// Signed 40-bit streaming accumulator with 16-bit inputs
// File: HDL_Coding_Techniques/multipliers/multipliers4.v
//
-module macc # (parameter SIZEIN = /*16*/7, SIZEOUT = 40)
- (input clk, ce, sload,
- input signed [SIZEIN-1:0] a, b,
- output signed [SIZEOUT-1:0] accum_out);
- // Declare registers for intermediate values
- reg signed [SIZEIN-1:0] a_reg, b_reg;
- reg sload_reg;
- reg signed [2*SIZEIN:0] mult_reg;
- reg signed [SIZEOUT-1:0] adder_out, old_result;
- always @(adder_out or sload_reg) begin
- //if (sload_reg)
- //old_result <= 0;
- //else
- // 'sload' is now active (=low) and opens the accumulation loop.
- // The accumulator takes the next multiplier output in
- // the same cycle.
- old_result <= adder_out;
- a_reg <= a;
- b_reg <= b;
- end
+// Source:
+// https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug901-vivado-synthesis.pdf p.90
+//
+module macc # (parameter SIZEIN = 16, SIZEOUT = 40) (
+ input clk, ce, sload,
+ input signed [SIZEIN-1:0] a, b,
+ output signed [SIZEOUT-1:0] accum_out
+);
+// Declare registers for intermediate values
+reg signed [SIZEIN-1:0] a_reg, b_reg;
+reg sload_reg;
+reg signed [2*SIZEIN-1:0] mult_reg;
+reg signed [SIZEOUT-1:0] adder_out, old_result;
+always @* /*(adder_out or sload_reg)*/ begin // Modification necessary to fix sim/synth mismatch
+ if (sload_reg)
+ old_result <= 0;
+ else
+ // 'sload' is now active (=low) and opens the accumulation loop.
+ // The accumulator takes the next multiplier output in
+ // the same cycle.
+ old_result <= adder_out;
+end
- always @(posedge clk)
- //if (ce)
- begin
- mult_reg <= a_reg * b_reg;
- sload_reg <= sload;
- // Store accumulation result into a register
- adder_out <= old_result + mult_reg;
- end
+always @(posedge clk)
+ if (ce)
+ begin
+ a_reg <= a;
+ b_reg <= b;
+ mult_reg <= a_reg * b_reg;
+ sload_reg <= sload;
+ // Store accumulation result into a register
+ adder_out <= old_result + mult_reg;
+ end
- // Output accumulation result
- assign accum_out = adder_out;
+ // Output accumulation result
+ assign accum_out = adder_out;
-endmodule // macc
+endmodule
read_verilog macc.v
proc
-hierarchy -top macc
-equiv_opt -run :restore -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
-
-#equiv_miter -trigger miter equiv
-#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
-
-#equiv_opt -assert -run :prove -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
-#miter -equiv -flatten -make_assert -make_outputs gold gate miter
-#sat -set-init-zero -verify -prove-asserts -seq 10 -show-inputs -show-outputs miter
-
+hierarchy -auto-top
+#equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx ### TODO
+equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
+miter -equiv -flatten -make_assert -make_outputs gold gate miter
+sat -verify -prove-asserts -seq 10 -show-inputs -show-outputs miter
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd macc # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
+select -assert-count 1 t:FDRE
select -assert-count 1 t:DSP48E1
-select -assert-none t:BUFG t:DSP48E1 %% t:* %D
+select -assert-none t:BUFG t:FDRE t:DSP48E1 %% t:* %D