ //backend uses internal data buswidth
+ if (is_tdp)
+ {
+ //init stats for Peak
+ stats_t.readAc.access = 0.5*mcp.num_channels;
+ stats_t.writeAc.access = 0.5*mcp.num_channels;
+ tdp_stats = stats_t;
+ }
+ else
+ {
+ //init stats for runtime power (RTP)
+ stats_t.readAc.access = mcp.reads;
+ stats_t.writeAc.access = mcp.writes;
+ tdp_stats = stats_t;
+ }
+ if (is_tdp)
+ {
+ power = power_t;
+ power.readOp.dynamic = (stats_t.readAc.access + stats_t.writeAc.access)*power_t.readOp.dynamic;
+
+ }
+ else
+ {
+ rt_power.readOp.dynamic = (stats_t.readAc.access + stats_t.writeAc.access)*mcp.llcBlockSize*8.0/mcp.dataBusWidth*power_t.readOp.dynamic;
+ rt_power = rt_power + power_t*pppm_lkg;
+ rt_power.readOp.dynamic = rt_power.readOp.dynamic + power.readOp.dynamic*0.1*mcp.clockRate*mcp.num_mcs*mcp.executionTime;
+ //Assume 10% of peak power is consumed by routine job including memory refreshing and scrubbing
+ }
+}
+
+
+MCPHY::MCPHY(InputParameter* interface_ip_, const MCParam & mcp_, enum MemoryCtrl_type mc_type_)
+:l_ip(*interface_ip_),
+ mc_type(mc_type_),
+ mcp(mcp_)
+{
+
+ local_result = init_interface(&l_ip);
+ compute();
+}
+
+void MCPHY::compute()
+{
+ //PHY uses internal data buswidth but the actuall off-chip datawidth is 64bits + ecc
+ double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio() ;
+ /*
+ * according to "A 100mW 9.6Gb/s Transceiver in 90nm CMOS for next-generation memory interfaces ," ISSCC 2006;
+ * From Cadence ChipEstimator for normal I/O around 0.4~0.8 mW/Gb/s
+ */
+ double power_per_gb_per_s, phy_dyn,phy_gates, NMOS_sizing, PMOS_sizing;
+
+ if (mc_type == MC)
+ {
+ if (mcp.type == 0)
+ {
+ power_per_gb_per_s = mcp.LVDS? 0.01:0.04;
+ //Based on die photos from Niagara 1 and 2.
+ //TODO merge this into undifferentiated core.PHY only achieves square root of the ideal scaling.
+ //area = (6.4323*log(peakDataTransferRate)-34.76)*memDataWidth/128.0*(l_ip.F_sz_um/0.09);
+ area.set_area((6.4323*log(mcp.peakDataTransferRate*2)-48.134)*mcp.dataBusWidth/128.0*(l_ip.F_sz_um/0.09)*mcp.num_channels*1e6/2);//TODO:/2
+ //This is from curve fitting based on Niagara 1 and 2's PHY die photo.
+ //This is power not energy, 10mw/Gb/s @90nm for each channel and scaling down
+ //power.readOp.dynamic = 0.02*memAccesses*llcBlocksize*8;//change from Bytes to bits.
+ power_t.readOp.dynamic = power_per_gb_per_s*sqrt(l_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;
+ power_t.readOp.leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W
+ power_t.readOp.gate_leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W
+
+ }
+ else
+ {
+ NMOS_sizing = g_tp.min_w_nmos_;
+ PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
+ //Designware/synopsis 16bit DDR3 PHY is 1.3mm (WITH IOs) at 40nm for upto DDR3 2133 (PC3 17066)
+ double non_IO_percentage = 0.2;
+ area.set_area(1.3*non_IO_percentage/2133.0e6*mcp.clockRate/17066*mcp.peakDataTransferRate*mcp.dataBusWidth/16.0*(l_ip.F_sz_um/0.040)* (l_ip.F_sz_um/0.040)*mcp.num_channels*1e6);//um^2
+ phy_gates = 200000*mcp.dataBusWidth/64.0;
+ power_per_gb_per_s = 0.01;
+ //This is power not energy, 10mw/Gb/s @90nm for each channel and scaling down
+ power_t.readOp.dynamic = power_per_gb_per_s*(l_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;
+ power_t.readOp.leakage = (mcp.withPHY? phy_gates:0)*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
+ power_t.readOp.gate_leakage = (mcp.withPHY? phy_gates:0)*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
+ }
+
+ }
+ else
+ {
+ area.set_area(0.4e6/2*mcp.dataBusWidth/8);//area based on Cadence ChipEstimator for 8bit bus
+ }
+
+// double phy_factor = (int)ceil(mcp.dataBusWidth/72.0);//Previous phy power numbers are based on 72 bit DIMM interface
+// power_t.readOp.dynamic *= phy_factor;
+// power_t.readOp.leakage *= phy_factor;
+// power_t.readOp.gate_leakage *= phy_factor;
+
+ double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device);
+ power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction;
+}
+
+
+void MCPHY::computeEnergy(bool is_tdp)
+{
+ if (is_tdp)
+ {
+ //init stats for Peak
+ stats_t.readAc.access = 0.5*mcp.num_channels; //time share on buses
+ stats_t.writeAc.access = 0.5*mcp.num_channels;
+ tdp_stats = stats_t;
+ }
+ else
+ {
+ //init stats for runtime power (RTP)
+ stats_t.readAc.access = mcp.reads;
+ stats_t.writeAc.access = mcp.writes;
+ tdp_stats = stats_t;
+ }
+
+ if (is_tdp)
+ {
+ double data_transfer_unit = (mc_type == MC)? 72:16;/*DIMM data width*/
+ power = power_t;
+ power.readOp.dynamic = power.readOp.dynamic * (mcp.peakDataTransferRate*8*1e6/1e9/*change to Gbs*/)*mcp.dataBusWidth/data_transfer_unit*mcp.num_channels/mcp.clockRate;
+ // divide by clock rate is for match the final computation where *clock is used
+ //(stats_t.readAc.access*power_t.readOp.dynamic+
+// stats_t.writeAc.access*power_t.readOp.dynamic);
+
+ }
+ else
+ {
+ rt_power = power_t;
+// rt_power.readOp.dynamic = (stats_t.readAc.access*power_t.readOp.dynamic+
+// stats_t.writeAc.access*power_t.readOp.dynamic);
+
+ rt_power.readOp.dynamic=power_t.readOp.dynamic*(stats_t.readAc.access + stats_t.writeAc.access)*(mcp.llcBlockSize)*8/1e9/mcp.executionTime*(mcp.executionTime);
+ rt_power.readOp.dynamic = rt_power.readOp.dynamic + power.readOp.dynamic*0.1*mcp.clockRate*mcp.num_mcs*mcp.executionTime;
+ }
+}
+
+MCFrontEnd::MCFrontEnd(ParseXML *XML_interface,InputParameter* interface_ip_, const MCParam & mcp_, enum MemoryCtrl_type mc_type_)
+:XML(XML_interface),
+ interface_ip(*interface_ip_),
+ mc_type(mc_type_),
+ mcp(mcp_),
+ MC_arb(0),
+ frontendBuffer(0),
+ readBuffer(0),
+ writeBuffer(0)
+{
+ /* All computations are for a single MC
+ *
+ */
+
+ int tag, data;
+ bool is_default =true;//indication for default setup
+
+ /* MC frontend engine channels share the same engines but logically partitioned
+ * For all hardware inside MC. different channels do not share resources.
+ * TODO: add docodeing/mux stage to steer memory requests to different channels.
+ */
+
+ //memory request reorder buffer
+ tag = mcp.addressBusWidth + EXTRA_TAG_BITS + mcp.opcodeW;
+ data = int(ceil((XML->sys.physical_address_width + mcp.opcodeW)/8.0));
+ interface_ip.cache_sz = data*XML->sys.mc.req_window_size_per_channel;
+ interface_ip.line_sz = data;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = 1.0/mcp.clockRate;
+ interface_ip.latency = 1.0/mcp.clockRate;
+ interface_ip.is_cache = true;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = false;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = XML->sys.mc.memory_channels_per_mc;
+ interface_ip.num_wr_ports = interface_ip.num_rd_ports;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = XML->sys.mc.memory_channels_per_mc;
+ frontendBuffer = new ArrayST(&interface_ip, "MC ReorderBuffer", Uncore_device);
+ frontendBuffer->area.set_area(frontendBuffer->area.get_area()+ frontendBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc);
+ area.set_area(area.get_area()+ frontendBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc);
+
+ //selection and arbitration logic
+ MC_arb = new selection_logic(is_default, XML->sys.mc.req_window_size_per_channel,1,&interface_ip, Uncore_device);
+
+ //read buffers.
+ data = (int)ceil(mcp.dataBusWidth/8.0);//Support key words first operation //8 means converting bit to Byte
+ interface_ip.cache_sz = data*XML->sys.mc.IO_buffer_size_per_channel;//*llcBlockSize;
+ interface_ip.line_sz = data;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = 1.0/mcp.clockRate;
+ interface_ip.latency = 1.0/mcp.clockRate;
+ interface_ip.is_cache = false;
+ interface_ip.pure_cam = false;
+ interface_ip.pure_ram = true;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;//XML->sys.mc.memory_channels_per_mc*2>2?2:XML->sys.mc.memory_channels_per_mc*2;
+ interface_ip.num_rd_ports = XML->sys.mc.memory_channels_per_mc;
+ interface_ip.num_wr_ports = interface_ip.num_rd_ports;
+ interface_ip.num_se_rd_ports = 0;
+ readBuffer = new ArrayST(&interface_ip, "MC ReadBuffer", Uncore_device);
+ readBuffer->area.set_area(readBuffer->area.get_area()+ readBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc);
+ area.set_area(area.get_area()+ readBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc);
+
+ //write buffer
+ data = (int)ceil(mcp.dataBusWidth/8.0);//Support key words first operation //8 means converting bit to Byte
+ interface_ip.cache_sz = data*XML->sys.mc.IO_buffer_size_per_channel;//*llcBlockSize;
+ interface_ip.line_sz = data;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = 1.0/mcp.clockRate;
+ interface_ip.latency = 1.0/mcp.clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 0;
+ interface_ip.num_rd_ports = XML->sys.mc.memory_channels_per_mc;
+ interface_ip.num_wr_ports = interface_ip.num_rd_ports;
+ interface_ip.num_se_rd_ports = 0;
+ writeBuffer = new ArrayST(&interface_ip, "MC writeBuffer", Uncore_device);
+ writeBuffer->area.set_area(writeBuffer->area.get_area()+ writeBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc);
+ area.set_area(area.get_area()+ writeBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc);
+}
+
+void MCFrontEnd::computeEnergy(bool is_tdp)
+{
+ if (is_tdp)
+ {
+ //init stats for Peak
+ frontendBuffer->stats_t.readAc.access = frontendBuffer->l_ip.num_search_ports;
+ frontendBuffer->stats_t.writeAc.access = frontendBuffer->l_ip.num_wr_ports;
+ frontendBuffer->tdp_stats = frontendBuffer->stats_t;
+
+ readBuffer->stats_t.readAc.access = readBuffer->l_ip.num_rd_ports*mcp.frontend_duty_cycle;
+ readBuffer->stats_t.writeAc.access = readBuffer->l_ip.num_wr_ports*mcp.frontend_duty_cycle;
+ readBuffer->tdp_stats = readBuffer->stats_t;
+
+ writeBuffer->stats_t.readAc.access = writeBuffer->l_ip.num_rd_ports*mcp.frontend_duty_cycle;
+ writeBuffer->stats_t.writeAc.access = writeBuffer->l_ip.num_wr_ports*mcp.frontend_duty_cycle;
+ writeBuffer->tdp_stats = writeBuffer->stats_t;
+
+ }
+ else
+ {
+ //init stats for runtime power (RTP)
+ frontendBuffer->stats_t.readAc.access = XML->sys.mc.memory_reads *mcp.llcBlockSize*8.0/mcp.dataBusWidth*mcp.dataBusWidth/72;
+ //For each channel, each memory word need to check the address data to achieve best scheduling results.
+ //and this need to be done on all physical DIMMs in each logical memory DIMM *mcp.dataBusWidth/72
+ frontendBuffer->stats_t.writeAc.access = XML->sys.mc.memory_writes*mcp.llcBlockSize*8.0/mcp.dataBusWidth*mcp.dataBusWidth/72;
+ frontendBuffer->rtp_stats = frontendBuffer->stats_t;
+
+ readBuffer->stats_t.readAc.access = XML->sys.mc.memory_reads*mcp.llcBlockSize*8.0/mcp.dataBusWidth;//support key word first
+ readBuffer->stats_t.writeAc.access = XML->sys.mc.memory_reads*mcp.llcBlockSize*8.0/mcp.dataBusWidth;//support key word first
+ readBuffer->rtp_stats = readBuffer->stats_t;
+
+ writeBuffer->stats_t.readAc.access = XML->sys.mc.memory_writes*mcp.llcBlockSize*8.0/mcp.dataBusWidth;
+ writeBuffer->stats_t.writeAc.access = XML->sys.mc.memory_writes*mcp.llcBlockSize*8.0/mcp.dataBusWidth;
+ writeBuffer->rtp_stats = writeBuffer->stats_t;
+ }
+
+ frontendBuffer->power_t.reset();
+ readBuffer->power_t.reset();
+ writeBuffer->power_t.reset();
+
+// frontendBuffer->power_t.readOp.dynamic += (frontendBuffer->stats_t.readAc.access*
+// (frontendBuffer->local_result.power.searchOp.dynamic+frontendBuffer->local_result.power.readOp.dynamic)+
+// frontendBuffer->stats_t.writeAc.access*frontendBuffer->local_result.power.writeOp.dynamic);
+
+ frontendBuffer->power_t.readOp.dynamic += (frontendBuffer->stats_t.readAc.access +
+ frontendBuffer->stats_t.writeAc.access)*frontendBuffer->local_result.power.searchOp.dynamic
+ + frontendBuffer->stats_t.readAc.access * frontendBuffer->local_result.power.readOp.dynamic
+ + frontendBuffer->stats_t.writeAc.access*frontendBuffer->local_result.power.writeOp.dynamic;
+
+ readBuffer->power_t.readOp.dynamic += (readBuffer->stats_t.readAc.access*
+ readBuffer->local_result.power.readOp.dynamic+
+ readBuffer->stats_t.writeAc.access*readBuffer->local_result.power.writeOp.dynamic);
+ writeBuffer->power_t.readOp.dynamic += (writeBuffer->stats_t.readAc.access*
+ writeBuffer->local_result.power.readOp.dynamic+
+ writeBuffer->stats_t.writeAc.access*writeBuffer->local_result.power.writeOp.dynamic);
+
+ if (is_tdp)
+ {
+ power = power + frontendBuffer->power_t + readBuffer->power_t + writeBuffer->power_t +
+ (frontendBuffer->local_result.power +
+ readBuffer->local_result.power +
+ writeBuffer->local_result.power)*pppm_lkg;
+
+ }
+ else
+ {
+ rt_power = rt_power + frontendBuffer->power_t + readBuffer->power_t + writeBuffer->power_t +
+ (frontendBuffer->local_result.power +
+ readBuffer->local_result.power +
+ writeBuffer->local_result.power)*pppm_lkg;
+ rt_power.readOp.dynamic = rt_power.readOp.dynamic + power.readOp.dynamic*0.1*mcp.clockRate*mcp.num_mcs*mcp.executionTime;
+ }
+}
+
+void MCFrontEnd::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+
+ if (is_tdp)
+ {
+ cout << indent_str << "Front End ROB:" << endl;
+ cout << indent_str_next << "Area = " << frontendBuffer->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << frontendBuffer->power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = " << frontendBuffer->power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << frontendBuffer->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << frontendBuffer->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl;
+
+ cout <<endl;
+ cout << indent_str<< "Read Buffer:" << endl;
+ cout << indent_str_next << "Area = " << readBuffer->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << readBuffer->power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = " << readBuffer->power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << readBuffer->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << readBuffer->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str << "Write Buffer:" << endl;
+ cout << indent_str_next << "Area = " << writeBuffer->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << writeBuffer->power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = " << writeBuffer->power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << writeBuffer->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << writeBuffer->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl;
+ cout <<endl;
+ }
+ else
+ {
+ cout << indent_str << "Front End ROB:" << endl;
+ cout << indent_str_next << "Area = " << frontendBuffer->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << frontendBuffer->rt_power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = " << frontendBuffer->rt_power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << frontendBuffer->rt_power.readOp.gate_leakage << " W" << endl;
+ cout <<endl;
+ cout << indent_str<< "Read Buffer:" << endl;
+ cout << indent_str_next << "Area = " << readBuffer->area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << readBuffer->rt_power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = " << readBuffer->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << readBuffer->rt_power.readOp.gate_leakage << " W" << endl;
+ cout <<endl;
+ cout << indent_str << "Write Buffer:" << endl;
+ cout << indent_str_next << "Area = " << writeBuffer->area.get_area() *1e-6 << " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << writeBuffer->rt_power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = " << writeBuffer->rt_power.readOp.leakage << " W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << writeBuffer->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+
+}
+
+
+MemoryController::MemoryController(ParseXML *XML_interface,InputParameter* interface_ip_, enum MemoryCtrl_type mc_type_)
+:XML(XML_interface),
+ interface_ip(*interface_ip_),
+ mc_type(mc_type_),
+ frontend(0),
+ transecEngine(0),
+ PHY(0),
+ pipeLogic(0)
+{
+ /* All computations are for a single MC
+ *
+ */
+ interface_ip.wire_is_mat_type = 2;
+ interface_ip.wire_os_mat_type = 2;
+ interface_ip.wt =Global;
+ set_mc_param();
+ frontend = new MCFrontEnd(XML, &interface_ip, mcp, mc_type);
+ area.set_area(area.get_area()+ frontend->area.get_area());
+ transecEngine = new MCBackend(&interface_ip, mcp, mc_type);
+ area.set_area(area.get_area()+ transecEngine->area.get_area());
+ if (mcp.type==0 || (mcp.type==1&&mcp.withPHY))
+ {
+ PHY = new MCPHY(&interface_ip, mcp, mc_type);
+ area.set_area(area.get_area()+ PHY->area.get_area());
+ }
+ //+++++++++Transaction engine +++++++++++++++++ ////TODO needs better numbers, Run the RTL code from OpenSparc.
+// transecEngine.initialize(&interface_ip);
+// transecEngine.peakDataTransferRate = XML->sys.mem.peak_transfer_rate;
+// transecEngine.memDataWidth = dataBusWidth;
+// transecEngine.memRank = XML->sys.mem.number_ranks;
+// //transecEngine.memAccesses=XML->sys.mc.memory_accesses;
+// //transecEngine.llcBlocksize=llcBlockSize;
+// transecEngine.compute();
+// transecEngine.area.set_area(XML->sys.mc.memory_channels_per_mc*transecEngine.area.get_area()) ;
+// area.set_area(area.get_area()+ transecEngine.area.get_area());
+// ///cout<<"area="<<area<<endl;
+////
+// //++++++++++++++PHY ++++++++++++++++++++++++++ //TODO needs better numbers
+// PHY.initialize(&interface_ip);
+// PHY.peakDataTransferRate = XML->sys.mem.peak_transfer_rate;
+// PHY.memDataWidth = dataBusWidth;
+// //PHY.memAccesses=PHY.peakDataTransferRate;//this is the max power
+// //PHY.llcBlocksize=llcBlockSize;
+// PHY.compute();
+// PHY.area.set_area(XML->sys.mc.memory_channels_per_mc*PHY.area.get_area()) ;
+// area.set_area(area.get_area()+ PHY.area.get_area());
+ ///cout<<"area="<<area<<endl;
+//
+// interface_ip.pipeline_stages = 5;//normal memory controller has five stages in the pipeline.
+// interface_ip.per_stage_vector = addressBusWidth + XML->sys.core[0].opcode_width + dataBusWidth;
+// pipeLogic = new pipeline(is_default, &interface_ip);
+// //pipeLogic.init_pipeline(is_default, &interface_ip);
+// pipeLogic->compute_pipeline();
+// area.set_area(area.get_area()+ pipeLogic->area.get_area()*1e-6);
+// area.set_area((area.get_area()+mc_area*1e-6)*1.1);//placement and routing overhead
+//
+//
+//// //clock
+//// clockNetwork.init_wire_external(is_default, &interface_ip);
+//// clockNetwork.clk_area =area*1.1;//10% of placement overhead. rule of thumb
+//// clockNetwork.end_wiring_level =5;//toplevel metal
+//// clockNetwork.start_wiring_level =5;//toplevel metal
+//// clockNetwork.num_regs = pipeLogic.tot_stage_vector;
+//// clockNetwork.optimize_wire();
+
+
+}
+void MemoryController::computeEnergy(bool is_tdp)
+{
+
+ frontend->computeEnergy(is_tdp);
+ transecEngine->computeEnergy(is_tdp);
+ if (mcp.type==0 || (mcp.type==1&&mcp.withPHY))
+ {
+ PHY->computeEnergy(is_tdp);
+ }
+ if (is_tdp)
+ {
+ power = power + frontend->power + transecEngine->power;
+ if (mcp.type==0 || (mcp.type==1&&mcp.withPHY))
+ {
+ power = power + PHY->power;
+ }
+ }
+ else
+ {
+ rt_power = rt_power + frontend->rt_power + transecEngine->rt_power;
+ if (mcp.type==0 || (mcp.type==1&&mcp.withPHY))
+ {
+ rt_power = rt_power + PHY->rt_power;
+ }
+ }
+}
+
+void MemoryController::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+ if (is_tdp)
+ {
+ cout << "Memory Controller:" << endl;
+ cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str<< "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str<< "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic/mcp.executionTime << " W" << endl;
+ cout<<endl;
+ cout << indent_str << "Front End Engine:" << endl;
+ cout << indent_str_next << "Area = " << frontend->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << frontend->power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? frontend->power.readOp.longer_channel_leakage:frontend->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << frontend->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << frontend->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl;
+ cout <<endl;
+ if (plevel >2){
+ frontend->displayEnergy(indent+4,is_tdp);
+ }
+ cout << indent_str << "Transaction Engine:" << endl;
+ cout << indent_str_next << "Area = " << transecEngine->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << transecEngine->power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? transecEngine->power.readOp.longer_channel_leakage:transecEngine->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << transecEngine->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << transecEngine->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl;
+ cout <<endl;
+ if (mcp.type==0 || (mcp.type==1&&mcp.withPHY))
+ {
+ cout << indent_str << "PHY:" << endl;
+ cout << indent_str_next << "Area = " << PHY->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << PHY->power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? PHY->power.readOp.longer_channel_leakage:PHY->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << PHY->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << PHY->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl;
+ cout <<endl;
+ }
+ }
+ else
+ {
+ cout << "Memory Controller:" << endl;
+ cout << indent_str_next << "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*mcp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout<<endl;
+ }
+
+}
+
+void MemoryController::set_mc_param()
+{
+
+ if (mc_type==MC)
+ {
+ mcp.clockRate =XML->sys.mc.mc_clock*2;//DDR double pumped
+ mcp.clockRate *= 1e6;
+ mcp.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
+
+ mcp.llcBlockSize =int(ceil(XML->sys.mc.llc_line_length/8.0))+XML->sys.mc.llc_line_length;//ecc overhead
+ mcp.dataBusWidth =int(ceil(XML->sys.mc.databus_width/8.0)) + XML->sys.mc.databus_width;
+ mcp.addressBusWidth =int(ceil(XML->sys.mc.addressbus_width));//XML->sys.physical_address_width;
+ mcp.opcodeW =16;
+ mcp.num_mcs = XML->sys.mc.number_mcs;
+ mcp.num_channels = XML->sys.mc.memory_channels_per_mc;
+ mcp.reads = XML->sys.mc.memory_reads;
+ mcp.writes = XML->sys.mc.memory_writes;
+ //+++++++++Transaction engine +++++++++++++++++ ////TODO needs better numbers, Run the RTL code from OpenSparc.
+ mcp.peakDataTransferRate = XML->sys.mc.peak_transfer_rate;
+ mcp.memRank = XML->sys.mc.number_ranks;
+ //++++++++++++++PHY ++++++++++++++++++++++++++ //TODO needs better numbers
+ //PHY.memAccesses=PHY.peakDataTransferRate;//this is the max power
+ //PHY.llcBlocksize=llcBlockSize;
+ mcp.frontend_duty_cycle = 0.5;//for max power, the actual off-chip links is bidirectional but time shared
+ mcp.LVDS = XML->sys.mc.LVDS;
+ mcp.type = XML->sys.mc.type;
+ mcp.withPHY = XML->sys.mc.withPHY;
+ }
+// else if (mc_type==FLASHC)
+// {
+// mcp.clockRate =XML->sys.flashc.mc_clock*2;//DDR double pumped
+// mcp.clockRate *= 1e6;
+// mcp.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
+//
+// mcp.llcBlockSize =int(ceil(XML->sys.flashc.llc_line_length/8.0))+XML->sys.flashc.llc_line_length;//ecc overhead
+// mcp.dataBusWidth =int(ceil(XML->sys.flashc.databus_width/8.0)) + XML->sys.flashc.databus_width;
+// mcp.addressBusWidth =int(ceil(XML->sys.flashc.addressbus_width));//XML->sys.physical_address_width;
+// mcp.opcodeW =16;
+// mcp.num_mcs = XML->sys.flashc.number_mcs;
+// mcp.num_channels = XML->sys.flashc.memory_channels_per_mc;
+// mcp.reads = XML->sys.flashc.memory_reads;
+// mcp.writes = XML->sys.flashc.memory_writes;
+// //+++++++++Transaction engine +++++++++++++++++ ////TODO needs better numbers, Run the RTL code from OpenSparc.
+// mcp.peakDataTransferRate = XML->sys.flashc.peak_transfer_rate;
+// mcp.memRank = XML->sys.flashc.number_ranks;
+// //++++++++++++++PHY ++++++++++++++++++++++++++ //TODO needs better numbers
+// //PHY.memAccesses=PHY.peakDataTransferRate;//this is the max power
+// //PHY.llcBlocksize=llcBlockSize;
+// mcp.frontend_duty_cycle = 0.5;//for max power, the actual off-chip links is bidirectional but time shared
+// mcp.LVDS = XML->sys.flashc.LVDS;
+// mcp.type = XML->sys.flashc.type;
+// }
+ else
+ {
+ cout<<"Unknown memory controller type: neither DRAM controller nor Flash controller" <<endl;
+ exit(0);
+ }
+}
+
+MCFrontEnd ::~MCFrontEnd(){
+
+ if(MC_arb) {delete MC_arb; MC_arb = 0;}
+ if(frontendBuffer) {delete frontendBuffer; frontendBuffer = 0;}
+ if(readBuffer) {delete readBuffer; readBuffer = 0;}
+ if(writeBuffer) {delete writeBuffer; writeBuffer = 0;}
+}
+
+MemoryController ::~MemoryController(){
+
+ if(frontend) {delete frontend; frontend = 0;}
+ if(transecEngine) {delete transecEngine; transecEngine = 0;}
+ if(PHY) {delete PHY; PHY = 0;}
+ if(pipeLogic) {delete pipeLogic; pipeLogic = 0;}
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#ifndef MEMORYCTRL_H_
+#define MEMORYCTRL_H_
+
+#include "XML_Parse.h"
+#include "parameter.h"
+//#include "io.h"
+#include "array.h"
+//#include "Undifferentiated_Core_Area.h"
+#include <vector>
+
+#include "basic_components.h"
+
+class MCBackend : public Component {
+ public:
+ InputParameter l_ip;
+ uca_org_t local_result;
+ enum MemoryCtrl_type mc_type;
+ MCParam mcp;
+ statsDef tdp_stats;
+ statsDef rtp_stats;
+ statsDef stats_t;
+ powerDef power_t;
+ MCBackend(InputParameter* interface_ip_, const MCParam & mcp_, enum MemoryCtrl_type mc_type_);
+ void compute();
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~MCBackend(){};
+};
+
+class MCPHY : public Component {
+ public:
+ InputParameter l_ip;
+ uca_org_t local_result;
+ enum MemoryCtrl_type mc_type;
+ MCParam mcp;
+ statsDef tdp_stats;
+ statsDef rtp_stats;
+ statsDef stats_t;
+ powerDef power_t;
+ MCPHY(InputParameter* interface_ip_, const MCParam & mcp_, enum MemoryCtrl_type mc_type_);
+ void compute();
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~MCPHY(){};
+};
+
+class MCFrontEnd : public Component {
+ public:
+ ParseXML *XML;
+ InputParameter interface_ip;
+ enum MemoryCtrl_type mc_type;
+ MCParam mcp;
+ selection_logic * MC_arb;
+ ArrayST * frontendBuffer;
+ ArrayST * readBuffer;
+ ArrayST * writeBuffer;
+
+ MCFrontEnd(ParseXML *XML_interface,InputParameter* interface_ip_, const MCParam & mcp_, enum MemoryCtrl_type mc_type_);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~MCFrontEnd();
+};
+
+class MemoryController : public Component {
+ public:
+ ParseXML *XML;
+ InputParameter interface_ip;
+ enum MemoryCtrl_type mc_type;
+ MCParam mcp;
+ MCFrontEnd * frontend;
+ MCBackend * transecEngine;
+ MCPHY * PHY;
+ Pipeline * pipeLogic;
+
+ //clock_network clockNetwork;
+ MemoryController(ParseXML *XML_interface,InputParameter* interface_ip_, enum MemoryCtrl_type mc_type_);
+ void set_mc_param();
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~MemoryController();
+};
+#endif /* MEMORYCTRL_H_ */
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <iostream>
+#include <string>
+
+#include "XML_Parse.h"
+#include "basic_circuit.h"
+#include "const.h"
+#include "io.h"
+#include "noc.h"
+#include "parameter.h"
+
+NoC::NoC(ParseXML *XML_interface, int ithNoC_, InputParameter* interface_ip_, double M_traffic_pattern_, double link_len_)
+:XML(XML_interface),
+ithNoC(ithNoC_),
+interface_ip(*interface_ip_),
+router(0),
+link_bus(0),
+link_bus_exist(false),
+router_exist(false),
+M_traffic_pattern(M_traffic_pattern_)
+{
+ /*
+ * initialize, compute and optimize individual components.
+ */
+
+ if (XML->sys.Embedded)
+ {
+ interface_ip.wt =Global_30;
+ interface_ip.wire_is_mat_type = 0;
+ interface_ip.wire_os_mat_type = 1;
+ }
+ else
+ {
+ interface_ip.wt =Global;
+ interface_ip.wire_is_mat_type = 2;
+ interface_ip.wire_os_mat_type = 2;
+ }
+ set_noc_param();
+ local_result=init_interface(&interface_ip);
+ scktRatio = g_tp.sckt_co_eff;
+
+ if (nocdynp.type)
+ {/*
+ * if NOC compute router, router links must be computed separately
+ * and called from external
+ * since total chip area must be known first
+ */
+ init_router();
+ }
+ else
+ {
+ init_link_bus(link_len_); //if bus compute bus
+ }
+
+ // //clock power
+ // clockNetwork.init_wire_external(is_default, &interface_ip);
+ // clockNetwork.clk_area =area*1.1;//10% of placement overhead. rule of thumb
+ // clockNetwork.end_wiring_level =5;//toplevel metal
+ // clockNetwork.start_wiring_level =5;//toplevel metal
+ // clockNetwork.num_regs = corepipe.tot_stage_vector;
+ // clockNetwork.optimize_wire();
+}
+
+void NoC::init_router()
+{
+ router = new Router(nocdynp.flit_size,
+ nocdynp.virtual_channel_per_port*nocdynp.input_buffer_entries_per_vc,
+ nocdynp.virtual_channel_per_port, &(g_tp.peri_global),
+ nocdynp.input_ports,nocdynp.output_ports, M_traffic_pattern);
+ //router->print_router();
+ area.set_area(area.get_area()+ router->area.get_area()*nocdynp.total_nodes);
+
+ double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device);
+ router->power.readOp.longer_channel_leakage = router->power.readOp.leakage * long_channel_device_reduction;
+ router->buffer.power.readOp.longer_channel_leakage = router->buffer.power.readOp.leakage * long_channel_device_reduction;
+ router->crossbar.power.readOp.longer_channel_leakage = router->crossbar.power.readOp.leakage * long_channel_device_reduction;
+ router->arbiter.power.readOp.longer_channel_leakage = router->arbiter.power.readOp.leakage * long_channel_device_reduction;
+ router_exist = true;
+}
+
+void NoC ::init_link_bus(double link_len_)
+{
+
+
+// if (nocdynp.min_ports==1 )
+ if (nocdynp.type)
+ link_name = "Links";
+ else
+ link_name = "Bus";
+
+ link_len=link_len_;
+ assert(link_len>0);
+
+ interface_ip.throughput = nocdynp.link_throughput/nocdynp.clockRate;
+ interface_ip.latency = nocdynp.link_latency/nocdynp.clockRate;
+
+ link_len /= (nocdynp.horizontal_nodes + nocdynp.vertical_nodes)/2;
+
+ if (nocdynp.total_nodes >1) link_len /=2; //All links are shared by neighbors
+ link_bus = new interconnect(name, Uncore_device, 1, 1, nocdynp.flit_size,
+ link_len, &interface_ip, 3, true/*pipelinable*/, nocdynp.route_over_perc);
+
+ link_bus_tot_per_Router.area.set_area(link_bus_tot_per_Router.area.get_area()+ link_bus->area.get_area()
+ * nocdynp.global_linked_ports);
+
+ area.set_area(area.get_area()+ link_bus_tot_per_Router.area.get_area()* nocdynp.total_nodes);
+ link_bus_exist = true;
+}
+void NoC::computeEnergy(bool is_tdp)
+{
+ //power_point_product_masks
+ double pppm_t[4] = {1,1,1,1};
+ double M=nocdynp.duty_cycle;
+ if (is_tdp)
+ {
+ //init stats for TDP
+ stats_t.readAc.access = M;
+ tdp_stats = stats_t;
+ if (router_exist)
+ {
+ set_pppm(pppm_t, 1*M, 1, 1, 1);//reset traffic pattern
+ router->power = router->power*pppm_t;
+ set_pppm(pppm_t, nocdynp.total_nodes, nocdynp.total_nodes, nocdynp.total_nodes, nocdynp.total_nodes);
+ power = power + router->power*pppm_t;
+ }
+ if (link_bus_exist)
+ {
+ if (nocdynp.type)
+ set_pppm(pppm_t, 1*M_traffic_pattern*M*(nocdynp.min_ports -1), nocdynp.global_linked_ports,
+ nocdynp.global_linked_ports, nocdynp.global_linked_ports);
+ //reset traffic pattern; local port do not have router links
+ else
+ set_pppm(pppm_t, 1*M_traffic_pattern*M*(nocdynp.min_ports), nocdynp.global_linked_ports,
+ nocdynp.global_linked_ports, nocdynp.global_linked_ports);//reset traffic pattern
+
+ link_bus_tot_per_Router.power = link_bus->power*pppm_t;
+
+ set_pppm(pppm_t, nocdynp.total_nodes,
+ nocdynp.total_nodes,
+ nocdynp.total_nodes,
+ nocdynp.total_nodes);
+ power = power + link_bus_tot_per_Router.power*pppm_t;
+
+ }
+ }
+ else
+ {
+ //init stats for runtime power (RTP)
+ stats_t.readAc.access = XML->sys.NoC[ithNoC].total_accesses;
+ rtp_stats = stats_t;
+ set_pppm(pppm_t, 1, 0 , 0, 0);
+ if (router_exist)
+ {
+ router->buffer.rt_power.readOp.dynamic = (router->buffer.power.readOp.dynamic + router->buffer.power.writeOp.dynamic)*rtp_stats.readAc.access ;
+ router->crossbar.rt_power.readOp.dynamic = router->crossbar.power.readOp.dynamic*rtp_stats.readAc.access ;
+ router->arbiter.rt_power.readOp.dynamic = router->arbiter.power.readOp.dynamic*rtp_stats.readAc.access ;
+
+ router->rt_power = router->rt_power + (router->buffer.rt_power + router->crossbar.rt_power + router->arbiter.rt_power)*pppm_t +
+ router->power*pppm_lkg;//TDP power must be calculated first!
+ rt_power = rt_power + router->rt_power;
+ }
+ if (link_bus_exist)
+ {
+ set_pppm(pppm_t, rtp_stats.readAc.access, 1 , 1, rtp_stats.readAc.access);
+ link_bus->rt_power = link_bus->power * pppm_t;
+ rt_power = rt_power + link_bus->rt_power;
+ }
+
+ }
+}
+
+
+void NoC::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
+{
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+ double M =M_traffic_pattern*nocdynp.duty_cycle;
+ /*only router as a whole has been applied the M_traffic_pattern(0.6 by default) factor in router.cc;
+ * When power of crossbars, arbiters, etc need to be displayed, the M_traffic_pattern factor need to
+ * be applied together with McPAT's extra traffic pattern.
+ * */
+ if (is_tdp)
+ {
+ cout << name << endl;
+ cout << indent_str << "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str<< "Peak Dynamic = " << power.readOp.dynamic*nocdynp.clockRate << " W" << endl;
+ cout << indent_str << "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ cout << indent_str << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str<< "Runtime Dynamic = " << rt_power.readOp.dynamic/nocdynp.executionTime << " W" << endl;
+ cout<<endl;
+
+ if (router_exist)
+ {
+ cout << indent_str << "Router: " << endl;
+ cout << indent_str_next << "Area = " << router->area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next<< "Peak Dynamic = " << router->power.readOp.dynamic*nocdynp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? router->power.readOp.longer_channel_leakage:router->power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << router->power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next<< "Runtime Dynamic = " << router->rt_power.readOp.dynamic/nocdynp.executionTime << " W" << endl;
+ cout<<endl;
+ if (plevel >2){
+ cout << indent_str<< indent_str << "Virtual Channel Buffer:" << endl;
+ cout << indent_str<< indent_str_next << "Area = " << router->buffer.area.get_area()*1e-6*nocdynp.input_ports<< " mm^2" << endl;
+ cout << indent_str<< indent_str_next << "Peak Dynamic = " <<(router->buffer.power.readOp.dynamic + router->buffer.power.writeOp.dynamic)
+ *nocdynp.min_ports*M*nocdynp.clockRate << " W" << endl;
+ cout << indent_str<< indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? router->buffer.power.readOp.longer_channel_leakage*nocdynp.input_ports:router->buffer.power.readOp.leakage*nocdynp.input_ports) <<" W" << endl;
+ cout << indent_str<< indent_str_next << "Gate Leakage = " << router->buffer.power.readOp.gate_leakage*nocdynp.input_ports << " W" << endl;
+ cout << indent_str<< indent_str_next << "Runtime Dynamic = " << router->buffer.rt_power.readOp.dynamic/nocdynp.executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str<< indent_str<< "Crossbar:" << endl;
+ cout << indent_str<< indent_str_next << "Area = " << router->crossbar.area.get_area()*1e-6 << " mm^2" << endl;
+ cout << indent_str<< indent_str_next << "Peak Dynamic = " << router->crossbar.power.readOp.dynamic*nocdynp.clockRate*nocdynp.min_ports*M << " W" << endl;
+ cout << indent_str<< indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? router->crossbar.power.readOp.longer_channel_leakage:router->crossbar.power.readOp.leakage) << " W" << endl;
+ cout << indent_str<< indent_str_next << "Gate Leakage = " << router->crossbar.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str<< indent_str_next << "Runtime Dynamic = " << router->crossbar.rt_power.readOp.dynamic/nocdynp.executionTime << " W" << endl;
+ cout <<endl;
+ cout << indent_str<< indent_str<< "Arbiter:" << endl;
+ cout << indent_str<< indent_str_next << "Peak Dynamic = " << router->arbiter.power.readOp.dynamic*nocdynp.clockRate*nocdynp.min_ports*M << " W" << endl;
+ cout << indent_str<< indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? router->arbiter.power.readOp.longer_channel_leakage:router->arbiter.power.readOp.leakage) << " W" << endl;
+ cout << indent_str<< indent_str_next << "Gate Leakage = " << router->arbiter.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str<< indent_str_next << "Runtime Dynamic = " << router->arbiter.rt_power.readOp.dynamic/nocdynp.executionTime << " W" << endl;
+ cout <<endl;
+ }
+ }
+ if (link_bus_exist)
+ {
+ cout << indent_str << (nocdynp.type? "Per Router ":"") << link_name<<": " << endl;
+ cout << indent_str_next << "Area = " << link_bus_tot_per_Router.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next<< "Peak Dynamic = " << link_bus_tot_per_Router.power.readOp.dynamic*
+ nocdynp.clockRate << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? link_bus_tot_per_Router.power.readOp.longer_channel_leakage:link_bus_tot_per_Router.power.readOp.leakage)
+ <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << link_bus_tot_per_Router.power.readOp.gate_leakage
+ << " W" << endl;
+ cout << indent_str_next<< "Runtime Dynamic = " << link_bus->rt_power.readOp.dynamic/nocdynp.executionTime << " W" << endl;
+ cout<<endl;
+
+ }
+ }
+ else
+ {
+// cout << indent_str_next << "Instruction Fetch Unit Peak Dynamic = " << ifu->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Instruction Fetch Unit Subthreshold Leakage = " << ifu->rt_power.readOp.leakage <<" W" << endl;
+// cout << indent_str_next << "Instruction Fetch Unit Gate Leakage = " << ifu->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Load Store Unit Peak Dynamic = " << lsu->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Load Store Unit Subthreshold Leakage = " << lsu->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Load Store Unit Gate Leakage = " << lsu->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Memory Management Unit Peak Dynamic = " << mmu->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Memory Management Unit Subthreshold Leakage = " << mmu->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Memory Management Unit Gate Leakage = " << mmu->rt_power.readOp.gate_leakage << " W" << endl;
+// cout << indent_str_next << "Execution Unit Peak Dynamic = " << exu->rt_power.readOp.dynamic*clockRate << " W" << endl;
+// cout << indent_str_next << "Execution Unit Subthreshold Leakage = " << exu->rt_power.readOp.leakage << " W" << endl;
+// cout << indent_str_next << "Execution Unit Gate Leakage = " << exu->rt_power.readOp.gate_leakage << " W" << endl;
+ }
+}
+
+void NoC::set_noc_param()
+{
+
+ nocdynp.type = XML->sys.NoC[ithNoC].type;
+ nocdynp.clockRate =XML->sys.NoC[ithNoC].clockrate;
+ nocdynp.clockRate *= 1e6;
+ nocdynp.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
+
+ nocdynp.flit_size = XML->sys.NoC[ithNoC].flit_bits;
+ if (nocdynp.type)
+ {
+ nocdynp.input_ports = XML->sys.NoC[ithNoC].input_ports;
+ nocdynp.output_ports = XML->sys.NoC[ithNoC].output_ports;//later minus 1
+ nocdynp.min_ports = min(nocdynp.input_ports,nocdynp.output_ports);
+ nocdynp.global_linked_ports = (nocdynp.input_ports-1) + (nocdynp.output_ports-1);
+ /*
+ * Except local i/o ports, all ports needs links( global_linked_ports);
+ * However only min_ports can be fully active simultaneously
+ * since the fewer number of ports (input or output ) is the bottleneck.
+ */
+ }
+ else
+ {
+ nocdynp.input_ports = 1;
+ nocdynp.output_ports = 1;
+ nocdynp.min_ports = min(nocdynp.input_ports,nocdynp.output_ports);
+ nocdynp.global_linked_ports = 1;
+ }
+
+ nocdynp.virtual_channel_per_port = XML->sys.NoC[ithNoC].virtual_channel_per_port;
+ nocdynp.input_buffer_entries_per_vc = XML->sys.NoC[ithNoC].input_buffer_entries_per_vc;
+
+ nocdynp.horizontal_nodes = XML->sys.NoC[ithNoC].horizontal_nodes;
+ nocdynp.vertical_nodes = XML->sys.NoC[ithNoC].vertical_nodes;
+ nocdynp.total_nodes = nocdynp.horizontal_nodes*nocdynp.vertical_nodes;
+ nocdynp.duty_cycle = XML->sys.NoC[ithNoC].duty_cycle;
+ nocdynp.has_global_link = XML->sys.NoC[ithNoC].has_global_link;
+ nocdynp.link_throughput = XML->sys.NoC[ithNoC].link_throughput;
+ nocdynp.link_latency = XML->sys.NoC[ithNoC].link_latency;
+ nocdynp.chip_coverage = XML->sys.NoC[ithNoC].chip_coverage;
+ nocdynp.route_over_perc = XML->sys.NoC[ithNoC].route_over_perc;
+
+ assert (nocdynp.chip_coverage <=1);
+ assert (nocdynp.route_over_perc <=1);
+
+ if (nocdynp.type)
+ name = "NOC";
+ else
+ name = "BUSES";
+
+}
+
+
+NoC ::~NoC(){
+
+ if(router) {delete router; router = 0;}
+ if(link_bus) {delete link_bus; link_bus = 0;}
+}
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#ifndef NOC_H_
+#define NOC_H_
+#include "XML_Parse.h"
+#include "array.h"
+#include "basic_components.h"
+#include "interconnect.h"
+#include "logic.h"
+#include "parameter.h"
+#include "router.h"
+
+class NoC :public Component {
+ public:
+
+ ParseXML *XML;
+ int ithNoC;
+ InputParameter interface_ip;
+ double link_len;
+ double executionTime;
+ double scktRatio, chip_PR_overhead, macro_PR_overhead;
+ Router * router;
+ interconnect * link_bus;
+ NoCParam nocdynp;
+ uca_org_t local_result;
+ statsDef tdp_stats;
+ statsDef rtp_stats;
+ statsDef stats_t;
+ powerDef power_t;
+ Component link_bus_tot_per_Router;
+ bool link_bus_exist;
+ bool router_exist;
+ string name, link_name;
+ double M_traffic_pattern;
+ NoC(ParseXML *XML_interface, int ithNoC_, InputParameter* interface_ip_, double M_traffic_pattern_ = 0.6,double link_len_=0);
+ void set_noc_param();
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ void init_link_bus(double link_len_);
+ void init_router();
+ void computeEnergy_link_bus(bool is_tdp=true);
+ void displayEnergy_link_bus(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ ~NoC();
+};
+
+#endif /* NOC_H_ */
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <fstream>
+#include <iostream>
+
+#include "XML_Parse.h"
+#include "array.h"
+#include "basic_circuit.h"
+#include "const.h"
+#include "parameter.h"
+#include "processor.h"
+#include "version.h"
+
+Processor::Processor(ParseXML *XML_interface)
+:XML(XML_interface),//TODO: using one global copy may have problems.
+ mc(0),
+ niu(0),
+ pcie(0),
+ flashcontroller(0)
+{
+ /*
+ * placement and routing overhead is 10%, core scales worse than cache 40% is accumulated from 90 to 22nm
+ * There is no point to have heterogeneous memory controller on chip,
+ * thus McPAT only support homogeneous memory controllers.
+ */
+ int i;
+ double pppm_t[4] = {1,1,1,1};
+ set_proc_param();
+ if (procdynp.homoCore)
+ numCore = procdynp.numCore==0? 0:1;
+ else
+ numCore = procdynp.numCore;
+
+ if (procdynp.homoL2)
+ numL2 = procdynp.numL2==0? 0:1;
+ else
+ numL2 = procdynp.numL2;
+
+ if (XML->sys.Private_L2 && numCore != numL2)
+ {
+ cout<<"Number of private L2 does not match number of cores"<<endl;
+ exit(0);
+ }
+
+ if (procdynp.homoL3)
+ numL3 = procdynp.numL3==0? 0:1;
+ else
+ numL3 = procdynp.numL3;
+
+ if (procdynp.homoNOC)
+ numNOC = procdynp.numNOC==0? 0:1;
+ else
+ numNOC = procdynp.numNOC;
+
+// if (!procdynp.homoNOC)
+// {
+// cout<<"Current McPAT does not support heterogeneous NOC"<<endl;
+// exit(0);
+// }
+
+ if (procdynp.homoL1Dir)
+ numL1Dir = procdynp.numL1Dir==0? 0:1;
+ else
+ numL1Dir = procdynp.numL1Dir;
+
+ if (procdynp.homoL2Dir)
+ numL2Dir = procdynp.numL2Dir==0? 0:1;
+ else
+ numL2Dir = procdynp.numL2Dir;
+
+ for (i = 0;i < numCore; i++)
+ {
+ cores.push_back(new Core(XML,i, &interface_ip));
+ cores[i]->computeEnergy();
+ cores[i]->computeEnergy(false);
+ if (procdynp.homoCore){
+ core.area.set_area(core.area.get_area() + cores[i]->area.get_area()*procdynp.numCore);
+ set_pppm(pppm_t,cores[i]->clockRate*procdynp.numCore, procdynp.numCore,procdynp.numCore,procdynp.numCore);
+ core.power = core.power + cores[i]->power*pppm_t;
+ set_pppm(pppm_t,1/cores[i]->executionTime, procdynp.numCore,procdynp.numCore,procdynp.numCore);
+ core.rt_power = core.rt_power + cores[i]->rt_power*pppm_t;
+ area.set_area(area.get_area() + core.area.get_area());//placement and routing overhead is 10%, core scales worse than cache 40% is accumulated from 90 to 22nm
+ power = power + core.power;
+ rt_power = rt_power + core.rt_power;
+ }
+ else{
+ core.area.set_area(core.area.get_area() + cores[i]->area.get_area());
+ area.set_area(area.get_area() + cores[i]->area.get_area());//placement and routing overhead is 10%, core scales worse than cache 40% is accumulated from 90 to 22nm
+
+ set_pppm(pppm_t,cores[i]->clockRate, 1, 1, 1);
+ core.power = core.power + cores[i]->power*pppm_t;
+ power = power + cores[i]->power*pppm_t;
+
+ set_pppm(pppm_t,1/cores[i]->executionTime, 1, 1, 1);
+ core.rt_power = core.rt_power + cores[i]->rt_power*pppm_t;
+ rt_power = rt_power + cores[i]->rt_power*pppm_t;
+ }
+ }
+
+ if (!XML->sys.Private_L2)
+ {
+ if (numL2 >0)
+ for (i = 0;i < numL2; i++)
+ {
+ l2array.push_back(new SharedCache(XML,i, &interface_ip));
+ l2array[i]->computeEnergy();
+ l2array[i]->computeEnergy(false);
+ if (procdynp.homoL2){
+ l2.area.set_area(l2.area.get_area() + l2array[i]->area.get_area()*procdynp.numL2);
+ set_pppm(pppm_t,l2array[i]->cachep.clockRate*procdynp.numL2, procdynp.numL2,procdynp.numL2,procdynp.numL2);
+ l2.power = l2.power + l2array[i]->power*pppm_t;
+ set_pppm(pppm_t,1/l2array[i]->cachep.executionTime, procdynp.numL2,procdynp.numL2,procdynp.numL2);
+ l2.rt_power = l2.rt_power + l2array[i]->rt_power*pppm_t;
+ area.set_area(area.get_area() + l2.area.get_area());//placement and routing overhead is 10%, l2 scales worse than cache 40% is accumulated from 90 to 22nm
+ power = power + l2.power;
+ rt_power = rt_power + l2.rt_power;
+ }
+ else{
+ l2.area.set_area(l2.area.get_area() + l2array[i]->area.get_area());
+ area.set_area(area.get_area() + l2array[i]->area.get_area());//placement and routing overhead is 10%, l2 scales worse than cache 40% is accumulated from 90 to 22nm
+
+ set_pppm(pppm_t,l2array[i]->cachep.clockRate, 1, 1, 1);
+ l2.power = l2.power + l2array[i]->power*pppm_t;
+ power = power + l2array[i]->power*pppm_t;;
+ set_pppm(pppm_t,1/l2array[i]->cachep.executionTime, 1, 1, 1);
+ l2.rt_power = l2.rt_power + l2array[i]->rt_power*pppm_t;
+ rt_power = rt_power + l2array[i]->rt_power*pppm_t;
+ }
+ }
+ }
+
+ if (numL3 >0)
+ for (i = 0;i < numL3; i++)
+ {
+ l3array.push_back(new SharedCache(XML,i, &interface_ip, L3));
+ l3array[i]->computeEnergy();
+ l3array[i]->computeEnergy(false);
+ if (procdynp.homoL3){
+ l3.area.set_area(l3.area.get_area() + l3array[i]->area.get_area()*procdynp.numL3);
+ set_pppm(pppm_t,l3array[i]->cachep.clockRate*procdynp.numL3, procdynp.numL3,procdynp.numL3,procdynp.numL3);
+ l3.power = l3.power + l3array[i]->power*pppm_t;
+ set_pppm(pppm_t,1/l3array[i]->cachep.executionTime, procdynp.numL3,procdynp.numL3,procdynp.numL3);
+ l3.rt_power = l3.rt_power + l3array[i]->rt_power*pppm_t;
+ area.set_area(area.get_area() + l3.area.get_area());//placement and routing overhead is 10%, l3 scales worse than cache 40% is accumulated from 90 to 22nm
+ power = power + l3.power;
+ rt_power = rt_power + l3.rt_power;
+
+ }
+ else{
+ l3.area.set_area(l3.area.get_area() + l3array[i]->area.get_area());
+ area.set_area(area.get_area() + l3array[i]->area.get_area());//placement and routing overhead is 10%, l3 scales worse than cache 40% is accumulated from 90 to 22nm
+ set_pppm(pppm_t,l3array[i]->cachep.clockRate, 1, 1, 1);
+ l3.power = l3.power + l3array[i]->power*pppm_t;
+ power = power + l3array[i]->power*pppm_t;
+ set_pppm(pppm_t,1/l3array[i]->cachep.executionTime, 1, 1, 1);
+ l3.rt_power = l3.rt_power + l3array[i]->rt_power*pppm_t;
+ rt_power = rt_power + l3array[i]->rt_power*pppm_t;
+
+ }
+ }
+ if (numL1Dir >0)
+ for (i = 0;i < numL1Dir; i++)
+ {
+ l1dirarray.push_back(new SharedCache(XML,i, &interface_ip, L1Directory));
+ l1dirarray[i]->computeEnergy();
+ l1dirarray[i]->computeEnergy(false);
+ if (procdynp.homoL1Dir){
+ l1dir.area.set_area(l1dir.area.get_area() + l1dirarray[i]->area.get_area()*procdynp.numL1Dir);
+ set_pppm(pppm_t,l1dirarray[i]->cachep.clockRate*procdynp.numL1Dir, procdynp.numL1Dir,procdynp.numL1Dir,procdynp.numL1Dir);
+ l1dir.power = l1dir.power + l1dirarray[i]->power*pppm_t;
+ set_pppm(pppm_t,1/l1dirarray[i]->cachep.executionTime, procdynp.numL1Dir,procdynp.numL1Dir,procdynp.numL1Dir);
+ l1dir.rt_power = l1dir.rt_power + l1dirarray[i]->rt_power*pppm_t;
+ area.set_area(area.get_area() + l1dir.area.get_area());//placement and routing overhead is 10%, l1dir scales worse than cache 40% is accumulated from 90 to 22nm
+ power = power + l1dir.power;
+ rt_power = rt_power + l1dir.rt_power;
+
+ }
+ else{
+ l1dir.area.set_area(l1dir.area.get_area() + l1dirarray[i]->area.get_area());
+ area.set_area(area.get_area() + l1dirarray[i]->area.get_area());
+ set_pppm(pppm_t,l1dirarray[i]->cachep.clockRate, 1, 1, 1);
+ l1dir.power = l1dir.power + l1dirarray[i]->power*pppm_t;
+ power = power + l1dirarray[i]->power;
+ set_pppm(pppm_t,1/l1dirarray[i]->cachep.executionTime, 1, 1, 1);
+ l1dir.rt_power = l1dir.rt_power + l1dirarray[i]->rt_power*pppm_t;
+ rt_power = rt_power + l1dirarray[i]->rt_power;
+ }
+ }
+
+ if (numL2Dir >0)
+ for (i = 0;i < numL2Dir; i++)
+ {
+ l2dirarray.push_back(new SharedCache(XML,i, &interface_ip, L2Directory));
+ l2dirarray[i]->computeEnergy();
+ l2dirarray[i]->computeEnergy(false);
+ if (procdynp.homoL2Dir){
+ l2dir.area.set_area(l2dir.area.get_area() + l2dirarray[i]->area.get_area()*procdynp.numL2Dir);
+ set_pppm(pppm_t,l2dirarray[i]->cachep.clockRate*procdynp.numL2Dir, procdynp.numL2Dir,procdynp.numL2Dir,procdynp.numL2Dir);
+ l2dir.power = l2dir.power + l2dirarray[i]->power*pppm_t;
+ set_pppm(pppm_t,1/l2dirarray[i]->cachep.executionTime, procdynp.numL2Dir,procdynp.numL2Dir,procdynp.numL2Dir);
+ l2dir.rt_power = l2dir.rt_power + l2dirarray[i]->rt_power*pppm_t;
+ area.set_area(area.get_area() + l2dir.area.get_area());//placement and routing overhead is 10%, l2dir scales worse than cache 40% is accumulated from 90 to 22nm
+ power = power + l2dir.power;
+ rt_power = rt_power + l2dir.rt_power;
+
+ }
+ else{
+ l2dir.area.set_area(l2dir.area.get_area() + l2dirarray[i]->area.get_area());
+ area.set_area(area.get_area() + l2dirarray[i]->area.get_area());
+ set_pppm(pppm_t,l2dirarray[i]->cachep.clockRate, 1, 1, 1);
+ l2dir.power = l2dir.power + l2dirarray[i]->power*pppm_t;
+ power = power + l2dirarray[i]->power*pppm_t;
+ set_pppm(pppm_t,1/l2dirarray[i]->cachep.executionTime, 1, 1, 1);
+ l2dir.rt_power = l2dir.rt_power + l2dirarray[i]->rt_power*pppm_t;
+ rt_power = rt_power + l2dirarray[i]->rt_power*pppm_t;
+ }
+ }
+
+ if (XML->sys.mc.number_mcs >0 && XML->sys.mc.memory_channels_per_mc>0)
+ {
+ mc = new MemoryController(XML, &interface_ip, MC);
+ mc->computeEnergy();
+ mc->computeEnergy(false);
+ mcs.area.set_area(mcs.area.get_area()+mc->area.get_area()*XML->sys.mc.number_mcs);
+ area.set_area(area.get_area()+mc->area.get_area()*XML->sys.mc.number_mcs);
+ set_pppm(pppm_t,XML->sys.mc.number_mcs*mc->mcp.clockRate, XML->sys.mc.number_mcs,XML->sys.mc.number_mcs,XML->sys.mc.number_mcs);
+ mcs.power = mc->power*pppm_t;
+ power = power + mcs.power;
+ set_pppm(pppm_t,1/mc->mcp.executionTime, XML->sys.mc.number_mcs,XML->sys.mc.number_mcs,XML->sys.mc.number_mcs);
+ mcs.rt_power = mc->rt_power*pppm_t;
+ rt_power = rt_power + mcs.rt_power;
+
+ }
+
+ if (XML->sys.flashc.number_mcs >0 )//flash controller
+ {
+ flashcontroller = new FlashController(XML, &interface_ip);
+ flashcontroller->computeEnergy();
+ flashcontroller->computeEnergy(false);
+ double number_fcs = flashcontroller->fcp.num_mcs;
+ flashcontrollers.area.set_area(flashcontrollers.area.get_area()+flashcontroller->area.get_area()*number_fcs);
+ area.set_area(area.get_area()+flashcontrollers.area.get_area());
+ set_pppm(pppm_t,number_fcs, number_fcs ,number_fcs, number_fcs );
+ flashcontrollers.power = flashcontroller->power*pppm_t;
+ power = power + flashcontrollers.power;
+ set_pppm(pppm_t,number_fcs , number_fcs ,number_fcs ,number_fcs );
+ flashcontrollers.rt_power = flashcontroller->rt_power*pppm_t;
+ rt_power = rt_power + flashcontrollers.rt_power;
+
+ }
+
+ if (XML->sys.niu.number_units >0)
+ {
+ niu = new NIUController(XML, &interface_ip);
+ niu->computeEnergy();
+ niu->computeEnergy(false);
+ nius.area.set_area(nius.area.get_area()+niu->area.get_area()*XML->sys.niu.number_units);
+ area.set_area(area.get_area()+niu->area.get_area()*XML->sys.niu.number_units);
+ set_pppm(pppm_t,XML->sys.niu.number_units*niu->niup.clockRate, XML->sys.niu.number_units,XML->sys.niu.number_units,XML->sys.niu.number_units);
+ nius.power = niu->power*pppm_t;
+ power = power + nius.power;
+ set_pppm(pppm_t,XML->sys.niu.number_units*niu->niup.clockRate, XML->sys.niu.number_units,XML->sys.niu.number_units,XML->sys.niu.number_units);
+ nius.rt_power = niu->rt_power*pppm_t;
+ rt_power = rt_power + nius.rt_power;
+
+ }
+
+ if (XML->sys.pcie.number_units >0 && XML->sys.pcie.num_channels >0)
+ {
+ pcie = new PCIeController(XML, &interface_ip);
+ pcie->computeEnergy();
+ pcie->computeEnergy(false);
+ pcies.area.set_area(pcies.area.get_area()+pcie->area.get_area()*XML->sys.pcie.number_units);
+ area.set_area(area.get_area()+pcie->area.get_area()*XML->sys.pcie.number_units);
+ set_pppm(pppm_t,XML->sys.pcie.number_units*pcie->pciep.clockRate, XML->sys.pcie.number_units,XML->sys.pcie.number_units,XML->sys.pcie.number_units);
+ pcies.power = pcie->power*pppm_t;
+ power = power + pcies.power;
+ set_pppm(pppm_t,XML->sys.pcie.number_units*pcie->pciep.clockRate, XML->sys.pcie.number_units,XML->sys.pcie.number_units,XML->sys.pcie.number_units);
+ pcies.rt_power = pcie->rt_power*pppm_t;
+ rt_power = rt_power + pcies.rt_power;
+
+ }
+
+ if (numNOC >0)
+ {
+ for (i = 0;i < numNOC; i++)
+ {
+ if (XML->sys.NoC[i].type)
+ {//First add up area of routers if NoC is used
+ nocs.push_back(new NoC(XML,i, &interface_ip, 1));
+ if (procdynp.homoNOC)
+ {
+ noc.area.set_area(noc.area.get_area() + nocs[i]->area.get_area()*procdynp.numNOC);
+ area.set_area(area.get_area() + noc.area.get_area());
+ }
+ else
+ {
+ noc.area.set_area(noc.area.get_area() + nocs[i]->area.get_area());
+ area.set_area(area.get_area() + nocs[i]->area.get_area());
+ }
+ }
+ else
+ {//Bus based interconnect
+ nocs.push_back(new NoC(XML,i, &interface_ip, 1, sqrt(area.get_area()*XML->sys.NoC[i].chip_coverage)));
+ if (procdynp.homoNOC){
+ noc.area.set_area(noc.area.get_area() + nocs[i]->area.get_area()*procdynp.numNOC);
+ area.set_area(area.get_area() + noc.area.get_area());
+ }
+ else
+ {
+ noc.area.set_area(noc.area.get_area() + nocs[i]->area.get_area());
+ area.set_area(area.get_area() + nocs[i]->area.get_area());
+ }
+ }
+ }
+
+ /*
+ * Compute global links associated with each NOC, if any. This must be done at the end (even after the NOC router part) since the total chip
+ * area must be obtain to decide the link routing
+ */
+ for (i = 0;i < numNOC; i++)
+ {
+ if (nocs[i]->nocdynp.has_global_link && XML->sys.NoC[i].type)
+ {
+ nocs[i]->init_link_bus(sqrt(area.get_area()*XML->sys.NoC[i].chip_coverage));//compute global links
+ if (procdynp.homoNOC)
+ {
+ noc.area.set_area(noc.area.get_area() + nocs[i]->link_bus_tot_per_Router.area.get_area()
+ * nocs[i]->nocdynp.total_nodes
+ * procdynp.numNOC);
+ area.set_area(area.get_area() + nocs[i]->link_bus_tot_per_Router.area.get_area()
+ * nocs[i]->nocdynp.total_nodes
+ * procdynp.numNOC);
+ }
+ else
+ {
+ noc.area.set_area(noc.area.get_area() + nocs[i]->link_bus_tot_per_Router.area.get_area()
+ * nocs[i]->nocdynp.total_nodes);
+ area.set_area(area.get_area() + nocs[i]->link_bus_tot_per_Router.area.get_area()
+ * nocs[i]->nocdynp.total_nodes);
+ }
+ }
+ }
+ //Compute energy of NoC (w or w/o links) or buses
+ for (i = 0;i < numNOC; i++)
+ {
+ nocs[i]->computeEnergy();
+ nocs[i]->computeEnergy(false);
+ if (procdynp.homoNOC){
+ set_pppm(pppm_t,procdynp.numNOC*nocs[i]->nocdynp.clockRate, procdynp.numNOC,procdynp.numNOC,procdynp.numNOC);
+ noc.power = noc.power + nocs[i]->power*pppm_t;
+ set_pppm(pppm_t,1/nocs[i]->nocdynp.executionTime, procdynp.numNOC,procdynp.numNOC,procdynp.numNOC);
+ noc.rt_power = noc.rt_power + nocs[i]->rt_power*pppm_t;
+ power = power + noc.power;
+ rt_power = rt_power + noc.rt_power;
+ }
+ else
+ {
+ set_pppm(pppm_t,nocs[i]->nocdynp.clockRate, 1, 1, 1);
+ noc.power = noc.power + nocs[i]->power*pppm_t;
+ power = power + nocs[i]->power*pppm_t;
+ set_pppm(pppm_t,1/nocs[i]->nocdynp.executionTime, 1, 1, 1);
+ noc.rt_power = noc.rt_power + nocs[i]->rt_power*pppm_t;
+ rt_power = rt_power + nocs[i]->rt_power*pppm_t;
+
+
+ }
+ }
+ }
+
+// //clock power
+// globalClock.init_wire_external(is_default, &interface_ip);
+// globalClock.clk_area =area*1e6; //change it from mm^2 to um^2
+// globalClock.end_wiring_level =5;//toplevel metal
+// globalClock.start_wiring_level =5;//toplevel metal
+// globalClock.l_ip.with_clock_grid=false;//global clock does not drive local final nodes
+// globalClock.optimize_wire();
+
+}
+
+void Processor::displayDeviceType(int device_type_, uint32_t indent)
+{
+ string indent_str(indent, ' ');
+
+ switch ( device_type_ ) {
+
+ case 0 :
+ cout <<indent_str<<"Device Type= "<<"ITRS high performance device type"<<endl;
+ break;
+ case 1 :
+ cout <<indent_str<<"Device Type= "<<"ITRS low standby power device type"<<endl;
+ break;
+ case 2 :
+ cout <<indent_str<<"Device Type= "<<"ITRS low operating power device type"<<endl;
+ break;
+ case 3 :
+ cout <<indent_str<<"Device Type= "<<"LP-DRAM device type"<<endl;
+ break;
+ case 4 :
+ cout <<indent_str<<"Device Type= "<<"COMM-DRAM device type"<<endl;
+ break;
+ default :
+ {
+ cout <<indent_str<<"Unknown Device Type"<<endl;
+ exit(0);
+ }
+ }
+}
+
+void Processor::displayInterconnectType(int interconnect_type_, uint32_t indent)
+{
+ string indent_str(indent, ' ');
+
+ switch ( interconnect_type_ ) {
+
+ case 0 :
+ cout <<indent_str<<"Interconnect metal projection= "<<"aggressive interconnect technology projection"<<endl;
+ break;
+ case 1 :
+ cout <<indent_str<<"Interconnect metal projection= "<<"conservative interconnect technology projection"<<endl;
+ break;
+ default :
+ {
+ cout <<indent_str<<"Unknown Interconnect Projection Type"<<endl;
+ exit(0);
+ }
+ }
+}
+
+void Processor::displayEnergy(uint32_t indent, int plevel, bool is_tdp)
+{
+ int i;
+ bool long_channel = XML->sys.longer_channel_device;
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ if (is_tdp)
+ {
+
+ if (plevel<5)
+ {
+ cout<<"\nMcPAT (version "<< VER_MAJOR <<"."<< VER_MINOR
+ << " of " << VER_UPDATE << ") results (current print level is "<< plevel
+ <<", please increase print level to see the details in components): "<<endl;
+ }
+ else
+ {
+ cout<<"\nMcPAT (version "<< VER_MAJOR <<"."<< VER_MINOR
+ << " of " << VER_UPDATE << ") results (current print level is 5)"<< endl;
+ }
+ cout <<"*****************************************************************************************"<<endl;
+ cout <<indent_str<<"Technology "<<XML->sys.core_tech_node<<" nm"<<endl;
+ //cout <<indent_str<<"Device Type= "<<XML->sys.device_type<<endl;
+ if (long_channel)
+ cout <<indent_str<<"Using Long Channel Devices When Appropriate"<<endl;
+ //cout <<indent_str<<"Interconnect metal projection= "<<XML->sys.interconnect_projection_type<<endl;
+ displayInterconnectType(XML->sys.interconnect_projection_type, indent);
+ cout <<indent_str<<"Core clock Rate(MHz) "<<XML->sys.core[0].clock_rate<<endl;
+ cout <<endl;
+ cout <<"*****************************************************************************************"<<endl;
+ cout <<"Processor: "<<endl;
+ cout << indent_str << "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str << "Peak Power = " << power.readOp.dynamic +
+ (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) + power.readOp.gate_leakage <<" W" << endl;
+ cout << indent_str << "Total Leakage = " <<
+ (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) + power.readOp.gate_leakage <<" W" << endl;
+ cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic << " W" << endl;
+ cout << indent_str << "Subthreshold Leakage = " << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str << "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ if (numCore >0){
+ cout <<indent_str<<"Total Cores: "<<XML->sys.number_of_cores << " cores "<<endl;
+ displayDeviceType(XML->sys.device_type,indent);
+ cout << indent_str_next << "Area = " << core.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << core.power.readOp.dynamic << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? core.power.readOp.longer_channel_leakage:core.power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << core.power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << core.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << core.rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ }
+ if (!XML->sys.Private_L2)
+ {
+ if (numL2 >0){
+ cout <<indent_str<<"Total L2s: "<<endl;
+ displayDeviceType(XML->sys.L2[0].device_type,indent);
+ cout << indent_str_next << "Area = " << l2.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << l2.power.readOp.dynamic << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? l2.power.readOp.longer_channel_leakage:l2.power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << l2.power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << l2.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << l2.rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ }
+ }
+ if (numL3 >0){
+ cout <<indent_str<<"Total L3s: "<<endl;
+ displayDeviceType(XML->sys.L3[0].device_type, indent);
+ cout << indent_str_next << "Area = " << l3.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << l3.power.readOp.dynamic << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? l3.power.readOp.longer_channel_leakage:l3.power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << l3.power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << l3.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << l3.rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ }
+ if (numL1Dir >0){
+ cout <<indent_str<<"Total First Level Directory: "<<endl;
+ displayDeviceType(XML->sys.L1Directory[0].device_type, indent);
+ cout << indent_str_next << "Area = " << l1dir.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << l1dir.power.readOp.dynamic << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? l1dir.power.readOp.longer_channel_leakage:l1dir.power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << l1dir.power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << l1dir.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << l1dir.rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ }
+ if (numL2Dir >0){
+ cout <<indent_str<<"Total First Level Directory: "<<endl;
+ displayDeviceType(XML->sys.L1Directory[0].device_type, indent);
+ cout << indent_str_next << "Area = " << l2dir.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << l2dir.power.readOp.dynamic << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? l2dir.power.readOp.longer_channel_leakage:l2dir.power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << l2dir.power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << l2dir.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << l2dir.rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ }
+ if (numNOC >0){
+ cout <<indent_str<<"Total NoCs (Network/Bus): "<<endl;
+ displayDeviceType(XML->sys.device_type, indent);
+ cout << indent_str_next << "Area = " << noc.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << noc.power.readOp.dynamic << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? noc.power.readOp.longer_channel_leakage:noc.power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str_next << "Subthreshold Leakage = " << noc.power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << noc.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << noc.rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ }
+ if (XML->sys.mc.number_mcs >0 && XML->sys.mc.memory_channels_per_mc>0)
+ {
+ cout <<indent_str<<"Total MCs: "<<XML->sys.mc.number_mcs << " Memory Controllers "<<endl;
+ displayDeviceType(XML->sys.device_type, indent);
+ cout << indent_str_next << "Area = " << mcs.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << mcs.power.readOp.dynamic << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? mcs.power.readOp.longer_channel_leakage:mcs.power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << mcs.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << mcs.rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ }
+ if (XML->sys.flashc.number_mcs >0)
+ {
+ cout <<indent_str<<"Total Flash/SSD Controllers: "<<flashcontroller->fcp.num_mcs << " Flash/SSD Controllers "<<endl;
+ displayDeviceType(XML->sys.device_type, indent);
+ cout << indent_str_next << "Area = " << flashcontrollers.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << flashcontrollers.power.readOp.dynamic << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? flashcontrollers.power.readOp.longer_channel_leakage:flashcontrollers.power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << flashcontrollers.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << flashcontrollers.rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ }
+ if (XML->sys.niu.number_units >0 )
+ {
+ cout <<indent_str<<"Total NIUs: "<<niu->niup.num_units << " Network Interface Units "<<endl;
+ displayDeviceType(XML->sys.device_type, indent);
+ cout << indent_str_next << "Area = " << nius.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << nius.power.readOp.dynamic << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? nius.power.readOp.longer_channel_leakage:nius.power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << nius.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << nius.rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ }
+ if (XML->sys.pcie.number_units >0 && XML->sys.pcie.num_channels>0)
+ {
+ cout <<indent_str<<"Total PCIes: "<<pcie->pciep.num_units << " PCIe Controllers "<<endl;
+ displayDeviceType(XML->sys.device_type, indent);
+ cout << indent_str_next << "Area = " << pcies.area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str_next << "Peak Dynamic = " << pcies.power.readOp.dynamic << " W" << endl;
+ cout << indent_str_next << "Subthreshold Leakage = "
+ << (long_channel? pcies.power.readOp.longer_channel_leakage:pcies.power.readOp.leakage) <<" W" << endl;
+ cout << indent_str_next << "Gate Leakage = " << pcies.power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str_next << "Runtime Dynamic = " << pcies.rt_power.readOp.dynamic << " W" << endl;
+ cout <<endl;
+ }
+ cout <<"*****************************************************************************************"<<endl;
+ if (plevel >1)
+ {
+ for (i = 0;i < numCore; i++)
+ {
+ cores[i]->displayEnergy(indent+4,plevel,is_tdp);
+ cout <<"*****************************************************************************************"<<endl;
+ }
+ if (!XML->sys.Private_L2)
+ {
+ for (i = 0;i < numL2; i++)
+ {
+ l2array[i]->displayEnergy(indent+4,is_tdp);
+ cout <<"*****************************************************************************************"<<endl;
+ }
+ }
+ for (i = 0;i < numL3; i++)
+ {
+ l3array[i]->displayEnergy(indent+4,is_tdp);
+ cout <<"*****************************************************************************************"<<endl;
+ }
+ for (i = 0;i < numL1Dir; i++)
+ {
+ l1dirarray[i]->displayEnergy(indent+4,is_tdp);
+ cout <<"*****************************************************************************************"<<endl;
+ }
+ for (i = 0;i < numL2Dir; i++)
+ {
+ l2dirarray[i]->displayEnergy(indent+4,is_tdp);
+ cout <<"*****************************************************************************************"<<endl;
+ }
+ if (XML->sys.mc.number_mcs >0 && XML->sys.mc.memory_channels_per_mc>0)
+ {
+ mc->displayEnergy(indent+4,is_tdp);
+ cout <<"*****************************************************************************************"<<endl;
+ }
+ if (XML->sys.flashc.number_mcs >0 && XML->sys.flashc.memory_channels_per_mc>0)
+ {
+ flashcontroller->displayEnergy(indent+4,is_tdp);
+ cout <<"*****************************************************************************************"<<endl;
+ }
+ if (XML->sys.niu.number_units >0 )
+ {
+ niu->displayEnergy(indent+4,is_tdp);
+ cout <<"*****************************************************************************************"<<endl;
+ }
+ if (XML->sys.pcie.number_units >0 && XML->sys.pcie.num_channels>0)
+ {
+ pcie->displayEnergy(indent+4,is_tdp);
+ cout <<"*****************************************************************************************"<<endl;
+ }
+
+ for (i = 0;i < numNOC; i++)
+ {
+ nocs[i]->displayEnergy(indent+4,plevel,is_tdp);
+ cout <<"*****************************************************************************************"<<endl;
+ }
+ }
+ }
+ else
+ {
+
+ }
+
+}
+
+void Processor::set_proc_param()
+{
+ bool debug = false;
+
+ procdynp.homoCore = bool(debug?1:XML->sys.homogeneous_cores);
+ procdynp.homoL2 = bool(debug?1:XML->sys.homogeneous_L2s);
+ procdynp.homoL3 = bool(debug?1:XML->sys.homogeneous_L3s);
+ procdynp.homoNOC = bool(debug?1:XML->sys.homogeneous_NoCs);
+ procdynp.homoL1Dir = bool(debug?1:XML->sys.homogeneous_L1Directories);
+ procdynp.homoL2Dir = bool(debug?1:XML->sys.homogeneous_L2Directories);
+
+ procdynp.numCore = XML->sys.number_of_cores;
+ procdynp.numL2 = XML->sys.number_of_L2s;
+ procdynp.numL3 = XML->sys.number_of_L3s;
+ procdynp.numNOC = XML->sys.number_of_NoCs;
+ procdynp.numL1Dir = XML->sys.number_of_L1Directories;
+ procdynp.numL2Dir = XML->sys.number_of_L2Directories;
+ procdynp.numMC = XML->sys.mc.number_mcs;
+ procdynp.numMCChannel = XML->sys.mc.memory_channels_per_mc;
+
+// if (procdynp.numCore<1)
+// {
+// cout<<" The target processor should at least have one core on chip." <<endl;
+// exit(0);
+// }
+
+ // if (numNOCs<0 || numNOCs>2)
+ // {
+ // cout <<"number of NOCs must be 1 (only global NOCs) or 2 (both global and local NOCs)"<<endl;
+ // exit(0);
+ // }
+
+ /* Basic parameters*/
+ interface_ip.data_arr_ram_cell_tech_type = debug?0:XML->sys.device_type;
+ interface_ip.data_arr_peri_global_tech_type = debug?0:XML->sys.device_type;
+ interface_ip.tag_arr_ram_cell_tech_type = debug?0:XML->sys.device_type;
+ interface_ip.tag_arr_peri_global_tech_type = debug?0:XML->sys.device_type;
+
+ interface_ip.ic_proj_type = debug?0:XML->sys.interconnect_projection_type;
+ interface_ip.delay_wt = 100;//Fixed number, make sure timing can be satisfied.
+ interface_ip.area_wt = 0;//Fixed number, This is used to exhaustive search for individual components.
+ interface_ip.dynamic_power_wt = 100;//Fixed number, This is used to exhaustive search for individual components.
+ interface_ip.leakage_power_wt = 0;
+ interface_ip.cycle_time_wt = 0;
+
+ interface_ip.delay_dev = 10000;//Fixed number, make sure timing can be satisfied.
+ interface_ip.area_dev = 10000;//Fixed number, This is used to exhaustive search for individual components.
+ interface_ip.dynamic_power_dev = 10000;//Fixed number, This is used to exhaustive search for individual components.
+ interface_ip.leakage_power_dev = 10000;
+ interface_ip.cycle_time_dev = 10000;
+
+ interface_ip.ed = 2;
+ interface_ip.burst_len = 1;//parameters are fixed for processor section, since memory is processed separately
+ interface_ip.int_prefetch_w = 1;
+ interface_ip.page_sz_bits = 0;
+ interface_ip.temp = debug?360: XML->sys.temperature;
+ interface_ip.F_sz_nm = debug?90:XML->sys.core_tech_node;//XML->sys.core_tech_node;
+ interface_ip.F_sz_um = interface_ip.F_sz_nm / 1000;
+
+ //***********This section of code does not have real meaning, they are just to ensure all data will have initial value to prevent errors.
+ //They will be overridden during each components initialization
+ interface_ip.cache_sz =64;
+ interface_ip.line_sz = 1;
+ interface_ip.assoc = 1;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = 64;
+ interface_ip.access_mode = 2;
+
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+
+ interface_ip.is_main_mem = false;
+ interface_ip.rpters_in_htree = true ;
+ interface_ip.ver_htree_wires_over_array = 0;
+ interface_ip.broadcast_addr_din_over_ver_htrees = 0;
+
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = 1;
+ interface_ip.nuca = 0;
+ interface_ip.nuca_bank_count = 0;
+ interface_ip.is_cache =true;
+ interface_ip.pure_ram =false;
+ interface_ip.pure_cam =false;
+ interface_ip.force_cache_config =false;
+ if (XML->sys.Embedded)
+ {
+ interface_ip.wt =Global_30;
+ interface_ip.wire_is_mat_type = 0;
+ interface_ip.wire_os_mat_type = 0;
+ }
+ else
+ {
+ interface_ip.wt =Global;
+ interface_ip.wire_is_mat_type = 2;
+ interface_ip.wire_os_mat_type = 2;
+ }
+ interface_ip.force_wiretype = false;
+ interface_ip.print_detail = 1;
+ interface_ip.add_ecc_b_ =true;
+}
+
+Processor::~Processor(){
+ while (!cores.empty())
+ {
+ delete cores.back();
+ cores.pop_back();
+ }
+ while (!l2array.empty())
+ {
+ delete l2array.back();
+ l2array.pop_back();
+ }
+ while (!l3array.empty())
+ {
+ delete l3array.back();
+ l3array.pop_back();
+ }
+ while (!nocs.empty())
+ {
+ delete nocs.back();
+ nocs.pop_back();
+ }
+ if (!mc)
+ {
+ delete mc;
+ }
+ if (!niu)
+ {
+ delete niu;
+ }
+ if (!pcie)
+ {
+ delete pcie;
+ }
+ if (!flashcontroller)
+ {
+ delete flashcontroller;
+ }
+};
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+#ifndef PROCESSOR_H_
+#define PROCESSOR_H_
+
+#include <vector>
+
+#include "XML_Parse.h"
+#include "arbiter.h"
+#include "area.h"
+#include "array.h"
+#include "basic_components.h"
+#include "core.h"
+#include "decoder.h"
+#include "iocontrollers.h"
+#include "memoryctrl.h"
+#include "noc.h"
+#include "parameter.h"
+#include "router.h"
+#include "sharedcache.h"
+
+class Processor : public Component
+{
+ public:
+ ParseXML *XML;
+ vector<Core *> cores;
+ vector<SharedCache *> l2array;
+ vector<SharedCache *> l3array;
+ vector<SharedCache *> l1dirarray;
+ vector<SharedCache *> l2dirarray;
+ vector<NoC *> nocs;
+ MemoryController * mc;
+ NIUController * niu;
+ PCIeController * pcie;
+ FlashController * flashcontroller;
+ InputParameter interface_ip;
+ ProcParam procdynp;
+ //wire globalInterconnect;
+ //clock_network globalClock;
+ Component core, l2, l3, l1dir, l2dir, noc, mcs, cc, nius, pcies,flashcontrollers;
+ int numCore, numL2, numL3, numNOC, numL1Dir, numL2Dir;
+ Processor(ParseXML *XML_interface);
+ void compute();
+ void set_proc_param();
+ void displayEnergy(uint32_t indent = 0,int plevel = 100, bool is_tdp=true);
+ void displayDeviceType(int device_type_, uint32_t indent = 0);
+ void displayInterconnectType(int interconnect_type_, uint32_t indent = 0);
+ ~Processor();
+};
+
+#endif /* PROCESSOR_H_ */
--- /dev/null
+McPAT (version 0.8 of Aug, 2010) is computing the target processor...
+
+Warning: Branch Target Buffer array structure cannot satisfy latency constraint.
+
+McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 40 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= conservative interconnect technology projection
+ Core clock Rate(MHz) 2000
+
+*****************************************************************************************
+Processor:
+ Area = 5.83937 mm^2
+ Peak Power = 1.32283 W
+ Total Leakage = 0.182558 W
+ Peak Dynamic = 1.14027 W
+ Subthreshold Leakage = 0.0869601 W
+ Gate Leakage = 0.095598 W
+ Runtime Dynamic = 2.86361 W
+
+ Total Cores:
+ Device Type= ITRS low operating power device type
+ Area = 5.33485 mm^2
+ Peak Dynamic = 1.07823 W
+ Subthreshold Leakage = 0.0827641 W
+ Gate Leakage = 0.0887315 W
+ Runtime Dynamic = 0.975395 W
+
+ Total First Level Directory:
+ Device Type= ITRS low operating power device type
+ Area = 0.489711 mm^2
+ Peak Dynamic = 0.0449752 W
+ Subthreshold Leakage = 0.00397708 W
+ Gate Leakage = 0.00655632 W
+ Runtime Dynamic = 1.80289 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS low operating power device type
+ Area = 0.0148119 mm^2
+ Peak Dynamic = 0.0170648 W
+ Subthreshold Leakage = 0.000218992 W
+ Gate Leakage = 0.000310207 W
+ Runtime Dynamic = 0.0853239 W
+
+*****************************************************************************************
+Core:
+ Area = 2.66742 mm^2
+ Peak Dynamic = 0.539116 W
+ Subthreshold Leakage = 0.041382 W
+ Gate Leakage = 0.0443657 W
+ Runtime Dynamic = 0.975395 W
+
+ Instruction Fetch Unit:
+ Area = 0.565848 mm^2
+ Peak Dynamic = 0.184724 W
+ Subthreshold Leakage = 0.00572394 W
+ Gate Leakage = 0.00380598 W
+ Runtime Dynamic = 0.283222 W
+
+ Instruction Cache:
+ Area = 0.235613 mm^2
+ Peak Dynamic = 0.0310428 W
+ Subthreshold Leakage = 0.00309635 W
+ Gate Leakage = 0.00216385 W
+ Runtime Dynamic = 0.0461626 W
+
+ Branch Target Buffer:
+ Area = 0.251259 mm^2
+ Peak Dynamic = 0.0174433 W
+ Subthreshold Leakage = 0.00170231 W
+ Gate Leakage = 0.000908123 W
+ Runtime Dynamic = 0.0697733 W
+
+ Branch Predictor:
+ Area = 0.064441 mm^2
+ Peak Dynamic = 0.00815792 W
+ Subthreshold Leakage = 0.00070444 W
+ Gate Leakage = 0.000477387 W
+ Runtime Dynamic = 0.0113878 W
+
+ Global Predictor:
+ Area = 0.0313969 mm^2
+ Peak Dynamic = 0.00374527 W
+ Subthreshold Leakage = 0.00034631 W
+ Gate Leakage = 0.000233555 W
+ Runtime Dynamic = 0.00545806 W
+
+ Local Predictor:
+ Area = 0.000711939 mm^2
+ Peak Dynamic = 0.000301014 W
+ Subthreshold Leakage = 6.13457e-06 W
+ Gate Leakage = 5.63471e-06 W
+ Runtime Dynamic = 0.000471566 W
+
+ Area = 0.000650815 mm^2
+ Peak Dynamic = 0.000230123 W
+ Subthreshold Leakage = 5.7769e-06 W
+ Gate Leakage = 4.75075e-06 W
+ Runtime Dynamic = 0.000354988 W
+
+ Chooser:
+ Area = 0.0313969 mm^2
+ Peak Dynamic = 0.00374527 W
+ Subthreshold Leakage = 0.00034631 W
+ Gate Leakage = 0.000233555 W
+ Runtime Dynamic = 0.00545806 W
+
+ RAS:
+ Area = 0.000996272 mm^2
+ Peak Dynamic = 0.000366372 W
+ Subthreshold Leakage = 5.68653e-06 W
+ Gate Leakage = 4.64147e-06 W
+ Runtime Dynamic = 6.23994e-08 W
+
+ Instruction Buffer:
+ Area = 0.00820192 mm^2
+ Peak Dynamic = 0.0669878 W
+ Subthreshold Leakage = 6.33536e-05 W
+ Gate Leakage = 4.34841e-05 W
+ Runtime Dynamic = 0.0382787 W
+
+ Instruction Decoder:
+ Area = 0.00468731 mm^2
+ Peak Dynamic = 0.05881 W
+ Subthreshold Leakage = 0.000127696 W
+ Gate Leakage = 0.000115494 W
+ Runtime Dynamic = 0.11762 W
+
+ Renaming Unit:
+ Area = 0.0903068 mm^2
+ Peak Dynamic = 0.0451514 W
+ Subthreshold Leakage = 0.000345688 W
+ Gate Leakage = 0.00032022 W
+ Runtime Dynamic = 0.0731287 W
+
+ Int Front End RAT:
+ Area = 0.0543672 mm^2
+ Peak Dynamic = 0.0237617 W
+ Subthreshold Leakage = 0.000175223 W
+ Gate Leakage = 0.000121525 W
+ Runtime Dynamic = 0.0475234 W
+
+ FP Front End RAT:
+ Area = 0.0185325 mm^2
+ Peak Dynamic = 0.00949419 W
+ Subthreshold Leakage = 0.000100325 W
+ Gate Leakage = 6.76251e-05 W
+ Runtime Dynamic = 0.00949419 W
+
+ Free List:
+ Area = 0.00599955 mm^2
+ Peak Dynamic = 0.00225065 W
+ Subthreshold Leakage = 1.24363e-05 W
+ Gate Leakage = 1.00844e-05 W
+ Runtime Dynamic = 0.0090026 W
+
+ Int Retire RAT:
+ Area = 0.00605969 mm^2
+ Peak Dynamic = 0.00448392 W
+ Subthreshold Leakage = 1.33231e-05 W
+ Gate Leakage = 1.16235e-05 W
+ Runtime Dynamic = 0.00448392 W
+
+ FP Retire RAT:
+ Area = 0.000650815 mm^2
+ Peak Dynamic = 0.00067334 W
+ Subthreshold Leakage = 5.7769e-06 W
+ Gate Leakage = 4.75075e-06 W
+ Runtime Dynamic = 0.00067334 W
+
+ FP Free List:
+ Area = 0.00305098 mm^2
+ Peak Dynamic = 0.00195124 W
+ Subthreshold Leakage = 8.81712e-06 W
+ Gate Leakage = 6.96054e-06 W
+ Runtime Dynamic = 0.00195124 W
+
+ Load Store Unit:
+ Area = 0.274913 mm^2
+ Peak Dynamic = 0.0347482 W
+ Subthreshold Leakage = 0.0032012 W
+ Gate Leakage = 0.00235752 W
+ Runtime Dynamic = 0.195304 W
+
+ Data Cache:
+ Area = 0.240878 mm^2
+ Peak Dynamic = 0.0293665 W
+ Subthreshold Leakage = 0.00312878 W
+ Gate Leakage = 0.00220794 W
+ Runtime Dynamic = 0.19026 W
+
+ StoreQ:
+ Area = 0.00754674 mm^2
+ Peak Dynamic = 0.00358087 W
+ Subthreshold Leakage = 4.2633e-05 W
+ Gate Leakage = 5.19212e-05 W
+ Runtime Dynamic = 0.00504348 W
+
+ Memory Management Unit:
+ Area = 0.021508 mm^2
+ Peak Dynamic = 0.0127337 W
+ Subthreshold Leakage = 0.000210621 W
+ Gate Leakage = 0.000290666 W
+ Runtime Dynamic = 0.037071 W
+
+ Itlb:
+ Area = 0.00993091 mm^2
+ Peak Dynamic = 0.00617846 W
+ Subthreshold Leakage = 9.04168e-05 W
+ Gate Leakage = 9.65082e-05 W
+ Runtime Dynamic = 0.012357 W
+
+ Dtlb:
+ Area = 0.00993091 mm^2
+ Peak Dynamic = 0.00438671 W
+ Subthreshold Leakage = 9.04168e-05 W
+ Gate Leakage = 9.65082e-05 W
+ Runtime Dynamic = 0.0247139 W
+
+ Execution Unit:
+ Area = 1.65498 mm^2
+ Peak Dynamic = 0.261758 W
+ Subthreshold Leakage = 0.0305522 W
+ Gate Leakage = 0.0360036 W
+ Runtime Dynamic = 0.386669 W
+
+ Register Files:
+ Area = 0.203203 mm^2
+ Peak Dynamic = 0.0763282 W
+ Subthreshold Leakage = 0.000197046 W
+ Gate Leakage = 0.00016338 W
+ Runtime Dynamic = 0.0386066 W
+
+ Integer RF:
+ Area = 0.146073 mm^2
+ Peak Dynamic = 0.0763282 W
+ Subthreshold Leakage = 0.000120303 W
+ Gate Leakage = 9.97867e-05 W
+ Runtime Dynamic = 0.0345689 W
+
+ Floating Point RF:
+ Area = 0.05713 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 7.67427e-05 W
+ Gate Leakage = 6.35938e-05 W
+ Runtime Dynamic = 0.00403765 W
+
+ Instruction Scheduler:
+ Area = 0.0582889 mm^2
+ Peak Dynamic = 0.0522571 W
+ Subthreshold Leakage = 0.000128698 W
+ Gate Leakage = 0.000185714 W
+ Runtime Dynamic = 0.0787473 W
+
+ Instruction Window:
+ Area = 0.053925 mm^2
+ Peak Dynamic = 0.0445895 W
+ Subthreshold Leakage = 9.52936e-05 W
+ Gate Leakage = 0.000130718 W
+ Runtime Dynamic = 0.0602231 W
+
+ FP Instruction Window:
+ Area = 0.00436388 mm^2
+ Peak Dynamic = 0.00766759 W
+ Subthreshold Leakage = 3.34043e-05 W
+ Gate Leakage = 5.49962e-05 W
+ Runtime Dynamic = 0.0185242 W
+
+ Integer ALUs (Count: 3 ):
+ Area = 0.312404 mm^2
+ Peak Dynamic = 0.0283684 W
+ Subthreshold Leakage = 0.0140724 W
+ Gate Leakage = 0.0165703 W
+ Runtime Dynamic = 0.0373268 W
+
+ Floating Point Units (FPUs) (Count: 1 ):
+ Area = 0.971259 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 0.0109377 W
+ Gate Leakage = 0.0128792 W
+ Runtime Dynamic = 0.0373268 W
+
+ Complex ALUs (Mul/Div) (Count: 1 ):
+ Area = 0.104135 mm^2
+ Peak Dynamic = 0.0204053 W
+ Subthreshold Leakage = 0.00469079 W
+ Gate Leakage = 0.00552345 W
+ Runtime Dynamic = 0.049769 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.00404385 mm^2
+ Peak Dynamic = 0.0824719 W
+ Subthreshold Leakage = 0.000495836 W
+ Gate Leakage = 0.000583852 W
+ Runtime Dynamic = 0.144892 W
+
+*****************************************************************************************
+First Level Directory
+ Area = 0.244856 mm^2
+ Peak Dynamic = 0.0224876 W
+ Subthreshold Leakage = 0.00198854 W
+ Gate Leakage = 0.00327816 W
+ Runtime Dynamic = 1.80289 W
+
+*****************************************************************************************
+BUSES
+ Area = 0.0148119 mm^2
+ Peak Dynamic = 0.0170648 W
+ Subthreshold Leakage = 0.000218992 W
+ Gate Leakage = 0.000310207 W
+ Runtime Dynamic = 0.0853239 W
+
+ Bus:
+ Area = 0.0148119 mm^2
+ Peak Dynamic = 0.0170648 W
+ Subthreshold Leakage = 0.000218992 W
+ Gate Leakage = 0.000310207 W
+ Runtime Dynamic = 0.0853239 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.8 of Aug, 2010) is computing the target processor...
+
+Warning: Branch Target Buffer array structure cannot satisfy latency constraint.
+SerDer_dyn 0.00216115
+ctrl_dyn 0.0278216
+ctrl_dyn 6.14856e-11
+SerDer_dyn 1.54368e-11
+
+McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 40 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= conservative interconnect technology projection
+ Core clock Rate(MHz) 2000
+
+*****************************************************************************************
+Processor:
+ Area = 7.05775 mm^2
+ Peak Power = 2.06734 W
+ Total Leakage = 0.204814 W
+ Peak Dynamic = 1.86253 W
+ Subthreshold Leakage = 0.0916805 W
+ Gate Leakage = 0.113134 W
+ Runtime Dynamic = 5.3744 W
+
+ Total Cores: 2 cores
+ Device Type= ITRS low operating power device type
+ Area = 5.33485 mm^2
+ Peak Dynamic = 1.07823 W
+ Subthreshold Leakage = 0.0827641 W
+ Gate Leakage = 0.0887315 W
+ Runtime Dynamic = 0.975395 W
+
+ Total First Level Directory:
+ Device Type= ITRS low operating power device type
+ Area = 0.489711 mm^2
+ Peak Dynamic = 0.0449752 W
+ Subthreshold Leakage = 0.00397708 W
+ Gate Leakage = 0.00655632 W
+ Runtime Dynamic = 1.80289 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS low operating power device type
+ Area = 0.0162858 mm^2
+ Peak Dynamic = 0.0187629 W
+ Subthreshold Leakage = 0.000240784 W
+ Gate Leakage = 0.000341076 W
+ Runtime Dynamic = 0.0938146 W
+
+ Total MCs: 1 Memory Controllers
+ Device Type= ITRS low operating power device type
+ Area = 0.554183 mm^2
+ Peak Dynamic = 0.31033 W
+ Subthreshold Leakage = 0.0020922 W
+ Gate Leakage = 0.00751531 W
+ Runtime Dynamic = 2.21514 W
+
+ Total Flash/SSD Controllers: 1 Flash/SSD Controllers
+ Device Type= ITRS low operating power device type
+ Area = 0.109065 mm^2
+ Peak Dynamic = 0.0299827 W
+ Subthreshold Leakage = 0.000522213 W
+ Gate Leakage = 0.0020015 W
+ Runtime Dynamic = 0.0209879 W
+
+ Total NIUs: 1 Network Interface Units
+ Device Type= ITRS low operating power device type
+ Area = 0.261302 mm^2
+ Peak Dynamic = 0.164859 W
+ Subthreshold Leakage = 0.000730171 W
+ Gate Leakage = 0.00279855 W
+ Runtime Dynamic = 0.115402 W
+
+ Total PCIes: 1 PCIe Controllers
+ Device Type= ITRS low operating power device type
+ Area = 0.292355 mm^2
+ Peak Dynamic = 0.215383 W
+ Subthreshold Leakage = 0.00135405 W
+ Gate Leakage = 0.00518971 W
+ Runtime Dynamic = 0.150768 W
+
+*****************************************************************************************
+Core:
+ Area = 2.66742 mm^2
+ Peak Dynamic = 0.539116 W
+ Subthreshold Leakage = 0.041382 W
+ Gate Leakage = 0.0443657 W
+ Runtime Dynamic = 0.975395 W
+
+ Instruction Fetch Unit:
+ Area = 0.565848 mm^2
+ Peak Dynamic = 0.184724 W
+ Subthreshold Leakage = 0.00572394 W
+ Gate Leakage = 0.00380598 W
+ Runtime Dynamic = 0.283222 W
+
+ Instruction Cache:
+ Area = 0.235613 mm^2
+ Peak Dynamic = 0.0310428 W
+ Subthreshold Leakage = 0.00309635 W
+ Gate Leakage = 0.00216385 W
+ Runtime Dynamic = 0.0461626 W
+
+ Branch Target Buffer:
+ Area = 0.251259 mm^2
+ Peak Dynamic = 0.0174433 W
+ Subthreshold Leakage = 0.00170231 W
+ Gate Leakage = 0.000908123 W
+ Runtime Dynamic = 0.0697733 W
+
+ Branch Predictor:
+ Area = 0.064441 mm^2
+ Peak Dynamic = 0.00815792 W
+ Subthreshold Leakage = 0.00070444 W
+ Gate Leakage = 0.000477387 W
+ Runtime Dynamic = 0.0113878 W
+
+ Global Predictor:
+ Area = 0.0313969 mm^2
+ Peak Dynamic = 0.00374527 W
+ Subthreshold Leakage = 0.00034631 W
+ Gate Leakage = 0.000233555 W
+ Runtime Dynamic = 0.00545806 W
+
+ Local Predictor:
+ Area = 0.000711939 mm^2
+ Peak Dynamic = 0.000301014 W
+ Subthreshold Leakage = 6.13457e-06 W
+ Gate Leakage = 5.63471e-06 W
+ Runtime Dynamic = 0.000471566 W
+
+ Area = 0.000650815 mm^2
+ Peak Dynamic = 0.000230123 W
+ Subthreshold Leakage = 5.7769e-06 W
+ Gate Leakage = 4.75075e-06 W
+ Runtime Dynamic = 0.000354988 W
+
+ Chooser:
+ Area = 0.0313969 mm^2
+ Peak Dynamic = 0.00374527 W
+ Subthreshold Leakage = 0.00034631 W
+ Gate Leakage = 0.000233555 W
+ Runtime Dynamic = 0.00545806 W
+
+ RAS:
+ Area = 0.000996272 mm^2
+ Peak Dynamic = 0.000366372 W
+ Subthreshold Leakage = 5.68653e-06 W
+ Gate Leakage = 4.64147e-06 W
+ Runtime Dynamic = 6.23994e-08 W
+
+ Instruction Buffer:
+ Area = 0.00820192 mm^2
+ Peak Dynamic = 0.0669878 W
+ Subthreshold Leakage = 6.33536e-05 W
+ Gate Leakage = 4.34841e-05 W
+ Runtime Dynamic = 0.0382787 W
+
+ Instruction Decoder:
+ Area = 0.00468731 mm^2
+ Peak Dynamic = 0.05881 W
+ Subthreshold Leakage = 0.000127696 W
+ Gate Leakage = 0.000115494 W
+ Runtime Dynamic = 0.11762 W
+
+ Renaming Unit:
+ Area = 0.0903068 mm^2
+ Peak Dynamic = 0.0451514 W
+ Subthreshold Leakage = 0.000345688 W
+ Gate Leakage = 0.00032022 W
+ Runtime Dynamic = 0.0731287 W
+
+ Int Front End RAT:
+ Area = 0.0543672 mm^2
+ Peak Dynamic = 0.0237617 W
+ Subthreshold Leakage = 0.000175223 W
+ Gate Leakage = 0.000121525 W
+ Runtime Dynamic = 0.0475234 W
+
+ FP Front End RAT:
+ Area = 0.0185325 mm^2
+ Peak Dynamic = 0.00949419 W
+ Subthreshold Leakage = 0.000100325 W
+ Gate Leakage = 6.76251e-05 W
+ Runtime Dynamic = 0.00949419 W
+
+ Free List:
+ Area = 0.00599955 mm^2
+ Peak Dynamic = 0.00225065 W
+ Subthreshold Leakage = 1.24363e-05 W
+ Gate Leakage = 1.00844e-05 W
+ Runtime Dynamic = 0.0090026 W
+
+ Int Retire RAT:
+ Area = 0.00605969 mm^2
+ Peak Dynamic = 0.00448392 W
+ Subthreshold Leakage = 1.33231e-05 W
+ Gate Leakage = 1.16235e-05 W
+ Runtime Dynamic = 0.00448392 W
+
+ FP Retire RAT:
+ Area = 0.000650815 mm^2
+ Peak Dynamic = 0.00067334 W
+ Subthreshold Leakage = 5.7769e-06 W
+ Gate Leakage = 4.75075e-06 W
+ Runtime Dynamic = 0.00067334 W
+
+ FP Free List:
+ Area = 0.00305098 mm^2
+ Peak Dynamic = 0.00195124 W
+ Subthreshold Leakage = 8.81712e-06 W
+ Gate Leakage = 6.96054e-06 W
+ Runtime Dynamic = 0.00195124 W
+
+ Load Store Unit:
+ Area = 0.274913 mm^2
+ Peak Dynamic = 0.0347482 W
+ Subthreshold Leakage = 0.0032012 W
+ Gate Leakage = 0.00235752 W
+ Runtime Dynamic = 0.195304 W
+
+ Data Cache:
+ Area = 0.240878 mm^2
+ Peak Dynamic = 0.0293665 W
+ Subthreshold Leakage = 0.00312878 W
+ Gate Leakage = 0.00220794 W
+ Runtime Dynamic = 0.19026 W
+
+ StoreQ:
+ Area = 0.00754674 mm^2
+ Peak Dynamic = 0.00358087 W
+ Subthreshold Leakage = 4.2633e-05 W
+ Gate Leakage = 5.19212e-05 W
+ Runtime Dynamic = 0.00504348 W
+
+ Memory Management Unit:
+ Area = 0.021508 mm^2
+ Peak Dynamic = 0.0127337 W
+ Subthreshold Leakage = 0.000210621 W
+ Gate Leakage = 0.000290666 W
+ Runtime Dynamic = 0.037071 W
+
+ Itlb:
+ Area = 0.00993091 mm^2
+ Peak Dynamic = 0.00617846 W
+ Subthreshold Leakage = 9.04168e-05 W
+ Gate Leakage = 9.65082e-05 W
+ Runtime Dynamic = 0.012357 W
+
+ Dtlb:
+ Area = 0.00993091 mm^2
+ Peak Dynamic = 0.00438671 W
+ Subthreshold Leakage = 9.04168e-05 W
+ Gate Leakage = 9.65082e-05 W
+ Runtime Dynamic = 0.0247139 W
+
+ Execution Unit:
+ Area = 1.65498 mm^2
+ Peak Dynamic = 0.261758 W
+ Subthreshold Leakage = 0.0305522 W
+ Gate Leakage = 0.0360036 W
+ Runtime Dynamic = 0.386669 W
+
+ Register Files:
+ Area = 0.203203 mm^2
+ Peak Dynamic = 0.0763282 W
+ Subthreshold Leakage = 0.000197046 W
+ Gate Leakage = 0.00016338 W
+ Runtime Dynamic = 0.0386066 W
+
+ Integer RF:
+ Area = 0.146073 mm^2
+ Peak Dynamic = 0.0763282 W
+ Subthreshold Leakage = 0.000120303 W
+ Gate Leakage = 9.97867e-05 W
+ Runtime Dynamic = 0.0345689 W
+
+ Floating Point RF:
+ Area = 0.05713 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 7.67427e-05 W
+ Gate Leakage = 6.35938e-05 W
+ Runtime Dynamic = 0.00403765 W
+
+ Instruction Scheduler:
+ Area = 0.0582889 mm^2
+ Peak Dynamic = 0.0522571 W
+ Subthreshold Leakage = 0.000128698 W
+ Gate Leakage = 0.000185714 W
+ Runtime Dynamic = 0.0787473 W
+
+ Instruction Window:
+ Area = 0.053925 mm^2
+ Peak Dynamic = 0.0445895 W
+ Subthreshold Leakage = 9.52936e-05 W
+ Gate Leakage = 0.000130718 W
+ Runtime Dynamic = 0.0602231 W
+
+ FP Instruction Window:
+ Area = 0.00436388 mm^2
+ Peak Dynamic = 0.00766759 W
+ Subthreshold Leakage = 3.34043e-05 W
+ Gate Leakage = 5.49962e-05 W
+ Runtime Dynamic = 0.0185242 W
+
+ Integer ALUs (Count: 3 ):
+ Area = 0.312404 mm^2
+ Peak Dynamic = 0.0283684 W
+ Subthreshold Leakage = 0.0140724 W
+ Gate Leakage = 0.0165703 W
+ Runtime Dynamic = 0.0373268 W
+
+ Floating Point Units (FPUs) (Count: 1 ):
+ Area = 0.971259 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 0.0109377 W
+ Gate Leakage = 0.0128792 W
+ Runtime Dynamic = 0.0373268 W
+
+ Complex ALUs (Mul/Div) (Count: 1 ):
+ Area = 0.104135 mm^2
+ Peak Dynamic = 0.0204053 W
+ Subthreshold Leakage = 0.00469079 W
+ Gate Leakage = 0.00552345 W
+ Runtime Dynamic = 0.049769 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.00404385 mm^2
+ Peak Dynamic = 0.0824719 W
+ Subthreshold Leakage = 0.000495836 W
+ Gate Leakage = 0.000583852 W
+ Runtime Dynamic = 0.144892 W
+
+*****************************************************************************************
+First Level Directory
+ Area = 0.244856 mm^2
+ Peak Dynamic = 0.0224876 W
+ Subthreshold Leakage = 0.00198854 W
+ Gate Leakage = 0.00327816 W
+ Runtime Dynamic = 1.80289 W
+
+*****************************************************************************************
+Memory Controller:
+ Area = 0.554183 mm^2
+ Peak Dynamic = 0.31033 W
+ Subthreshold Leakage = 0.0020922 W
+ Gate Leakage = 0.00751531 W
+ Runtime Dynamic = 2.21514 W
+
+ Front End Engine:
+ Area = 0.111447 mm^2
+ Peak Dynamic = 0.0117646 W
+ Subthreshold Leakage = 0.000188068 W
+ Gate Leakage = 0.000217277 W
+ Runtime Dynamic = 0.0796061 W
+
+ Transaction Engine:
+ Area = 0.113609 mm^2
+ Peak Dynamic = 0.160252 W
+ Subthreshold Leakage = 0.000380826 W
+ Gate Leakage = 0.00145961 W
+ Runtime Dynamic = 1.08436 W
+
+ PHY:
+ Area = 0.329127 mm^2
+ Peak Dynamic = 0.138314 W
+ Subthreshold Leakage = 0.00152331 W
+ Gate Leakage = 0.00583843 W
+ Runtime Dynamic = 1.05117 W
+
+*****************************************************************************************
+Flash Controller:
+ Area = 0.109065 mm^2
+ Peak Dynamic = 0.0299827 W
+ Subthreshold Leakage = 0.000522213 W
+ Gate Leakage = 0.0020015 W
+ Runtime Dynamic = 0.0209879 W
+
+*****************************************************************************************
+NIU:
+ Area = 0.261302 mm^2
+ Peak Dynamic = 0.164859 W
+ Subthreshold Leakage = 0.000730171 W
+ Gate Leakage = 0.00279855 W
+ Runtime Dynamic = 0.115402 W
+
+*****************************************************************************************
+PCIe:
+ Area = 0.292355 mm^2
+ Peak Dynamic = 0.215383 W
+ Subthreshold Leakage = 0.00135405 W
+ Gate Leakage = 0.00518971 W
+ Runtime Dynamic = 0.150768 W
+
+*****************************************************************************************
+BUSES
+ Area = 0.0162858 mm^2
+ Peak Dynamic = 0.0187629 W
+ Subthreshold Leakage = 0.000240784 W
+ Gate Leakage = 0.000341076 W
+ Runtime Dynamic = 0.0938146 W
+
+ Bus:
+ Area = 0.0162858 mm^2
+ Peak Dynamic = 0.0187629 W
+ Subthreshold Leakage = 0.000240784 W
+ Gate Leakage = 0.000341076 W
+ Runtime Dynamic = 0.0938146 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.8 of Aug, 2010) is computing the target processor...
+
+
+McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 40 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= conservative interconnect technology projection
+ Core clock Rate(MHz) 800
+
+*****************************************************************************************
+Processor:
+ Area = 5.48929 mm^2
+ Peak Power = 0.577263 W
+ Total Leakage = 0.127046 W
+ Peak Dynamic = 0.450217 W
+ Subthreshold Leakage = 0.0608257 W
+ Gate Leakage = 0.0662198 W
+ Runtime Dynamic = 1.13304 W
+
+ Total Cores:
+ Device Type= ITRS low operating power device type
+ Area = 4.98521 mm^2
+ Peak Dynamic = 0.425609 W
+ Subthreshold Leakage = 0.0577408 W
+ Gate Leakage = 0.061241 W
+ Runtime Dynamic = 0.37879 W
+
+ Total First Level Directory:
+ Device Type= ITRS low operating power device type
+ Area = 0.489711 mm^2
+ Peak Dynamic = 0.0179901 W
+ Subthreshold Leakage = 0.0029286 W
+ Gate Leakage = 0.00476045 W
+ Runtime Dynamic = 0.721156 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS low operating power device type
+ Area = 0.0143604 mm^2
+ Peak Dynamic = 0.00661787 W
+ Subthreshold Leakage = 0.000156344 W
+ Gate Leakage = 0.000218372 W
+ Runtime Dynamic = 0.0330893 W
+
+*****************************************************************************************
+Core:
+ Area = 2.49261 mm^2
+ Peak Dynamic = 0.212805 W
+ Subthreshold Leakage = 0.0288704 W
+ Gate Leakage = 0.0306205 W
+ Runtime Dynamic = 0.37879 W
+
+ Instruction Fetch Unit:
+ Area = 0.450898 mm^2
+ Peak Dynamic = 0.0710479 W
+ Subthreshold Leakage = 0.00360576 W
+ Gate Leakage = 0.00232348 W
+ Runtime Dynamic = 0.101921 W
+
+ Instruction Cache:
+ Area = 0.235613 mm^2
+ Peak Dynamic = 0.0124171 W
+ Subthreshold Leakage = 0.00228006 W
+ Gate Leakage = 0.00157114 W
+ Runtime Dynamic = 0.018465 W
+
+ Branch Target Buffer:
+ Area = 0.136309 mm^2
+ Peak Dynamic = 0.00413545 W
+ Subthreshold Leakage = 0.000644359 W
+ Gate Leakage = 0.000219381 W
+ Runtime Dynamic = 0.0165418 W
+
+ Branch Predictor:
+ Area = 0.064441 mm^2
+ Peak Dynamic = 0.00326317 W
+ Subthreshold Leakage = 0.000518728 W
+ Gate Leakage = 0.000346624 W
+ Runtime Dynamic = 0.0045551 W
+
+ Global Predictor:
+ Area = 0.0313969 mm^2
+ Peak Dynamic = 0.00149811 W
+ Subthreshold Leakage = 0.000255012 W
+ Gate Leakage = 0.000169581 W
+ Runtime Dynamic = 0.00218323 W
+
+ Local Predictor:
+ Area = 0.000711939 mm^2
+ Peak Dynamic = 0.000120406 W
+ Subthreshold Leakage = 4.51731e-06 W
+ Gate Leakage = 4.09128e-06 W
+ Runtime Dynamic = 0.000188626 W
+
+ Area = 0.000650815 mm^2
+ Peak Dynamic = 9.20494e-05 W
+ Subthreshold Leakage = 4.25393e-06 W
+ Gate Leakage = 3.44945e-06 W
+ Runtime Dynamic = 0.000141995 W
+
+ Chooser:
+ Area = 0.0313969 mm^2
+ Peak Dynamic = 0.00149811 W
+ Subthreshold Leakage = 0.000255012 W
+ Gate Leakage = 0.000169581 W
+ Runtime Dynamic = 0.00218323 W
+
+ RAS:
+ Area = 0.000996272 mm^2
+ Peak Dynamic = 0.000146549 W
+ Subthreshold Leakage = 4.18739e-06 W
+ Gate Leakage = 3.3701e-06 W
+ Runtime Dynamic = 2.49598e-08 W
+
+ Instruction Buffer:
+ Area = 0.00820192 mm^2
+ Peak Dynamic = 0.0267951 W
+ Subthreshold Leakage = 4.66516e-05 W
+ Gate Leakage = 3.15732e-05 W
+ Runtime Dynamic = 0.0153115 W
+
+ Instruction Decoder:
+ Area = 0.00468731 mm^2
+ Peak Dynamic = 0.023524 W
+ Subthreshold Leakage = 9.40317e-05 W
+ Gate Leakage = 8.38587e-05 W
+ Runtime Dynamic = 0.047048 W
+
+ Renaming Unit:
+ Area = 0.0903068 mm^2
+ Peak Dynamic = 0.0180606 W
+ Subthreshold Leakage = 0.000254554 W
+ Gate Leakage = 0.000232507 W
+ Runtime Dynamic = 0.0292515 W
+
+ Int Front End RAT:
+ Area = 0.0543672 mm^2
+ Peak Dynamic = 0.00950468 W
+ Subthreshold Leakage = 0.000129029 W
+ Gate Leakage = 8.82378e-05 W
+ Runtime Dynamic = 0.0190094 W
+
+ FP Front End RAT:
+ Area = 0.0185325 mm^2
+ Peak Dynamic = 0.00379768 W
+ Subthreshold Leakage = 7.38761e-05 W
+ Gate Leakage = 4.91016e-05 W
+ Runtime Dynamic = 0.00379768 W
+
+ Free List:
+ Area = 0.00599955 mm^2
+ Peak Dynamic = 0.00090026 W
+ Subthreshold Leakage = 9.15772e-06 W
+ Gate Leakage = 7.32213e-06 W
+ Runtime Dynamic = 0.00360104 W
+
+ Int Retire RAT:
+ Area = 0.00605969 mm^2
+ Peak Dynamic = 0.00179357 W
+ Subthreshold Leakage = 9.8107e-06 W
+ Gate Leakage = 8.43969e-06 W
+ Runtime Dynamic = 0.00179357 W
+
+ FP Retire RAT:
+ Area = 0.000650815 mm^2
+ Peak Dynamic = 0.000269336 W
+ Subthreshold Leakage = 4.25393e-06 W
+ Gate Leakage = 3.44945e-06 W
+ Runtime Dynamic = 0.000269336 W
+
+ FP Free List:
+ Area = 0.00305098 mm^2
+ Peak Dynamic = 0.000780497 W
+ Subthreshold Leakage = 6.49266e-06 W
+ Gate Leakage = 5.05395e-06 W
+ Runtime Dynamic = 0.000780497 W
+
+ Load Store Unit:
+ Area = 0.274913 mm^2
+ Peak Dynamic = 0.0138993 W
+ Subthreshold Leakage = 0.00235727 W
+ Gate Leakage = 0.00171176 W
+ Runtime Dynamic = 0.0781216 W
+
+ Data Cache:
+ Area = 0.240878 mm^2
+ Peak Dynamic = 0.0117466 W
+ Subthreshold Leakage = 0.00230394 W
+ Gate Leakage = 0.00160316 W
+ Runtime Dynamic = 0.0761042 W
+
+ StoreQ:
+ Area = 0.00754674 mm^2
+ Peak Dynamic = 0.00143235 W
+ Subthreshold Leakage = 3.13936e-05 W
+ Gate Leakage = 3.76992e-05 W
+ Runtime Dynamic = 0.00201739 W
+
+ Memory Management Unit:
+ Area = 0.021508 mm^2
+ Peak Dynamic = 0.0050935 W
+ Subthreshold Leakage = 0.000155095 W
+ Gate Leakage = 0.000211049 W
+ Runtime Dynamic = 0.0148284 W
+
+ Itlb:
+ Area = 0.00993091 mm^2
+ Peak Dynamic = 0.00247139 W
+ Subthreshold Leakage = 6.65801e-05 W
+ Gate Leakage = 7.00732e-05 W
+ Runtime Dynamic = 0.0049428 W
+
+ Dtlb:
+ Area = 0.00993091 mm^2
+ Peak Dynamic = 0.00175468 W
+ Subthreshold Leakage = 6.65801e-05 W
+ Gate Leakage = 7.00732e-05 W
+ Runtime Dynamic = 0.00988557 W
+
+ Execution Unit:
+ Area = 1.65498 mm^2
+ Peak Dynamic = 0.104703 W
+ Subthreshold Leakage = 0.0224977 W
+ Gate Leakage = 0.0261417 W
+ Runtime Dynamic = 0.154667 W
+
+ Register Files:
+ Area = 0.203203 mm^2
+ Peak Dynamic = 0.0305313 W
+ Subthreshold Leakage = 0.000145099 W
+ Gate Leakage = 0.000118628 W
+ Runtime Dynamic = 0.0154426 W
+
+ Integer RF:
+ Area = 0.146073 mm^2
+ Peak Dynamic = 0.0305313 W
+ Subthreshold Leakage = 8.85877e-05 W
+ Gate Leakage = 7.24537e-05 W
+ Runtime Dynamic = 0.0138276 W
+
+ Floating Point RF:
+ Area = 0.05713 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 5.6511e-05 W
+ Gate Leakage = 4.61745e-05 W
+ Runtime Dynamic = 0.00161506 W
+
+ Instruction Scheduler:
+ Area = 0.0582889 mm^2
+ Peak Dynamic = 0.0209028 W
+ Subthreshold Leakage = 9.47693e-05 W
+ Gate Leakage = 0.000134844 W
+ Runtime Dynamic = 0.0314989 W
+
+ Instruction Window:
+ Area = 0.053925 mm^2
+ Peak Dynamic = 0.0178358 W
+ Subthreshold Leakage = 7.01713e-05 W
+ Gate Leakage = 9.49122e-05 W
+ Runtime Dynamic = 0.0240893 W
+
+ FP Instruction Window:
+ Area = 0.00436388 mm^2
+ Peak Dynamic = 0.00306704 W
+ Subthreshold Leakage = 2.45979e-05 W
+ Gate Leakage = 3.99319e-05 W
+ Runtime Dynamic = 0.00740966 W
+
+ Integer ALUs (Count: 3 ):
+ Area = 0.312404 mm^2
+ Peak Dynamic = 0.0113473 W
+ Subthreshold Leakage = 0.0103625 W
+ Gate Leakage = 0.0120315 W
+ Runtime Dynamic = 0.0149307 W
+
+ Floating Point Units (FPUs) (Count: 1 ):
+ Area = 0.971259 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 0.00805417 W
+ Gate Leakage = 0.00935142 W
+ Runtime Dynamic = 0.0149307 W
+
+ Complex ALUs (Mul/Div) (Count: 1 ):
+ Area = 0.104135 mm^2
+ Peak Dynamic = 0.00816212 W
+ Subthreshold Leakage = 0.00345415 W
+ Gate Leakage = 0.0040105 W
+ Runtime Dynamic = 0.0199076 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.00404385 mm^2
+ Peak Dynamic = 0.0329888 W
+ Subthreshold Leakage = 0.000365119 W
+ Gate Leakage = 0.000423926 W
+ Runtime Dynamic = 0.0579569 W
+
+*****************************************************************************************
+First Level Directory
+ Area = 0.244856 mm^2
+ Peak Dynamic = 0.00899504 W
+ Subthreshold Leakage = 0.0014643 W
+ Gate Leakage = 0.00238022 W
+ Runtime Dynamic = 0.721156 W
+
+*****************************************************************************************
+BUSES
+ Area = 0.0143604 mm^2
+ Peak Dynamic = 0.00661787 W
+ Subthreshold Leakage = 0.000156344 W
+ Gate Leakage = 0.000218372 W
+ Runtime Dynamic = 0.0330893 W
+
+ Bus:
+ Area = 0.0143604 mm^2
+ Peak Dynamic = 0.00661787 W
+ Subthreshold Leakage = 0.000156344 W
+ Gate Leakage = 0.000218372 W
+ Runtime Dynamic = 0.0330893 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.7 of May, 2010) is computing the target processor...
+
+Warning: icache array structure cannot satisfy throughput constraint.
+Warning: icache array structure cannot satisfy latency constraint.
+Warning: InstBuffer array structure cannot satisfy throughput constraint.
+Warning: InstBuffer array structure cannot satisfy latency constraint.
+Warning: Branch Target Buffer array structure cannot satisfy throughput constraint.
+Warning: Branch Target Buffer array structure cannot satisfy latency constraint.
+Warning: Global Predictor array structure cannot satisfy throughput constraint.
+Warning: Global Predictor array structure cannot satisfy latency constraint.
+Warning: L1 local Predictor array structure cannot satisfy throughput constraint.
+Warning: L1 local Predictor array structure cannot satisfy latency constraint.
+Warning: L2 local Predictor array structure cannot satisfy throughput constraint.
+Warning: L2 local Predictor array structure cannot satisfy latency constraint.
+Warning: Predictor Chooser array structure cannot satisfy throughput constraint.
+Warning: Predictor Chooser array structure cannot satisfy latency constraint.
+Warning: RAS array structure cannot satisfy throughput constraint.
+Warning: RAS array structure cannot satisfy latency constraint.
+Warning: dcache array structure cannot satisfy throughput constraint.
+Warning: dcache array structure cannot satisfy latency constraint.
+Warning: Integer Register File array structure cannot satisfy throughput constraint.
+Warning: Integer Register File array structure cannot satisfy latency constraint.
+Warning: Floating point Register File array structure cannot satisfy throughput constraint.
+Warning: Floating point Register File array structure cannot satisfy latency constraint.
+Warning: ReorderBuffer array structure cannot satisfy throughput constraint.
+Warning: ReorderBuffer array structure cannot satisfy latency constraint.
+Warning: Int RetireRAT array structure cannot satisfy throughput constraint.
+Warning: Int RetireRAT array structure cannot satisfy latency constraint.
+Warning: Int RetireRAT array structure cannot satisfy latency constraint.
+Warning: Int Free List array structure cannot satisfy throughput constraint.
+Warning: Int Free List array structure cannot satisfy latency constraint.
+Warning: Int Free List array structure cannot satisfy throughput constraint.
+Warning: Int Free List array structure cannot satisfy latency constraint.
+Warning: MC ReadBuffer array structure cannot satisfy throughput constraint.
+Warning: MC ReadBuffer array structure cannot satisfy latency constraint.
+Warning: MC writeBuffer array structure cannot satisfy throughput constraint.
+Warning: MC writeBuffer array structure cannot satisfy latency constraint.
+
+McPAT (version 0.7 of May, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 180 nm
+ Interconnect metal projection= aggressive interconnect technology projection
+ Core clock Rate(MHz) 1200
+
+*****************************************************************************************
+Processor:
+ Area = 323.859 mm^2
+ Peak Power = 90.0375 W
+ Total Leakage = 0.156795 W
+ Peak Dynamic = 89.8807 W
+ Subthreshold Leakage = 0.151936 W
+ Gate Leakage = 0.00485969 W
+ Runtime Dynamic = 85.2036 W
+
+ Total Cores:
+ Device Type= ITRS high performance device type
+ Area = 137.839 mm^2
+ Peak Dynamic = 60.6776 W
+ Subthreshold Leakage = 0.067186 W
+ Gate Leakage = 0.00428355 W
+ Runtime Dynamic = 73.9555 W
+
+ Total L2s:
+ Device Type= ITRS high performance device type
+ Area = 137.063 mm^2
+ Peak Dynamic = 3.55835 W
+ Subthreshold Leakage = 0.0778886 W
+ Gate Leakage = 0.00016078 W
+ Runtime Dynamic = 6.34872 W
+
+ Total First Level Directory:
+ Device Type= ITRS high performance device type
+ Area = 1.59954 mm^2
+ Peak Dynamic = 0.805902 W
+ Subthreshold Leakage = 0.000311783 W
+ Gate Leakage = 2.63568e-05 W
+ Runtime Dynamic = 0.547665 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS high performance device type
+ Area = 29.1057 mm^2
+ Peak Dynamic = 16.5188 W
+ Subthreshold Leakage = 0.00292556 W
+ Gate Leakage = 0.000166293 W
+ Runtime Dynamic = 2.54446 W
+
+ Total MCs:
+ Device Type= ITRS high performance device type
+ Area = 18.2519 mm^2
+ Peak Dynamic = 8.32001 W
+ Subthreshold Leakage = 0.00362353 W
+ Gate Leakage = 0.000222708 W
+ Runtime Dynamic = 1.80731 W
+
+*****************************************************************************************
+Core:
+ Area = 137.839 mm^2
+ Peak Dynamic = 60.6776 W
+ Subthreshold Leakage = 0.067186 W
+ Gate Leakage = 0.00428355 W
+ Runtime Dynamic = 73.9555 W
+
+ Instruction Fetch Unit:
+ Area = 27.6096 mm^2
+ Peak Dynamic = 9.86655 W
+ Subthreshold Leakage = 0.00622106 W
+ Gate Leakage = 0.000344671 W
+ Runtime Dynamic = 10.0567 W
+
+ Instruction Cache:
+ Area = 11.4511 mm^2
+ Peak Dynamic = 1.53259 W
+ Subthreshold Leakage = 0.00371341 W
+ Gate Leakage = 0.000171069 W
+ Runtime Dynamic = 2.13168 W
+
+ Branch Target Buffer:
+ Area = 13.3377 mm^2
+ Peak Dynamic = 0.56236 W
+ Subthreshold Leakage = 0.001581 W
+ Gate Leakage = 9.5198e-05 W
+ Runtime Dynamic = 2.24944 W
+
+ Branch Predictor:
+ Area = 2.1618 mm^2
+ Peak Dynamic = 0.234643 W
+ Subthreshold Leakage = 0.000469396 W
+ Gate Leakage = 2.01907e-05 W
+ Runtime Dynamic = 0.198646 W
+
+ Global Predictor:
+ Area = 0.893575 mm^2
+ Peak Dynamic = 0.0726984 W
+ Subthreshold Leakage = 0.000182866 W
+ Gate Leakage = 7.91951e-06 W
+ Runtime Dynamic = 0.0726984 W
+
+ Local Predictor:
+ Area = 0.420241 mm^2
+ Peak Dynamic = 0.0532456 W
+ Subthreshold Leakage = 9.20027e-05 W
+ Gate Leakage = 3.89162e-06 W
+ Runtime Dynamic = 0.0532456 W
+
+ Area = 0.291886 mm^2
+ Peak Dynamic = 0.0292091 W
+ Subthreshold Leakage = 5.262e-05 W
+ Gate Leakage = 2.51093e-06 W
+ Runtime Dynamic = 0.0292091 W
+
+ Chooser:
+ Area = 0.893575 mm^2
+ Peak Dynamic = 0.0726984 W
+ Subthreshold Leakage = 0.000182866 W
+ Gate Leakage = 7.91951e-06 W
+ Runtime Dynamic = 0.0726984 W
+
+ RAS:
+ Area = 0.0827607 mm^2
+ Peak Dynamic = 0.0360009 W
+ Subthreshold Leakage = 1.16623e-05 W
+ Gate Leakage = 4.60036e-07 W
+ Runtime Dynamic = 3.58028e-06 W
+
+ Instruction Buffer:
+ Area = 0.465385 mm^2
+ Peak Dynamic = 2.10455 W
+ Subthreshold Leakage = 6.13248e-05 W
+ Gate Leakage = 4.88113e-06 W
+ Runtime Dynamic = 1.40303 W
+
+ Instruction Decoder:
+ Area = 0.146031 mm^2
+ Peak Dynamic = 4.07384 W
+ Subthreshold Leakage = 7.07416e-05 W
+ Gate Leakage = 3.32268e-06 W
+ Runtime Dynamic = 4.07384 W
+
+ Renaming Unit:
+ Area = 11.7262 mm^2
+ Peak Dynamic = 12.5584 W
+ Subthreshold Leakage = 0.000886804 W
+ Gate Leakage = 9.92419e-05 W
+ Runtime Dynamic = 9.90647 W
+
+ Int Front End RAT:
+ Area = 8.24345 mm^2
+ Peak Dynamic = 8.04227 W
+ Subthreshold Leakage = 0.000376247 W
+ Gate Leakage = 3.40623e-05 W
+ Runtime Dynamic = 8.04227 W
+
+ FP Front End RAT:
+ Area = 2.549 mm^2
+ Peak Dynamic = 2.75082 W
+ Subthreshold Leakage = 0.000149367 W
+ Gate Leakage = 1.30084e-05 W
+ Runtime Dynamic = 1.37541 W
+
+ Free List:
+ Area = 0.446019 mm^2
+ Peak Dynamic = 0.156051 W
+ Subthreshold Leakage = 1.32133e-05 W
+ Gate Leakage = 7.4667e-07 W
+ Runtime Dynamic = 0.312102 W
+
+ Int Retire RAT:
+ Area = 0.184445 mm^2
+ Peak Dynamic = 0.102656 W
+ Subthreshold Leakage = 8.50239e-06 W
+ Gate Leakage = 5.28869e-07 W
+ Runtime Dynamic = 0.102656 W
+
+ FP Retire RAT:
+ Area = 0.0567228 mm^2
+ Peak Dynamic = 0.0367258 W
+ Subthreshold Leakage = 5.67894e-06 W
+ Gate Leakage = 3.75578e-07 W
+ Runtime Dynamic = 0.0183629 W
+
+ FP Free List:
+ Area = 0.198929 mm^2
+ Peak Dynamic = 0.111293 W
+ Subthreshold Leakage = 8.61952e-06 W
+ Gate Leakage = 5.10875e-07 W
+ Runtime Dynamic = 0.0556467 W
+
+ Load Store Unit:
+ Area = 49.742 mm^2
+ Peak Dynamic = 11.7952 W
+ Subthreshold Leakage = 0.00715349 W
+ Gate Leakage = 0.00052778 W
+ Runtime Dynamic = 31.7658 W
+
+ Data Cache:
+ Area = 36.106 mm^2
+ Peak Dynamic = 9.28008 W
+ Subthreshold Leakage = 0.00663485 W
+ Gate Leakage = 0.000466572 W
+ Runtime Dynamic = 31.332 W
+
+ LoadQ:
+ Area = 2.60005 mm^2
+ Peak Dynamic = 0.578279 W
+ Subthreshold Leakage = 9.67302e-05 W
+ Gate Leakage = 5.59905e-06 W
+ Runtime Dynamic = 0.14457 W
+
+ StoreQ:
+ Area = 2.60005 mm^2
+ Peak Dynamic = 0.578279 W
+ Subthreshold Leakage = 9.67302e-05 W
+ Gate Leakage = 5.59905e-06 W
+ Runtime Dynamic = 0.289139 W
+
+ Memory Management Unit:
+ Area = 8.74543 mm^2
+ Peak Dynamic = 3.77198 W
+ Subthreshold Leakage = 0.00119904 W
+ Gate Leakage = 0.000127183 W
+ Runtime Dynamic = 4.82688 W
+
+ Itlb:
+ Area = 1.97969 mm^2
+ Peak Dynamic = 0.537563 W
+ Subthreshold Leakage = 0.000270576 W
+ Gate Leakage = 2.0845e-05 W
+ Runtime Dynamic = 1.07513 W
+
+ Dtlb:
+ Area = 6.71814 mm^2
+ Peak Dynamic = 1.87586 W
+ Subthreshold Leakage = 0.00060329 W
+ Gate Leakage = 5.63286e-05 W
+ Runtime Dynamic = 3.75174 W
+
+ Execution Unit:
+ Area = 31.4918 mm^2
+ Peak Dynamic = 22.6855 W
+ Subthreshold Leakage = 0.0320294 W
+ Gate Leakage = 0.00198102 W
+ Runtime Dynamic = 17.3997 W
+
+ Register Files:
+ Area = 9.9318 mm^2
+ Peak Dynamic = 3.92301 W
+ Subthreshold Leakage = 0.000295352 W
+ Gate Leakage = 1.33517e-05 W
+ Runtime Dynamic = 1.7929 W
+
+ Integer RF:
+ Area = 6.76678 mm^2
+ Peak Dynamic = 2.35597 W
+ Subthreshold Leakage = 0.000185762 W
+ Gate Leakage = 8.51701e-06 W
+ Runtime Dynamic = 1.60634 W
+
+ Floating Point RF:
+ Area = 3.16503 mm^2
+ Peak Dynamic = 1.56704 W
+ Subthreshold Leakage = 0.00010959 W
+ Gate Leakage = 4.83467e-06 W
+ Runtime Dynamic = 0.186553 W
+
+ Instruction Scheduler:
+ Area = 5.20691 mm^2
+ Peak Dynamic = 2.77224 W
+ Subthreshold Leakage = 0.000202187 W
+ Gate Leakage = 1.05832e-05 W
+ Runtime Dynamic = 3.11355 W
+
+ Instruction Window:
+ Area = 1.23862 mm^2
+ Peak Dynamic = 0.985117 W
+ Subthreshold Leakage = 5.55506e-05 W
+ Gate Leakage = 3.78978e-06 W
+ Runtime Dynamic = 1.23906 W
+
+ FP Instruction Window:
+ Area = 0.481718 mm^2
+ Peak Dynamic = 0.438839 W
+ Subthreshold Leakage = 2.5962e-05 W
+ Gate Leakage = 2.00351e-06 W
+ Runtime Dynamic = 0.526208 W
+
+ ROB:
+ Area = 3.48657 mm^2
+ Peak Dynamic = 1.34828 W
+ Subthreshold Leakage = 0.000120674 W
+ Gate Leakage = 4.78991e-06 W
+ Runtime Dynamic = 1.34828 W
+
+ Integer ALUs (Count: 4 ):
+ Area = 3.4944 mm^2
+ Peak Dynamic = 4.23312 W
+ Subthreshold Leakage = 0.016149 W
+ Gate Leakage = 0.000986885 W
+ Runtime Dynamic = 3.21343 W
+
+ Floating Point Units (FPUs) (Count: 1 ):
+ Area = 12.705 mm^2
+ Peak Dynamic = 3.52215 W
+ Subthreshold Leakage = 0.0146787 W
+ Gate Leakage = 0.000897034 W
+ Runtime Dynamic = 3.52215 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.106062 mm^2
+ Peak Dynamic = 6.87645 W
+ Subthreshold Leakage = 0.000378957 W
+ Gate Leakage = 2.31585e-05 W
+ Runtime Dynamic = 5.75766 W
+
+*****************************************************************************************
+L2
+ Area = 137.063 mm^2
+ Peak Dynamic = 3.55835 W
+ Subthreshold Leakage = 0.0778886 W
+ Gate Leakage = 0.00016078 W
+ Runtime Dynamic = 6.34872 W
+
+*****************************************************************************************
+Second Level Directory
+ Area = 1.59954 mm^2
+ Peak Dynamic = 0.805902 W
+ Subthreshold Leakage = 0.000311783 W
+ Gate Leakage = 2.63568e-05 W
+ Runtime Dynamic = 0.547665 W
+
+*****************************************************************************************
+Memory Controller:
+ Area = 9.12595 mm^2
+ Peak Dynamic = 4.16 W
+ Subthreshold Leakage = 0.00181177 W
+ Gate Leakage = 0.000111354 W
+ Runtime Dynamic = 1.80731 W
+
+ Front End Engine:
+ Area = 5.49326 mm^2
+ Peak Dynamic = 1.42883 W
+ Subthreshold Leakage = 0.000132955 W
+ Gate Leakage = 8.76015e-06 W
+ Runtime Dynamic = 0.348049 W
+
+ Transaction Engine:
+ Area = 1.50616 mm^2
+ Peak Dynamic = 1.93117 W
+ Subthreshold Leakage = 0.000696058 W
+ Gate Leakage = 4.25369e-05 W
+ Runtime Dynamic = 0.579332 W
+
+ PHY:
+ Area = 2.12653 mm^2
+ Peak Dynamic = 0.8 W
+ Subthreshold Leakage = 0.000982753 W
+ Gate Leakage = 6.00571e-05 W
+ Runtime Dynamic = 0.879928 W
+
+*****************************************************************************************
+NOC
+ Area = 29.1057 mm^2
+ Peak Dynamic = 16.5188 W
+ Subthreshold Leakage = 0.00292556 W
+ Gate Leakage = 0.000166293 W
+ Runtime Dynamic = 2.54446 W
+
+ Router:
+ Area = 28.4197 mm^2
+ Peak Dynamic = 8.76431 W
+ Subthreshold Leakage = 0.00199965 W
+ Gate Leakage = 0.000109709 W
+ Runtime Dynamic = 1.25204 W
+
+ Virtual Channel Buffer:
+ Area = 17.0424 mm^2
+ Peak Dynamic = 7.30291 W
+ Subthreshold Leakage = 0.00119658 W
+ Gate Leakage = 4.15511e-05 W
+ Runtime Dynamic = 1.04327 W
+
+ Crossbar:
+ Area = 0.357655 mm^2
+ Peak Dynamic = 1.27997 W
+ Subthreshold Leakage = 0.000801415 W
+ Gate Leakage = 6.80527e-05 W
+ Runtime Dynamic = 0.182853 W
+
+ Arbiter:
+ Peak Dynamic = 0.18143 W
+ Subthreshold Leakage = 1.65956e-06 W
+ Gate Leakage = 1.05559e-07 W
+ Runtime Dynamic = 0.0259186 W
+
+ Per Router :
+ Area = 0.685989 mm^2
+ Peak Dynamic = 7.75447 W
+ Subthreshold Leakage = 0.000925911 W
+ Gate Leakage = 5.65834e-05 W
+ Runtime Dynamic = 1.29241 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.8 of Aug, 2010) is computing the target processor...
+
+Warning: icache array structure cannot satisfy latency constraint.
+Warning: dcache array structure cannot satisfy latency constraint.
+
+McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 90 nm
+ Interconnect metal projection= aggressive interconnect technology projection
+ Core clock Rate(MHz) 1200
+
+*****************************************************************************************
+Processor:
+ Area = 139.86 mm^2
+ Peak Power = 34.9936 W
+ Total Leakage = 4.16949 W
+ Peak Dynamic = 30.8241 W
+ Subthreshold Leakage = 3.86203 W
+ Gate Leakage = 0.307463 W
+ Runtime Dynamic = 34.0612 W
+
+ Total Cores:
+ Device Type= ITRS high performance device type
+ Area = 61.1957 mm^2
+ Peak Dynamic = 19.6269 W
+ Subthreshold Leakage = 2.04452 W
+ Gate Leakage = 0.277429 W
+ Runtime Dynamic = 29.5972 W
+
+ Total L2s:
+ Device Type= ITRS high performance device type
+ Area = 62.2653 mm^2
+ Peak Dynamic = 1.42987 W
+ Subthreshold Leakage = 1.65481 W
+ Gate Leakage = 0.00860545 W
+ Runtime Dynamic = 2.73329 W
+
+ Total First Level Directory:
+ Device Type= ITRS high performance device type
+ Area = 0.533824 mm^2
+ Peak Dynamic = 0.275566 W
+ Subthreshold Leakage = 0.00929753 W
+ Gate Leakage = 0.00179126 W
+ Runtime Dynamic = 0.193681 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS high performance device type
+ Area = 8.77595 mm^2
+ Peak Dynamic = 6.17873 W
+ Subthreshold Leakage = 0.108357 W
+ Gate Leakage = 0.0139259 W
+ Runtime Dynamic = 0.963385 W
+
+ Total MCs:
+ Device Type= ITRS high performance device type
+ Area = 7.08925 mm^2
+ Peak Dynamic = 3.3131 W
+ Subthreshold Leakage = 0.0450389 W
+ Gate Leakage = 0.00571171 W
+ Runtime Dynamic = 0.573656 W
+
+*****************************************************************************************
+Core:
+ Area = 61.1957 mm^2
+ Peak Dynamic = 19.6269 W
+ Subthreshold Leakage = 2.04452 W
+ Gate Leakage = 0.277429 W
+ Runtime Dynamic = 29.5972 W
+
+ Instruction Fetch Unit:
+ Area = 7.40352 mm^2
+ Peak Dynamic = 2.10646 W
+ Subthreshold Leakage = 0.126581 W
+ Gate Leakage = 0.0150397 W
+ Runtime Dynamic = 2.55478 W
+
+ Instruction Cache:
+ Area = 5.01657 mm^2
+ Peak Dynamic = 0.745807 W
+ Subthreshold Leakage = 0.0906167 W
+ Gate Leakage = 0.010922 W
+ Runtime Dynamic = 1.22193 W
+
+ Branch Target Buffer:
+ Area = 1.63475 mm^2
+ Peak Dynamic = 0.0974373 W
+ Subthreshold Leakage = 0.0188281 W
+ Gate Leakage = 0.00126965 W
+ Runtime Dynamic = 0.389749 W
+
+ Branch Predictor:
+ Area = 0.474272 mm^2
+ Peak Dynamic = 0.0682449 W
+ Subthreshold Leakage = 0.00901262 W
+ Gate Leakage = 0.00067136 W
+ Runtime Dynamic = 0.0636543 W
+
+ Global Predictor:
+ Area = 0.190297 mm^2
+ Peak Dynamic = 0.0224229 W
+ Subthreshold Leakage = 0.00351842 W
+ Gate Leakage = 0.000260107 W
+ Runtime Dynamic = 0.0239711 W
+
+ Local Predictor:
+ Area = 0.0959237 mm^2
+ Peak Dynamic = 0.0143301 W
+ Subthreshold Leakage = 0.00171829 W
+ Gate Leakage = 0.00012889 W
+ Runtime Dynamic = 0.015711 W
+
+ Area = 0.0484908 mm^2
+ Peak Dynamic = 0.0077514 W
+ Subthreshold Leakage = 0.000926283 W
+ Gate Leakage = 7.55051e-05 W
+ Runtime Dynamic = 0.00850163 W
+
+ Chooser:
+ Area = 0.190297 mm^2
+ Peak Dynamic = 0.0224229 W
+ Subthreshold Leakage = 0.00351842 W
+ Gate Leakage = 0.000260107 W
+ Runtime Dynamic = 0.0239711 W
+
+ RAS:
+ Area = 0.0451868 mm^2
+ Peak Dynamic = 0.00906891 W
+ Subthreshold Leakage = 0.00025749 W
+ Gate Leakage = 2.22565e-05 W
+ Runtime Dynamic = 1.06361e-06 W
+
+ Instruction Buffer:
+ Area = 0.11139 mm^2
+ Peak Dynamic = 0.30298 W
+ Subthreshold Leakage = 0.000556928 W
+ Gate Leakage = 4.34124e-05 W
+ Runtime Dynamic = 0.201987 W
+
+ Instruction Decoder:
+ Area = 0.0481902 mm^2
+ Peak Dynamic = 0.677465 W
+ Subthreshold Leakage = 0.00135195 W
+ Gate Leakage = 0.000132907 W
+ Runtime Dynamic = 0.677465 W
+
+ Renaming Unit:
+ Area = 4.5037 mm^2
+ Peak Dynamic = 4.11785 W
+ Subthreshold Leakage = 0.0296009 W
+ Gate Leakage = 0.00668098 W
+ Runtime Dynamic = 3.24944 W
+
+ Int Front End RAT:
+ Area = 2.76467 mm^2
+ Peak Dynamic = 2.43279 W
+ Subthreshold Leakage = 0.0129405 W
+ Gate Leakage = 0.00255854 W
+ Runtime Dynamic = 2.43279 W
+
+ FP Front End RAT:
+ Area = 1.39233 mm^2
+ Peak Dynamic = 1.35403 W
+ Subthreshold Leakage = 0.00981219 W
+ Gate Leakage = 0.00205621 W
+ Runtime Dynamic = 0.677017 W
+
+ Free List:
+ Area = 0.116928 mm^2
+ Peak Dynamic = 0.0436483 W
+ Subthreshold Leakage = 0.000259915 W
+ Gate Leakage = 2.53395e-05 W
+ Runtime Dynamic = 0.0872966 W
+
+ Int Retire RAT:
+ Area = 0.0429772 mm^2
+ Peak Dynamic = 0.0318091 W
+ Subthreshold Leakage = 0.000152798 W
+ Gate Leakage = 1.86722e-05 W
+ Runtime Dynamic = 0.0318091 W
+
+ FP Retire RAT:
+ Area = 0.0153516 mm^2
+ Peak Dynamic = 0.00997874 W
+ Subthreshold Leakage = 8.06509e-05 W
+ Gate Leakage = 7.17049e-06 W
+ Runtime Dynamic = 0.00498937 W
+
+ FP Free List:
+ Area = 0.0530951 mm^2
+ Peak Dynamic = 0.0310624 W
+ Subthreshold Leakage = 0.000140326 W
+ Gate Leakage = 1.46766e-05 W
+ Runtime Dynamic = 0.0155312 W
+
+ Load Store Unit:
+ Area = 20.5622 mm^2
+ Peak Dynamic = 5.14439 W
+ Subthreshold Leakage = 0.207699 W
+ Gate Leakage = 0.0357344 W
+ Runtime Dynamic = 16.0217 W
+
+ Data Cache:
+ Area = 15.2468 mm^2
+ Peak Dynamic = 4.5468 W
+ Subthreshold Leakage = 0.19694 W
+ Gate Leakage = 0.0331746 W
+ Runtime Dynamic = 15.8781 W
+
+ LoadQ:
+ Area = 0.863734 mm^2
+ Peak Dynamic = 0.191536 W
+ Subthreshold Leakage = 0.00227213 W
+ Gate Leakage = 0.000279753 W
+ Runtime Dynamic = 0.047884 W
+
+ StoreQ:
+ Area = 0.863734 mm^2
+ Peak Dynamic = 0.191536 W
+ Subthreshold Leakage = 0.00227213 W
+ Gate Leakage = 0.000279753 W
+ Runtime Dynamic = 0.0957681 W
+
+ Memory Management Unit:
+ Area = 3.49533 mm^2
+ Peak Dynamic = 1.34391 W
+ Subthreshold Leakage = 0.0412098 W
+ Gate Leakage = 0.00931467 W
+ Runtime Dynamic = 2.25879 W
+
+ Itlb:
+ Area = 1.12903 mm^2
+ Peak Dynamic = 0.425717 W
+ Subthreshold Leakage = 0.0152632 W
+ Gate Leakage = 0.00308734 W
+ Runtime Dynamic = 0.851444 W
+
+ Dtlb:
+ Area = 2.24796 mm^2
+ Peak Dynamic = 0.703668 W
+ Subthreshold Leakage = 0.0197321 W
+ Gate Leakage = 0.00422696 W
+ Runtime Dynamic = 1.40735 W
+
+ Execution Unit:
+ Area = 18.9802 mm^2
+ Peak Dynamic = 6.91426 W
+ Subthreshold Leakage = 1.01207 W
+ Gate Leakage = 0.130415 W
+ Runtime Dynamic = 5.51245 W
+
+ Register Files:
+ Area = 4.63431 mm^2
+ Peak Dynamic = 1.07973 W
+ Subthreshold Leakage = 0.00557121 W
+ Gate Leakage = 0.000534421 W
+ Runtime Dynamic = 0.491409 W
+
+ Integer RF:
+ Area = 3.11444 mm^2
+ Peak Dynamic = 0.64479 W
+ Subthreshold Leakage = 0.00348926 W
+ Gate Leakage = 0.000338898 W
+ Runtime Dynamic = 0.43963 W
+
+ Floating Point RF:
+ Area = 1.51987 mm^2
+ Peak Dynamic = 0.434944 W
+ Subthreshold Leakage = 0.00208194 W
+ Gate Leakage = 0.000195523 W
+ Runtime Dynamic = 0.051779 W
+
+ Instruction Scheduler:
+ Area = 2.2958 mm^2
+ Peak Dynamic = 0.682653 W
+ Subthreshold Leakage = 0.0043779 W
+ Gate Leakage = 0.000496354 W
+ Runtime Dynamic = 0.783433 W
+
+ Instruction Window:
+ Area = 0.416485 mm^2
+ Peak Dynamic = 0.230852 W
+ Subthreshold Leakage = 0.001531 W
+ Gate Leakage = 0.000214549 W
+ Runtime Dynamic = 0.308242 W
+
+ FP Instruction Window:
+ Area = 0.160067 mm^2
+ Peak Dynamic = 0.0899719 W
+ Subthreshold Leakage = 0.000573841 W
+ Gate Leakage = 9.08104e-05 W
+ Runtime Dynamic = 0.113361 W
+
+ ROB:
+ Area = 1.71925 mm^2
+ Peak Dynamic = 0.361829 W
+ Subthreshold Leakage = 0.00227307 W
+ Gate Leakage = 0.000190995 W
+ Runtime Dynamic = 0.361829 W
+
+ Integer ALUs (Count: 4 ):
+ Area = 2.56256 mm^2
+ Peak Dynamic = 1.45952 W
+ Subthreshold Leakage = 0.514377 W
+ Gate Leakage = 0.0657924 W
+ Runtime Dynamic = 1.12031 W
+
+ Floating Point Units (FPUs) (Count: 1 ):
+ Area = 9.317 mm^2
+ Peak Dynamic = 1.32571 W
+ Subthreshold Leakage = 0.467545 W
+ Gate Leakage = 0.0598023 W
+ Runtime Dynamic = 1.32571 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.0521609 mm^2
+ Peak Dynamic = 2.15212 W
+ Subthreshold Leakage = 0.0139887 W
+ Gate Leakage = 0.00178925 W
+ Runtime Dynamic = 1.79159 W
+
+*****************************************************************************************
+L2
+ Area = 62.2653 mm^2
+ Peak Dynamic = 1.42987 W
+ Subthreshold Leakage = 1.65481 W
+ Gate Leakage = 0.00860545 W
+ Runtime Dynamic = 2.73329 W
+
+*****************************************************************************************
+Second Level Directory
+ Area = 0.533824 mm^2
+ Peak Dynamic = 0.275566 W
+ Subthreshold Leakage = 0.00929753 W
+ Gate Leakage = 0.00179126 W
+ Runtime Dynamic = 0.193681 W
+
+*****************************************************************************************
+Memory Controller:
+ Area = 3.54463 mm^2
+ Peak Dynamic = 1.65655 W
+ Subthreshold Leakage = 0.0225194 W
+ Gate Leakage = 0.00285586 W
+ Runtime Dynamic = 0.573656 W
+
+ Front End Engine:
+ Area = 1.72828 mm^2
+ Peak Dynamic = 0.389588 W
+ Subthreshold Leakage = 0.00246696 W
+ Gate Leakage = 0.000291005 W
+ Runtime Dynamic = 0.0911898 W
+
+ Transaction Engine:
+ Area = 0.75308 mm^2
+ Peak Dynamic = 1.13896 W
+ Subthreshold Leakage = 0.00831402 W
+ Gate Leakage = 0.00106342 W
+ Runtime Dynamic = 0.341678 W
+
+ PHY:
+ Area = 1.06326 mm^2
+ Peak Dynamic = 0.128 W
+ Subthreshold Leakage = 0.0117384 W
+ Gate Leakage = 0.00150143 W
+ Runtime Dynamic = 0.140788 W
+
+*****************************************************************************************
+NOC
+ Area = 8.77595 mm^2
+ Peak Dynamic = 6.17873 W
+ Subthreshold Leakage = 0.108357 W
+ Gate Leakage = 0.0139259 W
+ Runtime Dynamic = 0.963385 W
+
+ Router:
+ Area = 8.3047 mm^2
+ Peak Dynamic = 2.78895 W
+ Subthreshold Leakage = 0.0606175 W
+ Gate Leakage = 0.00781974 W
+ Runtime Dynamic = 0.398421 W
+
+ Virtual Channel Buffer:
+ Area = 4.2978 mm^2
+ Peak Dynamic = 2.31409 W
+ Subthreshold Leakage = 0.028002 W
+ Gate Leakage = 0.00227471 W
+ Runtime Dynamic = 0.330584 W
+
+ Crossbar:
+ Area = 0.160538 mm^2
+ Peak Dynamic = 0.437862 W
+ Subthreshold Leakage = 0.0325996 W
+ Gate Leakage = 0.00554292 W
+ Runtime Dynamic = 0.0625517 W
+
+ Arbiter:
+ Peak Dynamic = 0.0370018 W
+ Subthreshold Leakage = 1.5858e-05 W
+ Gate Leakage = 2.11117e-06 W
+ Runtime Dynamic = 0.00528597 W
+
+ Per Router Links:
+ Area = 0.471256 mm^2
+ Peak Dynamic = 3.38978 W
+ Subthreshold Leakage = 0.0477391 W
+ Gate Leakage = 0.00610616 W
+ Runtime Dynamic = 0.564963 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.8 of Aug, 2010) is computing the target processor...
+
+
+McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 45 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= aggressive interconnect technology projection
+ Core clock Rate(MHz) 3700
+
+*****************************************************************************************
+Processor:
+ Area = 92.2661 mm^2
+ Peak Power = 61.0228 W
+ Total Leakage = 10.8609 W
+ Peak Dynamic = 50.1619 W
+ Subthreshold Leakage = 10.2773 W
+ Gate Leakage = 0.583567 W
+ Runtime Dynamic = 69.6347 W
+
+ Total Cores: 2 cores
+ Device Type= ITRS high performance device type
+ Area = 48.2438 mm^2
+ Peak Dynamic = 39.6676 W
+ Subthreshold Leakage = 6.96165 W
+ Gate Leakage = 0.541077 W
+ Runtime Dynamic = 51.4987 W
+
+ Total L2s:
+ Device Type= ITRS high performance device type
+ Area = 43.1009 mm^2
+ Peak Dynamic = 6.43272 W
+ Subthreshold Leakage = 3.28049 W
+ Gate Leakage = 0.0386655 W
+ Runtime Dynamic = 13.716 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS high performance device type
+ Area = 0.921404 mm^2
+ Peak Dynamic = 4.06164 W
+ Subthreshold Leakage = 0.035183 W
+ Gate Leakage = 0.00382481 W
+ Runtime Dynamic = 4.42002 W
+
+*****************************************************************************************
+Core:
+ Area = 24.1219 mm^2
+ Peak Dynamic = 19.8338 W
+ Subthreshold Leakage = 3.48083 W
+ Gate Leakage = 0.270538 W
+ Runtime Dynamic = 51.4987 W
+
+ Instruction Fetch Unit:
+ Area = 3.13582 mm^2
+ Peak Dynamic = 2.49774 W
+ Subthreshold Leakage = 0.421089 W
+ Gate Leakage = 0.0246791 W
+ Runtime Dynamic = 2.42869 W
+
+ Instruction Cache:
+ Area = 0.702441 mm^2
+ Peak Dynamic = 0.419702 W
+ Subthreshold Leakage = 0.0413175 W
+ Gate Leakage = 0.00175164 W
+ Runtime Dynamic = 0.487111 W
+
+ Branch Target Buffer:
+ Area = 0.349484 mm^2
+ Peak Dynamic = 0.0903353 W
+ Subthreshold Leakage = 0.0243658 W
+ Gate Leakage = 0.000966387 W
+ Runtime Dynamic = 0.361341 W
+
+ Branch Predictor:
+ Area = 0.153017 mm^2
+ Peak Dynamic = 0.0718712 W
+ Subthreshold Leakage = 0.0142615 W
+ Gate Leakage = 0.000619154 W
+ Runtime Dynamic = 0.0647272 W
+
+ Global Predictor:
+ Area = 0.0475693 mm^2
+ Peak Dynamic = 0.0231158 W
+ Subthreshold Leakage = 0.00544747 W
+ Gate Leakage = 0.000234591 W
+ Runtime Dynamic = 0.0245764 W
+
+ Local Predictor:
+ L1_Local Predictor:
+ Area = 0.0239764 mm^2
+ Peak Dynamic = 0.0142817 W
+ Subthreshold Leakage = 0.00265926 W
+ Gate Leakage = 0.00011608 W
+ Runtime Dynamic = 0.0155731 W
+
+ L2_Local Predictor:
+ Area = 0.012121 mm^2
+ Peak Dynamic = 0.00767395 W
+ Subthreshold Leakage = 0.00143248 W
+ Gate Leakage = 6.77717e-05 W
+ Runtime Dynamic = 0.00837399 W
+
+ Chooser:
+ Area = 0.0475693 mm^2
+ Peak Dynamic = 0.0231158 W
+ Subthreshold Leakage = 0.00544747 W
+ Gate Leakage = 0.000234591 W
+ Runtime Dynamic = 0.0245764 W
+
+ RAS:
+ Area = 0.0217815 mm^2
+ Peak Dynamic = 0.0113578 W
+ Subthreshold Leakage = 0.000707258 W
+ Gate Leakage = 3.38921e-05 W
+ Runtime Dynamic = 1.2459e-06 W
+
+ Instruction Buffer:
+ Area = 0.0278406 mm^2
+ Peak Dynamic = 0.282368 W
+ Subthreshold Leakage = 0.000861686 W
+ Gate Leakage = 3.91839e-05 W
+ Runtime Dynamic = 0.188245 W
+
+ Instruction Decoder:
+ Area = 1.85799 mm^2
+ Peak Dynamic = 1.32726 W
+ Subthreshold Leakage = 0.325606 W
+ Gate Leakage = 0.0185411 W
+ Runtime Dynamic = 1.32726 W
+
+ Renaming Unit:
+ Area = 1.02517 mm^2
+ Peak Dynamic = 2.25746 W
+ Subthreshold Leakage = 0.042129 W
+ Gate Leakage = 0.00480502 W
+ Runtime Dynamic = 1.55315 W
+
+ Int Front End RAT:
+ Area = 0.59725 mm^2
+ Peak Dynamic = 1.25286 W
+ Subthreshold Leakage = 0.0159587 W
+ Gate Leakage = 0.00122436 W
+ Runtime Dynamic = 1.11309 W
+
+ FP Front End RAT:
+ Area = 0.350662 mm^2
+ Peak Dynamic = 0.652971 W
+ Subthreshold Leakage = 0.0110219 W
+ Gate Leakage = 0.00079321 W
+ Runtime Dynamic = 0.326485 W
+
+ Free List:
+ Area = 0.0322035 mm^2
+ Peak Dynamic = 0.0454309 W
+ Subthreshold Leakage = 0.000471802 W
+ Gate Leakage = 2.57995e-05 W
+ Runtime Dynamic = 0.113577 W
+
+ Load Store Unit:
+ Area = 7.24152 mm^2
+ Peak Dynamic = 6.57278 W
+ Subthreshold Leakage = 0.310798 W
+ Gate Leakage = 0.0358085 W
+ Runtime Dynamic = 34.9208 W
+
+ Data Cache:
+ Area = 4.65034 mm^2
+ Peak Dynamic = 5.03369 W
+ Subthreshold Leakage = 0.237004 W
+ Gate Leakage = 0.0253255 W
+ Runtime Dynamic = 33.601 W
+
+ LoadQ:
+ Area = 0.260806 mm^2
+ Peak Dynamic = 0.132332 W
+ Subthreshold Leakage = 0.00523814 W
+ Gate Leakage = 0.000359005 W
+ Runtime Dynamic = 0.0661662 W
+
+ StoreQ:
+ Area = 1.06006 mm^2
+ Peak Dynamic = 1.25365 W
+ Subthreshold Leakage = 0.0538794 W
+ Gate Leakage = 0.00736236 W
+ Runtime Dynamic = 1.25365 W
+
+ Memory Management Unit:
+ Area = 0.363299 mm^2
+ Peak Dynamic = 0.610831 W
+ Subthreshold Leakage = 0.0388017 W
+ Gate Leakage = 0.00431691 W
+ Runtime Dynamic = 1.29234 W
+
+ Itlb:
+ Area = 0.0590462 mm^2
+ Peak Dynamic = 0.116192 W
+ Subthreshold Leakage = 0.00608044 W
+ Gate Leakage = 0.000398475 W
+ Runtime Dynamic = 0.232386 W
+
+ Dtlb:
+ Area = 0.259199 mm^2
+ Peak Dynamic = 0.264986 W
+ Subthreshold Leakage = 0.0180446 W
+ Gate Leakage = 0.00115678 W
+ Runtime Dynamic = 1.05995 W
+
+ Execution Unit:
+ Area = 7.9594 mm^2
+ Peak Dynamic = 7.89497 W
+ Subthreshold Leakage = 1.28761 W
+ Gate Leakage = 0.0977152 W
+ Runtime Dynamic = 11.3037 W
+
+ Register Files:
+ Area = 0.528076 mm^2
+ Peak Dynamic = 0.554172 W
+ Subthreshold Leakage = 0.00459231 W
+ Gate Leakage = 0.000305031 W
+ Runtime Dynamic = 0.283985 W
+
+ Integer RF:
+ Area = 0.336446 mm^2
+ Peak Dynamic = 0.461344 W
+ Subthreshold Leakage = 0.00257976 W
+ Gate Leakage = 0.00018025 W
+ Runtime Dynamic = 0.247149 W
+
+ Floating Point RF:
+ Area = 0.19163 mm^2
+ Peak Dynamic = 0.0928276 W
+ Subthreshold Leakage = 0.00201255 W
+ Gate Leakage = 0.000124781 W
+ Runtime Dynamic = 0.0368364 W
+
+ Instruction Scheduler:
+ Area = 1.97424 mm^2
+ Peak Dynamic = 1.76421 W
+ Subthreshold Leakage = 0.0212898 W
+ Gate Leakage = 0.0014052 W
+ Runtime Dynamic = 1.96388 W
+
+ Instruction Window:
+ Area = 0.889691 mm^2
+ Peak Dynamic = 0.468182 W
+ Subthreshold Leakage = 0.0081033 W
+ Gate Leakage = 0.000620258 W
+ Runtime Dynamic = 0.601258 W
+
+ FP Instruction Window:
+ Area = 0.347423 mm^2
+ Peak Dynamic = 0.230453 W
+ Subthreshold Leakage = 0.00381664 W
+ Gate Leakage = 0.000293336 W
+ Runtime Dynamic = 0.29704 W
+
+ ROB:
+ Area = 0.737129 mm^2
+ Peak Dynamic = 1.06558 W
+ Subthreshold Leakage = 0.00936988 W
+ Gate Leakage = 0.000491606 W
+ Runtime Dynamic = 1.06558 W
+
+ Integer ALUs (Count: 6 ):
+ Area = 0.47087 mm^2
+ Peak Dynamic = 2.2206 W
+ Subthreshold Leakage = 0.295671 W
+ Gate Leakage = 0.0221076 W
+ Runtime Dynamic = 1.14549 W
+
+ Floating Point Units (FPUs) (Count: 2 ):
+ Area = 4.6585 mm^2
+ Peak Dynamic = 0.708407 W
+ Subthreshold Leakage = 0.731296 W
+ Gate Leakage = 0.0546797 W
+ Runtime Dynamic = 1.28625 W
+
+ Complex ALUs (Mul/Div) (Count: 1 ):
+ Area = 0.235435 mm^2
+ Peak Dynamic = 0.257249 W
+ Subthreshold Leakage = 0.147835 W
+ Gate Leakage = 0.0110538 W
+ Runtime Dynamic = 1.57424 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.0472187 mm^2
+ Peak Dynamic = 2.08413 W
+ Subthreshold Leakage = 0.0722513 W
+ Gate Leakage = 0.00540229 W
+ Runtime Dynamic = 5.04986 W
+
+*****************************************************************************************
+L2
+ Area = 43.1009 mm^2
+ Peak Dynamic = 6.43272 W
+ Subthreshold Leakage = 3.28049 W
+ Gate Leakage = 0.0386655 W
+ Runtime Dynamic = 13.716 W
+
+*****************************************************************************************
+BUSES
+ Area = 0.921404 mm^2
+ Peak Dynamic = 4.06164 W
+ Subthreshold Leakage = 0.035183 W
+ Gate Leakage = 0.00382481 W
+ Runtime Dynamic = 4.42002 W
+
+ Bus:
+ Area = 0.921404 mm^2
+ Peak Dynamic = 4.06164 W
+ Subthreshold Leakage = 0.035183 W
+ Gate Leakage = 0.00382481 W
+ Runtime Dynamic = 4.42002 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.8 of Aug, 2010) is computing the target processor...
+
+
+McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 90 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= aggressive interconnect technology projection
+ Core clock Rate(MHz) 1200
+
+*****************************************************************************************
+Processor:
+ Area = 283.287 mm^2
+ Peak Power = 55.0318 W
+ Total Leakage = 9.78078 W
+ Peak Dynamic = 45.2511 W
+ Subthreshold Leakage = 8.64906 W
+ Gate Leakage = 1.13172 W
+ Runtime Dynamic = 45.5013 W
+
+ Total Cores:
+ Device Type= ITRS high performance device type
+ Area = 117.887 mm^2
+ Peak Dynamic = 28.1307 W
+ Subthreshold Leakage = 5.19354 W
+ Gate Leakage = 0.730037 W
+ Runtime Dynamic = 18.917 W
+
+ Total L2s:
+ Device Type= ITRS high performance device type
+ Area = 116.308 mm^2
+ Peak Dynamic = 5.51367 W
+ Subthreshold Leakage = 2.41316 W
+ Gate Leakage = 0.242513 W
+ Runtime Dynamic = 4.00707 W
+
+ Total First Level Directory:
+ Device Type= ITRS high performance device type
+ Area = 8.77473 mm^2
+ Peak Dynamic = 3.38588 W
+ Subthreshold Leakage = 0.224524 W
+ Gate Leakage = 0.0320801 W
+ Runtime Dynamic = 15.1158 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS high performance device type
+ Area = 8.87598 mm^2
+ Peak Dynamic = 3.67515 W
+ Subthreshold Leakage = 0.488892 W
+ Gate Leakage = 0.0852308 W
+ Runtime Dynamic = 2.20509 W
+
+ Total MCs:
+ Device Type= ITRS high performance device type
+ Area = 31.441 mm^2
+ Peak Dynamic = 4.5457 W
+ Subthreshold Leakage = 0.328953 W
+ Gate Leakage = 0.0418558 W
+ Runtime Dynamic = 5.25637 W
+
+*****************************************************************************************
+Core:
+ Area = 14.7359 mm^2
+ Peak Dynamic = 3.51633 W
+ Subthreshold Leakage = 0.649192 W
+ Gate Leakage = 0.0912546 W
+ Runtime Dynamic = 18.917 W
+
+ Instruction Fetch Unit:
+ Area = 3.60967 mm^2
+ Peak Dynamic = 0.560912 W
+ Subthreshold Leakage = 0.0396492 W
+ Gate Leakage = 0.00709504 W
+ Runtime Dynamic = 3.76593 W
+
+ Instruction Cache:
+ Area = 3.41818 mm^2
+ Peak Dynamic = 0.308492 W
+ Subthreshold Leakage = 0.0286475 W
+ Gate Leakage = 0.00418329 W
+ Runtime Dynamic = 0.95332 W
+
+ Instruction Buffer:
+ Area = 0.0122742 mm^2
+ Peak Dynamic = 0.0121268 W
+ Subthreshold Leakage = 0.0002042 W
+ Gate Leakage = 1.78658e-05 W
+ Runtime Dynamic = 0.0970143 W
+
+ Instruction Decoder:
+ Area = 0.0229327 mm^2
+ Peak Dynamic = 0.169467 W
+ Subthreshold Leakage = 0.00259055 W
+ Gate Leakage = 0.000252139 W
+ Runtime Dynamic = 1.35574 W
+
+ Load Store Unit:
+ Area = 3.07616 mm^2
+ Peak Dynamic = 0.390349 W
+ Subthreshold Leakage = 0.0362126 W
+ Gate Leakage = 0.00713432 W
+ Runtime Dynamic = 3.85623 W
+
+ Data Cache:
+ Area = 1.47986 mm^2
+ Peak Dynamic = 0.191211 W
+ Subthreshold Leakage = 0.0157454 W
+ Gate Leakage = 0.00208738 W
+ Runtime Dynamic = 0.443377 W
+
+ Load/Store Queue:
+ Area = 1.17458 mm^2
+ Peak Dynamic = 0.128312 W
+ Subthreshold Leakage = 0.0122603 W
+ Gate Leakage = 0.0024052 W
+ Runtime Dynamic = 2.05299 W
+
+ Memory Management Unit:
+ Area = 1.27751 mm^2
+ Peak Dynamic = 0.324071 W
+ Subthreshold Leakage = 0.0192968 W
+ Gate Leakage = 0.0049902 W
+ Runtime Dynamic = 2.53591 W
+
+ Itlb:
+ Area = 0.560615 mm^2
+ Peak Dynamic = 0.117604 W
+ Subthreshold Leakage = 0.00554488 W
+ Gate Leakage = 0.00117423 W
+ Runtime Dynamic = 0.940838 W
+
+ Dtlb:
+ Area = 0.560615 mm^2
+ Peak Dynamic = 0.0294011 W
+ Subthreshold Leakage = 0.00554488 W
+ Gate Leakage = 0.00117423 W
+ Runtime Dynamic = 0.235211 W
+
+ Execution Unit:
+ Area = 3.47025 mm^2
+ Peak Dynamic = 2.241 W
+ Subthreshold Leakage = 0.222601 W
+ Gate Leakage = 0.0296426 W
+ Runtime Dynamic = 8.75894 W
+
+ Register Files:
+ Area = 1.38355 mm^2
+ Peak Dynamic = 0.0746572 W
+ Subthreshold Leakage = 0.00827136 W
+ Gate Leakage = 0.000628178 W
+ Runtime Dynamic = 0.320633 W
+
+ Integer RF:
+ Area = 0.592652 mm^2
+ Peak Dynamic = 0.0582404 W
+ Subthreshold Leakage = 0.00161128 W
+ Gate Leakage = 0.000148771 W
+ Runtime Dynamic = 0.312722 W
+
+ Floating Point RF:
+ Area = 0.592652 mm^2
+ Peak Dynamic = 0.0164168 W
+ Subthreshold Leakage = 0.00161128 W
+ Gate Leakage = 0.000148771 W
+ Runtime Dynamic = 0.00783962 W
+
+ Register Windows:
+ Area = 0.198243 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 0.00504879 W
+ Gate Leakage = 0.000330636 W
+ Runtime Dynamic = 7.11291e-05 W
+
+ Instruction Scheduler:
+ Area = 0.04377 mm^2
+ Peak Dynamic = 0.0284368 W
+ Subthreshold Leakage = 0.000336066 W
+ Gate Leakage = 5.10703e-05 W
+ Runtime Dynamic = 0.244528 W
+
+ Instruction Window:
+ Area = 0.04377 mm^2
+ Peak Dynamic = 0.0284368 W
+ Subthreshold Leakage = 0.000336066 W
+ Gate Leakage = 5.10703e-05 W
+ Runtime Dynamic = 0.244528 W
+
+ Integer ALUs (Count: 1 ):
+ Area = 0.16016 mm^2
+ Peak Dynamic = 0.305285 W
+ Subthreshold Leakage = 0.0321485 W
+ Gate Leakage = 0.00411202 W
+ Runtime Dynamic = 2.71365 W
+
+ Floating Point Units (FPUs) (Count: 0.125 ):
+ Area = 1.16463 mm^2
+ Peak Dynamic = 0.0508808 W
+ Subthreshold Leakage = 0.0584431 W
+ Gate Leakage = 0.00747528 W
+ Runtime Dynamic = 0.101762 W
+
+ Complex ALUs (Mul/Div) (Count: 1 ):
+ Area = 0.48048 mm^2
+ Peak Dynamic = 0.339206 W
+ Subthreshold Leakage = 0.0964456 W
+ Gate Leakage = 0.0123361 W
+ Runtime Dynamic = 0.678411 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.0813807 mm^2
+ Peak Dynamic = 1.18756 W
+ Subthreshold Leakage = 0.0187498 W
+ Gate Leakage = 0.00239823 W
+ Runtime Dynamic = 3.3401 W
+
+*****************************************************************************************
+L2
+ Area = 29.0771 mm^2
+ Peak Dynamic = 1.37842 W
+ Subthreshold Leakage = 0.603289 W
+ Gate Leakage = 0.0606283 W
+ Runtime Dynamic = 4.00707 W
+
+*****************************************************************************************
+First Level Directory
+ Area = 2.19368 mm^2
+ Peak Dynamic = 0.84647 W
+ Subthreshold Leakage = 0.0561311 W
+ Gate Leakage = 0.00802003 W
+ Runtime Dynamic = 15.1158 W
+
+*****************************************************************************************
+Memory Controller:
+ Area = 7.86025 mm^2
+ Peak Dynamic = 1.13642 W
+ Subthreshold Leakage = 0.0822383 W
+ Gate Leakage = 0.0104639 W
+ Runtime Dynamic = 5.25637 W
+
+ Front End Engine:
+ Area = 0.63078 mm^2
+ Peak Dynamic = 0.0549429 W
+ Subthreshold Leakage = 0.00242476 W
+ Gate Leakage = 0.00025524 W
+ Runtime Dynamic = 0.241753 W
+
+ Transaction Engine:
+ Area = 2.59502 mm^2
+ Peak Dynamic = 0.569482 W
+ Subthreshold Leakage = 0.0286491 W
+ Gate Leakage = 0.00366442 W
+ Runtime Dynamic = 2.50577 W
+
+ PHY:
+ Area = 4.63445 mm^2
+ Peak Dynamic = 0.512 W
+ Subthreshold Leakage = 0.0511644 W
+ Gate Leakage = 0.00654429 W
+ Runtime Dynamic = 2.50885 W
+
+*****************************************************************************************
+NOC
+ Area = 8.87598 mm^2
+ Peak Dynamic = 3.67515 W
+ Subthreshold Leakage = 0.488892 W
+ Gate Leakage = 0.0852308 W
+ Runtime Dynamic = 2.20509 W
+
+ Router:
+ Area = 4.43799 mm^2
+ Peak Dynamic = 1.83757 W
+ Subthreshold Leakage = 0.244446 W
+ Gate Leakage = 0.0426154 W
+ Runtime Dynamic = 2.20509 W
+
+ Virtual Channel Buffer:
+ Area = 1.22928 mm^2
+ Peak Dynamic = 0.0508654 W
+ Subthreshold Leakage = 0.000485491 W
+ Gate Leakage = 7.24213e-05 W
+ Runtime Dynamic = 0.0610385 W
+
+ Crossbar:
+ Area = 1.35717 mm^2
+ Peak Dynamic = 1.77185 W
+ Subthreshold Leakage = 0.243949 W
+ Gate Leakage = 0.0425414 W
+ Runtime Dynamic = 2.12622 W
+
+ Arbiter:
+ Peak Dynamic = 0.0148566 W
+ Subthreshold Leakage = 1.15783e-05 W
+ Gate Leakage = 1.54103e-06 W
+ Runtime Dynamic = 0.0178279 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.8 of Aug, 2010) is computing the target processor...
+
+line64
+size1.04858e+06
+line9
+size1.04858e+06
+
+McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 22 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= aggressive interconnect technology projection
+ Core clock Rate(MHz) 3500
+
+*****************************************************************************************
+Processor:
+ Area = 322.362 mm^2
+ Peak Power = 112.557 W
+ Total Leakage = 28.0714 W
+ Peak Dynamic = 84.4853 W
+ Subthreshold Leakage = 27.7571 W
+ Gate Leakage = 0.314289 W
+ Runtime Dynamic = 13.4278 W
+
+ Total Cores: 64 cores
+ Device Type= ITRS high performance device type
+ Area = 87.1986 mm^2
+ Peak Dynamic = 42.426 W
+ Subthreshold Leakage = 7.80232 W
+ Gate Leakage = 0.0799149 W
+ Runtime Dynamic = 9.61388 W
+
+ Total L2s:
+ Device Type= ITRS high performance device type
+ Area = 161.532 mm^2
+ Peak Dynamic = 21.1059 W
+ Subthreshold Leakage = 8.9583 W
+ Gate Leakage = 0.100733 W
+ Runtime Dynamic = 1.14063 W
+
+ Total First Level Directory:
+ Device Type= ITRS high performance device type
+ Area = 22.1741 mm^2
+ Peak Dynamic = 0.831407 W
+ Subthreshold Leakage = 1.57123 W
+ Gate Leakage = 0.0148674 W
+ Runtime Dynamic = 0.175856 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS high performance device type
+ Area = 51.4571 mm^2
+ Peak Dynamic = 20.122 W
+ Subthreshold Leakage = 9.42527 W
+ Gate Leakage = 0.118774 W
+ Runtime Dynamic = 2.49747 W
+
+*****************************************************************************************
+Core:
+ Area = 1.36248 mm^2
+ Peak Dynamic = 0.662906 W
+ Subthreshold Leakage = 0.121911 W
+ Gate Leakage = 0.00124867 W
+ Runtime Dynamic = 9.61388 W
+
+ Instruction Fetch Unit:
+ Area = 0.140786 mm^2
+ Peak Dynamic = 0.0863256 W
+ Subthreshold Leakage = 0.00636762 W
+ Gate Leakage = 7.4998e-05 W
+ Runtime Dynamic = 2.08883 W
+
+ Instruction Cache:
+ Area = 0.129377 mm^2
+ Peak Dynamic = 0.0476007 W
+ Subthreshold Leakage = 0.00381804 W
+ Gate Leakage = 2.35266e-05 W
+ Runtime Dynamic = 0.0698158 W
+
+ Instruction Buffer:
+ Area = 0.000754971 mm^2
+ Peak Dynamic = 0.00238165 W
+ Subthreshold Leakage = 4.99334e-05 W
+ Gate Leakage = 3.27157e-07 W
+ Runtime Dynamic = 0.0190532 W
+
+ Instruction Decoder:
+ Area = 0.00131543 mm^2
+ Peak Dynamic = 0.0246042 W
+ Subthreshold Leakage = 0.000538954 W
+ Gate Leakage = 3.91915e-06 W
+ Runtime Dynamic = 0.196833 W
+
+ Load Store Unit:
+ Area = 0.0977414 mm^2
+ Peak Dynamic = 0.0587123 W
+ Subthreshold Leakage = 0.00580883 W
+ Gate Leakage = 7.48788e-05 W
+ Runtime Dynamic = 2.07447 W
+
+ Data Cache:
+ Area = 0.0569223 mm^2
+ Peak Dynamic = 0.0329939 W
+ Subthreshold Leakage = 0.00249221 W
+ Gate Leakage = 1.63814e-05 W
+ Runtime Dynamic = 0.0476753 W
+
+ Load/Store Queue:
+ Area = 0.023444 mm^2
+ Peak Dynamic = 0.0139792 W
+ Subthreshold Leakage = 0.00135593 W
+ Gate Leakage = 1.12722e-05 W
+ Runtime Dynamic = 0.223667 W
+
+ Memory Management Unit:
+ Area = 0.0313997 mm^2
+ Peak Dynamic = 0.0446647 W
+ Subthreshold Leakage = 0.0029577 W
+ Gate Leakage = 5.57335e-05 W
+ Runtime Dynamic = 1.92566 W
+
+ Itlb:
+ Area = 0.0110306 mm^2
+ Peak Dynamic = 0.0122535 W
+ Subthreshold Leakage = 0.000498504 W
+ Gate Leakage = 4.25417e-06 W
+ Runtime Dynamic = 0.0980282 W
+
+ Dtlb:
+ Area = 0.0110306 mm^2
+ Peak Dynamic = 0.00306337 W
+ Subthreshold Leakage = 0.000498504 W
+ Gate Leakage = 4.25417e-06 W
+ Runtime Dynamic = 0.0245072 W
+
+ Execution Unit:
+ Area = 0.299667 mm^2
+ Peak Dynamic = 0.473204 W
+ Subthreshold Leakage = 0.0379242 W
+ Gate Leakage = 0.000384077 W
+ Runtime Dynamic = 3.52491 W
+
+ Register Files:
+ Area = 0.0598365 mm^2
+ Peak Dynamic = 0.0168768 W
+ Subthreshold Leakage = 0.0020814 W
+ Gate Leakage = 1.24237e-05 W
+ Runtime Dynamic = 0.072481 W
+
+ Integer RF:
+ Area = 0.0240072 mm^2
+ Peak Dynamic = 0.0131657 W
+ Subthreshold Leakage = 0.000449165 W
+ Gate Leakage = 3.33111e-06 W
+ Runtime Dynamic = 0.0706931 W
+
+ Floating Point RF:
+ Area = 0.0240072 mm^2
+ Peak Dynamic = 0.00371113 W
+ Subthreshold Leakage = 0.000449165 W
+ Gate Leakage = 3.33111e-06 W
+ Runtime Dynamic = 0.0017722 W
+
+ Register Windows:
+ Area = 0.0118221 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 0.00118307 W
+ Gate Leakage = 5.76149e-06 W
+ Runtime Dynamic = 1.56951e-05 W
+
+ Instruction Scheduler:
+ Area = 0.00263062 mm^2
+ Peak Dynamic = 0.00540689 W
+ Subthreshold Leakage = 8.27524e-05 W
+ Gate Leakage = 9.38261e-07 W
+ Runtime Dynamic = 0.0464411 W
+
+ Instruction Window:
+ Area = 0.00263062 mm^2
+ Peak Dynamic = 0.00540689 W
+ Subthreshold Leakage = 8.27524e-05 W
+ Gate Leakage = 9.38261e-07 W
+ Runtime Dynamic = 0.0464411 W
+
+ Integer ALUs (Count: 1 ):
+ Area = 0.0384544 mm^2
+ Peak Dynamic = 0.0946992 W
+ Subthreshold Leakage = 0.00667865 W
+ Gate Leakage = 6.39207e-05 W
+ Runtime Dynamic = 0.841771 W
+
+ Floating Point Units (FPUs) (Count: 0.125 ):
+ Area = 0.0695899 mm^2
+ Peak Dynamic = 0.0157832 W
+ Subthreshold Leakage = 0.00302155 W
+ Gate Leakage = 2.89189e-05 W
+ Runtime Dynamic = 0.0315664 W
+
+ Complex ALUs (Mul/Div) (Count: 1 ):
+ Area = 0.115363 mm^2
+ Peak Dynamic = 0.105221 W
+ Subthreshold Leakage = 0.020036 W
+ Gate Leakage = 0.000191762 W
+ Runtime Dynamic = 0.210443 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.00445381 mm^2
+ Peak Dynamic = 0.192955 W
+ Subthreshold Leakage = 0.00406321 W
+ Gate Leakage = 3.88886e-05 W
+ Runtime Dynamic = 0.519078 W
+
+*****************************************************************************************
+L2
+ Area = 2.52394 mm^2
+ Peak Dynamic = 0.32978 W
+ Subthreshold Leakage = 0.139973 W
+ Gate Leakage = 0.00157395 W
+ Runtime Dynamic = 1.14063 W
+
+*****************************************************************************************
+Second Level Directory
+ Area = 2.77176 mm^2
+ Peak Dynamic = 0.103926 W
+ Subthreshold Leakage = 0.196403 W
+ Gate Leakage = 0.00185842 W
+ Runtime Dynamic = 0.175856 W
+
+*****************************************************************************************
+NOC
+ Area = 51.4571 mm^2
+ Peak Dynamic = 20.122 W
+ Subthreshold Leakage = 9.42527 W
+ Gate Leakage = 0.118774 W
+ Runtime Dynamic = 2.49747 W
+
+ Router:
+ Area = 0.578434 mm^2
+ Peak Dynamic = 0.184548 W
+ Subthreshold Leakage = 0.125515 W
+ Gate Leakage = 0.0016409 W
+ Runtime Dynamic = 1.32875 W
+
+ Virtual Channel Buffer:
+ Area = 0.159162 mm^2
+ Peak Dynamic = 0.00394081 W
+ Subthreshold Leakage = 0.000194478 W
+ Gate Leakage = 1.84946e-06 W
+ Runtime Dynamic = 0.0283738 W
+
+ Crossbar:
+ Area = 0.160976 mm^2
+ Peak Dynamic = 0.179891 W
+ Subthreshold Leakage = 0.12532 W
+ Gate Leakage = 0.00163905 W
+ Runtime Dynamic = 1.29522 W
+
+ Arbiter:
+ Peak Dynamic = 0.000716053 W
+ Subthreshold Leakage = 3.67148e-07 W
+ Gate Leakage = 3.86991e-09 W
+ Runtime Dynamic = 0.00515558 W
+
+ Per Router Links:
+ Area = 0.225583 mm^2
+ Peak Dynamic = 0.129858 W
+ Subthreshold Leakage = 0.0217549 W
+ Gate Leakage = 0.000214933 W
+ Runtime Dynamic = 1.16872 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.8 of Aug, 2010) is computing the target processor...
+
+line72
+size1.17965e+06
+
+McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 22 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= aggressive interconnect technology projection
+ Core clock Rate(MHz) 3500
+
+*****************************************************************************************
+Processor:
+ Area = 321.412 mm^2
+ Peak Power = 114.076 W
+ Total Leakage = 27.4353 W
+ Peak Dynamic = 86.6406 W
+ Subthreshold Leakage = 27.1256 W
+ Gate Leakage = 0.309772 W
+ Runtime Dynamic = 13.4064 W
+
+ Total Cores: 64 cores
+ Device Type= ITRS high performance device type
+ Area = 87.1986 mm^2
+ Peak Dynamic = 42.426 W
+ Subthreshold Leakage = 7.80232 W
+ Gate Leakage = 0.0799149 W
+ Runtime Dynamic = 9.61388 W
+
+ Total L2s:
+ Device Type= ITRS high performance device type
+ Area = 182.778 mm^2
+ Peak Dynamic = 24.1051 W
+ Subthreshold Leakage = 9.90006 W
+ Gate Leakage = 0.111104 W
+ Runtime Dynamic = 1.29686 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS high performance device type
+ Area = 51.4353 mm^2
+ Peak Dynamic = 20.1095 W
+ Subthreshold Leakage = 9.42317 W
+ Gate Leakage = 0.118753 W
+ Runtime Dynamic = 2.4957 W
+
+*****************************************************************************************
+Core:
+ Area = 1.36248 mm^2
+ Peak Dynamic = 0.662906 W
+ Subthreshold Leakage = 0.121911 W
+ Gate Leakage = 0.00124867 W
+ Runtime Dynamic = 9.61388 W
+
+ Instruction Fetch Unit:
+ Area = 0.140786 mm^2
+ Peak Dynamic = 0.0863256 W
+ Subthreshold Leakage = 0.00636762 W
+ Gate Leakage = 7.4998e-05 W
+ Runtime Dynamic = 2.08883 W
+
+ Instruction Cache:
+ Area = 0.129377 mm^2
+ Peak Dynamic = 0.0476007 W
+ Subthreshold Leakage = 0.00381804 W
+ Gate Leakage = 2.35266e-05 W
+ Runtime Dynamic = 0.0698158 W
+
+ Instruction Buffer:
+ Area = 0.000754971 mm^2
+ Peak Dynamic = 0.00238165 W
+ Subthreshold Leakage = 4.99334e-05 W
+ Gate Leakage = 3.27157e-07 W
+ Runtime Dynamic = 0.0190532 W
+
+ Instruction Decoder:
+ Area = 0.00131543 mm^2
+ Peak Dynamic = 0.0246042 W
+ Subthreshold Leakage = 0.000538954 W
+ Gate Leakage = 3.91915e-06 W
+ Runtime Dynamic = 0.196833 W
+
+ Load Store Unit:
+ Area = 0.0977414 mm^2
+ Peak Dynamic = 0.0587123 W
+ Subthreshold Leakage = 0.00580883 W
+ Gate Leakage = 7.48788e-05 W
+ Runtime Dynamic = 2.07447 W
+
+ Data Cache:
+ Area = 0.0569223 mm^2
+ Peak Dynamic = 0.0329939 W
+ Subthreshold Leakage = 0.00249221 W
+ Gate Leakage = 1.63814e-05 W
+ Runtime Dynamic = 0.0476753 W
+
+ Load/Store Queue:
+ Area = 0.023444 mm^2
+ Peak Dynamic = 0.0139792 W
+ Subthreshold Leakage = 0.00135593 W
+ Gate Leakage = 1.12722e-05 W
+ Runtime Dynamic = 0.223667 W
+
+ Memory Management Unit:
+ Area = 0.0313997 mm^2
+ Peak Dynamic = 0.0446647 W
+ Subthreshold Leakage = 0.0029577 W
+ Gate Leakage = 5.57335e-05 W
+ Runtime Dynamic = 1.92566 W
+
+ Itlb:
+ Area = 0.0110306 mm^2
+ Peak Dynamic = 0.0122535 W
+ Subthreshold Leakage = 0.000498504 W
+ Gate Leakage = 4.25417e-06 W
+ Runtime Dynamic = 0.0980282 W
+
+ Dtlb:
+ Area = 0.0110306 mm^2
+ Peak Dynamic = 0.00306337 W
+ Subthreshold Leakage = 0.000498504 W
+ Gate Leakage = 4.25417e-06 W
+ Runtime Dynamic = 0.0245072 W
+
+ Execution Unit:
+ Area = 0.299667 mm^2
+ Peak Dynamic = 0.473204 W
+ Subthreshold Leakage = 0.0379242 W
+ Gate Leakage = 0.000384077 W
+ Runtime Dynamic = 3.52491 W
+
+ Register Files:
+ Area = 0.0598365 mm^2
+ Peak Dynamic = 0.0168768 W
+ Subthreshold Leakage = 0.0020814 W
+ Gate Leakage = 1.24237e-05 W
+ Runtime Dynamic = 0.072481 W
+
+ Integer RF:
+ Area = 0.0240072 mm^2
+ Peak Dynamic = 0.0131657 W
+ Subthreshold Leakage = 0.000449165 W
+ Gate Leakage = 3.33111e-06 W
+ Runtime Dynamic = 0.0706931 W
+
+ Floating Point RF:
+ Area = 0.0240072 mm^2
+ Peak Dynamic = 0.00371113 W
+ Subthreshold Leakage = 0.000449165 W
+ Gate Leakage = 3.33111e-06 W
+ Runtime Dynamic = 0.0017722 W
+
+ Register Windows:
+ Area = 0.0118221 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 0.00118307 W
+ Gate Leakage = 5.76149e-06 W
+ Runtime Dynamic = 1.56951e-05 W
+
+ Instruction Scheduler:
+ Area = 0.00263062 mm^2
+ Peak Dynamic = 0.00540689 W
+ Subthreshold Leakage = 8.27524e-05 W
+ Gate Leakage = 9.38261e-07 W
+ Runtime Dynamic = 0.0464411 W
+
+ Instruction Window:
+ Area = 0.00263062 mm^2
+ Peak Dynamic = 0.00540689 W
+ Subthreshold Leakage = 8.27524e-05 W
+ Gate Leakage = 9.38261e-07 W
+ Runtime Dynamic = 0.0464411 W
+
+ Integer ALUs (Count: 1 ):
+ Area = 0.0384544 mm^2
+ Peak Dynamic = 0.0946992 W
+ Subthreshold Leakage = 0.00667865 W
+ Gate Leakage = 6.39207e-05 W
+ Runtime Dynamic = 0.841771 W
+
+ Floating Point Units (FPUs) (Count: 0.125 ):
+ Area = 0.0695899 mm^2
+ Peak Dynamic = 0.0157832 W
+ Subthreshold Leakage = 0.00302155 W
+ Gate Leakage = 2.89189e-05 W
+ Runtime Dynamic = 0.0315664 W
+
+ Complex ALUs (Mul/Div) (Count: 1 ):
+ Area = 0.115363 mm^2
+ Peak Dynamic = 0.105221 W
+ Subthreshold Leakage = 0.020036 W
+ Gate Leakage = 0.000191762 W
+ Runtime Dynamic = 0.210443 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.00445381 mm^2
+ Peak Dynamic = 0.192955 W
+ Subthreshold Leakage = 0.00406321 W
+ Gate Leakage = 3.88886e-05 W
+ Runtime Dynamic = 0.519078 W
+
+*****************************************************************************************
+L2
+ Area = 2.85591 mm^2
+ Peak Dynamic = 0.376642 W
+ Subthreshold Leakage = 0.154688 W
+ Gate Leakage = 0.001736 W
+ Runtime Dynamic = 1.29686 W
+
+*****************************************************************************************
+NOC
+ Area = 51.4353 mm^2
+ Peak Dynamic = 20.1095 W
+ Subthreshold Leakage = 9.42317 W
+ Gate Leakage = 0.118753 W
+ Runtime Dynamic = 2.4957 W
+
+ Router:
+ Area = 0.578434 mm^2
+ Peak Dynamic = 0.184548 W
+ Subthreshold Leakage = 0.125515 W
+ Gate Leakage = 0.0016409 W
+ Runtime Dynamic = 1.32875 W
+
+ Virtual Channel Buffer:
+ Area = 0.159162 mm^2
+ Peak Dynamic = 0.00394081 W
+ Subthreshold Leakage = 0.000194478 W
+ Gate Leakage = 1.84946e-06 W
+ Runtime Dynamic = 0.0283738 W
+
+ Crossbar:
+ Area = 0.160976 mm^2
+ Peak Dynamic = 0.179891 W
+ Subthreshold Leakage = 0.12532 W
+ Gate Leakage = 0.00163905 W
+ Runtime Dynamic = 1.29522 W
+
+ Arbiter:
+ Peak Dynamic = 0.000716053 W
+ Subthreshold Leakage = 3.67148e-07 W
+ Gate Leakage = 3.86991e-09 W
+ Runtime Dynamic = 0.00515558 W
+
+ Per Router Links:
+ Area = 0.225243 mm^2
+ Peak Dynamic = 0.129662 W
+ Subthreshold Leakage = 0.0217221 W
+ Gate Leakage = 0.000214609 W
+ Runtime Dynamic = 1.16696 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.8 of Aug, 2010) is computing the target processor...
+
+line64
+size1.04858e+06
+line9
+size8.38861e+06
+
+McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 22 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= aggressive interconnect technology projection
+ Core clock Rate(MHz) 3500
+
+*****************************************************************************************
+Processor:
+ Area = 358.016 mm^2
+ Peak Power = 168.519 W
+ Total Leakage = 30.8855 W
+ Peak Dynamic = 137.634 W
+ Subthreshold Leakage = 30.5351 W
+ Gate Leakage = 0.350385 W
+ Runtime Dynamic = 84.2366 W
+
+ Total Cores: 64 cores
+ Device Type= ITRS high performance device type
+ Area = 87.1986 mm^2
+ Peak Dynamic = 42.426 W
+ Subthreshold Leakage = 7.80232 W
+ Gate Leakage = 0.0799149 W
+ Runtime Dynamic = 9.61388 W
+
+ Total L2s:
+ Device Type= ITRS high performance device type
+ Area = 161.532 mm^2
+ Peak Dynamic = 21.1059 W
+ Subthreshold Leakage = 8.9583 W
+ Gate Leakage = 0.100733 W
+ Runtime Dynamic = 1.14063 W
+
+ Total First Level Directory:
+ Device Type= ITRS high performance device type
+ Area = 57.033 mm^2
+ Peak Dynamic = 53.5219 W
+ Subthreshold Leakage = 4.27249 W
+ Gate Leakage = 0.050206 W
+ Runtime Dynamic = 70.9203 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS high performance device type
+ Area = 52.2524 mm^2
+ Peak Dynamic = 20.5798 W
+ Subthreshold Leakage = 9.50197 W
+ Gate Leakage = 0.119531 W
+ Runtime Dynamic = 2.56185 W
+
+*****************************************************************************************
+Core:
+ Area = 1.36248 mm^2
+ Peak Dynamic = 0.662906 W
+ Subthreshold Leakage = 0.121911 W
+ Gate Leakage = 0.00124867 W
+ Runtime Dynamic = 9.61388 W
+
+ Instruction Fetch Unit:
+ Area = 0.140786 mm^2
+ Peak Dynamic = 0.0863256 W
+ Subthreshold Leakage = 0.00636762 W
+ Gate Leakage = 7.4998e-05 W
+ Runtime Dynamic = 2.08883 W
+
+ Instruction Cache:
+ Area = 0.129377 mm^2
+ Peak Dynamic = 0.0476007 W
+ Subthreshold Leakage = 0.00381804 W
+ Gate Leakage = 2.35266e-05 W
+ Runtime Dynamic = 0.0698158 W
+
+ Instruction Buffer:
+ Area = 0.000754971 mm^2
+ Peak Dynamic = 0.00238165 W
+ Subthreshold Leakage = 4.99334e-05 W
+ Gate Leakage = 3.27157e-07 W
+ Runtime Dynamic = 0.0190532 W
+
+ Instruction Decoder:
+ Area = 0.00131543 mm^2
+ Peak Dynamic = 0.0246042 W
+ Subthreshold Leakage = 0.000538954 W
+ Gate Leakage = 3.91915e-06 W
+ Runtime Dynamic = 0.196833 W
+
+ Load Store Unit:
+ Area = 0.0977414 mm^2
+ Peak Dynamic = 0.0587123 W
+ Subthreshold Leakage = 0.00580883 W
+ Gate Leakage = 7.48788e-05 W
+ Runtime Dynamic = 2.07447 W
+
+ Data Cache:
+ Area = 0.0569223 mm^2
+ Peak Dynamic = 0.0329939 W
+ Subthreshold Leakage = 0.00249221 W
+ Gate Leakage = 1.63814e-05 W
+ Runtime Dynamic = 0.0476753 W
+
+ Load/Store Queue:
+ Area = 0.023444 mm^2
+ Peak Dynamic = 0.0139792 W
+ Subthreshold Leakage = 0.00135593 W
+ Gate Leakage = 1.12722e-05 W
+ Runtime Dynamic = 0.223667 W
+
+ Memory Management Unit:
+ Area = 0.0313997 mm^2
+ Peak Dynamic = 0.0446647 W
+ Subthreshold Leakage = 0.0029577 W
+ Gate Leakage = 5.57335e-05 W
+ Runtime Dynamic = 1.92566 W
+
+ Itlb:
+ Area = 0.0110306 mm^2
+ Peak Dynamic = 0.0122535 W
+ Subthreshold Leakage = 0.000498504 W
+ Gate Leakage = 4.25417e-06 W
+ Runtime Dynamic = 0.0980282 W
+
+ Dtlb:
+ Area = 0.0110306 mm^2
+ Peak Dynamic = 0.00306337 W
+ Subthreshold Leakage = 0.000498504 W
+ Gate Leakage = 4.25417e-06 W
+ Runtime Dynamic = 0.0245072 W
+
+ Execution Unit:
+ Area = 0.299667 mm^2
+ Peak Dynamic = 0.473204 W
+ Subthreshold Leakage = 0.0379242 W
+ Gate Leakage = 0.000384077 W
+ Runtime Dynamic = 3.52491 W
+
+ Register Files:
+ Area = 0.0598365 mm^2
+ Peak Dynamic = 0.0168768 W
+ Subthreshold Leakage = 0.0020814 W
+ Gate Leakage = 1.24237e-05 W
+ Runtime Dynamic = 0.072481 W
+
+ Integer RF:
+ Area = 0.0240072 mm^2
+ Peak Dynamic = 0.0131657 W
+ Subthreshold Leakage = 0.000449165 W
+ Gate Leakage = 3.33111e-06 W
+ Runtime Dynamic = 0.0706931 W
+
+ Floating Point RF:
+ Area = 0.0240072 mm^2
+ Peak Dynamic = 0.00371113 W
+ Subthreshold Leakage = 0.000449165 W
+ Gate Leakage = 3.33111e-06 W
+ Runtime Dynamic = 0.0017722 W
+
+ Register Windows:
+ Area = 0.0118221 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 0.00118307 W
+ Gate Leakage = 5.76149e-06 W
+ Runtime Dynamic = 1.56951e-05 W
+
+ Instruction Scheduler:
+ Area = 0.00263062 mm^2
+ Peak Dynamic = 0.00540689 W
+ Subthreshold Leakage = 8.27524e-05 W
+ Gate Leakage = 9.38261e-07 W
+ Runtime Dynamic = 0.0464411 W
+
+ Instruction Window:
+ Area = 0.00263062 mm^2
+ Peak Dynamic = 0.00540689 W
+ Subthreshold Leakage = 8.27524e-05 W
+ Gate Leakage = 9.38261e-07 W
+ Runtime Dynamic = 0.0464411 W
+
+ Integer ALUs (Count: 1 ):
+ Area = 0.0384544 mm^2
+ Peak Dynamic = 0.0946992 W
+ Subthreshold Leakage = 0.00667865 W
+ Gate Leakage = 6.39207e-05 W
+ Runtime Dynamic = 0.841771 W
+
+ Floating Point Units (FPUs) (Count: 0.125 ):
+ Area = 0.0695899 mm^2
+ Peak Dynamic = 0.0157832 W
+ Subthreshold Leakage = 0.00302155 W
+ Gate Leakage = 2.89189e-05 W
+ Runtime Dynamic = 0.0315664 W
+
+ Complex ALUs (Mul/Div) (Count: 1 ):
+ Area = 0.115363 mm^2
+ Peak Dynamic = 0.105221 W
+ Subthreshold Leakage = 0.020036 W
+ Gate Leakage = 0.000191762 W
+ Runtime Dynamic = 0.210443 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.00445381 mm^2
+ Peak Dynamic = 0.192955 W
+ Subthreshold Leakage = 0.00406321 W
+ Gate Leakage = 3.88886e-05 W
+ Runtime Dynamic = 0.519078 W
+
+*****************************************************************************************
+L2
+ Area = 2.52394 mm^2
+ Peak Dynamic = 0.32978 W
+ Subthreshold Leakage = 0.139973 W
+ Gate Leakage = 0.00157395 W
+ Runtime Dynamic = 1.14063 W
+
+*****************************************************************************************
+Second Level Directory
+ Area = 57.033 mm^2
+ Peak Dynamic = 53.5219 W
+ Subthreshold Leakage = 4.27249 W
+ Gate Leakage = 0.050206 W
+ Runtime Dynamic = 70.9203 W
+
+*****************************************************************************************
+NOC
+ Area = 52.2524 mm^2
+ Peak Dynamic = 20.5798 W
+ Subthreshold Leakage = 9.50197 W
+ Gate Leakage = 0.119531 W
+ Runtime Dynamic = 2.56185 W
+
+ Router:
+ Area = 0.578434 mm^2
+ Peak Dynamic = 0.184548 W
+ Subthreshold Leakage = 0.125515 W
+ Gate Leakage = 0.0016409 W
+ Runtime Dynamic = 1.32875 W
+
+ Virtual Channel Buffer:
+ Area = 0.159162 mm^2
+ Peak Dynamic = 0.00394081 W
+ Subthreshold Leakage = 0.000194478 W
+ Gate Leakage = 1.84946e-06 W
+ Runtime Dynamic = 0.0283738 W
+
+ Crossbar:
+ Area = 0.160976 mm^2
+ Peak Dynamic = 0.179891 W
+ Subthreshold Leakage = 0.12532 W
+ Gate Leakage = 0.00163905 W
+ Runtime Dynamic = 1.29522 W
+
+ Arbiter:
+ Peak Dynamic = 0.000716053 W
+ Subthreshold Leakage = 3.67148e-07 W
+ Gate Leakage = 3.86991e-09 W
+ Runtime Dynamic = 0.00515558 W
+
+ Per Router Links:
+ Area = 0.238009 mm^2
+ Peak Dynamic = 0.137011 W
+ Subthreshold Leakage = 0.0229533 W
+ Gate Leakage = 0.000226773 W
+ Runtime Dynamic = 1.2331 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.8 of Aug, 2010) is computing the target processor...
+
+
+McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 65 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= aggressive interconnect technology projection
+ Core clock Rate(MHz) 1400
+
+*****************************************************************************************
+Processor:
+ Area = 277.068 mm^2
+ Peak Power = 71.8237 W
+ Total Leakage = 18.2234 W
+ Peak Dynamic = 53.6003 W
+ Subthreshold Leakage = 14.7124 W
+ Gate Leakage = 3.51096 W
+ Runtime Dynamic = 48.652 W
+
+ Total Cores: 8 cores
+ Device Type= ITRS high performance device type
+ Area = 116.441 mm^2
+ Peak Dynamic = 28.0277 W
+ Subthreshold Leakage = 9.00023 W
+ Gate Leakage = 1.93139 W
+ Runtime Dynamic = 27.9237 W
+
+ Total L2s:
+ Device Type= ITRS high performance device type
+ Area = 85.0391 mm^2
+ Peak Dynamic = 9.87481 W
+ Subthreshold Leakage = 2.71188 W
+ Gate Leakage = 0.684324 W
+ Runtime Dynamic = 3.97632 W
+
+ Total First Level Directory:
+ Device Type= ITRS high performance device type
+ Area = 11.6417 mm^2
+ Peak Dynamic = 5.32369 W
+ Subthreshold Leakage = 0.249885 W
+ Gate Leakage = 0.107486 W
+ Runtime Dynamic = 5.38275 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS high performance device type
+ Area = 9.56584 mm^2
+ Peak Dynamic = 1.07754 W
+ Subthreshold Leakage = 1.61961 W
+ Gate Leakage = 0.389994 W
+ Runtime Dynamic = 1.07754 W
+
+ Total MCs: 4 Memory Controllers
+ Device Type= ITRS high performance device type
+ Area = 32.2777 mm^2
+ Peak Dynamic = 5.92507 W
+ Subthreshold Leakage = 0.559071 W
+ Gate Leakage = 0.10416 W
+ Runtime Dynamic = 7.93157 W
+
+ Total NIUs: 2 Network Interface Units
+ Device Type= ITRS high performance device type
+ Area = 15.8633 mm^2
+ Peak Dynamic = 1.86482 W
+ Subthreshold Leakage = 0.357626 W
+ Gate Leakage = 0.183662 W
+ Runtime Dynamic = 1.30537 W
+
+ Total PCIes: 1 PCIe Controllers
+ Device Type= ITRS high performance device type
+ Area = 6.24 mm^2
+ Peak Dynamic = 1.5067 W
+ Subthreshold Leakage = 0.214091 W
+ Gate Leakage = 0.109948 W
+ Runtime Dynamic = 1.05469 W
+
+*****************************************************************************************
+Core:
+ Area = 14.5551 mm^2
+ Peak Dynamic = 3.50346 W
+ Subthreshold Leakage = 1.12503 W
+ Gate Leakage = 0.241423 W
+ Runtime Dynamic = 27.9237 W
+
+ Instruction Fetch Unit:
+ Area = 2.75911 mm^2
+ Peak Dynamic = 0.817936 W
+ Subthreshold Leakage = 0.0912466 W
+ Gate Leakage = 0.0284483 W
+ Runtime Dynamic = 4.81754 W
+
+ Instruction Cache:
+ Area = 2.51671 mm^2
+ Peak Dynamic = 0.513783 W
+ Subthreshold Leakage = 0.062355 W
+ Gate Leakage = 0.0164185 W
+ Runtime Dynamic = 1.59033 W
+
+ Instruction Buffer:
+ Area = 0.0130935 mm^2
+ Peak Dynamic = 0.0100268 W
+ Subthreshold Leakage = 0.000434992 W
+ Gate Leakage = 6.02581e-05 W
+ Runtime Dynamic = 0.160429 W
+
+ Instruction Decoder:
+ Area = 0.0119193 mm^2
+ Peak Dynamic = 0.0892213 W
+ Subthreshold Leakage = 0.00298091 W
+ Gate Leakage = 0.000408973 W
+ Runtime Dynamic = 1.42754 W
+
+ Load Store Unit:
+ Area = 2.14252 mm^2
+ Peak Dynamic = 0.487978 W
+ Subthreshold Leakage = 0.0802768 W
+ Gate Leakage = 0.0247378 W
+ Runtime Dynamic = 10.9331 W
+
+ Data Cache:
+ Area = 0.52868 mm^2
+ Peak Dynamic = 0.0991646 W
+ Subthreshold Leakage = 0.0119043 W
+ Gate Leakage = 0.00145618 W
+ Runtime Dynamic = 0.1303 W
+
+ Load/Store Queue:
+ Area = 1.22144 mm^2
+ Peak Dynamic = 0.286361 W
+ Subthreshold Leakage = 0.0428969 W
+ Gate Leakage = 0.011721 W
+ Runtime Dynamic = 9.16355 W
+
+ Memory Management Unit:
+ Area = 1.1006 mm^2
+ Peak Dynamic = 0.399121 W
+ Subthreshold Leakage = 0.0527367 W
+ Gate Leakage = 0.0195353 W
+ Runtime Dynamic = 2.78316 W
+
+ Itlb:
+ Area = 0.293144 mm^2
+ Peak Dynamic = 0.0743045 W
+ Subthreshold Leakage = 0.00720086 W
+ Gate Leakage = 0.00218791 W
+ Runtime Dynamic = 0.594438 W
+
+ Dtlb:
+ Area = 0.590071 mm^2
+ Peak Dynamic = 0.0686851 W
+ Subthreshold Leakage = 0.0200602 W
+ Gate Leakage = 0.00578676 W
+ Runtime Dynamic = 0.549486 W
+
+ Execution Unit:
+ Area = 6.79584 mm^2
+ Peak Dynamic = 1.79843 W
+ Subthreshold Leakage = 0.610924 W
+ Gate Leakage = 0.116437 W
+ Runtime Dynamic = 9.38994 W
+
+ Register Files:
+ Area = 1.18037 mm^2
+ Peak Dynamic = 0.0639548 W
+ Subthreshold Leakage = 0.00981018 W
+ Gate Leakage = 0.00106415 W
+ Runtime Dynamic = 0.401933 W
+
+ Integer RF:
+ Area = 0.648931 mm^2
+ Peak Dynamic = 0.0485174 W
+ Subthreshold Leakage = 0.00196627 W
+ Gate Leakage = 0.000259389 W
+ Runtime Dynamic = 0.392074 W
+
+ Floating Point RF:
+ Area = 0.324465 mm^2
+ Peak Dynamic = 0.0154374 W
+ Subthreshold Leakage = 0.00196627 W
+ Gate Leakage = 0.000259389 W
+ Runtime Dynamic = 0.0098154 W
+
+ Register Windows:
+ Area = 0.206972 mm^2
+ Peak Dynamic = 0 W
+ Subthreshold Leakage = 0.00587765 W
+ Gate Leakage = 0.000545372 W
+ Runtime Dynamic = 4.40062e-05 W
+
+ Instruction Scheduler:
+ Area = 0.0458096 mm^2
+ Peak Dynamic = 0.0333897 W
+ Subthreshold Leakage = 0.000402487 W
+ Gate Leakage = 8.61395e-05 W
+ Runtime Dynamic = 0.287483 W
+
+ Instruction Window:
+ Area = 0.0458096 mm^2
+ Peak Dynamic = 0.0333897 W
+ Subthreshold Leakage = 0.000402487 W
+ Gate Leakage = 8.61395e-05 W
+ Runtime Dynamic = 0.287483 W
+
+ Integer ALUs (Count: 2 ):
+ Area = 0.448448 mm^2
+ Peak Dynamic = 0.425547 W
+ Subthreshold Leakage = 0.147955 W
+ Gate Leakage = 0.0266792 W
+ Runtime Dynamic = 3.78264 W
+
+ Floating Point Units (FPUs) (Count: 1 ):
+ Area = 4.85979 mm^2
+ Peak Dynamic = 0.425547 W
+ Subthreshold Leakage = 0.400843 W
+ Gate Leakage = 0.07228 W
+ Runtime Dynamic = 0.0709246 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.0440413 mm^2
+ Peak Dynamic = 0.481158 W
+ Subthreshold Leakage = 0.0264373 W
+ Gate Leakage = 0.00476717 W
+ Runtime Dynamic = 3.20772 W
+
+*****************************************************************************************
+L2
+ Area = 10.6299 mm^2
+ Peak Dynamic = 1.23435 W
+ Subthreshold Leakage = 0.338985 W
+ Gate Leakage = 0.0855405 W
+ Runtime Dynamic = 3.97632 W
+
+*****************************************************************************************
+First Level Directory
+ Area = 1.45521 mm^2
+ Peak Dynamic = 0.665462 W
+ Subthreshold Leakage = 0.0312356 W
+ Gate Leakage = 0.0134358 W
+ Runtime Dynamic = 5.38275 W
+
+*****************************************************************************************
+Memory Controller:
+ Area = 8.06942 mm^2
+ Peak Dynamic = 1.48127 W
+ Subthreshold Leakage = 0.139768 W
+ Gate Leakage = 0.0260401 W
+ Runtime Dynamic = 7.93157 W
+
+ Front End Engine:
+ Area = 0.250458 mm^2
+ Peak Dynamic = 0.05883 W
+ Subthreshold Leakage = 0.0029079 W
+ Gate Leakage = 0.000455875 W
+ Runtime Dynamic = 0.298069 W
+
+ Transaction Engine:
+ Area = 2.66058 mm^2
+ Peak Dynamic = 0.6912 W
+ Subthreshold Leakage = 0.0465697 W
+ Gate Leakage = 0.00870562 W
+ Runtime Dynamic = 3.50205 W
+
+ PHY:
+ Area = 5.15838 mm^2
+ Peak Dynamic = 0.731237 W
+ Subthreshold Leakage = 0.0902901 W
+ Gate Leakage = 0.0168786 W
+ Runtime Dynamic = 4.13145 W
+
+*****************************************************************************************
+NIU:
+ Area = 7.93167 mm^2
+ Peak Dynamic = 0.93241 W
+ Subthreshold Leakage = 0.178813 W
+ Gate Leakage = 0.0918312 W
+ Runtime Dynamic = 0.652687 W
+
+*****************************************************************************************
+PCIe:
+ Area = 6.24 mm^2
+ Peak Dynamic = 1.5067 W
+ Subthreshold Leakage = 0.214091 W
+ Gate Leakage = 0.109948 W
+ Runtime Dynamic = 1.05469 W
+
+*****************************************************************************************
+NOC
+ Area = 9.56584 mm^2
+ Peak Dynamic = 1.07754 W
+ Subthreshold Leakage = 1.61961 W
+ Gate Leakage = 0.389994 W
+ Runtime Dynamic = 1.07754 W
+
+ Router:
+ Area = 4.78292 mm^2
+ Peak Dynamic = 0.538772 W
+ Subthreshold Leakage = 0.809805 W
+ Gate Leakage = 0.194997 W
+ Runtime Dynamic = 1.07754 W
+
+ Virtual Channel Buffer:
+ Area = 0.827721 mm^2
+ Peak Dynamic = 0.0223838 W
+ Subthreshold Leakage = 0.00314985 W
+ Gate Leakage = 0.000413272 W
+ Runtime Dynamic = 0.0447677 W
+
+ Crossbar:
+ Area = 1.69589 mm^2
+ Peak Dynamic = 0.511174 W
+ Subthreshold Leakage = 0.806641 W
+ Gate Leakage = 0.194581 W
+ Runtime Dynamic = 1.02235 W
+
+ Arbiter:
+ Peak Dynamic = 0.00521447 W
+ Subthreshold Leakage = 1.42757e-05 W
+ Gate Leakage = 2.78294e-06 W
+ Runtime Dynamic = 0.0104289 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.7 of May, 2010) is computing the target processor...
+
+
+McPAT (version 0.7 of May, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 65 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= aggressive interconnect technology projection
+ Core clock Rate(MHz) 3400
+
+*****************************************************************************************
+Processor:
+ Area = 417.445 mm^2
+ Peak Power = 142.148 W
+ Total Leakage = 55.8021 W
+ Peak Dynamic = 86.3458 W
+ Subthreshold Leakage = 52.785 W
+ Gate Leakage = 3.01712 W
+ Runtime Dynamic = 63.1851 W
+
+ Total Cores:
+ Device Type= ITRS high performance device type
+ Area = 133.278 mm^2
+ Peak Dynamic = 63.8414 W
+ Subthreshold Leakage = 32.4393 W
+ Gate Leakage = 2.72517 W
+ Runtime Dynamic = 41.616 W
+
+ Total L3s:
+ Device Type= ITRS high performance device type
+ Area = 278.612 mm^2
+ Peak Dynamic = 6.11346 W
+ Subthreshold Leakage = 20.1995 W
+ Gate Leakage = 0.267752 W
+ Runtime Dynamic = 5.1782 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS high performance device type
+ Area = 5.5548 mm^2
+ Peak Dynamic = 16.3909 W
+ Subthreshold Leakage = 0.146229 W
+ Gate Leakage = 0.0241913 W
+ Runtime Dynamic = 16.3909 W
+
+*****************************************************************************************
+Core:
+ Area = 66.6389 mm^2
+ Peak Dynamic = 31.9207 W
+ Subthreshold Leakage = 16.2197 W
+ Gate Leakage = 1.36259 W
+ Runtime Dynamic = 41.616 W
+
+ Instruction Fetch Unit:
+ Area = 7.41271 mm^2
+ Peak Dynamic = 5.04492 W
+ Subthreshold Leakage = 1.26751 W
+ Gate Leakage = 0.09429 W
+ Runtime Dynamic = 5.39803 W
+
+ Instruction Cache:
+ Area = 2.44324 mm^2
+ Peak Dynamic = 1.42048 W
+ Subthreshold Leakage = 0.359444 W
+ Gate Leakage = 0.0187045 W
+ Runtime Dynamic = 2.13804 W
+
+ Branch Target Buffer:
+ Area = 0.729086 mm^2
+ Peak Dynamic = 0.161698 W
+ Subthreshold Leakage = 0.0616324 W
+ Gate Leakage = 0.00336254 W
+ Runtime Dynamic = 0.646794 W
+
+ Branch Predictor:
+ Area = 0.430961 mm^2
+ Peak Dynamic = 0.188469 W
+ Subthreshold Leakage = 0.0698834 W
+ Gate Leakage = 0.00415943 W
+ Runtime Dynamic = 0.166045 W
+
+ Global Predictor:
+ Area = 0.174771 mm^2
+ Peak Dynamic = 0.0633335 W
+ Subthreshold Leakage = 0.0274086 W
+ Gate Leakage = 0.00158249 W
+ Runtime Dynamic = 0.0633335 W
+
+ Local Predictor:
+ Area = 0.0735854 mm^2
+ Peak Dynamic = 0.0393754 W
+ Subthreshold Leakage = 0.0111166 W
+ Gate Leakage = 0.000721196 W
+ Runtime Dynamic = 0.0393754 W
+
+ Area = 0.0507308 mm^2
+ Peak Dynamic = 0.0258383 W
+ Subthreshold Leakage = 0.00749994 W
+ Gate Leakage = 0.000498805 W
+ Runtime Dynamic = 0.0258383 W
+
+ Chooser:
+ Area = 0.174771 mm^2
+ Peak Dynamic = 0.0633335 W
+ Subthreshold Leakage = 0.0274086 W
+ Gate Leakage = 0.00158249 W
+ Runtime Dynamic = 0.0633335 W
+
+ RAS:
+ Area = 0.0613744 mm^2
+ Peak Dynamic = 0.0224266 W
+ Subthreshold Leakage = 0.00394955 W
+ Gate Leakage = 0.000273252 W
+ Runtime Dynamic = 2.51602e-06 W
+
+ Instruction Buffer:
+ Area = 0.0684348 mm^2
+ Peak Dynamic = 0.704461 W
+ Subthreshold Leakage = 0.00411741 W
+ Gate Leakage = 0.000240288 W
+ Runtime Dynamic = 0.46964 W
+
+ Instruction Decoder:
+ Area = 3.73007 mm^2
+ Peak Dynamic = 1.97751 W
+ Subthreshold Leakage = 0.733056 W
+ Gate Leakage = 0.0575912 W
+ Runtime Dynamic = 1.97751 W
+
+ Renaming Unit:
+ Area = 1.82421 mm^2
+ Peak Dynamic = 2.76284 W
+ Subthreshold Leakage = 0.0765654 W
+ Gate Leakage = 0.0125478 W
+ Runtime Dynamic = 1.94438 W
+
+ Int Front End RAT:
+ Area = 0.875874 mm^2
+ Peak Dynamic = 1.249 W
+ Subthreshold Leakage = 0.0113878 W
+ Gate Leakage = 0.000693471 W
+ Runtime Dynamic = 1.249 W
+
+ FP Front End RAT:
+ Area = 0.405459 mm^2
+ Peak Dynamic = 0.610062 W
+ Subthreshold Leakage = 0.0144803 W
+ Gate Leakage = 0.000906674 W
+ Runtime Dynamic = 0.305031 W
+
+ Free List:
+ Area = 0.297629 mm^2
+ Peak Dynamic = 0.137664 W
+ Subthreshold Leakage = 0.0054316 W
+ Gate Leakage = 0.000326171 W
+ Runtime Dynamic = 0.275328 W
+
+ Int Retire RAT:
+ Area = 0.0530903 mm^2
+ Peak Dynamic = 0.056222 W
+ Subthreshold Leakage = 0.00135314 W
+ Gate Leakage = 0.00011607 W
+ Runtime Dynamic = 0.056222 W
+
+ FP Retire RAT:
+ Area = 0.018828 mm^2
+ Peak Dynamic = 0.0186388 W
+ Subthreshold Leakage = 0.000788229 W
+ Gate Leakage = 6.41952e-05 W
+ Runtime Dynamic = 0.00931941 W
+
+ FP Free List:
+ Area = 0.162422 mm^2
+ Peak Dynamic = 0.0989385 W
+ Subthreshold Leakage = 0.00375181 W
+ Gate Leakage = 0.000209083 W
+ Runtime Dynamic = 0.0494693 W
+
+ Load Store Unit:
+ Area = 4.35998 mm^2
+ Peak Dynamic = 2.94939 W
+ Subthreshold Leakage = 0.208781 W
+ Gate Leakage = 0.0232213 W
+ Runtime Dynamic = 3.60184 W
+
+ Data Cache:
+ Area = 2.2051 mm^2
+ Peak Dynamic = 1.08067 W
+ Subthreshold Leakage = 0.0877157 W
+ Gate Leakage = 0.00573003 W
+ Runtime Dynamic = 2.30478 W
+
+ LoadQ:
+ Area = 0.637121 mm^2
+ Peak Dynamic = 0.551016 W
+ Subthreshold Leakage = 0.0283256 W
+ Gate Leakage = 0.00254841 W
+ Runtime Dynamic = 0.275508 W
+
+ StoreQ:
+ Area = 0.809965 mm^2
+ Peak Dynamic = 1.02155 W
+ Subthreshold Leakage = 0.053367 W
+ Gate Leakage = 0.00471074 W
+ Runtime Dynamic = 1.02155 W
+
+ Memory Management Unit:
+ Area = 0.517456 mm^2
+ Peak Dynamic = 0.979218 W
+ Subthreshold Leakage = 0.0808171 W
+ Gate Leakage = 0.0139952 W
+ Runtime Dynamic = 1.66678 W
+
+ Itlb:
+ Area = 0.127123 mm^2
+ Peak Dynamic = 0.236587 W
+ Subthreshold Leakage = 0.0160962 W
+ Gate Leakage = 0.00146431 W
+ Runtime Dynamic = 0.473177 W
+
+ Dtlb:
+ Area = 0.379422 mm^2
+ Peak Dynamic = 0.298399 W
+ Subthreshold Leakage = 0.0253484 W
+ Gate Leakage = 0.00229878 W
+ Runtime Dynamic = 1.1936 W
+
+ Execution Unit:
+ Area = 27.5381 mm^2
+ Peak Dynamic = 16.9637 W
+ Subthreshold Leakage = 7.08185 W
+ Gate Leakage = 0.73316 W
+ Runtime Dynamic = 22.7198 W
+
+ Register Files:
+ Area = 11.2548 mm^2
+ Peak Dynamic = 3.2925 W
+ Subthreshold Leakage = 0.11111 W
+ Gate Leakage = 0.00754256 W
+ Runtime Dynamic = 1.69823 W
+
+ Integer RF:
+ Area = 7.55916 mm^2
+ Peak Dynamic = 2.82012 W
+ Subthreshold Leakage = 0.0664048 W
+ Gate Leakage = 0.00458288 W
+ Runtime Dynamic = 1.51078 W
+
+ Floating Point RF:
+ Area = 3.69565 mm^2
+ Peak Dynamic = 0.472385 W
+ Subthreshold Leakage = 0.0447053 W
+ Gate Leakage = 0.00295968 W
+ Runtime Dynamic = 0.187454 W
+
+ Instruction Scheduler:
+ Area = 2.08681 mm^2
+ Peak Dynamic = 2.1684 W
+ Subthreshold Leakage = 0.0325294 W
+ Gate Leakage = 0.00296372 W
+ Runtime Dynamic = 2.59089 W
+
+ Instruction Window:
+ Area = 0.287309 mm^2
+ Peak Dynamic = 0.929972 W
+ Subthreshold Leakage = 0.0127376 W
+ Gate Leakage = 0.00137073 W
+ Runtime Dynamic = 1.2089 W
+
+ FP Instruction Window:
+ Area = 0.128977 mm^2
+ Peak Dynamic = 0.478661 W
+ Subthreshold Leakage = 0.00802287 W
+ Gate Leakage = 0.000873414 W
+ Runtime Dynamic = 0.622222 W
+
+ ROB:
+ Area = 1.67052 mm^2
+ Peak Dynamic = 0.759764 W
+ Subthreshold Leakage = 0.0117689 W
+ Gate Leakage = 0.000719579 W
+ Runtime Dynamic = 0.759764 W
+
+ Integer ALUs (Count: 6 ):
+ Area = 4.03603 mm^2
+ Peak Dynamic = 4.55818 W
+ Subthreshold Leakage = 3.9898 W
+ Gate Leakage = 0.412015 W
+ Runtime Dynamic = 2.33394 W
+
+ Floating Point Units (FPUs) (Count: 2 ):
+ Area = 9.71959 mm^2
+ Peak Dynamic = 1.43327 W
+ Subthreshold Leakage = 2.40207 W
+ Gate Leakage = 0.248054 W
+ Runtime Dynamic = 2.55333 W
+
+ Complex ALUs (Mul/Div) (Count: 1 ):
+ Area = 0.336336 mm^2
+ Peak Dynamic = 0.510666 W
+ Subthreshold Leakage = 0.332484 W
+ Gate Leakage = 0.0343346 W
+ Runtime Dynamic = 3.18505 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.0936618 mm^2
+ Peak Dynamic = 4.4084 W
+ Subthreshold Leakage = 0.174486 W
+ Gate Leakage = 0.0180186 W
+ Runtime Dynamic = 10.3584 W
+
+ L2
+ Area = 15.914 mm^2
+ Peak Dynamic = 3.22061 W
+ Subthreshold Leakage = 3.01991 W
+ Gate Leakage = 0.0223008 W
+ Runtime Dynamic = 6.28514 W
+
+*****************************************************************************************
+ L3
+ Area = 278.612 mm^2
+ Peak Dynamic = 6.11346 W
+ Subthreshold Leakage = 20.1995 W
+ Gate Leakage = 0.267752 W
+ Runtime Dynamic = 5.1782 W
+
+*****************************************************************************************
+BUSES
+ Area = 5.5548 mm^2
+ Peak Dynamic = 16.3909 W
+ Subthreshold Leakage = 0.146229 W
+ Gate Leakage = 0.0241913 W
+ Runtime Dynamic = 16.3909 W
+
+ Bus:
+ Area = 5.5548 mm^2
+ Peak Dynamic = 16.3909 W
+ Subthreshold Leakage = 0.146229 W
+ Gate Leakage = 0.0241913 W
+ Runtime Dynamic = 16.3909 W
+
+*****************************************************************************************
--- /dev/null
+McPAT (version 0.7 of May, 2010) is computing the target processor...
+
+
+McPAT (version 0.7 of May, 2010) results (current print level is 5)
+*****************************************************************************************
+ Technology 65 nm
+ Using Long Channel Devices When Appropriate
+ Interconnect metal projection= aggressive interconnect technology projection
+ Core clock Rate(MHz) 3400
+
+*****************************************************************************************
+Processor:
+ Area = 418.629 mm^2
+ Peak Power = 96.2032 W
+ Total Leakage = 27.5568 W
+ Peak Dynamic = 68.6463 W
+ Subthreshold Leakage = 25.8287 W
+ Gate Leakage = 1.72809 W
+ Runtime Dynamic = 50.332 W
+
+ Total Cores:
+ Device Type= ITRS high performance device type
+ Area = 134.217 mm^2
+ Peak Dynamic = 50.8677 W
+ Subthreshold Leakage = 15.0187 W
+ Gate Leakage = 1.57092 W
+ Runtime Dynamic = 33.3003 W
+
+ Total L3s:
+ Device Type= ITRS high performance device type
+ Area = 278.843 mm^2
+ Peak Dynamic = 4.84476 W
+ Subthreshold Leakage = 10.7416 W
+ Gate Leakage = 0.144361 W
+ Runtime Dynamic = 4.09781 W
+
+ Total NoCs (Network/Bus):
+ Device Type= ITRS high performance device type
+ Area = 5.56828 mm^2
+ Peak Dynamic = 12.9339 W
+ Subthreshold Leakage = 0.0684953 W
+ Gate Leakage = 0.0128043 W
+ Runtime Dynamic = 12.9339 W
+
+*****************************************************************************************
+Core:
+ Area = 67.1085 mm^2
+ Peak Dynamic = 25.4338 W
+ Subthreshold Leakage = 7.50933 W
+ Gate Leakage = 0.78546 W
+ Runtime Dynamic = 33.3003 W
+
+ Instruction Fetch Unit:
+ Area = 7.56843 mm^2
+ Peak Dynamic = 4.27305 W
+ Subthreshold Leakage = 0.571346 W
+ Gate Leakage = 0.0523885 W
+ Runtime Dynamic = 4.67953 W
+
+ Instruction Cache:
+ Area = 2.44678 mm^2
+ Peak Dynamic = 1.1785 W
+ Subthreshold Leakage = 0.151766 W
+ Gate Leakage = 0.009764 W
+ Runtime Dynamic = 1.7926 W
+
+ Branch Target Buffer:
+ Area = 0.718635 mm^2
+ Peak Dynamic = 0.151619 W
+ Subthreshold Leakage = 0.0238082 W
+ Gate Leakage = 0.0015503 W
+ Runtime Dynamic = 0.606475 W
+
+ Branch Predictor:
+ Area = 0.446844 mm^2
+ Peak Dynamic = 0.158508 W
+ Subthreshold Leakage = 0.0293041 W
+ Gate Leakage = 0.0021362 W
+ Runtime Dynamic = 0.14087 W
+
+ Global Predictor:
+ Area = 0.174801 mm^2
+ Peak Dynamic = 0.0543932 W
+ Subthreshold Leakage = 0.0116121 W
+ Gate Leakage = 0.000827171 W
+ Runtime Dynamic = 0.0543932 W
+
+ Local Predictor:
+ Area = 0.0788692 mm^2
+ Peak Dynamic = 0.0320817 W
+ Subthreshold Leakage = 0.00452837 W
+ Gate Leakage = 0.000354718 W
+ Runtime Dynamic = 0.0320817 W
+
+ Area = 0.050748 mm^2
+ Peak Dynamic = 0.0218669 W
+ Subthreshold Leakage = 0.00318852 W
+ Gate Leakage = 0.000264126 W
+ Runtime Dynamic = 0.0218669 W
+
+ Chooser:
+ Area = 0.174801 mm^2
+ Peak Dynamic = 0.0543932 W
+ Subthreshold Leakage = 0.0116121 W
+ Gate Leakage = 0.000827171 W
+ Runtime Dynamic = 0.0543932 W
+
+ RAS:
+ Area = 0.0929863 mm^2
+ Peak Dynamic = 0.0176394 W
+ Subthreshold Leakage = 0.00155163 W
+ Gate Leakage = 0.00012714 W
+ Runtime Dynamic = 1.96119e-06 W
+
+ Instruction Buffer:
+ Area = 0.0687233 mm^2
+ Peak Dynamic = 0.579633 W
+ Subthreshold Leakage = 0.00177049 W
+ Gate Leakage = 0.000129185 W
+ Runtime Dynamic = 0.386422 W
+
+ Instruction Decoder:
+ Area = 3.87654 mm^2
+ Peak Dynamic = 1.75316 W
+ Subthreshold Leakage = 0.348225 W
+ Gate Leakage = 0.0335628 W
+ Runtime Dynamic = 1.75316 W
+
+ Renaming Unit:
+ Area = 1.83366 mm^2
+ Peak Dynamic = 2.16025 W
+ Subthreshold Leakage = 0.0324638 W
+ Gate Leakage = 0.00648876 W
+ Runtime Dynamic = 1.53428 W
+
+ Int Front End RAT:
+ Area = 0.879521 mm^2
+ Peak Dynamic = 0.975897 W
+ Subthreshold Leakage = 0.00490782 W
+ Gate Leakage = 0.000372282 W
+ Runtime Dynamic = 0.975897 W
+
+ FP Front End RAT:
+ Area = 0.407642 mm^2
+ Peak Dynamic = 0.477469 W
+ Subthreshold Leakage = 0.00619591 W
+ Gate Leakage = 0.000483134 W
+ Runtime Dynamic = 0.238735 W
+
+ Free List:
+ Area = 0.300513 mm^2
+ Peak Dynamic = 0.112906 W
+ Subthreshold Leakage = 0.00233243 W
+ Gate Leakage = 0.000174984 W
+ Runtime Dynamic = 0.225813 W
+
+ Int Retire RAT:
+ Area = 0.0534147 mm^2
+ Peak Dynamic = 0.0453154 W
+ Subthreshold Leakage = 0.00058142 W
+ Gate Leakage = 6.26682e-05 W
+ Runtime Dynamic = 0.0453154 W
+
+ FP Retire RAT:
+ Area = 0.018897 mm^2
+ Peak Dynamic = 0.0151716 W
+ Subthreshold Leakage = 0.000337803 W
+ Gate Leakage = 3.45545e-05 W
+ Runtime Dynamic = 0.00758578 W
+
+ FP Free List:
+ Area = 0.162758 mm^2
+ Peak Dynamic = 0.081858 W
+ Subthreshold Leakage = 0.00163685 W
+ Gate Leakage = 0.000115075 W
+ Runtime Dynamic = 0.040929 W
+
+ Load Store Unit:
+ Area = 4.4281 mm^2
+ Peak Dynamic = 2.34722 W
+ Subthreshold Leakage = 0.0896936 W
+ Gate Leakage = 0.0121845 W
+ Runtime Dynamic = 2.89901 W
+
+ Data Cache:
+ Area = 2.25853 mm^2
+ Peak Dynamic = 0.888323 W
+ Subthreshold Leakage = 0.0382167 W
+ Gate Leakage = 0.00311455 W
+ Runtime Dynamic = 1.88387 W
+
+ LoadQ:
+ Area = 0.638298 mm^2
+ Peak Dynamic = 0.435889 W
+ Subthreshold Leakage = 0.0121526 W
+ Gate Leakage = 0.00134375 W
+ Runtime Dynamic = 0.217944 W
+
+ StoreQ:
+ Area = 0.811765 mm^2
+ Peak Dynamic = 0.79719 W
+ Subthreshold Leakage = 0.0228527 W
+ Gate Leakage = 0.00248017 W
+ Runtime Dynamic = 0.79719 W
+
+ Memory Management Unit:
+ Area = 0.518866 mm^2
+ Peak Dynamic = 0.760463 W
+ Subthreshold Leakage = 0.0342246 W
+ Gate Leakage = 0.00722713 W
+ Runtime Dynamic = 1.31193 W
+
+ Itlb:
+ Area = 0.12744 mm^2
+ Peak Dynamic = 0.187517 W
+ Subthreshold Leakage = 0.00686539 W
+ Gate Leakage = 0.000767441 W
+ Runtime Dynamic = 0.375037 W
+
+ Dtlb:
+ Area = 0.380515 mm^2
+ Peak Dynamic = 0.234221 W
+ Subthreshold Leakage = 0.0108877 W
+ Gate Leakage = 0.00121362 W
+ Runtime Dynamic = 0.936886 W
+
+ Execution Unit:
+ Area = 27.5564 mm^2
+ Peak Dynamic = 13.34 W
+ Subthreshold Leakage = 3.35055 W
+ Gate Leakage = 0.425 W
+ Runtime Dynamic = 17.8618 W
+
+ Register Files:
+ Area = 11.2668 mm^2
+ Peak Dynamic = 2.65925 W
+ Subthreshold Leakage = 0.0472795 W
+ Gate Leakage = 0.00398463 W
+ Runtime Dynamic = 1.37147 W
+
+ Integer RF:
+ Area = 7.56635 mm^2
+ Peak Dynamic = 2.27672 W
+ Subthreshold Leakage = 0.0282472 W
+ Gate Leakage = 0.00241709 W
+ Runtime Dynamic = 1.21967 W
+
+ Floating Point RF:
+ Area = 3.70048 mm^2
+ Peak Dynamic = 0.382527 W
+ Subthreshold Leakage = 0.0190323 W
+ Gate Leakage = 0.00156754 W
+ Runtime Dynamic = 0.151797 W
+
+ Instruction Scheduler:
+ Area = 2.09118 mm^2
+ Peak Dynamic = 1.7092 W
+ Subthreshold Leakage = 0.0139125 W
+ Gate Leakage = 0.00156067 W
+ Runtime Dynamic = 2.04197 W
+
+ Instruction Window:
+ Area = 0.287606 mm^2
+ Peak Dynamic = 0.721714 W
+ Subthreshold Leakage = 0.00547415 W
+ Gate Leakage = 0.000721338 W
+ Runtime Dynamic = 0.940723 W
+
+ FP Instruction Window:
+ Area = 0.129287 mm^2
+ Peak Dynamic = 0.372875 W
+ Subthreshold Leakage = 0.0034355 W
+ Gate Leakage = 0.00045775 W
+ Runtime Dynamic = 0.486639 W
+
+ ROB:
+ Area = 1.67428 mm^2
+ Peak Dynamic = 0.61461 W
+ Subthreshold Leakage = 0.00500288 W
+ Gate Leakage = 0.00038158 W
+ Runtime Dynamic = 0.61461 W
+
+ Integer ALUs (Count: 6 ):
+ Area = 4.03603 mm^2
+ Peak Dynamic = 3.52986 W
+ Subthreshold Leakage = 1.89726 W
+ Gate Leakage = 0.240113 W
+ Runtime Dynamic = 1.8074 W
+
+ Floating Point Units (FPUs) (Count: 2 ):
+ Area = 9.71959 mm^2
+ Peak Dynamic = 1.10993 W
+ Subthreshold Leakage = 1.14225 W
+ Gate Leakage = 0.14456 W
+ Runtime Dynamic = 1.9773 W
+
+ Complex ALUs (Mul/Div) (Count: 1 ):
+ Area = 0.336336 mm^2
+ Peak Dynamic = 0.405148 W
+ Subthreshold Leakage = 0.158105 W
+ Gate Leakage = 0.0200094 W
+ Runtime Dynamic = 2.4988 W
+
+ Results Broadcast Bus:
+ Area Overhead = 0.0954831 mm^2
+ Peak Dynamic = 3.47499 W
+ Subthreshold Leakage = 0.0752739 W
+ Gate Leakage = 0.00952648 W
+ Runtime Dynamic = 8.1649 W
+
+ L2
+ Area = 16.1307 mm^2
+ Peak Dynamic = 2.55285 W
+ Subthreshold Leakage = 1.29868 W
+ Gate Leakage = 0.012304 W
+ Runtime Dynamic = 5.01368 W
+
+*****************************************************************************************
+ L3
+ Area = 278.843 mm^2
+ Peak Dynamic = 4.84476 W
+ Subthreshold Leakage = 10.7416 W
+ Gate Leakage = 0.144361 W
+ Runtime Dynamic = 4.09781 W
+
+*****************************************************************************************
+BUSES
+ Area = 5.56828 mm^2
+ Peak Dynamic = 12.9339 W
+ Subthreshold Leakage = 0.0684953 W
+ Gate Leakage = 0.0128043 W
+ Runtime Dynamic = 12.9339 W
+
+ Bus:
+ Area = 5.56828 mm^2
+ Peak Dynamic = 12.9339 W
+ Subthreshold Leakage = 0.0684953 W
+ Gate Leakage = 0.0128043 W
+ Runtime Dynamic = 12.9339 W
+
+*****************************************************************************************
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <cstring>
+#include <iostream>
+
+#include "XML_Parse.h"
+#include "arbiter.h"
+#include "array.h"
+#include "basic_circuit.h"
+#include "const.h"
+#include "io.h"
+#include "logic.h"
+#include "parameter.h"
+#include "sharedcache.h"
+
+SharedCache::SharedCache(ParseXML* XML_interface, int ithCache_, InputParameter* interface_ip_, enum cache_level cacheL_)
+:XML(XML_interface),
+ ithCache(ithCache_),
+ interface_ip(*interface_ip_),
+ cacheL(cacheL_),
+ dir_overhead(0)
+{
+ int idx;
+ int tag, data;
+ bool is_default, debug;
+ enum Device_ty device_t;
+ enum Core_type core_t;
+ double size, line, assoc, banks;
+ if (cacheL==L2 && XML->sys.Private_L2)
+ {
+ device_t=Core_device;
+ core_t = (enum Core_type)XML->sys.core[ithCache].machine_type;
+ }
+ else
+ {
+ device_t=LLC_device;
+ core_t = Inorder;
+ }
+
+ debug = false;
+ is_default=true;//indication for default setup
+ if (XML->sys.Embedded)
+ {
+ interface_ip.wt =Global_30;
+ interface_ip.wire_is_mat_type = 0;
+ interface_ip.wire_os_mat_type = 1;
+ }
+ else
+ {
+ interface_ip.wt =Global;
+ interface_ip.wire_is_mat_type = 2;
+ interface_ip.wire_os_mat_type = 2;
+ }
+ set_cache_param();
+
+ //All lower level cache are physically indexed and tagged.
+ size = cachep.capacity;
+ line = cachep.blockW;
+ assoc = cachep.assoc;
+ banks = cachep.nbanks;
+ if ((cachep.dir_ty==ST&& cacheL==L1Directory)||(cachep.dir_ty==ST&& cacheL==L2Directory))
+ {
+ assoc = 0;
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ interface_ip.num_search_ports = 1;
+ }
+ else
+ {
+ idx = debug?9:int(ceil(log2(size/line/assoc)));
+ tag = debug?51:XML->sys.physical_address_width-idx-int(ceil(log2(line))) + EXTRA_TAG_BITS;
+ interface_ip.num_search_ports = 0;
+ if (cachep.dir_ty==SBT)
+ {
+ dir_overhead = ceil(XML->sys.number_of_cores/8.0)*8/(cachep.blockW*8);
+ line = cachep.blockW*(1+ dir_overhead) ;
+ size = cachep.capacity*(1+ dir_overhead);
+
+ }
+ }
+// if (XML->sys.first_level_dir==2)
+// tag += int(XML->sys.domain_size + 5);
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.cache_sz = (int)size;
+ interface_ip.line_sz = (int)line;
+ interface_ip.assoc = (int)assoc;
+ interface_ip.nbanks = (int)banks;
+ interface_ip.out_w = interface_ip.line_sz*8/2;
+ interface_ip.access_mode = 1;
+ interface_ip.throughput = cachep.throughput;
+ interface_ip.latency = cachep.latency;
+ interface_ip.is_cache = true;
+ interface_ip.pure_ram = false;
+ interface_ip.pure_cam = false;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//lower level cache usually has one port.
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+// interface_ip.force_cache_config =true;
+// interface_ip.ndwl = 4;
+// interface_ip.ndbl = 8;
+// interface_ip.nspd = 1;
+// interface_ip.ndcm =1 ;
+// interface_ip.ndsam1 =1;
+// interface_ip.ndsam2 =1;
+ unicache.caches = new ArrayST(&interface_ip, cachep.name + "cache", device_t, true, core_t);
+ unicache.area.set_area(unicache.area.get_area()+ unicache.caches->local_result.area);
+ area.set_area(area.get_area()+ unicache.caches->local_result.area);
+ interface_ip.force_cache_config =false;
+
+ if (!((cachep.dir_ty==ST&& cacheL==L1Directory)||(cachep.dir_ty==ST&& cacheL==L2Directory)))
+ {
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = (XML->sys.physical_address_width) + int(ceil(log2(size/line))) + unicache.caches->l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = int(ceil(data/8.0));//int(ceil(pow(2.0,ceil(log2(data)))/8.0));
+ interface_ip.cache_sz = cachep.missb_size*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.is_cache = true;
+ interface_ip.pure_ram = false;
+ interface_ip.pure_cam = false;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8/2;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = cachep.throughput;//means cycle time
+ interface_ip.latency = cachep.latency;//means access time
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ interface_ip.num_search_ports = 1;
+ unicache.missb = new ArrayST(&interface_ip, cachep.name + "MissB", device_t, true, core_t);
+ unicache.area.set_area(unicache.area.get_area()+ unicache.missb->local_result.area);
+ area.set_area(area.get_area()+ unicache.missb->local_result.area);
+ //fill buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = unicache.caches->l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;//int(pow(2.0,ceil(log2(data))));
+ interface_ip.cache_sz = data*cachep.fu_size ;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8/2;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = cachep.throughput;
+ interface_ip.latency = cachep.latency;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ unicache.ifb = new ArrayST(&interface_ip, cachep.name + "FillB", device_t, true, core_t);
+ unicache.area.set_area(unicache.area.get_area()+ unicache.ifb->local_result.area);
+ area.set_area(area.get_area()+ unicache.ifb->local_result.area);
+ //prefetch buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;//check with previous entries to decide wthether to merge.
+ data = unicache.caches->l_ip.line_sz;//separate queue to prevent from cache polution.
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;//int(pow(2.0,ceil(log2(data))));
+ interface_ip.cache_sz = cachep.prefetchb_size*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8/2;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = cachep.throughput;
+ interface_ip.latency = cachep.latency;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ unicache.prefetchb = new ArrayST(&interface_ip, cachep.name + "PrefetchB", device_t, true, core_t);
+ unicache.area.set_area(unicache.area.get_area()+ unicache.prefetchb->local_result.area);
+ area.set_area(area.get_area()+ unicache.prefetchb->local_result.area);
+ //WBB
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = unicache.caches->l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = cachep.wbb_size*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8/2;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = cachep.throughput;
+ interface_ip.latency = cachep.latency;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ unicache.wbb = new ArrayST(&interface_ip, cachep.name + "WBB", device_t, true, core_t);
+ unicache.area.set_area(unicache.area.get_area()+ unicache.wbb->local_result.area);
+ area.set_area(area.get_area()+ unicache.wbb->local_result.area);
+ }
+ // //pipeline
+// interface_ip.pipeline_stages = int(ceil(llCache.caches.local_result.access_time/llCache.caches.local_result.cycle_time));
+// interface_ip.per_stage_vector = llCache.caches.l_ip.out_w + llCache.caches.l_ip.tag_w ;
+// pipeLogicCache.init_pipeline(is_default, &interface_ip);
+// pipeLogicCache.compute_pipeline();
+
+ /*
+ if (!((XML->sys.number_of_dir_levels==1 && XML->sys.first_level_dir ==1)
+ ||(XML->sys.number_of_dir_levels==1 && XML->sys.first_level_dir ==2)))//not single level IC and DIC
+ {
+ //directory Now assuming one directory per bank, TODO:should change it later
+ size = XML->sys.L2directory.L2Dir_config[0];
+ line = XML->sys.L2directory.L2Dir_config[1];
+ assoc = XML->sys.L2directory.L2Dir_config[2];
+ banks = XML->sys.L2directory.L2Dir_config[3];
+ tag = debug?51:XML->sys.physical_address_width + EXTRA_TAG_BITS;//TODO: a little bit over estimate
+ interface_ip.specific_tag = 0;
+ interface_ip.tag_w = tag;
+ interface_ip.cache_sz = XML->sys.L2directory.L2Dir_config[0];
+ interface_ip.line_sz = XML->sys.L2directory.L2Dir_config[1];
+ interface_ip.assoc = XML->sys.L2directory.L2Dir_config[2];
+ interface_ip.nbanks = XML->sys.L2directory.L2Dir_config[3];
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;//debug?0:XML->sys.core[ithCore].icache.icache_config[5];
+ interface_ip.throughput = XML->sys.L2directory.L2Dir_config[4]/clockRate;
+ interface_ip.latency = XML->sys.L2directory.L2Dir_config[5]/clockRate;
+ interface_ip.is_cache = true;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//lower level cache usually has one port.
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+
+ strcpy(directory.caches.name,"L2 Directory");
+ directory.caches.init_cache(&interface_ip);
+ directory.caches.optimize_array();
+ directory.area += directory.caches.local_result.area;
+ //output_data_csv(directory.caches.local_result);
+ ///cout<<"area="<<area<<endl;
+
+ //miss buffer Each MSHR contains enough state to handle one or more accesses of any type to a single memory line.
+ //Due to the generality of the MSHR mechanism, the amount of state involved is non-trivial,
+ //including the address, pointers to the cache entry and destination register, written data, and various other pieces of state.
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = (XML->sys.physical_address_width) + int(ceil(log2(size/line))) + directory.caches.l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = int(ceil(data/8.0));//int(ceil(pow(2.0,ceil(log2(data)))/8.0));
+ interface_ip.cache_sz = XML->sys.L2[ithCache].buffer_sizes[0]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = XML->sys.L2[ithCache].L2_config[4]/clockRate;//means cycle time
+ interface_ip.latency = XML->sys.L2[ithCache].L2_config[5]/clockRate;//means access time
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ strcpy(directory.missb.name,"directoryMissB");
+ directory.missb.init_cache(&interface_ip);
+ directory.missb.optimize_array();
+ directory.area += directory.missb.local_result.area;
+ //output_data_csv(directory.missb.local_result);
+ ///cout<<"area="<<area<<endl;
+
+ //fill buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = directory.caches.l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;//int(pow(2.0,ceil(log2(data))));
+ interface_ip.cache_sz = data*XML->sys.L2[ithCache].buffer_sizes[1];
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = XML->sys.L2[ithCache].L2_config[4]/clockRate;
+ interface_ip.latency = XML->sys.L2[ithCache].L2_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ strcpy(directory.ifb.name,"directoryFillB");
+ directory.ifb.init_cache(&interface_ip);
+ directory.ifb.optimize_array();
+ directory.area += directory.ifb.local_result.area;
+ //output_data_csv(directory.ifb.local_result);
+ ///cout<<"area="<<area<<endl;
+
+ //prefetch buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;//check with previous entries to decide wthether to merge.
+ data = directory.caches.l_ip.line_sz;//separate queue to prevent from cache polution.
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;//int(pow(2.0,ceil(log2(data))));
+ interface_ip.cache_sz = XML->sys.L2[ithCache].buffer_sizes[2]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = XML->sys.L2[ithCache].L2_config[4]/clockRate;
+ interface_ip.latency = XML->sys.L2[ithCache].L2_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ strcpy(directory.prefetchb.name,"directoryPrefetchB");
+ directory.prefetchb.init_cache(&interface_ip);
+ directory.prefetchb.optimize_array();
+ directory.area += directory.prefetchb.local_result.area;
+ //output_data_csv(directory.prefetchb.local_result);
+ ///cout<<"area="<<area<<endl;
+
+ //WBB
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = directory.caches.l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = XML->sys.L2[ithCache].buffer_sizes[3]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = XML->sys.L2[ithCache].L2_config[4]/clockRate;
+ interface_ip.latency = XML->sys.L2[ithCache].L2_config[4]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ strcpy(directory.wbb.name,"directoryWBB");
+ directory.wbb.init_cache(&interface_ip);
+ directory.wbb.optimize_array();
+ directory.area += directory.wbb.local_result.area;
+ }
+
+ if (XML->sys.number_of_dir_levels ==2 && XML->sys.first_level_dir==0)
+ {
+ //first level directory
+ size = XML->sys.L2directory.L2Dir_config[0]*XML->sys.domain_size/128;
+ line = int(ceil(XML->sys.domain_size/8.0));
+ assoc = XML->sys.L2directory.L2Dir_config[2];
+ banks = XML->sys.L2directory.L2Dir_config[3];
+ tag = debug?51:XML->sys.physical_address_width + EXTRA_TAG_BITS;//TODO: a little bit over estimate
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.cache_sz = XML->sys.L2directory.L2Dir_config[0];
+ interface_ip.line_sz = XML->sys.L2directory.L2Dir_config[1];
+ interface_ip.assoc = XML->sys.L2directory.L2Dir_config[2];
+ interface_ip.nbanks = XML->sys.L2directory.L2Dir_config[3];
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;//debug?0:XML->sys.core[ithCore].icache.icache_config[5];
+ interface_ip.throughput = XML->sys.L2directory.L2Dir_config[4]/clockRate;
+ interface_ip.latency = XML->sys.L2directory.L2Dir_config[5]/clockRate;
+ interface_ip.is_cache = true;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;//lower level cache usually has one port.
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+
+ strcpy(directory1.caches.name,"first level Directory");
+ directory1.caches.init_cache(&interface_ip);
+ directory1.caches.optimize_array();
+ directory1.area += directory1.caches.local_result.area;
+ //output_data_csv(directory.caches.local_result);
+ ///cout<<"area="<<area<<endl;
+
+ //miss buffer Each MSHR contains enough state to handle one or more accesses of any type to a single memory line.
+ //Due to the generality of the MSHR mechanism, the amount of state involved is non-trivial,
+ //including the address, pointers to the cache entry and destination register, written data, and various other pieces of state.
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = (XML->sys.physical_address_width) + int(ceil(log2(size/line))) + directory1.caches.l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = int(ceil(data/8.0));//int(ceil(pow(2.0,ceil(log2(data)))/8.0));
+ interface_ip.cache_sz = XML->sys.L2[ithCache].buffer_sizes[0]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = XML->sys.L2[ithCache].L2_config[4]/clockRate;//means cycle time
+ interface_ip.latency = XML->sys.L2[ithCache].L2_config[5]/clockRate;//means access time
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ strcpy(directory1.missb.name,"directory1MissB");
+ directory1.missb.init_cache(&interface_ip);
+ directory1.missb.optimize_array();
+ directory1.area += directory1.missb.local_result.area;
+ //output_data_csv(directory.missb.local_result);
+ ///cout<<"area="<<area<<endl;
+
+ //fill buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = directory1.caches.l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;//int(pow(2.0,ceil(log2(data))));
+ interface_ip.cache_sz = data*XML->sys.L2[ithCache].buffer_sizes[1];
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = XML->sys.L2[ithCache].L2_config[4]/clockRate;
+ interface_ip.latency = XML->sys.L2[ithCache].L2_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ strcpy(directory1.ifb.name,"directory1FillB");
+ directory1.ifb.init_cache(&interface_ip);
+ directory1.ifb.optimize_array();
+ directory1.area += directory1.ifb.local_result.area;
+ //output_data_csv(directory.ifb.local_result);
+ ///cout<<"area="<<area<<endl;
+
+ //prefetch buffer
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;//check with previous entries to decide wthether to merge.
+ data = directory1.caches.l_ip.line_sz;//separate queue to prevent from cache polution.
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;//int(pow(2.0,ceil(log2(data))));
+ interface_ip.cache_sz = XML->sys.L2[ithCache].buffer_sizes[2]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = XML->sys.L2[ithCache].L2_config[4]/clockRate;
+ interface_ip.latency = XML->sys.L2[ithCache].L2_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ strcpy(directory1.prefetchb.name,"directory1PrefetchB");
+ directory1.prefetchb.init_cache(&interface_ip);
+ directory1.prefetchb.optimize_array();
+ directory1.area += directory1.prefetchb.local_result.area;
+ //output_data_csv(directory.prefetchb.local_result);
+ ///cout<<"area="<<area<<endl;
+
+ //WBB
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = directory1.caches.l_ip.line_sz;
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = XML->sys.L2[ithCache].buffer_sizes[3]*interface_ip.line_sz;
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = XML->sys.L2[ithCache].L2_config[4]/clockRate;
+ interface_ip.latency = XML->sys.L2[ithCache].L2_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ strcpy(directory1.wbb.name,"directoryWBB");
+ directory1.wbb.init_cache(&interface_ip);
+ directory1.wbb.optimize_array();
+ directory1.area += directory1.wbb.local_result.area;
+ }
+
+ if (XML->sys.first_level_dir==1)//IC
+ {
+ tag = XML->sys.physical_address_width + EXTRA_TAG_BITS;
+ data = int(ceil(XML->sys.domain_size/8.0));
+ interface_ip.specific_tag = 1;
+ interface_ip.tag_w = tag;
+ interface_ip.line_sz = data;
+ interface_ip.cache_sz = XML->sys.domain_size*data*XML->sys.L2[ithCache].L2_config[0]/XML->sys.L2[ithCache].L2_config[1];
+ interface_ip.assoc = 0;
+ interface_ip.nbanks = 1024;
+ interface_ip.out_w = interface_ip.line_sz*8;
+ interface_ip.access_mode = 0;
+ interface_ip.throughput = XML->sys.L2[ithCache].L2_config[4]/clockRate;
+ interface_ip.latency = XML->sys.L2[ithCache].L2_config[5]/clockRate;
+ interface_ip.obj_func_dyn_energy = 0;
+ interface_ip.obj_func_dyn_power = 0;
+ interface_ip.obj_func_leak_power = 0;
+ interface_ip.obj_func_cycle_t = 1;
+ interface_ip.num_rw_ports = 1;
+ interface_ip.num_rd_ports = 0;
+ interface_ip.num_wr_ports = 0;
+ interface_ip.num_se_rd_ports = 0;
+ strcpy(inv_dir.caches.name,"inv_dir");
+ inv_dir.caches.init_cache(&interface_ip);
+ inv_dir.caches.optimize_array();
+ inv_dir.area = inv_dir.caches.local_result.area;
+
+ }
+*/
+// //pipeline
+// interface_ip.pipeline_stages = int(ceil(directory.caches.local_result.access_time/directory.caches.local_result.cycle_time));
+// interface_ip.per_stage_vector = directory.caches.l_ip.out_w + directory.caches.l_ip.tag_w ;
+// pipeLogicDirectory.init_pipeline(is_default, &interface_ip);
+// pipeLogicDirectory.compute_pipeline();
+//
+// //clock power
+// clockNetwork.init_wire_external(is_default, &interface_ip);
+// clockNetwork.clk_area =area*1.1;//10% of placement overhead. rule of thumb
+// clockNetwork.end_wiring_level =5;//toplevel metal
+// clockNetwork.start_wiring_level =5;//toplevel metal
+// clockNetwork.num_regs = pipeLogicCache.tot_stage_vector + pipeLogicDirectory.tot_stage_vector;
+// clockNetwork.optimize_wire();
+
+}
+
+
+void SharedCache::computeEnergy(bool is_tdp)
+{
+ double homenode_data_access = (cachep.dir_ty==SBT)? 0.9:1.0;
+ if (is_tdp)
+ {
+ if (!((cachep.dir_ty==ST&& cacheL==L1Directory)||(cachep.dir_ty==ST&& cacheL==L2Directory)))
+ {
+ //init stats for Peak
+ unicache.caches->stats_t.readAc.access = .67*unicache.caches->l_ip.num_rw_ports*cachep.duty_cycle*homenode_data_access;
+ unicache.caches->stats_t.readAc.miss = 0;
+ unicache.caches->stats_t.readAc.hit = unicache.caches->stats_t.readAc.access - unicache.caches->stats_t.readAc.miss;
+ unicache.caches->stats_t.writeAc.access = .33*unicache.caches->l_ip.num_rw_ports*cachep.duty_cycle*homenode_data_access;
+ unicache.caches->stats_t.writeAc.miss = 0;
+ unicache.caches->stats_t.writeAc.hit = unicache.caches->stats_t.writeAc.access - unicache.caches->stats_t.writeAc.miss;
+ unicache.caches->tdp_stats = unicache.caches->stats_t;
+
+ if (cachep.dir_ty==SBT)
+ {
+ homenode_stats_t.readAc.access = .67*unicache.caches->l_ip.num_rw_ports*cachep.dir_duty_cycle*(1-homenode_data_access);
+ homenode_stats_t.readAc.miss = 0;
+ homenode_stats_t.readAc.hit = homenode_stats_t.readAc.access - homenode_stats_t.readAc.miss;
+ homenode_stats_t.writeAc.access = .67*unicache.caches->l_ip.num_rw_ports*cachep.dir_duty_cycle*(1-homenode_data_access);
+ homenode_stats_t.writeAc.miss = 0;
+ homenode_stats_t.writeAc.hit = homenode_stats_t.writeAc.access - homenode_stats_t.writeAc.miss;
+ homenode_tdp_stats = homenode_stats_t;
+ }
+
+ unicache.missb->stats_t.readAc.access = unicache.missb->l_ip.num_search_ports;
+ unicache.missb->stats_t.writeAc.access = unicache.missb->l_ip.num_search_ports;
+ unicache.missb->tdp_stats = unicache.missb->stats_t;
+
+ unicache.ifb->stats_t.readAc.access = unicache.ifb->l_ip.num_search_ports;
+ unicache.ifb->stats_t.writeAc.access = unicache.ifb->l_ip.num_search_ports;
+ unicache.ifb->tdp_stats = unicache.ifb->stats_t;
+
+ unicache.prefetchb->stats_t.readAc.access = unicache.prefetchb->l_ip.num_search_ports;
+ unicache.prefetchb->stats_t.writeAc.access = unicache.ifb->l_ip.num_search_ports;
+ unicache.prefetchb->tdp_stats = unicache.prefetchb->stats_t;
+
+ unicache.wbb->stats_t.readAc.access = unicache.wbb->l_ip.num_search_ports;
+ unicache.wbb->stats_t.writeAc.access = unicache.wbb->l_ip.num_search_ports;
+ unicache.wbb->tdp_stats = unicache.wbb->stats_t;
+ }
+ else
+ {
+ unicache.caches->stats_t.readAc.access = unicache.caches->l_ip.num_search_ports*cachep.duty_cycle;
+ unicache.caches->stats_t.readAc.miss = 0;
+ unicache.caches->stats_t.readAc.hit = unicache.caches->stats_t.readAc.access - unicache.caches->stats_t.readAc.miss;
+ unicache.caches->stats_t.writeAc.access = 0;
+ unicache.caches->stats_t.writeAc.miss = 0;
+ unicache.caches->stats_t.writeAc.hit = unicache.caches->stats_t.writeAc.access - unicache.caches->stats_t.writeAc.miss;
+ unicache.caches->tdp_stats = unicache.caches->stats_t;
+
+ }
+
+ }
+ else
+ {
+ //init stats for runtime power (RTP)
+ if (cacheL==L2)
+ {
+ unicache.caches->stats_t.readAc.access = XML->sys.L2[ithCache].read_accesses;
+ unicache.caches->stats_t.readAc.miss = XML->sys.L2[ithCache].read_misses;
+ unicache.caches->stats_t.readAc.hit = unicache.caches->stats_t.readAc.access - unicache.caches->stats_t.readAc.miss;
+ unicache.caches->stats_t.writeAc.access = XML->sys.L2[ithCache].write_accesses;
+ unicache.caches->stats_t.writeAc.miss = XML->sys.L2[ithCache].write_misses;
+ unicache.caches->stats_t.writeAc.hit = unicache.caches->stats_t.writeAc.access - unicache.caches->stats_t.writeAc.miss;
+ unicache.caches->rtp_stats = unicache.caches->stats_t;
+
+ if (cachep.dir_ty==SBT)
+ {
+ homenode_rtp_stats.readAc.access = XML->sys.L2[ithCache].homenode_read_accesses;
+ homenode_rtp_stats.readAc.miss = XML->sys.L2[ithCache].homenode_read_misses;
+ homenode_rtp_stats.readAc.hit = homenode_rtp_stats.readAc.access - homenode_rtp_stats.readAc.miss;
+ homenode_rtp_stats.writeAc.access = XML->sys.L2[ithCache].homenode_write_accesses;
+ homenode_rtp_stats.writeAc.miss = XML->sys.L2[ithCache].homenode_write_misses;
+ homenode_rtp_stats.writeAc.hit = homenode_rtp_stats.writeAc.access - homenode_rtp_stats.writeAc.miss;
+ }
+ }
+ else if (cacheL==L3)
+ {
+ unicache.caches->stats_t.readAc.access = XML->sys.L3[ithCache].read_accesses;
+ unicache.caches->stats_t.readAc.miss = XML->sys.L3[ithCache].read_misses;
+ unicache.caches->stats_t.readAc.hit = unicache.caches->stats_t.readAc.access - unicache.caches->stats_t.readAc.miss;
+ unicache.caches->stats_t.writeAc.access = XML->sys.L3[ithCache].write_accesses;
+ unicache.caches->stats_t.writeAc.miss = XML->sys.L3[ithCache].write_misses;
+ unicache.caches->stats_t.writeAc.hit = unicache.caches->stats_t.writeAc.access - unicache.caches->stats_t.writeAc.miss;
+ unicache.caches->rtp_stats = unicache.caches->stats_t;
+
+ if (cachep.dir_ty==SBT)
+ {
+ homenode_rtp_stats.readAc.access = XML->sys.L3[ithCache].homenode_read_accesses;
+ homenode_rtp_stats.readAc.miss = XML->sys.L3[ithCache].homenode_read_misses;
+ homenode_rtp_stats.readAc.hit = homenode_rtp_stats.readAc.access - homenode_rtp_stats.readAc.miss;
+ homenode_rtp_stats.writeAc.access = XML->sys.L3[ithCache].homenode_write_accesses;
+ homenode_rtp_stats.writeAc.miss = XML->sys.L3[ithCache].homenode_write_misses;
+ homenode_rtp_stats.writeAc.hit = homenode_rtp_stats.writeAc.access - homenode_rtp_stats.writeAc.miss;
+ }
+ }
+ else if (cacheL==L1Directory)
+ {
+ unicache.caches->stats_t.readAc.access = XML->sys.L1Directory[ithCache].read_accesses;
+ unicache.caches->stats_t.readAc.miss = XML->sys.L1Directory[ithCache].read_misses;
+ unicache.caches->stats_t.readAc.hit = unicache.caches->stats_t.readAc.access - unicache.caches->stats_t.readAc.miss;
+ unicache.caches->stats_t.writeAc.access = XML->sys.L1Directory[ithCache].write_accesses;
+ unicache.caches->stats_t.writeAc.miss = XML->sys.L1Directory[ithCache].write_misses;
+ unicache.caches->stats_t.writeAc.hit = unicache.caches->stats_t.writeAc.access - unicache.caches->stats_t.writeAc.miss;
+ unicache.caches->rtp_stats = unicache.caches->stats_t;
+ }
+ else if (cacheL==L2Directory)
+ {
+ unicache.caches->stats_t.readAc.access = XML->sys.L2Directory[ithCache].read_accesses;
+ unicache.caches->stats_t.readAc.miss = XML->sys.L2Directory[ithCache].read_misses;
+ unicache.caches->stats_t.readAc.hit = unicache.caches->stats_t.readAc.access - unicache.caches->stats_t.readAc.miss;
+ unicache.caches->stats_t.writeAc.access = XML->sys.L2Directory[ithCache].write_accesses;
+ unicache.caches->stats_t.writeAc.miss = XML->sys.L2Directory[ithCache].write_misses;
+ unicache.caches->stats_t.writeAc.hit = unicache.caches->stats_t.writeAc.access - unicache.caches->stats_t.writeAc.miss;
+ unicache.caches->rtp_stats = unicache.caches->stats_t;
+ }
+ if (!((cachep.dir_ty==ST&& cacheL==L1Directory)||(cachep.dir_ty==ST&& cacheL==L2Directory)))
+ { //Assuming write back and write-allocate cache
+
+ unicache.missb->stats_t.readAc.access = unicache.caches->stats_t.writeAc.miss ;
+ unicache.missb->stats_t.writeAc.access = unicache.caches->stats_t.writeAc.miss;
+ unicache.missb->rtp_stats = unicache.missb->stats_t;
+
+ unicache.ifb->stats_t.readAc.access = unicache.caches->stats_t.writeAc.miss;
+ unicache.ifb->stats_t.writeAc.access = unicache.caches->stats_t.writeAc.miss;
+ unicache.ifb->rtp_stats = unicache.ifb->stats_t;
+
+ unicache.prefetchb->stats_t.readAc.access = unicache.caches->stats_t.writeAc.miss;
+ unicache.prefetchb->stats_t.writeAc.access = unicache.caches->stats_t.writeAc.miss;
+ unicache.prefetchb->rtp_stats = unicache.prefetchb->stats_t;
+
+ unicache.wbb->stats_t.readAc.access = unicache.caches->stats_t.writeAc.miss;
+ unicache.wbb->stats_t.writeAc.access = unicache.caches->stats_t.writeAc.miss;
+ if (cachep.dir_ty==SBT)
+ {
+ unicache.missb->stats_t.readAc.access += homenode_rtp_stats.writeAc.miss;
+ unicache.missb->stats_t.writeAc.access += homenode_rtp_stats.writeAc.miss;
+ unicache.missb->rtp_stats = unicache.missb->stats_t;
+
+ unicache.missb->stats_t.readAc.access += homenode_rtp_stats.writeAc.miss;
+ unicache.missb->stats_t.writeAc.access += homenode_rtp_stats.writeAc.miss;
+ unicache.missb->rtp_stats = unicache.missb->stats_t;
+
+ unicache.ifb->stats_t.readAc.access += homenode_rtp_stats.writeAc.miss;
+ unicache.ifb->stats_t.writeAc.access += homenode_rtp_stats.writeAc.miss;
+ unicache.ifb->rtp_stats = unicache.ifb->stats_t;
+
+ unicache.prefetchb->stats_t.readAc.access += homenode_rtp_stats.writeAc.miss;
+ unicache.prefetchb->stats_t.writeAc.access += homenode_rtp_stats.writeAc.miss;
+ unicache.prefetchb->rtp_stats = unicache.prefetchb->stats_t;
+
+ unicache.wbb->stats_t.readAc.access += homenode_rtp_stats.writeAc.miss;
+ unicache.wbb->stats_t.writeAc.access += homenode_rtp_stats.writeAc.miss;
+ }
+ unicache.wbb->rtp_stats = unicache.wbb->stats_t;
+
+ }
+
+ }
+
+ unicache.power_t.reset();
+ if (!((cachep.dir_ty==ST&& cacheL==L1Directory)||(cachep.dir_ty==ST&& cacheL==L2Directory)))
+ {
+ unicache.power_t.readOp.dynamic += (unicache.caches->stats_t.readAc.hit*unicache.caches->local_result.power.readOp.dynamic+
+ unicache.caches->stats_t.readAc.miss*unicache.caches->local_result.tag_array2->power.readOp.dynamic+
+ unicache.caches->stats_t.writeAc.miss*unicache.caches->local_result.tag_array2->power.writeOp.dynamic+
+ unicache.caches->stats_t.writeAc.access*unicache.caches->local_result.power.writeOp.dynamic);//write miss will also generate a write later
+
+ if (cachep.dir_ty==SBT)
+ {
+ unicache.power_t.readOp.dynamic += homenode_stats_t.readAc.hit * (unicache.caches->local_result.data_array2->power.readOp.dynamic*dir_overhead +
+ unicache.caches->local_result.tag_array2->power.readOp.dynamic) +
+ homenode_stats_t.readAc.miss*unicache.caches->local_result.tag_array2->power.readOp.dynamic +
+ homenode_stats_t.writeAc.miss*unicache.caches->local_result.tag_array2->power.readOp.dynamic +
+ homenode_stats_t.writeAc.hit*(unicache.caches->local_result.data_array2->power.writeOp.dynamic*dir_overhead +
+ unicache.caches->local_result.tag_array2->power.readOp.dynamic+
+ homenode_stats_t.writeAc.miss*unicache.caches->local_result.power.writeOp.dynamic);//write miss on dynamic home node will generate a replacement write on whole cache block
+
+
+ }
+
+ unicache.power_t.readOp.dynamic += unicache.missb->stats_t.readAc.access*unicache.missb->local_result.power.searchOp.dynamic +
+ unicache.missb->stats_t.writeAc.access*unicache.missb->local_result.power.writeOp.dynamic;//each access to missb involves a CAM and a write
+ unicache.power_t.readOp.dynamic += unicache.ifb->stats_t.readAc.access*unicache.ifb->local_result.power.searchOp.dynamic +
+ unicache.ifb->stats_t.writeAc.access*unicache.ifb->local_result.power.writeOp.dynamic;
+ unicache.power_t.readOp.dynamic += unicache.prefetchb->stats_t.readAc.access*unicache.prefetchb->local_result.power.searchOp.dynamic +
+ unicache.prefetchb->stats_t.writeAc.access*unicache.prefetchb->local_result.power.writeOp.dynamic;
+ unicache.power_t.readOp.dynamic += unicache.wbb->stats_t.readAc.access*unicache.wbb->local_result.power.searchOp.dynamic +
+ unicache.wbb->stats_t.writeAc.access*unicache.wbb->local_result.power.writeOp.dynamic;
+ }
+ else
+ {
+ unicache.power_t.readOp.dynamic += (unicache.caches->stats_t.readAc.access*unicache.caches->local_result.power.searchOp.dynamic+
+ unicache.caches->stats_t.writeAc.access*unicache.caches->local_result.power.writeOp.dynamic);
+ }
+
+ if (is_tdp)
+ {
+ unicache.power = unicache.power_t + (unicache.caches->local_result.power)*pppm_lkg;
+ if (!((cachep.dir_ty==ST&& cacheL==L1Directory)||(cachep.dir_ty==ST&& cacheL==L2Directory)))
+ {
+ unicache.power = unicache.power+
+ (unicache.missb->local_result.power +
+ unicache.ifb->local_result.power +
+ unicache.prefetchb->local_result.power +
+ unicache.wbb->local_result.power)*pppm_lkg;
+ }
+ power = power + unicache.power;
+// cout<<"unicache.caches->local_result.power.readOp.dynamic"<<unicache.caches->local_result.power.readOp.dynamic<<endl;
+// cout<<"unicache.caches->local_result.power.writeOp.dynamic"<<unicache.caches->local_result.power.writeOp.dynamic<<endl;
+ }
+ else
+ {
+ unicache.rt_power = unicache.power_t + (unicache.caches->local_result.power)*pppm_lkg;
+ if (!((cachep.dir_ty==ST&& cacheL==L1Directory)||(cachep.dir_ty==ST&& cacheL==L2Directory)))
+ {
+ (unicache.rt_power = unicache.rt_power +
+ unicache.missb->local_result.power +
+ unicache.ifb->local_result.power +
+ unicache.prefetchb->local_result.power +
+ unicache.wbb->local_result.power)*pppm_lkg;
+ }
+ rt_power = rt_power + unicache.rt_power;
+ }
+}
+
+void SharedCache::displayEnergy(uint32_t indent,bool is_tdp)
+{
+ string indent_str(indent, ' ');
+ string indent_str_next(indent+2, ' ');
+ bool long_channel = XML->sys.longer_channel_device;
+
+ if (is_tdp)
+ {
+ cout << (XML->sys.Private_L2? indent_str:"")<< cachep.name << endl;
+ cout << indent_str << "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
+ cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic*cachep.clockRate << " W" << endl;
+ cout << indent_str << "Subthreshold Leakage = "
+ << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
+ //cout << indent_str << "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl;
+ cout << indent_str << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
+ cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic/cachep.executionTime << " W" << endl;
+ cout <<endl;
+ }
+ else
+ {
+ }
+}
+
+//void SharedCache::computeMaxPower()
+//{
+// //Compute maximum power and runtime power.
+// //When computing runtime power, McPAT gets or reasons out the statistics based on XML input.
+// maxPower = 0.0;
+// //llCache,itlb
+// llCache.maxPower = 0.0;
+// llCache.maxPower += (llCache.caches.l_ip.num_rw_ports*(0.67*llCache.caches.local_result.power.readOp.dynamic+0.33*llCache.caches.local_result.power.writeOp.dynamic)
+// +llCache.caches.l_ip.num_rd_ports*llCache.caches.local_result.power.readOp.dynamic+llCache.caches.l_ip.num_wr_ports*llCache.caches.local_result.power.writeOp.dynamic
+// +llCache.caches.l_ip.num_se_rd_ports*llCache.caches.local_result.power.readOp.dynamic)*clockRate;
+// ///cout<<"llCache.maxPower=" <<llCache.maxPower<<endl;
+//
+// llCache.maxPower += llCache.missb.l_ip.num_search_ports*llCache.missb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"llCache.maxPower=" <<llCache.maxPower<<endl;
+//
+// llCache.maxPower += llCache.ifb.l_ip.num_search_ports*llCache.ifb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"llCache.maxPower=" <<llCache.maxPower<<endl;
+//
+// llCache.maxPower += llCache.prefetchb.l_ip.num_search_ports*llCache.prefetchb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"llCache.maxPower=" <<llCache.maxPower<<endl;
+//
+// llCache.maxPower += llCache.wbb.l_ip.num_search_ports*llCache.wbb.local_result.power.searchOp.dynamic*clockRate;
+// //llCache.maxPower *= scktRatio; //TODO: this calculation should be self-contained
+// ///cout<<"llCache.maxPower=" <<llCache.maxPower<<endl;
+//
+//// directory_power = (directory.caches.l_ip.num_rw_ports*(0.67*directory.caches.local_result.power.readOp.dynamic+0.33*directory.caches.local_result.power.writeOp.dynamic)
+//// +directory.caches.l_ip.num_rd_ports*directory.caches.local_result.power.readOp.dynamic+directory.caches.l_ip.num_wr_ports*directory.caches.local_result.power.writeOp.dynamic
+//// +directory.caches.l_ip.num_se_rd_ports*directory.caches.local_result.power.readOp.dynamic)*clockRate;
+//
+// L2Tot.power.readOp.dynamic = llCache.maxPower;
+// L2Tot.power.readOp.leakage = llCache.caches.local_result.power.readOp.leakage +
+// llCache.missb.local_result.power.readOp.leakage +
+// llCache.ifb.local_result.power.readOp.leakage +
+// llCache.prefetchb.local_result.power.readOp.leakage +
+// llCache.wbb.local_result.power.readOp.leakage;
+//
+// L2Tot.area.set_area(llCache.area*1.1*1e-6);//placement and routing overhead
+//
+// if (XML->sys.number_of_dir_levels==1)
+// {
+// if (XML->sys.first_level_dir==0)
+// {
+// directory.maxPower = 0.0;
+// directory.maxPower += (directory.caches.l_ip.num_rw_ports*(0.67*directory.caches.local_result.power.readOp.dynamic+0.33*directory.caches.local_result.power.writeOp.dynamic)
+// +directory.caches.l_ip.num_rd_ports*directory.caches.local_result.power.readOp.dynamic+directory.caches.l_ip.num_wr_ports*directory.caches.local_result.power.writeOp.dynamic
+// +directory.caches.l_ip.num_se_rd_ports*directory.caches.local_result.power.readOp.dynamic)*clockRate;
+// ///cout<<"directory.maxPower=" <<directory.maxPower<<endl;
+//
+// directory.maxPower += directory.missb.l_ip.num_search_ports*directory.missb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"directory.maxPower=" <<directory.maxPower<<endl;
+//
+// directory.maxPower += directory.ifb.l_ip.num_search_ports*directory.ifb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"directory.maxPower=" <<directory.maxPower<<endl;
+//
+// directory.maxPower += directory.prefetchb.l_ip.num_search_ports*directory.prefetchb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"directory.maxPower=" <<directory.maxPower<<endl;
+//
+// directory.maxPower += directory.wbb.l_ip.num_search_ports*directory.wbb.local_result.power.searchOp.dynamic*clockRate;
+//
+// cc.power.readOp.dynamic = directory.maxPower*scktRatio*8;//8 is the memory controller counts
+// cc.power.readOp.leakage = directory.caches.local_result.power.readOp.leakage +
+// directory.missb.local_result.power.readOp.leakage +
+// directory.ifb.local_result.power.readOp.leakage +
+// directory.prefetchb.local_result.power.readOp.leakage +
+// directory.wbb.local_result.power.readOp.leakage;
+//
+// cc.power.readOp.leakage *=8;
+//
+// cc.area.set_area(directory.area*8);
+// cout<<"CC area="<<cc.area.get_area()*1e-6<<endl;
+// cout<<"CC Power="<<cc.power.readOp.dynamic<<endl;
+// ccTot.area.set_area(cc.area.get_area()*1e-6);
+// ccTot.power = cc.power;
+// cout<<"DC energy per access" << cc.power.readOp.dynamic/clockRate/8;
+// }
+// else if (XML->sys.first_level_dir==1)
+// {
+// inv_dir.maxPower = inv_dir.caches.local_result.power.searchOp.dynamic*clockRate*XML->sys.domain_size;
+// cc.power.readOp.dynamic = inv_dir.maxPower*scktRatio*64/XML->sys.domain_size;
+// cc.power.readOp.leakage = inv_dir.caches.local_result.power.readOp.leakage*inv_dir.caches.l_ip.nbanks*64/XML->sys.domain_size;
+//
+// cc.area.set_area(inv_dir.area*64/XML->sys.domain_size);
+// cout<<"CC area="<<cc.area.get_area()*1e-6<<endl;
+// cout<<"CC Power="<<cc.power.readOp.dynamic<<endl;
+// ccTot.area.set_area(cc.area.get_area()*1e-6);
+// cout<<"DC energy per access" << cc.power.readOp.dynamic/clockRate/8;
+// ccTot.power = cc.power;
+// }
+// }
+//
+// else if (XML->sys.number_of_dir_levels==2)
+// {
+//
+// directory.maxPower = 0.0;
+// directory.maxPower += (directory.caches.l_ip.num_rw_ports*(0.67*directory.caches.local_result.power.readOp.dynamic+0.33*directory.caches.local_result.power.writeOp.dynamic)
+// +directory.caches.l_ip.num_rd_ports*directory.caches.local_result.power.readOp.dynamic+directory.caches.l_ip.num_wr_ports*directory.caches.local_result.power.writeOp.dynamic
+// +directory.caches.l_ip.num_se_rd_ports*directory.caches.local_result.power.readOp.dynamic)*clockRate;
+// ///cout<<"directory.maxPower=" <<directory.maxPower<<endl;
+//
+// directory.maxPower += directory.missb.l_ip.num_search_ports*directory.missb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"directory.maxPower=" <<directory.maxPower<<endl;
+//
+// directory.maxPower += directory.ifb.l_ip.num_search_ports*directory.ifb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"directory.maxPower=" <<directory.maxPower<<endl;
+//
+// directory.maxPower += directory.prefetchb.l_ip.num_search_ports*directory.prefetchb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"directory.maxPower=" <<directory.maxPower<<endl;
+//
+// directory.maxPower += directory.wbb.l_ip.num_search_ports*directory.wbb.local_result.power.searchOp.dynamic*clockRate;
+//
+// cc.power.readOp.dynamic = directory.maxPower*scktRatio*8;//8 is the memory controller counts
+// cc.power.readOp.leakage = directory.caches.local_result.power.readOp.leakage +
+// directory.missb.local_result.power.readOp.leakage +
+// directory.ifb.local_result.power.readOp.leakage +
+// directory.prefetchb.local_result.power.readOp.leakage +
+// directory.wbb.local_result.power.readOp.leakage;
+// cc.power.readOp.leakage *=8;
+// cc.area.set_area(directory.area*8);
+//
+// if (XML->sys.first_level_dir==0)
+// {
+// directory1.maxPower = 0.0;
+// directory1.maxPower += (directory1.caches.l_ip.num_rw_ports*(0.67*directory1.caches.local_result.power.readOp.dynamic+0.33*directory1.caches.local_result.power.writeOp.dynamic)
+// +directory1.caches.l_ip.num_rd_ports*directory1.caches.local_result.power.readOp.dynamic+directory1.caches.l_ip.num_wr_ports*directory1.caches.local_result.power.writeOp.dynamic
+// +directory1.caches.l_ip.num_se_rd_ports*directory1.caches.local_result.power.readOp.dynamic)*clockRate;
+// ///cout<<"directory1.maxPower=" <<directory1.maxPower<<endl;
+//
+// directory1.maxPower += directory1.missb.l_ip.num_search_ports*directory1.missb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"directory1.maxPower=" <<directory1.maxPower<<endl;
+//
+// directory1.maxPower += directory1.ifb.l_ip.num_search_ports*directory1.ifb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"directory1.maxPower=" <<directory1.maxPower<<endl;
+//
+// directory1.maxPower += directory1.prefetchb.l_ip.num_search_ports*directory1.prefetchb.local_result.power.searchOp.dynamic*clockRate;
+// ///cout<<"directory1.maxPower=" <<directory1.maxPower<<endl;
+//
+// directory1.maxPower += directory1.wbb.l_ip.num_search_ports*directory1.wbb.local_result.power.searchOp.dynamic*clockRate;
+//
+// cc1.power.readOp.dynamic = directory1.maxPower*scktRatio*64/XML->sys.domain_size;
+// cc1.power.readOp.leakage = directory1.caches.local_result.power.readOp.leakage +
+// directory1.missb.local_result.power.readOp.leakage +
+// directory1.ifb.local_result.power.readOp.leakage +
+// directory1.prefetchb.local_result.power.readOp.leakage +
+// directory1.wbb.local_result.power.readOp.leakage;
+// cc1.power.readOp.leakage *= 64/XML->sys.domain_size;
+// cc1.area.set_area(directory1.area*64/XML->sys.domain_size);
+//
+// cout<<"CC area="<<(cc.area.get_area()+cc1.area.get_area())*1e-6<<endl;
+// cout<<"CC Power="<<cc.power.readOp.dynamic + cc1.power.readOp.dynamic <<endl;
+// ccTot.area.set_area((cc.area.get_area()+cc1.area.get_area())*1e-6);
+// ccTot.power = cc.power + cc1.power;
+// }
+// else if (XML->sys.first_level_dir==1)
+// {
+// inv_dir.maxPower = inv_dir.caches.local_result.power.searchOp.dynamic*clockRate*XML->sys.domain_size;
+// cc1.power.readOp.dynamic = inv_dir.maxPower*scktRatio*(64/XML->sys.domain_size);
+// cc1.power.readOp.leakage = inv_dir.caches.local_result.power.readOp.leakage*inv_dir.caches.l_ip.nbanks*XML->sys.domain_size;
+//
+// cc1.area.set_area(inv_dir.area*64/XML->sys.domain_size);
+// cout<<"CC area="<<(cc.area.get_area()+cc1.area.get_area())*1e-6<<endl;
+// cout<<"CC Power="<<cc.power.readOp.dynamic + cc1.power.readOp.dynamic <<endl;
+// ccTot.area.set_area((cc.area.get_area()+cc1.area.get_area())*1e-6);
+// ccTot.power = cc.power + cc1.power;
+//
+// }
+// else if (XML->sys.first_level_dir==2)
+// {
+// cout<<"CC area="<<cc.area.get_area()*1e-6<<endl;
+// cout<<"CC Power="<<cc.power.readOp.dynamic<<endl;
+// ccTot.area.set_area(cc.area.get_area()*1e-6);
+// ccTot.power = cc.power;
+// }
+// }
+//
+//cout<<"L2cache size="<<L2Tot.area.get_area()*1e-6<<endl;
+//cout<<"L2cache dynamic power="<<L2Tot.power.readOp.dynamic<<endl;
+//cout<<"L2cache laeakge power="<<L2Tot.power.readOp.leakage<<endl;
+//
+// ///cout<<"llCache.maxPower=" <<llCache.maxPower<<endl;
+//
+//
+// maxPower += llCache.maxPower;
+// ///cout<<"maxpower=" <<maxPower<<endl;
+//
+//// maxPower += pipeLogicCache.power.readOp.dynamic*clockRate;
+//// ///cout<<"pipeLogic.power="<<pipeLogicCache.power.readOp.dynamic*clockRate<<endl;
+//// ///cout<<"maxpower=" <<maxPower<<endl;
+////
+//// maxPower += pipeLogicDirectory.power.readOp.dynamic*clockRate;
+//// ///cout<<"pipeLogic.power="<<pipeLogicDirectory.power.readOp.dynamic*clockRate<<endl;
+//// ///cout<<"maxpower=" <<maxPower<<endl;
+////
+//// //clock power
+//// maxPower += clockNetwork.total_power.readOp.dynamic*clockRate;
+//// ///cout<<"clockNetwork.total_power="<<clockNetwork.total_power.readOp.dynamic*clockRate<<endl;
+//// ///cout<<"maxpower=" <<maxPower<<endl;
+//
+//}
+
+void SharedCache::set_cache_param()
+{
+ if (cacheL==L2)
+ {
+ cachep.name = "L2";
+ cachep.clockRate = XML->sys.L2[ithCache].clockrate;
+ cachep.clockRate *= 1e6;
+ cachep.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
+ interface_ip.data_arr_ram_cell_tech_type = XML->sys.L2[ithCache].device_type;//long channel device LSTP
+ interface_ip.data_arr_peri_global_tech_type = XML->sys.L2[ithCache].device_type;
+ interface_ip.tag_arr_ram_cell_tech_type = XML->sys.L2[ithCache].device_type;
+ interface_ip.tag_arr_peri_global_tech_type = XML->sys.L2[ithCache].device_type;
+ cachep.capacity = XML->sys.L2[ithCache].L2_config[0];
+ cachep.blockW = XML->sys.L2[ithCache].L2_config[1];
+ cachep.assoc = XML->sys.L2[ithCache].L2_config[2];
+ cachep.nbanks = XML->sys.L2[ithCache].L2_config[3];
+ cachep.throughput = XML->sys.L2[ithCache].L2_config[4]/cachep.clockRate;
+ cachep.latency = XML->sys.L2[ithCache].L2_config[5]/cachep.clockRate;
+ cachep.missb_size = XML->sys.L2[ithCache].buffer_sizes[0];
+ cachep.fu_size = XML->sys.L2[ithCache].buffer_sizes[1];
+ cachep.prefetchb_size= XML->sys.L2[ithCache].buffer_sizes[2];
+ cachep.wbb_size = XML->sys.L2[ithCache].buffer_sizes[3];
+ cachep.duty_cycle = XML->sys.L2[ithCache].duty_cycle;
+ if (!XML->sys.L2[ithCache].merged_dir)
+ {
+ cachep.dir_ty = NonDir;
+ }
+ else
+ {
+ cachep.dir_ty = SBT;
+ cachep.dir_duty_cycle = XML->sys.L2[ithCache].dir_duty_cycle;
+ }
+ }
+ else if (cacheL==L3)
+ {
+ cachep.name = "L3";
+ cachep.clockRate = XML->sys.L3[ithCache].clockrate;
+ cachep.clockRate *= 1e6;
+ cachep.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
+ interface_ip.data_arr_ram_cell_tech_type = XML->sys.L3[ithCache].device_type;//long channel device LSTP
+ interface_ip.data_arr_peri_global_tech_type = XML->sys.L3[ithCache].device_type;
+ interface_ip.tag_arr_ram_cell_tech_type = XML->sys.L3[ithCache].device_type;
+ interface_ip.tag_arr_peri_global_tech_type = XML->sys.L3[ithCache].device_type;
+ cachep.capacity = XML->sys.L3[ithCache].L3_config[0];
+ cachep.blockW = XML->sys.L3[ithCache].L3_config[1];
+ cachep.assoc = XML->sys.L3[ithCache].L3_config[2];
+ cachep.nbanks = XML->sys.L3[ithCache].L3_config[3];
+ cachep.throughput = XML->sys.L3[ithCache].L3_config[4]/cachep.clockRate;
+ cachep.latency = XML->sys.L3[ithCache].L3_config[5]/cachep.clockRate;
+ cachep.missb_size = XML->sys.L3[ithCache].buffer_sizes[0];
+ cachep.fu_size = XML->sys.L3[ithCache].buffer_sizes[1];
+ cachep.prefetchb_size= XML->sys.L3[ithCache].buffer_sizes[2];
+ cachep.wbb_size = XML->sys.L3[ithCache].buffer_sizes[3];
+ cachep.duty_cycle = XML->sys.L3[ithCache].duty_cycle;
+ if (!XML->sys.L2[ithCache].merged_dir)
+ {
+ cachep.dir_ty = NonDir;
+ }
+ else
+ {
+ cachep.dir_ty = SBT;
+ cachep.dir_duty_cycle = XML->sys.L2[ithCache].dir_duty_cycle;
+ }
+ }
+ else if (cacheL==L1Directory)
+ {
+ cachep.name = "First Level Directory";
+ cachep.dir_ty = (enum Dir_type) XML->sys.L1Directory[ithCache].Directory_type;
+ cachep.clockRate = XML->sys.L1Directory[ithCache].clockrate;
+ cachep.clockRate *= 1e6;
+ cachep.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
+ interface_ip.data_arr_ram_cell_tech_type = XML->sys.L1Directory[ithCache].device_type;//long channel device LSTP
+ interface_ip.data_arr_peri_global_tech_type = XML->sys.L1Directory[ithCache].device_type;
+ interface_ip.tag_arr_ram_cell_tech_type = XML->sys.L1Directory[ithCache].device_type;
+ interface_ip.tag_arr_peri_global_tech_type = XML->sys.L1Directory[ithCache].device_type;
+ cachep.capacity = XML->sys.L1Directory[ithCache].Dir_config[0];
+ cachep.blockW = XML->sys.L1Directory[ithCache].Dir_config[1];
+ cachep.assoc = XML->sys.L1Directory[ithCache].Dir_config[2];
+ cachep.nbanks = XML->sys.L1Directory[ithCache].Dir_config[3];
+ cachep.throughput = XML->sys.L1Directory[ithCache].Dir_config[4]/cachep.clockRate;
+ cachep.latency = XML->sys.L1Directory[ithCache].Dir_config[5]/cachep.clockRate;
+ cachep.missb_size = XML->sys.L1Directory[ithCache].buffer_sizes[0];
+ cachep.fu_size = XML->sys.L1Directory[ithCache].buffer_sizes[1];
+ cachep.prefetchb_size= XML->sys.L1Directory[ithCache].buffer_sizes[2];
+ cachep.wbb_size = XML->sys.L1Directory[ithCache].buffer_sizes[3];
+ cachep.duty_cycle = XML->sys.L1Directory[ithCache].duty_cycle;
+ }
+ else if (cacheL==L2Directory)
+ {
+ cachep.name = "Second Level Directory";
+ cachep.dir_ty = (enum Dir_type) XML->sys.L2Directory[ithCache].Directory_type;
+ cachep.clockRate = XML->sys.L2Directory[ithCache].clockrate;
+ cachep.clockRate *= 1e6;
+ cachep.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
+ interface_ip.data_arr_ram_cell_tech_type = XML->sys.L2Directory[ithCache].device_type;//long channel device LSTP
+ interface_ip.data_arr_peri_global_tech_type = XML->sys.L2Directory[ithCache].device_type;
+ interface_ip.tag_arr_ram_cell_tech_type = XML->sys.L2Directory[ithCache].device_type;
+ interface_ip.tag_arr_peri_global_tech_type = XML->sys.L2Directory[ithCache].device_type;
+ cachep.capacity = XML->sys.L2Directory[ithCache].Dir_config[0];
+ cachep.blockW = XML->sys.L2Directory[ithCache].Dir_config[1];
+ cachep.assoc = XML->sys.L2Directory[ithCache].Dir_config[2];
+ cachep.nbanks = XML->sys.L2Directory[ithCache].Dir_config[3];
+ cachep.throughput = XML->sys.L2Directory[ithCache].Dir_config[4]/cachep.clockRate;
+ cachep.latency = XML->sys.L2Directory[ithCache].Dir_config[5]/cachep.clockRate;
+ cachep.missb_size = XML->sys.L2Directory[ithCache].buffer_sizes[0];
+ cachep.fu_size = XML->sys.L2Directory[ithCache].buffer_sizes[1];
+ cachep.prefetchb_size= XML->sys.L2Directory[ithCache].buffer_sizes[2];
+ cachep.wbb_size = XML->sys.L2Directory[ithCache].buffer_sizes[3];
+ cachep.duty_cycle = XML->sys.L2Directory[ithCache].duty_cycle;
+ }
+ //cachep.cache_duty_cycle=cachep.dir_duty_cycle = 0.35;
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#ifndef SHAREDCACHE_H_
+#define SHAREDCACHE_H_
+#include <vector>
+
+#include "XML_Parse.h"
+#include "area.h"
+#include "array.h"
+#include "basic_components.h"
+#include "logic.h"
+#include "parameter.h"
+
+class SharedCache :public Component{
+ public:
+ ParseXML * XML;
+ int ithCache;
+ InputParameter interface_ip;
+ enum cache_level cacheL;
+ DataCache unicache;//Shared cache
+ CacheDynParam cachep;
+ statsDef homenode_tdp_stats;
+ statsDef homenode_rtp_stats;
+ statsDef homenode_stats_t;
+ double dir_overhead;
+ // cache_processor llCache,directory, directory1, inv_dir;
+
+ //pipeline pipeLogicCache, pipeLogicDirectory;
+ //clock_network clockNetwork;
+ double scktRatio, executionTime;
+ // Component L2Tot, cc, cc1, ccTot;
+
+ SharedCache(ParseXML *XML_interface, int ithCache_, InputParameter* interface_ip_,enum cache_level cacheL_ =L2);
+ void set_cache_param();
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,bool is_tdp=true);
+ ~SharedCache(){};
+};
+
+class CCdir :public Component{
+ public:
+ ParseXML * XML;
+ int ithCache;
+ InputParameter interface_ip;
+ DataCache dc;//Shared cache
+ ArrayST * shadow_dir;
+// cache_processor llCache,directory, directory1, inv_dir;
+
+ //pipeline pipeLogicCache, pipeLogicDirectory;
+ //clock_network clockNetwork;
+ double scktRatio, clockRate, executionTime;
+ Component L2Tot, cc, cc1, ccTot;
+
+ CCdir(ParseXML *XML_interface, int ithCache_, InputParameter* interface_ip_);
+ void computeEnergy(bool is_tdp=true);
+ void displayEnergy(uint32_t indent = 0,bool is_tdp=true);
+ ~CCdir();
+};
+
+#endif /* SHAREDCACHE_H_ */
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+#include "basic_circuit.h"
+
+#include "parameter.h"
+
+double wire_resistance(double resistivity, double wire_width, double wire_thickness,
+ double barrier_thickness, double dishing_thickness, double alpha_scatter)
+{
+ double resistance;
+ resistance = alpha_scatter * resistivity /((wire_thickness - barrier_thickness - dishing_thickness)*(wire_width - 2 * barrier_thickness));
+ return(resistance);
+}
+
+double wire_capacitance(double wire_width, double wire_thickness, double wire_spacing,
+ double ild_thickness, double miller_value, double horiz_dielectric_constant,
+ double vert_dielectric_constant, double fringe_cap)
+{
+ double vertical_cap, sidewall_cap, total_cap;
+ vertical_cap = 2 * PERMITTIVITY_FREE_SPACE * vert_dielectric_constant * wire_width / ild_thickness;
+ sidewall_cap = 2 * PERMITTIVITY_FREE_SPACE * miller_value * horiz_dielectric_constant * wire_thickness / wire_spacing;
+ total_cap = vertical_cap + sidewall_cap + fringe_cap;
+ return(total_cap);
+}
+
+
+void init_tech_params(double technology, bool is_tag)
+{
+ int iter, tech, tech_lo, tech_hi;
+ double curr_alpha, curr_vpp;
+ double wire_width, wire_thickness, wire_spacing,
+ fringe_cap, pmos_to_nmos_sizing_r;
+// double aspect_ratio,ild_thickness, miller_value = 1.5, horiz_dielectric_constant, vert_dielectric_constant;
+ double barrier_thickness, dishing_thickness, alpha_scatter;
+ double curr_vdd_dram_cell, curr_v_th_dram_access_transistor, curr_I_on_dram_cell, curr_c_dram_cell;
+
+ uint32_t ram_cell_tech_type = (is_tag) ? g_ip->tag_arr_ram_cell_tech_type : g_ip->data_arr_ram_cell_tech_type;
+ uint32_t peri_global_tech_type = (is_tag) ? g_ip->tag_arr_peri_global_tech_type : g_ip->data_arr_peri_global_tech_type;
+
+ technology = technology * 1000.0; // in the unit of nm
+
+ // initialize parameters
+ g_tp.reset();
+ double gmp_to_gmn_multiplier_periph_global = 0;
+
+ double curr_Wmemcella_dram, curr_Wmemcellpmos_dram, curr_Wmemcellnmos_dram,
+ curr_area_cell_dram, curr_asp_ratio_cell_dram, curr_Wmemcella_sram,
+ curr_Wmemcellpmos_sram, curr_Wmemcellnmos_sram, curr_area_cell_sram,
+ curr_asp_ratio_cell_sram, curr_I_off_dram_cell_worst_case_length_temp;
+ double curr_Wmemcella_cam, curr_Wmemcellpmos_cam, curr_Wmemcellnmos_cam, curr_area_cell_cam,//Sheng: CAM data
+ curr_asp_ratio_cell_cam;
+ double SENSE_AMP_D, SENSE_AMP_P; // J
+ double area_cell_dram = 0;
+ double asp_ratio_cell_dram = 0;
+ double area_cell_sram = 0;
+ double asp_ratio_cell_sram = 0;
+ double area_cell_cam = 0;
+ double asp_ratio_cell_cam = 0;
+ double mobility_eff_periph_global = 0;
+ double Vdsat_periph_global = 0;
+ double nmos_effective_resistance_multiplier;
+ double width_dram_access_transistor;
+
+ double curr_logic_scaling_co_eff = 0;//This is based on the reported numbers of Intel Merom 65nm, Penryn45nm and IBM cell 90/65/45 date
+ double curr_core_tx_density = 0;//this is density per um^2; 90, ...22nm based on Intel Penryn
+ double curr_chip_layout_overhead = 0;
+ double curr_macro_layout_overhead = 0;
+ double curr_sckt_co_eff = 0;
+
+ if (technology < 91 && technology > 89)
+ {
+ tech_lo = 90;
+ tech_hi = 90;
+ }
+ else if (technology < 66 && technology > 64)
+ {
+ tech_lo = 65;
+ tech_hi = 65;
+ }
+ else if (technology < 46 && technology > 44)
+ {
+ tech_lo = 45;
+ tech_hi = 45;
+ }
+ else if (technology < 33 && technology > 31)
+ {
+ tech_lo = 32;
+ tech_hi = 32;
+ }
+ else if (technology < 23 && technology > 21)
+ {
+ tech_lo = 22;
+ tech_hi = 22;
+ if (ram_cell_tech_type == 3)
+ {
+ cout<<"current version does not support eDRAM technologies at 22nm"<<endl;
+ exit(0);
+ }
+ }
+// else if (technology < 17 && technology > 15)
+// {
+// tech_lo = 16;
+// tech_hi = 16;
+// }
+ else if (technology < 90 && technology > 65)
+ {
+ tech_lo = 90;
+ tech_hi = 65;
+ }
+ else if (technology < 65 && technology > 45)
+ {
+ tech_lo = 65;
+ tech_hi = 45;
+ }
+ else if (technology < 45 && technology > 32)
+ {
+ tech_lo = 45;
+ tech_hi = 32;
+ }
+ else if (technology < 32 && technology > 22)
+ {
+ tech_lo = 32;
+ tech_hi = 22;
+ }
+// else if (technology < 22 && technology > 16)
+// {
+// tech_lo = 22;
+// tech_hi = 16;
+// }
+ else
+ {
+ cout<<"Invalid technology nodes"<<endl;
+ exit(0);
+ }
+
+ double vdd[NUMBER_TECH_FLAVORS];
+ double Lphy[NUMBER_TECH_FLAVORS];
+ double Lelec[NUMBER_TECH_FLAVORS];
+ double t_ox[NUMBER_TECH_FLAVORS];
+ double v_th[NUMBER_TECH_FLAVORS];
+ double c_ox[NUMBER_TECH_FLAVORS];
+ double mobility_eff[NUMBER_TECH_FLAVORS];
+ double Vdsat[NUMBER_TECH_FLAVORS];
+ double c_g_ideal[NUMBER_TECH_FLAVORS];
+ double c_fringe[NUMBER_TECH_FLAVORS];
+ double c_junc[NUMBER_TECH_FLAVORS];
+ double I_on_n[NUMBER_TECH_FLAVORS];
+ double I_on_p[NUMBER_TECH_FLAVORS];
+ double Rnchannelon[NUMBER_TECH_FLAVORS];
+ double Rpchannelon[NUMBER_TECH_FLAVORS];
+ double n_to_p_eff_curr_drv_ratio[NUMBER_TECH_FLAVORS];
+ double I_off_n[NUMBER_TECH_FLAVORS][101];
+ double I_g_on_n[NUMBER_TECH_FLAVORS][101];
+ //double I_off_p[NUMBER_TECH_FLAVORS][101];
+ double gmp_to_gmn_multiplier[NUMBER_TECH_FLAVORS];
+ //double curr_sckt_co_eff[NUMBER_TECH_FLAVORS];
+ double long_channel_leakage_reduction[NUMBER_TECH_FLAVORS];
+
+ for (iter = 0; iter <= 1; ++iter)
+ {
+ // linear interpolation
+ if (iter == 0)
+ {
+ tech = tech_lo;
+ if (tech_lo == tech_hi)
+ {
+ curr_alpha = 1;
+ }
+ else
+ {
+ curr_alpha = (technology - tech_hi)/(tech_lo - tech_hi);
+ }
+ }
+ else
+ {
+ tech = tech_hi;
+ if (tech_lo == tech_hi)
+ {
+ break;
+ }
+ else
+ {
+ curr_alpha = (tech_lo - technology)/(tech_lo - tech_hi);
+ }
+ }
+
+ if (tech == 90)
+ {
+ SENSE_AMP_D = .28e-9; // s
+ SENSE_AMP_P = 14.7e-15; // J
+ //90nm technology-node. Corresponds to year 2004 in ITRS
+ //ITRS HP device type
+ vdd[0] = 1.2;
+ Lphy[0] = 0.037;//Lphy is the physical gate-length. micron
+ Lelec[0] = 0.0266;//Lelec is the electrical gate-length. micron
+ t_ox[0] = 1.2e-3;//micron
+ v_th[0] = 0.23707;//V
+ c_ox[0] = 1.79e-14;//F/micron2
+ mobility_eff[0] = 342.16 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[0] = 0.128; //V
+ c_g_ideal[0] = 6.64e-16;//F/micron
+ c_fringe[0] = 0.08e-15;//F/micron
+ c_junc[0] = 1e-15;//F/micron2
+ I_on_n[0] = 1076.9e-6;//A/micron
+ I_on_p[0] = 712.6e-6;//A/micron
+ //Note that nmos_effective_resistance_multiplier, n_to_p_eff_curr_drv_ratio and gmp_to_gmn_multiplier values are calculated offline
+ nmos_effective_resistance_multiplier = 1.54;
+ n_to_p_eff_curr_drv_ratio[0] = 2.45;
+ gmp_to_gmn_multiplier[0] = 1.22;
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
+ long_channel_leakage_reduction[0] = 1;
+ I_off_n[0][0] = 3.24e-8;//A/micron
+ I_off_n[0][10] = 4.01e-8;
+ I_off_n[0][20] = 4.90e-8;
+ I_off_n[0][30] = 5.92e-8;
+ I_off_n[0][40] = 7.08e-8;
+ I_off_n[0][50] = 8.38e-8;
+ I_off_n[0][60] = 9.82e-8;
+ I_off_n[0][70] = 1.14e-7;
+ I_off_n[0][80] = 1.29e-7;
+ I_off_n[0][90] = 1.43e-7;
+ I_off_n[0][100] = 1.54e-7;
+
+ I_g_on_n[0][0] = 1.65e-8;//A/micron
+ I_g_on_n[0][10] = 1.65e-8;
+ I_g_on_n[0][20] = 1.65e-8;
+ I_g_on_n[0][30] = 1.65e-8;
+ I_g_on_n[0][40] = 1.65e-8;
+ I_g_on_n[0][50] = 1.65e-8;
+ I_g_on_n[0][60] = 1.65e-8;
+ I_g_on_n[0][70] = 1.65e-8;
+ I_g_on_n[0][80] = 1.65e-8;
+ I_g_on_n[0][90] = 1.65e-8;
+ I_g_on_n[0][100] = 1.65e-8;
+
+ //ITRS LSTP device type
+ vdd[1] = 1.3;
+ Lphy[1] = 0.075;
+ Lelec[1] = 0.0486;
+ t_ox[1] = 2.2e-3;
+ v_th[1] = 0.48203;
+ c_ox[1] = 1.22e-14;
+ mobility_eff[1] = 356.76 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[1] = 0.373;
+ c_g_ideal[1] = 9.15e-16;
+ c_fringe[1] = 0.08e-15;
+ c_junc[1] = 1e-15;
+ I_on_n[1] = 503.6e-6;
+ I_on_p[1] = 235.1e-6;
+ nmos_effective_resistance_multiplier = 1.92;
+ n_to_p_eff_curr_drv_ratio[1] = 2.44;
+ gmp_to_gmn_multiplier[1] =0.88;
+ Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
+ Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
+ long_channel_leakage_reduction[1] = 1;
+ I_off_n[1][0] = 2.81e-12;
+ I_off_n[1][10] = 4.76e-12;
+ I_off_n[1][20] = 7.82e-12;
+ I_off_n[1][30] = 1.25e-11;
+ I_off_n[1][40] = 1.94e-11;
+ I_off_n[1][50] = 2.94e-11;
+ I_off_n[1][60] = 4.36e-11;
+ I_off_n[1][70] = 6.32e-11;
+ I_off_n[1][80] = 8.95e-11;
+ I_off_n[1][90] = 1.25e-10;
+ I_off_n[1][100] = 1.7e-10;
+
+ I_g_on_n[1][0] = 3.87e-11;//A/micron
+ I_g_on_n[1][10] = 3.87e-11;
+ I_g_on_n[1][20] = 3.87e-11;
+ I_g_on_n[1][30] = 3.87e-11;
+ I_g_on_n[1][40] = 3.87e-11;
+ I_g_on_n[1][50] = 3.87e-11;
+ I_g_on_n[1][60] = 3.87e-11;
+ I_g_on_n[1][70] = 3.87e-11;
+ I_g_on_n[1][80] = 3.87e-11;
+ I_g_on_n[1][90] = 3.87e-11;
+ I_g_on_n[1][100] = 3.87e-11;
+
+ //ITRS LOP device type
+ vdd[2] = 0.9;
+ Lphy[2] = 0.053;
+ Lelec[2] = 0.0354;
+ t_ox[2] = 1.5e-3;
+ v_th[2] = 0.30764;
+ c_ox[2] = 1.59e-14;
+ mobility_eff[2] = 460.39 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[2] = 0.113;
+ c_g_ideal[2] = 8.45e-16;
+ c_fringe[2] = 0.08e-15;
+ c_junc[2] = 1e-15;
+ I_on_n[2] = 386.6e-6;
+ I_on_p[2] = 209.7e-6;
+ nmos_effective_resistance_multiplier = 1.77;
+ n_to_p_eff_curr_drv_ratio[2] = 2.54;
+ gmp_to_gmn_multiplier[2] = 0.98;
+ Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
+ Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
+ long_channel_leakage_reduction[2] = 1;
+ I_off_n[2][0] = 2.14e-9;
+ I_off_n[2][10] = 2.9e-9;
+ I_off_n[2][20] = 3.87e-9;
+ I_off_n[2][30] = 5.07e-9;
+ I_off_n[2][40] = 6.54e-9;
+ I_off_n[2][50] = 8.27e-8;
+ I_off_n[2][60] = 1.02e-7;
+ I_off_n[2][70] = 1.20e-7;
+ I_off_n[2][80] = 1.36e-8;
+ I_off_n[2][90] = 1.52e-8;
+ I_off_n[2][100] = 1.73e-8;
+
+ I_g_on_n[2][0] = 4.31e-8;//A/micron
+ I_g_on_n[2][10] = 4.31e-8;
+ I_g_on_n[2][20] = 4.31e-8;
+ I_g_on_n[2][30] = 4.31e-8;
+ I_g_on_n[2][40] = 4.31e-8;
+ I_g_on_n[2][50] = 4.31e-8;
+ I_g_on_n[2][60] = 4.31e-8;
+ I_g_on_n[2][70] = 4.31e-8;
+ I_g_on_n[2][80] = 4.31e-8;
+ I_g_on_n[2][90] = 4.31e-8;
+ I_g_on_n[2][100] = 4.31e-8;
+
+ if (ram_cell_tech_type == lp_dram)
+ {
+ //LP-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.2;
+ Lphy[3] = 0.12;
+ Lelec[3] = 0.0756;
+ curr_v_th_dram_access_transistor = 0.4545;
+ width_dram_access_transistor = 0.14;
+ curr_I_on_dram_cell = 45e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 21.1e-12;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 0.168;
+ curr_asp_ratio_cell_dram = 1.46;
+ curr_c_dram_cell = 20e-15;
+
+ //LP-DRAM wordline transistor parameters
+ curr_vpp = 1.6;
+ t_ox[3] = 2.2e-3;
+ v_th[3] = 0.4545;
+ c_ox[3] = 1.22e-14;
+ mobility_eff[3] = 323.95 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.3;
+ c_g_ideal[3] = 1.47e-15;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 321.6e-6;
+ I_on_p[3] = 203.3e-6;
+ nmos_effective_resistance_multiplier = 1.65;
+ n_to_p_eff_curr_drv_ratio[3] = 1.95;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 1.42e-11;
+ I_off_n[3][10] = 2.25e-11;
+ I_off_n[3][20] = 3.46e-11;
+ I_off_n[3][30] = 5.18e-11;
+ I_off_n[3][40] = 7.58e-11;
+ I_off_n[3][50] = 1.08e-10;
+ I_off_n[3][60] = 1.51e-10;
+ I_off_n[3][70] = 2.02e-10;
+ I_off_n[3][80] = 2.57e-10;
+ I_off_n[3][90] = 3.14e-10;
+ I_off_n[3][100] = 3.85e-10;
+ }
+ else if (ram_cell_tech_type == comm_dram)
+ {
+ //COMM-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.6;
+ Lphy[3] = 0.09;
+ Lelec[3] = 0.0576;
+ curr_v_th_dram_access_transistor = 1;
+ width_dram_access_transistor = 0.09;
+ curr_I_on_dram_cell = 20e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.09*0.09;
+ curr_asp_ratio_cell_dram = 1.5;
+ curr_c_dram_cell = 30e-15;
+
+ //COMM-DRAM wordline transistor parameters
+ curr_vpp = 3.7;
+ t_ox[3] = 5.5e-3;
+ v_th[3] = 1.0;
+ c_ox[3] = 5.65e-15;
+ mobility_eff[3] = 302.2 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.32;
+ c_g_ideal[3] = 5.08e-16;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 1094.3e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.62;
+ n_to_p_eff_curr_drv_ratio[3] = 2.05;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 5.80e-15;
+ I_off_n[3][10] = 1.21e-14;
+ I_off_n[3][20] = 2.42e-14;
+ I_off_n[3][30] = 4.65e-14;
+ I_off_n[3][40] = 8.60e-14;
+ I_off_n[3][50] = 1.54e-13;
+ I_off_n[3][60] = 2.66e-13;
+ I_off_n[3][70] = 4.45e-13;
+ I_off_n[3][80] = 7.17e-13;
+ I_off_n[3][90] = 1.11e-12;
+ I_off_n[3][100] = 1.67e-12;
+ }
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;//360
+ curr_asp_ratio_cell_cam = 2.92;//2.5
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 1;
+ curr_core_tx_density = 1.25*0.7*0.7;
+ curr_sckt_co_eff = 1.1539;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+
+
+ }
+
+ if (tech == 65)
+ { //65nm technology-node. Corresponds to year 2007 in ITRS
+ //ITRS HP device type
+// SENSE_AMP_D = .2e-9; // s
+// SENSE_AMP_P = 5.7e-15; // J
+// vdd[0] = 1.1;
+// Lphy[0] = 0.025;
+// Lelec[0] = 0.019;
+// t_ox[0] = 1.1e-3;
+// v_th[0] = .19491;
+// c_ox[0] = 1.88e-14;
+// mobility_eff[0] = 436.24 * (1e-2 * 1e6 * 1e-2 * 1e6);
+// Vdsat[0] = 7.71e-2;
+// c_g_ideal[0] = 4.69e-16;
+// c_fringe[0] = 0.077e-15;
+// c_junc[0] = 1e-15;
+// I_on_n[0] = 1197.2e-6;
+// I_on_p[0] = 870.8e-6;
+// nmos_effective_resistance_multiplier = 1.50;
+// n_to_p_eff_curr_drv_ratio[0] = 2.41;
+// gmp_to_gmn_multiplier[0] = 1.38;
+// Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];
+// Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];
+// long_channel_leakage_reduction[0] = 1/3.74;
+// //Using MASTAR, @380K, increase Lgate until Ion reduces to 90% or Lgate increase by 10%, whichever comes first
+// //Ioff(Lgate normal)/Ioff(Lgate long)= 3.74.
+// I_off_n[0][0] = 1.96e-7;
+// I_off_n[0][10] = 2.29e-7;
+// I_off_n[0][20] = 2.66e-7;
+// I_off_n[0][30] = 3.05e-7;
+// I_off_n[0][40] = 3.49e-7;
+// I_off_n[0][50] = 3.95e-7;
+// I_off_n[0][60] = 4.45e-7;
+// I_off_n[0][70] = 4.97e-7;
+// I_off_n[0][80] = 5.48e-7;
+// I_off_n[0][90] = 5.94e-7;
+// I_off_n[0][100] = 6.3e-7;
+// I_g_on_n[0][0] = 4.09e-8;//A/micron
+// I_g_on_n[0][10] = 4.09e-8;
+// I_g_on_n[0][20] = 4.09e-8;
+// I_g_on_n[0][30] = 4.09e-8;
+// I_g_on_n[0][40] = 4.09e-8;
+// I_g_on_n[0][50] = 4.09e-8;
+// I_g_on_n[0][60] = 4.09e-8;
+// I_g_on_n[0][70] = 4.09e-8;
+// I_g_on_n[0][80] = 4.09e-8;
+// I_g_on_n[0][90] = 4.09e-8;
+// I_g_on_n[0][100] = 4.09e-8;
+
+ SENSE_AMP_D = .2e-9; // s
+ SENSE_AMP_P = 5.7e-15; // J
+ vdd[0] = 1.25;
+ Lphy[0] = 0.025;
+ Lelec[0] = 0.019;
+ t_ox[0] = 1.1e-3;
+ v_th[0] = .12491;
+ c_ox[0] = 1.88e-14;
+ mobility_eff[0] = 409.31 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[0] = 9.08e-2;
+ c_g_ideal[0] = 4.72e-16;
+ c_fringe[0] = 0.08e-15;
+ c_junc[0] = 1e-15;
+ I_on_n[0] = 1486.4e-6;
+ I_on_p[0] = 1131.5e-6;
+ nmos_effective_resistance_multiplier = 1.57;
+ n_to_p_eff_curr_drv_ratio[0] = 2;
+ gmp_to_gmn_multiplier[0] = 1.38;
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];
+ long_channel_leakage_reduction[0] = 1.0/4.97;
+ //Using MASTAR, @380K, increase Lgate until Ion reduces to 90% or Lgate increase by 10%, whichever comes first
+ //Ioff(Lgate normal)/Ioff(Lgate long)= 4.97@Vdd=1.25; (3.74@Vdd=1.1), however, Intel paper suggest the reduction factor is 3.
+ I_off_n[0][0] = 8.62e-7;
+ I_off_n[0][10] = 9.08e-7;
+ I_off_n[0][20] = 9.55e-7;
+ I_off_n[0][30] = 1.00e-6;
+ I_off_n[0][40] = 1.05e-6;
+ I_off_n[0][50] = 1.09e-6;
+ I_off_n[0][60] = 1.14e-6;
+ I_off_n[0][70] = 1.18e-6;
+ I_off_n[0][80] = 1.23e-6;
+ I_off_n[0][90] = 1.27e-6;
+ I_off_n[0][100] = 1.31e-6;
+
+
+ I_g_on_n[0][0] = 7.02e-8;//A/micron
+ I_g_on_n[0][10] = 7.02e-8;
+ I_g_on_n[0][20] = 7.02e-8;
+ I_g_on_n[0][30] = 7.02e-8;
+ I_g_on_n[0][40] = 7.02e-8;
+ I_g_on_n[0][50] = 7.02e-8;
+ I_g_on_n[0][60] = 7.02e-8;
+ I_g_on_n[0][70] = 7.02e-8;
+ I_g_on_n[0][80] = 7.02e-8;
+ I_g_on_n[0][90] = 7.02e-8;
+ I_g_on_n[0][100] = 7.02e-8;
+
+ //ITRS LSTP device type
+ vdd[1] = 1.2;
+ Lphy[1] = 0.045;
+ Lelec[1] = 0.0298;
+ t_ox[1] = 1.9e-3;
+ v_th[1] = 0.52354;
+ c_ox[1] = 1.36e-14;
+ mobility_eff[1] = 341.21 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[1] = 0.128;
+ c_g_ideal[1] = 6.14e-16;
+ c_fringe[1] = 0.08e-15;
+ c_junc[1] = 1e-15;
+ I_on_n[1] = 519.2e-6;
+ I_on_p[1] = 266e-6;
+ nmos_effective_resistance_multiplier = 1.96;
+ n_to_p_eff_curr_drv_ratio[1] = 2.23;
+ gmp_to_gmn_multiplier[1] = 0.99;
+ Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
+ Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
+ long_channel_leakage_reduction[1] = 1/2.82;
+ I_off_n[1][0] = 9.12e-12;
+ I_off_n[1][10] = 1.49e-11;
+ I_off_n[1][20] = 2.36e-11;
+ I_off_n[1][30] = 3.64e-11;
+ I_off_n[1][40] = 5.48e-11;
+ I_off_n[1][50] = 8.05e-11;
+ I_off_n[1][60] = 1.15e-10;
+ I_off_n[1][70] = 1.59e-10;
+ I_off_n[1][80] = 2.1e-10;
+ I_off_n[1][90] = 2.62e-10;
+ I_off_n[1][100] = 3.21e-10;
+
+ I_g_on_n[1][0] = 1.09e-10;//A/micron
+ I_g_on_n[1][10] = 1.09e-10;
+ I_g_on_n[1][20] = 1.09e-10;
+ I_g_on_n[1][30] = 1.09e-10;
+ I_g_on_n[1][40] = 1.09e-10;
+ I_g_on_n[1][50] = 1.09e-10;
+ I_g_on_n[1][60] = 1.09e-10;
+ I_g_on_n[1][70] = 1.09e-10;
+ I_g_on_n[1][80] = 1.09e-10;
+ I_g_on_n[1][90] = 1.09e-10;
+ I_g_on_n[1][100] = 1.09e-10;
+
+ //ITRS LOP device type
+ vdd[2] = 0.8;
+ Lphy[2] = 0.032;
+ Lelec[2] = 0.0216;
+ t_ox[2] = 1.2e-3;
+ v_th[2] = 0.28512;
+ c_ox[2] = 1.87e-14;
+ mobility_eff[2] = 495.19 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[2] = 0.292;
+ c_g_ideal[2] = 6e-16;
+ c_fringe[2] = 0.08e-15;
+ c_junc[2] = 1e-15;
+ I_on_n[2] = 573.1e-6;
+ I_on_p[2] = 340.6e-6;
+ nmos_effective_resistance_multiplier = 1.82;
+ n_to_p_eff_curr_drv_ratio[2] = 2.28;
+ gmp_to_gmn_multiplier[2] = 1.11;
+ Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
+ Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
+ long_channel_leakage_reduction[2] = 1/2.05;
+ I_off_n[2][0] = 4.9e-9;
+ I_off_n[2][10] = 6.49e-9;
+ I_off_n[2][20] = 8.45e-9;
+ I_off_n[2][30] = 1.08e-8;
+ I_off_n[2][40] = 1.37e-8;
+ I_off_n[2][50] = 1.71e-8;
+ I_off_n[2][60] = 2.09e-8;
+ I_off_n[2][70] = 2.48e-8;
+ I_off_n[2][80] = 2.84e-8;
+ I_off_n[2][90] = 3.13e-8;
+ I_off_n[2][100] = 3.42e-8;
+
+ I_g_on_n[2][0] = 9.61e-9;//A/micron
+ I_g_on_n[2][10] = 9.61e-9;
+ I_g_on_n[2][20] = 9.61e-9;
+ I_g_on_n[2][30] = 9.61e-9;
+ I_g_on_n[2][40] = 9.61e-9;
+ I_g_on_n[2][50] = 9.61e-9;
+ I_g_on_n[2][60] = 9.61e-9;
+ I_g_on_n[2][70] = 9.61e-9;
+ I_g_on_n[2][80] = 9.61e-9;
+ I_g_on_n[2][90] = 9.61e-9;
+ I_g_on_n[2][100] = 9.61e-9;
+
+ if (ram_cell_tech_type == lp_dram)
+ {
+ //LP-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.2;
+ Lphy[3] = 0.12;
+ Lelec[3] = 0.0756;
+ curr_v_th_dram_access_transistor = 0.43806;
+ width_dram_access_transistor = 0.09;
+ curr_I_on_dram_cell = 36e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 19.6e-12;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 0.11;
+ curr_asp_ratio_cell_dram = 1.46;
+ curr_c_dram_cell = 20e-15;
+
+ //LP-DRAM wordline transistor parameters
+ curr_vpp = 1.6;
+ t_ox[3] = 2.2e-3;
+ v_th[3] = 0.43806;
+ c_ox[3] = 1.22e-14;
+ mobility_eff[3] = 328.32 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.43806;
+ c_g_ideal[3] = 1.46e-15;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15 ;
+ I_on_n[3] = 399.8e-6;
+ I_on_p[3] = 243.4e-6;
+ nmos_effective_resistance_multiplier = 1.65;
+ n_to_p_eff_curr_drv_ratio[3] = 2.05;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 2.23e-11;
+ I_off_n[3][10] = 3.46e-11;
+ I_off_n[3][20] = 5.24e-11;
+ I_off_n[3][30] = 7.75e-11;
+ I_off_n[3][40] = 1.12e-10;
+ I_off_n[3][50] = 1.58e-10;
+ I_off_n[3][60] = 2.18e-10;
+ I_off_n[3][70] = 2.88e-10;
+ I_off_n[3][80] = 3.63e-10;
+ I_off_n[3][90] = 4.41e-10;
+ I_off_n[3][100] = 5.36e-10;
+ }
+ else if (ram_cell_tech_type == comm_dram)
+ {
+ //COMM-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.3;
+ Lphy[3] = 0.065;
+ Lelec[3] = 0.0426;
+ curr_v_th_dram_access_transistor = 1;
+ width_dram_access_transistor = 0.065;
+ curr_I_on_dram_cell = 20e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.065*0.065;
+ curr_asp_ratio_cell_dram = 1.5;
+ curr_c_dram_cell = 30e-15;
+
+ //COMM-DRAM wordline transistor parameters
+ curr_vpp = 3.3;
+ t_ox[3] = 5e-3;
+ v_th[3] = 1.0;
+ c_ox[3] = 6.16e-15;
+ mobility_eff[3] = 303.44 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.385;
+ c_g_ideal[3] = 4e-16;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15 ;
+ I_on_n[3] = 1031e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.69;
+ n_to_p_eff_curr_drv_ratio[3] = 2.39;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 1.80e-14;
+ I_off_n[3][10] = 3.64e-14;
+ I_off_n[3][20] = 7.03e-14;
+ I_off_n[3][30] = 1.31e-13;
+ I_off_n[3][40] = 2.35e-13;
+ I_off_n[3][50] = 4.09e-13;
+ I_off_n[3][60] = 6.89e-13;
+ I_off_n[3][70] = 1.13e-12;
+ I_off_n[3][80] = 1.78e-12;
+ I_off_n[3][90] = 2.71e-12;
+ I_off_n[3][100] = 3.99e-12;
+ }
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_cam = 2.92;
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 0.7;
+ curr_core_tx_density = 1.25*0.7;
+ curr_sckt_co_eff = 1.1359;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+ }
+
+ if (tech == 45)
+ { //45nm technology-node. Corresponds to year 2010 in ITRS
+ //ITRS HP device type
+ SENSE_AMP_D = .04e-9; // s
+ SENSE_AMP_P = 2.7e-15; // J
+ vdd[0] = 1.0;
+ Lphy[0] = 0.018;
+ Lelec[0] = 0.01345;
+ t_ox[0] = 0.65e-3;
+ v_th[0] = .18035;
+ c_ox[0] = 3.77e-14;
+ mobility_eff[0] = 266.68 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[0] = 9.38E-2;
+ c_g_ideal[0] = 6.78e-16;
+ c_fringe[0] = 0.05e-15;
+ c_junc[0] = 1e-15;
+ I_on_n[0] = 2046.6e-6;
+ //There are certain problems with the ITRS PMOS numbers in MASTAR for 45nm. So we are using 65nm values of
+ //n_to_p_eff_curr_drv_ratio and gmp_to_gmn_multiplier for 45nm
+ I_on_p[0] = I_on_n[0] / 2;//This value is fixed arbitrarily but I_on_p is not being used in CACTI
+ nmos_effective_resistance_multiplier = 1.51;
+ n_to_p_eff_curr_drv_ratio[0] = 2.41;
+ gmp_to_gmn_multiplier[0] = 1.38;
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];
+ long_channel_leakage_reduction[0] = 1/3.546;//Using MASTAR, @380K, increase Lgate until Ion reduces to 90%, Ioff(Lgate normal)/Ioff(Lgate long)= 3.74
+ I_off_n[0][0] = 2.8e-7;
+ I_off_n[0][10] = 3.28e-7;
+ I_off_n[0][20] = 3.81e-7;
+ I_off_n[0][30] = 4.39e-7;
+ I_off_n[0][40] = 5.02e-7;
+ I_off_n[0][50] = 5.69e-7;
+ I_off_n[0][60] = 6.42e-7;
+ I_off_n[0][70] = 7.2e-7;
+ I_off_n[0][80] = 8.03e-7;
+ I_off_n[0][90] = 8.91e-7;
+ I_off_n[0][100] = 9.84e-7;
+
+ I_g_on_n[0][0] = 3.59e-8;//A/micron
+ I_g_on_n[0][10] = 3.59e-8;
+ I_g_on_n[0][20] = 3.59e-8;
+ I_g_on_n[0][30] = 3.59e-8;
+ I_g_on_n[0][40] = 3.59e-8;
+ I_g_on_n[0][50] = 3.59e-8;
+ I_g_on_n[0][60] = 3.59e-8;
+ I_g_on_n[0][70] = 3.59e-8;
+ I_g_on_n[0][80] = 3.59e-8;
+ I_g_on_n[0][90] = 3.59e-8;
+ I_g_on_n[0][100] = 3.59e-8;
+
+ //ITRS LSTP device type
+ vdd[1] = 1.1;
+ Lphy[1] = 0.028;
+ Lelec[1] = 0.0212;
+ t_ox[1] = 1.4e-3;
+ v_th[1] = 0.50245;
+ c_ox[1] = 2.01e-14;
+ mobility_eff[1] = 363.96 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[1] = 9.12e-2;
+ c_g_ideal[1] = 5.18e-16;
+ c_fringe[1] = 0.08e-15;
+ c_junc[1] = 1e-15;
+ I_on_n[1] = 666.2e-6;
+ I_on_p[1] = I_on_n[1] / 2;
+ nmos_effective_resistance_multiplier = 1.99;
+ n_to_p_eff_curr_drv_ratio[1] = 2.23;
+ gmp_to_gmn_multiplier[1] = 0.99;
+ Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
+ Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
+ long_channel_leakage_reduction[1] = 1/2.08;
+ I_off_n[1][0] = 1.01e-11;
+ I_off_n[1][10] = 1.65e-11;
+ I_off_n[1][20] = 2.62e-11;
+ I_off_n[1][30] = 4.06e-11;
+ I_off_n[1][40] = 6.12e-11;
+ I_off_n[1][50] = 9.02e-11;
+ I_off_n[1][60] = 1.3e-10;
+ I_off_n[1][70] = 1.83e-10;
+ I_off_n[1][80] = 2.51e-10;
+ I_off_n[1][90] = 3.29e-10;
+ I_off_n[1][100] = 4.1e-10;
+
+ I_g_on_n[1][0] = 9.47e-12;//A/micron
+ I_g_on_n[1][10] = 9.47e-12;
+ I_g_on_n[1][20] = 9.47e-12;
+ I_g_on_n[1][30] = 9.47e-12;
+ I_g_on_n[1][40] = 9.47e-12;
+ I_g_on_n[1][50] = 9.47e-12;
+ I_g_on_n[1][60] = 9.47e-12;
+ I_g_on_n[1][70] = 9.47e-12;
+ I_g_on_n[1][80] = 9.47e-12;
+ I_g_on_n[1][90] = 9.47e-12;
+ I_g_on_n[1][100] = 9.47e-12;
+
+ //ITRS LOP device type
+ vdd[2] = 0.7;
+ Lphy[2] = 0.022;
+ Lelec[2] = 0.016;
+ t_ox[2] = 0.9e-3;
+ v_th[2] = 0.22599;
+ c_ox[2] = 2.82e-14;//F/micron2
+ mobility_eff[2] = 508.9 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[2] = 5.71e-2;
+ c_g_ideal[2] = 6.2e-16;
+ c_fringe[2] = 0.073e-15;
+ c_junc[2] = 1e-15;
+ I_on_n[2] = 748.9e-6;
+ I_on_p[2] = I_on_n[2] / 2;
+ nmos_effective_resistance_multiplier = 1.76;
+ n_to_p_eff_curr_drv_ratio[2] = 2.28;
+ gmp_to_gmn_multiplier[2] = 1.11;
+ Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
+ Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
+ long_channel_leakage_reduction[2] = 1/1.92;
+ I_off_n[2][0] = 4.03e-9;
+ I_off_n[2][10] = 5.02e-9;
+ I_off_n[2][20] = 6.18e-9;
+ I_off_n[2][30] = 7.51e-9;
+ I_off_n[2][40] = 9.04e-9;
+ I_off_n[2][50] = 1.08e-8;
+ I_off_n[2][60] = 1.27e-8;
+ I_off_n[2][70] = 1.47e-8;
+ I_off_n[2][80] = 1.66e-8;
+ I_off_n[2][90] = 1.84e-8;
+ I_off_n[2][100] = 2.03e-8;
+
+ I_g_on_n[2][0] = 3.24e-8;//A/micron
+ I_g_on_n[2][10] = 4.01e-8;
+ I_g_on_n[2][20] = 4.90e-8;
+ I_g_on_n[2][30] = 5.92e-8;
+ I_g_on_n[2][40] = 7.08e-8;
+ I_g_on_n[2][50] = 8.38e-8;
+ I_g_on_n[2][60] = 9.82e-8;
+ I_g_on_n[2][70] = 1.14e-7;
+ I_g_on_n[2][80] = 1.29e-7;
+ I_g_on_n[2][90] = 1.43e-7;
+ I_g_on_n[2][100] = 1.54e-7;
+
+ if (ram_cell_tech_type == lp_dram)
+ {
+ //LP-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.1;
+ Lphy[3] = 0.078;
+ Lelec[3] = 0.0504;// Assume Lelec is 30% lesser than Lphy for DRAM access and wordline transistors.
+ curr_v_th_dram_access_transistor = 0.44559;
+ width_dram_access_transistor = 0.079;
+ curr_I_on_dram_cell = 36e-6;//A
+ curr_I_off_dram_cell_worst_case_length_temp = 19.5e-12;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = width_dram_access_transistor * Lphy[3] * 10.0;
+ curr_asp_ratio_cell_dram = 1.46;
+ curr_c_dram_cell = 20e-15;
+
+ //LP-DRAM wordline transistor parameters
+ curr_vpp = 1.5;
+ t_ox[3] = 2.1e-3;
+ v_th[3] = 0.44559;
+ c_ox[3] = 1.41e-14;
+ mobility_eff[3] = 426.30 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.181;
+ c_g_ideal[3] = 1.10e-15;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 456e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.65;
+ n_to_p_eff_curr_drv_ratio[3] = 2.05;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 2.54e-11;
+ I_off_n[3][10] = 3.94e-11;
+ I_off_n[3][20] = 5.95e-11;
+ I_off_n[3][30] = 8.79e-11;
+ I_off_n[3][40] = 1.27e-10;
+ I_off_n[3][50] = 1.79e-10;
+ I_off_n[3][60] = 2.47e-10;
+ I_off_n[3][70] = 3.31e-10;
+ I_off_n[3][80] = 4.26e-10;
+ I_off_n[3][90] = 5.27e-10;
+ I_off_n[3][100] = 6.46e-10;
+ }
+ else if (ram_cell_tech_type == comm_dram)
+ {
+ //COMM-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.1;
+ Lphy[3] = 0.045;
+ Lelec[3] = 0.0298;
+ curr_v_th_dram_access_transistor = 1;
+ width_dram_access_transistor = 0.045;
+ curr_I_on_dram_cell = 20e-6;//A
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.045*0.045;
+ curr_asp_ratio_cell_dram = 1.5;
+ curr_c_dram_cell = 30e-15;
+
+ //COMM-DRAM wordline transistor parameters
+ curr_vpp = 2.7;
+ t_ox[3] = 4e-3;
+ v_th[3] = 1.0;
+ c_ox[3] = 7.98e-15;
+ mobility_eff[3] = 368.58 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.147;
+ c_g_ideal[3] = 3.59e-16;
+ c_fringe[3] = 0.08e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 999.4e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.69;
+ n_to_p_eff_curr_drv_ratio[3] = 1.95;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 1.31e-14;
+ I_off_n[3][10] = 2.68e-14;
+ I_off_n[3][20] = 5.25e-14;
+ I_off_n[3][30] = 9.88e-14;
+ I_off_n[3][40] = 1.79e-13;
+ I_off_n[3][50] = 3.15e-13;
+ I_off_n[3][60] = 5.36e-13;
+ I_off_n[3][70] = 8.86e-13;
+ I_off_n[3][80] = 1.42e-12;
+ I_off_n[3][90] = 2.20e-12;
+ I_off_n[3][100] = 3.29e-12;
+ }
+
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_cam = 2.92;
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 0.7*0.7;
+ curr_core_tx_density = 1.25;
+ curr_sckt_co_eff = 1.1387;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+ }
+
+ if (tech == 32)
+ {
+ SENSE_AMP_D = .03e-9; // s
+ SENSE_AMP_P = 2.16e-15; // J
+ //For 2013, MPU/ASIC stagger-contacted M1 half-pitch is 32 nm (so this is 32 nm
+ //technology i.e. FEATURESIZE = 0.032). Using the SOI process numbers for
+ //HP and LSTP.
+ vdd[0] = 0.9;
+ Lphy[0] = 0.013;
+ Lelec[0] = 0.01013;
+ t_ox[0] = 0.5e-3;
+ v_th[0] = 0.21835;
+ c_ox[0] = 4.11e-14;
+ mobility_eff[0] = 361.84 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[0] = 5.09E-2;
+ c_g_ideal[0] = 5.34e-16;
+ c_fringe[0] = 0.04e-15;
+ c_junc[0] = 1e-15;
+ I_on_n[0] = 2211.7e-6;
+ I_on_p[0] = I_on_n[0] / 2;
+ nmos_effective_resistance_multiplier = 1.49;
+ n_to_p_eff_curr_drv_ratio[0] = 2.41;
+ gmp_to_gmn_multiplier[0] = 1.38;
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
+ long_channel_leakage_reduction[0] = 1/3.706;
+ //Using MASTAR, @300K (380K does not work in MASTAR), increase Lgate until Ion reduces to 95% or Lgate increase by 5% (DG device can only increase by 5%),
+ //whichever comes first
+ I_off_n[0][0] = 1.52e-7;
+ I_off_n[0][10] = 1.55e-7;
+ I_off_n[0][20] = 1.59e-7;
+ I_off_n[0][30] = 1.68e-7;
+ I_off_n[0][40] = 1.90e-7;
+ I_off_n[0][50] = 2.69e-7;
+ I_off_n[0][60] = 5.32e-7;
+ I_off_n[0][70] = 1.02e-6;
+ I_off_n[0][80] = 1.62e-6;
+ I_off_n[0][90] = 2.73e-6;
+ I_off_n[0][100] = 6.1e-6;
+
+ I_g_on_n[0][0] = 6.55e-8;//A/micron
+ I_g_on_n[0][10] = 6.55e-8;
+ I_g_on_n[0][20] = 6.55e-8;
+ I_g_on_n[0][30] = 6.55e-8;
+ I_g_on_n[0][40] = 6.55e-8;
+ I_g_on_n[0][50] = 6.55e-8;
+ I_g_on_n[0][60] = 6.55e-8;
+ I_g_on_n[0][70] = 6.55e-8;
+ I_g_on_n[0][80] = 6.55e-8;
+ I_g_on_n[0][90] = 6.55e-8;
+ I_g_on_n[0][100] = 6.55e-8;
+
+// 32 DG
+// I_g_on_n[0][0] = 2.71e-9;//A/micron
+// I_g_on_n[0][10] = 2.71e-9;
+// I_g_on_n[0][20] = 2.71e-9;
+// I_g_on_n[0][30] = 2.71e-9;
+// I_g_on_n[0][40] = 2.71e-9;
+// I_g_on_n[0][50] = 2.71e-9;
+// I_g_on_n[0][60] = 2.71e-9;
+// I_g_on_n[0][70] = 2.71e-9;
+// I_g_on_n[0][80] = 2.71e-9;
+// I_g_on_n[0][90] = 2.71e-9;
+// I_g_on_n[0][100] = 2.71e-9;
+
+ //LSTP device type
+ vdd[1] = 1;
+ Lphy[1] = 0.020;
+ Lelec[1] = 0.0173;
+ t_ox[1] = 1.2e-3;
+ v_th[1] = 0.513;
+ c_ox[1] = 2.29e-14;
+ mobility_eff[1] = 347.46 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[1] = 8.64e-2;
+ c_g_ideal[1] = 4.58e-16;
+ c_fringe[1] = 0.053e-15;
+ c_junc[1] = 1e-15;
+ I_on_n[1] = 683.6e-6;
+ I_on_p[1] = I_on_n[1] / 2;
+ nmos_effective_resistance_multiplier = 1.99;
+ n_to_p_eff_curr_drv_ratio[1] = 2.23;
+ gmp_to_gmn_multiplier[1] = 0.99;
+ Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
+ Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
+ long_channel_leakage_reduction[1] = 1/1.93;
+ I_off_n[1][0] = 2.06e-11;
+ I_off_n[1][10] = 3.30e-11;
+ I_off_n[1][20] = 5.15e-11;
+ I_off_n[1][30] = 7.83e-11;
+ I_off_n[1][40] = 1.16e-10;
+ I_off_n[1][50] = 1.69e-10;
+ I_off_n[1][60] = 2.40e-10;
+ I_off_n[1][70] = 3.34e-10;
+ I_off_n[1][80] = 4.54e-10;
+ I_off_n[1][90] = 5.96e-10;
+ I_off_n[1][100] = 7.44e-10;
+
+ I_g_on_n[1][0] = 3.73e-11;//A/micron
+ I_g_on_n[1][10] = 3.73e-11;
+ I_g_on_n[1][20] = 3.73e-11;
+ I_g_on_n[1][30] = 3.73e-11;
+ I_g_on_n[1][40] = 3.73e-11;
+ I_g_on_n[1][50] = 3.73e-11;
+ I_g_on_n[1][60] = 3.73e-11;
+ I_g_on_n[1][70] = 3.73e-11;
+ I_g_on_n[1][80] = 3.73e-11;
+ I_g_on_n[1][90] = 3.73e-11;
+ I_g_on_n[1][100] = 3.73e-11;
+
+
+ //LOP device type
+ vdd[2] = 0.6;
+ Lphy[2] = 0.016;
+ Lelec[2] = 0.01232;
+ t_ox[2] = 0.9e-3;
+ v_th[2] = 0.24227;
+ c_ox[2] = 2.84e-14;
+ mobility_eff[2] = 513.52 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[2] = 4.64e-2;
+ c_g_ideal[2] = 4.54e-16;
+ c_fringe[2] = 0.057e-15;
+ c_junc[2] = 1e-15;
+ I_on_n[2] = 827.8e-6;
+ I_on_p[2] = I_on_n[2] / 2;
+ nmos_effective_resistance_multiplier = 1.73;
+ n_to_p_eff_curr_drv_ratio[2] = 2.28;
+ gmp_to_gmn_multiplier[2] = 1.11;
+ Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
+ Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
+ long_channel_leakage_reduction[2] = 1/1.89;
+ I_off_n[2][0] = 5.94e-8;
+ I_off_n[2][10] = 7.23e-8;
+ I_off_n[2][20] = 8.7e-8;
+ I_off_n[2][30] = 1.04e-7;
+ I_off_n[2][40] = 1.22e-7;
+ I_off_n[2][50] = 1.43e-7;
+ I_off_n[2][60] = 1.65e-7;
+ I_off_n[2][70] = 1.90e-7;
+ I_off_n[2][80] = 2.15e-7;
+ I_off_n[2][90] = 2.39e-7;
+ I_off_n[2][100] = 2.63e-7;
+
+ I_g_on_n[2][0] = 2.93e-9;//A/micron
+ I_g_on_n[2][10] = 2.93e-9;
+ I_g_on_n[2][20] = 2.93e-9;
+ I_g_on_n[2][30] = 2.93e-9;
+ I_g_on_n[2][40] = 2.93e-9;
+ I_g_on_n[2][50] = 2.93e-9;
+ I_g_on_n[2][60] = 2.93e-9;
+ I_g_on_n[2][70] = 2.93e-9;
+ I_g_on_n[2][80] = 2.93e-9;
+ I_g_on_n[2][90] = 2.93e-9;
+ I_g_on_n[2][100] = 2.93e-9;
+
+ if (ram_cell_tech_type == lp_dram)
+ {
+ //LP-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.0;
+ Lphy[3] = 0.056;
+ Lelec[3] = 0.0419;//Assume Lelec is 30% lesser than Lphy for DRAM access and wordline transistors.
+ curr_v_th_dram_access_transistor = 0.44129;
+ width_dram_access_transistor = 0.056;
+ curr_I_on_dram_cell = 36e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 18.9e-12;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = width_dram_access_transistor * Lphy[3] * 10.0;
+ curr_asp_ratio_cell_dram = 1.46;
+ curr_c_dram_cell = 20e-15;
+
+ //LP-DRAM wordline transistor parameters
+ curr_vpp = 1.5;
+ t_ox[3] = 2e-3;
+ v_th[3] = 0.44467;
+ c_ox[3] = 1.48e-14;
+ mobility_eff[3] = 408.12 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.174;
+ c_g_ideal[3] = 7.45e-16;
+ c_fringe[3] = 0.053e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 1055.4e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.65;
+ n_to_p_eff_curr_drv_ratio[3] = 2.05;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 3.57e-11;
+ I_off_n[3][10] = 5.51e-11;
+ I_off_n[3][20] = 8.27e-11;
+ I_off_n[3][30] = 1.21e-10;
+ I_off_n[3][40] = 1.74e-10;
+ I_off_n[3][50] = 2.45e-10;
+ I_off_n[3][60] = 3.38e-10;
+ I_off_n[3][70] = 4.53e-10;
+ I_off_n[3][80] = 5.87e-10;
+ I_off_n[3][90] = 7.29e-10;
+ I_off_n[3][100] = 8.87e-10;
+ }
+ else if (ram_cell_tech_type == comm_dram)
+ {
+ //COMM-DRAM cell access transistor technology parameters
+ curr_vdd_dram_cell = 1.0;
+ Lphy[3] = 0.032;
+ Lelec[3] = 0.0205;//Assume Lelec is 30% lesser than Lphy for DRAM access and wordline transistors.
+ curr_v_th_dram_access_transistor = 1;
+ width_dram_access_transistor = 0.032;
+ curr_I_on_dram_cell = 20e-6;
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.032*0.032;
+ curr_asp_ratio_cell_dram = 1.5;
+ curr_c_dram_cell = 30e-15;
+
+ //COMM-DRAM wordline transistor parameters
+ curr_vpp = 2.6;
+ t_ox[3] = 4e-3;
+ v_th[3] = 1.0;
+ c_ox[3] = 7.99e-15;
+ mobility_eff[3] = 380.76 * (1e-2 * 1e6 * 1e-2 * 1e6);
+ Vdsat[3] = 0.129;
+ c_g_ideal[3] = 2.56e-16;
+ c_fringe[3] = 0.053e-15;
+ c_junc[3] = 1e-15;
+ I_on_n[3] = 1024.5e-6;
+ I_on_p[3] = I_on_n[3] / 2;
+ nmos_effective_resistance_multiplier = 1.69;
+ n_to_p_eff_curr_drv_ratio[3] = 1.95;
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 3.63e-14;
+ I_off_n[3][10] = 7.18e-14;
+ I_off_n[3][20] = 1.36e-13;
+ I_off_n[3][30] = 2.49e-13;
+ I_off_n[3][40] = 4.41e-13;
+ I_off_n[3][50] = 7.55e-13;
+ I_off_n[3][60] = 1.26e-12;
+ I_off_n[3][70] = 2.03e-12;
+ I_off_n[3][80] = 3.19e-12;
+ I_off_n[3][90] = 4.87e-12;
+ I_off_n[3][100] = 7.16e-12;
+ }
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_cam = 2.92;
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 0.7*0.7*0.7;
+ curr_core_tx_density = 1.25/0.7;
+ curr_sckt_co_eff = 1.1111;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+ }
+
+ if(tech == 22){
+ //For 2016, MPU/ASIC stagger-contacted M1 half-pitch is 22 nm (so this is 22 nm
+ //technology i.e. FEATURESIZE = 0.022). Using the DG process numbers for HP.
+ //22 nm HP
+ vdd[0] = 0.8;
+ Lphy[0] = 0.009;//Lphy is the physical gate-length.
+ Lelec[0] = 0.00468;//Lelec is the electrical gate-length.
+ t_ox[0] = 0.55e-3;//micron
+ v_th[0] = 0.1395;//V
+ c_ox[0] = 3.63e-14;//F/micron2
+ mobility_eff[0] = 426.07 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[0] = 2.33e-2; //V/micron
+ c_g_ideal[0] = 3.27e-16;//F/micron
+ c_fringe[0] = 0.06e-15;//F/micron
+ c_junc[0] = 0;//F/micron2
+ I_on_n[0] = 2626.4e-6;//A/micron
+ I_on_p[0] = I_on_n[0] / 2;//A/micron //This value for I_on_p is not really used.
+ nmos_effective_resistance_multiplier = 1.45;
+ n_to_p_eff_curr_drv_ratio[0] = 2; //Wpmos/Wnmos = 2 in 2007 MASTAR. Look in
+ //"Dynamic" tab of Device workspace.
+ gmp_to_gmn_multiplier[0] = 1.38; //Just using the 32nm SOI value.
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
+ long_channel_leakage_reduction[0] = 1/3.274;
+ I_off_n[0][0] = 1.52e-7/1.5*1.2;//From 22nm, leakage current are directly from ITRS report rather than MASTAR, since MASTAR has serious bugs there.
+ I_off_n[0][10] = 1.55e-7/1.5*1.2;
+ I_off_n[0][20] = 1.59e-7/1.5*1.2;
+ I_off_n[0][30] = 1.68e-7/1.5*1.2;
+ I_off_n[0][40] = 1.90e-7/1.5*1.2;
+ I_off_n[0][50] = 2.69e-7/1.5*1.2;
+ I_off_n[0][60] = 5.32e-7/1.5*1.2;
+ I_off_n[0][70] = 1.02e-6/1.5*1.2;
+ I_off_n[0][80] = 1.62e-6/1.5*1.2;
+ I_off_n[0][90] = 2.73e-6/1.5*1.2;
+ I_off_n[0][100] = 6.1e-6/1.5*1.2;
+ //for 22nm DG HP
+ I_g_on_n[0][0] = 1.81e-9;//A/micron
+ I_g_on_n[0][10] = 1.81e-9;
+ I_g_on_n[0][20] = 1.81e-9;
+ I_g_on_n[0][30] = 1.81e-9;
+ I_g_on_n[0][40] = 1.81e-9;
+ I_g_on_n[0][50] = 1.81e-9;
+ I_g_on_n[0][60] = 1.81e-9;
+ I_g_on_n[0][70] = 1.81e-9;
+ I_g_on_n[0][80] = 1.81e-9;
+ I_g_on_n[0][90] = 1.81e-9;
+ I_g_on_n[0][100] = 1.81e-9;
+
+ //22 nm LSTP DG
+ vdd[1] = 0.8;
+ Lphy[1] = 0.014;
+ Lelec[1] = 0.008;//Lelec is the electrical gate-length.
+ t_ox[1] = 1.1e-3;//micron
+ v_th[1] = 0.40126;//V
+ c_ox[1] = 2.30e-14;//F/micron2
+ mobility_eff[1] = 738.09 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[1] = 6.64e-2; //V/micron
+ c_g_ideal[1] = 3.22e-16;//F/micron
+ c_fringe[1] = 0.08e-15;
+ c_junc[1] = 0;//F/micron2
+ I_on_n[1] = 727.6e-6;//A/micron
+ I_on_p[1] = I_on_n[1] / 2;
+ nmos_effective_resistance_multiplier = 1.99;
+ n_to_p_eff_curr_drv_ratio[1] = 2;
+ gmp_to_gmn_multiplier[1] = 0.99;
+ Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];//ohm-micron
+ Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];//ohm-micron
+ long_channel_leakage_reduction[1] = 1/1.89;
+ I_off_n[1][0] = 2.43e-11;
+ I_off_n[1][10] = 4.85e-11;
+ I_off_n[1][20] = 9.68e-11;
+ I_off_n[1][30] = 1.94e-10;
+ I_off_n[1][40] = 3.87e-10;
+ I_off_n[1][50] = 7.73e-10;
+ I_off_n[1][60] = 3.55e-10;
+ I_off_n[1][70] = 3.09e-9;
+ I_off_n[1][80] = 6.19e-9;
+ I_off_n[1][90] = 1.24e-8;
+ I_off_n[1][100]= 2.48e-8;
+
+ I_g_on_n[1][0] = 4.51e-10;//A/micron
+ I_g_on_n[1][10] = 4.51e-10;
+ I_g_on_n[1][20] = 4.51e-10;
+ I_g_on_n[1][30] = 4.51e-10;
+ I_g_on_n[1][40] = 4.51e-10;
+ I_g_on_n[1][50] = 4.51e-10;
+ I_g_on_n[1][60] = 4.51e-10;
+ I_g_on_n[1][70] = 4.51e-10;
+ I_g_on_n[1][80] = 4.51e-10;
+ I_g_on_n[1][90] = 4.51e-10;
+ I_g_on_n[1][100] = 4.51e-10;
+
+ //22 nm LOP
+ vdd[2] = 0.6;
+ Lphy[2] = 0.011;
+ Lelec[2] = 0.00604;//Lelec is the electrical gate-length.
+ t_ox[2] = 0.8e-3;//micron
+ v_th[2] = 0.2315;//V
+ c_ox[2] = 2.87e-14;//F/micron2
+ mobility_eff[2] = 698.37 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[2] = 1.81e-2; //V/micron
+ c_g_ideal[2] = 3.16e-16;//F/micron
+ c_fringe[2] = 0.08e-15;
+ c_junc[2] = 0;//F/micron2 This is Cj0 not Cjunc in MASTAR results->Dynamic Tab
+ I_on_n[2] = 916.1e-6;//A/micron
+ I_on_p[2] = I_on_n[2] / 2;
+ nmos_effective_resistance_multiplier = 1.73;
+ n_to_p_eff_curr_drv_ratio[2] = 2;
+ gmp_to_gmn_multiplier[2] = 1.11;
+ Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];//ohm-micron
+ Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];//ohm-micron
+ long_channel_leakage_reduction[2] = 1/2.38;
+
+ I_off_n[2][0] = 1.31e-8;
+ I_off_n[2][10] = 2.60e-8;
+ I_off_n[2][20] = 5.14e-8;
+ I_off_n[2][30] = 1.02e-7;
+ I_off_n[2][40] = 2.02e-7;
+ I_off_n[2][50] = 3.99e-7;
+ I_off_n[2][60] = 7.91e-7;
+ I_off_n[2][70] = 1.09e-6;
+ I_off_n[2][80] = 2.09e-6;
+ I_off_n[2][90] = 4.04e-6;
+ I_off_n[2][100]= 4.48e-6;
+
+ I_g_on_n[2][0] = 2.74e-9;//A/micron
+ I_g_on_n[2][10] = 2.74e-9;
+ I_g_on_n[2][20] = 2.74e-9;
+ I_g_on_n[2][30] = 2.74e-9;
+ I_g_on_n[2][40] = 2.74e-9;
+ I_g_on_n[2][50] = 2.74e-9;
+ I_g_on_n[2][60] = 2.74e-9;
+ I_g_on_n[2][70] = 2.74e-9;
+ I_g_on_n[2][80] = 2.74e-9;
+ I_g_on_n[2][90] = 2.74e-9;
+ I_g_on_n[2][100] = 2.74e-9;
+
+
+
+ if (ram_cell_tech_type == 3)
+ {}
+ else if (ram_cell_tech_type == 4)
+ {
+ //22 nm commodity DRAM cell access transistor technology parameters.
+ //parameters
+ curr_vdd_dram_cell = 0.9;//0.45;//This value has reduced greatly in 2007 ITRS for all technology nodes. In
+ //2005 ITRS, the value was about twice the value in 2007 ITRS
+ Lphy[3] = 0.022;//micron
+ Lelec[3] = 0.0181;//micron.
+ curr_v_th_dram_access_transistor = 1;//V
+ width_dram_access_transistor = 0.022;//micron
+ curr_I_on_dram_cell = 20e-6; //This is a typical value that I have always
+ //kept constant. In reality this could perhaps be lower
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;//A
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.022*0.022;//micron2.
+ curr_asp_ratio_cell_dram = 0.667;
+ curr_c_dram_cell = 30e-15;//This is a typical value that I have alwaus
+ //kept constant.
+
+ //22 nm commodity DRAM wordline transistor parameters obtained using MASTAR.
+ curr_vpp = 2.3;//vpp. V
+ t_ox[3] = 3.5e-3;//micron
+ v_th[3] = 1.0;//V
+ c_ox[3] = 9.06e-15;//F/micron2
+ mobility_eff[3] = 367.29 * (1e-2 * 1e6 * 1e-2 * 1e6);//micron2 / Vs
+ Vdsat[3] = 0.0972; //V/micron
+ c_g_ideal[3] = 1.99e-16;//F/micron
+ c_fringe[3] = 0.053e-15;//F/micron
+ c_junc[3] = 1e-15;//F/micron2
+ I_on_n[3] = 910.5e-6;//A/micron
+ I_on_p[3] = I_on_n[3] / 2;//This value for I_on_p is not really used.
+ nmos_effective_resistance_multiplier = 1.69;//Using the value from 32nm.
+ //
+ n_to_p_eff_curr_drv_ratio[3] = 1.95;//Using the value from 32nm
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];//ohm-micron
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];//ohm-micron
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 1.1e-13; //A/micron
+ I_off_n[3][10] = 2.11e-13;
+ I_off_n[3][20] = 3.88e-13;
+ I_off_n[3][30] = 6.9e-13;
+ I_off_n[3][40] = 1.19e-12;
+ I_off_n[3][50] = 1.98e-12;
+ I_off_n[3][60] = 3.22e-12;
+ I_off_n[3][70] = 5.09e-12;
+ I_off_n[3][80] = 7.85e-12;
+ I_off_n[3][90] = 1.18e-11;
+ I_off_n[3][100] = 1.72e-11;
+
+ }
+ else
+ {
+ //some error handler
+ }
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_cam = 2.92;
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 0.7*0.7*0.7*0.7;
+ curr_core_tx_density = 1.25/0.7/0.7;
+ curr_sckt_co_eff = 1.1296;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+ }
+
+ if(tech == 16){
+ //For 2019, MPU/ASIC stagger-contacted M1 half-pitch is 16 nm (so this is 16 nm
+ //technology i.e. FEATURESIZE = 0.016). Using the DG process numbers for HP.
+ //16 nm HP
+ vdd[0] = 0.7;
+ Lphy[0] = 0.006;//Lphy is the physical gate-length.
+ Lelec[0] = 0.00315;//Lelec is the electrical gate-length.
+ t_ox[0] = 0.5e-3;//micron
+ v_th[0] = 0.1489;//V
+ c_ox[0] = 3.83e-14;//F/micron2 Cox_elec in MASTAR
+ mobility_eff[0] = 476.15 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+ Vdsat[0] = 1.42e-2; //V/micron calculated in spreadsheet
+ c_g_ideal[0] = 2.30e-16;//F/micron
+ c_fringe[0] = 0.06e-15;//F/micron MASTAR inputdynamic/3
+ c_junc[0] = 0;//F/micron2 MASTAR result dynamic
+ I_on_n[0] = 2768.4e-6;//A/micron
+ I_on_p[0] = I_on_n[0] / 2;//A/micron //This value for I_on_p is not really used.
+ nmos_effective_resistance_multiplier = 1.48;//nmos_effective_resistance_multiplier is the ratio of Ieff to Idsat where Ieff is the effective NMOS current and Idsat is the saturation current.
+ n_to_p_eff_curr_drv_ratio[0] = 2; //Wpmos/Wnmos = 2 in 2007 MASTAR. Look in
+ //"Dynamic" tab of Device workspace.
+ gmp_to_gmn_multiplier[0] = 1.38; //Just using the 32nm SOI value.
+ Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
+ Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
+ long_channel_leakage_reduction[0] = 1/2.655;
+ I_off_n[0][0] = 1.52e-7/1.5*1.2*1.07;
+ I_off_n[0][10] = 1.55e-7/1.5*1.2*1.07;
+ I_off_n[0][20] = 1.59e-7/1.5*1.2*1.07;
+ I_off_n[0][30] = 1.68e-7/1.5*1.2*1.07;
+ I_off_n[0][40] = 1.90e-7/1.5*1.2*1.07;
+ I_off_n[0][50] = 2.69e-7/1.5*1.2*1.07;
+ I_off_n[0][60] = 5.32e-7/1.5*1.2*1.07;
+ I_off_n[0][70] = 1.02e-6/1.5*1.2*1.07;
+ I_off_n[0][80] = 1.62e-6/1.5*1.2*1.07;
+ I_off_n[0][90] = 2.73e-6/1.5*1.2*1.07;
+ I_off_n[0][100] = 6.1e-6/1.5*1.2*1.07;
+ //for 16nm DG HP
+ I_g_on_n[0][0] = 1.07e-9;//A/micron
+ I_g_on_n[0][10] = 1.07e-9;
+ I_g_on_n[0][20] = 1.07e-9;
+ I_g_on_n[0][30] = 1.07e-9;
+ I_g_on_n[0][40] = 1.07e-9;
+ I_g_on_n[0][50] = 1.07e-9;
+ I_g_on_n[0][60] = 1.07e-9;
+ I_g_on_n[0][70] = 1.07e-9;
+ I_g_on_n[0][80] = 1.07e-9;
+ I_g_on_n[0][90] = 1.07e-9;
+ I_g_on_n[0][100] = 1.07e-9;
+
+// //16 nm LSTP DG
+// vdd[1] = 0.8;
+// Lphy[1] = 0.014;
+// Lelec[1] = 0.008;//Lelec is the electrical gate-length.
+// t_ox[1] = 1.1e-3;//micron
+// v_th[1] = 0.40126;//V
+// c_ox[1] = 2.30e-14;//F/micron2
+// mobility_eff[1] = 738.09 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
+// Vdsat[1] = 6.64e-2; //V/micron
+// c_g_ideal[1] = 3.22e-16;//F/micron
+// c_fringe[1] = 0.008e-15;
+// c_junc[1] = 0;//F/micron2
+// I_on_n[1] = 727.6e-6;//A/micron
+// I_on_p[1] = I_on_n[1] / 2;
+// nmos_effective_resistance_multiplier = 1.99;
+// n_to_p_eff_curr_drv_ratio[1] = 2;
+// gmp_to_gmn_multiplier[1] = 0.99;
+// Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];//ohm-micron
+// Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];//ohm-micron
+// I_off_n[1][0] = 2.43e-11;
+// I_off_n[1][10] = 4.85e-11;
+// I_off_n[1][20] = 9.68e-11;
+// I_off_n[1][30] = 1.94e-10;
+// I_off_n[1][40] = 3.87e-10;
+// I_off_n[1][50] = 7.73e-10;
+// I_off_n[1][60] = 3.55e-10;
+// I_off_n[1][70] = 3.09e-9;
+// I_off_n[1][80] = 6.19e-9;
+// I_off_n[1][90] = 1.24e-8;
+// I_off_n[1][100]= 2.48e-8;
+//
+// // for 22nm LSTP HP
+// I_g_on_n[1][0] = 4.51e-10;//A/micron
+// I_g_on_n[1][10] = 4.51e-10;
+// I_g_on_n[1][20] = 4.51e-10;
+// I_g_on_n[1][30] = 4.51e-10;
+// I_g_on_n[1][40] = 4.51e-10;
+// I_g_on_n[1][50] = 4.51e-10;
+// I_g_on_n[1][60] = 4.51e-10;
+// I_g_on_n[1][70] = 4.51e-10;
+// I_g_on_n[1][80] = 4.51e-10;
+// I_g_on_n[1][90] = 4.51e-10;
+// I_g_on_n[1][100] = 4.51e-10;
+
+
+ if (ram_cell_tech_type == 3)
+ {}
+ else if (ram_cell_tech_type == 4)
+ {
+ //22 nm commodity DRAM cell access transistor technology parameters.
+ //parameters
+ curr_vdd_dram_cell = 0.9;//0.45;//This value has reduced greatly in 2007 ITRS for all technology nodes. In
+ //2005 ITRS, the value was about twice the value in 2007 ITRS
+ Lphy[3] = 0.022;//micron
+ Lelec[3] = 0.0181;//micron.
+ curr_v_th_dram_access_transistor = 1;//V
+ width_dram_access_transistor = 0.022;//micron
+ curr_I_on_dram_cell = 20e-6; //This is a typical value that I have always
+ //kept constant. In reality this could perhaps be lower
+ curr_I_off_dram_cell_worst_case_length_temp = 1e-15;//A
+ curr_Wmemcella_dram = width_dram_access_transistor;
+ curr_Wmemcellpmos_dram = 0;
+ curr_Wmemcellnmos_dram = 0;
+ curr_area_cell_dram = 6*0.022*0.022;//micron2.
+ curr_asp_ratio_cell_dram = 0.667;
+ curr_c_dram_cell = 30e-15;//This is a typical value that I have alwaus
+ //kept constant.
+
+ //22 nm commodity DRAM wordline transistor parameters obtained using MASTAR.
+ curr_vpp = 2.3;//vpp. V
+ t_ox[3] = 3.5e-3;//micron
+ v_th[3] = 1.0;//V
+ c_ox[3] = 9.06e-15;//F/micron2
+ mobility_eff[3] = 367.29 * (1e-2 * 1e6 * 1e-2 * 1e6);//micron2 / Vs
+ Vdsat[3] = 0.0972; //V/micron
+ c_g_ideal[3] = 1.99e-16;//F/micron
+ c_fringe[3] = 0.053e-15;//F/micron
+ c_junc[3] = 1e-15;//F/micron2
+ I_on_n[3] = 910.5e-6;//A/micron
+ I_on_p[3] = I_on_n[3] / 2;//This value for I_on_p is not really used.
+ nmos_effective_resistance_multiplier = 1.69;//Using the value from 32nm.
+ //
+ n_to_p_eff_curr_drv_ratio[3] = 1.95;//Using the value from 32nm
+ gmp_to_gmn_multiplier[3] = 0.90;
+ Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];//ohm-micron
+ Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];//ohm-micron
+ long_channel_leakage_reduction[3] = 1;
+ I_off_n[3][0] = 1.1e-13; //A/micron
+ I_off_n[3][10] = 2.11e-13;
+ I_off_n[3][20] = 3.88e-13;
+ I_off_n[3][30] = 6.9e-13;
+ I_off_n[3][40] = 1.19e-12;
+ I_off_n[3][50] = 1.98e-12;
+ I_off_n[3][60] = 3.22e-12;
+ I_off_n[3][70] = 5.09e-12;
+ I_off_n[3][80] = 7.85e-12;
+ I_off_n[3][90] = 1.18e-11;
+ I_off_n[3][100] = 1.72e-11;
+
+ }
+ else
+ {
+ //some error handler
+ }
+
+ //SRAM cell properties
+ curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_sram = 1.46;
+ //CAM cell properties //TODO: data need to be revisited
+ curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
+ curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
+ curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
+ curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
+ curr_asp_ratio_cell_cam = 2.92;
+ //Empirical undifferetiated core/FU coefficient
+ curr_logic_scaling_co_eff = 0.7*0.7*0.7*0.7*0.7;
+ curr_core_tx_density = 1.25/0.7/0.7/0.7;
+ curr_sckt_co_eff = 1.1296;
+ curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
+ curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
+ }
+
+
+ g_tp.peri_global.Vdd += curr_alpha * vdd[peri_global_tech_type];
+ g_tp.peri_global.t_ox += curr_alpha * t_ox[peri_global_tech_type];
+ g_tp.peri_global.Vth += curr_alpha * v_th[peri_global_tech_type];
+ g_tp.peri_global.C_ox += curr_alpha * c_ox[peri_global_tech_type];
+ g_tp.peri_global.C_g_ideal += curr_alpha * c_g_ideal[peri_global_tech_type];
+ g_tp.peri_global.C_fringe += curr_alpha * c_fringe[peri_global_tech_type];
+ g_tp.peri_global.C_junc += curr_alpha * c_junc[peri_global_tech_type];
+ g_tp.peri_global.C_junc_sidewall = 0.25e-15; // F/micron
+ g_tp.peri_global.l_phy += curr_alpha * Lphy[peri_global_tech_type];
+ g_tp.peri_global.l_elec += curr_alpha * Lelec[peri_global_tech_type];
+ g_tp.peri_global.I_on_n += curr_alpha * I_on_n[peri_global_tech_type];
+ g_tp.peri_global.R_nch_on += curr_alpha * Rnchannelon[peri_global_tech_type];
+ g_tp.peri_global.R_pch_on += curr_alpha * Rpchannelon[peri_global_tech_type];
+ g_tp.peri_global.n_to_p_eff_curr_drv_ratio
+ += curr_alpha * n_to_p_eff_curr_drv_ratio[peri_global_tech_type];
+ g_tp.peri_global.long_channel_leakage_reduction
+ += curr_alpha * long_channel_leakage_reduction[peri_global_tech_type];
+ g_tp.peri_global.I_off_n += curr_alpha * I_off_n[peri_global_tech_type][g_ip->temp - 300];
+ g_tp.peri_global.I_off_p += curr_alpha * I_off_n[peri_global_tech_type][g_ip->temp - 300];
+ g_tp.peri_global.I_g_on_n += curr_alpha * I_g_on_n[peri_global_tech_type][g_ip->temp - 300];
+ g_tp.peri_global.I_g_on_p += curr_alpha * I_g_on_n[peri_global_tech_type][g_ip->temp - 300];
+ gmp_to_gmn_multiplier_periph_global += curr_alpha * gmp_to_gmn_multiplier[peri_global_tech_type];
+
+ g_tp.sram_cell.Vdd += curr_alpha * vdd[ram_cell_tech_type];
+ g_tp.sram_cell.l_phy += curr_alpha * Lphy[ram_cell_tech_type];
+ g_tp.sram_cell.l_elec += curr_alpha * Lelec[ram_cell_tech_type];
+ g_tp.sram_cell.t_ox += curr_alpha * t_ox[ram_cell_tech_type];
+ g_tp.sram_cell.Vth += curr_alpha * v_th[ram_cell_tech_type];
+ g_tp.sram_cell.C_g_ideal += curr_alpha * c_g_ideal[ram_cell_tech_type];
+ g_tp.sram_cell.C_fringe += curr_alpha * c_fringe[ram_cell_tech_type];
+ g_tp.sram_cell.C_junc += curr_alpha * c_junc[ram_cell_tech_type];
+ g_tp.sram_cell.C_junc_sidewall = 0.25e-15; // F/micron
+ g_tp.sram_cell.I_on_n += curr_alpha * I_on_n[ram_cell_tech_type];
+ g_tp.sram_cell.R_nch_on += curr_alpha * Rnchannelon[ram_cell_tech_type];
+ g_tp.sram_cell.R_pch_on += curr_alpha * Rpchannelon[ram_cell_tech_type];
+ g_tp.sram_cell.n_to_p_eff_curr_drv_ratio += curr_alpha * n_to_p_eff_curr_drv_ratio[ram_cell_tech_type];
+ g_tp.sram_cell.long_channel_leakage_reduction += curr_alpha * long_channel_leakage_reduction[ram_cell_tech_type];
+ g_tp.sram_cell.I_off_n += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.sram_cell.I_off_p += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.sram_cell.I_g_on_n += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.sram_cell.I_g_on_p += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
+
+ g_tp.dram_cell_Vdd += curr_alpha * curr_vdd_dram_cell;
+ g_tp.dram_acc.Vth += curr_alpha * curr_v_th_dram_access_transistor;
+ g_tp.dram_acc.l_phy += curr_alpha * Lphy[dram_cell_tech_flavor];
+ g_tp.dram_acc.l_elec += curr_alpha * Lelec[dram_cell_tech_flavor];
+ g_tp.dram_acc.C_g_ideal += curr_alpha * c_g_ideal[dram_cell_tech_flavor];
+ g_tp.dram_acc.C_fringe += curr_alpha * c_fringe[dram_cell_tech_flavor];
+ g_tp.dram_acc.C_junc += curr_alpha * c_junc[dram_cell_tech_flavor];
+ g_tp.dram_acc.C_junc_sidewall = 0.25e-15; // F/micron
+ g_tp.dram_cell_I_on += curr_alpha * curr_I_on_dram_cell;
+ g_tp.dram_cell_I_off_worst_case_len_temp += curr_alpha * curr_I_off_dram_cell_worst_case_length_temp;
+ g_tp.dram_acc.I_on_n += curr_alpha * I_on_n[dram_cell_tech_flavor];
+ g_tp.dram_cell_C += curr_alpha * curr_c_dram_cell;
+ g_tp.vpp += curr_alpha * curr_vpp;
+ g_tp.dram_wl.l_phy += curr_alpha * Lphy[dram_cell_tech_flavor];
+ g_tp.dram_wl.l_elec += curr_alpha * Lelec[dram_cell_tech_flavor];
+ g_tp.dram_wl.C_g_ideal += curr_alpha * c_g_ideal[dram_cell_tech_flavor];
+ g_tp.dram_wl.C_fringe += curr_alpha * c_fringe[dram_cell_tech_flavor];
+ g_tp.dram_wl.C_junc += curr_alpha * c_junc[dram_cell_tech_flavor];
+ g_tp.dram_wl.C_junc_sidewall = 0.25e-15; // F/micron
+ g_tp.dram_wl.I_on_n += curr_alpha * I_on_n[dram_cell_tech_flavor];
+ g_tp.dram_wl.R_nch_on += curr_alpha * Rnchannelon[dram_cell_tech_flavor];
+ g_tp.dram_wl.R_pch_on += curr_alpha * Rpchannelon[dram_cell_tech_flavor];
+ g_tp.dram_wl.n_to_p_eff_curr_drv_ratio += curr_alpha * n_to_p_eff_curr_drv_ratio[dram_cell_tech_flavor];
+ g_tp.dram_wl.long_channel_leakage_reduction += curr_alpha * long_channel_leakage_reduction[dram_cell_tech_flavor];
+ g_tp.dram_wl.I_off_n += curr_alpha * I_off_n[dram_cell_tech_flavor][g_ip->temp - 300];
+ g_tp.dram_wl.I_off_p += curr_alpha * I_off_n[dram_cell_tech_flavor][g_ip->temp - 300];
+
+ g_tp.cam_cell.Vdd += curr_alpha * vdd[ram_cell_tech_type];
+ g_tp.cam_cell.l_phy += curr_alpha * Lphy[ram_cell_tech_type];
+ g_tp.cam_cell.l_elec += curr_alpha * Lelec[ram_cell_tech_type];
+ g_tp.cam_cell.t_ox += curr_alpha * t_ox[ram_cell_tech_type];
+ g_tp.cam_cell.Vth += curr_alpha * v_th[ram_cell_tech_type];
+ g_tp.cam_cell.C_g_ideal += curr_alpha * c_g_ideal[ram_cell_tech_type];
+ g_tp.cam_cell.C_fringe += curr_alpha * c_fringe[ram_cell_tech_type];
+ g_tp.cam_cell.C_junc += curr_alpha * c_junc[ram_cell_tech_type];
+ g_tp.cam_cell.C_junc_sidewall = 0.25e-15; // F/micron
+ g_tp.cam_cell.I_on_n += curr_alpha * I_on_n[ram_cell_tech_type];
+ g_tp.cam_cell.R_nch_on += curr_alpha * Rnchannelon[ram_cell_tech_type];
+ g_tp.cam_cell.R_pch_on += curr_alpha * Rpchannelon[ram_cell_tech_type];
+ g_tp.cam_cell.n_to_p_eff_curr_drv_ratio += curr_alpha * n_to_p_eff_curr_drv_ratio[ram_cell_tech_type];
+ g_tp.cam_cell.long_channel_leakage_reduction += curr_alpha * long_channel_leakage_reduction[ram_cell_tech_type];
+ g_tp.cam_cell.I_off_n += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.cam_cell.I_off_p += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.cam_cell.I_g_on_n += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
+ g_tp.cam_cell.I_g_on_p += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
+
+ g_tp.dram.cell_a_w += curr_alpha * curr_Wmemcella_dram;
+ g_tp.dram.cell_pmos_w += curr_alpha * curr_Wmemcellpmos_dram;
+ g_tp.dram.cell_nmos_w += curr_alpha * curr_Wmemcellnmos_dram;
+ area_cell_dram += curr_alpha * curr_area_cell_dram;
+ asp_ratio_cell_dram += curr_alpha * curr_asp_ratio_cell_dram;
+
+ g_tp.sram.cell_a_w += curr_alpha * curr_Wmemcella_sram;
+ g_tp.sram.cell_pmos_w += curr_alpha * curr_Wmemcellpmos_sram;
+ g_tp.sram.cell_nmos_w += curr_alpha * curr_Wmemcellnmos_sram;
+ area_cell_sram += curr_alpha * curr_area_cell_sram;
+ asp_ratio_cell_sram += curr_alpha * curr_asp_ratio_cell_sram;
+
+ g_tp.cam.cell_a_w += curr_alpha * curr_Wmemcella_cam;//sheng
+ g_tp.cam.cell_pmos_w += curr_alpha * curr_Wmemcellpmos_cam;
+ g_tp.cam.cell_nmos_w += curr_alpha * curr_Wmemcellnmos_cam;
+ area_cell_cam += curr_alpha * curr_area_cell_cam;
+ asp_ratio_cell_cam += curr_alpha * curr_asp_ratio_cell_cam;
+
+ //Sense amplifier latch Gm calculation
+ mobility_eff_periph_global += curr_alpha * mobility_eff[peri_global_tech_type];
+ Vdsat_periph_global += curr_alpha * Vdsat[peri_global_tech_type];
+
+ //Empirical undifferetiated core/FU coefficient
+ g_tp.scaling_factor.logic_scaling_co_eff += curr_alpha * curr_logic_scaling_co_eff;
+ g_tp.scaling_factor.core_tx_density += curr_alpha * curr_core_tx_density;
+ g_tp.chip_layout_overhead += curr_alpha * curr_chip_layout_overhead;
+ g_tp.macro_layout_overhead += curr_alpha * curr_macro_layout_overhead;
+ g_tp.sckt_co_eff += curr_alpha * curr_sckt_co_eff;
+ }
+
+
+ //Currently we are not modeling the resistance/capacitance of poly anywhere.
+ //Continuous function (or date have been processed) does not need linear interpolation
+ g_tp.w_comp_inv_p1 = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ g_tp.w_comp_inv_n1 = 7.5 * g_ip->F_sz_um;//this was 6 micron for the 0.8 micron process
+ g_tp.w_comp_inv_p2 = 25 * g_ip->F_sz_um;//this was 20 micron for the 0.8 micron process
+ g_tp.w_comp_inv_n2 = 15 * g_ip->F_sz_um;//this was 12 micron for the 0.8 micron process
+ g_tp.w_comp_inv_p3 = 50 * g_ip->F_sz_um;//this was 40 micron for the 0.8 micron process
+ g_tp.w_comp_inv_n3 = 30 * g_ip->F_sz_um;//this was 24 micron for the 0.8 micron process
+ g_tp.w_eval_inv_p = 100 * g_ip->F_sz_um;//this was 80 micron for the 0.8 micron process
+ g_tp.w_eval_inv_n = 50 * g_ip->F_sz_um;//this was 40 micron for the 0.8 micron process
+ g_tp.w_comp_n = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
+ g_tp.w_comp_p = 37.5 * g_ip->F_sz_um;//this was 30 micron for the 0.8 micron process
+
+ g_tp.MIN_GAP_BET_P_AND_N_DIFFS = 5 * g_ip->F_sz_um;
+ g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS = 1.5 * g_ip->F_sz_um;
+ g_tp.HPOWERRAIL = 2 * g_ip->F_sz_um;
+ g_tp.cell_h_def = 50 * g_ip->F_sz_um;
+ g_tp.w_poly_contact = g_ip->F_sz_um;
+ g_tp.spacing_poly_to_contact = g_ip->F_sz_um;
+ g_tp.spacing_poly_to_poly = 1.5 * g_ip->F_sz_um;
+ g_tp.ram_wl_stitching_overhead_ = 7.5 * g_ip->F_sz_um;
+
+ g_tp.min_w_nmos_ = 3 * g_ip->F_sz_um / 2;
+ g_tp.max_w_nmos_ = 100 * g_ip->F_sz_um;
+ g_tp.w_iso = 12.5*g_ip->F_sz_um;//was 10 micron for the 0.8 micron process
+ g_tp.w_sense_n = 3.75*g_ip->F_sz_um; // sense amplifier N-trans; was 3 micron for the 0.8 micron process
+ g_tp.w_sense_p = 7.5*g_ip->F_sz_um; // sense amplifier P-trans; was 6 micron for the 0.8 micron process
+ g_tp.w_sense_en = 5*g_ip->F_sz_um; // Sense enable transistor of the sense amplifier; was 4 micron for the 0.8 micron process
+ g_tp.w_nmos_b_mux = 6 * g_tp.min_w_nmos_;
+ g_tp.w_nmos_sa_mux = 6 * g_tp.min_w_nmos_;
+
+ if (ram_cell_tech_type == comm_dram)
+ {
+ g_tp.max_w_nmos_dec = 8 * g_ip->F_sz_um;
+ g_tp.h_dec = 8; // in the unit of memory cell height
+ }
+ else
+ {
+ g_tp.max_w_nmos_dec = g_tp.max_w_nmos_;
+ g_tp.h_dec = 4; // in the unit of memory cell height
+ }
+
+ g_tp.peri_global.C_overlap = 0.2 * g_tp.peri_global.C_g_ideal;
+ g_tp.sram_cell.C_overlap = 0.2 * g_tp.sram_cell.C_g_ideal;
+ g_tp.cam_cell.C_overlap = 0.2 * g_tp.cam_cell.C_g_ideal;
+
+ g_tp.dram_acc.C_overlap = 0.2 * g_tp.dram_acc.C_g_ideal;
+ g_tp.dram_acc.R_nch_on = g_tp.dram_cell_Vdd / g_tp.dram_acc.I_on_n;
+ //g_tp.dram_acc.R_pch_on = g_tp.dram_cell_Vdd / g_tp.dram_acc.I_on_p;
+
+ g_tp.dram_wl.C_overlap = 0.2 * g_tp.dram_wl.C_g_ideal;
+
+ double gmn_sense_amp_latch = (mobility_eff_periph_global / 2) * g_tp.peri_global.C_ox * (g_tp.w_sense_n / g_tp.peri_global.l_elec) * Vdsat_periph_global;
+ double gmp_sense_amp_latch = gmp_to_gmn_multiplier_periph_global * gmn_sense_amp_latch;
+ g_tp.gm_sense_amp_latch = gmn_sense_amp_latch + gmp_sense_amp_latch;
+
+ g_tp.dram.b_w = sqrt(area_cell_dram / (asp_ratio_cell_dram));
+ g_tp.dram.b_h = asp_ratio_cell_dram * g_tp.dram.b_w;
+ g_tp.sram.b_w = sqrt(area_cell_sram / (asp_ratio_cell_sram));
+ g_tp.sram.b_h = asp_ratio_cell_sram * g_tp.sram.b_w;
+ g_tp.cam.b_w = sqrt(area_cell_cam / (asp_ratio_cell_cam));//Sheng
+ g_tp.cam.b_h = asp_ratio_cell_cam * g_tp.cam.b_w;
+
+ g_tp.dram.Vbitpre = g_tp.dram_cell_Vdd;
+ g_tp.sram.Vbitpre = vdd[ram_cell_tech_type];
+ g_tp.cam.Vbitpre = vdd[ram_cell_tech_type];//Sheng
+ pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
+ g_tp.w_pmos_bl_precharge = 6 * pmos_to_nmos_sizing_r * g_tp.min_w_nmos_;
+ g_tp.w_pmos_bl_eq = pmos_to_nmos_sizing_r * g_tp.min_w_nmos_;
+
+
+ double wire_pitch [NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ wire_r_per_micron[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ wire_c_per_micron[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ horiz_dielectric_constant[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ vert_dielectric_constant[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ aspect_ratio[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ miller_value[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
+ ild_thickness[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES];
+
+ for (iter=0; iter<=1; ++iter)
+ {
+ // linear interpolation
+ if (iter == 0)
+ {
+ tech = tech_lo;
+ if (tech_lo == tech_hi)
+ {
+ curr_alpha = 1;
+ }
+ else
+ {
+ curr_alpha = (technology - tech_hi)/(tech_lo - tech_hi);
+ }
+ }
+ else
+ {
+ tech = tech_hi;
+ if (tech_lo == tech_hi)
+ {
+ break;
+ }
+ else
+ {
+ curr_alpha = (tech_lo - technology)/(tech_lo - tech_hi);
+ }
+ }
+
+ if (tech == 90)
+ {
+ //Aggressive projections
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//micron
+ aspect_ratio[0][0] = 2.4;
+ wire_width = wire_pitch[0][0] / 2; //micron
+ wire_thickness = aspect_ratio[0][0] * wire_width;//micron
+ wire_spacing = wire_pitch[0][0] - wire_width;//micron
+ barrier_thickness = 0.01;//micron
+ dishing_thickness = 0;//micron
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);//ohm/micron
+ ild_thickness[0][0] = 0.48;//micron
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 2.709;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15; //F/micron
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0],
+ vert_dielectric_constant[0][0],
+ fringe_cap);//F/micron.
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 2.4;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.48;//micron
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 2.709;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1],
+ vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[0][2] = 2.7;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.96;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 2.709;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.008;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.48;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 3.038;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0],
+ vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.48;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 3.038;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1],
+ vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 1.1;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 3.038;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2] , miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.09;
+ wire_c_per_micron[1][3] = 60e-15 / (256 * 2 * 0.09);
+ wire_r_per_micron[1][3] = 12 / 0.09;
+ }
+ else if (tech == 65)
+ {
+ //Aggressive projections
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[0][0] = 2.7;
+ wire_width = wire_pitch[0][0] / 2;
+ wire_thickness = aspect_ratio[0][0] * wire_width;
+ wire_spacing = wire_pitch[0][0] - wire_width;
+ barrier_thickness = 0;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][0] = 0.405;
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 2.303;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0] , miller_value[0][0] , horiz_dielectric_constant[0][0] , vert_dielectric_constant[0][0] ,
+ fringe_cap);
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 2.7;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.405;
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 2.303;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1],
+ vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[0][2] = 2.8;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.81;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 2.303;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.006;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.405;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 2.734;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.405;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 2.734;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 0.77;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 2.734;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.065;
+ wire_c_per_micron[1][3] = 52.5e-15 / (256 * 2 * 0.065);
+ wire_r_per_micron[1][3] = 12 / 0.065;
+ }
+ else if (tech == 45)
+ {
+ //Aggressive projections.
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[0][0] = 3.0;
+ wire_width = wire_pitch[0][0] / 2;
+ wire_thickness = aspect_ratio[0][0] * wire_width;
+ wire_spacing = wire_pitch[0][0] - wire_width;
+ barrier_thickness = 0;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][0] = 0.315;
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 1.958;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0] , miller_value[0][0] , horiz_dielectric_constant[0][0] , vert_dielectric_constant[0][0] ,
+ fringe_cap);
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 3.0;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.315;
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 1.958;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[0][2] = 3.0;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.63;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 1.958;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.004;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.315;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 2.46;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.315;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 2.46;
+ vert_dielectric_constant[1][1] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 0.55;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 2.46;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.045;
+ wire_c_per_micron[1][3] = 37.5e-15 / (256 * 2 * 0.045);
+ wire_r_per_micron[1][3] = 12 / 0.045;
+ }
+ else if (tech == 32)
+ {
+ //Aggressive projections.
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[0][0] = 3.0;
+ wire_width = wire_pitch[0][0] / 2;
+ wire_thickness = aspect_ratio[0][0] * wire_width;
+ wire_spacing = wire_pitch[0][0] - wire_width;
+ barrier_thickness = 0;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][0] = 0.21;
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 1.664;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0], vert_dielectric_constant[0][0],
+ fringe_cap);
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 3.0;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.21;
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 1.664;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[0][2] = 3.0;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.42;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 1.664;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.003;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.21;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 2.214;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ aspect_ratio[1][1] = 2.0;
+ wire_width = wire_pitch[1][1] / 2;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.21;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 2.214;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 0.385;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 2.214;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.032;//micron
+ wire_c_per_micron[1][3] = 31e-15 / (256 * 2 * 0.032);//F/micron
+ wire_r_per_micron[1][3] = 12 / 0.032;//ohm/micron
+ }
+ else if (tech == 22)
+ {
+ //Aggressive projections.
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//local
+ aspect_ratio[0][0] = 3.0;
+ wire_width = wire_pitch[0][0] / 2;
+ wire_thickness = aspect_ratio[0][0] * wire_width;
+ wire_spacing = wire_pitch[0][0] - wire_width;
+ barrier_thickness = 0;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][0] = 0.15;
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 1.414;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0], vert_dielectric_constant[0][0],
+ fringe_cap);
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;//semi-global
+ wire_width = wire_pitch[0][1] / 2;
+ aspect_ratio[0][1] = 3.0;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.15;
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 1.414;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;//global
+ aspect_ratio[0][2] = 3.0;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.3;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 1.414;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+// //*************************
+// wire_pitch[0][4] = 16 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][4] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][4] - wire_width;
+// wire_r_per_micron[0][4] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][4] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[0][5] = 24 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][5] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][5] - wire_width;
+// wire_r_per_micron[0][5] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][5] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[0][6] = 32 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][6] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][6] - wire_width;
+// wire_r_per_micron[0][6] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][6] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+ //*************************
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.003;
+ dishing_thickness = 0;
+ alpha_scatter = 1.05;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.15;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 2.104;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.15;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 2.104;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 0.275;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 2.104;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.022;//micron
+ wire_c_per_micron[1][3] = 31e-15 / (256 * 2 * 0.022);//F/micron
+ wire_r_per_micron[1][3] = 12 / 0.022;//ohm/micron
+
+ //******************
+// wire_pitch[1][4] = 16 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][4] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][4] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][4] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][4] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[1][5] = 24 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][5] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][5] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][5] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][5] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[1][6] = 32 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][6] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][6] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][6] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][6] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+ }
+
+ else if (tech == 16)
+ {
+ //Aggressive projections.
+ wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//local
+ aspect_ratio[0][0] = 3.0;
+ wire_width = wire_pitch[0][0] / 2;
+ wire_thickness = aspect_ratio[0][0] * wire_width;
+ wire_spacing = wire_pitch[0][0] - wire_width;
+ barrier_thickness = 0;
+ dishing_thickness = 0;
+ alpha_scatter = 1;
+ wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][0] = 0.108;
+ miller_value[0][0] = 1.5;
+ horiz_dielectric_constant[0][0] = 1.202;
+ vert_dielectric_constant[0][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0], vert_dielectric_constant[0][0],
+ fringe_cap);
+
+ wire_pitch[0][1] = 4 * g_ip->F_sz_um;//semi-global
+ aspect_ratio[0][1] = 3.0;
+ wire_width = wire_pitch[0][1] / 2;
+ wire_thickness = aspect_ratio[0][1] * wire_width;
+ wire_spacing = wire_pitch[0][1] - wire_width;
+ wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][1] = 0.108;
+ miller_value[0][1] = 1.5;
+ horiz_dielectric_constant[0][1] = 1.202;
+ vert_dielectric_constant[0][1] = 3.9;
+ wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
+ fringe_cap);
+
+ wire_pitch[0][2] = 8 * g_ip->F_sz_um;//global
+ aspect_ratio[0][2] = 3.0;
+ wire_width = wire_pitch[0][2] / 2;
+ wire_thickness = aspect_ratio[0][2] * wire_width;
+ wire_spacing = wire_pitch[0][2] - wire_width;
+ wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[0][2] = 0.216;
+ miller_value[0][2] = 1.5;
+ horiz_dielectric_constant[0][2] = 1.202;
+ vert_dielectric_constant[0][2] = 3.9;
+ wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
+ fringe_cap);
+
+// //*************************
+// wire_pitch[0][4] = 16 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][4] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][4] - wire_width;
+// wire_r_per_micron[0][4] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][4] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[0][5] = 24 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][5] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][5] - wire_width;
+// wire_r_per_micron[0][5] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][5] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[0][6] = 32 * g_ip.F_sz_um;//global
+// aspect_ratio = 3.0;
+// wire_width = wire_pitch[0][6] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[0][6] - wire_width;
+// wire_r_per_micron[0][6] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.3;
+// wire_c_per_micron[0][6] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+ //*************************
+
+ //Conservative projections
+ wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
+ aspect_ratio[1][0] = 2.0;
+ wire_width = wire_pitch[1][0] / 2;
+ wire_thickness = aspect_ratio[1][0] * wire_width;
+ wire_spacing = wire_pitch[1][0] - wire_width;
+ barrier_thickness = 0.002;
+ dishing_thickness = 0;
+ alpha_scatter = 1.05;
+ wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][0] = 0.108;
+ miller_value[1][0] = 1.5;
+ horiz_dielectric_constant[1][0] = 1.998;
+ vert_dielectric_constant[1][0] = 3.9;
+ fringe_cap = 0.115e-15;
+ wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
+ fringe_cap);
+
+ wire_pitch[1][1] = 4 * g_ip->F_sz_um;
+ wire_width = wire_pitch[1][1] / 2;
+ aspect_ratio[1][1] = 2.0;
+ wire_thickness = aspect_ratio[1][1] * wire_width;
+ wire_spacing = wire_pitch[1][1] - wire_width;
+ wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][1] = 0.108;
+ miller_value[1][1] = 1.5;
+ horiz_dielectric_constant[1][1] = 1.998;
+ vert_dielectric_constant[1][1] = 3.9;
+ wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
+ fringe_cap);
+
+ wire_pitch[1][2] = 8 * g_ip->F_sz_um;
+ aspect_ratio[1][2] = 2.2;
+ wire_width = wire_pitch[1][2] / 2;
+ wire_thickness = aspect_ratio[1][2] * wire_width;
+ wire_spacing = wire_pitch[1][2] - wire_width;
+ dishing_thickness = 0.1 * wire_thickness;
+ wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
+ wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+ ild_thickness[1][2] = 0.198;
+ miller_value[1][2] = 1.5;
+ horiz_dielectric_constant[1][2] = 1.998;
+ vert_dielectric_constant[1][2] = 3.9;
+ wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+ ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
+ fringe_cap);
+ //Nominal projections for commodity DRAM wordline/bitline
+ wire_pitch[1][3] = 2 * 0.016;//micron
+ wire_c_per_micron[1][3] = 31e-15 / (256 * 2 * 0.016);//F/micron
+ wire_r_per_micron[1][3] = 12 / 0.016;//ohm/micron
+
+ //******************
+// wire_pitch[1][4] = 16 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][4] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][4] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][4] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][4] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[1][5] = 24 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][5] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][5] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][5] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][5] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+//
+// wire_pitch[1][6] = 32 * g_ip.F_sz_um;
+// aspect_ratio = 2.2;
+// wire_width = wire_pitch[1][6] / 2;
+// wire_thickness = aspect_ratio * wire_width;
+// wire_spacing = wire_pitch[1][6] - wire_width;
+// dishing_thickness = 0.1 * wire_thickness;
+// wire_r_per_micron[1][6] = wire_resistance(CU_RESISTIVITY, wire_width,
+// wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
+// ild_thickness = 0.275;
+// wire_c_per_micron[1][6] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
+// ild_thickness, miller_value, horiz_dielectric_constant, vert_dielectric_constant,
+// fringe_cap);
+ }
+ g_tp.wire_local.pitch += curr_alpha * wire_pitch[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.R_per_um += curr_alpha * wire_r_per_micron[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.C_per_um += curr_alpha * wire_c_per_micron[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.aspect_ratio += curr_alpha * aspect_ratio[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.ild_thickness += curr_alpha * ild_thickness[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.miller_value += curr_alpha * miller_value[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.horiz_dielectric_constant += curr_alpha* horiz_dielectric_constant[g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+ g_tp.wire_local.vert_dielectric_constant += curr_alpha* vert_dielectric_constant [g_ip->ic_proj_type][(ram_cell_tech_type == comm_dram)?3:0];
+
+ g_tp.wire_inside_mat.pitch += curr_alpha * wire_pitch[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.R_per_um += curr_alpha* wire_r_per_micron[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.C_per_um += curr_alpha* wire_c_per_micron[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.aspect_ratio += curr_alpha * aspect_ratio[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.ild_thickness += curr_alpha * ild_thickness[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.miller_value += curr_alpha * miller_value[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.horiz_dielectric_constant += curr_alpha* horiz_dielectric_constant[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+ g_tp.wire_inside_mat.vert_dielectric_constant += curr_alpha* vert_dielectric_constant [g_ip->ic_proj_type][g_ip->wire_is_mat_type];
+
+ g_tp.wire_outside_mat.pitch += curr_alpha * wire_pitch[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.R_per_um += curr_alpha*wire_r_per_micron[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.C_per_um += curr_alpha*wire_c_per_micron[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.aspect_ratio += curr_alpha * aspect_ratio[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.ild_thickness += curr_alpha * ild_thickness[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.miller_value += curr_alpha * miller_value[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.horiz_dielectric_constant += curr_alpha* horiz_dielectric_constant[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+ g_tp.wire_outside_mat.vert_dielectric_constant += curr_alpha* vert_dielectric_constant [g_ip->ic_proj_type][g_ip->wire_os_mat_type];
+
+ g_tp.unit_len_wire_del = g_tp.wire_inside_mat.R_per_um * g_tp.wire_inside_mat.C_per_um / 2;
+
+ g_tp.sense_delay += curr_alpha *SENSE_AMP_D;
+ g_tp.sense_dy_power += curr_alpha *SENSE_AMP_P;
+// g_tp.horiz_dielectric_constant += horiz_dielectric_constant;
+// g_tp.vert_dielectric_constant += vert_dielectric_constant;
+// g_tp.aspect_ratio += aspect_ratio;
+// g_tp.miller_value += miller_value;
+// g_tp.ild_thickness += ild_thickness;
+
+ }
+ g_tp.fringe_cap = fringe_cap;
+
+ double rd = tr_R_on(g_tp.min_w_nmos_, NCH, 1);
+ double p_to_n_sizing_r = pmos_to_nmos_sz_ratio();
+ double c_load = gate_C(g_tp.min_w_nmos_ * (1 + p_to_n_sizing_r), 0.0);
+ double tf = rd * c_load;
+ g_tp.kinv = horowitz(0, tf, 0.5, 0.5, RISE);
+ double KLOAD = 1;
+ c_load = KLOAD * (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(g_tp.min_w_nmos_ * p_to_n_sizing_r, PCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(g_tp.min_w_nmos_ * 4 * (1 + p_to_n_sizing_r), 0.0));
+ tf = rd * c_load;
+ g_tp.FO4 = horowitz(0, tf, 0.5, 0.5, RISE);
+}
+
--- /dev/null
+/*****************************************************************************
+ * McPAT
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+#ifndef VERSION_H_
+#define VERSION_H_
+
+#define VER_MAJOR 0 /* beta release */
+#define VER_MINOR 8
+
+#define VER_UPDATE "Aug, 2010"
+
+#endif /* VERSION_H_ */
--- /dev/null
+/**
+ ****************************************************************************
+ * <P> XML.c - implementation file for basic XML parser written in ANSI C++
+ * for portability. It works by using recursion and a node tree for breaking
+ * down the elements of an XML document. </P>
+ *
+ * @version V2.41
+ * @author Frank Vanden Berghen
+ *
+ * NOTE:
+ *
+ * If you add "#define STRICT_PARSING", on the first line of this file
+ * the parser will see the following XML-stream:
+ * <a><b>some text</b><b>other text </a>
+ * as an error. Otherwise, this tring will be equivalent to:
+ * <a><b>some text</b><b>other text</b></a>
+ *
+ * NOTE:
+ *
+ * If you add "#define APPROXIMATE_PARSING" on the first line of this file
+ * the parser will see the following XML-stream:
+ * <data name="n1">
+ * <data name="n2">
+ * <data name="n3" />
+ * as equivalent to the following XML-stream:
+ * <data name="n1" />
+ * <data name="n2" />
+ * <data name="n3" />
+ * This can be useful for badly-formed XML-streams but prevent the use
+ * of the following XML-stream (problem is: tags at contiguous levels
+ * have the same names):
+ * <data name="n1">
+ * <data name="n2">
+ * <data name="n3" />
+ * </data>
+ * </data>
+ *
+ * NOTE:
+ *
+ * If you add "#define _XMLPARSER_NO_MESSAGEBOX_" on the first line of this file
+ * the "openFileHelper" function will always display error messages inside the
+ * console instead of inside a message-box-window. Message-box-windows are
+ * available on windows 9x/NT/2000/XP/Vista only.
+ *
+ * The following license terms for the "XMLParser library from Business-Insight" apply to projects
+ * that are in some way related to
+ * the "mcpat project", including applications
+ * using "mcpat project" and tools developed
+ * for enhancing "mcpat project". All other projects
+ * (not related to "mcpat project") have to use the "XMLParser library from Business-Insight"
+ * code under the Aladdin Free Public License (AFPL)
+ * See the file "AFPL-license.txt" for more informations about the AFPL license.
+ * (see http://www.artifex.com/downloads/doc/Public.htm for detailed AFPL terms)
+ *
+ * Redistribution and use of the "XMLParser library from Business-Insight" in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Frank Vanden Berghen nor the
+ * names of its contributors may be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Business-Insight ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL Business-Insight BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Copyright (c) 2002, Business-Insight
+ * <a href="http://www.Business-Insight.com">Business-Insight</a>
+ * All rights reserved.
+ *
+ ****************************************************************************
+ */
+#ifndef _CRT_SECURE_NO_DEPRECATE
+#define _CRT_SECURE_NO_DEPRECATE
+#endif
+#include "xmlParser.h"
+#ifdef _XMLWINDOWS
+//#ifdef _DEBUG
+//#define _CRTDBG_MAP_ALLOC
+//#include <crtdbg.h>
+//#endif
+#define WIN32_LEAN_AND_MEAN
+#include <Windows.h> // to have IsTextUnicode, MultiByteToWideChar, WideCharToMultiByte to handle unicode files
+ // to have "MessageBoxA" to display error messages for openFilHelper
+#endif
+
+#include <memory.h>
+
+#include <cassert>
+#include <cstdio>
+#include <cstdlib>
+#include <cstring>
+
+XMLCSTR XMLNode::getVersion() { return _CXML("v2.39"); }
+void freeXMLString(XMLSTR t){if(t)free(t);}
+
+static XMLNode::XMLCharEncoding characterEncoding=XMLNode::char_encoding_UTF8;
+static char guessWideCharChars=1, dropWhiteSpace=1, removeCommentsInMiddleOfText=1;
+
+inline int mmin( const int t1, const int t2 ) { return t1 < t2 ? t1 : t2; }
+
+// You can modify the initialization of the variable "XMLClearTags" below
+// to change the clearTags that are currently recognized by the library.
+// The number on the second columns is the length of the string inside the
+// first column. The "<!DOCTYPE" declaration must be the second in the list.
+// The "<!--" declaration must be the third in the list.
+typedef struct { XMLCSTR lpszOpen; int openTagLen; XMLCSTR lpszClose;} ALLXMLClearTag;
+static ALLXMLClearTag XMLClearTags[] =
+{
+ { _CXML("<![CDATA["),9, _CXML("]]>") },
+ { _CXML("<!DOCTYPE"),9, _CXML(">") },
+ { _CXML("<!--") ,4, _CXML("-->") },
+ { _CXML("<PRE>") ,5, _CXML("</PRE>") },
+// { _CXML("<Script>") ,8, _CXML("</Script>")},
+ { NULL ,0, NULL }
+};
+
+// You can modify the initialization of the variable "XMLEntities" below
+// to change the character entities that are currently recognized by the library.
+// The number on the second columns is the length of the string inside the
+// first column. Additionally, the syntaxes " " and " " are recognized.
+typedef struct { XMLCSTR s; int l; XMLCHAR c;} XMLCharacterEntity;
+static XMLCharacterEntity XMLEntities[] =
+{
+ { _CXML("&" ), 5, _CXML('&' )},
+ { _CXML("<" ), 4, _CXML('<' )},
+ { _CXML(">" ), 4, _CXML('>' )},
+ { _CXML("""), 6, _CXML('\"')},
+ { _CXML("'"), 6, _CXML('\'')},
+ { NULL , 0, '\0' }
+};
+
+// When rendering the XMLNode to a string (using the "createXMLString" function),
+// you can ask for a beautiful formatting. This formatting is using the
+// following indentation character:
+#define INDENTCHAR _CXML('\t')
+
+// The following function parses the XML errors into a user friendly string.
+// You can edit this to change the output language of the library to something else.
+XMLCSTR XMLNode::getError(XMLError xerror)
+{
+ switch (xerror)
+ {
+ case eXMLErrorNone: return _CXML("No error");
+ case eXMLErrorMissingEndTag: return _CXML("Warning: Unmatched end tag");
+ case eXMLErrorNoXMLTagFound: return _CXML("Warning: No XML tag found");
+ case eXMLErrorEmpty: return _CXML("Error: No XML data");
+ case eXMLErrorMissingTagName: return _CXML("Error: Missing start tag name");
+ case eXMLErrorMissingEndTagName: return _CXML("Error: Missing end tag name");
+ case eXMLErrorUnmatchedEndTag: return _CXML("Error: Unmatched end tag");
+ case eXMLErrorUnmatchedEndClearTag: return _CXML("Error: Unmatched clear tag end");
+ case eXMLErrorUnexpectedToken: return _CXML("Error: Unexpected token found");
+ case eXMLErrorNoElements: return _CXML("Error: No elements found");
+ case eXMLErrorFileNotFound: return _CXML("Error: File not found");
+ case eXMLErrorFirstTagNotFound: return _CXML("Error: First Tag not found");
+ case eXMLErrorUnknownCharacterEntity:return _CXML("Error: Unknown character entity");
+ case eXMLErrorCharacterCodeAbove255: return _CXML("Error: Character code above 255 is forbidden in MultiByte char mode.");
+ case eXMLErrorCharConversionError: return _CXML("Error: unable to convert between WideChar and MultiByte chars");
+ case eXMLErrorCannotOpenWriteFile: return _CXML("Error: unable to open file for writing");
+ case eXMLErrorCannotWriteFile: return _CXML("Error: cannot write into file");
+
+ case eXMLErrorBase64DataSizeIsNotMultipleOf4: return _CXML("Warning: Base64-string length is not a multiple of 4");
+ case eXMLErrorBase64DecodeTruncatedData: return _CXML("Warning: Base64-string is truncated");
+ case eXMLErrorBase64DecodeIllegalCharacter: return _CXML("Error: Base64-string contains an illegal character");
+ case eXMLErrorBase64DecodeBufferTooSmall: return _CXML("Error: Base64 decode output buffer is too small");
+ };
+ return _CXML("Unknown");
+}
+
+/////////////////////////////////////////////////////////////////////////
+// Here start the abstraction layer to be OS-independent //
+/////////////////////////////////////////////////////////////////////////
+
+// Here is an abstraction layer to access some common string manipulation functions.
+// The abstraction layer is currently working for gcc, Microsoft Visual Studio 6.0,
+// Microsoft Visual Studio .NET, CC (sun compiler) and Borland C++.
+// If you plan to "port" the library to a new system/compiler, all you have to do is
+// to edit the following lines.
+#ifdef XML_NO_WIDE_CHAR
+char myIsTextWideChar(const void *b, int len) { return FALSE; }
+#else
+ #if defined (UNDER_CE) || !defined(_XMLWINDOWS)
+ char myIsTextWideChar(const void *b, int len) // inspired by the Wine API: RtlIsTextUnicode
+ {
+#ifdef sun
+ // for SPARC processors: wchar_t* buffers must always be alligned, otherwise it's a char* buffer.
+ if ((((unsigned long)b)%sizeof(wchar_t))!=0) return FALSE;
+#endif
+ const wchar_t *s=(const wchar_t*)b;
+
+ // buffer too small:
+ if (len<(int)sizeof(wchar_t)) return FALSE;
+
+ // odd length test
+ if (len&1) return FALSE;
+
+ /* only checks the first 256 characters */
+ len=mmin(256,len/sizeof(wchar_t));
+
+ // Check for the special byte order:
+ if (*((unsigned short*)s) == 0xFFFE) return TRUE; // IS_TEXT_UNICODE_REVERSE_SIGNATURE;
+ if (*((unsigned short*)s) == 0xFEFF) return TRUE; // IS_TEXT_UNICODE_SIGNATURE
+
+ // checks for ASCII characters in the UNICODE stream
+ int i,stats=0;
+ for (i=0; i<len; i++) if (s[i]<=(unsigned short)255) stats++;
+ if (stats>len/2) return TRUE;
+
+ // Check for UNICODE NULL chars
+ for (i=0; i<len; i++) if (!s[i]) return TRUE;
+
+ return FALSE;
+ }
+ #else
+ char myIsTextWideChar(const void *b,int l) { return (char)IsTextUnicode((CONST LPVOID)b,l,NULL); };
+ #endif
+#endif
+
+#ifdef _XMLWINDOWS
+// for Microsoft Visual Studio 6.0 and Microsoft Visual Studio .NET and Borland C++ Builder 6.0
+ #ifdef _XMLWIDECHAR
+ wchar_t *myMultiByteToWideChar(const char *s, XMLNode::XMLCharEncoding ce)
+ {
+ int i;
+ if (ce==XMLNode::char_encoding_UTF8) i=(int)MultiByteToWideChar(CP_UTF8,0 ,s,-1,NULL,0);
+ else i=(int)MultiByteToWideChar(CP_ACP ,MB_PRECOMPOSED,s,-1,NULL,0);
+ if (i<0) return NULL;
+ wchar_t *d=(wchar_t *)malloc((i+1)*sizeof(XMLCHAR));
+ if (ce==XMLNode::char_encoding_UTF8) i=(int)MultiByteToWideChar(CP_UTF8,0 ,s,-1,d,i);
+ else i=(int)MultiByteToWideChar(CP_ACP ,MB_PRECOMPOSED,s,-1,d,i);
+ d[i]=0;
+ return d;
+ }
+ static inline FILE *xfopen(XMLCSTR filename,XMLCSTR mode) { return _wfopen(filename,mode); }
+ static inline int xstrlen(XMLCSTR c) { return (int)wcslen(c); }
+ static inline int xstrnicmp(XMLCSTR c1, XMLCSTR c2, int l) { return _wcsnicmp(c1,c2,l);}
+ static inline int xstrncmp(XMLCSTR c1, XMLCSTR c2, int l) { return wcsncmp(c1,c2,l);}
+ static inline int xstricmp(XMLCSTR c1, XMLCSTR c2) { return _wcsicmp(c1,c2); }
+ static inline XMLSTR xstrstr(XMLCSTR c1, XMLCSTR c2) { return (XMLSTR)wcsstr(c1,c2); }
+ static inline XMLSTR xstrcpy(XMLSTR c1, XMLCSTR c2) { return (XMLSTR)wcscpy(c1,c2); }
+ #else
+ char *myWideCharToMultiByte(const wchar_t *s)
+ {
+ UINT codePage=CP_ACP; if (characterEncoding==XMLNode::char_encoding_UTF8) codePage=CP_UTF8;
+ int i=(int)WideCharToMultiByte(codePage, // code page
+ 0, // performance and mapping flags
+ s, // wide-character string
+ -1, // number of chars in string
+ NULL, // buffer for new string
+ 0, // size of buffer
+ NULL, // default for unmappable chars
+ NULL // set when default char used
+ );
+ if (i<0) return NULL;
+ char *d=(char*)malloc(i+1);
+ WideCharToMultiByte(codePage, // code page
+ 0, // performance and mapping flags
+ s, // wide-character string
+ -1, // number of chars in string
+ d, // buffer for new string
+ i, // size of buffer
+ NULL, // default for unmappable chars
+ NULL // set when default char used
+ );
+ d[i]=0;
+ return d;
+ }
+ static inline FILE *xfopen(XMLCSTR filename,XMLCSTR mode) { return fopen(filename,mode); }
+ static inline int xstrlen(XMLCSTR c) { return (int)strlen(c); }
+ #ifdef __BORLANDC__
+ static inline int xstrnicmp(XMLCSTR c1, XMLCSTR c2, int l) { return strnicmp(c1,c2,l);}
+ static inline int xstricmp(XMLCSTR c1, XMLCSTR c2) { return stricmp(c1,c2); }
+ #else
+ static inline int xstrnicmp(XMLCSTR c1, XMLCSTR c2, int l) { return _strnicmp(c1,c2,l);}
+ static inline int xstricmp(XMLCSTR c1, XMLCSTR c2) { return _stricmp(c1,c2); }
+ #endif
+ static inline int xstrncmp(XMLCSTR c1, XMLCSTR c2, int l) { return strncmp(c1,c2,l);}
+ static inline XMLSTR xstrstr(XMLCSTR c1, XMLCSTR c2) { return (XMLSTR)strstr(c1,c2); }
+ static inline XMLSTR xstrcpy(XMLSTR c1, XMLCSTR c2) { return (XMLSTR)strcpy(c1,c2); }
+ #endif
+#else
+// for gcc and CC
+ #ifdef XML_NO_WIDE_CHAR
+ char *myWideCharToMultiByte(const wchar_t *s) { return NULL; }
+ #else
+ char *myWideCharToMultiByte(const wchar_t *s)
+ {
+ const wchar_t *ss=s;
+ int i=(int)wcsrtombs(NULL,&ss,0,NULL);
+ if (i<0) return NULL;
+ char *d=(char *)malloc(i+1);
+ wcsrtombs(d,&s,i,NULL);
+ d[i]=0;
+ return d;
+ }
+ #endif
+ #ifdef _XMLWIDECHAR
+ wchar_t *myMultiByteToWideChar(const char *s, XMLNode::XMLCharEncoding ce)
+ {
+ const char *ss=s;
+ int i=(int)mbsrtowcs(NULL,&ss,0,NULL);
+ if (i<0) return NULL;
+ wchar_t *d=(wchar_t *)malloc((i+1)*sizeof(wchar_t));
+ mbsrtowcs(d,&s,i,NULL);
+ d[i]=0;
+ return d;
+ }
+ int xstrlen(XMLCSTR c) { return wcslen(c); }
+ #ifdef sun
+ // for CC
+ #include <widec.h>
+ static inline int xstrnicmp(XMLCSTR c1, XMLCSTR c2, int l) { return wsncasecmp(c1,c2,l);}
+ static inline int xstrncmp(XMLCSTR c1, XMLCSTR c2, int l) { return wsncmp(c1,c2,l);}
+ static inline int xstricmp(XMLCSTR c1, XMLCSTR c2) { return wscasecmp(c1,c2); }
+ #else
+ // for gcc
+ static inline int xstrnicmp(XMLCSTR c1, XMLCSTR c2, int l) { return wcsncasecmp(c1,c2,l);}
+ static inline int xstrncmp(XMLCSTR c1, XMLCSTR c2, int l) { return wcsncmp(c1,c2,l);}
+ static inline int xstricmp(XMLCSTR c1, XMLCSTR c2) { return wcscasecmp(c1,c2); }
+ #endif
+ static inline XMLSTR xstrstr(XMLCSTR c1, XMLCSTR c2) { return (XMLSTR)wcsstr(c1,c2); }
+ static inline XMLSTR xstrcpy(XMLSTR c1, XMLCSTR c2) { return (XMLSTR)wcscpy(c1,c2); }
+ static inline FILE *xfopen(XMLCSTR filename,XMLCSTR mode)
+ {
+ char *filenameAscii=myWideCharToMultiByte(filename);
+ FILE *f;
+ if (mode[0]==_CXML('r')) f=fopen(filenameAscii,"rb");
+ else f=fopen(filenameAscii,"wb");
+ free(filenameAscii);
+ return f;
+ }
+ #else
+ static inline FILE *xfopen(XMLCSTR filename,XMLCSTR mode) { return fopen(filename,mode); }
+ static inline int xstrlen(XMLCSTR c) { return strlen(c); }
+ static inline int xstrnicmp(XMLCSTR c1, XMLCSTR c2, int l) { return strncasecmp(c1,c2,l);}
+ static inline int xstrncmp(XMLCSTR c1, XMLCSTR c2, int l) { return strncmp(c1,c2,l);}
+ static inline int xstricmp(XMLCSTR c1, XMLCSTR c2) { return strcasecmp(c1,c2); }
+ static inline XMLSTR xstrstr(XMLCSTR c1, XMLCSTR c2) { return (XMLSTR)strstr(c1,c2); }
+ static inline XMLSTR xstrcpy(XMLSTR c1, XMLCSTR c2) { return (XMLSTR)strcpy(c1,c2); }
+ #endif
+ static inline int _strnicmp(const char *c1,const char *c2, int l) { return strncasecmp(c1,c2,l);}
+#endif
+
+
+///////////////////////////////////////////////////////////////////////////////
+// the "xmltoc,xmltob,xmltoi,xmltol,xmltof,xmltoa" functions //
+///////////////////////////////////////////////////////////////////////////////
+// These 6 functions are not used inside the XMLparser.
+// There are only here as "convenience" functions for the user.
+// If you don't need them, you can delete them without any trouble.
+#ifdef _XMLWIDECHAR
+ #ifdef _XMLWINDOWS
+ // for Microsoft Visual Studio 6.0 and Microsoft Visual Studio .NET and Borland C++ Builder 6.0
+ char xmltob(XMLCSTR t,int v){ if (t&&(*t)) return (char)_wtoi(t); return v; }
+ int xmltoi(XMLCSTR t,int v){ if (t&&(*t)) return _wtoi(t); return v; }
+ long xmltol(XMLCSTR t,long v){ if (t&&(*t)) return _wtol(t); return v; }
+ double xmltof(XMLCSTR t,double v){ if (t&&(*t)) wscanf(t, "%f", &v); /*v=_wtof(t);*/ return v; }
+ #else
+ #ifdef sun
+ // for CC
+ #include <widec.h>
+ char xmltob(XMLCSTR t,int v){ if (t) return (char)wstol(t,NULL,10); return v; }
+ int xmltoi(XMLCSTR t,int v){ if (t) return (int)wstol(t,NULL,10); return v; }
+ long xmltol(XMLCSTR t,long v){ if (t) return wstol(t,NULL,10); return v; }
+ #else
+ // for gcc
+ char xmltob(XMLCSTR t,int v){ if (t) return (char)wcstol(t,NULL,10); return v; }
+ int xmltoi(XMLCSTR t,int v){ if (t) return (int)wcstol(t,NULL,10); return v; }
+ long xmltol(XMLCSTR t,long v){ if (t) return wcstol(t,NULL,10); return v; }
+ #endif
+ double xmltof(XMLCSTR t,double v){ if (t&&(*t)) wscanf(t, "%f", &v); /*v=_wtof(t);*/ return v; }
+ #endif
+#else
+ char xmltob(XMLCSTR t,char v){ if (t&&(*t)) return (char)atoi(t); return v; }
+ int xmltoi(XMLCSTR t,int v){ if (t&&(*t)) return atoi(t); return v; }
+ long xmltol(XMLCSTR t,long v){ if (t&&(*t)) return atol(t); return v; }
+ double xmltof(XMLCSTR t,double v){ if (t&&(*t)) return atof(t); return v; }
+#endif
+XMLCSTR xmltoa(XMLCSTR t,XMLCSTR v){ if (t) return t; return v; }
+XMLCHAR xmltoc(XMLCSTR t,XMLCHAR v){ if (t&&(*t)) return *t; return v; }
+
+/////////////////////////////////////////////////////////////////////////
+// the "openFileHelper" function //
+/////////////////////////////////////////////////////////////////////////
+
+// Since each application has its own way to report and deal with errors, you should modify & rewrite
+// the following "openFileHelper" function to get an "error reporting mechanism" tailored to your needs.
+XMLNode XMLNode::openFileHelper(XMLCSTR filename, XMLCSTR tag)
+{
+ // guess the value of the global parameter "characterEncoding"
+ // (the guess is based on the first 200 bytes of the file).
+ FILE *f=xfopen(filename,_CXML("rb"));
+ if (f)
+ {
+ char bb[205];
+ int l=(int)fread(bb,1,200,f);
+ setGlobalOptions(guessCharEncoding(bb,l),guessWideCharChars,dropWhiteSpace,removeCommentsInMiddleOfText);
+ fclose(f);
+ }
+
+ // parse the file
+ XMLResults pResults;
+ XMLNode xnode=XMLNode::parseFile(filename,tag,&pResults);
+
+ // display error message (if any)
+ if (pResults.error != eXMLErrorNone)
+ {
+ // create message
+ char message[2000],*s1=(char*)"",*s3=(char*)""; XMLCSTR s2=_CXML("");
+ if (pResults.error==eXMLErrorFirstTagNotFound) { s1=(char*)"First Tag should be '"; s2=tag; s3=(char*)"'.\n"; }
+ sprintf(message,
+#ifdef _XMLWIDECHAR
+ "XML Parsing error inside file '%S'.\n%S\nAt line %i, column %i.\n%s%S%s"
+#else
+ "XML Parsing error inside file '%s'.\n%s\nAt line %i, column %i.\n%s%s%s"
+#endif
+ ,filename,XMLNode::getError(pResults.error),pResults.nLine,pResults.nColumn,s1,s2,s3);
+
+ // display message
+#if defined(_XMLWINDOWS) && !defined(UNDER_CE) && !defined(_XMLPARSER_NO_MESSAGEBOX_)
+ MessageBoxA(NULL,message,"XML Parsing error",MB_OK|MB_ICONERROR|MB_TOPMOST);
+#else
+ printf("%s",message);
+#endif
+ exit(255);
+ }
+ return xnode;
+}
+
+/////////////////////////////////////////////////////////////////////////
+// Here start the core implementation of the XMLParser library //
+/////////////////////////////////////////////////////////////////////////
+
+// You should normally not change anything below this point.
+
+#ifndef _XMLWIDECHAR
+// If "characterEncoding=ascii" then we assume that all characters have the same length of 1 byte.
+// If "characterEncoding=UTF8" then the characters have different lengths (from 1 byte to 4 bytes).
+// If "characterEncoding=ShiftJIS" then the characters have different lengths (from 1 byte to 2 bytes).
+// This table is used as lookup-table to know the length of a character (in byte) based on the
+// content of the first byte of the character.
+// (note: if you modify this, you must always have XML_utf8ByteTable[0]=0 ).
+static const char XML_utf8ByteTable[256] =
+{
+ // 0 1 2 3 4 5 6 7 8 9 a b c d e f
+ 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x00
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x10
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x20
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x30
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x40
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x50
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x60
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x70 End of ASCII range
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x80 0x80 to 0xc1 invalid
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x90
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0xa0
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0xb0
+ 1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xc0 0xc2 to 0xdf 2 byte
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xd0
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,// 0xe0 0xe0 to 0xef 3 byte
+ 4,4,4,4,4,1,1,1,1,1,1,1,1,1,1,1 // 0xf0 0xf0 to 0xf4 4 byte, 0xf5 and higher invalid
+};
+static const char XML_legacyByteTable[256] =
+{
+ 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
+};
+static const char XML_sjisByteTable[256] =
+{
+ // 0 1 2 3 4 5 6 7 8 9 a b c d e f
+ 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x00
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x10
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x20
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x30
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x40
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x50
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x60
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x70
+ 1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0x80 0x81 to 0x9F 2 bytes
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0x90
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0xa0
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0xb0
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0xc0
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0xd0
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xe0 0xe0 to 0xef 2 bytes
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 // 0xf0
+};
+static const char XML_gb2312ByteTable[256] =
+{
+// 0 1 2 3 4 5 6 7 8 9 a b c d e f
+ 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x00
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x10
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x20
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x30
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x40
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x50
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x60
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x70
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x80
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x90
+ 1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xa0 0xa1 to 0xf7 2 bytes
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xb0
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xc0
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xd0
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xe0
+ 2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1 // 0xf0
+};
+static const char XML_gbk_big5_ByteTable[256] =
+{
+ // 0 1 2 3 4 5 6 7 8 9 a b c d e f
+ 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x00
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x10
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x20
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x30
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x40
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x50
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x60
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x70
+ 1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0x80 0x81 to 0xfe 2 bytes
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0x90
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xa0
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xb0
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xc0
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xd0
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xe0
+ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1 // 0xf0
+};
+static const char *XML_ByteTable=(const char *)XML_utf8ByteTable; // the default is "characterEncoding=XMLNode::encoding_UTF8"
+#endif
+
+
+XMLNode XMLNode::emptyXMLNode;
+XMLClear XMLNode::emptyXMLClear={ NULL, NULL, NULL};
+XMLAttribute XMLNode::emptyXMLAttribute={ NULL, NULL};
+
+// Enumeration used to decipher what type a token is
+typedef enum XMLTokenTypeTag
+{
+ eTokenText = 0,
+ eTokenQuotedText,
+ eTokenTagStart, /* "<" */
+ eTokenTagEnd, /* "</" */
+ eTokenCloseTag, /* ">" */
+ eTokenEquals, /* "=" */
+ eTokenDeclaration, /* "<?" */
+ eTokenShortHandClose, /* "/>" */
+ eTokenClear,
+ eTokenError
+} XMLTokenType;
+
+// Main structure used for parsing XML
+typedef struct XML
+{
+ XMLCSTR lpXML;
+ XMLCSTR lpszText;
+ int nIndex,nIndexMissigEndTag;
+ enum XMLError error;
+ XMLCSTR lpEndTag;
+ int cbEndTag;
+ XMLCSTR lpNewElement;
+ int cbNewElement;
+ int nFirst;
+} XML;
+
+typedef struct
+{
+ ALLXMLClearTag *pClr;
+ XMLCSTR pStr;
+} NextToken;
+
+// Enumeration used when parsing attributes
+typedef enum Attrib
+{
+ eAttribName = 0,
+ eAttribEquals,
+ eAttribValue
+} Attrib;
+
+// Enumeration used when parsing elements to dictate whether we are currently
+// inside a tag
+typedef enum Status
+{
+ eInsideTag = 0,
+ eOutsideTag
+} Status;
+
+XMLError XMLNode::writeToFile(XMLCSTR filename, const char *encoding, char nFormat) const
+{
+ if (!d) return eXMLErrorNone;
+ FILE *f=xfopen(filename,_CXML("wb"));
+ if (!f) return eXMLErrorCannotOpenWriteFile;
+#ifdef _XMLWIDECHAR
+ unsigned char h[2]={ 0xFF, 0xFE };
+ if (!fwrite(h,2,1,f)) return eXMLErrorCannotWriteFile;
+ if ((!isDeclaration())&&((d->lpszName)||(!getChildNode().isDeclaration())))
+ {
+ if (!fwrite(L"<?xml version=\"1.0\" encoding=\"utf-16\"?>\n",sizeof(wchar_t)*40,1,f))
+ return eXMLErrorCannotWriteFile;
+ }
+#else
+ if ((!isDeclaration())&&((d->lpszName)||(!getChildNode().isDeclaration())))
+ {
+ if (characterEncoding==char_encoding_UTF8)
+ {
+ // header so that windows recognize the file as UTF-8:
+ unsigned char h[3]={0xEF,0xBB,0xBF}; if (!fwrite(h,3,1,f)) return eXMLErrorCannotWriteFile;
+ encoding="utf-8";
+ } else if (characterEncoding==char_encoding_ShiftJIS) encoding="SHIFT-JIS";
+
+ if (!encoding) encoding="ISO-8859-1";
+ if (fprintf(f,"<?xml version=\"1.0\" encoding=\"%s\"?>\n",encoding)<0) return eXMLErrorCannotWriteFile;
+ } else
+ {
+ if (characterEncoding==char_encoding_UTF8)
+ {
+ unsigned char h[3]={0xEF,0xBB,0xBF}; if (!fwrite(h,3,1,f)) return eXMLErrorCannotWriteFile;
+ }
+ }
+#endif
+ int i;
+ XMLSTR t=createXMLString(nFormat,&i);
+ if (!fwrite(t,sizeof(XMLCHAR)*i,1,f)) return eXMLErrorCannotWriteFile;
+ if (fclose(f)!=0) return eXMLErrorCannotWriteFile;
+ free(t);
+ return eXMLErrorNone;
+}
+
+// Duplicate a given string.
+XMLSTR stringDup(XMLCSTR lpszData, int cbData)
+{
+ if (lpszData==NULL) return NULL;
+
+ XMLSTR lpszNew;
+ if (cbData==-1) cbData=(int)xstrlen(lpszData);
+ lpszNew = (XMLSTR)malloc((cbData+1) * sizeof(XMLCHAR));
+ if (lpszNew)
+ {
+ memcpy(lpszNew, lpszData, (cbData) * sizeof(XMLCHAR));
+ lpszNew[cbData] = (XMLCHAR)NULL;
+ }
+ return lpszNew;
+}
+
+XMLSTR ToXMLStringTool::toXMLUnSafe(XMLSTR dest,XMLCSTR source)
+{
+ XMLSTR dd=dest;
+ XMLCHAR ch;
+ XMLCharacterEntity *entity;
+ while ((ch=*source))
+ {
+ entity=XMLEntities;
+ do
+ {
+ if (ch==entity->c) {xstrcpy(dest,entity->s); dest+=entity->l; source++; goto out_of_loop1; }
+ entity++;
+ } while(entity->s);
+#ifdef _XMLWIDECHAR
+ *(dest++)=*(source++);
+#else
+ switch(XML_ByteTable[(unsigned char)ch])
+ {
+ case 4: *(dest++)=*(source++);
+ case 3: *(dest++)=*(source++);
+ case 2: *(dest++)=*(source++);
+ case 1: *(dest++)=*(source++);
+ }
+#endif
+out_of_loop1:
+ ;
+ }
+ *dest=0;
+ return dd;
+}
+
+// private (used while rendering):
+int ToXMLStringTool::lengthXMLString(XMLCSTR source)
+{
+ int r=0;
+ XMLCharacterEntity *entity;
+ XMLCHAR ch;
+ while ((ch=*source))
+ {
+ entity=XMLEntities;
+ do
+ {
+ if (ch==entity->c) { r+=entity->l; source++; goto out_of_loop1; }
+ entity++;
+ } while(entity->s);
+#ifdef _XMLWIDECHAR
+ r++; source++;
+#else
+ ch=XML_ByteTable[(unsigned char)ch]; r+=ch; source+=ch;
+#endif
+out_of_loop1:
+ ;
+ }
+ return r;
+}
+
+ToXMLStringTool::~ToXMLStringTool(){ freeBuffer(); }
+void ToXMLStringTool::freeBuffer(){ if (buf) free(buf); buf=NULL; buflen=0; }
+XMLSTR ToXMLStringTool::toXML(XMLCSTR source)
+{
+ int l=lengthXMLString(source)+1;
+ if (l>buflen) { buflen=l; buf=(XMLSTR)realloc(buf,l*sizeof(XMLCHAR)); }
+ return toXMLUnSafe(buf,source);
+}
+
+// private:
+XMLSTR fromXMLString(XMLCSTR s, int lo, XML *pXML)
+{
+ // This function is the opposite of the function "toXMLString". It decodes the escape
+ // sequences &, ", ', <, > and replace them by the characters
+ // &,",',<,>. This function is used internally by the XML Parser. All the calls to
+ // the XML library will always gives you back "decoded" strings.
+ //
+ // in: string (s) and length (lo) of string
+ // out: new allocated string converted from xml
+ if (!s) return NULL;
+
+ int ll=0,j;
+ XMLSTR d;
+ XMLCSTR ss=s;
+ XMLCharacterEntity *entity;
+ while ((lo>0)&&(*s))
+ {
+ if (*s==_CXML('&'))
+ {
+ if ((lo>2)&&(s[1]==_CXML('#')))
+ {
+ s+=2; lo-=2;
+ if ((*s==_CXML('X'))||(*s==_CXML('x'))) { s++; lo--; }
+ while ((*s)&&(*s!=_CXML(';'))&&((lo--)>0)) s++;
+ if (*s!=_CXML(';'))
+ {
+ pXML->error=eXMLErrorUnknownCharacterEntity;
+ return NULL;
+ }
+ s++; lo--;
+ } else
+ {
+ entity=XMLEntities;
+ do
+ {
+ if ((lo>=entity->l)&&(xstrnicmp(s,entity->s,entity->l)==0)) { s+=entity->l; lo-=entity->l; break; }
+ entity++;
+ } while(entity->s);
+ if (!entity->s)
+ {
+ pXML->error=eXMLErrorUnknownCharacterEntity;
+ return NULL;
+ }
+ }
+ } else
+ {
+#ifdef _XMLWIDECHAR
+ s++; lo--;
+#else
+ j=XML_ByteTable[(unsigned char)*s]; s+=j; lo-=j; ll+=j-1;
+#endif
+ }
+ ll++;
+ }
+
+ d=(XMLSTR)malloc((ll+1)*sizeof(XMLCHAR));
+ s=d;
+ while (ll-->0)
+ {
+ if (*ss==_CXML('&'))
+ {
+ if (ss[1]==_CXML('#'))
+ {
+ ss+=2; j=0;
+ if ((*ss==_CXML('X'))||(*ss==_CXML('x')))
+ {
+ ss++;
+ while (*ss!=_CXML(';'))
+ {
+ if ((*ss>=_CXML('0'))&&(*ss<=_CXML('9'))) j=(j<<4)+*ss-_CXML('0');
+ else if ((*ss>=_CXML('A'))&&(*ss<=_CXML('F'))) j=(j<<4)+*ss-_CXML('A')+10;
+ else if ((*ss>=_CXML('a'))&&(*ss<=_CXML('f'))) j=(j<<4)+*ss-_CXML('a')+10;
+ else { free((void*)s); pXML->error=eXMLErrorUnknownCharacterEntity;return NULL;}
+ ss++;
+ }
+ } else
+ {
+ while (*ss!=_CXML(';'))
+ {
+ if ((*ss>=_CXML('0'))&&(*ss<=_CXML('9'))) j=(j*10)+*ss-_CXML('0');
+ else { free((void*)s); pXML->error=eXMLErrorUnknownCharacterEntity;return NULL;}
+ ss++;
+ }
+ }
+#ifndef _XMLWIDECHAR
+ if (j>255) { free((void*)s); pXML->error=eXMLErrorCharacterCodeAbove255;return NULL;}
+#endif
+ (*d++)=(XMLCHAR)j; ss++;
+ } else
+ {
+ entity=XMLEntities;
+ do
+ {
+ if (xstrnicmp(ss,entity->s,entity->l)==0) { *(d++)=entity->c; ss+=entity->l; break; }
+ entity++;
+ } while(entity->s);
+ }
+ } else
+ {
+#ifdef _XMLWIDECHAR
+ *(d++)=*(ss++);
+#else
+ switch(XML_ByteTable[(unsigned char)*ss])
+ {
+ case 4: *(d++)=*(ss++); ll--;
+ case 3: *(d++)=*(ss++); ll--;
+ case 2: *(d++)=*(ss++); ll--;
+ case 1: *(d++)=*(ss++);
+ }
+#endif
+ }
+ }
+ *d=0;
+ return (XMLSTR)s;
+}
+
+#define XML_isSPACECHAR(ch) ((ch==_CXML('\n'))||(ch==_CXML(' '))||(ch== _CXML('\t'))||(ch==_CXML('\r')))
+
+// private:
+char myTagCompare(XMLCSTR cclose, XMLCSTR copen)
+// !!!! WARNING strange convention&:
+// return 0 if equals
+// return 1 if different
+{
+ if (!cclose) return 1;
+ int l=(int)xstrlen(cclose);
+ if (xstrnicmp(cclose, copen, l)!=0) return 1;
+ const XMLCHAR c=copen[l];
+ if (XML_isSPACECHAR(c)||
+ (c==_CXML('/' ))||
+ (c==_CXML('<' ))||
+ (c==_CXML('>' ))||
+ (c==_CXML('=' ))) return 0;
+ return 1;
+}
+
+// Obtain the next character from the string.
+static inline XMLCHAR getNextChar(XML *pXML)
+{
+ XMLCHAR ch = pXML->lpXML[pXML->nIndex];
+#ifdef _XMLWIDECHAR
+ if (ch!=0) pXML->nIndex++;
+#else
+ pXML->nIndex+=XML_ByteTable[(unsigned char)ch];
+#endif
+ return ch;
+}
+
+// Find the next token in a string.
+// pcbToken contains the number of characters that have been read.
+static NextToken GetNextToken(XML *pXML, int *pcbToken, enum XMLTokenTypeTag *pType)
+{
+ NextToken result;
+ XMLCHAR ch;
+ XMLCHAR chTemp;
+ int indexStart,nFoundMatch,nIsText=FALSE;
+ result.pClr=NULL; // prevent warning
+
+ // Find next non-white space character
+ do { indexStart=pXML->nIndex; ch=getNextChar(pXML); } while XML_isSPACECHAR(ch);
+
+ if (ch)
+ {
+ // Cache the current string pointer
+ result.pStr = &pXML->lpXML[indexStart];
+
+ // First check whether the token is in the clear tag list (meaning it
+ // does not need formatting).
+ ALLXMLClearTag *ctag=XMLClearTags;
+ do
+ {
+ if (xstrncmp(ctag->lpszOpen, result.pStr, ctag->openTagLen)==0)
+ {
+ result.pClr=ctag;
+ pXML->nIndex+=ctag->openTagLen-1;
+ *pType=eTokenClear;
+ return result;
+ }
+ ctag++;
+ } while(ctag->lpszOpen);
+
+ // If we didn't find a clear tag then check for standard tokens
+ switch(ch)
+ {
+ // Check for quotes
+ case _CXML('\''):
+ case _CXML('\"'):
+ // Type of token
+ *pType = eTokenQuotedText;
+ chTemp = ch;
+
+ // Set the size
+ nFoundMatch = FALSE;
+
+ // Search through the string to find a matching quote
+ while((ch = getNextChar(pXML)))
+ {
+ if (ch==chTemp) { nFoundMatch = TRUE; break; }
+ if (ch==_CXML('<')) break;
+ }
+
+ // If we failed to find a matching quote
+ if (nFoundMatch == FALSE)
+ {
+ pXML->nIndex=indexStart+1;
+ nIsText=TRUE;
+ break;
+ }
+
+// 4.02.2002
+// if (FindNonWhiteSpace(pXML)) pXML->nIndex--;
+
+ break;
+
+ // Equals (used with attribute values)
+ case _CXML('='):
+ *pType = eTokenEquals;
+ break;
+
+ // Close tag
+ case _CXML('>'):
+ *pType = eTokenCloseTag;
+ break;
+
+ // Check for tag start and tag end
+ case _CXML('<'):
+
+ // Peek at the next character to see if we have an end tag '</',
+ // or an xml declaration '<?'
+ chTemp = pXML->lpXML[pXML->nIndex];
+
+ // If we have a tag end...
+ if (chTemp == _CXML('/'))
+ {
+ // Set the type and ensure we point at the next character
+ getNextChar(pXML);
+ *pType = eTokenTagEnd;
+ }
+
+ // If we have an XML declaration tag
+ else if (chTemp == _CXML('?'))
+ {
+
+ // Set the type and ensure we point at the next character
+ getNextChar(pXML);
+ *pType = eTokenDeclaration;
+ }
+
+ // Otherwise we must have a start tag
+ else
+ {
+ *pType = eTokenTagStart;
+ }
+ break;
+
+ // Check to see if we have a short hand type end tag ('/>').
+ case _CXML('/'):
+
+ // Peek at the next character to see if we have a short end tag '/>'
+ chTemp = pXML->lpXML[pXML->nIndex];
+
+ // If we have a short hand end tag...
+ if (chTemp == _CXML('>'))
+ {
+ // Set the type and ensure we point at the next character
+ getNextChar(pXML);
+ *pType = eTokenShortHandClose;
+ break;
+ }
+
+ // If we haven't found a short hand closing tag then drop into the
+ // text process
+
+ // Other characters
+ default:
+ nIsText = TRUE;
+ }
+
+ // If this is a TEXT node
+ if (nIsText)
+ {
+ // Indicate we are dealing with text
+ *pType = eTokenText;
+ while((ch = getNextChar(pXML)))
+ {
+ if XML_isSPACECHAR(ch)
+ {
+ indexStart++; break;
+
+ } else if (ch==_CXML('/'))
+ {
+ // If we find a slash then this maybe text or a short hand end tag
+ // Peek at the next character to see it we have short hand end tag
+ ch=pXML->lpXML[pXML->nIndex];
+ // If we found a short hand end tag then we need to exit the loop
+ if (ch==_CXML('>')) { pXML->nIndex--; break; }
+
+ } else if ((ch==_CXML('<'))||(ch==_CXML('>'))||(ch==_CXML('=')))
+ {
+ pXML->nIndex--; break;
+ }
+ }
+ }
+ *pcbToken = pXML->nIndex-indexStart;
+ } else
+ {
+ // If we failed to obtain a valid character
+ *pcbToken = 0;
+ *pType = eTokenError;
+ result.pStr=NULL;
+ }
+
+ return result;
+}
+
+XMLCSTR XMLNode::updateName_WOSD(XMLSTR lpszName)
+{
+ if (!d) { free(lpszName); return NULL; }
+ if (d->lpszName&&(lpszName!=d->lpszName)) free((void*)d->lpszName);
+ d->lpszName=lpszName;
+ return lpszName;
+}
+
+// private:
+XMLNode::XMLNode(struct XMLNodeDataTag *p){ d=p; (p->ref_count)++; }
+XMLNode::XMLNode(XMLNodeData *pParent, XMLSTR lpszName, char isDeclaration)
+{
+ d=(XMLNodeData*)malloc(sizeof(XMLNodeData));
+ d->ref_count=1;
+
+ d->lpszName=NULL;
+ d->nChild= 0;
+ d->nText = 0;
+ d->nClear = 0;
+ d->nAttribute = 0;
+
+ d->isDeclaration = isDeclaration;
+
+ d->pParent = pParent;
+ d->pChild= NULL;
+ d->pText= NULL;
+ d->pClear= NULL;
+ d->pAttribute= NULL;
+ d->pOrder= NULL;
+
+ updateName_WOSD(lpszName);
+}
+
+XMLNode XMLNode::createXMLTopNode_WOSD(XMLSTR lpszName, char isDeclaration) { return XMLNode(NULL,lpszName,isDeclaration); }
+XMLNode XMLNode::createXMLTopNode(XMLCSTR lpszName, char isDeclaration) { return XMLNode(NULL,stringDup(lpszName),isDeclaration); }
+
+#define MEMORYINCREASE 50
+
+static inline void myFree(void *p) { if (p) free(p); }
+static inline void *myRealloc(void *p, int newsize, int memInc, int sizeofElem)
+{
+ if (p==NULL) { if (memInc) return malloc(memInc*sizeofElem); return malloc(sizeofElem); }
+ if ((memInc==0)||((newsize%memInc)==0)) p=realloc(p,(newsize+memInc)*sizeofElem);
+// if (!p)
+// {
+// printf("XMLParser Error: Not enough memory! Aborting...\n"); exit(220);
+// }
+ return p;
+}
+
+// private:
+XMLElementPosition XMLNode::findPosition(XMLNodeData *d, int index, XMLElementType xxtype)
+{
+ if (index<0) return -1;
+ int i=0,j=(int)((index<<2)+xxtype),*o=d->pOrder; while (o[i]!=j) i++; return i;
+}
+
+// private:
+// update "order" information when deleting a content of a XMLNode
+int XMLNode::removeOrderElement(XMLNodeData *d, XMLElementType t, int index)
+{
+ int n=d->nChild+d->nText+d->nClear, *o=d->pOrder,i=findPosition(d,index,t);
+ memmove(o+i, o+i+1, (n-i)*sizeof(int));
+ for (;i<n;i++)
+ if ((o[i]&3)==(int)t) o[i]-=4;
+ // We should normally do:
+ // d->pOrder=(int)realloc(d->pOrder,n*sizeof(int));
+ // but we skip reallocation because it's too time consuming.
+ // Anyway, at the end, it will be free'd completely at once.
+ return i;
+}
+
+void *XMLNode::addToOrder(int memoryIncrease,int *_pos, int nc, void *p, int size, XMLElementType xtype)
+{
+ // in: *_pos is the position inside d->pOrder ("-1" means "EndOf")
+ // out: *_pos is the index inside p
+ p=myRealloc(p,(nc+1),memoryIncrease,size);
+ int n=d->nChild+d->nText+d->nClear;
+ d->pOrder=(int*)myRealloc(d->pOrder,n+1,memoryIncrease*3,sizeof(int));
+ int pos=*_pos,*o=d->pOrder;
+
+ if ((pos<0)||(pos>=n)) { *_pos=nc; o[n]=(int)((nc<<2)+xtype); return p; }
+
+ int i=pos;
+ memmove(o+i+1, o+i, (n-i)*sizeof(int));
+
+ while ((pos<n)&&((o[pos]&3)!=(int)xtype)) pos++;
+ if (pos==n) { *_pos=nc; o[n]=(int)((nc<<2)+xtype); return p; }
+
+ o[i]=o[pos];
+ for (i=pos+1;i<=n;i++) if ((o[i]&3)==(int)xtype) o[i]+=4;
+
+ *_pos=pos=o[pos]>>2;
+ memmove(((char*)p)+(pos+1)*size,((char*)p)+pos*size,(nc-pos)*size);
+
+ return p;
+}
+
+// Add a child node to the given element.
+XMLNode XMLNode::addChild_priv(int memoryIncrease, XMLSTR lpszName, char isDeclaration, int pos)
+{
+ if (!lpszName) return emptyXMLNode;
+ d->pChild=(XMLNode*)addToOrder(memoryIncrease,&pos,d->nChild,d->pChild,sizeof(XMLNode),eNodeChild);
+ d->pChild[pos].d=NULL;
+ d->pChild[pos]=XMLNode(d,lpszName,isDeclaration);
+ d->nChild++;
+ return d->pChild[pos];
+}
+
+// Add an attribute to an element.
+XMLAttribute *XMLNode::addAttribute_priv(int memoryIncrease,XMLSTR lpszName, XMLSTR lpszValuev)
+{
+ if (!lpszName) return &emptyXMLAttribute;
+ if (!d) { myFree(lpszName); myFree(lpszValuev); return &emptyXMLAttribute; }
+ int nc=d->nAttribute;
+ d->pAttribute=(XMLAttribute*)myRealloc(d->pAttribute,(nc+1),memoryIncrease,sizeof(XMLAttribute));
+ XMLAttribute *pAttr=d->pAttribute+nc;
+ pAttr->lpszName = lpszName;
+ pAttr->lpszValue = lpszValuev;
+ d->nAttribute++;
+ return pAttr;
+}
+
+// Add text to the element.
+XMLCSTR XMLNode::addText_priv(int memoryIncrease, XMLSTR lpszValue, int pos)
+{
+ if (!lpszValue) return NULL;
+ if (!d) { myFree(lpszValue); return NULL; }
+ d->pText=(XMLCSTR*)addToOrder(memoryIncrease,&pos,d->nText,d->pText,sizeof(XMLSTR),eNodeText);
+ d->pText[pos]=lpszValue;
+ d->nText++;
+ return lpszValue;
+}
+
+// Add clear (unformatted) text to the element.
+XMLClear *XMLNode::addClear_priv(int memoryIncrease, XMLSTR lpszValue, XMLCSTR lpszOpen, XMLCSTR lpszClose, int pos)
+{
+ if (!lpszValue) return &emptyXMLClear;
+ if (!d) { myFree(lpszValue); return &emptyXMLClear; }
+ d->pClear=(XMLClear *)addToOrder(memoryIncrease,&pos,d->nClear,d->pClear,sizeof(XMLClear),eNodeClear);
+ XMLClear *pNewClear=d->pClear+pos;
+ pNewClear->lpszValue = lpszValue;
+ if (!lpszOpen) lpszOpen=XMLClearTags->lpszOpen;
+ if (!lpszClose) lpszClose=XMLClearTags->lpszClose;
+ pNewClear->lpszOpenTag = lpszOpen;
+ pNewClear->lpszCloseTag = lpszClose;
+ d->nClear++;
+ return pNewClear;
+}
+
+// private:
+// Parse a clear (unformatted) type node.
+char XMLNode::parseClearTag(void *px, void *_pClear)
+{
+ XML *pXML=(XML *)px;
+ ALLXMLClearTag pClear=*((ALLXMLClearTag*)_pClear);
+ int cbTemp=0;
+ XMLCSTR lpszTemp=NULL;
+ XMLCSTR lpXML=&pXML->lpXML[pXML->nIndex];
+ static XMLCSTR docTypeEnd=_CXML("]>");
+
+ // Find the closing tag
+ // Seems the <!DOCTYPE need a better treatment so lets handle it
+ if (pClear.lpszOpen==XMLClearTags[1].lpszOpen)
+ {
+ XMLCSTR pCh=lpXML;
+ while (*pCh)
+ {
+ if (*pCh==_CXML('<')) { pClear.lpszClose=docTypeEnd; lpszTemp=xstrstr(lpXML,docTypeEnd); break; }
+ else if (*pCh==_CXML('>')) { lpszTemp=pCh; break; }
+#ifdef _XMLWIDECHAR
+ pCh++;
+#else
+ pCh+=XML_ByteTable[(unsigned char)(*pCh)];
+#endif
+ }
+ } else lpszTemp=xstrstr(lpXML, pClear.lpszClose);
+
+ if (lpszTemp)
+ {
+ // Cache the size and increment the index
+ cbTemp = (int)(lpszTemp - lpXML);
+
+ pXML->nIndex += cbTemp+(int)xstrlen(pClear.lpszClose);
+
+ // Add the clear node to the current element
+ addClear_priv(MEMORYINCREASE,stringDup(lpXML,cbTemp), pClear.lpszOpen, pClear.lpszClose,-1);
+ return 0;
+ }
+
+ // If we failed to find the end tag
+ pXML->error = eXMLErrorUnmatchedEndClearTag;
+ return 1;
+}
+
+void XMLNode::exactMemory(XMLNodeData *d)
+{
+ if (d->pOrder) d->pOrder=(int*)realloc(d->pOrder,(d->nChild+d->nText+d->nClear)*sizeof(int));
+ if (d->pChild) d->pChild=(XMLNode*)realloc(d->pChild,d->nChild*sizeof(XMLNode));
+ if (d->pAttribute) d->pAttribute=(XMLAttribute*)realloc(d->pAttribute,d->nAttribute*sizeof(XMLAttribute));
+ if (d->pText) d->pText=(XMLCSTR*)realloc(d->pText,d->nText*sizeof(XMLSTR));
+ if (d->pClear) d->pClear=(XMLClear *)realloc(d->pClear,d->nClear*sizeof(XMLClear));
+}
+
+char XMLNode::maybeAddTxT(void *pa, XMLCSTR tokenPStr)
+{
+ XML *pXML=(XML *)pa;
+ XMLCSTR lpszText=pXML->lpszText;
+ if (!lpszText) return 0;
+ if (dropWhiteSpace) while (XML_isSPACECHAR(*lpszText)&&(lpszText!=tokenPStr)) lpszText++;
+ int cbText = (int)(tokenPStr - lpszText);
+ if (!cbText) { pXML->lpszText=NULL; return 0; }
+ if (dropWhiteSpace) { cbText--; while ((cbText)&&XML_isSPACECHAR(lpszText[cbText])) cbText--; cbText++; }
+ if (!cbText) { pXML->lpszText=NULL; return 0; }
+ XMLSTR lpt=fromXMLString(lpszText,cbText,pXML);
+ if (!lpt) return 1;
+ pXML->lpszText=NULL;
+ if (removeCommentsInMiddleOfText && d->nText && d->nClear)
+ {
+ // if the previous insertion was a comment (<!-- -->) AND
+ // if the previous previous insertion was a text then, delete the comment and append the text
+ int n=d->nChild+d->nText+d->nClear-1,*o=d->pOrder;
+ if (((o[n]&3)==eNodeClear)&&((o[n-1]&3)==eNodeText))
+ {
+ int i=o[n]>>2;
+ if (d->pClear[i].lpszOpenTag==XMLClearTags[2].lpszOpen)
+ {
+ deleteClear(i);
+ i=o[n-1]>>2;
+ n=xstrlen(d->pText[i]);
+ int n2=xstrlen(lpt)+1;
+ d->pText[i]=(XMLSTR)realloc((void*)d->pText[i],(n+n2)*sizeof(XMLCHAR));
+ if (!d->pText[i]) return 1;
+ memcpy((void*)(d->pText[i]+n),lpt,n2*sizeof(XMLCHAR));
+ free(lpt);
+ return 0;
+ }
+ }
+ }
+ addText_priv(MEMORYINCREASE,lpt,-1);
+ return 0;
+}
+// private:
+// Recursively parse an XML element.
+int XMLNode::ParseXMLElement(void *pa)
+{
+ XML *pXML=(XML *)pa;
+ int cbToken;
+ enum XMLTokenTypeTag xtype;
+ NextToken token;
+ XMLCSTR lpszTemp=NULL;
+ int cbTemp=0;
+ char nDeclaration;
+ XMLNode pNew;
+ enum Status status; // inside or outside a tag
+ enum Attrib attrib = eAttribName;
+
+ assert(pXML);
+
+ // If this is the first call to the function
+ if (pXML->nFirst)
+ {
+ // Assume we are outside of a tag definition
+ pXML->nFirst = FALSE;
+ status = eOutsideTag;
+ } else
+ {
+ // If this is not the first call then we should only be called when inside a tag.
+ status = eInsideTag;
+ }
+
+ // Iterate through the tokens in the document
+ for(;;)
+ {
+ // Obtain the next token
+ token = GetNextToken(pXML, &cbToken, &xtype);
+
+ if (xtype != eTokenError)
+ {
+ // Check the current status
+ switch(status)
+ {
+
+ // If we are outside of a tag definition
+ case eOutsideTag:
+
+ // Check what type of token we obtained
+ switch(xtype)
+ {
+ // If we have found text or quoted text
+ case eTokenText:
+ case eTokenCloseTag: /* '>' */
+ case eTokenShortHandClose: /* '/>' */
+ case eTokenQuotedText:
+ case eTokenEquals:
+ break;
+
+ // If we found a start tag '<' and declarations '<?'
+ case eTokenTagStart:
+ case eTokenDeclaration:
+
+ // Cache whether this new element is a declaration or not
+ nDeclaration = (xtype == eTokenDeclaration);
+
+ // If we have node text then add this to the element
+ if (maybeAddTxT(pXML,token.pStr)) return FALSE;
+
+ // Find the name of the tag
+ token = GetNextToken(pXML, &cbToken, &xtype);
+
+ // Return an error if we couldn't obtain the next token or
+ // it wasnt text
+ if (xtype != eTokenText)
+ {
+ pXML->error = eXMLErrorMissingTagName;
+ return FALSE;
+ }
+
+ // If we found a new element which is the same as this
+ // element then we need to pass this back to the caller..
+
+#ifdef APPROXIMATE_PARSING
+ if (d->lpszName &&
+ myTagCompare(d->lpszName, token.pStr) == 0)
+ {
+ // Indicate to the caller that it needs to create a
+ // new element.
+ pXML->lpNewElement = token.pStr;
+ pXML->cbNewElement = cbToken;
+ return TRUE;
+ } else
+#endif
+ {
+ // If the name of the new element differs from the name of
+ // the current element we need to add the new element to
+ // the current one and recurse
+ pNew = addChild_priv(MEMORYINCREASE,stringDup(token.pStr,cbToken), nDeclaration,-1);
+
+ while (!pNew.isEmpty())
+ {
+ // Callself to process the new node. If we return
+ // FALSE this means we dont have any more
+ // processing to do...
+
+ if (!pNew.ParseXMLElement(pXML)) return FALSE;
+ else
+ {
+ // If the call to recurse this function
+ // evented in a end tag specified in XML then
+ // we need to unwind the calls to this
+ // function until we find the appropriate node
+ // (the element name and end tag name must
+ // match)
+ if (pXML->cbEndTag)
+ {
+ // If we are back at the root node then we
+ // have an unmatched end tag
+ if (!d->lpszName)
+ {
+ pXML->error=eXMLErrorUnmatchedEndTag;
+ return FALSE;
+ }
+
+ // If the end tag matches the name of this
+ // element then we only need to unwind
+ // once more...
+
+ if (myTagCompare(d->lpszName, pXML->lpEndTag)==0)
+ {
+ pXML->cbEndTag = 0;
+ }
+
+ return TRUE;
+ } else
+ if (pXML->cbNewElement)
+ {
+ // If the call indicated a new element is to
+ // be created on THIS element.
+
+ // If the name of this element matches the
+ // name of the element we need to create
+ // then we need to return to the caller
+ // and let it process the element.
+
+ if (myTagCompare(d->lpszName, pXML->lpNewElement)==0)
+ {
+ return TRUE;
+ }
+
+ // Add the new element and recurse
+ pNew = addChild_priv(MEMORYINCREASE,stringDup(pXML->lpNewElement,pXML->cbNewElement),0,-1);
+ pXML->cbNewElement = 0;
+ }
+ else
+ {
+ // If we didn't have a new element to create
+ pNew = emptyXMLNode;
+
+ }
+ }
+ }
+ }
+ break;
+
+ // If we found an end tag
+ case eTokenTagEnd:
+
+ // If we have node text then add this to the element
+ if (maybeAddTxT(pXML,token.pStr)) return FALSE;
+
+ // Find the name of the end tag
+ token = GetNextToken(pXML, &cbTemp, &xtype);
+
+ // The end tag should be text
+ if (xtype != eTokenText)
+ {
+ pXML->error = eXMLErrorMissingEndTagName;
+ return FALSE;
+ }
+ lpszTemp = token.pStr;
+
+ // After the end tag we should find a closing tag
+ token = GetNextToken(pXML, &cbToken, &xtype);
+ if (xtype != eTokenCloseTag)
+ {
+ pXML->error = eXMLErrorMissingEndTagName;
+ return FALSE;
+ }
+ pXML->lpszText=pXML->lpXML+pXML->nIndex;
+
+ // We need to return to the previous caller. If the name
+ // of the tag cannot be found we need to keep returning to
+ // caller until we find a match
+ if (myTagCompare(d->lpszName, lpszTemp) != 0)
+#ifdef STRICT_PARSING
+ {
+ pXML->error=eXMLErrorUnmatchedEndTag;
+ pXML->nIndexMissigEndTag=pXML->nIndex;
+ return FALSE;
+ }
+#else
+ {
+ pXML->error=eXMLErrorMissingEndTag;
+ pXML->nIndexMissigEndTag=pXML->nIndex;
+ pXML->lpEndTag = lpszTemp;
+ pXML->cbEndTag = cbTemp;
+ }
+#endif
+
+ // Return to the caller
+ exactMemory(d);
+ return TRUE;
+
+ // If we found a clear (unformatted) token
+ case eTokenClear:
+ // If we have node text then add this to the element
+ if (maybeAddTxT(pXML,token.pStr)) return FALSE;
+ if (parseClearTag(pXML, token.pClr)) return FALSE;
+ pXML->lpszText=pXML->lpXML+pXML->nIndex;
+ break;
+
+ default:
+ break;
+ }
+ break;
+
+ // If we are inside a tag definition we need to search for attributes
+ case eInsideTag:
+
+ // Check what part of the attribute (name, equals, value) we
+ // are looking for.
+ switch(attrib)
+ {
+ // If we are looking for a new attribute
+ case eAttribName:
+
+ // Check what the current token type is
+ switch(xtype)
+ {
+ // If the current type is text...
+ // Eg. 'attribute'
+ case eTokenText:
+ // Cache the token then indicate that we are next to
+ // look for the equals
+ lpszTemp = token.pStr;
+ cbTemp = cbToken;
+ attrib = eAttribEquals;
+ break;
+
+ // If we found a closing tag...
+ // Eg. '>'
+ case eTokenCloseTag:
+ // We are now outside the tag
+ status = eOutsideTag;
+ pXML->lpszText=pXML->lpXML+pXML->nIndex;
+ break;
+
+ // If we found a short hand '/>' closing tag then we can
+ // return to the caller
+ case eTokenShortHandClose:
+ exactMemory(d);
+ pXML->lpszText=pXML->lpXML+pXML->nIndex;
+ return TRUE;
+
+ // Errors...
+ case eTokenQuotedText: /* '"SomeText"' */
+ case eTokenTagStart: /* '<' */
+ case eTokenTagEnd: /* '</' */
+ case eTokenEquals: /* '=' */
+ case eTokenDeclaration: /* '<?' */
+ case eTokenClear:
+ pXML->error = eXMLErrorUnexpectedToken;
+ return FALSE;
+ default: break;
+ }
+ break;
+
+ // If we are looking for an equals
+ case eAttribEquals:
+ // Check what the current token type is
+ switch(xtype)
+ {
+ // If the current type is text...
+ // Eg. 'Attribute AnotherAttribute'
+ case eTokenText:
+ // Add the unvalued attribute to the list
+ addAttribute_priv(MEMORYINCREASE,stringDup(lpszTemp,cbTemp), NULL);
+ // Cache the token then indicate. We are next to
+ // look for the equals attribute
+ lpszTemp = token.pStr;
+ cbTemp = cbToken;
+ break;
+
+ // If we found a closing tag 'Attribute >' or a short hand
+ // closing tag 'Attribute />'
+ case eTokenShortHandClose:
+ case eTokenCloseTag:
+ // If we are a declaration element '<?' then we need
+ // to remove extra closing '?' if it exists
+ pXML->lpszText=pXML->lpXML+pXML->nIndex;
+
+ if (d->isDeclaration &&
+ (lpszTemp[cbTemp-1]) == _CXML('?'))
+ {
+ cbTemp--;
+ if (d->pParent && d->pParent->pParent) xtype = eTokenShortHandClose;
+ }
+
+ if (cbTemp)
+ {
+ // Add the unvalued attribute to the list
+ addAttribute_priv(MEMORYINCREASE,stringDup(lpszTemp,cbTemp), NULL);
+ }
+
+ // If this is the end of the tag then return to the caller
+ if (xtype == eTokenShortHandClose)
+ {
+ exactMemory(d);
+ return TRUE;
+ }
+
+ // We are now outside the tag
+ status = eOutsideTag;
+ break;
+
+ // If we found the equals token...
+ // Eg. 'Attribute ='
+ case eTokenEquals:
+ // Indicate that we next need to search for the value
+ // for the attribute
+ attrib = eAttribValue;
+ break;
+
+ // Errors...
+ case eTokenQuotedText: /* 'Attribute "InvalidAttr"'*/
+ case eTokenTagStart: /* 'Attribute <' */
+ case eTokenTagEnd: /* 'Attribute </' */
+ case eTokenDeclaration: /* 'Attribute <?' */
+ case eTokenClear:
+ pXML->error = eXMLErrorUnexpectedToken;
+ return FALSE;
+ default: break;
+ }
+ break;
+
+ // If we are looking for an attribute value
+ case eAttribValue:
+ // Check what the current token type is
+ switch(xtype)
+ {
+ // If the current type is text or quoted text...
+ // Eg. 'Attribute = "Value"' or 'Attribute = Value' or
+ // 'Attribute = 'Value''.
+ case eTokenText:
+ case eTokenQuotedText:
+ // If we are a declaration element '<?' then we need
+ // to remove extra closing '?' if it exists
+ if (d->isDeclaration &&
+ (token.pStr[cbToken-1]) == _CXML('?'))
+ {
+ cbToken--;
+ }
+
+ if (cbTemp)
+ {
+ // Add the valued attribute to the list
+ if (xtype==eTokenQuotedText) { token.pStr++; cbToken-=2; }
+ XMLSTR attrVal=(XMLSTR)token.pStr;
+ if (attrVal)
+ {
+ attrVal=fromXMLString(attrVal,cbToken,pXML);
+ if (!attrVal) return FALSE;
+ }
+ addAttribute_priv(MEMORYINCREASE,stringDup(lpszTemp,cbTemp),attrVal);
+ }
+
+ // Indicate we are searching for a new attribute
+ attrib = eAttribName;
+ break;
+
+ // Errors...
+ case eTokenTagStart: /* 'Attr = <' */
+ case eTokenTagEnd: /* 'Attr = </' */
+ case eTokenCloseTag: /* 'Attr = >' */
+ case eTokenShortHandClose: /* "Attr = />" */
+ case eTokenEquals: /* 'Attr = =' */
+ case eTokenDeclaration: /* 'Attr = <?' */
+ case eTokenClear:
+ pXML->error = eXMLErrorUnexpectedToken;
+ return FALSE;
+ break;
+ default: break;
+ }
+ }
+ }
+ }
+ // If we failed to obtain the next token
+ else
+ {
+ if ((!d->isDeclaration)&&(d->pParent))
+ {
+#ifdef STRICT_PARSING
+ pXML->error=eXMLErrorUnmatchedEndTag;
+#else
+ pXML->error=eXMLErrorMissingEndTag;
+#endif
+ pXML->nIndexMissigEndTag=pXML->nIndex;
+ }
+ maybeAddTxT(pXML,pXML->lpXML+pXML->nIndex);
+ return FALSE;
+ }
+ }
+}
+
+// Count the number of lines and columns in an XML string.
+static void CountLinesAndColumns(XMLCSTR lpXML, int nUpto, XMLResults *pResults)
+{
+ XMLCHAR ch;
+ assert(lpXML);
+ assert(pResults);
+
+ struct XML xml={ lpXML,lpXML, 0, 0, eXMLErrorNone, NULL, 0, NULL, 0, TRUE };
+
+ pResults->nLine = 1;
+ pResults->nColumn = 1;
+ while (xml.nIndex<nUpto)
+ {
+ ch = getNextChar(&xml);
+ if (ch != _CXML('\n')) pResults->nColumn++;
+ else
+ {
+ pResults->nLine++;
+ pResults->nColumn=1;
+ }
+ }
+}
+
+// Parse XML and return the root element.
+XMLNode XMLNode::parseString(XMLCSTR lpszXML, XMLCSTR tag, XMLResults *pResults)
+{
+ if (!lpszXML)
+ {
+ if (pResults)
+ {
+ pResults->error=eXMLErrorNoElements;
+ pResults->nLine=0;
+ pResults->nColumn=0;
+ }
+ return emptyXMLNode;
+ }
+
+ XMLNode xnode(NULL,NULL,FALSE);
+ struct XML xml={ lpszXML, lpszXML, 0, 0, eXMLErrorNone, NULL, 0, NULL, 0, TRUE };
+
+ // Create header element
+ xnode.ParseXMLElement(&xml);
+ enum XMLError error = xml.error;
+ if (!xnode.nChildNode()) error=eXMLErrorNoXMLTagFound;
+ if ((xnode.nChildNode()==1)&&(xnode.nElement()==1)) xnode=xnode.getChildNode(); // skip the empty node
+
+ // If no error occurred
+ if ((error==eXMLErrorNone)||(error==eXMLErrorMissingEndTag)||(error==eXMLErrorNoXMLTagFound))
+ {
+ XMLCSTR name=xnode.getName();
+ if (tag&&(*tag)&&((!name)||(xstricmp(name,tag))))
+ {
+ xnode=xnode.getChildNode(tag);
+ if (xnode.isEmpty())
+ {
+ if (pResults)
+ {
+ pResults->error=eXMLErrorFirstTagNotFound;
+ pResults->nLine=0;
+ pResults->nColumn=0;
+ }
+ return emptyXMLNode;
+ }
+ }
+ } else
+ {
+ // Cleanup: this will destroy all the nodes
+ xnode = emptyXMLNode;
+ }
+
+
+ // If we have been given somewhere to place results
+ if (pResults)
+ {
+ pResults->error = error;
+
+ // If we have an error
+ if (error!=eXMLErrorNone)
+ {
+ if (error==eXMLErrorMissingEndTag) xml.nIndex=xml.nIndexMissigEndTag;
+ // Find which line and column it starts on.
+ CountLinesAndColumns(xml.lpXML, xml.nIndex, pResults);
+ }
+ }
+ return xnode;
+}
+
+XMLNode XMLNode::parseFile(XMLCSTR filename, XMLCSTR tag, XMLResults *pResults)
+{
+ if (pResults) { pResults->nLine=0; pResults->nColumn=0; }
+ FILE *f=xfopen(filename,_CXML("rb"));
+ if (f==NULL) { if (pResults) pResults->error=eXMLErrorFileNotFound; return emptyXMLNode; }
+ fseek(f,0,SEEK_END);
+ int l=ftell(f),headerSz=0;
+ if (!l) { if (pResults) pResults->error=eXMLErrorEmpty; fclose(f); return emptyXMLNode; }
+ fseek(f,0,SEEK_SET);
+ unsigned char *buf=(unsigned char*)malloc(l+4);
+ l=fread(buf,1,l,f);
+ fclose(f);
+ buf[l]=0;buf[l+1]=0;buf[l+2]=0;buf[l+3]=0;
+#ifdef _XMLWIDECHAR
+ if (guessWideCharChars)
+ {
+ if (!myIsTextWideChar(buf,l))
+ {
+ XMLNode::XMLCharEncoding ce=XMLNode::char_encoding_legacy;
+ if ((buf[0]==0xef)&&(buf[1]==0xbb)&&(buf[2]==0xbf)) { headerSz=3; ce=XMLNode::char_encoding_UTF8; }
+ XMLSTR b2=myMultiByteToWideChar((const char*)(buf+headerSz),ce);
+ free(buf); buf=(unsigned char*)b2; headerSz=0;
+ } else
+ {
+ if ((buf[0]==0xef)&&(buf[1]==0xff)) headerSz=2;
+ if ((buf[0]==0xff)&&(buf[1]==0xfe)) headerSz=2;
+ }
+ }
+#else
+ if (guessWideCharChars)
+ {
+ if (myIsTextWideChar(buf,l))
+ {
+ if ((buf[0]==0xef)&&(buf[1]==0xff)) headerSz=2;
+ if ((buf[0]==0xff)&&(buf[1]==0xfe)) headerSz=2;
+ char *b2=myWideCharToMultiByte((const wchar_t*)(buf+headerSz));
+ free(buf); buf=(unsigned char*)b2; headerSz=0;
+ } else
+ {
+ if ((buf[0]==0xef)&&(buf[1]==0xbb)&&(buf[2]==0xbf)) headerSz=3;
+ }
+ }
+#endif
+
+ if (!buf) { if (pResults) pResults->error=eXMLErrorCharConversionError; return emptyXMLNode; }
+ XMLNode x=parseString((XMLSTR)(buf+headerSz),tag,pResults);
+ free(buf);
+ return x;
+}
+
+static inline void charmemset(XMLSTR dest,XMLCHAR c,int l) { while (l--) *(dest++)=c; }
+// private:
+// Creates an user friendly XML string from a given element with
+// appropriate white space and carriage returns.
+//
+// This recurses through all subnodes then adds contents of the nodes to the
+// string.
+int XMLNode::CreateXMLStringR(XMLNodeData *pEntry, XMLSTR lpszMarker, int nFormat)
+{
+ int nResult = 0;
+ int cb=nFormat<0?0:nFormat;
+ int cbElement;
+ int nChildFormat=-1;
+ int nElementI=pEntry->nChild+pEntry->nText+pEntry->nClear;
+ int i,j;
+ if ((nFormat>=0)&&(nElementI==1)&&(pEntry->nText==1)&&(!pEntry->isDeclaration)) nFormat=-2;
+
+ assert(pEntry);
+
+#define LENSTR(lpsz) (lpsz ? xstrlen(lpsz) : 0)
+
+ // If the element has no name then assume this is the head node.
+ cbElement = (int)LENSTR(pEntry->lpszName);
+
+ if (cbElement)
+ {
+ // "<elementname "
+ if (lpszMarker)
+ {
+ if (cb) charmemset(lpszMarker, INDENTCHAR, cb);
+ nResult = cb;
+ lpszMarker[nResult++]=_CXML('<');
+ if (pEntry->isDeclaration) lpszMarker[nResult++]=_CXML('?');
+ xstrcpy(&lpszMarker[nResult], pEntry->lpszName);
+ nResult+=cbElement;
+ lpszMarker[nResult++]=_CXML(' ');
+
+ } else
+ {
+ nResult+=cbElement+2+cb;
+ if (pEntry->isDeclaration) nResult++;
+ }
+
+ // Enumerate attributes and add them to the string
+ XMLAttribute *pAttr=pEntry->pAttribute;
+ for (i=0; i<pEntry->nAttribute; i++)
+ {
+ // "Attrib
+ cb = (int)LENSTR(pAttr->lpszName);
+ if (cb)
+ {
+ if (lpszMarker) xstrcpy(&lpszMarker[nResult], pAttr->lpszName);
+ nResult += cb;
+ // "Attrib=Value "
+ if (pAttr->lpszValue)
+ {
+ cb=(int)ToXMLStringTool::lengthXMLString(pAttr->lpszValue);
+ if (lpszMarker)
+ {
+ lpszMarker[nResult]=_CXML('=');
+ lpszMarker[nResult+1]=_CXML('"');
+ if (cb) ToXMLStringTool::toXMLUnSafe(&lpszMarker[nResult+2],pAttr->lpszValue);
+ lpszMarker[nResult+cb+2]=_CXML('"');
+ }
+ nResult+=cb+3;
+ }
+ if (lpszMarker) lpszMarker[nResult] = _CXML(' ');
+ nResult++;
+ }
+ pAttr++;
+ }
+
+ if (pEntry->isDeclaration)
+ {
+ if (lpszMarker)
+ {
+ lpszMarker[nResult-1]=_CXML('?');
+ lpszMarker[nResult]=_CXML('>');
+ }
+ nResult++;
+ if (nFormat!=-1)
+ {
+ if (lpszMarker) lpszMarker[nResult]=_CXML('\n');
+ nResult++;
+ }
+ } else
+ // If there are child nodes we need to terminate the start tag
+ if (nElementI)
+ {
+ if (lpszMarker) lpszMarker[nResult-1]=_CXML('>');
+ if (nFormat>=0)
+ {
+ if (lpszMarker) lpszMarker[nResult]=_CXML('\n');
+ nResult++;
+ }
+ } else nResult--;
+ }
+
+ // Calculate the child format for when we recurse. This is used to
+ // determine the number of spaces used for prefixes.
+ if (nFormat!=-1)
+ {
+ if (cbElement&&(!pEntry->isDeclaration)) nChildFormat=nFormat+1;
+ else nChildFormat=nFormat;
+ }
+
+ // Enumerate through remaining children
+ for (i=0; i<nElementI; i++)
+ {
+ j=pEntry->pOrder[i];
+ switch((XMLElementType)(j&3))
+ {
+ // Text nodes
+ case eNodeText:
+ {
+ // "Text"
+ XMLCSTR pChild=pEntry->pText[j>>2];
+ cb = (int)ToXMLStringTool::lengthXMLString(pChild);
+ if (cb)
+ {
+ if (nFormat>=0)
+ {
+ if (lpszMarker)
+ {
+ charmemset(&lpszMarker[nResult],INDENTCHAR,nFormat+1);
+ ToXMLStringTool::toXMLUnSafe(&lpszMarker[nResult+nFormat+1],pChild);
+ lpszMarker[nResult+nFormat+1+cb]=_CXML('\n');
+ }
+ nResult+=cb+nFormat+2;
+ } else
+ {
+ if (lpszMarker) ToXMLStringTool::toXMLUnSafe(&lpszMarker[nResult], pChild);
+ nResult += cb;
+ }
+ }
+ break;
+ }
+
+ // Clear type nodes
+ case eNodeClear:
+ {
+ XMLClear *pChild=pEntry->pClear+(j>>2);
+ // "OpenTag"
+ cb = (int)LENSTR(pChild->lpszOpenTag);
+ if (cb)
+ {
+ if (nFormat!=-1)
+ {
+ if (lpszMarker)
+ {
+ charmemset(&lpszMarker[nResult], INDENTCHAR, nFormat+1);
+ xstrcpy(&lpszMarker[nResult+nFormat+1], pChild->lpszOpenTag);
+ }
+ nResult+=cb+nFormat+1;
+ }
+ else
+ {
+ if (lpszMarker)xstrcpy(&lpszMarker[nResult], pChild->lpszOpenTag);
+ nResult += cb;
+ }
+ }
+
+ // "OpenTag Value"
+ cb = (int)LENSTR(pChild->lpszValue);
+ if (cb)
+ {
+ if (lpszMarker) xstrcpy(&lpszMarker[nResult], pChild->lpszValue);
+ nResult += cb;
+ }
+
+ // "OpenTag Value CloseTag"
+ cb = (int)LENSTR(pChild->lpszCloseTag);
+ if (cb)
+ {
+ if (lpszMarker) xstrcpy(&lpszMarker[nResult], pChild->lpszCloseTag);
+ nResult += cb;
+ }
+
+ if (nFormat!=-1)
+ {
+ if (lpszMarker) lpszMarker[nResult] = _CXML('\n');
+ nResult++;
+ }
+ break;
+ }
+
+ // Element nodes
+ case eNodeChild:
+ {
+ // Recursively add child nodes
+ nResult += CreateXMLStringR(pEntry->pChild[j>>2].d, lpszMarker ? lpszMarker + nResult : 0, nChildFormat);
+ break;
+ }
+ default: break;
+ }
+ }
+
+ if ((cbElement)&&(!pEntry->isDeclaration))
+ {
+ // If we have child entries we need to use long XML notation for
+ // closing the element - "<elementname>blah blah blah</elementname>"
+ if (nElementI)
+ {
+ // "</elementname>\0"
+ if (lpszMarker)
+ {
+ if (nFormat >=0)
+ {
+ charmemset(&lpszMarker[nResult], INDENTCHAR,nFormat);
+ nResult+=nFormat;
+ }
+
+ lpszMarker[nResult]=_CXML('<'); lpszMarker[nResult+1]=_CXML('/');
+ nResult += 2;
+ xstrcpy(&lpszMarker[nResult], pEntry->lpszName);
+ nResult += cbElement;
+
+ lpszMarker[nResult]=_CXML('>');
+ if (nFormat == -1) nResult++;
+ else
+ {
+ lpszMarker[nResult+1]=_CXML('\n');
+ nResult+=2;
+ }
+ } else
+ {
+ if (nFormat>=0) nResult+=cbElement+4+nFormat;
+ else if (nFormat==-1) nResult+=cbElement+3;
+ else nResult+=cbElement+4;
+ }
+ } else
+ {
+ // If there are no children we can use shorthand XML notation -
+ // "<elementname/>"
+ // "/>\0"
+ if (lpszMarker)
+ {
+ lpszMarker[nResult]=_CXML('/'); lpszMarker[nResult+1]=_CXML('>');
+ if (nFormat != -1) lpszMarker[nResult+2]=_CXML('\n');
+ }
+ nResult += nFormat == -1 ? 2 : 3;
+ }
+ }
+
+ return nResult;
+}
+
+#undef LENSTR
+
+// Create an XML string
+// @param int nFormat - 0 if no formatting is required
+// otherwise nonzero for formatted text
+// with carriage returns and indentation.
+// @param int *pnSize - [out] pointer to the size of the
+// returned string not including the
+// NULL terminator.
+// @return XMLSTR - Allocated XML string, you must free
+// this with free().
+XMLSTR XMLNode::createXMLString(int nFormat, int *pnSize) const
+{
+ if (!d) { if (pnSize) *pnSize=0; return NULL; }
+
+ XMLSTR lpszResult = NULL;
+ int cbStr;
+
+ // Recursively Calculate the size of the XML string
+ if (!dropWhiteSpace) nFormat=0;
+ nFormat = nFormat ? 0 : -1;
+ cbStr = CreateXMLStringR(d, 0, nFormat);
+ // Alllocate memory for the XML string + the NULL terminator and
+ // create the recursively XML string.
+ lpszResult=(XMLSTR)malloc((cbStr+1)*sizeof(XMLCHAR));
+ CreateXMLStringR(d, lpszResult, nFormat);
+ lpszResult[cbStr]=_CXML('\0');
+ if (pnSize) *pnSize = cbStr;
+ return lpszResult;
+}
+
+int XMLNode::detachFromParent(XMLNodeData *d)
+{
+ XMLNode *pa=d->pParent->pChild;
+ int i=0;
+ while (((void*)(pa[i].d))!=((void*)d)) i++;
+ d->pParent->nChild--;
+ if (d->pParent->nChild) memmove(pa+i,pa+i+1,(d->pParent->nChild-i)*sizeof(XMLNode));
+ else { free(pa); d->pParent->pChild=NULL; }
+ return removeOrderElement(d->pParent,eNodeChild,i);
+}
+
+XMLNode::~XMLNode()
+{
+ if (!d) return;
+ d->ref_count--;
+ emptyTheNode(0);
+}
+void XMLNode::deleteNodeContent()
+{
+ if (!d) return;
+ if (d->pParent) { detachFromParent(d); d->pParent=NULL; d->ref_count--; }
+ emptyTheNode(1);
+}
+void XMLNode::emptyTheNode(char force)
+{
+ XMLNodeData *dd=d; // warning: must stay this way!
+ if ((dd->ref_count==0)||force)
+ {
+ if (d->pParent) detachFromParent(d);
+ int i;
+ XMLNode *pc;
+ for(i=0; i<dd->nChild; i++)
+ {
+ pc=dd->pChild+i;
+ pc->d->pParent=NULL;
+ pc->d->ref_count--;
+ pc->emptyTheNode(force);
+ }
+ myFree(dd->pChild);
+ for(i=0; i<dd->nText; i++) free((void*)dd->pText[i]);
+ myFree(dd->pText);
+ for(i=0; i<dd->nClear; i++) free((void*)dd->pClear[i].lpszValue);
+ myFree(dd->pClear);
+ for(i=0; i<dd->nAttribute; i++)
+ {
+ free((void*)dd->pAttribute[i].lpszName);
+ if (dd->pAttribute[i].lpszValue) free((void*)dd->pAttribute[i].lpszValue);
+ }
+ myFree(dd->pAttribute);
+ myFree(dd->pOrder);
+ myFree((void*)dd->lpszName);
+ dd->nChild=0; dd->nText=0; dd->nClear=0; dd->nAttribute=0;
+ dd->pChild=NULL; dd->pText=NULL; dd->pClear=NULL; dd->pAttribute=NULL;
+ dd->pOrder=NULL; dd->lpszName=NULL; dd->pParent=NULL;
+ }
+ if (dd->ref_count==0)
+ {
+ free(dd);
+ d=NULL;
+ }
+}
+
+XMLNode& XMLNode::operator=( const XMLNode& A )
+{
+ // shallow copy
+ if (this != &A)
+ {
+ if (d) { d->ref_count--; emptyTheNode(0); }
+ d=A.d;
+ if (d) (d->ref_count) ++ ;
+ }
+ return *this;
+}
+
+XMLNode::XMLNode(const XMLNode &A)
+{
+ // shallow copy
+ d=A.d;
+ if (d) (d->ref_count)++ ;
+}
+
+XMLNode XMLNode::deepCopy() const
+{
+ if (!d) return XMLNode::emptyXMLNode;
+ XMLNode x(NULL,stringDup(d->lpszName),d->isDeclaration);
+ XMLNodeData *p=x.d;
+ int n=d->nAttribute;
+ if (n)
+ {
+ p->nAttribute=n; p->pAttribute=(XMLAttribute*)malloc(n*sizeof(XMLAttribute));
+ while (n--)
+ {
+ p->pAttribute[n].lpszName=stringDup(d->pAttribute[n].lpszName);
+ p->pAttribute[n].lpszValue=stringDup(d->pAttribute[n].lpszValue);
+ }
+ }
+ if (d->pOrder)
+ {
+ n=(d->nChild+d->nText+d->nClear)*sizeof(int); p->pOrder=(int*)malloc(n); memcpy(p->pOrder,d->pOrder,n);
+ }
+ n=d->nText;
+ if (n)
+ {
+ p->nText=n; p->pText=(XMLCSTR*)malloc(n*sizeof(XMLCSTR));
+ while(n--) p->pText[n]=stringDup(d->pText[n]);
+ }
+ n=d->nClear;
+ if (n)
+ {
+ p->nClear=n; p->pClear=(XMLClear*)malloc(n*sizeof(XMLClear));
+ while (n--)
+ {
+ p->pClear[n].lpszCloseTag=d->pClear[n].lpszCloseTag;
+ p->pClear[n].lpszOpenTag=d->pClear[n].lpszOpenTag;
+ p->pClear[n].lpszValue=stringDup(d->pClear[n].lpszValue);
+ }
+ }
+ n=d->nChild;
+ if (n)
+ {
+ p->nChild=n; p->pChild=(XMLNode*)malloc(n*sizeof(XMLNode));
+ while (n--)
+ {
+ p->pChild[n].d=NULL;
+ p->pChild[n]=d->pChild[n].deepCopy();
+ p->pChild[n].d->pParent=p;
+ }
+ }
+ return x;
+}
+
+XMLNode XMLNode::addChild(XMLNode childNode, int pos)
+{
+ XMLNodeData *dc=childNode.d;
+ if ((!dc)||(!d)) return childNode;
+ if (!dc->lpszName)
+ {
+ // this is a root node: todo: correct fix
+ int j=pos;
+ while (dc->nChild)
+ {
+ addChild(dc->pChild[0],j);
+ if (pos>=0) j++;
+ }
+ return childNode;
+ }
+ if (dc->pParent) { if ((detachFromParent(dc)<=pos)&&(dc->pParent==d)) pos--; } else dc->ref_count++;
+ dc->pParent=d;
+// int nc=d->nChild;
+// d->pChild=(XMLNode*)myRealloc(d->pChild,(nc+1),memoryIncrease,sizeof(XMLNode));
+ d->pChild=(XMLNode*)addToOrder(0,&pos,d->nChild,d->pChild,sizeof(XMLNode),eNodeChild);
+ d->pChild[pos].d=dc;
+ d->nChild++;
+ return childNode;
+}
+
+void XMLNode::deleteAttribute(int i)
+{
+ if ((!d)||(i<0)||(i>=d->nAttribute)) return;
+ d->nAttribute--;
+ XMLAttribute *p=d->pAttribute+i;
+ free((void*)p->lpszName);
+ if (p->lpszValue) free((void*)p->lpszValue);
+ if (d->nAttribute) memmove(p,p+1,(d->nAttribute-i)*sizeof(XMLAttribute)); else { free(p); d->pAttribute=NULL; }
+}
+
+void XMLNode::deleteAttribute(XMLAttribute *a){ if (a) deleteAttribute(a->lpszName); }
+void XMLNode::deleteAttribute(XMLCSTR lpszName)
+{
+ int j=0;
+ getAttribute(lpszName,&j);
+ if (j) deleteAttribute(j-1);
+}
+
+XMLAttribute *XMLNode::updateAttribute_WOSD(XMLSTR lpszNewValue, XMLSTR lpszNewName,int i)
+{
+ if (!d) { if (lpszNewValue) free(lpszNewValue); if (lpszNewName) free(lpszNewName); return NULL; }
+ if (i>=d->nAttribute)
+ {
+ if (lpszNewName) return addAttribute_WOSD(lpszNewName,lpszNewValue);
+ return NULL;
+ }
+ XMLAttribute *p=d->pAttribute+i;
+ if (p->lpszValue&&p->lpszValue!=lpszNewValue) free((void*)p->lpszValue);
+ p->lpszValue=lpszNewValue;
+ if (lpszNewName&&p->lpszName!=lpszNewName) { free((void*)p->lpszName); p->lpszName=lpszNewName; };
+ return p;
+}
+
+XMLAttribute *XMLNode::updateAttribute_WOSD(XMLAttribute *newAttribute, XMLAttribute *oldAttribute)
+{
+ if (oldAttribute) return updateAttribute_WOSD((XMLSTR)newAttribute->lpszValue,(XMLSTR)newAttribute->lpszName,oldAttribute->lpszName);
+ return addAttribute_WOSD((XMLSTR)newAttribute->lpszName,(XMLSTR)newAttribute->lpszValue);
+}
+
+XMLAttribute *XMLNode::updateAttribute_WOSD(XMLSTR lpszNewValue, XMLSTR lpszNewName,XMLCSTR lpszOldName)
+{
+ int j=0;
+ getAttribute(lpszOldName,&j);
+ if (j) return updateAttribute_WOSD(lpszNewValue,lpszNewName,j-1);
+ else
+ {
+ if (lpszNewName) return addAttribute_WOSD(lpszNewName,lpszNewValue);
+ else return addAttribute_WOSD(stringDup(lpszOldName),lpszNewValue);
+ }
+}
+
+int XMLNode::indexText(XMLCSTR lpszValue) const
+{
+ if (!d) return -1;
+ int i,l=d->nText;
+ if (!lpszValue) { if (l) return 0; return -1; }
+ XMLCSTR *p=d->pText;
+ for (i=0; i<l; i++) if (lpszValue==p[i]) return i;
+ return -1;
+}
+
+void XMLNode::deleteText(int i)
+{
+ if ((!d)||(i<0)||(i>=d->nText)) return;
+ d->nText--;
+ XMLCSTR *p=d->pText+i;
+ free((void*)*p);
+ if (d->nText) memmove(p,p+1,(d->nText-i)*sizeof(XMLCSTR)); else { free(p); d->pText=NULL; }
+ removeOrderElement(d,eNodeText,i);
+}
+
+void XMLNode::deleteText(XMLCSTR lpszValue) { deleteText(indexText(lpszValue)); }
+
+XMLCSTR XMLNode::updateText_WOSD(XMLSTR lpszNewValue, int i)
+{
+ if (!d) { if (lpszNewValue) free(lpszNewValue); return NULL; }
+ if (i>=d->nText) return addText_WOSD(lpszNewValue);
+ XMLCSTR *p=d->pText+i;
+ if (*p!=lpszNewValue) { free((void*)*p); *p=lpszNewValue; }
+ return lpszNewValue;
+}
+
+XMLCSTR XMLNode::updateText_WOSD(XMLSTR lpszNewValue, XMLCSTR lpszOldValue)
+{
+ if (!d) { if (lpszNewValue) free(lpszNewValue); return NULL; }
+ int i=indexText(lpszOldValue);
+ if (i>=0) return updateText_WOSD(lpszNewValue,i);
+ return addText_WOSD(lpszNewValue);
+}
+
+void XMLNode::deleteClear(int i)
+{
+ if ((!d)||(i<0)||(i>=d->nClear)) return;
+ d->nClear--;
+ XMLClear *p=d->pClear+i;
+ free((void*)p->lpszValue);
+ if (d->nClear) memmove(p,p+1,(d->nClear-i)*sizeof(XMLClear)); else { free(p); d->pClear=NULL; }
+ removeOrderElement(d,eNodeClear,i);
+}
+
+int XMLNode::indexClear(XMLCSTR lpszValue) const
+{
+ if (!d) return -1;
+ int i,l=d->nClear;
+ if (!lpszValue) { if (l) return 0; return -1; }
+ XMLClear *p=d->pClear;
+ for (i=0; i<l; i++) if (lpszValue==p[i].lpszValue) return i;
+ return -1;
+}
+
+void XMLNode::deleteClear(XMLCSTR lpszValue) { deleteClear(indexClear(lpszValue)); }
+void XMLNode::deleteClear(XMLClear *a) { if (a) deleteClear(a->lpszValue); }
+
+XMLClear *XMLNode::updateClear_WOSD(XMLSTR lpszNewContent, int i)
+{
+ if (!d) { if (lpszNewContent) free(lpszNewContent); return NULL; }
+ if (i>=d->nClear) return addClear_WOSD(lpszNewContent);
+ XMLClear *p=d->pClear+i;
+ if (lpszNewContent!=p->lpszValue) { free((void*)p->lpszValue); p->lpszValue=lpszNewContent; }
+ return p;
+}
+
+XMLClear *XMLNode::updateClear_WOSD(XMLSTR lpszNewContent, XMLCSTR lpszOldValue)
+{
+ if (!d) { if (lpszNewContent) free(lpszNewContent); return NULL; }
+ int i=indexClear(lpszOldValue);
+ if (i>=0) return updateClear_WOSD(lpszNewContent,i);
+ return addClear_WOSD(lpszNewContent);
+}
+
+XMLClear *XMLNode::updateClear_WOSD(XMLClear *newP,XMLClear *oldP)
+{
+ if (oldP) return updateClear_WOSD((XMLSTR)newP->lpszValue,(XMLSTR)oldP->lpszValue);
+ return NULL;
+}
+
+int XMLNode::nChildNode(XMLCSTR name) const
+{
+ if (!d) return 0;
+ int i,j=0,n=d->nChild;
+ XMLNode *pc=d->pChild;
+ for (i=0; i<n; i++)
+ {
+ if (xstricmp(pc->d->lpszName, name)==0) j++;
+ pc++;
+ }
+ return j;
+}
+
+XMLNode XMLNode::getChildNode(XMLCSTR name, int *j) const
+{
+ if (!d) return emptyXMLNode;
+ int i=0,n=d->nChild;
+ if (j) i=*j;
+ XMLNode *pc=d->pChild+i;
+ for (; i<n; i++)
+ {
+ if (!xstricmp(pc->d->lpszName, name))
+ {
+ if (j) *j=i+1;
+ return *pc;
+ }
+ pc++;
+ }
+ return emptyXMLNode;
+}
+
+XMLNode XMLNode::getChildNode(XMLCSTR name, int j) const
+{
+ if (!d) return emptyXMLNode;
+ if (j>=0)
+ {
+ int i=0;
+ while (j-->0) getChildNode(name,&i);
+ return getChildNode(name,&i);
+ }
+ int i=d->nChild;
+ while (i--) if (!xstricmp(name,d->pChild[i].d->lpszName)) break;
+ if (i<0) return emptyXMLNode;
+ return getChildNode(i);
+}
+
+XMLNode XMLNode::getChildNodeByPath(XMLCSTR _path, char createMissing, XMLCHAR sep)
+{
+ XMLSTR path=stringDup(_path);
+ XMLNode x=getChildNodeByPathNonConst(path,createMissing,sep);
+ if (path) free(path);
+ return x;
+}
+
+XMLNode XMLNode::getChildNodeByPathNonConst(XMLSTR path, char createIfMissing, XMLCHAR sep)
+{
+ if ((!path)||(!(*path))) return *this;
+ XMLNode xn,xbase=*this;
+ XMLCHAR *tend1,sepString[2]; sepString[0]=sep; sepString[1]=0;
+ tend1=xstrstr(path,sepString);
+ while(tend1)
+ {
+ *tend1=0;
+ xn=xbase.getChildNode(path);
+ if (xn.isEmpty())
+ {
+ if (createIfMissing) xn=xbase.addChild(path);
+ else { *tend1=sep; return XMLNode::emptyXMLNode; }
+ }
+ *tend1=sep;
+ xbase=xn;
+ path=tend1+1;
+ tend1=xstrstr(path,sepString);
+ }
+ xn=xbase.getChildNode(path);
+ if (xn.isEmpty()&&createIfMissing) xn=xbase.addChild(path);
+ return xn;
+}
+
+XMLElementPosition XMLNode::positionOfText (int i) const { if (i>=d->nText ) i=d->nText-1; return findPosition(d,i,eNodeText ); }
+XMLElementPosition XMLNode::positionOfClear (int i) const { if (i>=d->nClear) i=d->nClear-1; return findPosition(d,i,eNodeClear); }
+XMLElementPosition XMLNode::positionOfChildNode(int i) const { if (i>=d->nChild) i=d->nChild-1; return findPosition(d,i,eNodeChild); }
+XMLElementPosition XMLNode::positionOfText (XMLCSTR lpszValue) const { return positionOfText (indexText (lpszValue)); }
+XMLElementPosition XMLNode::positionOfClear(XMLCSTR lpszValue) const { return positionOfClear(indexClear(lpszValue)); }
+XMLElementPosition XMLNode::positionOfClear(XMLClear *a) const { if (a) return positionOfClear(a->lpszValue); return positionOfClear(); }
+XMLElementPosition XMLNode::positionOfChildNode(XMLNode x) const
+{
+ if ((!d)||(!x.d)) return -1;
+ XMLNodeData *dd=x.d;
+ XMLNode *pc=d->pChild;
+ int i=d->nChild;
+ while (i--) if (pc[i].d==dd) return findPosition(d,i,eNodeChild);
+ return -1;
+}
+XMLElementPosition XMLNode::positionOfChildNode(XMLCSTR name, int count) const
+{
+ if (!name) return positionOfChildNode(count);
+ int j=0;
+ do { getChildNode(name,&j); if (j<0) return -1; } while (count--);
+ return findPosition(d,j-1,eNodeChild);
+}
+
+XMLNode XMLNode::getChildNodeWithAttribute(XMLCSTR name,XMLCSTR attributeName,XMLCSTR attributeValue, int *k) const
+{
+ int i=0,j;
+ if (k) i=*k;
+ XMLNode x;
+ XMLCSTR t;
+ do
+ {
+ x=getChildNode(name,&i);
+ if (!x.isEmpty())
+ {
+ if (attributeValue)
+ {
+ j=0;
+ do
+ {
+ t=x.getAttribute(attributeName,&j);
+ if (t&&(xstricmp(attributeValue,t)==0)) { if (k) *k=i; return x; }
+ } while (t);
+ } else
+ {
+ if (x.isAttributeSet(attributeName)) { if (k) *k=i; return x; }
+ }
+ }
+ } while (!x.isEmpty());
+ return emptyXMLNode;
+}
+
+// Find an attribute on an node.
+XMLCSTR XMLNode::getAttribute(XMLCSTR lpszAttrib, int *j) const
+{
+ if (!d) return NULL;
+ int i=0,n=d->nAttribute;
+ if (j) i=*j;
+ XMLAttribute *pAttr=d->pAttribute+i;
+ for (; i<n; i++)
+ {
+ if (xstricmp(pAttr->lpszName, lpszAttrib)==0)
+ {
+ if (j) *j=i+1;
+ return pAttr->lpszValue;
+ }
+ pAttr++;
+ }
+ return NULL;
+}
+
+char XMLNode::isAttributeSet(XMLCSTR lpszAttrib) const
+{
+ if (!d) return FALSE;
+ int i,n=d->nAttribute;
+ XMLAttribute *pAttr=d->pAttribute;
+ for (i=0; i<n; i++)
+ {
+ if (xstricmp(pAttr->lpszName, lpszAttrib)==0)
+ {
+ return TRUE;
+ }
+ pAttr++;
+ }
+ return FALSE;
+}
+
+XMLCSTR XMLNode::getAttribute(XMLCSTR name, int j) const
+{
+ if (!d) return NULL;
+ int i=0;
+ while (j-->0) getAttribute(name,&i);
+ return getAttribute(name,&i);
+}
+
+XMLNodeContents XMLNode::enumContents(int i) const
+{
+ XMLNodeContents c;
+ if (!d) { c.etype=eNodeNULL; return c; }
+ if (i<d->nAttribute)
+ {
+ c.etype=eNodeAttribute;
+ c.attrib=d->pAttribute[i];
+ return c;
+ }
+ i-=d->nAttribute;
+ c.etype=(XMLElementType)(d->pOrder[i]&3);
+ i=(d->pOrder[i])>>2;
+ switch (c.etype)
+ {
+ case eNodeChild: c.child = d->pChild[i]; break;
+ case eNodeText: c.text = d->pText[i]; break;
+ case eNodeClear: c.clear = d->pClear[i]; break;
+ default: break;
+ }
+ return c;
+}
+
+XMLCSTR XMLNode::getName() const { if (!d) return NULL; return d->lpszName; }
+int XMLNode::nText() const { if (!d) return 0; return d->nText; }
+int XMLNode::nChildNode() const { if (!d) return 0; return d->nChild; }
+int XMLNode::nAttribute() const { if (!d) return 0; return d->nAttribute; }
+int XMLNode::nClear() const { if (!d) return 0; return d->nClear; }
+int XMLNode::nElement() const { if (!d) return 0; return d->nAttribute+d->nChild+d->nText+d->nClear; }
+XMLClear XMLNode::getClear (int i) const { if ((!d)||(i>=d->nClear )) return emptyXMLClear; return d->pClear[i]; }
+XMLAttribute XMLNode::getAttribute (int i) const { if ((!d)||(i>=d->nAttribute)) return emptyXMLAttribute; return d->pAttribute[i]; }
+XMLCSTR XMLNode::getAttributeName (int i) const { if ((!d)||(i>=d->nAttribute)) return NULL; return d->pAttribute[i].lpszName; }
+XMLCSTR XMLNode::getAttributeValue(int i) const { if ((!d)||(i>=d->nAttribute)) return NULL; return d->pAttribute[i].lpszValue; }
+XMLCSTR XMLNode::getText (int i) const { if ((!d)||(i>=d->nText )) return NULL; return d->pText[i]; }
+XMLNode XMLNode::getChildNode (int i) const { if ((!d)||(i>=d->nChild )) return emptyXMLNode; return d->pChild[i]; }
+XMLNode XMLNode::getParentNode ( ) const { if ((!d)||(!d->pParent )) return emptyXMLNode; return XMLNode(d->pParent); }
+char XMLNode::isDeclaration ( ) const { if (!d) return 0; return d->isDeclaration; }
+char XMLNode::isEmpty ( ) const { return (d==NULL); }
+XMLNode XMLNode::emptyNode ( ) { return XMLNode::emptyXMLNode; }
+
+XMLNode XMLNode::addChild(XMLCSTR lpszName, char isDeclaration, XMLElementPosition pos)
+ { return addChild_priv(0,stringDup(lpszName),isDeclaration,pos); }
+XMLNode XMLNode::addChild_WOSD(XMLSTR lpszName, char isDeclaration, XMLElementPosition pos)
+ { return addChild_priv(0,lpszName,isDeclaration,pos); }
+XMLAttribute *XMLNode::addAttribute(XMLCSTR lpszName, XMLCSTR lpszValue)
+ { return addAttribute_priv(0,stringDup(lpszName),stringDup(lpszValue)); }
+XMLAttribute *XMLNode::addAttribute_WOSD(XMLSTR lpszName, XMLSTR lpszValuev)
+ { return addAttribute_priv(0,lpszName,lpszValuev); }
+XMLCSTR XMLNode::addText(XMLCSTR lpszValue, XMLElementPosition pos)
+ { return addText_priv(0,stringDup(lpszValue),pos); }
+XMLCSTR XMLNode::addText_WOSD(XMLSTR lpszValue, XMLElementPosition pos)
+ { return addText_priv(0,lpszValue,pos); }
+XMLClear *XMLNode::addClear(XMLCSTR lpszValue, XMLCSTR lpszOpen, XMLCSTR lpszClose, XMLElementPosition pos)
+ { return addClear_priv(0,stringDup(lpszValue),lpszOpen,lpszClose,pos); }
+XMLClear *XMLNode::addClear_WOSD(XMLSTR lpszValue, XMLCSTR lpszOpen, XMLCSTR lpszClose, XMLElementPosition pos)
+ { return addClear_priv(0,lpszValue,lpszOpen,lpszClose,pos); }
+XMLCSTR XMLNode::updateName(XMLCSTR lpszName)
+ { return updateName_WOSD(stringDup(lpszName)); }
+XMLAttribute *XMLNode::updateAttribute(XMLAttribute *newAttribute, XMLAttribute *oldAttribute)
+ { return updateAttribute_WOSD(stringDup(newAttribute->lpszValue),stringDup(newAttribute->lpszName),oldAttribute->lpszName); }
+XMLAttribute *XMLNode::updateAttribute(XMLCSTR lpszNewValue, XMLCSTR lpszNewName,int i)
+ { return updateAttribute_WOSD(stringDup(lpszNewValue),stringDup(lpszNewName),i); }
+XMLAttribute *XMLNode::updateAttribute(XMLCSTR lpszNewValue, XMLCSTR lpszNewName,XMLCSTR lpszOldName)
+ { return updateAttribute_WOSD(stringDup(lpszNewValue),stringDup(lpszNewName),lpszOldName); }
+XMLCSTR XMLNode::updateText(XMLCSTR lpszNewValue, int i)
+ { return updateText_WOSD(stringDup(lpszNewValue),i); }
+XMLCSTR XMLNode::updateText(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue)
+ { return updateText_WOSD(stringDup(lpszNewValue),lpszOldValue); }
+XMLClear *XMLNode::updateClear(XMLCSTR lpszNewContent, int i)
+ { return updateClear_WOSD(stringDup(lpszNewContent),i); }
+XMLClear *XMLNode::updateClear(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue)
+ { return updateClear_WOSD(stringDup(lpszNewValue),lpszOldValue); }
+XMLClear *XMLNode::updateClear(XMLClear *newP,XMLClear *oldP)
+ { return updateClear_WOSD(stringDup(newP->lpszValue),oldP->lpszValue); }
+
+char XMLNode::setGlobalOptions(XMLCharEncoding _characterEncoding, char _guessWideCharChars,
+ char _dropWhiteSpace, char _removeCommentsInMiddleOfText)
+{
+ guessWideCharChars=_guessWideCharChars; dropWhiteSpace=_dropWhiteSpace; removeCommentsInMiddleOfText=_removeCommentsInMiddleOfText;
+#ifdef _XMLWIDECHAR
+ if (_characterEncoding) characterEncoding=_characterEncoding;
+#else
+ switch(_characterEncoding)
+ {
+ case char_encoding_UTF8: characterEncoding=_characterEncoding; XML_ByteTable=XML_utf8ByteTable; break;
+ case char_encoding_legacy: characterEncoding=_characterEncoding; XML_ByteTable=XML_legacyByteTable; break;
+ case char_encoding_ShiftJIS: characterEncoding=_characterEncoding; XML_ByteTable=XML_sjisByteTable; break;
+ case char_encoding_GB2312: characterEncoding=_characterEncoding; XML_ByteTable=XML_gb2312ByteTable; break;
+ case char_encoding_Big5:
+ case char_encoding_GBK: characterEncoding=_characterEncoding; XML_ByteTable=XML_gbk_big5_ByteTable; break;
+ default: return 1;
+ }
+#endif
+ return 0;
+}
+
+XMLNode::XMLCharEncoding XMLNode::guessCharEncoding(void *buf,int l, char useXMLEncodingAttribute)
+{
+#ifdef _XMLWIDECHAR
+ return (XMLCharEncoding)0;
+#else
+ if (l<25) return (XMLCharEncoding)0;
+ if (guessWideCharChars&&(myIsTextWideChar(buf,l))) return (XMLCharEncoding)0;
+ unsigned char *b=(unsigned char*)buf;
+ if ((b[0]==0xef)&&(b[1]==0xbb)&&(b[2]==0xbf)) return char_encoding_UTF8;
+
+ // Match utf-8 model ?
+ XMLCharEncoding bestGuess=char_encoding_UTF8;
+ int i=0;
+ while (i<l)
+ switch (XML_utf8ByteTable[b[i]])
+ {
+ case 4: i++; if ((i<l)&&(b[i]& 0xC0)!=0x80) { bestGuess=char_encoding_legacy; i=l; } // 10bbbbbb ?
+ case 3: i++; if ((i<l)&&(b[i]& 0xC0)!=0x80) { bestGuess=char_encoding_legacy; i=l; } // 10bbbbbb ?
+ case 2: i++; if ((i<l)&&(b[i]& 0xC0)!=0x80) { bestGuess=char_encoding_legacy; i=l; } // 10bbbbbb ?
+ case 1: i++; break;
+ case 0: i=l;
+ }
+ if (!useXMLEncodingAttribute) return bestGuess;
+ // if encoding is specified and different from utf-8 than it's non-utf8
+ // otherwise it's utf-8
+ char bb[201];
+ l=mmin(l,200);
+ memcpy(bb,buf,l); // copy buf into bb to be able to do "bb[l]=0"
+ bb[l]=0;
+ b=(unsigned char*)strstr(bb,"encoding");
+ if (!b) return bestGuess;
+ b+=8; while XML_isSPACECHAR(*b) b++; if (*b!='=') return bestGuess;
+ b++; while XML_isSPACECHAR(*b) b++; if ((*b!='\'')&&(*b!='"')) return bestGuess;
+ b++; while XML_isSPACECHAR(*b) b++;
+
+ if ((xstrnicmp((char*)b,"utf-8",5)==0)||
+ (xstrnicmp((char*)b,"utf8",4)==0))
+ {
+ if (bestGuess==char_encoding_legacy) return char_encoding_error;
+ return char_encoding_UTF8;
+ }
+
+ if ((xstrnicmp((char*)b,"shiftjis",8)==0)||
+ (xstrnicmp((char*)b,"shift-jis",9)==0)||
+ (xstrnicmp((char*)b,"sjis",4)==0)) return char_encoding_ShiftJIS;
+
+ if (xstrnicmp((char*)b,"GB2312",6)==0) return char_encoding_GB2312;
+ if (xstrnicmp((char*)b,"Big5",4)==0) return char_encoding_Big5;
+ if (xstrnicmp((char*)b,"GBK",3)==0) return char_encoding_GBK;
+
+ return char_encoding_legacy;
+#endif
+}
+#undef XML_isSPACECHAR
+
+//////////////////////////////////////////////////////////
+// Here starts the base64 conversion functions. //
+//////////////////////////////////////////////////////////
+
+static const char base64Fillchar = _CXML('='); // used to mark partial words at the end
+
+// this lookup table defines the base64 encoding
+XMLCSTR base64EncodeTable=_CXML("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/");
+
+// Decode Table gives the index of any valid base64 character in the Base64 table]
+// 96: '=' - 97: space char - 98: illegal char - 99: end of string
+const unsigned char base64DecodeTable[] = {
+ 99,98,98,98,98,98,98,98,98,97, 97,98,98,97,98,98,98,98,98,98, 98,98,98,98,98,98,98,98,98,98, //00 -29
+ 98,98,97,98,98,98,98,98,98,98, 98,98,98,62,98,98,98,63,52,53, 54,55,56,57,58,59,60,61,98,98, //30 -59
+ 98,96,98,98,98, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14, 15,16,17,18,19,20,21,22,23,24, //60 -89
+ 25,98,98,98,98,98,98,26,27,28, 29,30,31,32,33,34,35,36,37,38, 39,40,41,42,43,44,45,46,47,48, //90 -119
+ 49,50,51,98,98,98,98,98,98,98, 98,98,98,98,98,98,98,98,98,98, 98,98,98,98,98,98,98,98,98,98, //120 -149
+ 98,98,98,98,98,98,98,98,98,98, 98,98,98,98,98,98,98,98,98,98, 98,98,98,98,98,98,98,98,98,98, //150 -179
+ 98,98,98,98,98,98,98,98,98,98, 98,98,98,98,98,98,98,98,98,98, 98,98,98,98,98,98,98,98,98,98, //180 -209
+ 98,98,98,98,98,98,98,98,98,98, 98,98,98,98,98,98,98,98,98,98, 98,98,98,98,98,98,98,98,98,98, //210 -239
+ 98,98,98,98,98,98,98,98,98,98, 98,98,98,98,98,98 //240 -255
+};
+
+XMLParserBase64Tool::~XMLParserBase64Tool(){ freeBuffer(); }
+
+void XMLParserBase64Tool::freeBuffer(){ if (buf) free(buf); buf=NULL; buflen=0; }
+
+int XMLParserBase64Tool::encodeLength(int inlen, char formatted)
+{
+ unsigned int i=((inlen-1)/3*4+4+1);
+ if (formatted) i+=inlen/54;
+ return i;
+}
+
+XMLSTR XMLParserBase64Tool::encode(unsigned char *inbuf, unsigned int inlen, char formatted)
+{
+ int i=encodeLength(inlen,formatted),k=17,eLen=inlen/3,j;
+ alloc(i*sizeof(XMLCHAR));
+ XMLSTR curr=(XMLSTR)buf;
+ for(i=0;i<eLen;i++)
+ {
+ // Copy next three bytes into lower 24 bits of int, paying attention to sign.
+ j=(inbuf[0]<<16)|(inbuf[1]<<8)|inbuf[2]; inbuf+=3;
+ // Encode the int into four chars
+ *(curr++)=base64EncodeTable[ j>>18 ];
+ *(curr++)=base64EncodeTable[(j>>12)&0x3f];
+ *(curr++)=base64EncodeTable[(j>> 6)&0x3f];
+ *(curr++)=base64EncodeTable[(j )&0x3f];
+ if (formatted) { if (!k) { *(curr++)=_CXML('\n'); k=18; } k--; }
+ }
+ eLen=inlen-eLen*3; // 0 - 2.
+ if (eLen==1)
+ {
+ *(curr++)=base64EncodeTable[ inbuf[0]>>2 ];
+ *(curr++)=base64EncodeTable[(inbuf[0]<<4)&0x3F];
+ *(curr++)=base64Fillchar;
+ *(curr++)=base64Fillchar;
+ } else if (eLen==2)
+ {
+ j=(inbuf[0]<<8)|inbuf[1];
+ *(curr++)=base64EncodeTable[ j>>10 ];
+ *(curr++)=base64EncodeTable[(j>> 4)&0x3f];
+ *(curr++)=base64EncodeTable[(j<< 2)&0x3f];
+ *(curr++)=base64Fillchar;
+ }
+ *(curr++)=0;
+ return (XMLSTR)buf;
+}
+
+unsigned int XMLParserBase64Tool::decodeSize(XMLCSTR data,XMLError *xe)
+{
+ if (xe) *xe=eXMLErrorNone;
+ int size=0;
+ unsigned char c;
+ //skip any extra characters (e.g. newlines or spaces)
+ while (*data)
+ {
+#ifdef _XMLWIDECHAR
+ if (*data>255) { if (xe) *xe=eXMLErrorBase64DecodeIllegalCharacter; return 0; }
+#endif
+ c=base64DecodeTable[(unsigned char)(*data)];
+ if (c<97) size++;
+ else if (c==98) { if (xe) *xe=eXMLErrorBase64DecodeIllegalCharacter; return 0; }
+ data++;
+ }
+ if (xe&&(size%4!=0)) *xe=eXMLErrorBase64DataSizeIsNotMultipleOf4;
+ if (size==0) return 0;
+ do { data--; size--; } while(*data==base64Fillchar); size++;
+ return (unsigned int)((size*3)/4);
+}
+
+unsigned char XMLParserBase64Tool::decode(XMLCSTR data, unsigned char *buf, int len, XMLError *xe)
+{
+ if (xe) *xe=eXMLErrorNone;
+ int i=0,p=0;
+ unsigned char d,c;
+ for(;;)
+ {
+
+#ifdef _XMLWIDECHAR
+#define BASE64DECODE_READ_NEXT_CHAR(c) \
+ do { \
+ if (data[i]>255){ c=98; break; } \
+ c=base64DecodeTable[(unsigned char)data[i++]]; \
+ }while (c==97); \
+ if(c==98){ if(xe)*xe=eXMLErrorBase64DecodeIllegalCharacter; return 0; }
+#else
+#define BASE64DECODE_READ_NEXT_CHAR(c) \
+ do { c=base64DecodeTable[(unsigned char)data[i++]]; }while (c==97); \
+ if(c==98){ if(xe)*xe=eXMLErrorBase64DecodeIllegalCharacter; return 0; }
+#endif
+
+ BASE64DECODE_READ_NEXT_CHAR(c)
+ if (c==99) { return 2; }
+ if (c==96)
+ {
+ if (p==(int)len) return 2;
+ if (xe) *xe=eXMLErrorBase64DecodeTruncatedData;
+ return 1;
+ }
+
+ BASE64DECODE_READ_NEXT_CHAR(d)
+ if ((d==99)||(d==96)) { if (xe) *xe=eXMLErrorBase64DecodeTruncatedData; return 1; }
+ if (p==(int)len) { if (xe) *xe=eXMLErrorBase64DecodeBufferTooSmall; return 0; }
+ buf[p++]=(unsigned char)((c<<2)|((d>>4)&0x3));
+
+ BASE64DECODE_READ_NEXT_CHAR(c)
+ if (c==99) { if (xe) *xe=eXMLErrorBase64DecodeTruncatedData; return 1; }
+ if (p==(int)len)
+ {
+ if (c==96) return 2;
+ if (xe) *xe=eXMLErrorBase64DecodeBufferTooSmall;
+ return 0;
+ }
+ if (c==96) { if (xe) *xe=eXMLErrorBase64DecodeTruncatedData; return 1; }
+ buf[p++]=(unsigned char)(((d<<4)&0xf0)|((c>>2)&0xf));
+
+ BASE64DECODE_READ_NEXT_CHAR(d)
+ if (d==99 ) { if (xe) *xe=eXMLErrorBase64DecodeTruncatedData; return 1; }
+ if (p==(int)len)
+ {
+ if (d==96) return 2;
+ if (xe) *xe=eXMLErrorBase64DecodeBufferTooSmall;
+ return 0;
+ }
+ if (d==96) { if (xe) *xe=eXMLErrorBase64DecodeTruncatedData; return 1; }
+ buf[p++]=(unsigned char)(((c<<6)&0xc0)|d);
+ }
+}
+#undef BASE64DECODE_READ_NEXT_CHAR
+
+void XMLParserBase64Tool::alloc(int newsize)
+{
+ if ((!buf)&&(newsize)) { buf=malloc(newsize); buflen=newsize; return; }
+ if (newsize>buflen) { buf=realloc(buf,newsize); buflen=newsize; }
+}
+
+unsigned char *XMLParserBase64Tool::decode(XMLCSTR data, int *outlen, XMLError *xe)
+{
+ if (xe) *xe=eXMLErrorNone;
+ unsigned int len=decodeSize(data,xe);
+ if (outlen) *outlen=len;
+ if (!len) return NULL;
+ alloc(len+1);
+ if(!decode(data,(unsigned char*)buf,len,xe)){ return NULL; }
+ return (unsigned char*)buf;
+}
+
--- /dev/null
+/****************************************************************************/
+/*! \mainpage XMLParser library
+ * \section intro_sec Introduction
+ *
+ * This is a basic XML parser written in ANSI C++ for portability.
+ * It works by using recursion and a node tree for breaking
+ * down the elements of an XML document.
+ *
+ * @version V2.41
+ * @author Frank Vanden Berghen
+ *
+ * The following license terms for the "XMLParser library from Business-Insight" apply to projects
+ * that are in some way related to
+ * the "mcpat project", including applications
+ * using "mcpat project" and tools developed
+ * for enhancing "mcpat project". All other projects
+ * (not related to "mcpat project") have to use the "XMLParser library from Business-Insight"
+ * code under the Aladdin Free Public License (AFPL)
+ * See the file "AFPL-license.txt" for more informations about the AFPL license.
+ * (see http://www.artifex.com/downloads/doc/Public.htm for detailed AFPL terms)
+ *
+ * Redistribution and use of the "XMLParser library from Business-Insight" in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Frank Vanden Berghen nor the
+ * names of its contributors may be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Business-Insight ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL Business-Insight BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Copyright (c) 2002, Business-Insight
+ * <a href="http://www.Business-Insight.com">Business-Insight</a>
+ * All rights reserved.
+ *
+ * \section tutorial First Tutorial
+ * You can follow a simple <a href="../../xmlParser.html">Tutorial</a> to know the basics...
+ *
+ * \section usage General usage: How to include the XMLParser library inside your project.
+ *
+ * The library is composed of two files: <a href="../../xmlParser.cpp">xmlParser.cpp</a> and
+ * <a href="../../xmlParser.h">xmlParser.h</a>. These are the ONLY 2 files that you need when
+ * using the library inside your own projects.
+ *
+ * All the functions of the library are documented inside the comments of the file
+ * <a href="../../xmlParser.h">xmlParser.h</a>. These comments can be transformed in
+ * full-fledged HTML documentation using the DOXYGEN software: simply type: "doxygen doxy.cfg"
+ *
+ * By default, the XMLParser library uses (char*) for string representation.To use the (wchar_t*)
+ * version of the library, you need to define the "_UNICODE" preprocessor definition variable
+ * (this is usually done inside your project definition file) (This is done automatically for you
+ * when using Visual Studio).
+ *
+ * \section example Advanced Tutorial and Many Examples of usage.
+ *
+ * Some very small introductory examples are described inside the Tutorial file
+ * <a href="../../xmlParser.html">xmlParser.html</a>
+ *
+ * Some additional small examples are also inside the file <a href="../../xmlTest.cpp">xmlTest.cpp</a>
+ * (for the "char*" version of the library) and inside the file
+ * <a href="../../xmlTestUnicode.cpp">xmlTestUnicode.cpp</a> (for the "wchar_t*"
+ * version of the library). If you have a question, please review these additionnal examples
+ * before sending an e-mail to the author.
+ *
+ * To build the examples:
+ * - linux/unix: type "make"
+ * - solaris: type "make -f makefile.solaris"
+ * - windows: Visual Studio: double-click on xmlParser.dsw
+ * (under Visual Studio .NET, the .dsp and .dsw files will be automatically converted to .vcproj and .sln files)
+ *
+ * In order to build the examples you need some additional files:
+ * - linux/unix: makefile
+ * - solaris: makefile.solaris
+ * - windows: Visual Studio: *.dsp, xmlParser.dsw and also xmlParser.lib and xmlParser.dll
+ *
+ * \section debugging Debugging with the XMLParser library
+ *
+ * \subsection debugwin Debugging under WINDOWS
+ *
+ * Inside Visual C++, the "debug versions" of the memory allocation functions are
+ * very slow: Do not forget to compile in "release mode" to get maximum speed.
+ * When I had to debug a software that was using the XMLParser Library, it was usually
+ * a nightmare because the library was sooOOOoooo slow in debug mode (because of the
+ * slow memory allocations in Debug mode). To solve this
+ * problem, during all the debugging session, I am now using a very fast DLL version of the
+ * XMLParser Library (the DLL is compiled in release mode). Using the DLL version of
+ * the XMLParser Library allows me to have lightening XML parsing speed even in debug!
+ * Other than that, the DLL version is useless: In the release version of my tool,
+ * I always use the normal, ".cpp"-based, XMLParser Library (I simply include the
+ * <a href="../../xmlParser.cpp">xmlParser.cpp</a> and
+ * <a href="../../xmlParser.h">xmlParser.h</a> files into the project).
+ *
+ * The file <a href="../../XMLNodeAutoexp.txt">XMLNodeAutoexp.txt</a> contains some
+ * "tweaks" that improve substancially the display of the content of the XMLNode objects
+ * inside the Visual Studio Debugger. Believe me, once you have seen inside the debugger
+ * the "smooth" display of the XMLNode objects, you cannot live without it anymore!
+ *
+ * \subsection debuglinux Debugging under LINUX/UNIX
+ *
+ * The speed of the debug version of the XMLParser library is tolerable so no extra
+ * work.has been done.
+ *
+ ****************************************************************************/
+
+#ifndef __INCLUDE_XML_NODE__
+#define __INCLUDE_XML_NODE__
+
+#include <stdlib.h>
+
+#ifdef _UNICODE
+// If you comment the next "define" line then the library will never "switch to" _UNICODE (wchar_t*) mode (16/32 bits per characters).
+// This is useful when you get error messages like:
+// 'XMLNode::openFileHelper' : cannot convert parameter 2 from 'const char [5]' to 'const wchar_t *'
+// The _XMLWIDECHAR preprocessor variable force the XMLParser library into either utf16/32-mode (the proprocessor variable
+// must be defined) or utf8-mode(the pre-processor variable must be undefined).
+#define _XMLWIDECHAR
+#endif
+
+#if defined(WIN32) || defined(UNDER_CE) || defined(_WIN32) || defined(WIN64) || defined(__BORLANDC__)
+// comment the next line if you are under windows and the compiler is not Microsoft Visual Studio (6.0 or .NET) or Borland
+#define _XMLWINDOWS
+#endif
+
+#ifdef XMLDLLENTRY
+#undef XMLDLLENTRY
+#endif
+#ifdef _USE_XMLPARSER_DLL
+#ifdef _DLL_EXPORTS_
+#define XMLDLLENTRY __declspec(dllexport)
+#else
+#define XMLDLLENTRY __declspec(dllimport)
+#endif
+#else
+#define XMLDLLENTRY
+#endif
+
+// uncomment the next line if you want no support for wchar_t* (no need for the <wchar.h> or <tchar.h> libraries anymore to compile)
+//#define XML_NO_WIDE_CHAR
+
+#ifdef XML_NO_WIDE_CHAR
+#undef _XMLWINDOWS
+#undef _XMLWIDECHAR
+#endif
+
+#ifdef _XMLWINDOWS
+#include <tchar.h>
+#else
+#define XMLDLLENTRY
+#ifndef XML_NO_WIDE_CHAR
+#include <wchar.h> // to have 'wcsrtombs' for ANSI version
+ // to have 'mbsrtowcs' for WIDECHAR version
+#endif
+#endif
+
+// Some common types for char set portable code
+#ifdef _XMLWIDECHAR
+ #define _CXML(c) L ## c
+ #define XMLCSTR const wchar_t *
+ #define XMLSTR wchar_t *
+ #define XMLCHAR wchar_t
+#else
+ #define _CXML(c) c
+ #define XMLCSTR const char *
+ #define XMLSTR char *
+ #define XMLCHAR char
+#endif
+#ifndef FALSE
+ #define FALSE 0
+#endif /* FALSE */
+#ifndef TRUE
+ #define TRUE 1
+#endif /* TRUE */
+
+
+/// Enumeration for XML parse errors.
+typedef enum XMLError
+{
+ eXMLErrorNone = 0,
+ eXMLErrorMissingEndTag,
+ eXMLErrorNoXMLTagFound,
+ eXMLErrorEmpty,
+ eXMLErrorMissingTagName,
+ eXMLErrorMissingEndTagName,
+ eXMLErrorUnmatchedEndTag,
+ eXMLErrorUnmatchedEndClearTag,
+ eXMLErrorUnexpectedToken,
+ eXMLErrorNoElements,
+ eXMLErrorFileNotFound,
+ eXMLErrorFirstTagNotFound,
+ eXMLErrorUnknownCharacterEntity,
+ eXMLErrorCharacterCodeAbove255,
+ eXMLErrorCharConversionError,
+ eXMLErrorCannotOpenWriteFile,
+ eXMLErrorCannotWriteFile,
+
+ eXMLErrorBase64DataSizeIsNotMultipleOf4,
+ eXMLErrorBase64DecodeIllegalCharacter,
+ eXMLErrorBase64DecodeTruncatedData,
+ eXMLErrorBase64DecodeBufferTooSmall
+} XMLError;
+
+
+/// Enumeration used to manage type of data. Use in conjunction with structure XMLNodeContents
+typedef enum XMLElementType
+{
+ eNodeChild=0,
+ eNodeAttribute=1,
+ eNodeText=2,
+ eNodeClear=3,
+ eNodeNULL=4
+} XMLElementType;
+
+/// Structure used to obtain error details if the parse fails.
+typedef struct XMLResults
+{
+ enum XMLError error;
+ int nLine,nColumn;
+} XMLResults;
+
+/// Structure for XML clear (unformatted) node (usually comments)
+typedef struct XMLClear {
+ XMLCSTR lpszValue; XMLCSTR lpszOpenTag; XMLCSTR lpszCloseTag;
+} XMLClear;
+
+/// Structure for XML attribute.
+typedef struct XMLAttribute {
+ XMLCSTR lpszName; XMLCSTR lpszValue;
+} XMLAttribute;
+
+/// XMLElementPosition are not interchangeable with simple indexes
+typedef int XMLElementPosition;
+
+struct XMLNodeContents;
+
+/** @defgroup XMLParserGeneral The XML parser */
+
+/// Main Class representing a XML node
+/**
+ * All operations are performed using this class.
+ * \note The constructors of the XMLNode class are protected, so use instead one of these four methods to get your first instance of XMLNode:
+ * <ul>
+ * <li> XMLNode::parseString </li>
+ * <li> XMLNode::parseFile </li>
+ * <li> XMLNode::openFileHelper </li>
+ * <li> XMLNode::createXMLTopNode (or XMLNode::createXMLTopNode_WOSD)</li>
+ * </ul> */
+typedef struct XMLDLLENTRY XMLNode
+{
+ private:
+
+ struct XMLNodeDataTag;
+
+ /// Constructors are protected, so use instead one of: XMLNode::parseString, XMLNode::parseFile, XMLNode::openFileHelper, XMLNode::createXMLTopNode
+ XMLNode(struct XMLNodeDataTag *pParent, XMLSTR lpszName, char isDeclaration);
+ /// Constructors are protected, so use instead one of: XMLNode::parseString, XMLNode::parseFile, XMLNode::openFileHelper, XMLNode::createXMLTopNode
+ XMLNode(struct XMLNodeDataTag *p);
+
+ public:
+ static XMLCSTR getVersion();///< Return the XMLParser library version number
+
+ /** @defgroup conversions Parsing XML files/strings to an XMLNode structure and Rendering XMLNode's to files/string.
+ * @ingroup XMLParserGeneral
+ * @{ */
+
+ /// Parse an XML string and return the root of a XMLNode tree representing the string.
+ static XMLNode parseString (XMLCSTR lpXMLString, XMLCSTR tag=NULL, XMLResults *pResults=NULL);
+ /**< The "parseString" function parse an XML string and return the root of a XMLNode tree. The "opposite" of this function is
+ * the function "createXMLString" that re-creates an XML string from an XMLNode tree. If the XML document is corrupted, the
+ * "parseString" method will initialize the "pResults" variable with some information that can be used to trace the error.
+ * If you still want to parse the file, you can use the APPROXIMATE_PARSING option as explained inside the note at the
+ * beginning of the "xmlParser.cpp" file.
+ *
+ * @param lpXMLString the XML string to parse
+ * @param tag the name of the first tag inside the XML file. If the tag parameter is omitted, this function returns a node that represents the head of the xml document including the declaration term (<? ... ?>).
+ * @param pResults a pointer to a XMLResults variable that will contain some information that can be used to trace the XML parsing error. You can have a user-friendly explanation of the parsing error with the "getError" function.
+ */
+
+ /// Parse an XML file and return the root of a XMLNode tree representing the file.
+ static XMLNode parseFile (XMLCSTR filename, XMLCSTR tag=NULL, XMLResults *pResults=NULL);
+ /**< The "parseFile" function parse an XML file and return the root of a XMLNode tree. The "opposite" of this function is
+ * the function "writeToFile" that re-creates an XML file from an XMLNode tree. If the XML document is corrupted, the
+ * "parseFile" method will initialize the "pResults" variable with some information that can be used to trace the error.
+ * If you still want to parse the file, you can use the APPROXIMATE_PARSING option as explained inside the note at the
+ * beginning of the "xmlParser.cpp" file.
+ *
+ * @param filename the path to the XML file to parse
+ * @param tag the name of the first tag inside the XML file. If the tag parameter is omitted, this function returns a node that represents the head of the xml document including the declaration term (<? ... ?>).
+ * @param pResults a pointer to a XMLResults variable that will contain some information that can be used to trace the XML parsing error. You can have a user-friendly explanation of the parsing error with the "getError" function.
+ */
+
+ /// Parse an XML file and return the root of a XMLNode tree representing the file. A very crude error checking is made. An attempt to guess the Char Encoding used in the file is made.
+ static XMLNode openFileHelper(XMLCSTR filename, XMLCSTR tag=NULL);
+ /**< The "openFileHelper" function reports to the screen all the warnings and errors that occurred during parsing of the XML file.
+ * This function also tries to guess char Encoding (UTF-8, ASCII or SHIT-JIS) based on the first 200 bytes of the file. Since each
+ * application has its own way to report and deal with errors, you should rather use the "parseFile" function to parse XML files
+ * and program yourself thereafter an "error reporting" tailored for your needs (instead of using the very crude "error reporting"
+ * mechanism included inside the "openFileHelper" function).
+ *
+ * If the XML document is corrupted, the "openFileHelper" method will:
+ * - display an error message on the console (or inside a messageBox for windows).
+ * - stop execution (exit).
+ *
+ * I strongly suggest that you write your own "openFileHelper" method tailored to your needs. If you still want to parse
+ * the file, you can use the APPROXIMATE_PARSING option as explained inside the note at the beginning of the "xmlParser.cpp" file.
+ *
+ * @param filename the path of the XML file to parse.
+ * @param tag the name of the first tag inside the XML file. If the tag parameter is omitted, this function returns a node that represents the head of the xml document including the declaration term (<? ... ?>).
+ */
+
+ static XMLCSTR getError(XMLError error); ///< this gives you a user-friendly explanation of the parsing error
+
+ /// Create an XML string starting from the current XMLNode.
+ XMLSTR createXMLString(int nFormat=1, int *pnSize=NULL) const;
+ /**< The returned string should be free'd using the "freeXMLString" function.
+ *
+ * If nFormat==0, no formatting is required otherwise this returns an user friendly XML string from a given element
+ * with appropriate white spaces and carriage returns. if pnSize is given it returns the size in character of the string. */
+
+ /// Save the content of an xmlNode inside a file
+ XMLError writeToFile(XMLCSTR filename,
+ const char *encoding=NULL,
+ char nFormat=1) const;
+ /**< If nFormat==0, no formatting is required otherwise this returns an user friendly XML string from a given element with appropriate white spaces and carriage returns.
+ * If the global parameter "characterEncoding==encoding_UTF8", then the "encoding" parameter is ignored and always set to "utf-8".
+ * If the global parameter "characterEncoding==encoding_ShiftJIS", then the "encoding" parameter is ignored and always set to "SHIFT-JIS".
+ * If "_XMLWIDECHAR=1", then the "encoding" parameter is ignored and always set to "utf-16".
+ * If no "encoding" parameter is given the "ISO-8859-1" encoding is used. */
+ /** @} */
+
+ /** @defgroup navigate Navigate the XMLNode structure
+ * @ingroup XMLParserGeneral
+ * @{ */
+ XMLCSTR getName() const; ///< name of the node
+ XMLCSTR getText(int i=0) const; ///< return ith text field
+ int nText() const; ///< nbr of text field
+ XMLNode getParentNode() const; ///< return the parent node
+ XMLNode getChildNode(int i=0) const; ///< return ith child node
+ XMLNode getChildNode(XMLCSTR name, int i) const; ///< return ith child node with specific name (return an empty node if failing). If i==-1, this returns the last XMLNode with the given name.
+ XMLNode getChildNode(XMLCSTR name, int *i=NULL) const; ///< return next child node with specific name (return an empty node if failing)
+ XMLNode getChildNodeWithAttribute(XMLCSTR tagName,
+ XMLCSTR attributeName,
+ XMLCSTR attributeValue=NULL,
+ int *i=NULL) const; ///< return child node with specific name/attribute (return an empty node if failing)
+ XMLNode getChildNodeByPath(XMLCSTR path, char createNodeIfMissing=0, XMLCHAR sep='/');
+ ///< return the first child node with specific path
+ XMLNode getChildNodeByPathNonConst(XMLSTR path, char createNodeIfMissing=0, XMLCHAR sep='/');
+ ///< return the first child node with specific path.
+
+ int nChildNode(XMLCSTR name) const; ///< return the number of child node with specific name
+ int nChildNode() const; ///< nbr of child node
+ XMLAttribute getAttribute(int i=0) const; ///< return ith attribute
+ XMLCSTR getAttributeName(int i=0) const; ///< return ith attribute name
+ XMLCSTR getAttributeValue(int i=0) const; ///< return ith attribute value
+ char isAttributeSet(XMLCSTR name) const; ///< test if an attribute with a specific name is given
+ XMLCSTR getAttribute(XMLCSTR name, int i) const; ///< return ith attribute content with specific name (return a NULL if failing)
+ XMLCSTR getAttribute(XMLCSTR name, int *i=NULL) const; ///< return next attribute content with specific name (return a NULL if failing)
+ int nAttribute() const; ///< nbr of attribute
+ XMLClear getClear(int i=0) const; ///< return ith clear field (comments)
+ int nClear() const; ///< nbr of clear field
+ XMLNodeContents enumContents(XMLElementPosition i) const; ///< enumerate all the different contents (attribute,child,text, clear) of the current XMLNode. The order is reflecting the order of the original file/string. NOTE: 0 <= i < nElement();
+ int nElement() const; ///< nbr of different contents for current node
+ char isEmpty() const; ///< is this node Empty?
+ char isDeclaration() const; ///< is this node a declaration <? .... ?>
+ XMLNode deepCopy() const; ///< deep copy (duplicate/clone) a XMLNode
+ static XMLNode emptyNode(); ///< return XMLNode::emptyXMLNode;
+ /** @} */
+
+ ~XMLNode();
+ XMLNode(const XMLNode &A); ///< to allow shallow/fast copy:
+ XMLNode& operator=( const XMLNode& A ); ///< to allow shallow/fast copy:
+
+ XMLNode(): d(NULL){};
+ static XMLNode emptyXMLNode;
+ static XMLClear emptyXMLClear;
+ static XMLAttribute emptyXMLAttribute;
+
+ /** @defgroup xmlModify Create or Update the XMLNode structure
+ * @ingroup XMLParserGeneral
+ * The functions in this group allows you to create from scratch (or update) a XMLNode structure. Start by creating your top
+ * node with the "createXMLTopNode" function and then add new nodes with the "addChild" function. The parameter 'pos' gives
+ * the position where the childNode, the text or the XMLClearTag will be inserted. The default value (pos=-1) inserts at the
+ * end. The value (pos=0) insert at the beginning (Insertion at the beginning is slower than at the end). <br>
+ *
+ * REMARK: 0 <= pos < nChild()+nText()+nClear() <br>
+ */
+
+ /** @defgroup creation Creating from scratch a XMLNode structure
+ * @ingroup xmlModify
+ * @{ */
+ static XMLNode createXMLTopNode(XMLCSTR lpszName, char isDeclaration=FALSE); ///< Create the top node of an XMLNode structure
+ XMLNode addChild(XMLCSTR lpszName, char isDeclaration=FALSE, XMLElementPosition pos=-1); ///< Add a new child node
+ XMLNode addChild(XMLNode nodeToAdd, XMLElementPosition pos=-1); ///< If the "nodeToAdd" has some parents, it will be detached from it's parents before being attached to the current XMLNode
+ XMLAttribute *addAttribute(XMLCSTR lpszName, XMLCSTR lpszValuev); ///< Add a new attribute
+ XMLCSTR addText(XMLCSTR lpszValue, XMLElementPosition pos=-1); ///< Add a new text content
+ XMLClear *addClear(XMLCSTR lpszValue, XMLCSTR lpszOpen=NULL, XMLCSTR lpszClose=NULL, XMLElementPosition pos=-1);
+ /**< Add a new clear tag
+ * @param lpszOpen default value "<![CDATA["
+ * @param lpszClose default value "]]>"
+ */
+ /** @} */
+
+ /** @defgroup xmlUpdate Updating Nodes
+ * @ingroup xmlModify
+ * Some update functions:
+ * @{
+ */
+ XMLCSTR updateName(XMLCSTR lpszName); ///< change node's name
+ XMLAttribute *updateAttribute(XMLAttribute *newAttribute, XMLAttribute *oldAttribute); ///< if the attribute to update is missing, a new one will be added
+ XMLAttribute *updateAttribute(XMLCSTR lpszNewValue, XMLCSTR lpszNewName=NULL,int i=0); ///< if the attribute to update is missing, a new one will be added
+ XMLAttribute *updateAttribute(XMLCSTR lpszNewValue, XMLCSTR lpszNewName,XMLCSTR lpszOldName);///< set lpszNewName=NULL if you don't want to change the name of the attribute if the attribute to update is missing, a new one will be added
+ XMLCSTR updateText(XMLCSTR lpszNewValue, int i=0); ///< if the text to update is missing, a new one will be added
+ XMLCSTR updateText(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue); ///< if the text to update is missing, a new one will be added
+ XMLClear *updateClear(XMLCSTR lpszNewContent, int i=0); ///< if the clearTag to update is missing, a new one will be added
+ XMLClear *updateClear(XMLClear *newP,XMLClear *oldP); ///< if the clearTag to update is missing, a new one will be added
+ XMLClear *updateClear(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue); ///< if the clearTag to update is missing, a new one will be added
+ /** @} */
+
+ /** @defgroup xmlDelete Deleting Nodes or Attributes
+ * @ingroup xmlModify
+ * Some deletion functions:
+ * @{
+ */
+ /// The "deleteNodeContent" function forces the deletion of the content of this XMLNode and the subtree.
+ void deleteNodeContent();
+ /**< \note The XMLNode instances that are referring to the part of the subtree that has been deleted CANNOT be used anymore!!. Unexpected results will occur if you continue using them. */
+ void deleteAttribute(int i=0); ///< Delete the ith attribute of the current XMLNode
+ void deleteAttribute(XMLCSTR lpszName); ///< Delete the attribute with the given name (the "strcmp" function is used to find the right attribute)
+ void deleteAttribute(XMLAttribute *anAttribute); ///< Delete the attribute with the name "anAttribute->lpszName" (the "strcmp" function is used to find the right attribute)
+ void deleteText(int i=0); ///< Delete the Ith text content of the current XMLNode
+ void deleteText(XMLCSTR lpszValue); ///< Delete the text content "lpszValue" inside the current XMLNode (direct "pointer-to-pointer" comparison is used to find the right text)
+ void deleteClear(int i=0); ///< Delete the Ith clear tag inside the current XMLNode
+ void deleteClear(XMLCSTR lpszValue); ///< Delete the clear tag "lpszValue" inside the current XMLNode (direct "pointer-to-pointer" comparison is used to find the clear tag)
+ void deleteClear(XMLClear *p); ///< Delete the clear tag "p" inside the current XMLNode (direct "pointer-to-pointer" comparison on the lpszName of the clear tag is used to find the clear tag)
+ /** @} */
+
+ /** @defgroup xmlWOSD ???_WOSD functions.
+ * @ingroup xmlModify
+ * The strings given as parameters for the "add" and "update" methods that have a name with
+ * the postfix "_WOSD" (that means "WithOut String Duplication")(for example "addText_WOSD")
+ * will be free'd by the XMLNode class. For example, it means that this is incorrect:
+ * \code
+ * xNode.addText_WOSD("foo");
+ * xNode.updateAttribute_WOSD("#newcolor" ,NULL,"color");
+ * \endcode
+ * In opposition, this is correct:
+ * \code
+ * xNode.addText("foo");
+ * xNode.addText_WOSD(stringDup("foo"));
+ * xNode.updateAttribute("#newcolor" ,NULL,"color");
+ * xNode.updateAttribute_WOSD(stringDup("#newcolor"),NULL,"color");
+ * \endcode
+ * Typically, you will never do:
+ * \code
+ * char *b=(char*)malloc(...);
+ * xNode.addText(b);
+ * free(b);
+ * \endcode
+ * ... but rather:
+ * \code
+ * char *b=(char*)malloc(...);
+ * xNode.addText_WOSD(b);
+ * \endcode
+ * ('free(b)' is performed by the XMLNode class)
+ * @{ */
+ static XMLNode createXMLTopNode_WOSD(XMLSTR lpszName, char isDeclaration=FALSE); ///< Create the top node of an XMLNode structure
+ XMLNode addChild_WOSD(XMLSTR lpszName, char isDeclaration=FALSE, XMLElementPosition pos=-1); ///< Add a new child node
+ XMLAttribute *addAttribute_WOSD(XMLSTR lpszName, XMLSTR lpszValue); ///< Add a new attribute
+ XMLCSTR addText_WOSD(XMLSTR lpszValue, XMLElementPosition pos=-1); ///< Add a new text content
+ XMLClear *addClear_WOSD(XMLSTR lpszValue, XMLCSTR lpszOpen=NULL, XMLCSTR lpszClose=NULL, XMLElementPosition pos=-1); ///< Add a new clear Tag
+
+ XMLCSTR updateName_WOSD(XMLSTR lpszName); ///< change node's name
+ XMLAttribute *updateAttribute_WOSD(XMLAttribute *newAttribute, XMLAttribute *oldAttribute); ///< if the attribute to update is missing, a new one will be added
+ XMLAttribute *updateAttribute_WOSD(XMLSTR lpszNewValue, XMLSTR lpszNewName=NULL,int i=0); ///< if the attribute to update is missing, a new one will be added
+ XMLAttribute *updateAttribute_WOSD(XMLSTR lpszNewValue, XMLSTR lpszNewName,XMLCSTR lpszOldName); ///< set lpszNewName=NULL if you don't want to change the name of the attribute if the attribute to update is missing, a new one will be added
+ XMLCSTR updateText_WOSD(XMLSTR lpszNewValue, int i=0); ///< if the text to update is missing, a new one will be added
+ XMLCSTR updateText_WOSD(XMLSTR lpszNewValue, XMLCSTR lpszOldValue); ///< if the text to update is missing, a new one will be added
+ XMLClear *updateClear_WOSD(XMLSTR lpszNewContent, int i=0); ///< if the clearTag to update is missing, a new one will be added
+ XMLClear *updateClear_WOSD(XMLClear *newP,XMLClear *oldP); ///< if the clearTag to update is missing, a new one will be added
+ XMLClear *updateClear_WOSD(XMLSTR lpszNewValue, XMLCSTR lpszOldValue); ///< if the clearTag to update is missing, a new one will be added
+ /** @} */
+
+ /** @defgroup xmlPosition Position helper functions (use in conjunction with the update&add functions
+ * @ingroup xmlModify
+ * These are some useful functions when you want to insert a childNode, a text or a XMLClearTag in the
+ * middle (at a specified position) of a XMLNode tree already constructed. The value returned by these
+ * methods is to be used as last parameter (parameter 'pos') of addChild, addText or addClear.
+ * @{ */
+ XMLElementPosition positionOfText(int i=0) const;
+ XMLElementPosition positionOfText(XMLCSTR lpszValue) const;
+ XMLElementPosition positionOfClear(int i=0) const;
+ XMLElementPosition positionOfClear(XMLCSTR lpszValue) const;
+ XMLElementPosition positionOfClear(XMLClear *a) const;
+ XMLElementPosition positionOfChildNode(int i=0) const;
+ XMLElementPosition positionOfChildNode(XMLNode x) const;
+ XMLElementPosition positionOfChildNode(XMLCSTR name, int i=0) const; ///< return the position of the ith childNode with the specified name if (name==NULL) return the position of the ith childNode
+ /** @} */
+
+ /// Enumeration for XML character encoding.
+ typedef enum XMLCharEncoding
+ {
+ char_encoding_error=0,
+ char_encoding_UTF8=1,
+ char_encoding_legacy=2,
+ char_encoding_ShiftJIS=3,
+ char_encoding_GB2312=4,
+ char_encoding_Big5=5,
+ char_encoding_GBK=6 // this is actually the same as Big5
+ } XMLCharEncoding;
+
+ /** \addtogroup conversions
+ * @{ */
+
+ /// Sets the global options for the conversions
+ static char setGlobalOptions(XMLCharEncoding characterEncoding=XMLNode::char_encoding_UTF8, char guessWideCharChars=1,
+ char dropWhiteSpace=1, char removeCommentsInMiddleOfText=1);
+ /**< The "setGlobalOptions" function allows you to change four global parameters that affect string & file
+ * parsing. First of all, you most-probably will never have to change these 3 global parameters.
+ *
+ * @param guessWideCharChars If "guessWideCharChars"=1 and if this library is compiled in WideChar mode, then the
+ * XMLNode::parseFile and XMLNode::openFileHelper functions will test if the file contains ASCII
+ * characters. If this is the case, then the file will be loaded and converted in memory to
+ * WideChar before being parsed. If 0, no conversion will be performed.
+ *
+ * @param guessWideCharChars If "guessWideCharChars"=1 and if this library is compiled in ASCII/UTF8/char* mode, then the
+ * XMLNode::parseFile and XMLNode::openFileHelper functions will test if the file contains WideChar
+ * characters. If this is the case, then the file will be loaded and converted in memory to
+ * ASCII/UTF8/char* before being parsed. If 0, no conversion will be performed.
+ *
+ * @param characterEncoding This parameter is only meaningful when compiling in char* mode (multibyte character mode).
+ * In wchar_t* (wide char mode), this parameter is ignored. This parameter should be one of the
+ * three currently recognized encodings: XMLNode::encoding_UTF8, XMLNode::encoding_ascii,
+ * XMLNode::encoding_ShiftJIS.
+ *
+ * @param dropWhiteSpace In most situations, text fields containing only white spaces (and carriage returns)
+ * are useless. Even more, these "empty" text fields are annoying because they increase the
+ * complexity of the user's code for parsing. So, 99% of the time, it's better to drop
+ * the "empty" text fields. However The XML specification indicates that no white spaces
+ * should be lost when parsing the file. So to be perfectly XML-compliant, you should set
+ * dropWhiteSpace=0. A note of caution: if you set "dropWhiteSpace=0", the parser will be
+ * slower and your code will be more complex.
+ *
+ * @param removeCommentsInMiddleOfText To explain this parameter, let's consider this code:
+ * \code
+ * XMLNode x=XMLNode::parseString("<a>foo<!-- hello -->bar<!DOCTYPE world >chu</a>","a");
+ * \endcode
+ * If removeCommentsInMiddleOfText=0, then we will have:
+ * \code
+ * x.getText(0) -> "foo"
+ * x.getText(1) -> "bar"
+ * x.getText(2) -> "chu"
+ * x.getClear(0) --> "<!-- hello -->"
+ * x.getClear(1) --> "<!DOCTYPE world >"
+ * \endcode
+ * If removeCommentsInMiddleOfText=1, then we will have:
+ * \code
+ * x.getText(0) -> "foobar"
+ * x.getText(1) -> "chu"
+ * x.getClear(0) --> "<!DOCTYPE world >"
+ * \endcode
+ *
+ * \return "0" when there are no errors. If you try to set an unrecognized encoding then the return value will be "1" to signal an error.
+ *
+ * \note Sometime, it's useful to set "guessWideCharChars=0" to disable any conversion
+ * because the test to detect the file-type (ASCII/UTF8/char* or WideChar) may fail (rarely). */
+
+ /// Guess the character encoding of the string (ascii, utf8 or shift-JIS)
+ static XMLCharEncoding guessCharEncoding(void *buffer, int bufLen, char useXMLEncodingAttribute=1);
+ /**< The "guessCharEncoding" function try to guess the character encoding. You most-probably will never
+ * have to use this function. It then returns the appropriate value of the global parameter
+ * "characterEncoding" described in the XMLNode::setGlobalOptions. The guess is based on the content of a buffer of length
+ * "bufLen" bytes that contains the first bytes (minimum 25 bytes; 200 bytes is a good value) of the
+ * file to be parsed. The XMLNode::openFileHelper function is using this function to automatically compute
+ * the value of the "characterEncoding" global parameter. There are several heuristics used to do the
+ * guess. One of the heuristic is based on the "encoding" attribute. The original XML specifications
+ * forbids to use this attribute to do the guess but you can still use it if you set
+ * "useXMLEncodingAttribute" to 1 (this is the default behavior and the behavior of most parsers).
+ * If an inconsistency in the encoding is detected, then the return value is "0". */
+ /** @} */
+
+ private:
+ // these are functions and structures used internally by the XMLNode class (don't bother about them):
+
+ typedef struct XMLNodeDataTag // to allow shallow copy and "intelligent/smart" pointers (automatic delete):
+ {
+ XMLCSTR lpszName; // Element name (=NULL if root)
+ int nChild, // Number of child nodes
+ nText, // Number of text fields
+ nClear, // Number of Clear fields (comments)
+ nAttribute; // Number of attributes
+ char isDeclaration; // Whether node is an XML declaration - '<?xml ?>'
+ struct XMLNodeDataTag *pParent; // Pointer to parent element (=NULL if root)
+ XMLNode *pChild; // Array of child nodes
+ XMLCSTR *pText; // Array of text fields
+ XMLClear *pClear; // Array of clear fields
+ XMLAttribute *pAttribute; // Array of attributes
+ int *pOrder; // order of the child_nodes,text_fields,clear_fields
+ int ref_count; // for garbage collection (smart pointers)
+ } XMLNodeData;
+ XMLNodeData *d;
+
+ char parseClearTag(void *px, void *pa);
+ char maybeAddTxT(void *pa, XMLCSTR tokenPStr);
+ int ParseXMLElement(void *pXML);
+ void *addToOrder(int memInc, int *_pos, int nc, void *p, int size, XMLElementType xtype);
+ int indexText(XMLCSTR lpszValue) const;
+ int indexClear(XMLCSTR lpszValue) const;
+ XMLNode addChild_priv(int,XMLSTR,char,int);
+ XMLAttribute *addAttribute_priv(int,XMLSTR,XMLSTR);
+ XMLCSTR addText_priv(int,XMLSTR,int);
+ XMLClear *addClear_priv(int,XMLSTR,XMLCSTR,XMLCSTR,int);
+ void emptyTheNode(char force);
+ static inline XMLElementPosition findPosition(XMLNodeData *d, int index, XMLElementType xtype);
+ static int CreateXMLStringR(XMLNodeData *pEntry, XMLSTR lpszMarker, int nFormat);
+ static int removeOrderElement(XMLNodeData *d, XMLElementType t, int index);
+ static void exactMemory(XMLNodeData *d);
+ static int detachFromParent(XMLNodeData *d);
+} XMLNode;
+
+/// This structure is given by the function XMLNode::enumContents.
+typedef struct XMLNodeContents
+{
+ /// This dictates what's the content of the XMLNodeContent
+ enum XMLElementType etype;
+ /**< should be an union to access the appropriate data. Compiler does not allow union of object with constructor... too bad. */
+ XMLNode child;
+ XMLAttribute attrib;
+ XMLCSTR text;
+ XMLClear clear;
+
+} XMLNodeContents;
+
+/** @defgroup StringAlloc String Allocation/Free functions
+ * @ingroup xmlModify
+ * @{ */
+/// Duplicate (copy in a new allocated buffer) the source string.
+XMLDLLENTRY XMLSTR stringDup(XMLCSTR source, int cbData=-1);
+/**< This is
+ * a very handy function when used with all the "XMLNode::*_WOSD" functions (\link xmlWOSD \endlink).
+ * @param cbData If !=0 then cbData is the number of chars to duplicate. New strings allocated with
+ * this function should be free'd using the "freeXMLString" function. */
+
+/// to free the string allocated inside the "stringDup" function or the "createXMLString" function.
+XMLDLLENTRY void freeXMLString(XMLSTR t); // {free(t);}
+/** @} */
+
+/** @defgroup atoX ato? like functions
+ * @ingroup XMLParserGeneral
+ * The "xmlto?" functions are equivalents to the atoi, atol, atof functions.
+ * The only difference is: If the variable "xmlString" is NULL, than the return value
+ * is "defautValue". These 6 functions are only here as "convenience" functions for the
+ * user (they are not used inside the XMLparser). If you don't need them, you can
+ * delete them without any trouble.
+ *
+ * @{ */
+XMLDLLENTRY char xmltob(XMLCSTR xmlString,char defautValue=0);
+XMLDLLENTRY int xmltoi(XMLCSTR xmlString,int defautValue=0);
+XMLDLLENTRY long xmltol(XMLCSTR xmlString,long defautValue=0);
+XMLDLLENTRY double xmltof(XMLCSTR xmlString,double defautValue=.0);
+XMLDLLENTRY XMLCSTR xmltoa(XMLCSTR xmlString,XMLCSTR defautValue=_CXML(""));
+XMLDLLENTRY XMLCHAR xmltoc(XMLCSTR xmlString,XMLCHAR defautValue=_CXML('\0'));
+/** @} */
+
+/** @defgroup ToXMLStringTool Helper class to create XML files using "printf", "fprintf", "cout",... functions.
+ * @ingroup XMLParserGeneral
+ * @{ */
+/// Helper class to create XML files using "printf", "fprintf", "cout",... functions.
+/** The ToXMLStringTool class helps you creating XML files using "printf", "fprintf", "cout",... functions.
+ * The "ToXMLStringTool" class is processing strings so that all the characters
+ * &,",',<,> are replaced by their XML equivalent:
+ * \verbatim &, ", ', <, > \endverbatim
+ * Using the "ToXMLStringTool class" and the "fprintf function" is THE most efficient
+ * way to produce VERY large XML documents VERY fast.
+ * \note If you are creating from scratch an XML file using the provided XMLNode class
+ * you must not use the "ToXMLStringTool" class (because the "XMLNode" class does the
+ * processing job for you during rendering).*/
+typedef struct XMLDLLENTRY ToXMLStringTool
+{
+public:
+ ToXMLStringTool(): buf(NULL),buflen(0){}
+ ~ToXMLStringTool();
+ void freeBuffer();///<call this function when you have finished using this object to release memory used by the internal buffer.
+
+ XMLSTR toXML(XMLCSTR source);///< returns a pointer to an internal buffer that contains a XML-encoded string based on the "source" parameter.
+
+ /** The "toXMLUnSafe" function is deprecated because there is a possibility of
+ * "destination-buffer-overflow". It converts the string
+ * "source" to the string "dest". */
+ static XMLSTR toXMLUnSafe(XMLSTR dest,XMLCSTR source); ///< deprecated: use "toXML" instead
+ static int lengthXMLString(XMLCSTR source); ///< deprecated: use "toXML" instead
+
+private:
+ XMLSTR buf;
+ int buflen;
+} ToXMLStringTool;
+/** @} */
+
+/** @defgroup XMLParserBase64Tool Helper class to include binary data inside XML strings using "Base64 encoding".
+ * @ingroup XMLParserGeneral
+ * @{ */
+/// Helper class to include binary data inside XML strings using "Base64 encoding".
+/** The "XMLParserBase64Tool" class allows you to include any binary data (images, sounds,...)
+ * into an XML document using "Base64 encoding". This class is completely
+ * separated from the rest of the xmlParser library and can be removed without any problem.
+ * To include some binary data into an XML file, you must convert the binary data into
+ * standard text (using "encode"). To retrieve the original binary data from the
+ * b64-encoded text included inside the XML file, use "decode". Alternatively, these
+ * functions can also be used to "encrypt/decrypt" some critical data contained inside
+ * the XML (it's not a strong encryption at all, but sometimes it can be useful). */
+typedef struct XMLDLLENTRY XMLParserBase64Tool
+{
+public:
+ XMLParserBase64Tool(): buf(NULL),buflen(0){}
+ ~XMLParserBase64Tool();
+ void freeBuffer();///< Call this function when you have finished using this object to release memory used by the internal buffer.
+
+ /**
+ * @param formatted If "formatted"=true, some space will be reserved for a carriage-return every 72 chars. */
+ static int encodeLength(int inBufLen, char formatted=0); ///< return the length of the base64 string that encodes a data buffer of size inBufLen bytes.
+
+ /**
+ * The "base64Encode" function returns a string containing the base64 encoding of "inByteLen" bytes
+ * from "inByteBuf". If "formatted" parameter is true, then there will be a carriage-return every 72 chars.
+ * The string will be free'd when the XMLParserBase64Tool object is deleted.
+ * All returned strings are sharing the same memory space. */
+ XMLSTR encode(unsigned char *inByteBuf, unsigned int inByteLen, char formatted=0); ///< returns a pointer to an internal buffer containing the base64 string containing the binary data encoded from "inByteBuf"
+
+ /// returns the number of bytes which will be decoded from "inString".
+ static unsigned int decodeSize(XMLCSTR inString, XMLError *xe=NULL);
+
+ /**
+ * The "decode" function returns a pointer to a buffer containing the binary data decoded from "inString"
+ * The output buffer will be free'd when the XMLParserBase64Tool object is deleted.
+ * All output buffer are sharing the same memory space.
+ * @param inString If "instring" is malformed, NULL will be returned */
+ unsigned char* decode(XMLCSTR inString, int *outByteLen=NULL, XMLError *xe=NULL); ///< returns a pointer to an internal buffer containing the binary data decoded from "inString"
+
+ /**
+ * decodes data from "inString" to "outByteBuf". You need to provide the size (in byte) of "outByteBuf"
+ * in "inMaxByteOutBuflen". If "outByteBuf" is not large enough or if data is malformed, then "FALSE"
+ * will be returned; otherwise "TRUE". */
+ static unsigned char decode(XMLCSTR inString, unsigned char *outByteBuf, int inMaxByteOutBuflen, XMLError *xe=NULL); ///< deprecated.
+
+private:
+ void *buf;
+ int buflen;
+ void alloc(int newsize);
+}XMLParserBase64Tool;
+/** @} */
+
+#undef XMLDLLENTRY
+
+#endif