--- /dev/null
+/* Decompose OpenACC 'kernels' constructs into parts, a sequence of compute
+ constructs
+
+ Copyright (C) 2020 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "target.h"
+#include "tree.h"
+#include "cp/cp-tree.h"
+#include "gimple.h"
+#include "tree-pass.h"
+#include "cgraph.h"
+#include "fold-const.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimple-walk.h"
+#include "gomp-constants.h"
+#include "omp-general.h"
+#include "diagnostic-core.h"
+
+
+/* This preprocessing pass is run immediately before lower_omp. It decomposes
+ OpenACC 'kernels' constructs into parts, a sequence of compute constructs.
+
+ The translation is as follows:
+ - The entire 'kernels' region is turned into a 'data' region with clauses
+ taken from the 'kernels' region. New 'create' clauses are added for all
+ variables declared at the top level in the kernels region.
+ - Any loop nests annotated with an OpenACC 'loop' directive are wrapped in
+ a new compute construct.
+ - 'loop' directives without an explicit 'independent' or 'seq' clause
+ get an 'auto' clause added; other clauses are preserved on the loop
+ or moved to the new surrounding compute construct, as applicable.
+ - Any sequences of other code (non-loops, non-OpenACC 'loop's) are wrapped
+ in new "gang-single" compute construct: 'worker'/'vector' parallelism is
+ preserved, but 'num_gangs (1)' is enforced.
+ - Both points above only apply at the topmost level in the region, that
+ is, the transformation does not introduce new compute constructs inside
+ nested statement bodies. In particular, this means that a
+ gang-parallelizable loop inside an 'if' statement is made "gang-single".
+ - In order to make the host wait only once for the whole region instead
+ of once per device kernel launch, the new compute constructs are
+ annotated 'async'. Unless the original 'kernels' construct already was
+ marked 'async', the entire region ends with a 'wait' directive. If the
+ original 'kernels' construct was marked 'async', the synthesized 'async'
+ clauses use the original 'kernels' construct's 'async' argument
+ (possibly implicit).
+*/
+
+
+/*TODO Things are conceptually wrong here: 'loop' clauses may be hidden behind
+ 'device_type', so we have to defer a lot of processing until we're in the
+ offloading compilation. "Fortunately", GCC doesn't support the OpenACC
+ 'device_type' clause yet, so we get away that. */
+
+
+/* Helper function for decompose_kernels_region_body. If STMT contains a
+ "top-level" OMP_FOR statement, returns a pointer to that statement;
+ returns NULL otherwise.
+
+ A "top-level" OMP_FOR statement is one that is possibly accompanied by
+ small snippets of setup code. Specifically, this function accepts an
+ OMP_FOR possibly wrapped in a singleton bind and a singleton try
+ statement to allow for a local loop variable, but not an OMP_FOR
+ statement nested in any other constructs. Alternatively, it accepts a
+ non-singleton bind containing only assignments and then an OMP_FOR
+ statement at the very end. The former style can be generated by the C
+ frontend, the latter by the Fortran frontend. */
+
+static gimple *
+top_level_omp_for_in_stmt (gimple *stmt)
+{
+ if (gimple_code (stmt) == GIMPLE_OMP_FOR)
+ return stmt;
+
+ if (gimple_code (stmt) == GIMPLE_BIND)
+ {
+ gimple_seq body = gimple_bind_body (as_a <gbind *> (stmt));
+ if (gimple_seq_singleton_p (body))
+ {
+ /* Accept an OMP_FOR statement, or a try statement containing only
+ a single OMP_FOR. */
+ gimple *maybe_for_or_try = gimple_seq_first_stmt (body);
+ if (gimple_code (maybe_for_or_try) == GIMPLE_OMP_FOR)
+ return maybe_for_or_try;
+ else if (gimple_code (maybe_for_or_try) == GIMPLE_TRY)
+ {
+ gimple_seq try_body = gimple_try_eval (maybe_for_or_try);
+ if (!gimple_seq_singleton_p (try_body))
+ return NULL;
+ gimple *maybe_omp_for_stmt = gimple_seq_first_stmt (try_body);
+ if (gimple_code (maybe_omp_for_stmt) == GIMPLE_OMP_FOR)
+ return maybe_omp_for_stmt;
+ }
+ }
+ else
+ {
+ gimple_stmt_iterator gsi;
+ /* Accept only a block of optional assignments followed by an
+ OMP_FOR at the end. No other kinds of statements allowed. */
+ for (gsi = gsi_start (body); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple *body_stmt = gsi_stmt (gsi);
+ if (gimple_code (body_stmt) == GIMPLE_ASSIGN)
+ continue;
+ else if (gimple_code (body_stmt) == GIMPLE_OMP_FOR
+ && gsi_one_before_end_p (gsi))
+ return body_stmt;
+ else
+ return NULL;
+ }
+ }
+ }
+
+ return NULL;
+}
+
+/* Helper for adjust_region_code: evaluate the statement at GSI_P. */
+
+static tree
+adjust_region_code_walk_stmt_fn (gimple_stmt_iterator *gsi_p,
+ bool *handled_ops_p,
+ struct walk_stmt_info *wi)
+{
+ int *region_code = (int *) wi->info;
+
+ gimple *stmt = gsi_stmt (*gsi_p);
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_OMP_FOR:
+ {
+ tree clauses = gimple_omp_for_clauses (stmt);
+ if (omp_find_clause (clauses, OMP_CLAUSE_INDEPENDENT))
+ {
+ /* Explicit 'independent' clause. */
+ /* Keep going; recurse into loop body. */
+ break;
+ }
+ else if (omp_find_clause (clauses, OMP_CLAUSE_SEQ))
+ {
+ /* Explicit 'seq' clause. */
+ /* We'll "parallelize" if at some level a loop construct has been
+ marked up by the user as unparallelizable ('seq' clause; we'll
+ respect that in the later processing). Given that the user has
+ explicitly marked it up, this loop construct cannot be
+ performance-critical, and in this case it's also fine to
+ "parallelize" instead of "gang-single", because any outer or
+ inner loops may still exploit the available parallelism. */
+ /* Keep going; recurse into loop body. */
+ break;
+ }
+ else
+ {
+ /* Explicit or implicit 'auto' clause. */
+ /* The user would like this loop analyzed ('auto' clause) and
+ typically parallelized, but we don't have available yet the
+ compiler logic to analyze this, so can't parallelize it here, so
+ we'd very likely be running into a performance problem if we
+ were to execute this unparallelized, thus forward the whole loop
+ nest to 'parloops'. */
+ *region_code = GF_OMP_TARGET_KIND_OACC_KERNELS;
+ /* Terminate: final decision for this region. */
+ *handled_ops_p = true;
+ return integer_zero_node;
+ }
+ gcc_unreachable ();
+ }
+
+ case GIMPLE_COND:
+ case GIMPLE_GOTO:
+ case GIMPLE_SWITCH:
+ case GIMPLE_ASM:
+ case GIMPLE_TRANSACTION:
+ case GIMPLE_RETURN:
+ /* Statement that might constitute some looping/control flow pattern. */
+ /* The user would like this code analyzed (implicit inside a 'kernels'
+ region) and typically parallelized, but we don't have available yet
+ the compiler logic to analyze this, so can't parallelize it here, so
+ we'd very likely be running into a performance problem if we were to
+ execute this unparallelized, thus forward the whole thing to
+ 'parloops'. */
+ *region_code = GF_OMP_TARGET_KIND_OACC_KERNELS;
+ /* Terminate: final decision for this region. */
+ *handled_ops_p = true;
+ return integer_zero_node;
+
+ default:
+ /* Keep going. */
+ break;
+ }
+
+ return NULL;
+}
+
+/* Adjust the REGION_CODE for the region in GS. */
+
+static void
+adjust_region_code (gimple_seq gs, int *region_code)
+{
+ struct walk_stmt_info wi;
+ memset (&wi, 0, sizeof (wi));
+ wi.info = region_code;
+ walk_gimple_seq (gs, adjust_region_code_walk_stmt_fn, NULL, &wi);
+}
+
+/* Helper function for make_loops_gang_single for walking the tree. If the
+ statement indicated by GSI_P is an OpenACC for loop with a gang clause,
+ issue a warning and remove the clause. */
+
+static tree
+visit_loops_in_gang_single_region (gimple_stmt_iterator *gsi_p,
+ bool *handled_ops_p,
+ struct walk_stmt_info *)
+{
+ *handled_ops_p = false;
+
+ gimple *stmt = gsi_stmt (*gsi_p);
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_OMP_FOR:
+ /*TODO Given the current 'adjust_region_code' algorithm, this is
+ actually... */
+ gcc_unreachable ();
+
+ {
+ tree clauses = gimple_omp_for_clauses (stmt);
+ tree prev_clause = NULL;
+ for (tree clause = clauses; clause; clause = OMP_CLAUSE_CHAIN (clause))
+ {
+ if (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_GANG)
+ {
+ /* It makes no sense to have a 'gang' clause in a "gang-single"
+ region, so warn and remove it. */
+ warning_at (gimple_location (stmt), 0,
+ "conditionally executed loop in %<kernels%> region"
+ " will be executed by a single gang;"
+ " ignoring %<gang%> clause");
+ if (prev_clause != NULL)
+ OMP_CLAUSE_CHAIN (prev_clause) = OMP_CLAUSE_CHAIN (clause);
+ else
+ clauses = OMP_CLAUSE_CHAIN (clause);
+
+ break;
+ }
+ prev_clause = clause;
+ }
+ gimple_omp_for_set_clauses (stmt, clauses);
+ }
+ /* No need to recurse into nested statements; no loop nested inside
+ this loop can be gang-partitioned. */
+ sorry ("%<gang%> loop in %<gang-single%> region");
+ *handled_ops_p = true;
+ break;
+
+ default:
+ break;
+ }
+
+ return NULL;
+}
+
+/* Visit all nested OpenACC loops in the sequence indicated by GS. This
+ statement is expected to be inside a gang-single region. Issue a warning
+ for any loops inside it that have gang clauses and remove the clauses. */
+
+static void
+make_loops_gang_single (gimple_seq gs)
+{
+ struct walk_stmt_info wi;
+ memset (&wi, 0, sizeof (wi));
+ walk_gimple_seq (gs, visit_loops_in_gang_single_region, NULL, &wi);
+}
+
+/* Construct a "gang-single" compute construct at LOC containing the STMTS.
+ Annotate with CLAUSES, which must not contain a 'num_gangs' clause, and an
+ additional 'num_gangs (1)' clause to force "gang-single" execution. */
+
+static gimple *
+make_region_seq (location_t loc, gimple_seq stmts,
+ tree num_gangs_clause,
+ tree num_workers_clause,
+ tree vector_length_clause,
+ tree clauses)
+{
+ /* This correctly unshares the entire clause chain rooted here. */
+ clauses = unshare_expr (clauses);
+
+ dump_user_location_t loc_stmts_first = gimple_seq_first (stmts);
+
+ /* Figure out the region code for this region. */
+ /* Optimistic default: assume "setup code", no looping; thus not
+ performance-critical. */
+ int region_code = GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_GANG_SINGLE;
+ adjust_region_code (stmts, ®ion_code);
+
+ if (region_code == GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_GANG_SINGLE)
+ {
+ if (dump_enabled_p ())
+ /*TODO MSG_MISSED_OPTIMIZATION? */
+ dump_printf_loc (MSG_NOTE, loc_stmts_first,
+ "beginning %<gang-single%> part"
+ " in OpenACC %<kernels%> region\n");
+
+ /* Synthesize a 'num_gangs (1)' clause. */
+ tree gang_single_clause = build_omp_clause (loc, OMP_CLAUSE_NUM_GANGS);
+ OMP_CLAUSE_OPERAND (gang_single_clause, 0) = integer_one_node;
+ OMP_CLAUSE_CHAIN (gang_single_clause) = clauses;
+ clauses = gang_single_clause;
+
+ /* Remove and issue warnings about gang clauses on any OpenACC
+ loops nested inside this sequentially executed statement. */
+ make_loops_gang_single (stmts);
+ }
+ else if (region_code == GF_OMP_TARGET_KIND_OACC_KERNELS)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, loc_stmts_first,
+ "beginning %<parloops%> part"
+ " in OpenACC %<kernels%> region\n");
+
+ /* As we're transforming a 'GF_OMP_TARGET_KIND_OACC_KERNELS' into another
+ 'GF_OMP_TARGET_KIND_OACC_KERNELS', this isn't doing any of the clauses
+ mangling that 'make_region_loop_nest' is doing. */
+ /* Re-assemble the clauses stripped off earlier. */
+ if (num_gangs_clause != NULL)
+ {
+ tree c = unshare_expr (num_gangs_clause);
+ OMP_CLAUSE_CHAIN (c) = clauses;
+ clauses = c;
+ }
+ if (num_workers_clause != NULL)
+ {
+ tree c = unshare_expr (num_workers_clause);
+ OMP_CLAUSE_CHAIN (c) = clauses;
+ clauses = c;
+ }
+ if (vector_length_clause != NULL)
+ {
+ tree c = unshare_expr (vector_length_clause);
+ OMP_CLAUSE_CHAIN (c) = clauses;
+ clauses = c;
+ }
+ }
+ else
+ gcc_unreachable ();
+
+ /* Build the gang-single region. */
+ gimple *single_region = gimple_build_omp_target (NULL, region_code, clauses);
+ gimple_set_location (single_region, loc);
+ gbind *single_body = gimple_build_bind (NULL, stmts, make_node (BLOCK));
+ gimple_omp_set_body (single_region, single_body);
+
+ return single_region;
+}
+
+/* Helper function for make_region_loop_nest. Adds a 'num_gangs'
+ ('num_workers', 'vector_length') clause to the given CLAUSES, either the one
+ from the parent compute construct (PARENT_CLAUSE) or a new one based on the
+ loop's own LOOP_CLAUSE ('gang (num: N)' or similar for 'worker' or 'vector'
+ clauses) with the given CLAUSE_CODE. Does nothing if neither PARENT_CLAUSE
+ nor LOOP_CLAUSE exist. Returns the new clauses. */
+
+static tree
+add_parent_or_loop_num_clause (tree parent_clause, tree loop_clause,
+ omp_clause_code clause_code, tree clauses)
+{
+ if (parent_clause != NULL)
+ {
+ tree num_clause = unshare_expr (parent_clause);
+ OMP_CLAUSE_CHAIN (num_clause) = clauses;
+ clauses = num_clause;
+ }
+ else if (loop_clause != NULL)
+ {
+ /* The kernels region does not have a 'num_gangs' clause, but the loop
+ itself had a 'gang (num: N)' clause. Honor it by adding a
+ 'num_gangs (N)' clause on the compute construct. */
+ tree num = OMP_CLAUSE_OPERAND (loop_clause, 0);
+ tree new_num_clause
+ = build_omp_clause (OMP_CLAUSE_LOCATION (loop_clause), clause_code);
+ OMP_CLAUSE_OPERAND (new_num_clause, 0) = num;
+ OMP_CLAUSE_CHAIN (new_num_clause) = clauses;
+ clauses = new_num_clause;
+ }
+ return clauses;
+}
+
+/* Helper for make_region_loop_nest, looking for 'worker (num: N)' or 'vector
+ (length: N)' clauses in nested loops. Removes the argument, transferring it
+ to the enclosing compute construct (via WI->INFO). If arguments within the
+ same loop nest conflict, emits a warning.
+
+ This function also decides whether to add an 'auto' clause on each of these
+ nested loops. */
+
+struct adjust_nested_loop_clauses_wi_info
+{
+ tree *loop_gang_clause_ptr;
+ tree *loop_worker_clause_ptr;
+ tree *loop_vector_clause_ptr;
+};
+
+static tree
+adjust_nested_loop_clauses (gimple_stmt_iterator *gsi_p, bool *,
+ struct walk_stmt_info *wi)
+{
+ struct adjust_nested_loop_clauses_wi_info *wi_info
+ = (struct adjust_nested_loop_clauses_wi_info *) wi->info;
+ gimple *stmt = gsi_stmt (*gsi_p);
+
+ if (gimple_code (stmt) == GIMPLE_OMP_FOR)
+ {
+ bool add_auto_clause = true;
+ tree loop_clauses = gimple_omp_for_clauses (stmt);
+ tree loop_clause = loop_clauses;
+ for (; loop_clause; loop_clause = OMP_CLAUSE_CHAIN (loop_clause))
+ {
+ tree *outer_clause_ptr = NULL;
+ switch (OMP_CLAUSE_CODE (loop_clause))
+ {
+ case OMP_CLAUSE_GANG:
+ outer_clause_ptr = wi_info->loop_gang_clause_ptr;
+ break;
+ case OMP_CLAUSE_WORKER:
+ outer_clause_ptr = wi_info->loop_worker_clause_ptr;
+ break;
+ case OMP_CLAUSE_VECTOR:
+ outer_clause_ptr = wi_info->loop_vector_clause_ptr;
+ break;
+ case OMP_CLAUSE_SEQ:
+ case OMP_CLAUSE_INDEPENDENT:
+ case OMP_CLAUSE_AUTO:
+ add_auto_clause = false;
+ default:
+ break;
+ }
+ if (outer_clause_ptr != NULL)
+ {
+ if (OMP_CLAUSE_OPERAND (loop_clause, 0) != NULL
+ && *outer_clause_ptr == NULL)
+ {
+ /* Transfer the clause to the enclosing compute construct and
+ remove the numerical argument from the 'loop'. */
+ *outer_clause_ptr = unshare_expr (loop_clause);
+ OMP_CLAUSE_OPERAND (loop_clause, 0) = NULL;
+ }
+ else if (OMP_CLAUSE_OPERAND (loop_clause, 0) != NULL &&
+ OMP_CLAUSE_OPERAND (*outer_clause_ptr, 0) != NULL)
+ {
+ /* See if both of these are the same constant. If they
+ aren't, emit a warning. */
+ tree old_op = OMP_CLAUSE_OPERAND (*outer_clause_ptr, 0);
+ tree new_op = OMP_CLAUSE_OPERAND (loop_clause, 0);
+ if (!(cst_and_fits_in_hwi (old_op) &&
+ cst_and_fits_in_hwi (new_op) &&
+ int_cst_value (old_op) == int_cst_value (new_op)))
+ {
+ const char *clause_name
+ = omp_clause_code_name[OMP_CLAUSE_CODE (loop_clause)];
+ error_at (gimple_location (stmt),
+ "cannot honor conflicting %qs clause",
+ clause_name);
+ inform (OMP_CLAUSE_LOCATION (*outer_clause_ptr),
+ "location of the previous clause"
+ " in the same loop nest");
+ }
+ OMP_CLAUSE_OPERAND (loop_clause, 0) = NULL;
+ }
+ }
+ }
+ if (add_auto_clause)
+ {
+ tree auto_clause
+ = build_omp_clause (gimple_location (stmt), OMP_CLAUSE_AUTO);
+ OMP_CLAUSE_CHAIN (auto_clause) = loop_clauses;
+ gimple_omp_for_set_clauses (stmt, auto_clause);
+ }
+ }
+
+ return NULL;
+}
+
+/* Helper for make_region_loop_nest. Transform OpenACC 'kernels'/'loop'
+ construct clauses into OpenACC 'parallel'/'loop' construct ones. */
+
+static tree
+transform_kernels_loop_clauses (gimple *omp_for,
+ tree num_gangs_clause,
+ tree num_workers_clause,
+ tree vector_length_clause,
+ tree clauses)
+{
+ /* If this loop in a kernels region does not have an explicit 'seq',
+ 'independent', or 'auto' clause, we must give it an explicit 'auto'
+ clause.
+ We also check for 'gang (num: N)' clauses. These must not appear in
+ kernels regions that have their own 'num_gangs' clause. Otherwise, they
+ must be converted and put on the region; similarly for 'worker' and
+ 'vector' clauses. */
+ bool add_auto_clause = true;
+ tree loop_gang_clause = NULL, loop_worker_clause = NULL,
+ loop_vector_clause = NULL;
+ tree loop_clauses = gimple_omp_for_clauses (omp_for);
+ for (tree loop_clause = loop_clauses;
+ loop_clause;
+ loop_clause = OMP_CLAUSE_CHAIN (loop_clause))
+ {
+ bool found_num_clause = false;
+ tree *clause_ptr, clause_to_check;
+ switch (OMP_CLAUSE_CODE (loop_clause))
+ {
+ case OMP_CLAUSE_GANG:
+ found_num_clause = true;
+ clause_ptr = &loop_gang_clause;
+ clause_to_check = num_gangs_clause;
+ break;
+ case OMP_CLAUSE_WORKER:
+ found_num_clause = true;
+ clause_ptr = &loop_worker_clause;
+ clause_to_check = num_workers_clause;
+ break;
+ case OMP_CLAUSE_VECTOR:
+ found_num_clause = true;
+ clause_ptr = &loop_vector_clause;
+ clause_to_check = vector_length_clause;
+ break;
+ case OMP_CLAUSE_INDEPENDENT:
+ case OMP_CLAUSE_SEQ:
+ case OMP_CLAUSE_AUTO:
+ add_auto_clause = false;
+ default:
+ break;
+ }
+ if (found_num_clause && OMP_CLAUSE_OPERAND (loop_clause, 0) != NULL)
+ {
+ if (clause_to_check)
+ {
+ const char *clause_name
+ = omp_clause_code_name[OMP_CLAUSE_CODE (loop_clause)];
+ const char *parent_clause_name
+ = omp_clause_code_name[OMP_CLAUSE_CODE (clause_to_check)];
+ error_at (OMP_CLAUSE_LOCATION (loop_clause),
+ "argument not permitted on %qs clause"
+ " in OpenACC %<kernels%> region with a %qs clause",
+ clause_name, parent_clause_name);
+ inform (OMP_CLAUSE_LOCATION (clause_to_check),
+ "location of OpenACC %<kernels%>");
+ }
+ /* Copy the 'gang (N)'/'worker (N)'/'vector (N)' clause to the
+ enclosing compute construct. */
+ *clause_ptr = unshare_expr (loop_clause);
+ OMP_CLAUSE_CHAIN (*clause_ptr) = NULL;
+ /* Leave a 'gang'/'worker'/'vector' clause on the 'loop', but without
+ argument. */
+ OMP_CLAUSE_OPERAND (loop_clause, 0) = NULL;
+ }
+ }
+ if (add_auto_clause)
+ {
+ tree auto_clause = build_omp_clause (gimple_location (omp_for),
+ OMP_CLAUSE_AUTO);
+ OMP_CLAUSE_CHAIN (auto_clause) = loop_clauses;
+ loop_clauses = auto_clause;
+ }
+ gimple_omp_for_set_clauses (omp_for, loop_clauses);
+ /* We must also recurse into the loop; it might contain nested loops having
+ their own 'worker (num: W)' or 'vector (length: V)' clauses. Turn these
+ into 'worker'/'vector' clauses on the compute construct. */
+ struct walk_stmt_info wi;
+ memset (&wi, 0, sizeof (wi));
+ struct adjust_nested_loop_clauses_wi_info wi_info;
+ wi_info.loop_gang_clause_ptr = &loop_gang_clause;
+ wi_info.loop_worker_clause_ptr = &loop_worker_clause;
+ wi_info.loop_vector_clause_ptr = &loop_vector_clause;
+ wi.info = &wi_info;
+ gimple *body = gimple_omp_body (omp_for);
+ walk_gimple_seq (body, adjust_nested_loop_clauses, NULL, &wi);
+ /* Check if there were conflicting numbers of workers or vector length. */
+ if (loop_gang_clause != NULL &&
+ OMP_CLAUSE_OPERAND (loop_gang_clause, 0) == NULL)
+ loop_gang_clause = NULL;
+ if (loop_worker_clause != NULL &&
+ OMP_CLAUSE_OPERAND (loop_worker_clause, 0) == NULL)
+ loop_worker_clause = NULL;
+ if (loop_vector_clause != NULL &&
+ OMP_CLAUSE_OPERAND (loop_vector_clause, 0) == NULL)
+ vector_length_clause = NULL;
+
+ /* If the kernels region had 'num_gangs', 'num_worker', 'vector_length'
+ clauses, add these to this new compute construct. */
+ clauses
+ = add_parent_or_loop_num_clause (num_gangs_clause, loop_gang_clause,
+ OMP_CLAUSE_NUM_GANGS, clauses);
+ clauses
+ = add_parent_or_loop_num_clause (num_workers_clause, loop_worker_clause,
+ OMP_CLAUSE_NUM_WORKERS, clauses);
+ clauses
+ = add_parent_or_loop_num_clause (vector_length_clause, loop_vector_clause,
+ OMP_CLAUSE_VECTOR_LENGTH, clauses);
+
+ return clauses;
+}
+
+/* Construct a possibly gang-parallel compute construct containing the STMT,
+ which must be identical to, or a bind containing, the loop OMP_FOR.
+
+ The NUM_GANGS_CLAUSE, NUM_WORKERS_CLAUSE, and VECTOR_LENGTH_CLAUSE are
+ optional clauses from the original kernels region and must not be contained
+ in the other CLAUSES. The newly created compute construct is annotated with
+ the optional NUM_GANGS_CLAUSE as well as the other CLAUSES. If there is no
+ NUM_GANGS_CLAUSE but the loop has a 'gang (num: N)' clause, that is
+ converted to a 'num_gangs (N)' clause on the new compute construct, and
+ similarly for 'worker' and 'vector' clauses.
+
+ The outermost loop gets an 'auto' clause unless there already is an
+ 'seq'/'independent'/'auto' clause. Nested loops inside OMP_FOR are treated
+ similarly by the adjust_nested_loop_clauses function. */
+
+static gimple *
+make_region_loop_nest (gimple *omp_for, gimple_seq stmts,
+ tree num_gangs_clause,
+ tree num_workers_clause,
+ tree vector_length_clause,
+ tree clauses)
+{
+ /* This correctly unshares the entire clause chain rooted here. */
+ clauses = unshare_expr (clauses);
+
+ /* Figure out the region code for this region. */
+ /* Optimistic default: assume that the loop nest is parallelizable
+ (essentially, no GIMPLE_OMP_FOR with (explicit or implicit) 'auto' clause,
+ and no un-annotated loops). */
+ int region_code = GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_PARALLELIZED;
+ adjust_region_code (stmts, ®ion_code);
+
+ if (region_code == GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_PARALLELIZED)
+ {
+ if (dump_enabled_p ())
+ /* This is not MSG_OPTIMIZED_LOCATIONS, as we're just doing what the
+ user asked us to. */
+ dump_printf_loc (MSG_NOTE, omp_for,
+ "parallelized loop nest"
+ " in OpenACC %<kernels%> region\n");
+
+ clauses = transform_kernels_loop_clauses (omp_for,
+ num_gangs_clause,
+ num_workers_clause,
+ vector_length_clause,
+ clauses);
+ }
+ else if (region_code == GF_OMP_TARGET_KIND_OACC_KERNELS)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, omp_for,
+ "forwarded loop nest"
+ " in OpenACC %<kernels%> region"
+ " to %<parloops%> for analysis\n");
+
+ /* We're transforming one 'GF_OMP_TARGET_KIND_OACC_KERNELS' into another
+ 'GF_OMP_TARGET_KIND_OACC_KERNELS', so don't have to
+ 'transform_kernels_loop_clauses'. */
+ /* Re-assemble the clauses stripped off earlier. */
+ clauses
+ = add_parent_or_loop_num_clause (num_gangs_clause, NULL,
+ OMP_CLAUSE_NUM_GANGS, clauses);
+ clauses
+ = add_parent_or_loop_num_clause (num_workers_clause, NULL,
+ OMP_CLAUSE_NUM_WORKERS, clauses);
+ clauses
+ = add_parent_or_loop_num_clause (vector_length_clause, NULL,
+ OMP_CLAUSE_VECTOR_LENGTH, clauses);
+ }
+ else
+ gcc_unreachable ();
+
+ gimple *parallel_body_bind
+ = gimple_build_bind (NULL, stmts, make_node (BLOCK));
+ gimple *parallel_region
+ = gimple_build_omp_target (parallel_body_bind, region_code, clauses);
+ gimple_set_location (parallel_region, gimple_location (omp_for));
+
+ return parallel_region;
+}
+
+/* Eliminate any binds directly inside BIND by adding their statements to
+ BIND (i.e., modifying it in place), excluding binds that hold only an
+ OMP_FOR loop and associated setup/cleanup code. Recurse into binds but
+ not other statements. Return a chain of the local variables of eliminated
+ binds, i.e., the local variables found in nested binds. If
+ INCLUDE_TOPLEVEL_VARS is true, this also includes the variables belonging
+ to BIND itself. */
+
+static tree
+flatten_binds (gbind *bind, bool include_toplevel_vars = false)
+{
+ tree vars = NULL, last_var = NULL;
+
+ if (include_toplevel_vars)
+ {
+ vars = gimple_bind_vars (bind);
+ last_var = vars;
+ }
+
+ gimple_seq new_body = NULL;
+ gimple_seq body_sequence = gimple_bind_body (bind);
+ gimple_stmt_iterator gsi, gsi_n;
+ for (gsi = gsi_start (body_sequence); !gsi_end_p (gsi); gsi = gsi_n)
+ {
+ /* Advance the iterator here because otherwise it would be invalidated
+ by moving statements below. */
+ gsi_n = gsi;
+ gsi_next (&gsi_n);
+
+ gimple *stmt = gsi_stmt (gsi);
+ /* Flatten bind statements, except the ones that contain only an
+ OpenACC for loop. */
+ if (gimple_code (stmt) == GIMPLE_BIND
+ && !top_level_omp_for_in_stmt (stmt))
+ {
+ gbind *inner_bind = as_a <gbind *> (stmt);
+ /* Flatten recursively, and collect all variables. */
+ tree inner_vars = flatten_binds (inner_bind, true);
+ gimple_seq inner_sequence = gimple_bind_body (inner_bind);
+ gcc_assert (gimple_code (inner_sequence) != GIMPLE_BIND
+ || top_level_omp_for_in_stmt (inner_sequence));
+ gimple_seq_add_seq (&new_body, inner_sequence);
+ /* Find the last variable; we will append others to it. */
+ while (last_var != NULL && TREE_CHAIN (last_var) != NULL)
+ last_var = TREE_CHAIN (last_var);
+ if (last_var != NULL)
+ {
+ TREE_CHAIN (last_var) = inner_vars;
+ last_var = inner_vars;
+ }
+ else
+ {
+ vars = inner_vars;
+ last_var = vars;
+ }
+ }
+ else
+ gimple_seq_add_stmt (&new_body, stmt);
+ }
+
+ /* Put the possibly transformed body back into the bind. */
+ gimple_bind_set_body (bind, new_body);
+ return vars;
+}
+
+/* Helper function for places where we construct data regions. Wraps the BODY
+ inside a try-finally construct at LOC that calls __builtin_GOACC_data_end
+ in its cleanup block. Returns this try statement. */
+
+static gimple *
+make_data_region_try_statement (location_t loc, gimple *body)
+{
+ tree data_end_fn = builtin_decl_explicit (BUILT_IN_GOACC_DATA_END);
+ gimple *call = gimple_build_call (data_end_fn, 0);
+ gimple_seq cleanup = NULL;
+ gimple_seq_add_stmt (&cleanup, call);
+ gimple *try_stmt = gimple_build_try (body, cleanup, GIMPLE_TRY_FINALLY);
+ gimple_set_location (body, loc);
+ return try_stmt;
+}
+
+/* If INNER_BIND_VARS holds variables, build an OpenACC data region with
+ location LOC containing BODY and having 'create (var)' clauses for each
+ variable. If INNER_CLEANUP is present, add a try-finally statement with
+ this cleanup code in the finally block. Return the new data region, or
+ the original BODY if no data region was needed. */
+
+static gimple *
+maybe_build_inner_data_region (location_t loc, gimple *body,
+ tree inner_bind_vars, gimple *inner_cleanup)
+{
+ /* Build data 'create (var)' clauses for these local variables.
+ Below we will add these to a data region enclosing the entire body
+ of the decomposed kernels region. */
+ tree prev_mapped_var = NULL, next = NULL, artificial_vars = NULL,
+ inner_data_clauses = NULL;
+ for (tree v = inner_bind_vars; v; v = next)
+ {
+ next = TREE_CHAIN (v);
+ if (DECL_ARTIFICIAL (v)
+ || TREE_CODE (v) == CONST_DECL
+ || (DECL_LANG_SPECIFIC (current_function_decl)
+ && DECL_TEMPLATE_INSTANTIATION (current_function_decl)))
+ {
+ /* If this is an artificial temporary, it need not be mapped. We
+ move its declaration into the bind inside the data region.
+ Also avoid mapping variables if we are inside a template
+ instantiation; the code does not contain all the copies to
+ temporaries that would make this legal. */
+ TREE_CHAIN (v) = artificial_vars;
+ artificial_vars = v;
+ if (prev_mapped_var != NULL)
+ TREE_CHAIN (prev_mapped_var) = next;
+ else
+ inner_bind_vars = next;
+ }
+ else
+ {
+ /* Otherwise, build the map clause. */
+ tree new_clause = build_omp_clause (loc, OMP_CLAUSE_MAP);
+ OMP_CLAUSE_SET_MAP_KIND (new_clause, GOMP_MAP_ALLOC);
+ OMP_CLAUSE_DECL (new_clause) = v;
+ OMP_CLAUSE_SIZE (new_clause) = DECL_SIZE_UNIT (v);
+ OMP_CLAUSE_CHAIN (new_clause) = inner_data_clauses;
+ inner_data_clauses = new_clause;
+
+ prev_mapped_var = v;
+ }
+ }
+
+ if (artificial_vars)
+ body = gimple_build_bind (artificial_vars, body, make_node (BLOCK));
+
+ /* If we determined above that there are variables that need to be created
+ on the device, construct a data region for them and wrap the body
+ inside that. */
+ if (inner_data_clauses != NULL)
+ {
+ gcc_assert (inner_bind_vars != NULL);
+ gimple *inner_data_region
+ = gimple_build_omp_target (NULL, GF_OMP_TARGET_KIND_OACC_DATA_KERNELS,
+ inner_data_clauses);
+ gimple_set_location (inner_data_region, loc);
+ /* Make sure __builtin_GOACC_data_end is called at the end. */
+ gimple *try_stmt = make_data_region_try_statement (loc, body);
+ gimple_omp_set_body (inner_data_region, try_stmt);
+ gimple *bind_body;
+ if (inner_cleanup != NULL)
+ /* Clobber all the inner variables that need to be clobbered. */
+ bind_body = gimple_build_try (inner_data_region, inner_cleanup,
+ GIMPLE_TRY_FINALLY);
+ else
+ bind_body = inner_data_region;
+ body = gimple_build_bind (inner_bind_vars, bind_body, make_node (BLOCK));
+ }
+
+ return body;
+}
+
+/* Helper function of decompose_kernels_region_body. The statements in
+ REGION_BODY are expected to be decomposed parts; add an 'async' clause to
+ each. Also add a 'wait' directive at the end of the sequence. */
+
+static void
+add_async_clauses_and_wait (location_t loc, gimple_seq *region_body)
+{
+ tree default_async_queue
+ = build_int_cst (integer_type_node, GOMP_ASYNC_NOVAL);
+ for (gimple_stmt_iterator gsi = gsi_start (*region_body);
+ !gsi_end_p (gsi);
+ gsi_next (&gsi))
+ {
+ gimple *stmt = gsi_stmt (gsi);
+ tree target_clauses = gimple_omp_target_clauses (stmt);
+ tree new_async_clause = build_omp_clause (loc, OMP_CLAUSE_ASYNC);
+ OMP_CLAUSE_OPERAND (new_async_clause, 0) = default_async_queue;
+ OMP_CLAUSE_CHAIN (new_async_clause) = target_clauses;
+ target_clauses = new_async_clause;
+ gimple_omp_target_set_clauses (as_a <gomp_target *> (stmt),
+ target_clauses);
+ }
+ /* A '#pragma acc wait' is just a call 'GOACC_wait (acc_async_sync, 0)'. */
+ tree wait_fn = builtin_decl_explicit (BUILT_IN_GOACC_WAIT);
+ tree sync_arg = build_int_cst (integer_type_node, GOMP_ASYNC_SYNC);
+ gimple *wait_call = gimple_build_call (wait_fn, 2,
+ sync_arg, integer_zero_node);
+ gimple_set_location (wait_call, loc);
+ gimple_seq_add_stmt (region_body, wait_call);
+}
+
+/* Auxiliary analysis of the body of a kernels region, to determine for each
+ OpenACC loop whether it is control-dependent (i.e., not necessarily
+ executed every time the kernels region is entered) or not.
+ We say that a loop is control-dependent if there is some cond, switch, or
+ goto statement that jumps over it, forwards or backwards. For example,
+ if the loop is controlled by an if statement, then a jump to the true
+ block, the false block, or from one of those blocks to the control flow
+ join point will necessarily jump over the loop.
+ This analysis implements an ad-hoc union-find data structure classifying
+ statements into "control-flow regions" as follows: Most statements are in
+ the same region as their predecessor, except that each OpenACC loop is in
+ a region of its own, and each OpenACC loop's successor starts a new
+ region. We then unite the regions of any statements linked by jumps,
+ placing any cond, switch, or goto statement in the same region as its
+ target label(s).
+ In the end, control dependence of OpenACC loops can be determined by
+ comparing their immediate predecessor and successor statements' regions.
+ A jump crosses the loop if and only if the predecessor and successor are
+ in the same region. (If there is no predecessor or successor, the loop
+ is executed unconditionally.)
+ The methods in this class identify statements by their index in the
+ kernels region's body. */
+
+class control_flow_regions
+{
+ public:
+ /* Initialize an instance and pre-compute the control-flow region
+ information for the statement sequence SEQ. */
+ control_flow_regions (gimple_seq seq);
+
+ /* Return true if the statement with the given index IDX in the analyzed
+ statement sequence is an unconditionally executed OpenACC loop. */
+ bool is_unconditional_oacc_for_loop (size_t idx);
+
+ private:
+ /* Find the region representative for the statement identified by index
+ STMT_IDX. */
+ size_t find_rep (size_t stmt_idx);
+
+ /* Union the regions containing the statements represented by
+ representatives A and B. */
+ void union_reps (size_t a, size_t b);
+
+ /* Helper for the constructor. Performs the actual computation of the
+ control-flow regions in the statement sequence SEQ. */
+ void compute_regions (gimple_seq seq);
+
+ /* The mapping from statement indices to region representatives. */
+ vec <size_t> representatives;
+
+ /* A cache mapping statement indices to a flag indicating whether the
+ statement is a top level OpenACC for loop. */
+ vec <bool> omp_for_loops;
+};
+
+control_flow_regions::control_flow_regions (gimple_seq seq)
+{
+ representatives.create (1);
+ omp_for_loops.create (1);
+ compute_regions (seq);
+}
+
+bool
+control_flow_regions::is_unconditional_oacc_for_loop (size_t idx)
+{
+ if (idx == 0 || idx == representatives.length () - 1)
+ /* The first or last statement in the kernels region. This means that
+ there is no room before or after it for a jump or a label. Thus
+ there cannot be a jump across it, so it is unconditional. */
+ return true;
+ /* Otherwise, the loop is unconditional if the statements before and after
+ it are in different control flow regions. Scan forward and backward,
+ skipping over neighboring OpenACC for loops, to find these preceding
+ statements. */
+ size_t prev_index = idx - 1;
+ while (prev_index > 0 && omp_for_loops [prev_index] == true)
+ prev_index--;
+ /* If all preceding statements are also OpenACC loops, all of these are
+ unconditional. */
+ if (prev_index == 0)
+ return true;
+ size_t succ_index = idx + 1;
+ while (succ_index < omp_for_loops.length ()
+ && omp_for_loops [succ_index] == true)
+ succ_index++;
+ /* If all following statements are also OpenACC loops, all of these are
+ unconditional. */
+ if (succ_index == omp_for_loops.length ())
+ return true;
+ return (find_rep (prev_index) != find_rep (succ_index));
+}
+
+size_t
+control_flow_regions::find_rep (size_t stmt_idx)
+{
+ size_t rep = stmt_idx, aux = stmt_idx;
+ /* Find the root representative of this statement. */
+ while (representatives[rep] != rep)
+ rep = representatives[rep];
+ /* Compress the path from the original statement to the representative. */
+ while (representatives[aux] != rep)
+ {
+ size_t tmp = representatives[aux];
+ representatives[aux] = rep;
+ aux = tmp;
+ }
+ return rep;
+}
+
+void
+control_flow_regions::union_reps (size_t a, size_t b)
+{
+ a = find_rep (a);
+ b = find_rep (b);
+ representatives[b] = a;
+}
+
+void
+control_flow_regions::compute_regions (gimple_seq seq)
+{
+ hash_map <gimple *, size_t> control_flow_reps;
+ hash_map <tree, size_t> label_reps;
+ size_t current_region = 0, idx = 0;
+
+ /* In a first pass, assign an initial region to each statement. Except in
+ the case of OpenACC loops, each statement simply gets the same region
+ representative as its predecessor. */
+ for (gimple_stmt_iterator gsi = gsi_start (seq);
+ !gsi_end_p (gsi);
+ gsi_next (&gsi))
+ {
+ gimple *stmt = gsi_stmt (gsi);
+ gimple *omp_for = top_level_omp_for_in_stmt (stmt);
+ omp_for_loops.safe_push (omp_for != NULL);
+ if (omp_for != NULL)
+ {
+ /* Assign a new region to this loop and to its successor. */
+ current_region = idx;
+ representatives.safe_push (current_region);
+ current_region++;
+ }
+ else
+ {
+ representatives.safe_push (current_region);
+ /* Remember any jumps and labels for the second pass below. */
+ if (gimple_code (stmt) == GIMPLE_COND
+ || gimple_code (stmt) == GIMPLE_SWITCH
+ || gimple_code (stmt) == GIMPLE_GOTO)
+ control_flow_reps.put (stmt, current_region);
+ else if (gimple_code (stmt) == GIMPLE_LABEL)
+ label_reps.put (gimple_label_label (as_a <glabel *> (stmt)),
+ current_region);
+ }
+ idx++;
+ }
+ gcc_assert (representatives.length () == omp_for_loops.length ());
+
+ /* Revisit all the control flow statements and union the region of each
+ cond, switch, or goto statement with the target labels' regions. */
+ for (hash_map <gimple *, size_t>::iterator it = control_flow_reps.begin ();
+ it != control_flow_reps.end ();
+ ++it)
+ {
+ gimple *stmt = (*it).first;
+ size_t stmt_rep = (*it).second;
+ switch (gimple_code (stmt))
+ {
+ tree label;
+ unsigned int n;
+
+ case GIMPLE_COND:
+ label = gimple_cond_true_label (as_a <gcond *> (stmt));
+ union_reps (stmt_rep, *label_reps.get (label));
+ label = gimple_cond_false_label (as_a <gcond *> (stmt));
+ union_reps (stmt_rep, *label_reps.get (label));
+ break;
+
+ case GIMPLE_SWITCH:
+ n = gimple_switch_num_labels (as_a <gswitch *> (stmt));
+ for (unsigned int i = 0; i < n; i++)
+ {
+ tree switch_case
+ = gimple_switch_label (as_a <gswitch *> (stmt), i);
+ label = CASE_LABEL (switch_case);
+ union_reps (stmt_rep, *label_reps.get (label));
+ }
+ break;
+
+ case GIMPLE_GOTO:
+ label = gimple_goto_dest (stmt);
+ union_reps (stmt_rep, *label_reps.get (label));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+}
+
+/* Decompose the body of the KERNELS_REGION, which was originally annotated
+ with the KERNELS_CLAUSES, into a series of compute constructs. */
+
+static gimple *
+decompose_kernels_region_body (gimple *kernels_region, tree kernels_clauses)
+{
+ location_t loc = gimple_location (kernels_region);
+
+ /* The kernels clauses will be propagated to the child clauses unmodified,
+ except that the 'num_gangs', 'num_workers', and 'vector_length' clauses
+ will only be added to loop regions. The other regions are "gang-single"
+ and get an explicit 'num_gangs (1)' clause. So separate out the
+ 'num_gangs', 'num_workers', and 'vector_length' clauses here.
+ Also check for the presence of an 'async' clause but do not remove it from
+ the 'kernels' clauses. */
+ tree num_gangs_clause = NULL, num_workers_clause = NULL,
+ vector_length_clause = NULL;
+ tree async_clause = NULL;
+ tree prev_clause = NULL, next_clause = NULL;
+ tree parallel_clauses = kernels_clauses;
+ for (tree c = parallel_clauses; c; c = next_clause)
+ {
+ /* Preserve this here, as we might NULL it later. */
+ next_clause = OMP_CLAUSE_CHAIN (c);
+
+ if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_NUM_GANGS
+ || OMP_CLAUSE_CODE (c) == OMP_CLAUSE_NUM_WORKERS
+ || OMP_CLAUSE_CODE (c) == OMP_CLAUSE_VECTOR_LENGTH)
+ {
+ /* Cut this clause out of the chain. */
+ if (prev_clause != NULL)
+ OMP_CLAUSE_CHAIN (prev_clause) = OMP_CLAUSE_CHAIN (c);
+ else
+ kernels_clauses = OMP_CLAUSE_CHAIN (c);
+ OMP_CLAUSE_CHAIN (c) = NULL;
+ switch (OMP_CLAUSE_CODE (c))
+ {
+ case OMP_CLAUSE_NUM_GANGS:
+ num_gangs_clause = c;
+ break;
+ case OMP_CLAUSE_NUM_WORKERS:
+ num_workers_clause = c;
+ break;
+ case OMP_CLAUSE_VECTOR_LENGTH:
+ vector_length_clause = c;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ }
+ else
+ prev_clause = c;
+ if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_ASYNC)
+ async_clause = c;
+ }
+
+ gimple *kernels_body = gimple_omp_body (kernels_region);
+ gbind *kernels_bind = as_a <gbind *> (kernels_body);
+
+ /* The body of the region may contain other nested binds declaring inner
+ local variables. Collapse all these binds into one to ensure that we
+ have a single sequence of statements to iterate over; also, collect all
+ inner variables. */
+ tree inner_bind_vars = flatten_binds (kernels_bind);
+ gimple_seq body_sequence = gimple_bind_body (kernels_bind);
+
+ /* All these inner variables will get allocated on the device (below, by
+ calling maybe_build_inner_data_region). Here we create 'present'
+ clauses for them and add these clauses to the list of clauses to be
+ attached to each inner compute construct. */
+ tree present_clauses = kernels_clauses;
+ for (tree var = inner_bind_vars; var; var = TREE_CHAIN (var))
+ {
+ if (!DECL_ARTIFICIAL (var) && TREE_CODE (var) != CONST_DECL)
+ {
+ tree present_clause = build_omp_clause (loc, OMP_CLAUSE_MAP);
+ OMP_CLAUSE_SET_MAP_KIND (present_clause, GOMP_MAP_FORCE_PRESENT);
+ OMP_CLAUSE_DECL (present_clause) = var;
+ OMP_CLAUSE_SIZE (present_clause) = DECL_SIZE_UNIT (var);
+ OMP_CLAUSE_CHAIN (present_clause) = present_clauses;
+ present_clauses = present_clause;
+ }
+ }
+ kernels_clauses = present_clauses;
+
+ /* In addition to nested binds, the "real" body of the region may be
+ nested inside a try-finally block. Find its cleanup block, which
+ contains code to clobber the local variables that must be clobbered. */
+ gimple *inner_cleanup = NULL;
+ if (body_sequence != NULL && gimple_code (body_sequence) == GIMPLE_TRY)
+ {
+ if (gimple_seq_singleton_p (body_sequence))
+ {
+ /* The try statement is the only thing inside the bind. */
+ inner_cleanup = gimple_try_cleanup (body_sequence);
+ body_sequence = gimple_try_eval (body_sequence);
+ }
+ else
+ {
+ /* The bind's body starts with a try statement, but it is followed
+ by other things. */
+ gimple_stmt_iterator gsi = gsi_start (body_sequence);
+ gimple *try_stmt = gsi_stmt (gsi);
+ inner_cleanup = gimple_try_cleanup (try_stmt);
+ gimple *try_body = gimple_try_eval (try_stmt);
+
+ gsi_remove (&gsi, false);
+ /* Now gsi indicates the sequence of statements after the try
+ statement in the bind. Append the statement in the try body and
+ the trailing statements from gsi. */
+ gsi_insert_seq_before (&gsi, try_body, GSI_CONTINUE_LINKING);
+ body_sequence = gsi_stmt (gsi);
+ }
+ }
+
+ /* This sequence will collect all the top-level statements in the body of
+ the data region we are about to construct. */
+ gimple_seq region_body = NULL;
+ /* This sequence will collect consecutive statements to be put into a
+ gang-single region. */
+ gimple_seq gang_single_seq = NULL;
+ /* Flag recording whether the gang_single_seq only contains copies to
+ local variables. These may be loop setup code that should not be
+ separated from the loop. */
+ bool only_simple_assignments = true;
+
+ /* Precompute the control flow region information to determine whether an
+ OpenACC loop is executed conditionally or unconditionally. */
+ control_flow_regions cf_regions (body_sequence);
+
+ /* Iterate over the statements in the kernels region's body. */
+ size_t idx = 0;
+ gimple_stmt_iterator gsi, gsi_n;
+ for (gsi = gsi_start (body_sequence); !gsi_end_p (gsi); gsi = gsi_n, idx++)
+ {
+ /* Advance the iterator here because otherwise it would be invalidated
+ by moving statements below. */
+ gsi_n = gsi;
+ gsi_next (&gsi_n);
+
+ gimple *stmt = gsi_stmt (gsi);
+ gimple *omp_for = top_level_omp_for_in_stmt (stmt);
+ bool is_unconditional_oacc_for_loop = false;
+ if (omp_for != NULL)
+ is_unconditional_oacc_for_loop
+ = cf_regions.is_unconditional_oacc_for_loop (idx);
+ if (omp_for != NULL
+ && is_unconditional_oacc_for_loop)
+ {
+ /* This is an OMP for statement, put it into a separate region.
+ But first, construct a gang-single region containing any
+ complex sequential statements we may have seen. */
+ if (gang_single_seq != NULL && !only_simple_assignments)
+ {
+ gimple *single_region
+ = make_region_seq (loc, gang_single_seq,
+ num_gangs_clause,
+ num_workers_clause,
+ vector_length_clause,
+ kernels_clauses);
+ gimple_seq_add_stmt (®ion_body, single_region);
+ }
+ else if (gang_single_seq != NULL && only_simple_assignments)
+ {
+ /* There is a sequence of sequential statements preceding this
+ loop, but they are all simple assignments. This is
+ probably setup code for the loop; in particular, Fortran DO
+ loops are preceded by code to copy the loop limit variable
+ to a temporary. Group this code together with the loop
+ itself. */
+ gimple_seq_add_stmt (&gang_single_seq, stmt);
+ stmt = gimple_build_bind (NULL, gang_single_seq,
+ make_node (BLOCK));
+ }
+ gang_single_seq = NULL;
+ only_simple_assignments = true;
+
+ gimple_seq parallel_seq = NULL;
+ gimple_seq_add_stmt (¶llel_seq, stmt);
+ gimple *parallel_region
+ = make_region_loop_nest (omp_for, parallel_seq,
+ num_gangs_clause,
+ num_workers_clause,
+ vector_length_clause,
+ kernels_clauses);
+ gimple_seq_add_stmt (®ion_body, parallel_region);
+ }
+ else
+ {
+ if (omp_for != NULL)
+ {
+ gcc_checking_assert (!is_unconditional_oacc_for_loop);
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, omp_for,
+ "unparallelized loop nest"
+ " in OpenACC %<kernels%> region:"
+ " it's executed conditionally\n");
+ }
+
+ /* This is not an unconditional OMP for statement, so it will be
+ put into a gang-single region. */
+ gimple_seq_add_stmt (&gang_single_seq, stmt);
+ /* Is this a simple assignment? We call it simple if it is an
+ assignment to an artificial local variable. This captures
+ Fortran loop setup code computing loop bounds and offsets. */
+ bool is_simple_assignment
+ = (gimple_code (stmt) == GIMPLE_ASSIGN
+ && TREE_CODE (gimple_assign_lhs (stmt)) == VAR_DECL
+ && DECL_ARTIFICIAL (gimple_assign_lhs (stmt)));
+ if (!is_simple_assignment)
+ only_simple_assignments = false;
+ }
+ }
+
+ /* If we did not emit a new region, and are not going to emit one now
+ (that is, the original region was empty), prepare to emit a dummy so as
+ to preserve the original construct, which other processing (at least
+ test cases) depend on. */
+ if (region_body == NULL && gang_single_seq == NULL)
+ {
+ gimple *stmt = gimple_build_nop ();
+ gimple_set_location (stmt, loc);
+ gimple_seq_add_stmt (&gang_single_seq, stmt);
+ }
+
+ /* Gather up any remaining gang-single statements. */
+ if (gang_single_seq != NULL)
+ {
+ gimple *single_region
+ = make_region_seq (loc, gang_single_seq,
+ num_gangs_clause,
+ num_workers_clause,
+ vector_length_clause,
+ kernels_clauses);
+ gimple_seq_add_stmt (®ion_body, single_region);
+ }
+
+ /* We want to launch these kernels asynchronously. If the original
+ kernels region had an async clause, this is done automatically because
+ that async clause was copied to the individual regions we created.
+ Otherwise, add an async clause to each newly created region, as well as
+ a wait directive at the end. */
+ if (async_clause == NULL)
+ add_async_clauses_and_wait (loc, ®ion_body);
+
+ tree kernels_locals = gimple_bind_vars (as_a <gbind *> (kernels_body));
+ gimple *body = gimple_build_bind (kernels_locals, region_body,
+ make_node (BLOCK));
+
+ /* If we found variables declared in nested scopes, build a data region to
+ map them to the device. */
+ body = maybe_build_inner_data_region (loc, body, inner_bind_vars,
+ inner_cleanup);
+
+ return body;
+}
+
+/* Decompose one OpenACC 'kernels' construct into an OpenACC 'data' construct
+ containing the original OpenACC 'kernels' construct's region cut up into a
+ sequence of compute constructs. */
+
+static gimple *
+omp_oacc_kernels_decompose_1 (gimple *kernels_stmt)
+{
+ gcc_checking_assert (gimple_omp_target_kind (kernels_stmt)
+ == GF_OMP_TARGET_KIND_OACC_KERNELS);
+ location_t loc = gimple_location (kernels_stmt);
+
+ /* Collect the data clauses of the OpenACC 'kernels' directive and create a
+ new OpenACC 'data' construct with those clauses. */
+ tree kernels_clauses = gimple_omp_target_clauses (kernels_stmt);
+ tree data_clauses = NULL;
+ for (tree c = kernels_clauses; c; c = OMP_CLAUSE_CHAIN (c))
+ {
+ /* Certain clauses are copied to the enclosing OpenACC 'data'. Other
+ clauses remain on the OpenACC 'kernels'. */
+ if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_MAP)
+ {
+ tree decl = OMP_CLAUSE_DECL (c);
+ HOST_WIDE_INT map_kind = OMP_CLAUSE_MAP_KIND (c);
+ switch (map_kind)
+ {
+ default:
+ if (map_kind == GOMP_MAP_ALLOC
+ && integer_zerop (OMP_CLAUSE_SIZE (c)))
+ /* ??? This is an alloc clause for mapping a pointer whose
+ target is already mapped. We leave these on the inner
+ compute constructs because moving them to the outer data
+ region causes runtime errors. */
+ break;
+
+ /* For non-artificial variables, and for non-declaration
+ expressions like A[0:n], copy the clause to the data
+ region. */
+ if ((DECL_P (decl) && !DECL_ARTIFICIAL (decl))
+ || !DECL_P (decl))
+ {
+ tree new_clause = build_omp_clause (OMP_CLAUSE_LOCATION (c),
+ OMP_CLAUSE_MAP);
+ OMP_CLAUSE_SET_MAP_KIND (new_clause, map_kind);
+ /* This must be unshared here to avoid "incorrect sharing
+ of tree nodes" errors from verify_gimple. */
+ OMP_CLAUSE_DECL (new_clause) = unshare_expr (decl);
+ OMP_CLAUSE_SIZE (new_clause) = OMP_CLAUSE_SIZE (c);
+ OMP_CLAUSE_CHAIN (new_clause) = data_clauses;
+ data_clauses = new_clause;
+
+ /* Now that this data is mapped, turn the data clause on the
+ inner OpenACC 'kernels' into a 'present' clause. */
+ OMP_CLAUSE_SET_MAP_KIND (c, GOMP_MAP_FORCE_PRESENT);
+ }
+ break;
+
+ case GOMP_MAP_POINTER:
+ case GOMP_MAP_TO_PSET:
+ case GOMP_MAP_FORCE_TOFROM:
+ case GOMP_MAP_FIRSTPRIVATE_POINTER:
+ case GOMP_MAP_FIRSTPRIVATE_REFERENCE:
+ /* ??? Copying these map kinds leads to internal compiler
+ errors in later passes. */
+ break;
+ }
+ }
+ else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_IF)
+ {
+ /* If there is an 'if' clause, it must be duplicated to the
+ enclosing data region. Temporarily remove the if clause's
+ chain to avoid copying it. */
+ tree saved_chain = OMP_CLAUSE_CHAIN (c);
+ OMP_CLAUSE_CHAIN (c) = NULL;
+ tree new_if_clause = unshare_expr (c);
+ OMP_CLAUSE_CHAIN (c) = saved_chain;
+ OMP_CLAUSE_CHAIN (new_if_clause) = data_clauses;
+ data_clauses = new_if_clause;
+ }
+ }
+ /* Restore the original order of the clauses. */
+ data_clauses = nreverse (data_clauses);
+
+ gimple *data_region
+ = gimple_build_omp_target (NULL, GF_OMP_TARGET_KIND_OACC_DATA_KERNELS,
+ data_clauses);
+ gimple_set_location (data_region, loc);
+
+ /* Transform the body of the kernels region into a sequence of compute
+ constructs. */
+ gimple *body = decompose_kernels_region_body (kernels_stmt,
+ kernels_clauses);
+
+ /* Put the transformed pieces together. The entire body of the region is
+ wrapped in a try-finally statement that calls __builtin_GOACC_data_end
+ for cleanup. */
+ gimple *try_stmt = make_data_region_try_statement (loc, body);
+ gimple_omp_set_body (data_region, try_stmt);
+
+ return data_region;
+}
+
+
+/* Decompose OpenACC 'kernels' constructs in the current function. */
+
+static tree
+omp_oacc_kernels_decompose_callback_stmt (gimple_stmt_iterator *gsi_p,
+ bool *handled_ops_p,
+ struct walk_stmt_info *)
+{
+ gimple *stmt = gsi_stmt (*gsi_p);
+
+ if ((gimple_code (stmt) == GIMPLE_OMP_TARGET)
+ && gimple_omp_target_kind (stmt) == GF_OMP_TARGET_KIND_OACC_KERNELS)
+ {
+ gimple *stmt_new = omp_oacc_kernels_decompose_1 (stmt);
+ gsi_replace (gsi_p, stmt_new, false);
+ *handled_ops_p = true;
+ }
+ else
+ *handled_ops_p = false;
+
+ return NULL;
+}
+
+static unsigned int
+omp_oacc_kernels_decompose (void)
+{
+ gimple_seq body = gimple_body (current_function_decl);
+
+ struct walk_stmt_info wi;
+ memset (&wi, 0, sizeof (wi));
+ walk_gimple_seq_mod (&body, omp_oacc_kernels_decompose_callback_stmt, NULL,
+ &wi);
+
+ gimple_set_body (current_function_decl, body);
+
+ return 0;
+}
+
+
+namespace {
+
+const pass_data pass_data_omp_oacc_kernels_decompose =
+{
+ GIMPLE_PASS, /* type */
+ "omp_oacc_kernels_decompose", /* name */
+ OPTGROUP_OMP, /* optinfo_flags */
+ TV_NONE, /* tv_id */
+ PROP_gimple_any, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_omp_oacc_kernels_decompose : public gimple_opt_pass
+{
+public:
+ pass_omp_oacc_kernels_decompose (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_omp_oacc_kernels_decompose, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ virtual bool gate (function *)
+ {
+ return (flag_openacc
+ && flag_openacc_kernels == OPENACC_KERNELS_DECOMPOSE);
+ }
+ virtual unsigned int execute (function *)
+ {
+ return omp_oacc_kernels_decompose ();
+ }
+
+}; // class pass_omp_oacc_kernels_decompose
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_omp_oacc_kernels_decompose (gcc::context *ctxt)
+{
+ return new pass_omp_oacc_kernels_decompose (ctxt);
+}