Revert accidental checkin.
authorH.J. Lu <hjl@gcc.gnu.org>
Sun, 5 Jun 2011 20:57:58 +0000 (13:57 -0700)
committerH.J. Lu <hjl@gcc.gnu.org>
Sun, 5 Jun 2011 20:57:58 +0000 (13:57 -0700)
From-SVN: r174662

33 files changed:
gcc/go/gofrontend/expressions.cc.merge-left.r167407 [deleted file]
gcc/go/gofrontend/expressions.cc.merge-right.r172891 [deleted file]
gcc/go/gofrontend/expressions.cc.working [deleted file]
gcc/go/gofrontend/go.cc.merge-left.r167407 [deleted file]
gcc/go/gofrontend/go.cc.merge-right.r172891 [deleted file]
gcc/go/gofrontend/go.cc.working [deleted file]
gcc/go/gofrontend/gogo-tree.cc.merge-left.r167407 [deleted file]
gcc/go/gofrontend/gogo-tree.cc.merge-right.r172891 [deleted file]
gcc/go/gofrontend/gogo-tree.cc.working [deleted file]
gcc/go/gofrontend/gogo.cc.merge-left.r167407 [deleted file]
gcc/go/gofrontend/gogo.cc.merge-right.r172891 [deleted file]
gcc/go/gofrontend/gogo.cc.working [deleted file]
gcc/go/gofrontend/gogo.h.merge-left.r167407 [deleted file]
gcc/go/gofrontend/gogo.h.merge-right.r172891 [deleted file]
gcc/go/gofrontend/gogo.h.working [deleted file]
gcc/go/gofrontend/parse.cc.merge-left.r167407 [deleted file]
gcc/go/gofrontend/parse.cc.merge-right.r172891 [deleted file]
gcc/go/gofrontend/parse.cc.working [deleted file]
gcc/go/gofrontend/parse.h.merge-left.r167407 [deleted file]
gcc/go/gofrontend/parse.h.merge-right.r172891 [deleted file]
gcc/go/gofrontend/parse.h.working [deleted file]
gcc/go/gofrontend/statements.cc.merge-left.r167407 [deleted file]
gcc/go/gofrontend/statements.cc.merge-right.r172891 [deleted file]
gcc/go/gofrontend/statements.cc.working [deleted file]
gcc/go/gofrontend/statements.h.merge-left.r167407 [deleted file]
gcc/go/gofrontend/statements.h.merge-right.r172891 [deleted file]
gcc/go/gofrontend/statements.h.working [deleted file]
gcc/go/gofrontend/types.cc.merge-left.r167407 [deleted file]
gcc/go/gofrontend/types.cc.merge-right.r172891 [deleted file]
gcc/go/gofrontend/types.cc.working [deleted file]
gcc/go/gofrontend/unsafe.cc.merge-left.r167407 [deleted file]
gcc/go/gofrontend/unsafe.cc.merge-right.r172891 [deleted file]
gcc/go/gofrontend/unsafe.cc.working [deleted file]

diff --git a/gcc/go/gofrontend/expressions.cc.merge-left.r167407 b/gcc/go/gofrontend/expressions.cc.merge-left.r167407
deleted file mode 100644 (file)
index f35b363..0000000
+++ /dev/null
@@ -1,12264 +0,0 @@
-// expressions.cc -- Go frontend expression handling.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "toplev.h"
-#include "intl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "tree-iterator.h"
-#include "convert.h"
-#include "real.h"
-#include "realmpfr.h"
-#include "tm.h"
-#include "tm_p.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "gogo.h"
-#include "types.h"
-#include "export.h"
-#include "import.h"
-#include "statements.h"
-#include "lex.h"
-#include "expressions.h"
-
-// Class Expression.
-
-Expression::Expression(Expression_classification classification,
-                      source_location location)
-  : classification_(classification), location_(location)
-{
-}
-
-Expression::~Expression()
-{
-}
-
-// If this expression has a constant integer value, return it.
-
-bool
-Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
-                                  Type** ptype) const
-{
-  *ptype = NULL;
-  return this->do_integer_constant_value(iota_is_constant, val, ptype);
-}
-
-// If this expression has a constant floating point value, return it.
-
-bool
-Expression::float_constant_value(mpfr_t val, Type** ptype) const
-{
-  *ptype = NULL;
-  if (this->do_float_constant_value(val, ptype))
-    return true;
-  mpz_t ival;
-  mpz_init(ival);
-  Type* t;
-  bool ret;
-  if (!this->do_integer_constant_value(false, ival, &t))
-    ret = false;
-  else
-    {
-      mpfr_set_z(val, ival, GMP_RNDN);
-      ret = true;
-    }
-  mpz_clear(ival);
-  return ret;
-}
-
-// If this expression has a constant complex value, return it.
-
-bool
-Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
-                                  Type** ptype) const
-{
-  *ptype = NULL;
-  if (this->do_complex_constant_value(real, imag, ptype))
-    return true;
-  Type *t;
-  if (this->float_constant_value(real, &t))
-    {
-      mpfr_set_ui(imag, 0, GMP_RNDN);
-      return true;
-    }
-  return false;
-}
-
-// Traverse the expressions.
-
-int
-Expression::traverse(Expression** pexpr, Traverse* traverse)
-{
-  Expression* expr = *pexpr;
-  if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
-    {
-      int t = traverse->expression(pexpr);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-  return expr->do_traverse(traverse);
-}
-
-// Traverse subexpressions of this expression.
-
-int
-Expression::traverse_subexpressions(Traverse* traverse)
-{
-  return this->do_traverse(traverse);
-}
-
-// Default implementation for do_traverse for child classes.
-
-int
-Expression::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// This virtual function is called by the parser if the value of this
-// expression is being discarded.  By default, we warn.  Expressions
-// with side effects override.
-
-void
-Expression::do_discarding_value()
-{
-  this->warn_about_unused_value();
-}
-
-// This virtual function is called to export expressions.  This will
-// only be used by expressions which may be constant.
-
-void
-Expression::do_export(Export*) const
-{
-  gcc_unreachable();
-}
-
-// Warn that the value of the expression is not used.
-
-void
-Expression::warn_about_unused_value()
-{
-  warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
-}
-
-// Note that this expression is an error.  This is called by children
-// when they discover an error.
-
-void
-Expression::set_is_error()
-{
-  this->classification_ = EXPRESSION_ERROR;
-}
-
-// For children to call to report an error conveniently.
-
-void
-Expression::report_error(const char* msg)
-{
-  error_at(this->location_, "%s", msg);
-  this->set_is_error();
-}
-
-// Set types of variables and constants.  This is implemented by the
-// child class.
-
-void
-Expression::determine_type(const Type_context* context)
-{
-  this->do_determine_type(context);
-}
-
-// Set types when there is no context.
-
-void
-Expression::determine_type_no_context()
-{
-  Type_context context;
-  this->do_determine_type(&context);
-}
-
-// Return a tree handling any conversions which must be done during
-// assignment.
-
-tree
-Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
-                                  Type* rhs_type, tree rhs_tree,
-                                  source_location location)
-{
-  if (lhs_type == rhs_type)
-    return rhs_tree;
-
-  if (lhs_type->is_error_type() || rhs_type->is_error_type())
-    return error_mark_node;
-
-  if (lhs_type->is_undefined() || rhs_type->is_undefined())
-    {
-      // Make sure we report the error.
-      lhs_type->base();
-      rhs_type->base();
-      return error_mark_node;
-    }
-
-  if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
-    return error_mark_node;
-
-  Gogo* gogo = context->gogo();
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  if (lhs_type->interface_type() != NULL)
-    {
-      if (rhs_type->interface_type() == NULL)
-       return Expression::convert_type_to_interface(context, lhs_type,
-                                                    rhs_type, rhs_tree,
-                                                    location);
-      else
-       return Expression::convert_interface_to_interface(context, lhs_type,
-                                                         rhs_type, rhs_tree,
-                                                         false, location);
-    }
-  else if (rhs_type->interface_type() != NULL)
-    return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
-                                                rhs_tree, location);
-  else if (lhs_type->is_open_array_type()
-          && rhs_type->is_nil_type())
-    {
-      // Assigning nil to an open array.
-      gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
-
-      VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      tree field = TYPE_FIELDS(lhs_type_tree);
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__values") == 0);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-
-      elt = VEC_quick_push(constructor_elt, init, NULL);
-      field = DECL_CHAIN(field);
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__count") == 0);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
-
-      elt = VEC_quick_push(constructor_elt, init, NULL);
-      field = DECL_CHAIN(field);
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__capacity") == 0);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
-
-      tree val = build_constructor(lhs_type_tree, init);
-      TREE_CONSTANT(val) = 1;
-
-      return val;
-    }
-  else if (rhs_type->is_nil_type())
-    {
-      // The left hand side should be a pointer type at the tree
-      // level.
-      gcc_assert(POINTER_TYPE_P(lhs_type_tree));
-      return fold_convert(lhs_type_tree, null_pointer_node);
-    }
-  else if (lhs_type_tree == TREE_TYPE(rhs_tree))
-    {
-      // No conversion is needed.
-      return rhs_tree;
-    }
-  else if (POINTER_TYPE_P(lhs_type_tree)
-          || INTEGRAL_TYPE_P(lhs_type_tree)
-          || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
-          || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
-    return fold_convert_loc(location, lhs_type_tree, rhs_tree);
-  else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
-          && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
-    {
-      // This conversion must be permitted by Go, or we wouldn't have
-      // gotten here.
-      gcc_assert(int_size_in_bytes(lhs_type_tree)
-                == int_size_in_bytes(TREE_TYPE(rhs_tree)));
-      return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
-                            rhs_tree);
-    }
-  else
-    {
-      gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
-      return rhs_tree;
-    }
-}
-
-// Return a tree for a conversion from a non-interface type to an
-// interface type.
-
-tree
-Expression::convert_type_to_interface(Translate_context* context,
-                                     Type* lhs_type, Type* rhs_type,
-                                     tree rhs_tree, source_location location)
-{
-  Gogo* gogo = context->gogo();
-  Interface_type* lhs_interface_type = lhs_type->interface_type();
-  bool lhs_is_empty = lhs_interface_type->is_empty();
-
-  // Since RHS_TYPE is a static type, we can create the interface
-  // method table at compile time.
-
-  // When setting an interface to nil, we just set both fields to
-  // NULL.
-  if (rhs_type->is_nil_type())
-    return lhs_type->get_init_tree(gogo, false);
-
-  // This should have been checked already.
-  gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  // An interface is a tuple.  If LHS_TYPE is an empty interface type,
-  // then the first field is the type descriptor for RHS_TYPE.
-  // Otherwise it is the interface method table for RHS_TYPE.
-  tree first_field_value;
-  if (lhs_is_empty)
-    first_field_value = rhs_type->type_descriptor_pointer(gogo);
-  else
-    {
-      // Build the interface method table for this interface and this
-      // object type: a list of function pointers for each interface
-      // method.
-      Named_type* rhs_named_type = rhs_type->named_type();
-      bool is_pointer = false;
-      if (rhs_named_type == NULL)
-       {
-         rhs_named_type = rhs_type->deref()->named_type();
-         is_pointer = true;
-       }
-      tree method_table;
-      if (rhs_named_type == NULL)
-       method_table = null_pointer_node;
-      else
-       method_table =
-         rhs_named_type->interface_method_table(gogo, lhs_interface_type,
-                                                is_pointer);
-      first_field_value = fold_convert_loc(location, const_ptr_type_node,
-                                          method_table);
-    }
-
-  // Start building a constructor for the value we will return.
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(lhs_type_tree);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                   (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
-  elt->index = field;
-  elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
-  elt->index = field;
-
-  if (rhs_type->points_to() != NULL)
-    {
-      //  We are assigning a pointer to the interface; the interface
-      // holds the pointer itself.
-      elt->value = rhs_tree;
-      return build_constructor(lhs_type_tree, init);
-    }
-
-  // We are assigning a non-pointer value to the interface; the
-  // interface gets a copy of the value in the heap.
-
-  tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
-
-  tree space = gogo->allocate_memory(rhs_type, object_size, location);
-  space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
-                          space);
-  space = save_expr(space);
-
-  tree ref = build_fold_indirect_ref_loc(location, space);
-  TREE_THIS_NOTRAP(ref) = 1;
-  tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
-                            ref, rhs_tree);
-
-  elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
-
-  return build2(COMPOUND_EXPR, lhs_type_tree, set,
-               build_constructor(lhs_type_tree, init));
-}
-
-// Return a tree for the type descriptor of RHS_TREE, which has
-// interface type RHS_TYPE.  If RHS_TREE is nil the result will be
-// NULL.
-
-tree
-Expression::get_interface_type_descriptor(Translate_context*,
-                                         Type* rhs_type, tree rhs_tree,
-                                         source_location location)
-{
-  tree rhs_type_tree = TREE_TYPE(rhs_tree);
-  gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
-  tree rhs_field = TYPE_FIELDS(rhs_type_tree);
-  tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
-                 NULL_TREE);
-  if (rhs_type->interface_type()->is_empty())
-    {
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
-                       "__type_descriptor") == 0);
-      return v;
-    }
-
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
-            == 0);
-  gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
-  v = save_expr(v);
-  tree v1 = build_fold_indirect_ref_loc(location, v);
-  gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
-  tree f = TYPE_FIELDS(TREE_TYPE(v1));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
-            == 0);
-  v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
-
-  tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
-                           fold_convert_loc(location, TREE_TYPE(v),
-                                            null_pointer_node));
-  tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
-  return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
-                        eq, n, v1);
-}
-
-// Return a tree for the conversion of an interface type to an
-// interface type.
-
-tree
-Expression::convert_interface_to_interface(Translate_context* context,
-                                          Type *lhs_type, Type *rhs_type,
-                                          tree rhs_tree, bool for_type_guard,
-                                          source_location location)
-{
-  Gogo* gogo = context->gogo();
-  Interface_type* lhs_interface_type = lhs_type->interface_type();
-  bool lhs_is_empty = lhs_interface_type->is_empty();
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  // In the general case this requires runtime examination of the type
-  // method table to match it up with the interface methods.
-
-  // FIXME: If all of the methods in the right hand side interface
-  // also appear in the left hand side interface, then we don't need
-  // to do a runtime check, although we still need to build a new
-  // method table.
-
-  // Get the type descriptor for the right hand side.  This will be
-  // NULL for a nil interface.
-
-  if (!DECL_P(rhs_tree))
-    rhs_tree = save_expr(rhs_tree);
-
-  tree rhs_type_descriptor =
-    Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
-                                             location);
-
-  // The result is going to be a two element constructor.
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(lhs_type_tree);
-  elt->index = field;
-
-  if (for_type_guard)
-    {
-      // A type assertion fails when converting a nil interface.
-      tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
-      static tree assert_interface_decl;
-      tree call = Gogo::call_builtin(&assert_interface_decl,
-                                    location,
-                                    "__go_assert_interface",
-                                    2,
-                                    ptr_type_node,
-                                    TREE_TYPE(lhs_type_descriptor),
-                                    lhs_type_descriptor,
-                                    TREE_TYPE(rhs_type_descriptor),
-                                    rhs_type_descriptor);
-      // This will panic if the interface conversion fails.
-      TREE_NOTHROW(assert_interface_decl) = 0;
-      elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
-    }
-  else if (lhs_is_empty)
-    {
-      // A convertion to an empty interface always succeeds, and the
-      // first field is just the type descriptor of the object.
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__type_descriptor") == 0);
-      gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
-      elt->value = rhs_type_descriptor;
-    }
-  else
-    {
-      // A conversion to a non-empty interface may fail, but unlike a
-      // type assertion converting nil will always succeed.
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
-                == 0);
-      tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
-      static tree convert_interface_decl;
-      tree call = Gogo::call_builtin(&convert_interface_decl,
-                                    location,
-                                    "__go_convert_interface",
-                                    2,
-                                    ptr_type_node,
-                                    TREE_TYPE(lhs_type_descriptor),
-                                    lhs_type_descriptor,
-                                    TREE_TYPE(rhs_type_descriptor),
-                                    rhs_type_descriptor);
-      // This will panic if the interface conversion fails.
-      TREE_NOTHROW(convert_interface_decl) = 0;
-      elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
-    }
-
-  // The second field is simply the object pointer.
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
-  elt->index = field;
-
-  tree rhs_type_tree = TREE_TYPE(rhs_tree);
-  gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
-  tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
-  elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
-                     NULL_TREE);
-
-  return build_constructor(lhs_type_tree, init);
-}
-
-// Return a tree for the conversion of an interface type to a
-// non-interface type.
-
-tree
-Expression::convert_interface_to_type(Translate_context* context,
-                                     Type *lhs_type, Type* rhs_type,
-                                     tree rhs_tree, source_location location)
-{
-  Gogo* gogo = context->gogo();
-  tree rhs_type_tree = TREE_TYPE(rhs_tree);
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  // Call a function to check that the type is valid.  The function
-  // will panic with an appropriate runtime type error if the type is
-  // not valid.
-
-  tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
-
-  if (!DECL_P(rhs_tree))
-    rhs_tree = save_expr(rhs_tree);
-
-  tree rhs_type_descriptor =
-    Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
-                                             location);
-
-  tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
-
-  static tree check_interface_type_decl;
-  tree call = Gogo::call_builtin(&check_interface_type_decl,
-                                location,
-                                "__go_check_interface_type",
-                                3,
-                                void_type_node,
-                                TREE_TYPE(lhs_type_descriptor),
-                                lhs_type_descriptor,
-                                TREE_TYPE(rhs_type_descriptor),
-                                rhs_type_descriptor,
-                                TREE_TYPE(rhs_inter_descriptor),
-                                rhs_inter_descriptor);
-  // This call will panic if the conversion is invalid.
-  TREE_NOTHROW(check_interface_type_decl) = 0;
-
-  // If the call succeeds, pull out the value.
-  gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
-  tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
-  tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
-                   NULL_TREE);
-
-  // If the value is a pointer, then it is the value we want.
-  // Otherwise it points to the value.
-  if (lhs_type->points_to() == NULL)
-    {
-      val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
-      val = build_fold_indirect_ref_loc(location, val);
-    }
-
-  return build2(COMPOUND_EXPR, lhs_type_tree, call,
-               fold_convert_loc(location, lhs_type_tree, val));
-}
-
-// Convert an expression to a tree.  This is implemented by the child
-// class.  Not that it is not in general safe to call this multiple
-// times for a single expression, but that we don't catch such errors.
-
-tree
-Expression::get_tree(Translate_context* context)
-{
-  // The child may have marked this expression as having an error.
-  if (this->classification_ == EXPRESSION_ERROR)
-    return error_mark_node;
-
-  return this->do_get_tree(context);
-}
-
-// Return a tree for VAL in TYPE.
-
-tree
-Expression::integer_constant_tree(mpz_t val, tree type)
-{
-  if (type == error_mark_node)
-    return error_mark_node;
-  else if (TREE_CODE(type) == INTEGER_TYPE)
-    return double_int_to_tree(type,
-                             mpz_get_double_int(type, val, true));
-  else if (TREE_CODE(type) == REAL_TYPE)
-    {
-      mpfr_t fval;
-      mpfr_init_set_z(fval, val, GMP_RNDN);
-      tree ret = Expression::float_constant_tree(fval, type);
-      mpfr_clear(fval);
-      return ret;
-    }
-  else if (TREE_CODE(type) == COMPLEX_TYPE)
-    {
-      mpfr_t fval;
-      mpfr_init_set_z(fval, val, GMP_RNDN);
-      tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
-      mpfr_clear(fval);
-      tree imag = build_real_from_int_cst(TREE_TYPE(type),
-                                         integer_zero_node);
-      return build_complex(type, real, imag);
-    }
-  else
-    gcc_unreachable();
-}
-
-// Return a tree for VAL in TYPE.
-
-tree
-Expression::float_constant_tree(mpfr_t val, tree type)
-{
-  if (type == error_mark_node)
-    return error_mark_node;
-  else if (TREE_CODE(type) == INTEGER_TYPE)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      mpfr_get_z(ival, val, GMP_RNDN);
-      tree ret = Expression::integer_constant_tree(ival, type);
-      mpz_clear(ival);
-      return ret;
-    }
-  else if (TREE_CODE(type) == REAL_TYPE)
-    {
-      REAL_VALUE_TYPE r1;
-      real_from_mpfr(&r1, val, type, GMP_RNDN);
-      REAL_VALUE_TYPE r2;
-      real_convert(&r2, TYPE_MODE(type), &r1);
-      return build_real(type, r2);
-    }
-  else if (TREE_CODE(type) == COMPLEX_TYPE)
-    {
-      REAL_VALUE_TYPE r1;
-      real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
-      REAL_VALUE_TYPE r2;
-      real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
-      tree imag = build_real_from_int_cst(TREE_TYPE(type),
-                                         integer_zero_node);
-      return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
-    }
-  else
-    gcc_unreachable();
-}
-
-// Return a tree for REAL/IMAG in TYPE.
-
-tree
-Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
-{
-  if (TREE_CODE(type) == COMPLEX_TYPE)
-    {
-      REAL_VALUE_TYPE r1;
-      real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
-      REAL_VALUE_TYPE r2;
-      real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
-
-      REAL_VALUE_TYPE r3;
-      real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
-      REAL_VALUE_TYPE r4;
-      real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
-
-      return build_complex(type, build_real(TREE_TYPE(type), r2),
-                          build_real(TREE_TYPE(type), r4));
-    }
-  else
-    gcc_unreachable();
-}
-
-// Return a tree which evaluates to true if VAL, of arbitrary integer
-// type, is negative or is more than the maximum value of BOUND_TYPE.
-// If SOFAR is not NULL, it is or'red into the result.  The return
-// value may be NULL if SOFAR is NULL.
-
-tree
-Expression::check_bounds(tree val, tree bound_type, tree sofar,
-                        source_location loc)
-{
-  tree val_type = TREE_TYPE(val);
-  tree ret = NULL_TREE;
-
-  if (!TYPE_UNSIGNED(val_type))
-    {
-      ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
-                           build_int_cst(val_type, 0));
-      if (ret == boolean_false_node)
-       ret = NULL_TREE;
-    }
-
-  if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
-      || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
-    {
-      tree max = TYPE_MAX_VALUE(bound_type);
-      tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
-                                fold_convert_loc(loc, val_type, max));
-      if (big == boolean_false_node)
-       ;
-      else if (ret == NULL_TREE)
-       ret = big;
-      else
-       ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                             ret, big);
-    }
-
-  if (ret == NULL_TREE)
-    return sofar;
-  else if (sofar == NULL_TREE)
-    return ret;
-  else
-    return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                          sofar, ret);
-}
-
-// Error expressions.  This are used to avoid cascading errors.
-
-class Error_expression : public Expression
-{
- public:
-  Error_expression(source_location location)
-    : Expression(EXPRESSION_ERROR, location)
-  { }
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_integer_constant_value(bool, mpz_t val, Type**) const
-  {
-    mpz_set_ui(val, 0);
-    return true;
-  }
-
-  bool
-  do_float_constant_value(mpfr_t val, Type**) const
-  {
-    mpfr_set_ui(val, 0, GMP_RNDN);
-    return true;
-  }
-
-  bool
-  do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
-  {
-    mpfr_set_ui(real, 0, GMP_RNDN);
-    mpfr_set_ui(imag, 0, GMP_RNDN);
-    return true;
-  }
-
-  void
-  do_discarding_value()
-  { }
-
-  Type*
-  do_type()
-  { return Type::make_error_type(); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  bool
-  do_is_addressable() const
-  { return true; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return error_mark_node; }
-};
-
-Expression*
-Expression::make_error(source_location location)
-{
-  return new Error_expression(location);
-}
-
-// An expression which is really a type.  This is used during parsing.
-// It is an error if these survive after lowering.
-
-class
-Type_expression : public Expression
-{
- public:
-  Type_expression(Type* type, source_location location)
-    : Expression(EXPRESSION_TYPE, location),
-      type_(type)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Type::traverse(this->type_, traverse); }
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  void
-  do_check_types(Gogo*)
-  { this->report_error(_("invalid use of type")); }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // The type which we are representing as an expression.
-  Type* type_;
-};
-
-Expression*
-Expression::make_type(Type* type, source_location location)
-{
-  return new Type_expression(type, location);
-}
-
-// Class Var_expression.
-
-// Lower a variable expression.  Here we just make sure that the
-// initialization expression of the variable has been lowered.  This
-// ensures that we will be able to determine the type of the variable
-// if necessary.
-
-Expression*
-Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  if (this->variable_->is_variable())
-    {
-      Variable* var = this->variable_->var_value();
-      // This is either a local variable or a global variable.  A
-      // reference to a variable which is local to an enclosing
-      // function will be a reference to a field in a closure.
-      if (var->is_global())
-       function = NULL;
-      var->lower_init_expression(gogo, function);
-    }
-  return this;
-}
-
-// Return the name of the variable.
-
-const std::string&
-Var_expression::name() const
-{
-  return this->variable_->name();
-}
-
-// Return the type of a reference to a variable.
-
-Type*
-Var_expression::do_type()
-{
-  if (this->variable_->is_variable())
-    return this->variable_->var_value()->type();
-  else if (this->variable_->is_result_variable())
-    return this->variable_->result_var_value()->type();
-  else
-    gcc_unreachable();
-}
-
-// Something takes the address of this variable.  This means that we
-// may want to move the variable onto the heap.
-
-void
-Var_expression::do_address_taken(bool escapes)
-{
-  if (!escapes)
-    ;
-  else if (this->variable_->is_variable())
-    this->variable_->var_value()->set_address_taken();
-  else if (this->variable_->is_result_variable())
-    this->variable_->result_var_value()->set_address_taken();
-  else
-    gcc_unreachable();
-}
-
-// Get the tree for a reference to a variable.
-
-tree
-Var_expression::do_get_tree(Translate_context* context)
-{
-  return this->variable_->get_tree(context->gogo(), context->function());
-}
-
-// Make a reference to a variable in an expression.
-
-Expression*
-Expression::make_var_reference(Named_object* var, source_location location)
-{
-  if (var->is_sink())
-    return Expression::make_sink(location);
-
-  // FIXME: Creating a new object for each reference to a variable is
-  // wasteful.
-  return new Var_expression(var, location);
-}
-
-// Class Temporary_reference_expression.
-
-// The type.
-
-Type*
-Temporary_reference_expression::do_type()
-{
-  return this->statement_->type();
-}
-
-// Called if something takes the address of this temporary variable.
-// We never have to move temporary variables to the heap, but we do
-// need to know that they must live in the stack rather than in a
-// register.
-
-void
-Temporary_reference_expression::do_address_taken(bool)
-{
-  this->statement_->set_is_address_taken();
-}
-
-// Get a tree referring to the variable.
-
-tree
-Temporary_reference_expression::do_get_tree(Translate_context*)
-{
-  return this->statement_->get_decl();
-}
-
-// Make a reference to a temporary variable.
-
-Expression*
-Expression::make_temporary_reference(Temporary_statement* statement,
-                                    source_location location)
-{
-  return new Temporary_reference_expression(statement, location);
-}
-
-// A sink expression--a use of the blank identifier _.
-
-class Sink_expression : public Expression
-{
- public:
-  Sink_expression(source_location location)
-    : Expression(EXPRESSION_SINK, location),
-      type_(NULL), var_(NULL_TREE)
-  { }
-
- protected:
-  void
-  do_discarding_value()
-  { }
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  Expression*
-  do_copy()
-  { return new Sink_expression(this->location()); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type of this sink variable.
-  Type* type_;
-  // The temporary variable we generate.
-  tree var_;
-};
-
-// Return the type of a sink expression.
-
-Type*
-Sink_expression::do_type()
-{
-  if (this->type_ == NULL)
-    return Type::make_sink_type();
-  return this->type_;
-}
-
-// Determine the type of a sink expression.
-
-void
-Sink_expression::do_determine_type(const Type_context* context)
-{
-  if (context->type != NULL)
-    this->type_ = context->type;
-}
-
-// Return a temporary variable for a sink expression.  This will
-// presumably be a write-only variable which the middle-end will drop.
-
-tree
-Sink_expression::do_get_tree(Translate_context* context)
-{
-  if (this->var_ == NULL_TREE)
-    {
-      gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
-      this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
-                                 "blank");
-    }
-  return this->var_;
-}
-
-// Make a sink expression.
-
-Expression*
-Expression::make_sink(source_location location)
-{
-  return new Sink_expression(location);
-}
-
-// Class Func_expression.
-
-// FIXME: Can a function expression appear in a constant expression?
-// The value is unchanging.  Initializing a constant to the address of
-// a function seems like it could work, though there might be little
-// point to it.
-
-// Return the name of the function.
-
-const std::string&
-Func_expression::name() const
-{
-  return this->function_->name();
-}
-
-// Traversal.
-
-int
-Func_expression::do_traverse(Traverse* traverse)
-{
-  return (this->closure_ == NULL
-         ? TRAVERSE_CONTINUE
-         : Expression::traverse(&this->closure_, traverse));
-}
-
-// Return the type of a function expression.
-
-Type*
-Func_expression::do_type()
-{
-  if (this->function_->is_function())
-    return this->function_->func_value()->type();
-  else if (this->function_->is_function_declaration())
-    return this->function_->func_declaration_value()->type();
-  else
-    gcc_unreachable();
-}
-
-// Get the tree for a function expression without evaluating the
-// closure.
-
-tree
-Func_expression::get_tree_without_closure(Gogo* gogo)
-{
-  Function_type* fntype;
-  if (this->function_->is_function())
-    fntype = this->function_->func_value()->type();
-  else if (this->function_->is_function_declaration())
-    fntype = this->function_->func_declaration_value()->type();
-  else
-    gcc_unreachable();
-
-  // Builtin functions are handled specially by Call_expression.  We
-  // can't take their address.
-  if (fntype->is_builtin())
-    {
-      error_at(this->location(), "invalid use of special builtin function %qs",
-              this->function_->name().c_str());
-      return error_mark_node;
-    }
-
-  Named_object* no = this->function_;
-  tree id = this->function_->get_id(gogo);
-  tree fndecl;
-  if (no->is_function())
-    fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
-  else if (no->is_function_declaration())
-    fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
-  else
-    gcc_unreachable();
-
-  return build_fold_addr_expr_loc(this->location(), fndecl);
-}
-
-// Get the tree for a function expression.  This is used when we take
-// the address of a function rather than simply calling it.  If the
-// function has a closure, we must use a trampoline.
-
-tree
-Func_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-
-  tree fnaddr = this->get_tree_without_closure(gogo);
-  if (fnaddr == error_mark_node)
-    return error_mark_node;
-
-  gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
-            && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
-  TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
-
-  // For a normal non-nested function call, that is all we have to do.
-  if (!this->function_->is_function()
-      || this->function_->func_value()->enclosing() == NULL)
-    {
-      gcc_assert(this->closure_ == NULL);
-      return fnaddr;
-    }
-
-  // For a nested function call, we have to always allocate a
-  // trampoline.  If we don't always allocate, then closures will not
-  // be reliably distinct.
-  Expression* closure = this->closure_;
-  tree closure_tree;
-  if (closure == NULL)
-    closure_tree = null_pointer_node;
-  else
-    {
-      // Get the value of the closure.  This will be a pointer to
-      // space allocated on the heap.
-      closure_tree = closure->get_tree(context);
-      if (closure_tree == error_mark_node)
-       return error_mark_node;
-      gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
-    }
-
-  // Now we need to build some code on the heap.  This code will load
-  // the static chain pointer with the closure and then jump to the
-  // body of the function.  The normal gcc approach is to build the
-  // code on the stack.  Unfortunately we can not do that, as Go
-  // permits us to return the function pointer.
-
-  return gogo->make_trampoline(fnaddr, closure_tree, this->location());
-}
-
-// Make a reference to a function in an expression.
-
-Expression*
-Expression::make_func_reference(Named_object* function, Expression* closure,
-                               source_location location)
-{
-  return new Func_expression(function, closure, location);
-}
-
-// Class Unknown_expression.
-
-// Return the name of an unknown expression.
-
-const std::string&
-Unknown_expression::name() const
-{
-  return this->named_object_->name();
-}
-
-// Lower a reference to an unknown name.
-
-Expression*
-Unknown_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location location = this->location();
-  Named_object* no = this->named_object_;
-  Named_object* real = no->unknown_value()->real_named_object();
-  if (real == NULL)
-    {
-      if (this->is_composite_literal_key_)
-       return this;
-      error_at(location, "reference to undefined name %qs",
-              this->named_object_->message_name().c_str());
-      return Expression::make_error(location);
-    }
-  switch (real->classification())
-    {
-    case Named_object::NAMED_OBJECT_CONST:
-      return Expression::make_const_reference(real, location);
-    case Named_object::NAMED_OBJECT_TYPE:
-      return Expression::make_type(real->type_value(), location);
-    case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-      if (this->is_composite_literal_key_)
-       return this;
-      error_at(location, "reference to undefined type %qs",
-              real->message_name().c_str());
-      return Expression::make_error(location);
-    case Named_object::NAMED_OBJECT_VAR:
-      return Expression::make_var_reference(real, location);
-    case Named_object::NAMED_OBJECT_FUNC:
-    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-      return Expression::make_func_reference(real, NULL, location);
-    case Named_object::NAMED_OBJECT_PACKAGE:
-      if (this->is_composite_literal_key_)
-       return this;
-      error_at(location, "unexpected reference to package");
-      return Expression::make_error(location);
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Make a reference to an unknown name.
-
-Expression*
-Expression::make_unknown_reference(Named_object* no, source_location location)
-{
-  gcc_assert(no->resolve()->is_unknown());
-  return new Unknown_expression(no, location);
-}
-
-// A boolean expression.
-
-class Boolean_expression : public Expression
-{
- public:
-  Boolean_expression(bool val, source_location location)
-    : Expression(EXPRESSION_BOOLEAN, location),
-      val_(val), type_(NULL)
-  { }
-
-  static Expression*
-  do_import(Import*);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->val_ ? boolean_true_node : boolean_false_node; }
-
-  void
-  do_export(Export* exp) const
-  { exp->write_c_string(this->val_ ? "true" : "false"); }
-
- private:
-  // The constant.
-  bool val_;
-  // The type as determined by context.
-  Type* type_;
-};
-
-// Get the type.
-
-Type*
-Boolean_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_boolean_type();
-  return this->type_;
-}
-
-// Set the type from the context.
-
-void
-Boolean_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL && context->type->is_boolean_type())
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_bool_type();
-}
-
-// Import a boolean constant.
-
-Expression*
-Boolean_expression::do_import(Import* imp)
-{
-  if (imp->peek_char() == 't')
-    {
-      imp->require_c_string("true");
-      return Expression::make_boolean(true, imp->location());
-    }
-  else
-    {
-      imp->require_c_string("false");
-      return Expression::make_boolean(false, imp->location());
-    }
-}
-
-// Make a boolean expression.
-
-Expression*
-Expression::make_boolean(bool val, source_location location)
-{
-  return new Boolean_expression(val, location);
-}
-
-// Class String_expression.
-
-// Get the type.
-
-Type*
-String_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_string_type();
-  return this->type_;
-}
-
-// Set the type from the context.
-
-void
-String_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL && context->type->is_string_type())
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_string_type();
-}
-
-// Build a string constant.
-
-tree
-String_expression::do_get_tree(Translate_context* context)
-{
-  return context->gogo()->go_string_constant_tree(this->val_);
-}
-
-// Export a string expression.
-
-void
-String_expression::do_export(Export* exp) const
-{
-  std::string s;
-  s.reserve(this->val_.length() * 4 + 2);
-  s += '"';
-  for (std::string::const_iterator p = this->val_.begin();
-       p != this->val_.end();
-       ++p)
-    {
-      if (*p == '\\' || *p == '"')
-       {
-         s += '\\';
-         s += *p;
-       }
-      else if (*p >= 0x20 && *p < 0x7f)
-       s += *p;
-      else if (*p == '\n')
-       s += "\\n";
-      else if (*p == '\t')
-       s += "\\t";
-      else
-       {
-         s += "\\x";
-         unsigned char c = *p;
-         unsigned int dig = c >> 4;
-         s += dig < 10 ? '0' + dig : 'A' + dig - 10;
-         dig = c & 0xf;
-         s += dig < 10 ? '0' + dig : 'A' + dig - 10;
-       }
-    }
-  s += '"';
-  exp->write_string(s);
-}
-
-// Import a string expression.
-
-Expression*
-String_expression::do_import(Import* imp)
-{
-  imp->require_c_string("\"");
-  std::string val;
-  while (true)
-    {
-      int c = imp->get_char();
-      if (c == '"' || c == -1)
-       break;
-      if (c != '\\')
-       val += static_cast<char>(c);
-      else
-       {
-         c = imp->get_char();
-         if (c == '\\' || c == '"')
-           val += static_cast<char>(c);
-         else if (c == 'n')
-           val += '\n';
-         else if (c == 't')
-           val += '\t';
-         else if (c == 'x')
-           {
-             c = imp->get_char();
-             unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
-             c = imp->get_char();
-             unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
-             char v = (vh << 4) | vl;
-             val += v;
-           }
-         else
-           {
-             error_at(imp->location(), "bad string constant");
-             return Expression::make_error(imp->location());
-           }
-       }
-    }
-  return Expression::make_string(val, imp->location());
-}
-
-// Make a string expression.
-
-Expression*
-Expression::make_string(const std::string& val, source_location location)
-{
-  return new String_expression(val, location);
-}
-
-// Make an integer expression.
-
-class Integer_expression : public Expression
-{
- public:
-  Integer_expression(const mpz_t* val, Type* type, source_location location)
-    : Expression(EXPRESSION_INTEGER, location),
-      type_(type)
-  { mpz_init_set(this->val_, *val); }
-
-  static Expression*
-  do_import(Import*);
-
-  // Return whether VAL fits in the type.
-  static bool
-  check_constant(mpz_t val, Type*, source_location);
-
-  // Write VAL to export data.
-  static void
-  export_integer(Export* exp, const mpz_t val);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context* context);
-
-  void
-  do_check_types(Gogo*);
-
-  tree
-  do_get_tree(Translate_context*);
-
-  Expression*
-  do_copy()
-  { return Expression::make_integer(&this->val_, this->type_,
-                                   this->location()); }
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The integer value.
-  mpz_t val_;
-  // The type so far.
-  Type* type_;
-};
-
-// Return an integer constant value.
-
-bool
-Integer_expression::do_integer_constant_value(bool, mpz_t val,
-                                             Type** ptype) const
-{
-  if (this->type_ != NULL)
-    *ptype = this->type_;
-  mpz_set(val, this->val_);
-  return true;
-}
-
-// Return the current type.  If we haven't set the type yet, we return
-// an abstract integer type.
-
-Type*
-Integer_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_abstract_integer_type();
-  return this->type_;
-}
-
-// Set the type of the integer value.  Here we may switch from an
-// abstract type to a real type.
-
-void
-Integer_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL
-          && (context->type->integer_type() != NULL
-              || context->type->float_type() != NULL
-              || context->type->complex_type() != NULL))
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_integer_type("int");
-}
-
-// Return true if the integer VAL fits in the range of the type TYPE.
-// Otherwise give an error and return false.  TYPE may be NULL.
-
-bool
-Integer_expression::check_constant(mpz_t val, Type* type,
-                                  source_location location)
-{
-  if (type == NULL)
-    return true;
-  Integer_type* itype = type->integer_type();
-  if (itype == NULL || itype->is_abstract())
-    return true;
-
-  int bits = mpz_sizeinbase(val, 2);
-
-  if (itype->is_unsigned())
-    {
-      // For an unsigned type we can only accept a nonnegative number,
-      // and we must be able to represent at least BITS.
-      if (mpz_sgn(val) >= 0
-         && bits <= itype->bits())
-       return true;
-    }
-  else
-    {
-      // For a signed type we need an extra bit to indicate the sign.
-      // We have to handle the most negative integer specially.
-      if (bits + 1 <= itype->bits()
-         || (bits <= itype->bits()
-             && mpz_sgn(val) < 0
-             && (mpz_scan1(val, 0)
-                 == static_cast<unsigned long>(itype->bits() - 1))
-             && mpz_scan0(val, itype->bits()) == ULONG_MAX))
-       return true;
-    }
-
-  error_at(location, "integer constant overflow");
-  return false;
-}
-
-// Check the type of an integer constant.
-
-void
-Integer_expression::do_check_types(Gogo*)
-{
-  if (this->type_ == NULL)
-    return;
-  if (!Integer_expression::check_constant(this->val_, this->type_,
-                                         this->location()))
-    this->set_is_error();
-}
-
-// Get a tree for an integer constant.
-
-tree
-Integer_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type;
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    type = this->type_->get_tree(gogo);
-  else if (this->type_ != NULL && this->type_->float_type() != NULL)
-    {
-      // We are converting to an abstract floating point type.
-      type = Type::lookup_float_type("float64")->get_tree(gogo);
-    }
-  else if (this->type_ != NULL && this->type_->complex_type() != NULL)
-    {
-      // We are converting to an abstract complex type.
-      type = Type::lookup_complex_type("complex128")->get_tree(gogo);
-    }
-  else
-    {
-      // If we still have an abstract type here, then this is being
-      // used in a constant expression which didn't get reduced for
-      // some reason.  Use a type which will fit the value.  We use <,
-      // not <=, because we need an extra bit for the sign bit.
-      int bits = mpz_sizeinbase(this->val_, 2);
-      if (bits < INT_TYPE_SIZE)
-       type = Type::lookup_integer_type("int")->get_tree(gogo);
-      else if (bits < 64)
-       type = Type::lookup_integer_type("int64")->get_tree(gogo);
-      else
-       type = long_long_integer_type_node;
-    }
-  return Expression::integer_constant_tree(this->val_, type);
-}
-
-// Write VAL to export data.
-
-void
-Integer_expression::export_integer(Export* exp, const mpz_t val)
-{
-  char* s = mpz_get_str(NULL, 10, val);
-  exp->write_c_string(s);
-  free(s);
-}
-
-// Export an integer in a constant expression.
-
-void
-Integer_expression::do_export(Export* exp) const
-{
-  Integer_expression::export_integer(exp, this->val_);
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Import an integer, floating point, or complex value.  This handles
-// all these types because they all start with digits.
-
-Expression*
-Integer_expression::do_import(Import* imp)
-{
-  std::string num = imp->read_identifier();
-  imp->require_c_string(" ");
-  if (!num.empty() && num[num.length() - 1] == 'i')
-    {
-      mpfr_t real;
-      size_t plus_pos = num.find('+', 1);
-      size_t minus_pos = num.find('-', 1);
-      size_t pos;
-      if (plus_pos == std::string::npos)
-       pos = minus_pos;
-      else if (minus_pos == std::string::npos)
-       pos = plus_pos;
-      else
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  num.c_str());
-         return Expression::make_error(imp->location());
-       }
-      if (pos == std::string::npos)
-       mpfr_set_ui(real, 0, GMP_RNDN);
-      else
-       {
-         std::string real_str = num.substr(0, pos);
-         if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
-           {
-             error_at(imp->location(), "bad number in import data: %qs",
-                      real_str.c_str());
-             return Expression::make_error(imp->location());
-           }
-       }
-
-      std::string imag_str;
-      if (pos == std::string::npos)
-       imag_str = num;
-      else
-       imag_str = num.substr(pos);
-      imag_str = imag_str.substr(0, imag_str.size() - 1);
-      mpfr_t imag;
-      if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  imag_str.c_str());
-         return Expression::make_error(imp->location());
-       }
-      Expression* ret = Expression::make_complex(&real, &imag, NULL,
-                                                imp->location());
-      mpfr_clear(real);
-      mpfr_clear(imag);
-      return ret;
-    }
-  else if (num.find('.') == std::string::npos
-          && num.find('E') == std::string::npos)
-    {
-      mpz_t val;
-      if (mpz_init_set_str(val, num.c_str(), 10) != 0)
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  num.c_str());
-         return Expression::make_error(imp->location());
-       }
-      Expression* ret = Expression::make_integer(&val, NULL, imp->location());
-      mpz_clear(val);
-      return ret;
-    }
-  else
-    {
-      mpfr_t val;
-      if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  num.c_str());
-         return Expression::make_error(imp->location());
-       }
-      Expression* ret = Expression::make_float(&val, NULL, imp->location());
-      mpfr_clear(val);
-      return ret;
-    }
-}
-
-// Build a new integer value.
-
-Expression*
-Expression::make_integer(const mpz_t* val, Type* type,
-                        source_location location)
-{
-  return new Integer_expression(val, type, location);
-}
-
-// Floats.
-
-class Float_expression : public Expression
-{
- public:
-  Float_expression(const mpfr_t* val, Type* type, source_location location)
-    : Expression(EXPRESSION_FLOAT, location),
-      type_(type)
-  {
-    mpfr_init_set(this->val_, *val, GMP_RNDN);
-  }
-
-  // Constrain VAL to fit into TYPE.
-  static void
-  constrain_float(mpfr_t val, Type* type);
-
-  // Return whether VAL fits in the type.
-  static bool
-  check_constant(mpfr_t val, Type*, source_location);
-
-  // Write VAL to export data.
-  static void
-  export_float(Export* exp, const mpfr_t val);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_float_constant_value(mpfr_t val, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  { return Expression::make_float(&this->val_, this->type_,
-                                 this->location()); }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The floating point value.
-  mpfr_t val_;
-  // The type so far.
-  Type* type_;
-};
-
-// Constrain VAL to fit into TYPE.
-
-void
-Float_expression::constrain_float(mpfr_t val, Type* type)
-{
-  Float_type* ftype = type->float_type();
-  if (ftype != NULL && !ftype->is_abstract())
-    {
-      tree type_tree = ftype->type_tree();
-      REAL_VALUE_TYPE rvt;
-      real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
-      real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
-      mpfr_from_real(val, &rvt, GMP_RNDN);
-    }
-}
-
-// Return a floating point constant value.
-
-bool
-Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  if (this->type_ != NULL)
-    *ptype = this->type_;
-  mpfr_set(val, this->val_, GMP_RNDN);
-  return true;
-}
-
-// Return the current type.  If we haven't set the type yet, we return
-// an abstract float type.
-
-Type*
-Float_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_abstract_float_type();
-  return this->type_;
-}
-
-// Set the type of the float value.  Here we may switch from an
-// abstract type to a real type.
-
-void
-Float_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL
-          && (context->type->integer_type() != NULL
-              || context->type->float_type() != NULL
-              || context->type->complex_type() != NULL))
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_float_type("float");
-}
-
-// Return true if the floating point value VAL fits in the range of
-// the type TYPE.  Otherwise give an error and return false.  TYPE may
-// be NULL.
-
-bool
-Float_expression::check_constant(mpfr_t val, Type* type,
-                                source_location location)
-{
-  if (type == NULL)
-    return true;
-  Float_type* ftype = type->float_type();
-  if (ftype == NULL || ftype->is_abstract())
-    return true;
-
-  // A NaN or Infinity always fits in the range of the type.
-  if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
-    return true;
-
-  mp_exp_t exp = mpfr_get_exp(val);
-  mp_exp_t max_exp;
-  switch (ftype->bits())
-    {
-    case 32:
-      max_exp = 128;
-      break;
-    case 64:
-      max_exp = 1024;
-      break;
-    default:
-      gcc_unreachable();
-    }
-  if (exp > max_exp)
-    {
-      error_at(location, "floating point constant overflow");
-      return false;
-    }
-  return true;
-}
-
-// Check the type of a float value.
-
-void
-Float_expression::do_check_types(Gogo*)
-{
-  if (this->type_ == NULL)
-    return;
-
-  if (!Float_expression::check_constant(this->val_, this->type_,
-                                       this->location()))
-    this->set_is_error();
-
-  Integer_type* integer_type = this->type_->integer_type();
-  if (integer_type != NULL)
-    {
-      if (!mpfr_integer_p(this->val_))
-       this->report_error(_("floating point constant truncated to integer"));
-      else
-       {
-         gcc_assert(!integer_type->is_abstract());
-         mpz_t ival;
-         mpz_init(ival);
-         mpfr_get_z(ival, this->val_, GMP_RNDN);
-         Integer_expression::check_constant(ival, integer_type,
-                                            this->location());
-         mpz_clear(ival);
-       }
-    }
-}
-
-// Get a tree for a float constant.
-
-tree
-Float_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type;
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    type = this->type_->get_tree(gogo);
-  else if (this->type_ != NULL && this->type_->integer_type() != NULL)
-    {
-      // We have an abstract integer type.  We just hope for the best.
-      type = Type::lookup_integer_type("int")->get_tree(gogo);
-    }
-  else
-    {
-      // If we still have an abstract type here, then this is being
-      // used in a constant expression which didn't get reduced.  We
-      // just use float64 and hope for the best.
-      type = Type::lookup_float_type("float64")->get_tree(gogo);
-    }
-  return Expression::float_constant_tree(this->val_, type);
-}
-
-// Write a floating point number to export data.
-
-void
-Float_expression::export_float(Export *exp, const mpfr_t val)
-{
-  mp_exp_t exponent;
-  char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
-  if (*s == '-')
-    exp->write_c_string("-");
-  exp->write_c_string("0.");
-  exp->write_c_string(*s == '-' ? s + 1 : s);
-  mpfr_free_str(s);
-  char buf[30];
-  snprintf(buf, sizeof buf, "E%ld", exponent);
-  exp->write_c_string(buf);
-}
-
-// Export a floating point number in a constant expression.
-
-void
-Float_expression::do_export(Export* exp) const
-{
-  Float_expression::export_float(exp, this->val_);
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Make a float expression.
-
-Expression*
-Expression::make_float(const mpfr_t* val, Type* type, source_location location)
-{
-  return new Float_expression(val, type, location);
-}
-
-// Complex numbers.
-
-class Complex_expression : public Expression
-{
- public:
-  Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
-                    source_location location)
-    : Expression(EXPRESSION_COMPLEX, location),
-      type_(type)
-  {
-    mpfr_init_set(this->real_, *real, GMP_RNDN);
-    mpfr_init_set(this->imag_, *imag, GMP_RNDN);
-  }
-
-  // Constrain REAL/IMAG to fit into TYPE.
-  static void
-  constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
-
-  // Return whether REAL/IMAG fits in the type.
-  static bool
-  check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
-
-  // Write REAL/IMAG to export data.
-  static void
-  export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_complex(&this->real_, &this->imag_, this->type_,
-                                   this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The real part.
-  mpfr_t real_;
-  // The imaginary part;
-  mpfr_t imag_;
-  // The type if known.
-  Type* type_;
-};
-
-// Constrain REAL/IMAG to fit into TYPE.
-
-void
-Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
-{
-  Complex_type* ctype = type->complex_type();
-  if (ctype != NULL && !ctype->is_abstract())
-    {
-      tree type_tree = ctype->type_tree();
-
-      REAL_VALUE_TYPE rvt;
-      real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
-      real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
-      mpfr_from_real(real, &rvt, GMP_RNDN);
-
-      real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
-      real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
-      mpfr_from_real(imag, &rvt, GMP_RNDN);
-    }
-}
-
-// Return a complex constant value.
-
-bool
-Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                             Type** ptype) const
-{
-  if (this->type_ != NULL)
-    *ptype = this->type_;
-  mpfr_set(real, this->real_, GMP_RNDN);
-  mpfr_set(imag, this->imag_, GMP_RNDN);
-  return true;
-}
-
-// Return the current type.  If we haven't set the type yet, we return
-// an abstract complex type.
-
-Type*
-Complex_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_abstract_complex_type();
-  return this->type_;
-}
-
-// Set the type of the complex value.  Here we may switch from an
-// abstract type to a real type.
-
-void
-Complex_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL
-          && context->type->complex_type() != NULL)
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_complex_type("complex");
-}
-
-// Return true if the complex value REAL/IMAG fits in the range of the
-// type TYPE.  Otherwise give an error and return false.  TYPE may be
-// NULL.
-
-bool
-Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
-                                  source_location location)
-{
-  if (type == NULL)
-    return true;
-  Complex_type* ctype = type->complex_type();
-  if (ctype == NULL || ctype->is_abstract())
-    return true;
-
-  mp_exp_t max_exp;
-  switch (ctype->bits())
-    {
-    case 64:
-      max_exp = 128;
-      break;
-    case 128:
-      max_exp = 1024;
-      break;
-    default:
-      gcc_unreachable();
-    }
-
-  // A NaN or Infinity always fits in the range of the type.
-  if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
-    {
-      if (mpfr_get_exp(real) > max_exp)
-       {
-         error_at(location, "complex real part constant overflow");
-         return false;
-       }
-    }
-
-  if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
-    {
-      if (mpfr_get_exp(imag) > max_exp)
-       {
-         error_at(location, "complex imaginary part constant overflow");
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Check the type of a complex value.
-
-void
-Complex_expression::do_check_types(Gogo*)
-{
-  if (this->type_ == NULL)
-    return;
-
-  if (!Complex_expression::check_constant(this->real_, this->imag_,
-                                         this->type_, this->location()))
-    this->set_is_error();
-}
-
-// Get a tree for a complex constant.
-
-tree
-Complex_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type;
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    type = this->type_->get_tree(gogo);
-  else
-    {
-      // If we still have an abstract type here, this this is being
-      // used in a constant expression which didn't get reduced.  We
-      // just use complex128 and hope for the best.
-      type = Type::lookup_complex_type("complex128")->get_tree(gogo);
-    }
-  return Expression::complex_constant_tree(this->real_, this->imag_, type);
-}
-
-// Write REAL/IMAG to export data.
-
-void
-Complex_expression::export_complex(Export* exp, const mpfr_t real,
-                                  const mpfr_t imag)
-{
-  if (!mpfr_zero_p(real))
-    {
-      Float_expression::export_float(exp, real);
-      if (mpfr_sgn(imag) > 0)
-       exp->write_c_string("+");
-    }
-  Float_expression::export_float(exp, imag);
-  exp->write_c_string("i");
-}
-
-// Export a complex number in a constant expression.
-
-void
-Complex_expression::do_export(Export* exp) const
-{
-  Complex_expression::export_complex(exp, this->real_, this->imag_);
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Make a complex expression.
-
-Expression*
-Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
-                        source_location location)
-{
-  return new Complex_expression(real, imag, type, location);
-}
-
-// A reference to a const in an expression.
-
-class Const_expression : public Expression
-{
- public:
-  Const_expression(Named_object* constant, source_location location)
-    : Expression(EXPRESSION_CONST_REFERENCE, location),
-      constant_(constant), type_(NULL)
-  { }
-
-  const std::string&
-  name() const
-  { return this->constant_->name(); }
-
- protected:
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_integer_constant_value(bool, mpz_t val, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t val, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
-
-  bool
-  do_string_constant_value(std::string* val) const
-  { return this->constant_->const_value()->expr()->string_constant_value(val); }
-
-  Type*
-  do_type();
-
-  // The type of a const is set by the declaration, not the use.
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context);
-
-  // When exporting a reference to a const as part of a const
-  // expression, we export the value.  We ignore the fact that it has
-  // a name.
-  void
-  do_export(Export* exp) const
-  { this->constant_->const_value()->expr()->export_expression(exp); }
-
- private:
-  // The constant.
-  Named_object* constant_;
-  // The type of this reference.  This is used if the constant has an
-  // abstract type.
-  Type* type_;
-};
-
-// Lower a constant expression.  This is where we convert the
-// predeclared constant iota into an integer value.
-
-Expression*
-Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
-{
-  if (this->constant_->const_value()->expr()->classification()
-      == EXPRESSION_IOTA)
-    {
-      if (iota_value == -1)
-       {
-         error_at(this->location(),
-                  "iota is only defined in const declarations");
-         iota_value = 0;
-       }
-      mpz_t val;
-      mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
-      Expression* ret = Expression::make_integer(&val, NULL,
-                                                this->location());
-      mpz_clear(val);
-      return ret;
-    }
-
-  // Make sure that the constant itself has been lowered.
-  gogo->lower_constant(this->constant_);
-
-  return this;
-}
-
-// Return an integer constant value.
-
-bool
-Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
-                                           Type** ptype) const
-{
-  Type* ctype;
-  if (this->type_ != NULL)
-    ctype = this->type_;
-  else
-    ctype = this->constant_->const_value()->type();
-  if (ctype != NULL && ctype->integer_type() == NULL)
-    return false;
-
-  Expression* e = this->constant_->const_value()->expr();
-  Type* t;
-  bool r = e->integer_constant_value(iota_is_constant, val, &t);
-
-  if (r
-      && ctype != NULL
-      && !Integer_expression::check_constant(val, ctype, this->location()))
-    return false;
-
-  *ptype = ctype != NULL ? ctype : t;
-  return r;
-}
-
-// Return a floating point constant value.
-
-bool
-Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  Type* ctype;
-  if (this->type_ != NULL)
-    ctype = this->type_;
-  else
-    ctype = this->constant_->const_value()->type();
-  if (ctype != NULL && ctype->float_type() == NULL)
-    return false;
-
-  Type* t;
-  bool r = this->constant_->const_value()->expr()->float_constant_value(val,
-                                                                       &t);
-  if (r && ctype != NULL)
-    {
-      if (!Float_expression::check_constant(val, ctype, this->location()))
-       return false;
-      Float_expression::constrain_float(val, ctype);
-    }
-  *ptype = ctype != NULL ? ctype : t;
-  return r;
-}
-
-// Return a complex constant value.
-
-bool
-Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                           Type **ptype) const
-{
-  Type* ctype;
-  if (this->type_ != NULL)
-    ctype = this->type_;
-  else
-    ctype = this->constant_->const_value()->type();
-  if (ctype != NULL && ctype->complex_type() == NULL)
-    return false;
-
-  Type *t;
-  bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
-                                                                         imag,
-                                                                         &t);
-  if (r && ctype != NULL)
-    {
-      if (!Complex_expression::check_constant(real, imag, ctype,
-                                             this->location()))
-       return false;
-      Complex_expression::constrain_complex(real, imag, ctype);
-    }
-  *ptype = ctype != NULL ? ctype : t;
-  return r;
-}
-
-// Return the type of the const reference.
-
-Type*
-Const_expression::do_type()
-{
-  if (this->type_ != NULL)
-    return this->type_;
-  Named_constant* nc = this->constant_->const_value();
-  Type* ret = nc->type();
-  if (ret != NULL)
-    return ret;
-  // During parsing, a named constant may have a NULL type, but we
-  // must not return a NULL type here.
-  return nc->expr()->type();
-}
-
-// Set the type of the const reference.
-
-void
-Const_expression::do_determine_type(const Type_context* context)
-{
-  Type* ctype = this->constant_->const_value()->type();
-  Type* cetype = (ctype != NULL
-                 ? ctype
-                 : this->constant_->const_value()->expr()->type());
-  if (ctype != NULL && !ctype->is_abstract())
-    ;
-  else if (context->type != NULL
-          && (context->type->integer_type() != NULL
-              || context->type->float_type() != NULL
-              || context->type->complex_type() != NULL)
-          && (cetype->integer_type() != NULL
-              || cetype->float_type() != NULL
-              || cetype->complex_type() != NULL))
-    this->type_ = context->type;
-  else if (context->type != NULL
-          && context->type->is_string_type()
-          && cetype->is_string_type())
-    this->type_ = context->type;
-  else if (context->type != NULL
-          && context->type->is_boolean_type()
-          && cetype->is_boolean_type())
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    {
-      if (cetype->is_abstract())
-       cetype = cetype->make_non_abstract_type();
-      this->type_ = cetype;
-    }
-}
-
-// Check types of a const reference.
-
-void
-Const_expression::do_check_types(Gogo*)
-{
-  if (this->type_ == NULL || this->type_->is_abstract())
-    return;
-
-  // Check for integer overflow.
-  if (this->type_->integer_type() != NULL)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      Type* dummy;
-      if (!this->integer_constant_value(true, ival, &dummy))
-       {
-         mpfr_t fval;
-         mpfr_init(fval);
-         Expression* cexpr = this->constant_->const_value()->expr();
-         if (cexpr->float_constant_value(fval, &dummy))
-           {
-             if (!mpfr_integer_p(fval))
-               this->report_error(_("floating point constant "
-                                    "truncated to integer"));
-             else
-               {
-                 mpfr_get_z(ival, fval, GMP_RNDN);
-                 Integer_expression::check_constant(ival, this->type_,
-                                                    this->location());
-               }
-           }
-         mpfr_clear(fval);
-       }
-      mpz_clear(ival);
-    }
-}
-
-// Return a tree for the const reference.
-
-tree
-Const_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type_tree;
-  if (this->type_ == NULL)
-    type_tree = NULL_TREE;
-  else
-    {
-      type_tree = this->type_->get_tree(gogo);
-      if (type_tree == error_mark_node)
-       return error_mark_node;
-    }
-
-  // If the type has been set for this expression, but the underlying
-  // object is an abstract int or float, we try to get the abstract
-  // value.  Otherwise we may lose something in the conversion.
-  if (this->type_ != NULL
-      && this->constant_->const_value()->type()->is_abstract())
-    {
-      Expression* expr = this->constant_->const_value()->expr();
-      mpz_t ival;
-      mpz_init(ival);
-      Type* t;
-      if (expr->integer_constant_value(true, ival, &t))
-       {
-         tree ret = Expression::integer_constant_tree(ival, type_tree);
-         mpz_clear(ival);
-         return ret;
-       }
-      mpz_clear(ival);
-
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (expr->float_constant_value(fval, &t))
-       {
-         tree ret = Expression::float_constant_tree(fval, type_tree);
-         mpfr_clear(fval);
-         return ret;
-       }
-
-      mpfr_t imag;
-      mpfr_init(imag);
-      if (expr->complex_constant_value(fval, imag, &t))
-       {
-         tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
-         mpfr_clear(fval);
-         mpfr_clear(imag);
-         return ret;
-       }
-      mpfr_clear(imag);
-      mpfr_clear(fval);
-    }
-
-  tree const_tree = this->constant_->get_tree(gogo, context->function());
-  if (this->type_ == NULL
-      || const_tree == error_mark_node
-      || TREE_TYPE(const_tree) == error_mark_node)
-    return const_tree;
-
-  tree ret;
-  if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
-    ret = fold_convert(type_tree, const_tree);
-  else if (TREE_CODE(type_tree) == INTEGER_TYPE)
-    ret = fold(convert_to_integer(type_tree, const_tree));
-  else if (TREE_CODE(type_tree) == REAL_TYPE)
-    ret = fold(convert_to_real(type_tree, const_tree));
-  else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
-    ret = fold(convert_to_complex(type_tree, const_tree));
-  else
-    gcc_unreachable();
-  return ret;
-}
-
-// Make a reference to a constant in an expression.
-
-Expression*
-Expression::make_const_reference(Named_object* constant,
-                                source_location location)
-{
-  return new Const_expression(constant, location);
-}
-
-// The nil value.
-
-class Nil_expression : public Expression
-{
- public:
-  Nil_expression(source_location location)
-    : Expression(EXPRESSION_NIL, location)
-  { }
-
-  static Expression*
-  do_import(Import*);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  Type*
-  do_type()
-  { return Type::make_nil_type(); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return null_pointer_node; }
-
-  void
-  do_export(Export* exp) const
-  { exp->write_c_string("nil"); }
-};
-
-// Import a nil expression.
-
-Expression*
-Nil_expression::do_import(Import* imp)
-{
-  imp->require_c_string("nil");
-  return Expression::make_nil(imp->location());
-}
-
-// Make a nil expression.
-
-Expression*
-Expression::make_nil(source_location location)
-{
-  return new Nil_expression(location);
-}
-
-// The value of the predeclared constant iota.  This is little more
-// than a marker.  This will be lowered to an integer in
-// Const_expression::do_lower, which is where we know the value that
-// it should have.
-
-class Iota_expression : public Parser_expression
-{
- public:
-  Iota_expression(source_location location)
-    : Parser_expression(EXPRESSION_IOTA, location)
-  { }
-
- protected:
-  Expression*
-  do_lower(Gogo*, Named_object*, int)
-  { gcc_unreachable(); }
-
-  // There should only ever be one of these.
-  Expression*
-  do_copy()
-  { gcc_unreachable(); }
-};
-
-// Make an iota expression.  This is only called for one case: the
-// value of the predeclared constant iota.
-
-Expression*
-Expression::make_iota()
-{
-  static Iota_expression iota_expression(UNKNOWN_LOCATION);
-  return &iota_expression;
-}
-
-// A type conversion expression.
-
-class Type_conversion_expression : public Expression
-{
- public:
-  Type_conversion_expression(Type* type, Expression* expr,
-                            source_location location)
-    : Expression(EXPRESSION_CONVERSION, location),
-      type_(type), expr_(expr), may_convert_function_types_(false)
-  { }
-
-  // Return the type to which we are converting.
-  Type*
-  type() const
-  { return this->type_; }
-
-  // Return the expression which we are converting.
-  Expression*
-  expr() const
-  { return this->expr_; }
-
-  // Permit converting from one function type to another.  This is
-  // used internally for method expressions.
-  void
-  set_may_convert_function_types()
-  {
-    this->may_convert_function_types_ = true;
-  }
-
-  // Import a type conversion expression.
-  static Expression*
-  do_import(Import*);
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const
-  { return this->expr_->is_constant(); }
-
-  bool
-  do_integer_constant_value(bool, mpz_t, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
-
-  bool
-  do_string_constant_value(std::string*) const;
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*)
-  {
-    Type_context subcontext(this->type_, false);
-    this->expr_->determine_type(&subcontext);
-  }
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Type_conversion_expression(this->type_, this->expr_->copy(),
-                                         this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context* context);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The type to convert to.
-  Type* type_;
-  // The expression to convert.
-  Expression* expr_;
-  // True if this is permitted to convert function types.  This is
-  // used internally for method expressions.
-  bool may_convert_function_types_;
-};
-
-// Traversal.
-
-int
-Type_conversion_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
-      || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Convert to a constant at lowering time.
-
-Expression*
-Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
-{
-  Type* type = this->type_;
-  Expression* val = this->expr_;
-  source_location location = this->location();
-
-  if (type->integer_type() != NULL)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      Type* dummy;
-      if (val->integer_constant_value(false, ival, &dummy))
-       {
-         if (!Integer_expression::check_constant(ival, type, location))
-           mpz_set_ui(ival, 0);
-         Expression* ret = Expression::make_integer(&ival, type, location);
-         mpz_clear(ival);
-         return ret;
-       }
-
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (val->float_constant_value(fval, &dummy))
-       {
-         if (!mpfr_integer_p(fval))
-           {
-             error_at(location,
-                      "floating point constant truncated to integer");
-             return Expression::make_error(location);
-           }
-         mpfr_get_z(ival, fval, GMP_RNDN);
-         if (!Integer_expression::check_constant(ival, type, location))
-           mpz_set_ui(ival, 0);
-         Expression* ret = Expression::make_integer(&ival, type, location);
-         mpfr_clear(fval);
-         mpz_clear(ival);
-         return ret;
-       }
-      mpfr_clear(fval);
-      mpz_clear(ival);
-    }
-
-  if (type->float_type() != NULL)
-    {
-      mpfr_t fval;
-      mpfr_init(fval);
-      Type* dummy;
-      if (val->float_constant_value(fval, &dummy))
-       {
-         if (!Float_expression::check_constant(fval, type, location))
-           mpfr_set_ui(fval, 0, GMP_RNDN);
-         Float_expression::constrain_float(fval, type);
-         Expression *ret = Expression::make_float(&fval, type, location);
-         mpfr_clear(fval);
-         return ret;
-       }
-      mpfr_clear(fval);
-    }
-
-  if (type->complex_type() != NULL)
-    {
-      mpfr_t real;
-      mpfr_t imag;
-      mpfr_init(real);
-      mpfr_init(imag);
-      Type* dummy;
-      if (val->complex_constant_value(real, imag, &dummy))
-       {
-         if (!Complex_expression::check_constant(real, imag, type, location))
-           {
-             mpfr_set_ui(real, 0, GMP_RNDN);
-             mpfr_set_ui(imag, 0, GMP_RNDN);
-           }
-         Complex_expression::constrain_complex(real, imag, type);
-         Expression* ret = Expression::make_complex(&real, &imag, type,
-                                                    location);
-         mpfr_clear(real);
-         mpfr_clear(imag);
-         return ret;
-       }
-      mpfr_clear(real);
-      mpfr_clear(imag);
-    }
-
-  if (type->is_open_array_type() && type->named_type() == NULL)
-    {
-      Type* element_type = type->array_type()->element_type()->forwarded();
-      bool is_byte = element_type == Type::lookup_integer_type("uint8");
-      bool is_int = element_type == Type::lookup_integer_type("int");
-      if (is_byte || is_int)
-       {
-         std::string s;
-         if (val->string_constant_value(&s))
-           {
-             Expression_list* vals = new Expression_list();
-             if (is_byte)
-               {
-                 for (std::string::const_iterator p = s.begin();
-                      p != s.end();
-                      p++)
-                   {
-                     mpz_t val;
-                     mpz_init_set_ui(val, static_cast<unsigned char>(*p));
-                     Expression* v = Expression::make_integer(&val,
-                                                              element_type,
-                                                              location);
-                     vals->push_back(v);
-                     mpz_clear(val);
-                   }
-               }
-             else
-               {
-                 const char *p = s.data();
-                 const char *pend = s.data() + s.length();
-                 while (p < pend)
-                   {
-                     unsigned int c;
-                     int adv = Lex::fetch_char(p, &c);
-                     if (adv == 0)
-                       {
-                         warning_at(this->location(), 0,
-                                    "invalid UTF-8 encoding");
-                         adv = 1;
-                       }
-                     p += adv;
-                     mpz_t val;
-                     mpz_init_set_ui(val, c);
-                     Expression* v = Expression::make_integer(&val,
-                                                              element_type,
-                                                              location);
-                     vals->push_back(v);
-                     mpz_clear(val);
-                   }
-               }
-
-             return Expression::make_slice_composite_literal(type, vals,
-                                                             location);
-           }
-       }
-    }
-
-  return this;
-}
-
-// Return the constant integer value if there is one.
-
-bool
-Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
-                                                     mpz_t val,
-                                                     Type** ptype) const
-{
-  if (this->type_->integer_type() == NULL)
-    return false;
-
-  mpz_t ival;
-  mpz_init(ival);
-  Type* dummy;
-  if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
-    {
-      if (!Integer_expression::check_constant(ival, this->type_,
-                                             this->location()))
-       {
-         mpz_clear(ival);
-         return false;
-       }
-      mpz_set(val, ival);
-      mpz_clear(ival);
-      *ptype = this->type_;
-      return true;
-    }
-  mpz_clear(ival);
-
-  mpfr_t fval;
-  mpfr_init(fval);
-  if (this->expr_->float_constant_value(fval, &dummy))
-    {
-      mpfr_get_z(val, fval, GMP_RNDN);
-      mpfr_clear(fval);
-      if (!Integer_expression::check_constant(val, this->type_,
-                                             this->location()))
-       return false;
-      *ptype = this->type_;
-      return true;
-    }
-  mpfr_clear(fval);
-
-  return false;
-}
-
-// Return the constant floating point value if there is one.
-
-bool
-Type_conversion_expression::do_float_constant_value(mpfr_t val,
-                                                   Type** ptype) const
-{
-  if (this->type_->float_type() == NULL)
-    return false;
-
-  mpfr_t fval;
-  mpfr_init(fval);
-  Type* dummy;
-  if (this->expr_->float_constant_value(fval, &dummy))
-    {
-      if (!Float_expression::check_constant(fval, this->type_,
-                                           this->location()))
-       {
-         mpfr_clear(fval);
-         return false;
-       }
-      mpfr_set(val, fval, GMP_RNDN);
-      mpfr_clear(fval);
-      Float_expression::constrain_float(val, this->type_);
-      *ptype = this->type_;
-      return true;
-    }
-  mpfr_clear(fval);
-
-  return false;
-}
-
-// Return the constant complex value if there is one.
-
-bool
-Type_conversion_expression::do_complex_constant_value(mpfr_t real,
-                                                     mpfr_t imag,
-                                                     Type **ptype) const
-{
-  if (this->type_->complex_type() == NULL)
-    return false;
-
-  mpfr_t rval;
-  mpfr_t ival;
-  mpfr_init(rval);
-  mpfr_init(ival);
-  Type* dummy;
-  if (this->expr_->complex_constant_value(rval, ival, &dummy))
-    {
-      if (!Complex_expression::check_constant(rval, ival, this->type_,
-                                             this->location()))
-       {
-         mpfr_clear(rval);
-         mpfr_clear(ival);
-         return false;
-       }
-      mpfr_set(real, rval, GMP_RNDN);
-      mpfr_set(imag, ival, GMP_RNDN);
-      mpfr_clear(rval);
-      mpfr_clear(ival);
-      Complex_expression::constrain_complex(real, imag, this->type_);
-      *ptype = this->type_;
-      return true;
-    }
-  mpfr_clear(rval);
-  mpfr_clear(ival);
-
-  return false;  
-}
-
-// Return the constant string value if there is one.
-
-bool
-Type_conversion_expression::do_string_constant_value(std::string* val) const
-{
-  if (this->type_->is_string_type()
-      && this->expr_->type()->integer_type() != NULL)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      Type* dummy;
-      if (this->expr_->integer_constant_value(false, ival, &dummy))
-       {
-         unsigned long ulval = mpz_get_ui(ival);
-         if (mpz_cmp_ui(ival, ulval) == 0)
-           {
-             Lex::append_char(ulval, true, val, this->location());
-             mpz_clear(ival);
-             return true;
-           }
-       }
-      mpz_clear(ival);
-    }
-
-  // FIXME: Could handle conversion from const []int here.
-
-  return false;
-}
-
-// Check that types are convertible.
-
-void
-Type_conversion_expression::do_check_types(Gogo*)
-{
-  Type* type = this->type_;
-  Type* expr_type = this->expr_->type();
-  std::string reason;
-
-  if (this->may_convert_function_types_
-      && type->function_type() != NULL
-      && expr_type->function_type() != NULL)
-    return;
-
-  if (Type::are_convertible(type, expr_type, &reason))
-    return;
-
-  error_at(this->location(), "%s", reason.c_str());
-  this->set_is_error();
-}
-
-// Get a tree for a type conversion.
-
-tree
-Type_conversion_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type_tree = this->type_->get_tree(gogo);
-  tree expr_tree = this->expr_->get_tree(context);
-
-  if (type_tree == error_mark_node
-      || expr_tree == error_mark_node
-      || TREE_TYPE(expr_tree) == error_mark_node)
-    return error_mark_node;
-
-  if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
-    return fold_convert(type_tree, expr_tree);
-
-  Type* type = this->type_;
-  Type* expr_type = this->expr_->type();
-  tree ret;
-  if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
-    ret = Expression::convert_for_assignment(context, type, expr_type,
-                                            expr_tree, this->location());
-  else if (type->integer_type() != NULL)
-    {
-      if (expr_type->integer_type() != NULL
-         || expr_type->float_type() != NULL
-         || expr_type->is_unsafe_pointer_type())
-       ret = fold(convert_to_integer(type_tree, expr_tree));
-      else
-       gcc_unreachable();
-    }
-  else if (type->float_type() != NULL)
-    {
-      if (expr_type->integer_type() != NULL
-         || expr_type->float_type() != NULL)
-       ret = fold(convert_to_real(type_tree, expr_tree));
-      else
-       gcc_unreachable();
-    }
-  else if (type->complex_type() != NULL)
-    {
-      if (expr_type->complex_type() != NULL)
-       ret = fold(convert_to_complex(type_tree, expr_tree));
-      else
-       gcc_unreachable();
-    }
-  else if (type->is_string_type()
-          && expr_type->integer_type() != NULL)
-    {
-      expr_tree = fold_convert(integer_type_node, expr_tree);
-      if (host_integerp(expr_tree, 0))
-       {
-         HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
-         std::string s;
-         Lex::append_char(intval, true, &s, this->location());
-         Expression* se = Expression::make_string(s, this->location());
-         return se->get_tree(context);
-       }
-
-      static tree int_to_string_fndecl;
-      ret = Gogo::call_builtin(&int_to_string_fndecl,
-                              this->location(),
-                              "__go_int_to_string",
-                              1,
-                              type_tree,
-                              integer_type_node,
-                              fold_convert(integer_type_node, expr_tree));
-    }
-  else if (type->is_string_type()
-          && (expr_type->array_type() != NULL
-              || (expr_type->points_to() != NULL
-                  && expr_type->points_to()->array_type() != NULL)))
-    {
-      Type* t = expr_type;
-      if (t->points_to() != NULL)
-       {
-         t = t->points_to();
-         expr_tree = build_fold_indirect_ref(expr_tree);
-       }
-      if (!DECL_P(expr_tree))
-       expr_tree = save_expr(expr_tree);
-      Array_type* a = t->array_type();
-      Type* e = a->element_type()->forwarded();
-      gcc_assert(e->integer_type() != NULL);
-      tree valptr = fold_convert(const_ptr_type_node,
-                                a->value_pointer_tree(gogo, expr_tree));
-      tree len = a->length_tree(gogo, expr_tree);
-      len = fold_convert_loc(this->location(), size_type_node, len);
-      if (e->integer_type()->is_unsigned()
-         && e->integer_type()->bits() == 8)
-       {
-         static tree byte_array_to_string_fndecl;
-         ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
-                                  this->location(),
-                                  "__go_byte_array_to_string",
-                                  2,
-                                  type_tree,
-                                  const_ptr_type_node,
-                                  valptr,
-                                  size_type_node,
-                                  len);
-       }
-      else
-       {
-         gcc_assert(e == Type::lookup_integer_type("int"));
-         static tree int_array_to_string_fndecl;
-         ret = Gogo::call_builtin(&int_array_to_string_fndecl,
-                                  this->location(),
-                                  "__go_int_array_to_string",
-                                  2,
-                                  type_tree,
-                                  const_ptr_type_node,
-                                  valptr,
-                                  size_type_node,
-                                  len);
-       }
-    }
-  else if (type->is_open_array_type() && expr_type->is_string_type())
-    {
-      Type* e = type->array_type()->element_type()->forwarded();
-      gcc_assert(e->integer_type() != NULL);
-      if (e->integer_type()->is_unsigned()
-         && e->integer_type()->bits() == 8)
-       {
-         static tree string_to_byte_array_fndecl;
-         ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
-                                  this->location(),
-                                  "__go_string_to_byte_array",
-                                  1,
-                                  type_tree,
-                                  TREE_TYPE(expr_tree),
-                                  expr_tree);
-       }
-      else
-       {
-         gcc_assert(e == Type::lookup_integer_type("int"));
-         static tree string_to_int_array_fndecl;
-         ret = Gogo::call_builtin(&string_to_int_array_fndecl,
-                                  this->location(),
-                                  "__go_string_to_int_array",
-                                  1,
-                                  type_tree,
-                                  TREE_TYPE(expr_tree),
-                                  expr_tree);
-       }
-    }
-  else if ((type->is_unsafe_pointer_type()
-           && expr_type->points_to() != NULL)
-          || (expr_type->is_unsafe_pointer_type()
-              && type->points_to() != NULL))
-    ret = fold_convert(type_tree, expr_tree);
-  else if (type->is_unsafe_pointer_type()
-          && expr_type->integer_type() != NULL)
-    ret = convert_to_pointer(type_tree, expr_tree);
-  else if (this->may_convert_function_types_
-          && type->function_type() != NULL
-          && expr_type->function_type() != NULL)
-    ret = fold_convert_loc(this->location(), type_tree, expr_tree);
-  else
-    ret = Expression::convert_for_assignment(context, type, expr_type,
-                                            expr_tree, this->location());
-
-  return ret;
-}
-
-// Output a type conversion in a constant expression.
-
-void
-Type_conversion_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  exp->write_c_string(", ");
-  this->expr_->export_expression(exp);
-  exp->write_c_string(")");
-}
-
-// Import a type conversion or a struct construction.
-
-Expression*
-Type_conversion_expression::do_import(Import* imp)
-{
-  imp->require_c_string("convert(");
-  Type* type = imp->read_type();
-  imp->require_c_string(", ");
-  Expression* val = Expression::import_expression(imp);
-  imp->require_c_string(")");
-  return Expression::make_cast(type, val, imp->location());
-}
-
-// Make a type cast expression.
-
-Expression*
-Expression::make_cast(Type* type, Expression* val, source_location location)
-{
-  if (type->is_error_type() || val->is_error_expression())
-    return Expression::make_error(location);
-  return new Type_conversion_expression(type, val, location);
-}
-
-// Unary expressions.
-
-class Unary_expression : public Expression
-{
- public:
-  Unary_expression(Operator op, Expression* expr, source_location location)
-    : Expression(EXPRESSION_UNARY, location),
-      op_(op), escapes_(true), expr_(expr)
-  { }
-
-  // Return the operator.
-  Operator
-  op() const
-  { return this->op_; }
-
-  // Return the operand.
-  Expression*
-  operand() const
-  { return this->expr_; }
-
-  // Record that an address expression does not escape.
-  void
-  set_does_not_escape()
-  {
-    gcc_assert(this->op_ == OPERATOR_AND);
-    this->escapes_ = false;
-  }
-
-  // Apply unary opcode OP to UVAL, setting VAL.  Return true if this
-  // could be done, false if not.
-  static bool
-  eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
-              source_location);
-
-  // Apply unary opcode OP to UVAL, setting VAL.  Return true if this
-  // could be done, false if not.
-  static bool
-  eval_float(Operator op, mpfr_t uval, mpfr_t val);
-
-  // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG.  Return
-  // true if this could be done, false if not.
-  static bool
-  eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
-              mpfr_t imag);
-
-  static Expression*
-  do_import(Import*);
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Expression::traverse(&this->expr_, traverse); }
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const;
-
-  bool
-  do_integer_constant_value(bool, mpz_t, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_unary(this->op_, this->expr_->copy(),
-                                 this->location());
-  }
-
-  bool
-  do_is_addressable() const
-  { return this->op_ == OPERATOR_MULT; }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The unary operator to apply.
-  Operator op_;
-  // Normally true.  False if this is an address expression which does
-  // not escape the current function.
-  bool escapes_;
-  // The operand.
-  Expression* expr_;
-};
-
-// If we are taking the address of a composite literal, and the
-// contents are not constant, then we want to make a heap composite
-// instead.
-
-Expression*
-Unary_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location loc = this->location();
-  Operator op = this->op_;
-  Expression* expr = this->expr_;
-
-  if (op == OPERATOR_MULT && expr->is_type_expression())
-    return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
-
-  // *&x simplifies to x.  *(*T)(unsafe.Pointer)(&x) does not require
-  // moving x to the heap.  FIXME: Is it worth doing a real escape
-  // analysis here?  This case is found in math/unsafe.go and is
-  // therefore worth special casing.
-  if (op == OPERATOR_MULT)
-    {
-      Expression* e = expr;
-      while (e->classification() == EXPRESSION_CONVERSION)
-       {
-         Type_conversion_expression* te
-           = static_cast<Type_conversion_expression*>(e);
-         e = te->expr();
-       }
-
-      if (e->classification() == EXPRESSION_UNARY)
-       {
-         Unary_expression* ue = static_cast<Unary_expression*>(e);
-         if (ue->op_ == OPERATOR_AND)
-           {
-             if (e == expr)
-               {
-                 // *&x == x.
-                 return ue->expr_;
-               }
-             ue->set_does_not_escape();
-           }
-       }
-    }
-
-  if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
-      || op == OPERATOR_NOT || op == OPERATOR_XOR)
-    {
-      Expression* ret = NULL;
-
-      mpz_t eval;
-      mpz_init(eval);
-      Type* etype;
-      if (expr->integer_constant_value(false, eval, &etype))
-       {
-         mpz_t val;
-         mpz_init(val);
-         if (Unary_expression::eval_integer(op, etype, eval, val, loc))
-           ret = Expression::make_integer(&val, etype, loc);
-         mpz_clear(val);
-       }
-      mpz_clear(eval);
-      if (ret != NULL)
-       return ret;
-
-      if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
-       {
-         mpfr_t fval;
-         mpfr_init(fval);
-         Type* ftype;
-         if (expr->float_constant_value(fval, &ftype))
-           {
-             mpfr_t val;
-             mpfr_init(val);
-             if (Unary_expression::eval_float(op, fval, val))
-               ret = Expression::make_float(&val, ftype, loc);
-             mpfr_clear(val);
-           }
-         if (ret != NULL)
-           {
-             mpfr_clear(fval);
-             return ret;
-           }
-
-         mpfr_t ival;
-         mpfr_init(ival);
-         if (expr->complex_constant_value(fval, ival, &ftype))
-           {
-             mpfr_t real;
-             mpfr_t imag;
-             mpfr_init(real);
-             mpfr_init(imag);
-             if (Unary_expression::eval_complex(op, fval, ival, real, imag))
-               ret = Expression::make_complex(&real, &imag, ftype, loc);
-             mpfr_clear(real);
-             mpfr_clear(imag);
-           }
-         mpfr_clear(ival);
-         mpfr_clear(fval);
-         if (ret != NULL)
-           return ret;
-       }
-    }
-
-  return this;
-}
-
-// Return whether a unary expression is a constant.
-
-bool
-Unary_expression::do_is_constant() const
-{
-  if (this->op_ == OPERATOR_MULT)
-    {
-      // Indirecting through a pointer is only constant if the object
-      // to which the expression points is constant, but we currently
-      // have no way to determine that.
-      return false;
-    }
-  else if (this->op_ == OPERATOR_AND)
-    {
-      // Taking the address of a variable is constant if it is a
-      // global variable, not constant otherwise.  In other cases
-      // taking the address is probably not a constant.
-      Var_expression* ve = this->expr_->var_expression();
-      if (ve != NULL)
-       {
-         Named_object* no = ve->named_object();
-         return no->is_variable() && no->var_value()->is_global();
-       }
-      return false;
-    }
-  else
-    return this->expr_->is_constant();
-}
-
-// Apply unary opcode OP to UVAL, setting VAL.  UTYPE is the type of
-// UVAL, if known; it may be NULL.  Return true if this could be done,
-// false if not.
-
-bool
-Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
-                              source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_PLUS:
-      mpz_set(val, uval);
-      return true;
-    case OPERATOR_MINUS:
-      mpz_neg(val, uval);
-      return Integer_expression::check_constant(val, utype, location);
-    case OPERATOR_NOT:
-      mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
-      return true;
-    case OPERATOR_XOR:
-      if (utype == NULL
-         || utype->integer_type() == NULL
-         || utype->integer_type()->is_abstract())
-       mpz_com(val, uval);
-      else
-       {
-         // The number of HOST_WIDE_INTs that it takes to represent
-         // UVAL.
-         size_t count = ((mpz_sizeinbase(uval, 2)
-                          + HOST_BITS_PER_WIDE_INT
-                          - 1)
-                         / HOST_BITS_PER_WIDE_INT);
-
-         unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
-         memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
-
-         size_t ecount;
-         mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
-         gcc_assert(ecount <= count);
-
-         // Trim down to the number of words required by the type.
-         size_t obits = utype->integer_type()->bits();
-         if (!utype->integer_type()->is_unsigned())
-           ++obits;
-         size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
-                          / HOST_BITS_PER_WIDE_INT);
-         gcc_assert(ocount <= ocount);
-
-         for (size_t i = 0; i < ocount; ++i)
-           phwi[i] = ~phwi[i];
-
-         size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
-         if (clearbits != 0)
-           phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
-                                >> clearbits);
-
-         mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
-
-         delete[] phwi;
-       }
-      return Integer_expression::check_constant(val, utype, location);
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-      return false;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Apply unary opcode OP to UVAL, setting VAL.  Return true if this
-// could be done, false if not.
-
-bool
-Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
-{
-  switch (op)
-    {
-    case OPERATOR_PLUS:
-      mpfr_set(val, uval, GMP_RNDN);
-      return true;
-    case OPERATOR_MINUS:
-      mpfr_neg(val, uval, GMP_RNDN);
-      return true;
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-      return false;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG.  Return true
-// if this could be done, false if not.
-
-bool
-Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
-                              mpfr_t real, mpfr_t imag)
-{
-  switch (op)
-    {
-    case OPERATOR_PLUS:
-      mpfr_set(real, rval, GMP_RNDN);
-      mpfr_set(imag, ival, GMP_RNDN);
-      return true;
-    case OPERATOR_MINUS:
-      mpfr_neg(real, rval, GMP_RNDN);
-      mpfr_neg(imag, ival, GMP_RNDN);
-      return true;
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-      return false;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return the integral constant value of a unary expression, if it has one.
-
-bool
-Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
-                                           Type** ptype) const
-{
-  mpz_t uval;
-  mpz_init(uval);
-  bool ret;
-  if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
-    ret = false;
-  else
-    ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
-                                        this->location());
-  mpz_clear(uval);
-  return ret;
-}
-
-// Return the floating point constant value of a unary expression, if
-// it has one.
-
-bool
-Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  mpfr_t uval;
-  mpfr_init(uval);
-  bool ret;
-  if (!this->expr_->float_constant_value(uval, ptype))
-    ret = false;
-  else
-    ret = Unary_expression::eval_float(this->op_, uval, val);
-  mpfr_clear(uval);
-  return ret;
-}
-
-// Return the complex constant value of a unary expression, if it has
-// one.
-
-bool
-Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                           Type** ptype) const
-{
-  mpfr_t rval;
-  mpfr_t ival;
-  mpfr_init(rval);
-  mpfr_init(ival);
-  bool ret;
-  if (!this->expr_->complex_constant_value(rval, ival, ptype))
-    ret = false;
-  else
-    ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
-  mpfr_clear(rval);
-  mpfr_clear(ival);
-  return ret;
-}
-
-// Return the type of a unary expression.
-
-Type*
-Unary_expression::do_type()
-{
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-      return this->expr_->type();
-
-    case OPERATOR_AND:
-      return Type::make_pointer_type(this->expr_->type());
-
-    case OPERATOR_MULT:
-      {
-       Type* subtype = this->expr_->type();
-       Type* points_to = subtype->points_to();
-       if (points_to == NULL)
-         return Type::make_error_type();
-       return points_to;
-      }
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Determine abstract types for a unary expression.
-
-void
-Unary_expression::do_determine_type(const Type_context* context)
-{
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-      this->expr_->determine_type(context);
-      break;
-
-    case OPERATOR_AND:
-      // Taking the address of something.
-      {
-       Type* subtype = (context->type == NULL
-                        ? NULL
-                        : context->type->points_to());
-       Type_context subcontext(subtype, false);
-       this->expr_->determine_type(&subcontext);
-      }
-      break;
-
-    case OPERATOR_MULT:
-      // Indirecting through a pointer.
-      {
-       Type* subtype = (context->type == NULL
-                        ? NULL
-                        : Type::make_pointer_type(context->type));
-       Type_context subcontext(subtype, false);
-       this->expr_->determine_type(&subcontext);
-      }
-      break;
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Check types for a unary expression.
-
-void
-Unary_expression::do_check_types(Gogo*)
-{
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-      {
-       Type* type = this->expr_->type();
-       if (type->integer_type() == NULL
-           && type->float_type() == NULL
-           && type->complex_type() == NULL
-           && !type->is_error_type())
-         this->report_error(_("expected numeric type"));
-      }
-      break;
-
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-      {
-       Type* type = this->expr_->type();
-       if (type->integer_type() == NULL
-           && !type->is_boolean_type()
-           && !type->is_error_type())
-         this->report_error(_("expected integer or boolean type"));
-      }
-      break;
-
-    case OPERATOR_AND:
-      if (!this->expr_->is_addressable())
-       this->report_error(_("invalid operand for unary %<&%>"));
-      else
-       this->expr_->address_taken(this->escapes_);
-      break;
-
-    case OPERATOR_MULT:
-      // Indirecting through a pointer.
-      {
-       Type* type = this->expr_->type();
-       if (type->points_to() == NULL
-           && !type->is_error_type())
-         this->report_error(_("expected pointer"));
-      }
-      break;
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Get a tree for a unary expression.
-
-tree
-Unary_expression::do_get_tree(Translate_context* context)
-{
-  tree expr = this->expr_->get_tree(context);
-  if (expr == error_mark_node)
-    return error_mark_node;
-
-  source_location loc = this->location();
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-      return expr;
-
-    case OPERATOR_MINUS:
-      {
-       tree type = TREE_TYPE(expr);
-       tree compute_type = excess_precision_type(type);
-       if (compute_type != NULL_TREE)
-         expr = ::convert(compute_type, expr);
-       tree ret = fold_build1_loc(loc, NEGATE_EXPR,
-                                  (compute_type != NULL_TREE
-                                   ? compute_type
-                                   : type),
-                                  expr);
-       if (compute_type != NULL_TREE)
-         ret = ::convert(type, ret);
-       return ret;
-      }
-
-    case OPERATOR_NOT:
-      if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
-       return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
-      else
-       return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
-                              build_int_cst(TREE_TYPE(expr), 0));
-
-    case OPERATOR_XOR:
-      return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
-
-    case OPERATOR_AND:
-      // We should not see a non-constant constructor here; cases
-      // where we would see one should have been moved onto the heap
-      // at parse time.  Taking the address of a nonconstant
-      // constructor will not do what the programmer expects.
-      gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
-      gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
-
-      // Build a decl for a constant constructor.
-      if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
-       {
-         tree decl = build_decl(this->location(), VAR_DECL,
-                                create_tmp_var_name("C"), TREE_TYPE(expr));
-         DECL_EXTERNAL(decl) = 0;
-         TREE_PUBLIC(decl) = 0;
-         TREE_READONLY(decl) = 1;
-         TREE_CONSTANT(decl) = 1;
-         TREE_STATIC(decl) = 1;
-         TREE_ADDRESSABLE(decl) = 1;
-         DECL_ARTIFICIAL(decl) = 1;
-         DECL_INITIAL(decl) = expr;
-         rest_of_decl_compilation(decl, 1, 0);
-         expr = decl;
-       }
-
-      return build_fold_addr_expr_loc(loc, expr);
-
-    case OPERATOR_MULT:
-      {
-       gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
-
-       // If we are dereferencing the pointer to a large struct, we
-       // need to check for nil.  We don't bother to check for small
-       // structs because we expect the system to crash on a nil
-       // pointer dereference.
-       HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
-       if (s == -1 || s >= 4096)
-         {
-           if (!DECL_P(expr))
-             expr = save_expr(expr);
-           tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
-                                          expr,
-                                          fold_convert(TREE_TYPE(expr),
-                                                       null_pointer_node));
-           tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
-                                            loc);
-           expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
-                                  build3(COND_EXPR, void_type_node,
-                                         compare, crash, NULL_TREE),
-                                  expr);
-         }
-
-       // If the type of EXPR is a recursive pointer type, then we
-       // need to insert a cast before indirecting.
-       if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
-         {
-           Type* pt = this->expr_->type()->points_to();
-           tree ind = pt->get_tree(context->gogo());
-           expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
-         }
-
-       return build_fold_indirect_ref_loc(loc, expr);
-      }
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Export a unary expression.
-
-void
-Unary_expression::do_export(Export* exp) const
-{
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-      exp->write_c_string("+ ");
-      break;
-    case OPERATOR_MINUS:
-      exp->write_c_string("- ");
-      break;
-    case OPERATOR_NOT:
-      exp->write_c_string("! ");
-      break;
-    case OPERATOR_XOR:
-      exp->write_c_string("^ ");
-      break;
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-    default:
-      gcc_unreachable();
-    }
-  this->expr_->export_expression(exp);
-}
-
-// Import a unary expression.
-
-Expression*
-Unary_expression::do_import(Import* imp)
-{
-  Operator op;
-  switch (imp->get_char())
-    {
-    case '+':
-      op = OPERATOR_PLUS;
-      break;
-    case '-':
-      op = OPERATOR_MINUS;
-      break;
-    case '!':
-      op = OPERATOR_NOT;
-      break;
-    case '^':
-      op = OPERATOR_XOR;
-      break;
-    default:
-      gcc_unreachable();
-    }
-  imp->require_c_string(" ");
-  Expression* expr = Expression::import_expression(imp);
-  return Expression::make_unary(op, expr, imp->location());
-}
-
-// Make a unary expression.
-
-Expression*
-Expression::make_unary(Operator op, Expression* expr, source_location location)
-{
-  return new Unary_expression(op, expr, location);
-}
-
-// If this is an indirection through a pointer, return the expression
-// being pointed through.  Otherwise return this.
-
-Expression*
-Expression::deref()
-{
-  if (this->classification_ == EXPRESSION_UNARY)
-    {
-      Unary_expression* ue = static_cast<Unary_expression*>(this);
-      if (ue->op() == OPERATOR_MULT)
-       return ue->operand();
-    }
-  return this;
-}
-
-// Class Binary_expression.
-
-// Traversal.
-
-int
-Binary_expression::do_traverse(Traverse* traverse)
-{
-  int t = Expression::traverse(&this->left_, traverse);
-  if (t == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Expression::traverse(&this->right_, traverse);
-}
-
-// Compare integer constants according to OP.
-
-bool
-Binary_expression::compare_integer(Operator op, mpz_t left_val,
-                                  mpz_t right_val)
-{
-  int i = mpz_cmp(left_val, right_val);
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      return i == 0;
-    case OPERATOR_NOTEQ:
-      return i != 0;
-    case OPERATOR_LT:
-      return i < 0;
-    case OPERATOR_LE:
-      return i <= 0;
-    case OPERATOR_GT:
-      return i > 0;
-    case OPERATOR_GE:
-      return i >= 0;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Compare floating point constants according to OP.
-
-bool
-Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
-                                mpfr_t right_val)
-{
-  int i;
-  if (type == NULL)
-    i = mpfr_cmp(left_val, right_val);
-  else
-    {
-      mpfr_t lv;
-      mpfr_init_set(lv, left_val, GMP_RNDN);
-      mpfr_t rv;
-      mpfr_init_set(rv, right_val, GMP_RNDN);
-      Float_expression::constrain_float(lv, type);
-      Float_expression::constrain_float(rv, type);
-      i = mpfr_cmp(lv, rv);
-      mpfr_clear(lv);
-      mpfr_clear(rv);
-    }
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      return i == 0;
-    case OPERATOR_NOTEQ:
-      return i != 0;
-    case OPERATOR_LT:
-      return i < 0;
-    case OPERATOR_LE:
-      return i <= 0;
-    case OPERATOR_GT:
-      return i > 0;
-    case OPERATOR_GE:
-      return i >= 0;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Compare complex constants according to OP.  Complex numbers may
-// only be compared for equality.
-
-bool
-Binary_expression::compare_complex(Operator op, Type* type,
-                                  mpfr_t left_real, mpfr_t left_imag,
-                                  mpfr_t right_real, mpfr_t right_imag)
-{
-  bool is_equal;
-  if (type == NULL)
-    is_equal = (mpfr_cmp(left_real, right_real) == 0
-               && mpfr_cmp(left_imag, right_imag) == 0);
-  else
-    {
-      mpfr_t lr;
-      mpfr_t li;
-      mpfr_init_set(lr, left_real, GMP_RNDN);
-      mpfr_init_set(li, left_imag, GMP_RNDN);
-      mpfr_t rr;
-      mpfr_t ri;
-      mpfr_init_set(rr, right_real, GMP_RNDN);
-      mpfr_init_set(ri, right_imag, GMP_RNDN);
-      Complex_expression::constrain_complex(lr, li, type);
-      Complex_expression::constrain_complex(rr, ri, type);
-      is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
-      mpfr_clear(lr);
-      mpfr_clear(li);
-      mpfr_clear(rr);
-      mpfr_clear(ri);
-    }
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      return is_equal;
-    case OPERATOR_NOTEQ:
-      return !is_equal;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
-// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
-// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL.  Return true if
-// this could be done, false if not.
-
-bool
-Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
-                               Type* right_type, mpz_t right_val,
-                               source_location location, mpz_t val)
-{
-  bool is_shift_op = false;
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      // These return boolean values.  We should probably handle them
-      // anyhow in case a type conversion is used on the result.
-      return false;
-    case OPERATOR_PLUS:
-      mpz_add(val, left_val, right_val);
-      break;
-    case OPERATOR_MINUS:
-      mpz_sub(val, left_val, right_val);
-      break;
-    case OPERATOR_OR:
-      mpz_ior(val, left_val, right_val);
-      break;
-    case OPERATOR_XOR:
-      mpz_xor(val, left_val, right_val);
-      break;
-    case OPERATOR_MULT:
-      mpz_mul(val, left_val, right_val);
-      break;
-    case OPERATOR_DIV:
-      if (mpz_sgn(right_val) != 0)
-       mpz_tdiv_q(val, left_val, right_val);
-      else
-       {
-         error_at(location, "division by zero");
-         mpz_set_ui(val, 0);
-         return true;
-       }
-      break;
-    case OPERATOR_MOD:
-      if (mpz_sgn(right_val) != 0)
-       mpz_tdiv_r(val, left_val, right_val);
-      else
-       {
-         error_at(location, "division by zero");
-         mpz_set_ui(val, 0);
-         return true;
-       }
-      break;
-    case OPERATOR_LSHIFT:
-      {
-       unsigned long shift = mpz_get_ui(right_val);
-       if (mpz_cmp_ui(right_val, shift) != 0)
-         {
-           error_at(location, "shift count overflow");
-           mpz_set_ui(val, 0);
-           return true;
-         }
-       mpz_mul_2exp(val, left_val, shift);
-       is_shift_op = true;
-       break;
-      }
-      break;
-    case OPERATOR_RSHIFT:
-      {
-       unsigned long shift = mpz_get_ui(right_val);
-       if (mpz_cmp_ui(right_val, shift) != 0)
-         {
-           error_at(location, "shift count overflow");
-           mpz_set_ui(val, 0);
-           return true;
-         }
-       if (mpz_cmp_ui(left_val, 0) >= 0)
-         mpz_tdiv_q_2exp(val, left_val, shift);
-       else
-         mpz_fdiv_q_2exp(val, left_val, shift);
-       is_shift_op = true;
-       break;
-      }
-      break;
-    case OPERATOR_AND:
-      mpz_and(val, left_val, right_val);
-      break;
-    case OPERATOR_BITCLEAR:
-      {
-       mpz_t tval;
-       mpz_init(tval);
-       mpz_com(tval, right_val);
-       mpz_and(val, left_val, tval);
-       mpz_clear(tval);
-      }
-      break;
-    default:
-      gcc_unreachable();
-    }
-
-  Type* type = left_type;
-  if (!is_shift_op)
-    {
-      if (type == NULL)
-       type = right_type;
-      else if (type != right_type && right_type != NULL)
-       {
-         if (type->is_abstract())
-           type = right_type;
-         else if (!right_type->is_abstract())
-           {
-             // This look like a type error which should be diagnosed
-             // elsewhere.  Don't do anything here, to avoid an
-             // unhelpful chain of error messages.
-             return true;
-           }
-       }
-    }
-
-  if (type != NULL && !type->is_abstract())
-    {
-      // We have to check the operands too, as we have implicitly
-      // coerced them to TYPE.
-      if ((type != left_type
-          && !Integer_expression::check_constant(left_val, type, location))
-         || (!is_shift_op
-             && type != right_type
-             && !Integer_expression::check_constant(right_val, type,
-                                                    location))
-         || !Integer_expression::check_constant(val, type, location))
-       mpz_set_ui(val, 0);
-    }
-
-  return true;
-}
-
-// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
-// Return true if this could be done, false if not.
-
-bool
-Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
-                             Type* right_type, mpfr_t right_val,
-                             mpfr_t val, source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      // These return boolean values.  We should probably handle them
-      // anyhow in case a type conversion is used on the result.
-      return false;
-    case OPERATOR_PLUS:
-      mpfr_add(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_MINUS:
-      mpfr_sub(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_OR:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_BITCLEAR:
-      return false;
-    case OPERATOR_MULT:
-      mpfr_mul(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_DIV:
-      if (mpfr_zero_p(right_val))
-       error_at(location, "division by zero");
-      mpfr_div(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_MOD:
-      return false;
-    case OPERATOR_LSHIFT:
-    case OPERATOR_RSHIFT:
-      return false;
-    default:
-      gcc_unreachable();
-    }
-
-  Type* type = left_type;
-  if (type == NULL)
-    type = right_type;
-  else if (type != right_type && right_type != NULL)
-    {
-      if (type->is_abstract())
-       type = right_type;
-      else if (!right_type->is_abstract())
-       {
-         // This looks like a type error which should be diagnosed
-         // elsewhere.  Don't do anything here, to avoid an unhelpful
-         // chain of error messages.
-         return true;
-       }
-    }
-
-  if (type != NULL && !type->is_abstract())
-    {
-      if ((type != left_type
-          && !Float_expression::check_constant(left_val, type, location))
-         || (type != right_type
-             && !Float_expression::check_constant(right_val, type,
-                                                  location))
-         || !Float_expression::check_constant(val, type, location))
-       mpfr_set_ui(val, 0, GMP_RNDN);
-    }
-
-  return true;
-}
-
-// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
-// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG.  Return true if this
-// could be done, false if not.
-
-bool
-Binary_expression::eval_complex(Operator op, Type* left_type,
-                               mpfr_t left_real, mpfr_t left_imag,
-                               Type *right_type,
-                               mpfr_t right_real, mpfr_t right_imag,
-                               mpfr_t real, mpfr_t imag,
-                               source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      // These return boolean values and must be handled differently.
-      return false;
-    case OPERATOR_PLUS:
-      mpfr_add(real, left_real, right_real, GMP_RNDN);
-      mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
-      break;
-    case OPERATOR_MINUS:
-      mpfr_sub(real, left_real, right_real, GMP_RNDN);
-      mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
-      break;
-    case OPERATOR_OR:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_BITCLEAR:
-      return false;
-    case OPERATOR_MULT:
-      {
-       // You might think that multiplying two complex numbers would
-       // be simple, and you would be right, until you start to think
-       // about getting the right answer for infinity.  If one
-       // operand here is infinity and the other is anything other
-       // than zero or NaN, then we are going to wind up subtracting
-       // two infinity values.  That will give us a NaN, but the
-       // correct answer is infinity.
-
-       mpfr_t lrrr;
-       mpfr_init(lrrr);
-       mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
-
-       mpfr_t lrri;
-       mpfr_init(lrri);
-       mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
-
-       mpfr_t lirr;
-       mpfr_init(lirr);
-       mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
-
-       mpfr_t liri;
-       mpfr_init(liri);
-       mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
-
-       mpfr_sub(real, lrrr, liri, GMP_RNDN);
-       mpfr_add(imag, lrri, lirr, GMP_RNDN);
-
-       // If we get NaN on both sides, check whether it should really
-       // be infinity.  The rule is that if either side of the
-       // complex number is infinity, then the whole value is
-       // infinity, even if the other side is NaN.  So the only case
-       // we have to fix is the one in which both sides are NaN.
-       if (mpfr_nan_p(real) && mpfr_nan_p(imag)
-           && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
-           && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
-         {
-           bool is_infinity = false;
-
-           mpfr_t lr;
-           mpfr_t li;
-           mpfr_init_set(lr, left_real, GMP_RNDN);
-           mpfr_init_set(li, left_imag, GMP_RNDN);
-
-           mpfr_t rr;
-           mpfr_t ri;
-           mpfr_init_set(rr, right_real, GMP_RNDN);
-           mpfr_init_set(ri, right_imag, GMP_RNDN);
-
-           // If the left side is infinity, then the result is
-           // infinity.
-           if (mpfr_inf_p(lr) || mpfr_inf_p(li))
-             {
-               mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(lr, lr, left_real, GMP_RNDN);
-               mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(li, li, left_imag, GMP_RNDN);
-               if (mpfr_nan_p(rr))
-                 {
-                   mpfr_set_ui(rr, 0, GMP_RNDN);
-                   mpfr_copysign(rr, rr, right_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(ri))
-                 {
-                   mpfr_set_ui(ri, 0, GMP_RNDN);
-                   mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
-                 }
-               is_infinity = true;
-             }
-
-           // If the right side is infinity, then the result is
-           // infinity.
-           if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
-             {
-               mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(rr, rr, right_real, GMP_RNDN);
-               mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
-               if (mpfr_nan_p(lr))
-                 {
-                   mpfr_set_ui(lr, 0, GMP_RNDN);
-                   mpfr_copysign(lr, lr, left_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(li))
-                 {
-                   mpfr_set_ui(li, 0, GMP_RNDN);
-                   mpfr_copysign(li, li, left_imag, GMP_RNDN);
-                 }
-               is_infinity = true;
-             }
-
-           // If we got an overflow in the intermediate computations,
-           // then the result is infinity.
-           if (!is_infinity
-               && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
-                   || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
-             {
-               if (mpfr_nan_p(lr))
-                 {
-                   mpfr_set_ui(lr, 0, GMP_RNDN);
-                   mpfr_copysign(lr, lr, left_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(li))
-                 {
-                   mpfr_set_ui(li, 0, GMP_RNDN);
-                   mpfr_copysign(li, li, left_imag, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(rr))
-                 {
-                   mpfr_set_ui(rr, 0, GMP_RNDN);
-                   mpfr_copysign(rr, rr, right_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(ri))
-                 {
-                   mpfr_set_ui(ri, 0, GMP_RNDN);
-                   mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
-                 }
-               is_infinity = true;
-             }
-
-           if (is_infinity)
-             {
-               mpfr_mul(lrrr, lr, rr, GMP_RNDN);
-               mpfr_mul(lrri, lr, ri, GMP_RNDN);
-               mpfr_mul(lirr, li, rr, GMP_RNDN);
-               mpfr_mul(liri, li, ri, GMP_RNDN);
-               mpfr_sub(real, lrrr, liri, GMP_RNDN);
-               mpfr_add(imag, lrri, lirr, GMP_RNDN);
-               mpfr_set_inf(real, mpfr_sgn(real));
-               mpfr_set_inf(imag, mpfr_sgn(imag));
-             }
-
-           mpfr_clear(lr);
-           mpfr_clear(li);
-           mpfr_clear(rr);
-           mpfr_clear(ri);
-         }
-
-       mpfr_clear(lrrr);
-       mpfr_clear(lrri);
-       mpfr_clear(lirr);
-       mpfr_clear(liri);                                 
-      }
-      break;
-    case OPERATOR_DIV:
-      {
-       // For complex division we want to avoid having an
-       // intermediate overflow turn the whole result in a NaN.  We
-       // scale the values to try to avoid this.
-
-       if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
-         error_at(location, "division by zero");
-
-       mpfr_t rra;
-       mpfr_t ria;
-       mpfr_init(rra);
-       mpfr_init(ria);
-       mpfr_abs(rra, right_real, GMP_RNDN);
-       mpfr_abs(ria, right_imag, GMP_RNDN);
-       mpfr_t t;
-       mpfr_init(t);
-       mpfr_max(t, rra, ria, GMP_RNDN);
-
-       mpfr_t rr;
-       mpfr_t ri;
-       mpfr_init_set(rr, right_real, GMP_RNDN);
-       mpfr_init_set(ri, right_imag, GMP_RNDN);
-       long ilogbw = 0;
-       if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
-         {
-           ilogbw = mpfr_get_exp(t);
-           mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
-           mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
-         }
-
-       mpfr_t denom;
-       mpfr_init(denom);
-       mpfr_mul(denom, rr, rr, GMP_RNDN);
-       mpfr_mul(t, ri, ri, GMP_RNDN);
-       mpfr_add(denom, denom, t, GMP_RNDN);
-
-       mpfr_mul(real, left_real, rr, GMP_RNDN);
-       mpfr_mul(t, left_imag, ri, GMP_RNDN);
-       mpfr_add(real, real, t, GMP_RNDN);
-       mpfr_div(real, real, denom, GMP_RNDN);
-       mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
-
-       mpfr_mul(imag, left_imag, rr, GMP_RNDN);
-       mpfr_mul(t, left_real, ri, GMP_RNDN);
-       mpfr_sub(imag, imag, t, GMP_RNDN);
-       mpfr_div(imag, imag, denom, GMP_RNDN);
-       mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
-
-       // If we wind up with NaN on both sides, check whether we
-       // should really have infinity.  The rule is that if either
-       // side of the complex number is infinity, then the whole
-       // value is infinity, even if the other side is NaN.  So the
-       // only case we have to fix is the one in which both sides are
-       // NaN.
-       if (mpfr_nan_p(real) && mpfr_nan_p(imag)
-           && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
-           && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
-         {
-           if (mpfr_zero_p(denom))
-             {
-               mpfr_set_inf(real, mpfr_sgn(rr));
-               mpfr_mul(real, real, left_real, GMP_RNDN);
-               mpfr_set_inf(imag, mpfr_sgn(rr));
-               mpfr_mul(imag, imag, left_imag, GMP_RNDN);
-             }
-           else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
-                    && mpfr_number_p(rr) && mpfr_number_p(ri))
-             {
-               mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t, t, left_real, GMP_RNDN);
-
-               mpfr_t t2;
-               mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
-
-               mpfr_t t3;
-               mpfr_init(t3);
-               mpfr_mul(t3, t, rr, GMP_RNDN);
-
-               mpfr_t t4;
-               mpfr_init(t4);
-               mpfr_mul(t4, t2, ri, GMP_RNDN);
-
-               mpfr_add(t3, t3, t4, GMP_RNDN);
-               mpfr_set_inf(real, mpfr_sgn(t3));
-
-               mpfr_mul(t3, t2, rr, GMP_RNDN);
-               mpfr_mul(t4, t, ri, GMP_RNDN);
-               mpfr_sub(t3, t3, t4, GMP_RNDN);
-               mpfr_set_inf(imag, mpfr_sgn(t3));
-
-               mpfr_clear(t2);
-               mpfr_clear(t3);
-               mpfr_clear(t4);
-             }
-           else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
-                    && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
-             {
-               mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t, t, rr, GMP_RNDN);
-
-               mpfr_t t2;
-               mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t2, t2, ri, GMP_RNDN);
-
-               mpfr_t t3;
-               mpfr_init(t3);
-               mpfr_mul(t3, left_real, t, GMP_RNDN);
-
-               mpfr_t t4;
-               mpfr_init(t4);
-               mpfr_mul(t4, left_imag, t2, GMP_RNDN);
-
-               mpfr_add(t3, t3, t4, GMP_RNDN);
-               mpfr_set_ui(real, 0, GMP_RNDN);
-               mpfr_mul(real, real, t3, GMP_RNDN);
-
-               mpfr_mul(t3, left_imag, t, GMP_RNDN);
-               mpfr_mul(t4, left_real, t2, GMP_RNDN);
-               mpfr_sub(t3, t3, t4, GMP_RNDN);
-               mpfr_set_ui(imag, 0, GMP_RNDN);
-               mpfr_mul(imag, imag, t3, GMP_RNDN);
-
-               mpfr_clear(t2);
-               mpfr_clear(t3);
-               mpfr_clear(t4);
-             }
-         }
-
-       mpfr_clear(denom);
-       mpfr_clear(rr);
-       mpfr_clear(ri);
-       mpfr_clear(t);
-       mpfr_clear(rra);
-       mpfr_clear(ria);
-      }
-      break;
-    case OPERATOR_MOD:
-      return false;
-    case OPERATOR_LSHIFT:
-    case OPERATOR_RSHIFT:
-      return false;
-    default:
-      gcc_unreachable();
-    }
-
-  Type* type = left_type;
-  if (type == NULL)
-    type = right_type;
-  else if (type != right_type && right_type != NULL)
-    {
-      if (type->is_abstract())
-       type = right_type;
-      else if (!right_type->is_abstract())
-       {
-         // This looks like a type error which should be diagnosed
-         // elsewhere.  Don't do anything here, to avoid an unhelpful
-         // chain of error messages.
-         return true;
-       }
-    }
-
-  if (type != NULL && !type->is_abstract())
-    {
-      if ((type != left_type
-          && !Complex_expression::check_constant(left_real, left_imag,
-                                                 type, location))
-         || (type != right_type
-             && !Complex_expression::check_constant(right_real, right_imag,
-                                                    type, location))
-         || !Complex_expression::check_constant(real, imag, type,
-                                                location))
-       {
-         mpfr_set_ui(real, 0, GMP_RNDN);
-         mpfr_set_ui(imag, 0, GMP_RNDN);
-       }
-    }
-
-  return true;
-}
-
-// Lower a binary expression.  We have to evaluate constant
-// expressions now, in order to implement Go's unlimited precision
-// constants.
-
-Expression*
-Binary_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location location = this->location();
-  Operator op = this->op_;
-  Expression* left = this->left_;
-  Expression* right = this->right_;
-
-  const bool is_comparison = (op == OPERATOR_EQEQ
-                             || op == OPERATOR_NOTEQ
-                             || op == OPERATOR_LT
-                             || op == OPERATOR_LE
-                             || op == OPERATOR_GT
-                             || op == OPERATOR_GE);
-
-  // Integer constant expressions.
-  {
-    mpz_t left_val;
-    mpz_init(left_val);
-    Type* left_type;
-    mpz_t right_val;
-    mpz_init(right_val);
-    Type* right_type;
-    if (left->integer_constant_value(false, left_val, &left_type)
-       && right->integer_constant_value(false, right_val, &right_type))
-      {
-       Expression* ret = NULL;
-       if (left_type != right_type
-           && left_type != NULL
-           && right_type != NULL
-           && left_type->base() != right_type->base()
-           && op != OPERATOR_LSHIFT
-           && op != OPERATOR_RSHIFT)
-         {
-           // May be a type error--let it be diagnosed later.
-         }
-       else if (is_comparison)
-         {
-           bool b = Binary_expression::compare_integer(op, left_val,
-                                                       right_val);
-           ret = Expression::make_cast(Type::lookup_bool_type(),
-                                       Expression::make_boolean(b, location),
-                                       location);
-         }
-       else
-         {
-           mpz_t val;
-           mpz_init(val);
-
-           if (Binary_expression::eval_integer(op, left_type, left_val,
-                                               right_type, right_val,
-                                               location, val))
-             {
-               gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
-               Type* type;
-               if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
-                 type = left_type;
-               else if (left_type == NULL)
-                 type = right_type;
-               else if (right_type == NULL)
-                 type = left_type;
-               else if (!left_type->is_abstract()
-                        && left_type->named_type() != NULL)
-                 type = left_type;
-               else if (!right_type->is_abstract()
-                        && right_type->named_type() != NULL)
-                 type = right_type;
-               else if (!left_type->is_abstract())
-                 type = left_type;
-               else if (!right_type->is_abstract())
-                 type = right_type;
-               else if (left_type->float_type() != NULL)
-                 type = left_type;
-               else if (right_type->float_type() != NULL)
-                 type = right_type;
-               else if (left_type->complex_type() != NULL)
-                 type = left_type;
-               else if (right_type->complex_type() != NULL)
-                 type = right_type;
-               else
-                 type = left_type;
-               ret = Expression::make_integer(&val, type, location);
-             }
-
-           mpz_clear(val);
-         }
-
-       if (ret != NULL)
-         {
-           mpz_clear(right_val);
-           mpz_clear(left_val);
-           return ret;
-         }
-      }
-    mpz_clear(right_val);
-    mpz_clear(left_val);
-  }
-
-  // Floating point constant expressions.
-  {
-    mpfr_t left_val;
-    mpfr_init(left_val);
-    Type* left_type;
-    mpfr_t right_val;
-    mpfr_init(right_val);
-    Type* right_type;
-    if (left->float_constant_value(left_val, &left_type)
-       && right->float_constant_value(right_val, &right_type))
-      {
-       Expression* ret = NULL;
-       if (left_type != right_type
-           && left_type != NULL
-           && right_type != NULL
-           && left_type->base() != right_type->base()
-           && op != OPERATOR_LSHIFT
-           && op != OPERATOR_RSHIFT)
-         {
-           // May be a type error--let it be diagnosed later.
-         }
-       else if (is_comparison)
-         {
-           bool b = Binary_expression::compare_float(op,
-                                                     (left_type != NULL
-                                                      ? left_type
-                                                      : right_type),
-                                                     left_val, right_val);
-           ret = Expression::make_boolean(b, location);
-         }
-       else
-         {
-           mpfr_t val;
-           mpfr_init(val);
-
-           if (Binary_expression::eval_float(op, left_type, left_val,
-                                             right_type, right_val, val,
-                                             location))
-             {
-               gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
-                          && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
-               Type* type;
-               if (left_type == NULL)
-                 type = right_type;
-               else if (right_type == NULL)
-                 type = left_type;
-               else if (!left_type->is_abstract()
-                        && left_type->named_type() != NULL)
-                 type = left_type;
-               else if (!right_type->is_abstract()
-                        && right_type->named_type() != NULL)
-                 type = right_type;
-               else if (!left_type->is_abstract())
-                 type = left_type;
-               else if (!right_type->is_abstract())
-                 type = right_type;
-               else if (left_type->float_type() != NULL)
-                 type = left_type;
-               else if (right_type->float_type() != NULL)
-                 type = right_type;
-               else
-                 type = left_type;
-               ret = Expression::make_float(&val, type, location);
-             }
-
-           mpfr_clear(val);
-         }
-
-       if (ret != NULL)
-         {
-           mpfr_clear(right_val);
-           mpfr_clear(left_val);
-           return ret;
-         }
-      }
-    mpfr_clear(right_val);
-    mpfr_clear(left_val);
-  }
-
-  // Complex constant expressions.
-  {
-    mpfr_t left_real;
-    mpfr_t left_imag;
-    mpfr_init(left_real);
-    mpfr_init(left_imag);
-    Type* left_type;
-
-    mpfr_t right_real;
-    mpfr_t right_imag;
-    mpfr_init(right_real);
-    mpfr_init(right_imag);
-    Type* right_type;
-
-    if (left->complex_constant_value(left_real, left_imag, &left_type)
-       && right->complex_constant_value(right_real, right_imag, &right_type))
-      {
-       Expression* ret = NULL;
-       if (left_type != right_type
-           && left_type != NULL
-           && right_type != NULL
-           && left_type->base() != right_type->base())
-         {
-           // May be a type error--let it be diagnosed later.
-         }
-       else if (is_comparison)
-         {
-           bool b = Binary_expression::compare_complex(op,
-                                                       (left_type != NULL
-                                                        ? left_type
-                                                        : right_type),
-                                                       left_real,
-                                                       left_imag,
-                                                       right_real,
-                                                       right_imag);
-           ret = Expression::make_boolean(b, location);
-         }
-       else
-         {
-           mpfr_t real;
-           mpfr_t imag;
-           mpfr_init(real);
-           mpfr_init(imag);
-
-           if (Binary_expression::eval_complex(op, left_type,
-                                               left_real, left_imag,
-                                               right_type,
-                                               right_real, right_imag,
-                                               real, imag,
-                                               location))
-             {
-               gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
-                          && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
-               Type* type;
-               if (left_type == NULL)
-                 type = right_type;
-               else if (right_type == NULL)
-                 type = left_type;
-               else if (!left_type->is_abstract()
-                        && left_type->named_type() != NULL)
-                 type = left_type;
-               else if (!right_type->is_abstract()
-                        && right_type->named_type() != NULL)
-                 type = right_type;
-               else if (!left_type->is_abstract())
-                 type = left_type;
-               else if (!right_type->is_abstract())
-                 type = right_type;
-               else if (left_type->complex_type() != NULL)
-                 type = left_type;
-               else if (right_type->complex_type() != NULL)
-                 type = right_type;
-               else
-                 type = left_type;
-               ret = Expression::make_complex(&real, &imag, type,
-                                              location);
-             }
-           mpfr_clear(real);
-           mpfr_clear(imag);
-         }
-
-       if (ret != NULL)
-         {
-           mpfr_clear(left_real);
-           mpfr_clear(left_imag);
-           mpfr_clear(right_real);
-           mpfr_clear(right_imag);
-           return ret;
-         }
-      }
-
-    mpfr_clear(left_real);
-    mpfr_clear(left_imag);
-    mpfr_clear(right_real);
-    mpfr_clear(right_imag);
-  }
-
-  // String constant expressions.
-  if (op == OPERATOR_PLUS
-      && left->type()->is_string_type()
-      && right->type()->is_string_type())
-    {
-      std::string left_string;
-      std::string right_string;
-      if (left->string_constant_value(&left_string)
-         && right->string_constant_value(&right_string))
-       return Expression::make_string(left_string + right_string, location);
-    }
-
-  return this;
-}
-
-// Return the integer constant value, if it has one.
-
-bool
-Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
-                                            Type** ptype) const
-{
-  mpz_t left_val;
-  mpz_init(left_val);
-  Type* left_type;
-  if (!this->left_->integer_constant_value(iota_is_constant, left_val,
-                                          &left_type))
-    {
-      mpz_clear(left_val);
-      return false;
-    }
-
-  mpz_t right_val;
-  mpz_init(right_val);
-  Type* right_type;
-  if (!this->right_->integer_constant_value(iota_is_constant, right_val,
-                                           &right_type))
-    {
-      mpz_clear(right_val);
-      mpz_clear(left_val);
-      return false;
-    }
-
-  bool ret;
-  if (left_type != right_type
-      && left_type != NULL
-      && right_type != NULL
-      && left_type->base() != right_type->base()
-      && this->op_ != OPERATOR_RSHIFT
-      && this->op_ != OPERATOR_LSHIFT)
-    ret = false;
-  else
-    ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
-                                         right_type, right_val,
-                                         this->location(), val);
-
-  mpz_clear(right_val);
-  mpz_clear(left_val);
-
-  if (ret)
-    *ptype = left_type;
-
-  return ret;
-}
-
-// Return the floating point constant value, if it has one.
-
-bool
-Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  mpfr_t left_val;
-  mpfr_init(left_val);
-  Type* left_type;
-  if (!this->left_->float_constant_value(left_val, &left_type))
-    {
-      mpfr_clear(left_val);
-      return false;
-    }
-
-  mpfr_t right_val;
-  mpfr_init(right_val);
-  Type* right_type;
-  if (!this->right_->float_constant_value(right_val, &right_type))
-    {
-      mpfr_clear(right_val);
-      mpfr_clear(left_val);
-      return false;
-    }
-
-  bool ret;
-  if (left_type != right_type
-      && left_type != NULL
-      && right_type != NULL
-      && left_type->base() != right_type->base())
-    ret = false;
-  else
-    ret = Binary_expression::eval_float(this->op_, left_type, left_val,
-                                       right_type, right_val,
-                                       val, this->location());
-
-  mpfr_clear(left_val);
-  mpfr_clear(right_val);
-
-  if (ret)
-    *ptype = left_type;
-
-  return ret;
-}
-
-// Return the complex constant value, if it has one.
-
-bool
-Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                            Type** ptype) const
-{
-  mpfr_t left_real;
-  mpfr_t left_imag;
-  mpfr_init(left_real);
-  mpfr_init(left_imag);
-  Type* left_type;
-  if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
-    {
-      mpfr_clear(left_real);
-      mpfr_clear(left_imag);
-      return false;
-    }
-
-  mpfr_t right_real;
-  mpfr_t right_imag;
-  mpfr_init(right_real);
-  mpfr_init(right_imag);
-  Type* right_type;
-  if (!this->right_->complex_constant_value(right_real, right_imag,
-                                           &right_type))
-    {
-      mpfr_clear(left_real);
-      mpfr_clear(left_imag);
-      mpfr_clear(right_real);
-      mpfr_clear(right_imag);
-      return false;
-    }
-
-  bool ret;
-  if (left_type != right_type
-      && left_type != NULL
-      && right_type != NULL
-      && left_type->base() != right_type->base())
-    ret = false;
-  else
-    ret = Binary_expression::eval_complex(this->op_, left_type,
-                                         left_real, left_imag,
-                                         right_type,
-                                         right_real, right_imag,
-                                         real, imag,
-                                         this->location());
-  mpfr_clear(left_real);
-  mpfr_clear(left_imag);
-  mpfr_clear(right_real);
-  mpfr_clear(right_imag);
-
-  if (ret)
-    *ptype = left_type;
-
-  return ret;
-}
-
-// Note that the value is being discarded.
-
-void
-Binary_expression::do_discarding_value()
-{
-  if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
-    this->right_->discarding_value();
-  else
-    this->warn_about_unused_value();
-}
-
-// Get type.
-
-Type*
-Binary_expression::do_type()
-{
-  switch (this->op_)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      return Type::lookup_bool_type();
-
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-    case OPERATOR_OR:
-    case OPERATOR_XOR:
-    case OPERATOR_MULT:
-    case OPERATOR_DIV:
-    case OPERATOR_MOD:
-    case OPERATOR_AND:
-    case OPERATOR_BITCLEAR:
-      {
-       Type* left_type = this->left_->type();
-       Type* right_type = this->right_->type();
-       if (!left_type->is_abstract() && left_type->named_type() != NULL)
-         return left_type;
-       else if (!right_type->is_abstract() && right_type->named_type() != NULL)
-         return right_type;
-       else if (!left_type->is_abstract())
-         return left_type;
-       else if (!right_type->is_abstract())
-         return right_type;
-       else if (left_type->complex_type() != NULL)
-         return left_type;
-       else if (right_type->complex_type() != NULL)
-         return right_type;
-       else if (left_type->float_type() != NULL)
-         return left_type;
-       else if (right_type->float_type() != NULL)
-         return right_type;
-       else
-         return left_type;
-      }
-
-    case OPERATOR_LSHIFT:
-    case OPERATOR_RSHIFT:
-      return this->left_->type();
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Set type for a binary expression.
-
-void
-Binary_expression::do_determine_type(const Type_context* context)
-{
-  Type* tleft = this->left_->type();
-  Type* tright = this->right_->type();
-
-  // Both sides should have the same type, except for the shift
-  // operations.  For a comparison, we should ignore the incoming
-  // type.
-
-  bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
-                     || this->op_ == OPERATOR_RSHIFT);
-
-  bool is_comparison = (this->op_ == OPERATOR_EQEQ
-                       || this->op_ == OPERATOR_NOTEQ
-                       || this->op_ == OPERATOR_LT
-                       || this->op_ == OPERATOR_LE
-                       || this->op_ == OPERATOR_GT
-                       || this->op_ == OPERATOR_GE);
-
-  Type_context subcontext(*context);
-
-  if (is_comparison)
-    {
-      // In a comparison, the context does not determine the types of
-      // the operands.
-      subcontext.type = NULL;
-    }
-
-  // Set the context for the left hand operand.
-  if (is_shift_op)
-    {
-      // The right hand operand plays no role in determining the type
-      // of the left hand operand.  A shift of an abstract integer in
-      // a string context gets special treatment, which may be a
-      // language bug.
-      if (subcontext.type != NULL
-         && subcontext.type->is_string_type()
-         && tleft->is_abstract())
-       error_at(this->location(), "shift of non-integer operand");
-    }
-  else if (!tleft->is_abstract())
-    subcontext.type = tleft;
-  else if (!tright->is_abstract())
-    subcontext.type = tright;
-  else if (subcontext.type == NULL)
-    {
-      if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
-         || (tleft->float_type() != NULL && tright->float_type() != NULL)
-         || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
-       {
-         // Both sides have an abstract integer, abstract float, or
-         // abstract complex type.  Just let CONTEXT determine
-         // whether they may remain abstract or not.
-       }
-      else if (tleft->complex_type() != NULL)
-       subcontext.type = tleft;
-      else if (tright->complex_type() != NULL)
-       subcontext.type = tright;
-      else if (tleft->float_type() != NULL)
-       subcontext.type = tleft;
-      else if (tright->float_type() != NULL)
-       subcontext.type = tright;
-      else
-       subcontext.type = tleft;
-    }
-
-  this->left_->determine_type(&subcontext);
-
-  // The context for the right hand operand is the same as for the
-  // left hand operand, except for a shift operator.
-  if (is_shift_op)
-    {
-      subcontext.type = Type::lookup_integer_type("uint");
-      subcontext.may_be_abstract = false;
-    }
-
-  this->right_->determine_type(&subcontext);
-}
-
-// Report an error if the binary operator OP does not support TYPE.
-// Return whether the operation is OK.  This should not be used for
-// shift.
-
-bool
-Binary_expression::check_operator_type(Operator op, Type* type,
-                                      source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-      if (!type->is_boolean_type())
-       {
-         error_at(location, "expected boolean type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL
-         && !type->is_string_type()
-         && type->points_to() == NULL
-         && !type->is_nil_type()
-         && !type->is_boolean_type()
-         && type->interface_type() == NULL
-         && (type->array_type() == NULL
-             || type->array_type()->length() != NULL)
-         && type->map_type() == NULL
-         && type->channel_type() == NULL
-         && type->function_type() == NULL)
-       {
-         error_at(location,
-                  ("expected integer, floating, complex, string, pointer, "
-                   "boolean, interface, slice, map, channel, "
-                   "or function type"));
-         return false;
-       }
-      break;
-
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && !type->is_string_type())
-       {
-         error_at(location, "expected integer, floating, or string type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_PLUS:
-    case OPERATOR_PLUSEQ:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL
-         && !type->is_string_type())
-       {
-         error_at(location,
-                  "expected integer, floating, complex, or string type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_MINUS:
-    case OPERATOR_MINUSEQ:
-    case OPERATOR_MULT:
-    case OPERATOR_MULTEQ:
-    case OPERATOR_DIV:
-    case OPERATOR_DIVEQ:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL)
-       {
-         error_at(location, "expected integer, floating, or complex type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_MOD:
-    case OPERATOR_MODEQ:
-    case OPERATOR_OR:
-    case OPERATOR_OREQ:
-    case OPERATOR_AND:
-    case OPERATOR_ANDEQ:
-    case OPERATOR_XOR:
-    case OPERATOR_XOREQ:
-    case OPERATOR_BITCLEAR:
-    case OPERATOR_BITCLEAREQ:
-      if (type->integer_type() == NULL)
-       {
-         error_at(location, "expected integer type");
-         return false;
-       }
-      break;
-
-    default:
-      gcc_unreachable();
-    }
-
-  return true;
-}
-
-// Check types.
-
-void
-Binary_expression::do_check_types(Gogo*)
-{
-  Type* left_type = this->left_->type();
-  Type* right_type = this->right_->type();
-  if (left_type->is_error_type() || right_type->is_error_type())
-    return;
-
-  if (this->op_ == OPERATOR_EQEQ
-      || this->op_ == OPERATOR_NOTEQ
-      || this->op_ == OPERATOR_LT
-      || this->op_ == OPERATOR_LE
-      || this->op_ == OPERATOR_GT
-      || this->op_ == OPERATOR_GE)
-    {
-      if (!Type::are_assignable(left_type, right_type, NULL)
-         && !Type::are_assignable(right_type, left_type, NULL))
-       {
-         this->report_error(_("incompatible types in binary expression"));
-         return;
-       }
-      if (!Binary_expression::check_operator_type(this->op_, left_type,
-                                                 this->location())
-         || !Binary_expression::check_operator_type(this->op_, right_type,
-                                                    this->location()))
-       {
-         this->set_is_error();
-         return;
-       }
-    }
-  else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
-    {
-      if (!Type::are_compatible_for_binop(left_type, right_type))
-       {
-         this->report_error(_("incompatible types in binary expression"));
-         return;
-       }
-      if (!Binary_expression::check_operator_type(this->op_, left_type,
-                                                 this->location()))
-       {
-         this->set_is_error();
-         return;
-       }
-    }
-  else
-    {
-      if (left_type->integer_type() == NULL)
-       this->report_error(_("shift of non-integer operand"));
-
-      if (!right_type->is_abstract()
-         && (right_type->integer_type() == NULL
-             || !right_type->integer_type()->is_unsigned()))
-       this->report_error(_("shift count not unsigned integer"));
-      else
-       {
-         mpz_t val;
-         mpz_init(val);
-         Type* type;
-         if (this->right_->integer_constant_value(true, val, &type))
-           {
-             if (mpz_sgn(val) < 0)
-               this->report_error(_("negative shift count"));
-           }
-         mpz_clear(val);
-       }
-    }
-}
-
-// Get a tree for a binary expression.
-
-tree
-Binary_expression::do_get_tree(Translate_context* context)
-{
-  tree left = this->left_->get_tree(context);
-  tree right = this->right_->get_tree(context);
-
-  if (left == error_mark_node || right == error_mark_node)
-    return error_mark_node;
-
-  enum tree_code code;
-  bool use_left_type = true;
-  bool is_shift_op = false;
-  switch (this->op_)
-    {
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      return Expression::comparison_tree(context, this->op_,
-                                        this->left_->type(), left,
-                                        this->right_->type(), right,
-                                        this->location());
-
-    case OPERATOR_OROR:
-      code = TRUTH_ORIF_EXPR;
-      use_left_type = false;
-      break;
-    case OPERATOR_ANDAND:
-      code = TRUTH_ANDIF_EXPR;
-      use_left_type = false;
-      break;
-    case OPERATOR_PLUS:
-      code = PLUS_EXPR;
-      break;
-    case OPERATOR_MINUS:
-      code = MINUS_EXPR;
-      break;
-    case OPERATOR_OR:
-      code = BIT_IOR_EXPR;
-      break;
-    case OPERATOR_XOR:
-      code = BIT_XOR_EXPR;
-      break;
-    case OPERATOR_MULT:
-      code = MULT_EXPR;
-      break;
-    case OPERATOR_DIV:
-      {
-       Type *t = this->left_->type();
-       if (t->float_type() != NULL || t->complex_type() != NULL)
-         code = RDIV_EXPR;
-       else
-         code = TRUNC_DIV_EXPR;
-      }
-      break;
-    case OPERATOR_MOD:
-      code = TRUNC_MOD_EXPR;
-      break;
-    case OPERATOR_LSHIFT:
-      code = LSHIFT_EXPR;
-      is_shift_op = true;
-      break;
-    case OPERATOR_RSHIFT:
-      code = RSHIFT_EXPR;
-      is_shift_op = true;
-      break;
-    case OPERATOR_AND:
-      code = BIT_AND_EXPR;
-      break;
-    case OPERATOR_BITCLEAR:
-      right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
-      code = BIT_AND_EXPR;
-      break;
-    default:
-      gcc_unreachable();
-    }
-
-  tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
-
-  if (this->left_->type()->is_string_type())
-    {
-      gcc_assert(this->op_ == OPERATOR_PLUS);
-      tree string_type = Type::make_string_type()->get_tree(context->gogo());
-      static tree string_plus_decl;
-      return Gogo::call_builtin(&string_plus_decl,
-                               this->location(),
-                               "__go_string_plus",
-                               2,
-                               string_type,
-                               string_type,
-                               left,
-                               string_type,
-                               right);
-    }
-
-  tree compute_type = excess_precision_type(type);
-  if (compute_type != NULL_TREE)
-    {
-      left = ::convert(compute_type, left);
-      right = ::convert(compute_type, right);
-    }
-
-  tree eval_saved = NULL_TREE;
-  if (is_shift_op)
-    {
-      if (!DECL_P(left))
-       left = save_expr(left);
-      if (!DECL_P(right))
-       right = save_expr(right);
-      // Make sure the values are evaluated.
-      eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
-                                  void_type_node, left, right);
-    }
-
-  tree ret = fold_build2_loc(this->location(),
-                            code,
-                            compute_type != NULL_TREE ? compute_type : type,
-                            left, right);
-
-  if (compute_type != NULL_TREE)
-    ret = ::convert(type, ret);
-
-  // In Go, a shift larger than the size of the type is well-defined.
-  // This is not true in GENERIC, so we need to insert a conditional.
-  if (is_shift_op)
-    {
-      gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
-      gcc_assert(this->left_->type()->integer_type() != NULL);
-      int bits = TYPE_PRECISION(TREE_TYPE(left));
-
-      tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
-                                build_int_cst_type(TREE_TYPE(right), bits));
-
-      tree overflow_result = fold_convert_loc(this->location(),
-                                             TREE_TYPE(left),
-                                             integer_zero_node);
-      if (this->op_ == OPERATOR_RSHIFT
-         && !this->left_->type()->integer_type()->is_unsigned())
-       {
-         tree neg = fold_build2_loc(this->location(), LT_EXPR,
-                                    boolean_type_node, left,
-                                    fold_convert_loc(this->location(),
-                                                     TREE_TYPE(left),
-                                                     integer_zero_node));
-         tree neg_one = fold_build2_loc(this->location(),
-                                        MINUS_EXPR, TREE_TYPE(left),
-                                        fold_convert_loc(this->location(),
-                                                         TREE_TYPE(left),
-                                                         integer_zero_node),
-                                        fold_convert_loc(this->location(),
-                                                         TREE_TYPE(left),
-                                                         integer_one_node));
-         overflow_result = fold_build3_loc(this->location(), COND_EXPR,
-                                           TREE_TYPE(left), neg, neg_one,
-                                           overflow_result);
-       }
-
-      ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
-                           compare, ret, overflow_result);
-
-      ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
-                           TREE_TYPE(ret), eval_saved, ret);
-    }
-
-  return ret;
-}
-
-// Export a binary expression.
-
-void
-Binary_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("(");
-  this->left_->export_expression(exp);
-  switch (this->op_)
-    {
-    case OPERATOR_OROR:
-      exp->write_c_string(" || ");
-      break;
-    case OPERATOR_ANDAND:
-      exp->write_c_string(" && ");
-      break;
-    case OPERATOR_EQEQ:
-      exp->write_c_string(" == ");
-      break;
-    case OPERATOR_NOTEQ:
-      exp->write_c_string(" != ");
-      break;
-    case OPERATOR_LT:
-      exp->write_c_string(" < ");
-      break;
-    case OPERATOR_LE:
-      exp->write_c_string(" <= ");
-      break;
-    case OPERATOR_GT:
-      exp->write_c_string(" > ");
-      break;
-    case OPERATOR_GE:
-      exp->write_c_string(" >= ");
-      break;
-    case OPERATOR_PLUS:
-      exp->write_c_string(" + ");
-      break;
-    case OPERATOR_MINUS:
-      exp->write_c_string(" - ");
-      break;
-    case OPERATOR_OR:
-      exp->write_c_string(" | ");
-      break;
-    case OPERATOR_XOR:
-      exp->write_c_string(" ^ ");
-      break;
-    case OPERATOR_MULT:
-      exp->write_c_string(" * ");
-      break;
-    case OPERATOR_DIV:
-      exp->write_c_string(" / ");
-      break;
-    case OPERATOR_MOD:
-      exp->write_c_string(" % ");
-      break;
-    case OPERATOR_LSHIFT:
-      exp->write_c_string(" << ");
-      break;
-    case OPERATOR_RSHIFT:
-      exp->write_c_string(" >> ");
-      break;
-    case OPERATOR_AND:
-      exp->write_c_string(" & ");
-      break;
-    case OPERATOR_BITCLEAR:
-      exp->write_c_string(" &^ ");
-      break;
-    default:
-      gcc_unreachable();
-    }
-  this->right_->export_expression(exp);
-  exp->write_c_string(")");
-}
-
-// Import a binary expression.
-
-Expression*
-Binary_expression::do_import(Import* imp)
-{
-  imp->require_c_string("(");
-
-  Expression* left = Expression::import_expression(imp);
-
-  Operator op;
-  if (imp->match_c_string(" || "))
-    {
-      op = OPERATOR_OROR;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" && "))
-    {
-      op = OPERATOR_ANDAND;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" == "))
-    {
-      op = OPERATOR_EQEQ;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" != "))
-    {
-      op = OPERATOR_NOTEQ;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" < "))
-    {
-      op = OPERATOR_LT;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" <= "))
-    {
-      op = OPERATOR_LE;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" > "))
-    {
-      op = OPERATOR_GT;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" >= "))
-    {
-      op = OPERATOR_GE;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" + "))
-    {
-      op = OPERATOR_PLUS;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" - "))
-    {
-      op = OPERATOR_MINUS;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" | "))
-    {
-      op = OPERATOR_OR;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" ^ "))
-    {
-      op = OPERATOR_XOR;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" * "))
-    {
-      op = OPERATOR_MULT;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" / "))
-    {
-      op = OPERATOR_DIV;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" % "))
-    {
-      op = OPERATOR_MOD;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" << "))
-    {
-      op = OPERATOR_LSHIFT;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" >> "))
-    {
-      op = OPERATOR_RSHIFT;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" & "))
-    {
-      op = OPERATOR_AND;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" &^ "))
-    {
-      op = OPERATOR_BITCLEAR;
-      imp->advance(4);
-    }
-  else
-    {
-      error_at(imp->location(), "unrecognized binary operator");
-      return Expression::make_error(imp->location());
-    }
-
-  Expression* right = Expression::import_expression(imp);
-
-  imp->require_c_string(")");
-
-  return Expression::make_binary(op, left, right, imp->location());
-}
-
-// Make a binary expression.
-
-Expression*
-Expression::make_binary(Operator op, Expression* left, Expression* right,
-                       source_location location)
-{
-  return new Binary_expression(op, left, right, location);
-}
-
-// Implement a comparison.
-
-tree
-Expression::comparison_tree(Translate_context* context, Operator op,
-                           Type* left_type, tree left_tree,
-                           Type* right_type, tree right_tree,
-                           source_location location)
-{
-  enum tree_code code;
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      code = EQ_EXPR;
-      break;
-    case OPERATOR_NOTEQ:
-      code = NE_EXPR;
-      break;
-    case OPERATOR_LT:
-      code = LT_EXPR;
-      break;
-    case OPERATOR_LE:
-      code = LE_EXPR;
-      break;
-    case OPERATOR_GT:
-      code = GT_EXPR;
-      break;
-    case OPERATOR_GE:
-      code = GE_EXPR;
-      break;
-    default:
-      gcc_unreachable();
-    }
-
-  if (left_type->is_string_type())
-    {
-      gcc_assert(right_type->is_string_type());
-      tree string_type = Type::make_string_type()->get_tree(context->gogo());
-      static tree string_compare_decl;
-      left_tree = Gogo::call_builtin(&string_compare_decl,
-                                    location,
-                                    "__go_strcmp",
-                                    2,
-                                    integer_type_node,
-                                    string_type,
-                                    left_tree,
-                                    string_type,
-                                    right_tree);
-      right_tree = build_int_cst_type(integer_type_node, 0);
-    }
-
-  if ((left_type->interface_type() != NULL
-       && right_type->interface_type() == NULL
-       && !right_type->is_nil_type())
-      || (left_type->interface_type() == NULL
-         && !left_type->is_nil_type()
-         && right_type->interface_type() != NULL))
-    {
-      // Comparing an interface value to a non-interface value.
-      if (left_type->interface_type() == NULL)
-       {
-         std::swap(left_type, right_type);
-         std::swap(left_tree, right_tree);
-       }
-
-      // The right operand is not an interface.  We need to take its
-      // address if it is not a pointer.
-      tree make_tmp;
-      tree arg;
-      if (right_type->points_to() != NULL)
-       {
-         make_tmp = NULL_TREE;
-         arg = right_tree;
-       }
-      else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
-       {
-         make_tmp = NULL_TREE;
-         arg = build_fold_addr_expr_loc(location, right_tree);
-         if (DECL_P(right_tree))
-           TREE_ADDRESSABLE(right_tree) = 1;
-       }
-      else
-       {
-         tree tmp = create_tmp_var(TREE_TYPE(right_tree),
-                                   get_name(right_tree));
-         DECL_IGNORED_P(tmp) = 0;
-         DECL_INITIAL(tmp) = right_tree;
-         TREE_ADDRESSABLE(tmp) = 1;
-         make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-         SET_EXPR_LOCATION(make_tmp, location);
-         arg = build_fold_addr_expr_loc(location, tmp);
-       }
-      arg = fold_convert_loc(location, ptr_type_node, arg);
-
-      tree descriptor = right_type->type_descriptor_pointer(context->gogo());
-
-      if (left_type->interface_type()->is_empty())
-       {
-         static tree empty_interface_value_compare_decl;
-         left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
-                                        location,
-                                        "__go_empty_interface_value_compare",
-                                        3,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(descriptor),
-                                        descriptor,
-                                        ptr_type_node,
-                                        arg);
-         // This can panic if the type is not comparable.
-         TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
-       }
-      else
-       {
-         static tree interface_value_compare_decl;
-         left_tree = Gogo::call_builtin(&interface_value_compare_decl,
-                                        location,
-                                        "__go_interface_value_compare",
-                                        3,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(descriptor),
-                                        descriptor,
-                                        ptr_type_node,
-                                        arg);
-         // This can panic if the type is not comparable.
-         TREE_NOTHROW(interface_value_compare_decl) = 0;
-       }
-      right_tree = build_int_cst_type(integer_type_node, 0);
-
-      if (make_tmp != NULL_TREE)
-       left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
-                          left_tree);
-    }
-  else if (left_type->interface_type() != NULL
-          && right_type->interface_type() != NULL)
-    {
-      if (left_type->interface_type()->is_empty())
-       {
-         gcc_assert(right_type->interface_type()->is_empty());
-         static tree empty_interface_compare_decl;
-         left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
-                                        location,
-                                        "__go_empty_interface_compare",
-                                        2,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(right_tree),
-                                        right_tree);
-         // This can panic if the type is uncomparable.
-         TREE_NOTHROW(empty_interface_compare_decl) = 0;
-       }
-      else
-       {
-         gcc_assert(!right_type->interface_type()->is_empty());
-         static tree interface_compare_decl;
-         left_tree = Gogo::call_builtin(&interface_compare_decl,
-                                        location,
-                                        "__go_interface_compare",
-                                        2,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(right_tree),
-                                        right_tree);
-         // This can panic if the type is uncomparable.
-         TREE_NOTHROW(interface_compare_decl) = 0;
-       }
-      right_tree = build_int_cst_type(integer_type_node, 0);
-    }
-
-  if (left_type->is_nil_type()
-      && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
-    {
-      std::swap(left_type, right_type);
-      std::swap(left_tree, right_tree);
-    }
-
-  if (right_type->is_nil_type())
-    {
-      if (left_type->array_type() != NULL
-         && left_type->array_type()->length() == NULL)
-       {
-         Array_type* at = left_type->array_type();
-         left_tree = at->value_pointer_tree(context->gogo(), left_tree);
-         right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
-       }
-      else if (left_type->interface_type() != NULL)
-       {
-         // An interface is nil if the first field is nil.
-         tree left_type_tree = TREE_TYPE(left_tree);
-         gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
-         tree field = TYPE_FIELDS(left_type_tree);
-         left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
-                            field, NULL_TREE);
-         right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
-       }
-      else
-       {
-         gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
-         right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
-       }
-    }
-
-  tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
-  if (CAN_HAVE_LOCATION_P(ret))
-    SET_EXPR_LOCATION(ret, location);
-  return ret;
-}
-
-// Class Bound_method_expression.
-
-// Traversal.
-
-int
-Bound_method_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Expression::traverse(&this->method_, traverse);
-}
-
-// Return the type of a bound method expression.  The type of this
-// object is really the type of the method with no receiver.  We
-// should be able to get away with just returning the type of the
-// method.
-
-Type*
-Bound_method_expression::do_type()
-{
-  return this->method_->type();
-}
-
-// Determine the types of a method expression.
-
-void
-Bound_method_expression::do_determine_type(const Type_context*)
-{
-  this->method_->determine_type_no_context();
-  Type* mtype = this->method_->type();
-  Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
-  if (fntype == NULL || !fntype->is_method())
-    this->expr_->determine_type_no_context();
-  else
-    {
-      Type_context subcontext(fntype->receiver()->type(), false);
-      this->expr_->determine_type(&subcontext);
-    }
-}
-
-// Check the types of a method expression.
-
-void
-Bound_method_expression::do_check_types(Gogo*)
-{
-  Type* type = this->method_->type()->deref();
-  if (type == NULL
-      || type->function_type() == NULL
-      || !type->function_type()->is_method())
-    this->report_error(_("object is not a method"));
-  else
-    {
-      Type* rtype = type->function_type()->receiver()->type()->deref();
-      Type* etype = (this->expr_type_ != NULL
-                    ? this->expr_type_
-                    : this->expr_->type());
-      etype = etype->deref();
-      if (!Type::are_identical(rtype, etype, NULL))
-       this->report_error(_("method type does not match object type"));
-    }
-}
-
-// Get the tree for a method expression.  There is no standard tree
-// representation for this.  The only places it may currently be used
-// are in a Call_expression or a Go_statement, which will take it
-// apart directly.  So this has nothing to do at present.
-
-tree
-Bound_method_expression::do_get_tree(Translate_context*)
-{
-  gcc_unreachable();
-}
-
-// Make a method expression.
-
-Bound_method_expression*
-Expression::make_bound_method(Expression* expr, Expression* method,
-                             source_location location)
-{
-  return new Bound_method_expression(expr, method, location);
-}
-
-// Class Builtin_call_expression.  This is used for a call to a
-// builtin function.
-
-class Builtin_call_expression : public Call_expression
-{
- public:
-  Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
-                         bool is_varargs, source_location location);
-
- protected:
-  // This overrides Call_expression::do_lower.
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const;
-
-  bool
-  do_integer_constant_value(bool, mpz_t, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
-                                      this->args()->copy(),
-                                      this->is_varargs(),
-                                      this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
-  virtual bool
-  do_is_recover_call() const;
-
-  virtual void
-  do_set_recover_arg(Expression*);
-
- private:
-  // The builtin functions.
-  enum Builtin_function_code
-    {
-      BUILTIN_INVALID,
-
-      // Predeclared builtin functions.
-      BUILTIN_APPEND,
-      BUILTIN_CAP,
-      BUILTIN_CLOSE,
-      BUILTIN_CLOSED,
-      BUILTIN_CMPLX,
-      BUILTIN_COPY,
-      BUILTIN_IMAG,
-      BUILTIN_LEN,
-      BUILTIN_MAKE,
-      BUILTIN_NEW,
-      BUILTIN_PANIC,
-      BUILTIN_PRINT,
-      BUILTIN_PRINTLN,
-      BUILTIN_REAL,
-      BUILTIN_RECOVER,
-
-      // Builtin functions from the unsafe package.
-      BUILTIN_ALIGNOF,
-      BUILTIN_OFFSETOF,
-      BUILTIN_SIZEOF
-    };
-
-  Expression*
-  one_arg() const;
-
-  bool
-  check_one_arg();
-
-  static Type*
-  real_imag_type(Type*);
-
-  static Type*
-  cmplx_type(Type*);
-
-  // A pointer back to the general IR structure.  This avoids a global
-  // variable, or passing it around everywhere.
-  Gogo* gogo_;
-  // The builtin function being called.
-  Builtin_function_code code_;
-};
-
-Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
-                                                Expression* fn,
-                                                Expression_list* args,
-                                                bool is_varargs,
-                                                source_location location)
-  : Call_expression(fn, args, is_varargs, location),
-    gogo_(gogo), code_(BUILTIN_INVALID)
-{
-  Func_expression* fnexp = this->fn()->func_expression();
-  gcc_assert(fnexp != NULL);
-  const std::string& name(fnexp->named_object()->name());
-  if (name == "append")
-    this->code_ = BUILTIN_APPEND;
-  else if (name == "cap")
-    this->code_ = BUILTIN_CAP;
-  else if (name == "close")
-    this->code_ = BUILTIN_CLOSE;
-  else if (name == "closed")
-    this->code_ = BUILTIN_CLOSED;
-  else if (name == "cmplx")
-    this->code_ = BUILTIN_CMPLX;
-  else if (name == "copy")
-    this->code_ = BUILTIN_COPY;
-  else if (name == "imag")
-    this->code_ = BUILTIN_IMAG;
-  else if (name == "len")
-    this->code_ = BUILTIN_LEN;
-  else if (name == "make")
-    this->code_ = BUILTIN_MAKE;
-  else if (name == "new")
-    this->code_ = BUILTIN_NEW;
-  else if (name == "panic")
-    this->code_ = BUILTIN_PANIC;
-  else if (name == "print")
-    this->code_ = BUILTIN_PRINT;
-  else if (name == "println")
-    this->code_ = BUILTIN_PRINTLN;
-  else if (name == "real")
-    this->code_ = BUILTIN_REAL;
-  else if (name == "recover")
-    this->code_ = BUILTIN_RECOVER;
-  else if (name == "Alignof")
-    this->code_ = BUILTIN_ALIGNOF;
-  else if (name == "Offsetof")
-    this->code_ = BUILTIN_OFFSETOF;
-  else if (name == "Sizeof")
-    this->code_ = BUILTIN_SIZEOF;
-  else
-    gcc_unreachable();
-}
-
-// Return whether this is a call to recover.  This is a virtual
-// function called from the parent class.
-
-bool
-Builtin_call_expression::do_is_recover_call() const
-{
-  if (this->classification() == EXPRESSION_ERROR)
-    return false;
-  return this->code_ == BUILTIN_RECOVER;
-}
-
-// Set the argument for a call to recover.
-
-void
-Builtin_call_expression::do_set_recover_arg(Expression* arg)
-{
-  const Expression_list* args = this->args();
-  gcc_assert(args == NULL || args->empty());
-  Expression_list* new_args = new Expression_list();
-  new_args->push_back(arg);
-  this->set_args(new_args);
-}
-
-// A traversal class which looks for a call expression.
-
-class Find_call_expression : public Traverse
-{
- public:
-  Find_call_expression()
-    : Traverse(traverse_expressions),
-      found_(false)
-  { }
-
-  int
-  expression(Expression**);
-
-  bool
-  found()
-  { return this->found_; }
-
- private:
-  bool found_;
-};
-
-int
-Find_call_expression::expression(Expression** pexpr)
-{
-  if ((*pexpr)->call_expression() != NULL)
-    {
-      this->found_ = true;
-      return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a builtin call expression.  This turns new and make into
-// specific expressions.  We also convert to a constant if we can.
-
-Expression*
-Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  if (this->code_ == BUILTIN_NEW)
-    {
-      const Expression_list* args = this->args();
-      if (args == NULL || args->size() < 1)
-       this->report_error(_("not enough arguments"));
-      else if (args->size() > 1)
-       this->report_error(_("too many arguments"));
-      else
-       {
-         Expression* arg = args->front();
-         if (!arg->is_type_expression())
-           {
-             error_at(arg->location(), "expected type");
-             this->set_is_error();
-           }
-         else
-           return Expression::make_allocation(arg->type(), this->location());
-       }
-    }
-  else if (this->code_ == BUILTIN_MAKE)
-    {
-      const Expression_list* args = this->args();
-      if (args == NULL || args->size() < 1)
-       this->report_error(_("not enough arguments"));
-      else
-       {
-         Expression* arg = args->front();
-         if (!arg->is_type_expression())
-           {
-             error_at(arg->location(), "expected type");
-             this->set_is_error();
-           }
-         else
-           {
-             Expression_list* newargs;
-             if (args->size() == 1)
-               newargs = NULL;
-             else
-               {
-                 newargs = new Expression_list();
-                 Expression_list::const_iterator p = args->begin();
-                 ++p;
-                 for (; p != args->end(); ++p)
-                   newargs->push_back(*p);
-               }
-             return Expression::make_make(arg->type(), newargs,
-                                          this->location());
-           }
-       }
-    }
-  else if (this->is_constant())
-    {
-      // We can only lower len and cap if there are no function calls
-      // in the arguments.  Otherwise we have to make the call.
-      if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
-       {
-         Expression* arg = this->one_arg();
-         if (!arg->is_constant())
-           {
-             Find_call_expression find_call;
-             Expression::traverse(&arg, &find_call);
-             if (find_call.found())
-               return this;
-           }
-       }
-
-      mpz_t ival;
-      mpz_init(ival);
-      Type* type;
-      if (this->integer_constant_value(true, ival, &type))
-       {
-         Expression* ret = Expression::make_integer(&ival, type,
-                                                    this->location());
-         mpz_clear(ival);
-         return ret;
-       }
-      mpz_clear(ival);
-
-      mpfr_t rval;
-      mpfr_init(rval);
-      if (this->float_constant_value(rval, &type))
-       {
-         Expression* ret = Expression::make_float(&rval, type,
-                                                  this->location());
-         mpfr_clear(rval);
-         return ret;
-       }
-
-      mpfr_t imag;
-      mpfr_init(imag);
-      if (this->complex_constant_value(rval, imag, &type))
-       {
-         Expression* ret = Expression::make_complex(&rval, &imag, type,
-                                                    this->location());
-         mpfr_clear(rval);
-         mpfr_clear(imag);
-         return ret;
-       }
-      mpfr_clear(rval);
-      mpfr_clear(imag);
-    }
-  else if (this->code_ == BUILTIN_RECOVER)
-    {
-      if (function != NULL)
-       function->func_value()->set_calls_recover();
-      else
-       {
-         // Calling recover outside of a function always returns the
-         // nil empty interface.
-         Type* eface = Type::make_interface_type(NULL, this->location());
-         return Expression::make_cast(eface,
-                                      Expression::make_nil(this->location()),
-                                      this->location());
-       }
-    }
-  else if (this->code_ == BUILTIN_APPEND)
-    {
-      // Lower the varargs.
-      const Expression_list* args = this->args();
-      if (args == NULL || args->empty())
-       return this;
-      Type* slice_type = args->front()->type();
-      if (!slice_type->is_open_array_type())
-       {
-         error_at(args->front()->location(), "argument 1 must be a slice");
-         this->set_is_error();
-         return this;
-       }
-      return this->lower_varargs(gogo, function, slice_type, 2);
-    }
-
-  return this;
-}
-
-// Return the type of the real or imag functions, given the type of
-// the argument.  We need to map complex to float, complex64 to
-// float32, and complex128 to float64, so it has to be done by name.
-// This returns NULL if it can't figure out the type.
-
-Type*
-Builtin_call_expression::real_imag_type(Type* arg_type)
-{
-  if (arg_type == NULL || arg_type->is_abstract())
-    return NULL;
-  Named_type* nt = arg_type->named_type();
-  if (nt == NULL)
-    return NULL;
-  while (nt->real_type()->named_type() != NULL)
-    nt = nt->real_type()->named_type();
-  if (nt->name() == "complex")
-    return Type::lookup_float_type("float");
-  else if (nt->name() == "complex64")
-    return Type::lookup_float_type("float32");
-  else if (nt->name() == "complex128")
-    return Type::lookup_float_type("float64");
-  else
-    return NULL;
-}
-
-// Return the type of the cmplx function, given the type of one of the
-// argments.  Like real_imag_type, we have to map by name.
-
-Type*
-Builtin_call_expression::cmplx_type(Type* arg_type)
-{
-  if (arg_type == NULL || arg_type->is_abstract())
-    return NULL;
-  Named_type* nt = arg_type->named_type();
-  if (nt == NULL)
-    return NULL;
-  while (nt->real_type()->named_type() != NULL)
-    nt = nt->real_type()->named_type();
-  if (nt->name() == "float")
-    return Type::lookup_complex_type("complex");
-  else if (nt->name() == "float32")
-    return Type::lookup_complex_type("complex64");
-  else if (nt->name() == "float64")
-    return Type::lookup_complex_type("complex128");
-  else
-    return NULL;
-}
-
-// Return a single argument, or NULL if there isn't one.
-
-Expression*
-Builtin_call_expression::one_arg() const
-{
-  const Expression_list* args = this->args();
-  if (args->size() != 1)
-    return NULL;
-  return args->front();
-}
-
-// Return whether this is constant: len of a string, or len or cap of
-// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
-
-bool
-Builtin_call_expression::do_is_constant() const
-{
-  switch (this->code_)
-    {
-    case BUILTIN_LEN:
-    case BUILTIN_CAP:
-      {
-       Expression* arg = this->one_arg();
-       if (arg == NULL)
-         return false;
-       Type* arg_type = arg->type();
-
-       if (arg_type->points_to() != NULL
-           && arg_type->points_to()->array_type() != NULL
-           && !arg_type->points_to()->is_open_array_type())
-         arg_type = arg_type->points_to();
-
-       if (arg_type->array_type() != NULL
-           && arg_type->array_type()->length() != NULL)
-         return arg_type->array_type()->length()->is_constant();
-
-       if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
-         return arg->is_constant();
-      }
-      break;
-
-    case BUILTIN_SIZEOF:
-    case BUILTIN_ALIGNOF:
-      return this->one_arg() != NULL;
-
-    case BUILTIN_OFFSETOF:
-      {
-       Expression* arg = this->one_arg();
-       if (arg == NULL)
-         return false;
-       return arg->field_reference_expression() != NULL;
-      }
-
-    case BUILTIN_CMPLX:
-      {
-       const Expression_list* args = this->args();
-       if (args != NULL && args->size() == 2)
-         return args->front()->is_constant() && args->back()->is_constant();
-      }
-      break;
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      {
-       Expression* arg = this->one_arg();
-       return arg != NULL && arg->is_constant();
-      }
-
-    default:
-      break;
-    }
-
-  return false;
-}
-
-// Return an integer constant value if possible.
-
-bool
-Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
-                                                  mpz_t val,
-                                                  Type** ptype) const
-{
-  if (this->code_ == BUILTIN_LEN
-      || this->code_ == BUILTIN_CAP)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-      Type* arg_type = arg->type();
-
-      if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
-       {
-         std::string sval;
-         if (arg->string_constant_value(&sval))
-           {
-             mpz_set_ui(val, sval.length());
-             *ptype = Type::lookup_integer_type("int");
-             return true;
-           }
-       }
-
-      if (arg_type->points_to() != NULL
-         && arg_type->points_to()->array_type() != NULL
-         && !arg_type->points_to()->is_open_array_type())
-       arg_type = arg_type->points_to();
-
-      if (arg_type->array_type() != NULL
-         && arg_type->array_type()->length() != NULL)
-       {
-         Expression* e = arg_type->array_type()->length();
-         if (e->integer_constant_value(iota_is_constant, val, ptype))
-           {
-             *ptype = Type::lookup_integer_type("int");
-             return true;
-           }
-       }
-    }
-  else if (this->code_ == BUILTIN_SIZEOF
-          || this->code_ == BUILTIN_ALIGNOF)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-      Type* arg_type = arg->type();
-      if (arg_type->is_error_type())
-       return false;
-      if (arg_type->is_abstract())
-       return false;
-      tree arg_type_tree = arg_type->get_tree(this->gogo_);
-      unsigned long val_long;
-      if (this->code_ == BUILTIN_SIZEOF)
-       {
-         tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
-         gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
-         if (TREE_INT_CST_HIGH(type_size) != 0)
-           return false;
-         unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
-         val_long = static_cast<unsigned long>(val_wide);
-         if (val_long != val_wide)
-           return false;
-       }
-      else if (this->code_ == BUILTIN_ALIGNOF)
-       {
-         val_long = TYPE_ALIGN(arg_type_tree);
-         if (arg->field_reference_expression() != NULL)
-           {
-             // Calling unsafe.Alignof(s.f) returns the alignment of
-             // the type of f when it is used as a field in a struct.
-#ifdef BIGGEST_FIELD_ALIGNMENT
-             if (val_long > BIGGEST_FIELD_ALIGNMENT)
-               val_long = BIGGEST_FIELD_ALIGNMENT;
-#endif
-#ifdef ADJUST_FIELD_ALIGN
-             // A separate declaration avoids a warning promoted to
-             // an error if ADJUST_FIELD_ALIGN ignores FIELD.
-             tree field;
-             field = build_decl(UNKNOWN_LOCATION, FIELD_DECL, NULL,
-                                     arg_type_tree);
-             val_long = ADJUST_FIELD_ALIGN(field, val_long);
-#endif
-           }
-         val_long /= BITS_PER_UNIT;
-       }
-      else
-       gcc_unreachable();
-      mpz_set_ui(val, val_long);
-      *ptype = NULL;
-      return true;
-    }
-  else if (this->code_ == BUILTIN_OFFSETOF)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-      Field_reference_expression* farg = arg->field_reference_expression();
-      if (farg == NULL)
-       return false;
-      Expression* struct_expr = farg->expr();
-      Type* st = struct_expr->type();
-      if (st->struct_type() == NULL)
-       return false;
-      tree struct_tree = st->get_tree(this->gogo_);
-      gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
-      tree field = TYPE_FIELDS(struct_tree);
-      for (unsigned int index = farg->field_index(); index > 0; --index)
-       {
-         field = DECL_CHAIN(field);
-         gcc_assert(field != NULL_TREE);
-       }
-      HOST_WIDE_INT offset_wide = int_byte_position (field);
-      if (offset_wide < 0)
-       return false;
-      unsigned long offset_long = static_cast<unsigned long>(offset_wide);
-      if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
-       return false;
-      mpz_set_ui(val, offset_long);
-      return true;
-    }
-  return false;
-}
-
-// Return a floating point constant value if possible.
-
-bool
-Builtin_call_expression::do_float_constant_value(mpfr_t val,
-                                                Type** ptype) const
-{
-  if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-
-      mpfr_t real;
-      mpfr_t imag;
-      mpfr_init(real);
-      mpfr_init(imag);
-
-      bool ret = false;
-      Type* type;
-      if (arg->complex_constant_value(real, imag, &type))
-       {
-         if (this->code_ == BUILTIN_REAL)
-           mpfr_set(val, real, GMP_RNDN);
-         else
-           mpfr_set(val, imag, GMP_RNDN);
-         *ptype = Builtin_call_expression::real_imag_type(type);
-         ret = true;
-       }
-
-      mpfr_clear(real);
-      mpfr_clear(imag);
-      return ret;
-    }
-
-  return false;
-}
-
-// Return a complex constant value if possible.
-
-bool
-Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                                  Type** ptype) const
-{
-  if (this->code_ == BUILTIN_CMPLX)
-    {
-      const Expression_list* args = this->args();
-      if (args == NULL || args->size() != 2)
-       return false;
-
-      mpfr_t r;
-      mpfr_init(r);
-      Type* rtype;
-      if (!args->front()->float_constant_value(r, &rtype))
-       {
-         mpfr_clear(r);
-         return false;
-       }
-
-      mpfr_t i;
-      mpfr_init(i);
-
-      bool ret = false;
-      Type* itype;
-      if (args->back()->float_constant_value(i, &itype)
-         && Type::are_identical(rtype, itype, NULL))
-       {
-         mpfr_set(real, r, GMP_RNDN);
-         mpfr_set(imag, i, GMP_RNDN);
-         *ptype = Builtin_call_expression::cmplx_type(rtype);
-         ret = true;
-       }
-
-      mpfr_clear(r);
-      mpfr_clear(i);
-
-      return ret;
-    }
-
-  return false;
-}
-
-// Return the type.
-
-Type*
-Builtin_call_expression::do_type()
-{
-  switch (this->code_)
-    {
-    case BUILTIN_INVALID:
-    default:
-      gcc_unreachable();
-
-    case BUILTIN_NEW:
-    case BUILTIN_MAKE:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->empty())
-         return Type::make_error_type();
-       return Type::make_pointer_type(args->front()->type());
-      }
-
-    case BUILTIN_CAP:
-    case BUILTIN_COPY:
-    case BUILTIN_LEN:
-    case BUILTIN_ALIGNOF:
-    case BUILTIN_OFFSETOF:
-    case BUILTIN_SIZEOF:
-      return Type::lookup_integer_type("int");
-
-    case BUILTIN_CLOSE:
-    case BUILTIN_PANIC:
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      return Type::make_void_type();
-
-    case BUILTIN_CLOSED:
-      return Type::lookup_bool_type();
-
-    case BUILTIN_RECOVER:
-      return Type::make_interface_type(NULL, BUILTINS_LOCATION);
-
-    case BUILTIN_APPEND:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->empty())
-         return Type::make_error_type();
-       return args->front()->type();
-      }
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      {
-       Expression* arg = this->one_arg();
-       if (arg == NULL)
-         return Type::make_error_type();
-       Type* t = arg->type();
-       if (t->is_abstract())
-         t = t->make_non_abstract_type();
-       t = Builtin_call_expression::real_imag_type(t);
-       if (t == NULL)
-         t = Type::make_error_type();
-       return t;
-      }
-
-    case BUILTIN_CMPLX:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() != 2)
-         return Type::make_error_type();
-       Type* t = args->front()->type();
-       if (t->is_abstract())
-         {
-           t = args->back()->type();
-           if (t->is_abstract())
-             t = t->make_non_abstract_type();
-         }
-       t = Builtin_call_expression::cmplx_type(t);
-       if (t == NULL)
-         t = Type::make_error_type();
-       return t;
-      }
-    }
-}
-
-// Determine the type.
-
-void
-Builtin_call_expression::do_determine_type(const Type_context* context)
-{
-  this->fn()->determine_type_no_context();
-
-  const Expression_list* args = this->args();
-
-  bool is_print;
-  Type* arg_type = NULL;
-  switch (this->code_)
-    {
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      // Do not force a large integer constant to "int".
-      is_print = true;
-      break;
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      arg_type = Builtin_call_expression::cmplx_type(context->type);
-      is_print = false;
-      break;
-
-    case BUILTIN_CMPLX:
-      {
-       // For the cmplx function the type of one operand can
-       // determine the type of the other, as in a binary expression.
-       arg_type = Builtin_call_expression::real_imag_type(context->type);
-       if (args != NULL && args->size() == 2)
-         {
-           Type* t1 = args->front()->type();
-           Type* t2 = args->front()->type();
-           if (!t1->is_abstract())
-             arg_type = t1;
-           else if (!t2->is_abstract())
-             arg_type = t2;
-         }
-       is_print = false;
-      }
-      break;
-
-    default:
-      is_print = false;
-      break;
-    }
-
-  if (args != NULL)
-    {
-      for (Expression_list::const_iterator pa = args->begin();
-          pa != args->end();
-          ++pa)
-       {
-         Type_context subcontext;
-         subcontext.type = arg_type;
-
-         if (is_print)
-           {
-             // We want to print large constants, we so can't just
-             // use the appropriate nonabstract type.  Use uint64 for
-             // an integer if we know it is nonnegative, otherwise
-             // use int64 for a integer, otherwise use float64 for a
-             // float or complex128 for a complex.
-             Type* want_type = NULL;
-             Type* atype = (*pa)->type();
-             if (atype->is_abstract())
-               {
-                 if (atype->integer_type() != NULL)
-                   {
-                     mpz_t val;
-                     mpz_init(val);
-                     Type* dummy;
-                     if (this->integer_constant_value(true, val, &dummy)
-                         && mpz_sgn(val) >= 0)
-                       want_type = Type::lookup_integer_type("uint64");
-                     else
-                       want_type = Type::lookup_integer_type("int64");
-                     mpz_clear(val);
-                   }
-                 else if (atype->float_type() != NULL)
-                   want_type = Type::lookup_float_type("float64");
-                 else if (atype->complex_type() != NULL)
-                   want_type = Type::lookup_complex_type("complex128");
-                 else if (atype->is_abstract_string_type())
-                   want_type = Type::lookup_string_type();
-                 else if (atype->is_abstract_boolean_type())
-                   want_type = Type::lookup_bool_type();
-                 else
-                   gcc_unreachable();
-                 subcontext.type = want_type;
-               }
-           }
-
-         (*pa)->determine_type(&subcontext);
-       }
-    }
-}
-
-// If there is exactly one argument, return true.  Otherwise give an
-// error message and return false.
-
-bool
-Builtin_call_expression::check_one_arg()
-{
-  const Expression_list* args = this->args();
-  if (args == NULL || args->size() < 1)
-    {
-      this->report_error(_("not enough arguments"));
-      return false;
-    }
-  else if (args->size() > 1)
-    {
-      this->report_error(_("too many arguments"));
-      return false;
-    }
-  if (args->front()->is_error_expression()
-      || args->front()->type()->is_error_type())
-    {
-      this->set_is_error();
-      return false;
-    }
-  return true;
-}
-
-// Check argument types for a builtin function.
-
-void
-Builtin_call_expression::do_check_types(Gogo*)
-{
-  switch (this->code_)
-    {
-    case BUILTIN_INVALID:
-    case BUILTIN_NEW:
-    case BUILTIN_MAKE:
-      return;
-
-    case BUILTIN_LEN:
-    case BUILTIN_CAP:
-      {
-       // The single argument may be either a string or an array or a
-       // map or a channel, or a pointer to a closed array.
-       if (this->check_one_arg())
-         {
-           Type* arg_type = this->one_arg()->type();
-           if (arg_type->points_to() != NULL
-               && arg_type->points_to()->array_type() != NULL
-               && !arg_type->points_to()->is_open_array_type())
-             arg_type = arg_type->points_to();
-           if (this->code_ == BUILTIN_CAP)
-             {
-               if (!arg_type->is_error_type()
-                   && arg_type->array_type() == NULL
-                   && arg_type->channel_type() == NULL)
-                 this->report_error(_("argument must be array or slice "
-                                      "or channel"));
-             }
-           else
-             {
-               if (!arg_type->is_error_type()
-                   && !arg_type->is_string_type()
-                   && arg_type->array_type() == NULL
-                   && arg_type->map_type() == NULL
-                   && arg_type->channel_type() == NULL)
-                 this->report_error(_("argument must be string or "
-                                      "array or slice or map or channel"));
-             }
-         }
-      }
-      break;
-
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL)
-         {
-           if (this->code_ == BUILTIN_PRINT)
-             warning_at(this->location(), 0,
-                        "no arguments for builtin function %<%s%>",
-                        (this->code_ == BUILTIN_PRINT
-                         ? "print"
-                         : "println"));
-         }
-       else
-         {
-           for (Expression_list::const_iterator p = args->begin();
-                p != args->end();
-                ++p)
-             {
-               Type* type = (*p)->type();
-               if (type->is_error_type()
-                   || type->is_string_type()
-                   || type->integer_type() != NULL
-                   || type->float_type() != NULL
-                   || type->complex_type() != NULL
-                   || type->is_boolean_type()
-                   || type->points_to() != NULL
-                   || type->interface_type() != NULL
-                   || type->channel_type() != NULL
-                   || type->map_type() != NULL
-                   || type->function_type() != NULL
-                   || type->is_open_array_type())
-                 ;
-               else
-                 this->report_error(_("unsupported argument type to "
-                                      "builtin function"));
-             }
-         }
-      }
-      break;
-
-    case BUILTIN_CLOSE:
-    case BUILTIN_CLOSED:
-      if (this->check_one_arg())
-       {
-         if (this->one_arg()->type()->channel_type() == NULL)
-           this->report_error(_("argument must be channel"));
-       }
-      break;
-
-    case BUILTIN_PANIC:
-    case BUILTIN_SIZEOF:
-    case BUILTIN_ALIGNOF:
-      this->check_one_arg();
-      break;
-
-    case BUILTIN_RECOVER:
-      if (this->args() != NULL && !this->args()->empty())
-       this->report_error(_("too many arguments"));
-      break;
-
-    case BUILTIN_OFFSETOF:
-      if (this->check_one_arg())
-       {
-         Expression* arg = this->one_arg();
-         if (arg->field_reference_expression() == NULL)
-           this->report_error(_("argument must be a field reference"));
-       }
-      break;
-
-    case BUILTIN_COPY:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() < 2)
-         {
-           this->report_error(_("not enough arguments"));
-           break;
-         }
-       else if (args->size() > 2)
-         {
-           this->report_error(_("too many arguments"));
-           break;
-         }
-       Type* arg1_type = args->front()->type();
-       Type* arg2_type = args->back()->type();
-       if (arg1_type->is_error_type() || arg2_type->is_error_type())
-         break;
-
-       Type* e1;
-       if (arg1_type->is_open_array_type())
-         e1 = arg1_type->array_type()->element_type();
-       else
-         {
-           this->report_error(_("left argument must be a slice"));
-           break;
-         }
-
-       Type* e2;
-       if (arg2_type->is_open_array_type())
-         e2 = arg2_type->array_type()->element_type();
-       else if (arg2_type->is_string_type())
-         e2 = Type::lookup_integer_type("uint8");
-       else
-         {
-           this->report_error(_("right argument must be a slice or a string"));
-           break;
-         }
-
-       if (!Type::are_identical(e1, e2, NULL))
-         this->report_error(_("element types must be the same"));
-      }
-      break;
-
-    case BUILTIN_APPEND:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->empty())
-         {
-           this->report_error(_("not enough arguments"));
-           break;
-         }
-       /* Lowering varargs should have left us with 2 arguments.  */
-       gcc_assert(args->size() == 2);
-       std::string reason;
-       if (!Type::are_assignable(args->front()->type(), args->back()->type(),
-                                 &reason))
-         {
-           if (reason.empty())
-             this->report_error(_("arguments 1 and 2 have different types"));
-           else
-             {
-               error_at(this->location(),
-                        "arguments 1 and 2 have different types (%s)",
-                        reason.c_str());
-               this->set_is_error();
-             }
-         }
-       break;
-      }
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      if (this->check_one_arg())
-       {
-         if (this->one_arg()->type()->complex_type() == NULL)
-           this->report_error(_("argument must have complex type"));
-       }
-      break;
-
-    case BUILTIN_CMPLX:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() < 2)
-         this->report_error(_("not enough arguments"));
-       else if (args->size() > 2)
-         this->report_error(_("too many arguments"));
-       else if (args->front()->is_error_expression()
-                || args->front()->type()->is_error_type()
-                || args->back()->is_error_expression()
-                || args->back()->type()->is_error_type())
-         this->set_is_error();
-       else if (!Type::are_identical(args->front()->type(),
-                                     args->back()->type(), NULL))
-         this->report_error(_("cmplx arguments must have identical types"));
-       else if (args->front()->type()->float_type() == NULL)
-         this->report_error(_("cmplx arguments must have "
-                              "floating-point type"));
-      }
-      break;
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return the tree for a builtin function.
-
-tree
-Builtin_call_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  source_location location = this->location();
-  switch (this->code_)
-    {
-    case BUILTIN_INVALID:
-    case BUILTIN_NEW:
-    case BUILTIN_MAKE:
-      gcc_unreachable();
-
-    case BUILTIN_LEN:
-    case BUILTIN_CAP:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 1);
-       Expression* arg = *args->begin();
-       Type* arg_type = arg->type();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-
-       if (arg_type->points_to() != NULL)
-         {
-           arg_type = arg_type->points_to();
-           gcc_assert(arg_type->array_type() != NULL
-                      && !arg_type->is_open_array_type());
-           gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
-           arg_tree = build_fold_indirect_ref(arg_tree);
-         }
-
-       tree val_tree;
-       if (this->code_ == BUILTIN_LEN)
-         {
-           if (arg_type->is_string_type())
-             val_tree = String_type::length_tree(gogo, arg_tree);
-           else if (arg_type->array_type() != NULL)
-             val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
-           else if (arg_type->map_type() != NULL)
-             {
-               static tree map_len_fndecl;
-               val_tree = Gogo::call_builtin(&map_len_fndecl,
-                                             location,
-                                             "__go_map_len",
-                                             1,
-                                             sizetype,
-                                             arg_type->get_tree(gogo),
-                                             arg_tree);
-             }
-           else if (arg_type->channel_type() != NULL)
-             {
-               static tree chan_len_fndecl;
-               val_tree = Gogo::call_builtin(&chan_len_fndecl,
-                                             location,
-                                             "__go_chan_len",
-                                             1,
-                                             sizetype,
-                                             arg_type->get_tree(gogo),
-                                             arg_tree);
-             }
-           else
-             gcc_unreachable();
-         }
-       else
-         {
-           if (arg_type->array_type() != NULL)
-             val_tree = arg_type->array_type()->capacity_tree(gogo, arg_tree);
-           else if (arg_type->channel_type() != NULL)
-             {
-               static tree chan_cap_fndecl;
-               val_tree = Gogo::call_builtin(&chan_cap_fndecl,
-                                             location,
-                                             "__go_chan_cap",
-                                             1,
-                                             sizetype,
-                                             arg_type->get_tree(gogo),
-                                             arg_tree);
-             }
-           else
-             gcc_unreachable();
-         }
-
-       tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
-       if (type_tree == TREE_TYPE(val_tree))
-         return val_tree;
-       else
-         return fold(convert_to_integer(type_tree, val_tree));
-      }
-
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      {
-       const bool is_ln = this->code_ == BUILTIN_PRINTLN;
-       tree stmt_list = NULL_TREE;
-
-       const Expression_list* call_args = this->args();
-       if (call_args != NULL)
-         {
-           for (Expression_list::const_iterator p = call_args->begin();
-                p != call_args->end();
-                ++p)
-             {
-               if (is_ln && p != call_args->begin())
-                 {
-                   static tree print_space_fndecl;
-                   tree call = Gogo::call_builtin(&print_space_fndecl,
-                                                  location,
-                                                  "__go_print_space",
-                                                  0,
-                                                  void_type_node);
-                   append_to_statement_list(call, &stmt_list);
-                 }
-
-               Type* type = (*p)->type();
-
-               tree arg = (*p)->get_tree(context);
-               if (arg == error_mark_node)
-                 return error_mark_node;
-
-               tree* pfndecl;
-               const char* fnname;
-               if (type->is_string_type())
-                 {
-                   static tree print_string_fndecl;
-                   pfndecl = &print_string_fndecl;
-                   fnname = "__go_print_string";
-                 }
-               else if (type->integer_type() != NULL
-                        && type->integer_type()->is_unsigned())
-                 {
-                   static tree print_uint64_fndecl;
-                   pfndecl = &print_uint64_fndecl;
-                   fnname = "__go_print_uint64";
-                   Type* itype = Type::lookup_integer_type("uint64");
-                   arg = fold_convert_loc(location, itype->get_tree(gogo),
-                                          arg);
-                 }
-               else if (type->integer_type() != NULL)
-                 {
-                   static tree print_int64_fndecl;
-                   pfndecl = &print_int64_fndecl;
-                   fnname = "__go_print_int64";
-                   Type* itype = Type::lookup_integer_type("int64");
-                   arg = fold_convert_loc(location, itype->get_tree(gogo),
-                                          arg);
-                 }
-               else if (type->float_type() != NULL)
-                 {
-                   static tree print_double_fndecl;
-                   pfndecl = &print_double_fndecl;
-                   fnname = "__go_print_double";
-                   arg = fold_convert_loc(location, double_type_node, arg);
-                 }
-               else if (type->complex_type() != NULL)
-                 {
-                   static tree print_complex_fndecl;
-                   pfndecl = &print_complex_fndecl;
-                   fnname = "__go_print_complex";
-                   arg = fold_convert_loc(location, complex_double_type_node,
-                                          arg);
-                 }
-               else if (type->is_boolean_type())
-                 {
-                   static tree print_bool_fndecl;
-                   pfndecl = &print_bool_fndecl;
-                   fnname = "__go_print_bool";
-                 }
-               else if (type->points_to() != NULL
-                        || type->channel_type() != NULL
-                        || type->map_type() != NULL
-                        || type->function_type() != NULL)
-                 {
-                   static tree print_pointer_fndecl;
-                   pfndecl = &print_pointer_fndecl;
-                   fnname = "__go_print_pointer";
-                   arg = fold_convert_loc(location, ptr_type_node, arg);
-                 }
-               else if (type->interface_type() != NULL)
-                 {
-                   if (type->interface_type()->is_empty())
-                     {
-                       static tree print_empty_interface_fndecl;
-                       pfndecl = &print_empty_interface_fndecl;
-                       fnname = "__go_print_empty_interface";
-                     }
-                   else
-                     {
-                       static tree print_interface_fndecl;
-                       pfndecl = &print_interface_fndecl;
-                       fnname = "__go_print_interface";
-                     }
-                 }
-               else if (type->is_open_array_type())
-                 {
-                   static tree print_slice_fndecl;
-                   pfndecl = &print_slice_fndecl;
-                   fnname = "__go_print_slice";
-                 }
-               else
-                 gcc_unreachable();
-
-               tree call = Gogo::call_builtin(pfndecl,
-                                              location,
-                                              fnname,
-                                              1,
-                                              void_type_node,
-                                              TREE_TYPE(arg),
-                                              arg);
-               append_to_statement_list(call, &stmt_list);
-             }
-         }
-
-       if (is_ln)
-         {
-           static tree print_nl_fndecl;
-           tree call = Gogo::call_builtin(&print_nl_fndecl,
-                                          location,
-                                          "__go_print_nl",
-                                          0,
-                                          void_type_node);
-           append_to_statement_list(call, &stmt_list);
-         }
-
-       return stmt_list;
-      }
-
-    case BUILTIN_PANIC:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-       Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
-       arg_tree = Expression::convert_for_assignment(context, empty,
-                                                     arg->type(),
-                                                     arg_tree, location);
-       static tree panic_fndecl;
-       tree call = Gogo::call_builtin(&panic_fndecl,
-                                      location,
-                                      "__go_panic",
-                                      1,
-                                      void_type_node,
-                                      TREE_TYPE(arg_tree),
-                                      arg_tree);
-       // This function will throw an exception.
-       TREE_NOTHROW(panic_fndecl) = 0;
-       // This function will not return.
-       TREE_THIS_VOLATILE(panic_fndecl) = 1;
-       return call;
-      }
-
-    case BUILTIN_RECOVER:
-      {
-       // The argument is set when building recover thunks.  It's a
-       // boolean value which is true if we can recover a value now.
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-
-       Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
-       tree empty_tree = empty->get_tree(context->gogo());
-
-       Type* nil_type = Type::make_nil_type();
-       Expression* nil = Expression::make_nil(location);
-       tree nil_tree = nil->get_tree(context);
-       tree empty_nil_tree = Expression::convert_for_assignment(context,
-                                                                empty,
-                                                                nil_type,
-                                                                nil_tree,
-                                                                location);
-
-       // We need to handle a deferred call to recover specially,
-       // because it changes whether it can recover a panic or not.
-       // See test7 in test/recover1.go.
-       tree call;
-       if (this->is_deferred())
-         {
-           static tree deferred_recover_fndecl;
-           call = Gogo::call_builtin(&deferred_recover_fndecl,
-                                     location,
-                                     "__go_deferred_recover",
-                                     0,
-                                     empty_tree);
-         }
-       else
-         {
-           static tree recover_fndecl;
-           call = Gogo::call_builtin(&recover_fndecl,
-                                     location,
-                                     "__go_recover",
-                                     0,
-                                     empty_tree);
-         }
-       return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
-                              call, empty_nil_tree);
-      }
-
-    case BUILTIN_CLOSE:
-    case BUILTIN_CLOSED:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-       if (this->code_ == BUILTIN_CLOSE)
-         {
-           static tree close_fndecl;
-           return Gogo::call_builtin(&close_fndecl,
-                                     location,
-                                     "__go_builtin_close",
-                                     1,
-                                     void_type_node,
-                                     TREE_TYPE(arg_tree),
-                                     arg_tree);
-         }
-       else
-         {
-           static tree closed_fndecl;
-           return Gogo::call_builtin(&closed_fndecl,
-                                     location,
-                                     "__go_builtin_closed",
-                                     1,
-                                     boolean_type_node,
-                                     TREE_TYPE(arg_tree),
-                                     arg_tree);
-         }
-      }
-
-    case BUILTIN_SIZEOF:
-    case BUILTIN_OFFSETOF:
-    case BUILTIN_ALIGNOF:
-      {
-       mpz_t val;
-       mpz_init(val);
-       Type* dummy;
-       bool b = this->integer_constant_value(true, val, &dummy);
-       gcc_assert(b);
-       tree type = Type::lookup_integer_type("int")->get_tree(gogo);
-       tree ret = Expression::integer_constant_tree(val, type);
-       mpz_clear(val);
-       return ret;
-      }
-
-    case BUILTIN_COPY:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 2);
-       Expression* arg1 = args->front();
-       Expression* arg2 = args->back();
-
-       tree arg1_tree = arg1->get_tree(context);
-       tree arg2_tree = arg2->get_tree(context);
-       if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
-         return error_mark_node;
-
-       Type* arg1_type = arg1->type();
-       Array_type* at = arg1_type->array_type();
-       arg1_tree = save_expr(arg1_tree);
-       tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
-       tree arg1_len = at->length_tree(gogo, arg1_tree);
-
-       Type* arg2_type = arg2->type();
-       tree arg2_val;
-       tree arg2_len;
-       if (arg2_type->is_open_array_type())
-         {
-           at = arg2_type->array_type();
-           arg2_tree = save_expr(arg2_tree);
-           arg2_val = at->value_pointer_tree(gogo, arg2_tree);
-           arg2_len = at->length_tree(gogo, arg2_tree);
-         }
-       else
-         {
-           arg2_tree = save_expr(arg2_tree);
-           arg2_val = String_type::bytes_tree(gogo, arg2_tree);
-           arg2_len = String_type::length_tree(gogo, arg2_tree);
-         }
-
-       arg1_len = save_expr(arg1_len);
-       arg2_len = save_expr(arg2_len);
-       tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
-                                  fold_build2_loc(location, LT_EXPR,
-                                                  boolean_type_node,
-                                                  arg1_len, arg2_len),
-                                  arg1_len, arg2_len);
-       len = save_expr(len);
-
-       Type* element_type = at->element_type();
-       tree element_type_tree = element_type->get_tree(gogo);
-       tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-       tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
-                                         len);
-       bytecount = fold_build2_loc(location, MULT_EXPR,
-                                   TREE_TYPE(element_size),
-                                   bytecount, element_size);
-       bytecount = fold_convert_loc(location, size_type_node, bytecount);
-
-       tree call = build_call_expr_loc(location,
-                                       built_in_decls[BUILT_IN_MEMMOVE],
-                                       3, arg1_val, arg2_val, bytecount);
-
-       return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
-                              call, len);
-      }
-
-    case BUILTIN_APPEND:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 2);
-       Expression* arg1 = args->front();
-       Expression* arg2 = args->back();
-
-       tree arg1_tree = arg1->get_tree(context);
-       tree arg2_tree = arg2->get_tree(context);
-       if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
-         return error_mark_node;
-
-       tree descriptor_tree = arg1->type()->type_descriptor_pointer(gogo);
-
-       // We rebuild the decl each time since the slice types may
-       // change.
-       tree append_fndecl = NULL_TREE;
-       return Gogo::call_builtin(&append_fndecl,
-                                 location,
-                                 "__go_append",
-                                 3,
-                                 TREE_TYPE(arg1_tree),
-                                 TREE_TYPE(descriptor_tree),
-                                 descriptor_tree,
-                                 TREE_TYPE(arg1_tree),
-                                 arg1_tree,
-                                 TREE_TYPE(arg2_tree),
-                                 arg2_tree);
-      }
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-       gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
-       if (this->code_ == BUILTIN_REAL)
-         return fold_build1_loc(location, REALPART_EXPR,
-                                TREE_TYPE(TREE_TYPE(arg_tree)),
-                                arg_tree);
-       else
-         return fold_build1_loc(location, IMAGPART_EXPR,
-                                TREE_TYPE(TREE_TYPE(arg_tree)),
-                                arg_tree);
-      }
-
-    case BUILTIN_CMPLX:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 2);
-       tree r = args->front()->get_tree(context);
-       tree i = args->back()->get_tree(context);
-       if (r == error_mark_node || i == error_mark_node)
-         return error_mark_node;
-       gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
-                  == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
-       gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
-       return fold_build2_loc(location, COMPLEX_EXPR,
-                              build_complex_type(TREE_TYPE(r)),
-                              r, i);
-      }
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// We have to support exporting a builtin call expression, because
-// code can set a constant to the result of a builtin expression.
-
-void
-Builtin_call_expression::do_export(Export* exp) const
-{
-  bool ok = false;
-
-  mpz_t val;
-  mpz_init(val);
-  Type* dummy;
-  if (this->integer_constant_value(true, val, &dummy))
-    {
-      Integer_expression::export_integer(exp, val);
-      ok = true;
-    }
-  mpz_clear(val);
-
-  if (!ok)
-    {
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (this->float_constant_value(fval, &dummy))
-       {
-         Float_expression::export_float(exp, fval);
-         ok = true;
-       }
-      mpfr_clear(fval);
-    }
-
-  if (!ok)
-    {
-      mpfr_t real;
-      mpfr_t imag;
-      mpfr_init(real);
-      mpfr_init(imag);
-      if (this->complex_constant_value(real, imag, &dummy))
-       {
-         Complex_expression::export_complex(exp, real, imag);
-         ok = true;
-       }
-      mpfr_clear(real);
-      mpfr_clear(imag);
-    }
-
-  if (!ok)
-    {
-      error_at(this->location(), "value is not constant");
-      return;
-    }
-
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Class Call_expression.
-
-// Traversal.
-
-int
-Call_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->args_ != NULL)
-    {
-      if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a call statement.
-
-Expression*
-Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  // A type case can look like a function call.
-  if (this->fn_->is_type_expression()
-      && this->args_ != NULL
-      && this->args_->size() == 1)
-    return Expression::make_cast(this->fn_->type(), this->args_->front(),
-                                this->location());
-
-  // Recognize a call to a builtin function.
-  Func_expression* fne = this->fn_->func_expression();
-  if (fne != NULL
-      && fne->named_object()->is_function_declaration()
-      && fne->named_object()->func_declaration_value()->type()->is_builtin())
-    return new Builtin_call_expression(gogo, this->fn_, this->args_,
-                                      this->is_varargs_, this->location());
-
-  // Handle an argument which is a call to a function which returns
-  // multiple results.
-  if (this->args_ != NULL
-      && this->args_->size() == 1
-      && this->args_->front()->call_expression() != NULL
-      && this->fn_->type()->function_type() != NULL)
-    {
-      Function_type* fntype = this->fn_->type()->function_type();
-      size_t rc = this->args_->front()->call_expression()->result_count();
-      if (rc > 1
-         && fntype->parameters() != NULL
-         && (fntype->parameters()->size() == rc
-             || (fntype->is_varargs()
-                 && fntype->parameters()->size() - 1 <= rc)))
-       {
-         Call_expression* call = this->args_->front()->call_expression();
-         Expression_list* args = new Expression_list;
-         for (size_t i = 0; i < rc; ++i)
-           args->push_back(Expression::make_call_result(call, i));
-         // We can't return a new call expression here, because this
-         // one may be referenced by Call_result expressions.  FIXME.
-         delete this->args_;
-         this->args_ = args;
-       }
-    }
-
-  // Handle a call to a varargs function by packaging up the extra
-  // parameters.
-  if (this->fn_->type()->function_type() != NULL
-      && this->fn_->type()->function_type()->is_varargs())
-    {
-      Function_type* fntype = this->fn_->type()->function_type();
-      const Typed_identifier_list* parameters = fntype->parameters();
-      gcc_assert(parameters != NULL && !parameters->empty());
-      Type* varargs_type = parameters->back().type();
-      return this->lower_varargs(gogo, function, varargs_type,
-                                parameters->size());
-    }
-
-  return this;
-}
-
-// Lower a call to a varargs function.  FUNCTION is the function in
-// which the call occurs--it's not the function we are calling.
-// VARARGS_TYPE is the type of the varargs parameter, a slice type.
-// PARAM_COUNT is the number of parameters of the function we are
-// calling; the last of these parameters will be the varargs
-// parameter.
-
-Expression*
-Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
-                              Type* varargs_type, size_t param_count)
-{
-  if (this->varargs_are_lowered_)
-    return this;
-
-  source_location loc = this->location();
-
-  gcc_assert(param_count > 0);
-  gcc_assert(varargs_type->is_open_array_type());
-
-  size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
-  if (arg_count < param_count - 1)
-    {
-      // Not enough arguments; will be caught in check_types.
-      return this;
-    }
-
-  Expression_list* old_args = this->args_;
-  Expression_list* new_args = new Expression_list();
-  bool push_empty_arg = false;
-  if (old_args == NULL || old_args->empty())
-    {
-      gcc_assert(param_count == 1);
-      push_empty_arg = true;
-    }
-  else
-    {
-      Expression_list::const_iterator pa;
-      int i = 1;
-      for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
-       {
-         if (static_cast<size_t>(i) == param_count)
-           break;
-         new_args->push_back(*pa);
-       }
-
-      // We have reached the varargs parameter.
-
-      bool issued_error = false;
-      if (pa == old_args->end())
-       push_empty_arg = true;
-      else if (pa + 1 == old_args->end() && this->is_varargs_)
-       new_args->push_back(*pa);
-      else if (this->is_varargs_)
-       {
-         this->report_error(_("too many arguments"));
-         return this;
-       }
-      else if (pa + 1 == old_args->end()
-              && this->is_compatible_varargs_argument(function, *pa,
-                                                      varargs_type,
-                                                      &issued_error))
-       new_args->push_back(*pa);
-      else
-       {
-         Type* element_type = varargs_type->array_type()->element_type();
-         Expression_list* vals = new Expression_list;
-         for (; pa != old_args->end(); ++pa, ++i)
-           {
-             // Check types here so that we get a better message.
-             Type* patype = (*pa)->type();
-             source_location paloc = (*pa)->location();
-             if (!this->check_argument_type(i, element_type, patype,
-                                            paloc, issued_error))
-               continue;
-             vals->push_back(*pa);
-           }
-         Expression* val =
-           Expression::make_slice_composite_literal(varargs_type, vals, loc);
-         new_args->push_back(val);
-       }
-    }
-
-  if (push_empty_arg)
-    new_args->push_back(Expression::make_nil(loc));
-
-  // We can't return a new call expression here, because this one may
-  // be referenced by Call_result expressions.  FIXME.
-  if (old_args != NULL)
-    delete old_args;
-  this->args_ = new_args;
-  this->varargs_are_lowered_ = true;
-
-  // Lower all the new subexpressions.
-  Expression* ret = this;
-  gogo->lower_expression(function, &ret);
-  gcc_assert(ret == this);
-  return ret;
-}
-
-// Return true if ARG is a varargs argment which should be passed to
-// the varargs parameter of type PARAM_TYPE without wrapping.  ARG
-// will be the last argument passed in the call, and PARAM_TYPE will
-// be the type of the last parameter of the varargs function being
-// called.
-
-bool
-Call_expression::is_compatible_varargs_argument(Named_object* function,
-                                               Expression* arg,
-                                               Type* param_type,
-                                               bool* issued_error)
-{
-  *issued_error = false;
-
-  Type* var_type = NULL;
-
-  // The simple case is passing the varargs parameter of the caller.
-  Var_expression* ve = arg->var_expression();
-  if (ve != NULL && ve->named_object()->is_variable())
-    {
-      Variable* var = ve->named_object()->var_value();
-      if (var->is_varargs_parameter())
-       var_type = var->type();
-    }
-
-  // The complex case is passing the varargs parameter of some
-  // enclosing function.  This will look like passing down *c.f where
-  // c is the closure variable and f is a field in the closure.
-  if (function != NULL
-      && function->func_value()->needs_closure()
-      && arg->classification() == EXPRESSION_UNARY)
-    {
-      Unary_expression* ue = static_cast<Unary_expression*>(arg);
-      if (ue->op() == OPERATOR_MULT)
-       {
-         Field_reference_expression* fre =
-           ue->operand()->deref()->field_reference_expression();
-         if (fre != NULL)
-           {
-             Var_expression* ve = fre->expr()->deref()->var_expression();
-             if (ve != NULL)
-               {
-                 Named_object* no = ve->named_object();
-                 Function* f = function->func_value();
-                 if (no == f->closure_var())
-                   {
-                     // At this point we know that this indeed a
-                     // reference to some enclosing variable.  Now we
-                     // need to figure out whether that variable is a
-                     // varargs parameter.
-                     Named_object* enclosing =
-                       f->enclosing_var(fre->field_index());
-                     Variable* var = enclosing->var_value();
-                     if (var->is_varargs_parameter())
-                       var_type = var->type();
-                   }
-               }
-           }
-       }
-    }
-
-  if (var_type == NULL)
-    return false;
-
-  // We only match if the parameter is the same, with an identical
-  // type.
-  Array_type* var_at = var_type->array_type();
-  gcc_assert(var_at != NULL);
-  Array_type* param_at = param_type->array_type();
-  if (param_at != NULL
-      && Type::are_identical(var_at->element_type(),
-                            param_at->element_type(), NULL))
-    return true;
-  error_at(arg->location(), "... mismatch: passing ...T as ...");
-  *issued_error = true;
-  return false;
-}
-
-// Get the function type.  Returns NULL if we don't know the type.  If
-// this returns NULL, and if_ERROR is true, issues an error.
-
-Function_type*
-Call_expression::get_function_type() const
-{
-  return this->fn_->type()->function_type();
-}
-
-// Return the number of values which this call will return.
-
-size_t
-Call_expression::result_count() const
-{
-  const Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    return 0;
-  if (fntype->results() == NULL)
-    return 0;
-  return fntype->results()->size();
-}
-
-// Return whether this is a call to the predeclared function recover.
-
-bool
-Call_expression::is_recover_call() const
-{
-  return this->do_is_recover_call();
-}
-
-// Set the argument to the recover function.
-
-void
-Call_expression::set_recover_arg(Expression* arg)
-{
-  this->do_set_recover_arg(arg);
-}
-
-// Virtual functions also implemented by Builtin_call_expression.
-
-bool
-Call_expression::do_is_recover_call() const
-{
-  return false;
-}
-
-void
-Call_expression::do_set_recover_arg(Expression*)
-{
-  gcc_unreachable();
-}
-
-// Get the type.
-
-Type*
-Call_expression::do_type()
-{
-  if (this->type_ != NULL)
-    return this->type_;
-
-  Type* ret;
-  Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    return Type::make_error_type();
-
-  const Typed_identifier_list* results = fntype->results();
-  if (results == NULL)
-    ret = Type::make_void_type();
-  else if (results->size() == 1)
-    ret = results->begin()->type();
-  else
-    ret = Type::make_call_multiple_result_type(this);
-
-  this->type_ = ret;
-
-  return this->type_;
-}
-
-// Determine types for a call expression.  We can use the function
-// parameter types to set the types of the arguments.
-
-void
-Call_expression::do_determine_type(const Type_context*)
-{
-  this->fn_->determine_type_no_context();
-  Function_type* fntype = this->get_function_type();
-  const Typed_identifier_list* parameters = NULL;
-  if (fntype != NULL)
-    parameters = fntype->parameters();
-  if (this->args_ != NULL)
-    {
-      Typed_identifier_list::const_iterator pt;
-      if (parameters != NULL)
-       pt = parameters->begin();
-      for (Expression_list::const_iterator pa = this->args_->begin();
-          pa != this->args_->end();
-          ++pa)
-       {
-         if (parameters != NULL && pt != parameters->end())
-           {
-             Type_context subcontext(pt->type(), false);
-             (*pa)->determine_type(&subcontext);
-             ++pt;
-           }
-         else
-           (*pa)->determine_type_no_context();
-       }
-    }
-}
-
-// Check types for parameter I.
-
-bool
-Call_expression::check_argument_type(int i, const Type* parameter_type,
-                                    const Type* argument_type,
-                                    source_location argument_location,
-                                    bool issued_error)
-{
-  std::string reason;
-  if (!Type::are_assignable(parameter_type, argument_type, &reason))
-    {
-      if (!issued_error)
-       {
-         if (reason.empty())
-           error_at(argument_location, "argument %d has incompatible type", i);
-         else
-           error_at(argument_location,
-                    "argument %d has incompatible type (%s)",
-                    i, reason.c_str());
-       }
-      this->set_is_error();
-      return false;
-    }
-  return true;
-}
-
-// Check types.
-
-void
-Call_expression::do_check_types(Gogo*)
-{
-  Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    {
-      if (!this->fn_->type()->is_error_type())
-       this->report_error(_("expected function"));
-      return;
-    }
-
-  if (fntype->is_method())
-    {
-      // We don't support pointers to methods, so the function has to
-      // be a bound method expression.
-      Bound_method_expression* bme = this->fn_->bound_method_expression();
-      if (bme == NULL)
-       {
-         this->report_error(_("method call without object"));
-         return;
-       }
-      Type* first_arg_type = bme->first_argument()->type();
-      if (first_arg_type->points_to() == NULL)
-       {
-         // When passing a value, we need to check that we are
-         // permitted to copy it.
-         std::string reason;
-         if (!Type::are_assignable(fntype->receiver()->type(),
-                                   first_arg_type, &reason))
-           {
-             if (reason.empty())
-               this->report_error(_("incompatible type for receiver"));
-             else
-               {
-                 error_at(this->location(),
-                          "incompatible type for receiver (%s)",
-                          reason.c_str());
-                 this->set_is_error();
-               }
-           }
-       }
-    }
-
-  // Note that varargs was handled by the lower_varargs() method, so
-  // we don't have to worry about it here.
-
-  const Typed_identifier_list* parameters = fntype->parameters();
-  if (this->args_ == NULL)
-    {
-      if (parameters != NULL && !parameters->empty())
-       this->report_error(_("not enough arguments"));
-    }
-  else if (parameters == NULL)
-    this->report_error(_("too many arguments"));
-  else
-    {
-      int i = 0;
-      Typed_identifier_list::const_iterator pt = parameters->begin();
-      for (Expression_list::const_iterator pa = this->args_->begin();
-          pa != this->args_->end();
-          ++pa, ++pt, ++i)
-       {
-         if (pt == parameters->end())
-           {
-             this->report_error(_("too many arguments"));
-             return;
-           }
-         this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
-                                   (*pa)->location(), false);
-       }
-      if (pt != parameters->end())
-       this->report_error(_("not enough arguments"));
-    }
-}
-
-// Return whether we have to use a temporary variable to ensure that
-// we evaluate this call expression in order.  If the call returns no
-// results then it will inevitably be executed last.  If the call
-// returns more than one result then it will be used with Call_result
-// expressions.  So we only have to use a temporary variable if the
-// call returns exactly one result.
-
-bool
-Call_expression::do_must_eval_in_order() const
-{
-  return this->result_count() == 1;
-}
-
-// Get the function and the first argument to use when calling a bound
-// method.
-
-tree
-Call_expression::bound_method_function(Translate_context* context,
-                                      Bound_method_expression* bound_method,
-                                      tree* first_arg_ptr)
-{
-  Expression* first_argument = bound_method->first_argument();
-  tree first_arg = first_argument->get_tree(context);
-  if (first_arg == error_mark_node)
-    return error_mark_node;
-
-  // We always pass a pointer to the first argument when calling a
-  // method.
-  if (first_argument->type()->points_to() == NULL)
-    {
-      tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
-      if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
-         || DECL_P(first_arg)
-         || TREE_CODE(first_arg) == INDIRECT_REF
-         || TREE_CODE(first_arg) == COMPONENT_REF)
-       {
-         first_arg = build_fold_addr_expr(first_arg);
-         if (DECL_P(first_arg))
-           TREE_ADDRESSABLE(first_arg) = 1;
-       }
-      else
-       {
-         tree tmp = create_tmp_var(TREE_TYPE(first_arg),
-                                   get_name(first_arg));
-         DECL_IGNORED_P(tmp) = 0;
-         DECL_INITIAL(tmp) = first_arg;
-         first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
-                            build1(DECL_EXPR, void_type_node, tmp),
-                            build_fold_addr_expr(tmp));
-         TREE_ADDRESSABLE(tmp) = 1;
-       }
-      if (first_arg == error_mark_node)
-       return error_mark_node;
-    }
-
-  Type* fatype = bound_method->first_argument_type();
-  if (fatype != NULL)
-    {
-      if (fatype->points_to() == NULL)
-       fatype = Type::make_pointer_type(fatype);
-      first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
-      if (first_arg == error_mark_node
-         || TREE_TYPE(first_arg) == error_mark_node)
-       return error_mark_node;
-    }
-
-  *first_arg_ptr = first_arg;
-
-  return bound_method->method()->get_tree(context);
-}
-
-// Get the function and the first argument to use when calling an
-// interface method.
-
-tree
-Call_expression::interface_method_function(
-    Translate_context* context,
-    Interface_field_reference_expression* interface_method,
-    tree* first_arg_ptr)
-{
-  tree expr = interface_method->expr()->get_tree(context);
-  if (expr == error_mark_node)
-    return error_mark_node;
-  expr = save_expr(expr);
-  tree first_arg = interface_method->get_underlying_object_tree(context, expr);
-  if (first_arg == error_mark_node)
-    return error_mark_node;
-  *first_arg_ptr = first_arg;
-  return interface_method->get_function_tree(context, expr);
-}
-
-// Build the call expression.
-
-tree
-Call_expression::do_get_tree(Translate_context* context)
-{
-  if (this->tree_ != NULL_TREE)
-    return this->tree_;
-
-  Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    return error_mark_node;
-
-  if (this->fn_->is_error_expression())
-    return error_mark_node;
-
-  Gogo* gogo = context->gogo();
-  source_location location = this->location();
-
-  Func_expression* func = this->fn_->func_expression();
-  Bound_method_expression* bound_method = this->fn_->bound_method_expression();
-  Interface_field_reference_expression* interface_method =
-    this->fn_->interface_field_reference_expression();
-  const bool has_closure = func != NULL && func->closure() != NULL;
-  const bool is_method = bound_method != NULL || interface_method != NULL;
-  gcc_assert(!fntype->is_method() || is_method);
-
-  int nargs;
-  tree* args;
-  if (this->args_ == NULL || this->args_->empty())
-    {
-      nargs = is_method ? 1 : 0;
-      args = nargs == 0 ? NULL : new tree[nargs];
-    }
-  else
-    {
-      const Typed_identifier_list* params = fntype->parameters();
-      gcc_assert(params != NULL);
-
-      nargs = this->args_->size();
-      int i = is_method ? 1 : 0;
-      nargs += i;
-      args = new tree[nargs];
-
-      Typed_identifier_list::const_iterator pp = params->begin();
-      Expression_list::const_iterator pe;
-      for (pe = this->args_->begin();
-          pe != this->args_->end();
-          ++pe, ++pp, ++i)
-       {
-         tree arg_val = (*pe)->get_tree(context);
-         args[i] = Expression::convert_for_assignment(context,
-                                                      pp->type(),
-                                                      (*pe)->type(),
-                                                      arg_val,
-                                                      location);
-         if (args[i] == error_mark_node)
-           return error_mark_node;
-       }
-      gcc_assert(pp == params->end());
-      gcc_assert(i == nargs);
-    }
-
-  tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
-  if (rettype == error_mark_node)
-    return error_mark_node;
-
-  tree fn;
-  if (has_closure)
-    fn = func->get_tree_without_closure(gogo);
-  else if (!is_method)
-    fn = this->fn_->get_tree(context);
-  else if (bound_method != NULL)
-    fn = this->bound_method_function(context, bound_method, &args[0]);
-  else if (interface_method != NULL)
-    fn = this->interface_method_function(context, interface_method, &args[0]);
-  else
-    gcc_unreachable();
-
-  if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
-    return error_mark_node;
-
-  // This is to support builtin math functions when using 80387 math.
-  tree fndecl = fn;
-  if (TREE_CODE(fndecl) == ADDR_EXPR)
-    fndecl = TREE_OPERAND(fndecl, 0);
-  tree excess_type = NULL_TREE;
-  if (DECL_P(fndecl)
-      && DECL_IS_BUILTIN(fndecl)
-      && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
-      && nargs > 0
-      && ((SCALAR_FLOAT_TYPE_P(rettype)
-          && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
-         || (COMPLEX_FLOAT_TYPE_P(rettype)
-             && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
-    {
-      excess_type = excess_precision_type(TREE_TYPE(args[0]));
-      if (excess_type != NULL_TREE)
-       {
-         tree excess_fndecl = mathfn_built_in(excess_type,
-                                              DECL_FUNCTION_CODE(fndecl));
-         if (excess_fndecl == NULL_TREE)
-           excess_type = NULL_TREE;
-         else
-           {
-             fn = build_fold_addr_expr_loc(location, excess_fndecl);
-             for (int i = 0; i < nargs; ++i)
-               args[i] = ::convert(excess_type, args[i]);
-           }
-       }
-    }
-
-  tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
-                             fn, nargs, args);
-  delete[] args;
-
-  SET_EXPR_LOCATION(ret, location);
-
-  if (has_closure)
-    {
-      tree closure_tree = func->closure()->get_tree(context);
-      if (closure_tree != error_mark_node)
-       CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
-    }
-
-  // If this is a recursive function type which returns itself, as in
-  //   type F func() F
-  // we have used ptr_type_node for the return type.  Add a cast here
-  // to the correct type.
-  if (TREE_TYPE(ret) == ptr_type_node)
-    {
-      tree t = this->type()->get_tree(gogo);
-      ret = fold_convert_loc(location, t, ret);
-    }
-
-  if (excess_type != NULL_TREE)
-    {
-      // Calling convert here can undo our excess precision change.
-      // That may or may not be a bug in convert_to_real.
-      ret = build1(NOP_EXPR, rettype, ret);
-    }
-
-  // If there is more than one result, we will refer to the call
-  // multiple times.
-  if (fntype->results() != NULL && fntype->results()->size() > 1)
-    ret = save_expr(ret);
-
-  this->tree_ = ret;
-
-  return ret;
-}
-
-// Make a call expression.
-
-Call_expression*
-Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
-                     source_location location)
-{
-  return new Call_expression(fn, args, is_varargs, location);
-}
-
-// A single result from a call which returns multiple results.
-
-class Call_result_expression : public Expression
-{
- public:
-  Call_result_expression(Call_expression* call, unsigned int index)
-    : Expression(EXPRESSION_CALL_RESULT, call->location()),
-      call_(call), index_(index)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Call_result_expression(this->call_->call_expression(),
-                                     this->index_);
-  }
-
-  bool
-  do_must_eval_in_order() const
-  { return true; }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The underlying call expression.
-  Expression* call_;
-  // Which result we want.
-  unsigned int index_;
-};
-
-// Traverse a call result.
-
-int
-Call_result_expression::do_traverse(Traverse* traverse)
-{
-  if (traverse->remember_expression(this->call_))
-    {
-      // We have already traversed the call expression.
-      return TRAVERSE_CONTINUE;
-    }
-  return Expression::traverse(&this->call_, traverse);
-}
-
-// Get the type.
-
-Type*
-Call_result_expression::do_type()
-{
-  // THIS->CALL_ can be replaced with a temporary reference due to
-  // Call_expression::do_must_eval_in_order when there is an error.
-  Call_expression* ce = this->call_->call_expression();
-  if (ce == NULL)
-    return Type::make_error_type();
-  Function_type* fntype = ce->get_function_type();
-  if (fntype == NULL)
-    return Type::make_error_type();
-  const Typed_identifier_list* results = fntype->results();
-  Typed_identifier_list::const_iterator pr = results->begin();
-  for (unsigned int i = 0; i < this->index_; ++i)
-    {
-      if (pr == results->end())
-       return Type::make_error_type();
-      ++pr;
-    }
-  if (pr == results->end())
-    return Type::make_error_type();
-  return pr->type();
-}
-
-// Check the type.  This is where we give an error if we're trying to
-// extract too many values from a call.
-
-void
-Call_result_expression::do_check_types(Gogo*)
-{
-  bool ok = true;
-  Call_expression* ce = this->call_->call_expression();
-  if (ce != NULL)
-    ok = this->index_ < ce->result_count();
-  else
-    {
-      // This can happen when the call returns a single value but we
-      // are asking for the second result.
-      if (this->call_->is_error_expression())
-       return;
-      ok = false;
-    }
-  if (!ok)
-    error_at(this->location(),
-            "number of results does not match number of values");
-}
-
-// Determine the type.  We have nothing to do here, but the 0 result
-// needs to pass down to the caller.
-
-void
-Call_result_expression::do_determine_type(const Type_context*)
-{
-  if (this->index_ == 0)
-    this->call_->determine_type_no_context();
-}
-
-// Return the tree.
-
-tree
-Call_result_expression::do_get_tree(Translate_context* context)
-{
-  tree call_tree = this->call_->get_tree(context);
-  if (call_tree == error_mark_node)
-    return error_mark_node;
-  gcc_assert(TREE_CODE(TREE_TYPE(call_tree)) == RECORD_TYPE);
-  tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
-  for (unsigned int i = 0; i < this->index_; ++i)
-    {
-      gcc_assert(field != NULL_TREE);
-      field = DECL_CHAIN(field);
-    }
-  gcc_assert(field != NULL_TREE);
-  return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
-}
-
-// Make a reference to a single result of a call which returns
-// multiple results.
-
-Expression*
-Expression::make_call_result(Call_expression* call, unsigned int index)
-{
-  return new Call_result_expression(call, index);
-}
-
-// Class Index_expression.
-
-// Traversal.
-
-int
-Index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
-      || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
-      || (this->end_ != NULL
-         && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower an index expression.  This converts the generic index
-// expression into an array index, a string index, or a map index.
-
-Expression*
-Index_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location location = this->location();
-  Expression* left = this->left_;
-  Expression* start = this->start_;
-  Expression* end = this->end_;
-
-  Type* type = left->type();
-  if (type->is_error_type())
-    return Expression::make_error(location);
-  else if (type->array_type() != NULL)
-    return Expression::make_array_index(left, start, end, location);
-  else if (type->points_to() != NULL
-          && type->points_to()->array_type() != NULL
-          && !type->points_to()->is_open_array_type())
-    {
-      Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
-                                                location);
-      return Expression::make_array_index(deref, start, end, location);
-    }
-  else if (type->is_string_type())
-    return Expression::make_string_index(left, start, end, location);
-  else if (type->map_type() != NULL)
-    {
-      if (end != NULL)
-       {
-         error_at(location, "invalid slice of map");
-         return Expression::make_error(location);
-       }
-      Map_index_expression* ret= Expression::make_map_index(left, start,
-                                                           location);
-      if (this->is_lvalue_)
-       ret->set_is_lvalue();
-      return ret;
-    }
-  else
-    {
-      error_at(location,
-              "attempt to index object which is not array, string, or map");
-      return Expression::make_error(location);
-    }
-}
-
-// Make an index expression.
-
-Expression*
-Expression::make_index(Expression* left, Expression* start, Expression* end,
-                      source_location location)
-{
-  return new Index_expression(left, start, end, location);
-}
-
-// An array index.  This is used for both indexing and slicing.
-
-class Array_index_expression : public Expression
-{
- public:
-  Array_index_expression(Expression* array, Expression* start,
-                        Expression* end, source_location location)
-    : Expression(EXPRESSION_ARRAY_INDEX, location),
-      array_(array), start_(start), end_(end), type_(NULL)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_array_index(this->array_->copy(),
-                                       this->start_->copy(),
-                                       (this->end_ == NULL
-                                        ? NULL
-                                        : this->end_->copy()),
-                                       this->location());
-  }
-
-  bool
-  do_is_addressable() const;
-
-  void
-  do_address_taken(bool escapes)
-  { this->array_->address_taken(escapes); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The array we are getting a value from.
-  Expression* array_;
-  // The start or only index.
-  Expression* start_;
-  // The end index of a slice.  This may be NULL for a simple array
-  // index, or it may be a nil expression for the length of the array.
-  Expression* end_;
-  // The type of the expression.
-  Type* type_;
-};
-
-// Array index traversal.
-
-int
-Array_index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->end_ != NULL)
-    {
-      if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Return the type of an array index.
-
-Type*
-Array_index_expression::do_type()
-{
-  if (this->type_ == NULL)
-    {
-     Array_type* type = this->array_->type()->array_type();
-      if (type == NULL)
-       this->type_ = Type::make_error_type();
-      else if (this->end_ == NULL)
-       this->type_ = type->element_type();
-      else if (type->is_open_array_type())
-       {
-         // A slice of a slice has the same type as the original
-         // slice.
-         this->type_ = this->array_->type()->deref();
-       }
-      else
-       {
-         // A slice of an array is a slice.
-         this->type_ = Type::make_array_type(type->element_type(), NULL);
-       }
-    }
-  return this->type_;
-}
-
-// Set the type of an array index.
-
-void
-Array_index_expression::do_determine_type(const Type_context*)
-{
-  this->array_->determine_type_no_context();
-  Type_context subcontext(NULL, true);
-  this->start_->determine_type(&subcontext);
-  if (this->end_ != NULL)
-    this->end_->determine_type(&subcontext);
-}
-
-// Check types of an array index.
-
-void
-Array_index_expression::do_check_types(Gogo*)
-{
-  if (this->start_->type()->integer_type() == NULL)
-    this->report_error(_("index must be integer"));
-  if (this->end_ != NULL
-      && this->end_->type()->integer_type() == NULL
-      && !this->end_->is_nil_expression())
-    this->report_error(_("slice end must be integer"));
-
-  Array_type* array_type = this->array_->type()->array_type();
-  gcc_assert(array_type != NULL);
-
-  unsigned int int_bits =
-    Type::lookup_integer_type("int")->integer_type()->bits();
-
-  Type* dummy;
-  mpz_t lval;
-  mpz_init(lval);
-  bool lval_valid = (array_type->length() != NULL
-                    && array_type->length()->integer_constant_value(true,
-                                                                    lval,
-                                                                    &dummy));
-  mpz_t ival;
-  mpz_init(ival);
-  if (this->start_->integer_constant_value(true, ival, &dummy))
-    {
-      if (mpz_sgn(ival) < 0
-         || mpz_sizeinbase(ival, 2) >= int_bits
-         || (lval_valid
-             && (this->end_ == NULL
-                 ? mpz_cmp(ival, lval) >= 0
-                 : mpz_cmp(ival, lval) > 0)))
-       {
-         error_at(this->start_->location(), "array index out of bounds");
-         this->set_is_error();
-       }
-    }
-  if (this->end_ != NULL && !this->end_->is_nil_expression())
-    {
-      if (this->end_->integer_constant_value(true, ival, &dummy))
-       {
-         if (mpz_sgn(ival) < 0
-             || mpz_sizeinbase(ival, 2) >= int_bits
-             || (lval_valid && mpz_cmp(ival, lval) > 0))
-           {
-             error_at(this->end_->location(), "array index out of bounds");
-             this->set_is_error();
-           }
-       }
-    }
-  mpz_clear(ival);
-  mpz_clear(lval);
-
-  // A slice of an array requires an addressable array.  A slice of a
-  // slice is always possible.
-  if (this->end_ != NULL
-      && !array_type->is_open_array_type()
-      && !this->array_->is_addressable())
-    this->report_error(_("array is not addressable"));
-}
-
-// Return whether this expression is addressable.
-
-bool
-Array_index_expression::do_is_addressable() const
-{
-  // A slice expression is not addressable.
-  if (this->end_ != NULL)
-    return false;
-
-  // An index into a slice is addressable.
-  if (this->array_->type()->is_open_array_type())
-    return true;
-
-  // An index into an array is addressable if the array is
-  // addressable.
-  return this->array_->is_addressable();
-}
-
-// Get a tree for an array index.
-
-tree
-Array_index_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  source_location loc = this->location();
-
-  Array_type* array_type = this->array_->type()->array_type();
-  gcc_assert(array_type != NULL);
-
-  tree type_tree = array_type->get_tree(gogo);
-
-  tree array_tree = this->array_->get_tree(context);
-  if (array_tree == error_mark_node)
-    return error_mark_node;
-
-  if (array_type->length() == NULL && !DECL_P(array_tree))
-    array_tree = save_expr(array_tree);
-  tree length_tree = array_type->length_tree(gogo, array_tree);
-  length_tree = save_expr(length_tree);
-  tree length_type = TREE_TYPE(length_tree);
-
-  tree bad_index = boolean_false_node;
-
-  tree start_tree = this->start_->get_tree(context);
-  if (start_tree == error_mark_node)
-    return error_mark_node;
-  if (!DECL_P(start_tree))
-    start_tree = save_expr(start_tree);
-  if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
-    start_tree = convert_to_integer(length_type, start_tree);
-
-  bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
-                                      loc);
-
-  start_tree = fold_convert_loc(loc, length_type, start_tree);
-  bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
-                             fold_build2_loc(loc,
-                                             (this->end_ == NULL
-                                              ? GE_EXPR
-                                              : GT_EXPR),
-                                             boolean_type_node, start_tree,
-                                             length_tree));
-
-  int code = (array_type->length() != NULL
-             ? (this->end_ == NULL
-                ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
-                : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
-             : (this->end_ == NULL
-                ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
-                : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
-  tree crash = Gogo::runtime_error(code, loc);
-
-  if (this->end_ == NULL)
-    {
-      // Simple array indexing.  This has to return an l-value, so
-      // wrap the index check into START_TREE.
-      start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
-                         build3(COND_EXPR, void_type_node,
-                                bad_index, crash, NULL_TREE),
-                         start_tree);
-      start_tree = fold_convert_loc(loc, sizetype, start_tree);
-
-      if (array_type->length() != NULL)
-       {
-         // Fixed array.
-         return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
-                       start_tree, NULL_TREE, NULL_TREE);
-       }
-      else
-       {
-         // Open array.
-         tree values = array_type->value_pointer_tree(gogo, array_tree);
-         tree element_type_tree = array_type->element_type()->get_tree(gogo);
-         tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-         tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
-                                       start_tree, element_size);
-         tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
-                                    TREE_TYPE(values), values, offset);
-         return build_fold_indirect_ref(ptr);
-       }
-    }
-
-  // Array slice.
-
-  tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
-  capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
-
-  tree end_tree;
-  if (this->end_->is_nil_expression())
-    end_tree = length_tree;
-  else
-    {
-      end_tree = this->end_->get_tree(context);
-      if (end_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(end_tree))
-       end_tree = save_expr(end_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
-       end_tree = convert_to_integer(length_type, end_tree);
-
-      bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
-                                          loc);
-
-      end_tree = fold_convert_loc(loc, length_type, end_tree);
-
-      capacity_tree = save_expr(capacity_tree);
-      tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                                    fold_build2_loc(loc, LT_EXPR,
-                                                    boolean_type_node,
-                                                    end_tree, start_tree),
-                                    fold_build2_loc(loc, GT_EXPR,
-                                                    boolean_type_node,
-                                                    end_tree, capacity_tree));
-      bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                                 bad_index, bad_end);
-    }
-
-  tree element_type_tree = array_type->element_type()->get_tree(gogo);
-  tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-
-  tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
-                               fold_convert_loc(loc, sizetype, start_tree),
-                               element_size);
-
-  tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
-
-  value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
-                                 TREE_TYPE(value_pointer),
-                                 value_pointer, offset);
-
-  tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
-                                           end_tree, start_tree);
-
-  tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
-                                             capacity_tree, start_tree);
-
-  tree struct_tree = this->type()->get_tree(gogo);
-  gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(struct_tree);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  elt->index = field;
-  elt->value = value_pointer;
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-  elt->index = field;
-  elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
-  elt->index = field;
-  elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
-
-  tree constructor = build_constructor(struct_tree, init);
-
-  if (TREE_CONSTANT(value_pointer)
-      && TREE_CONSTANT(result_length_tree)
-      && TREE_CONSTANT(result_capacity_tree))
-    TREE_CONSTANT(constructor) = 1;
-
-  return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
-                        build3(COND_EXPR, void_type_node,
-                               bad_index, crash, NULL_TREE),
-                        constructor);
-}
-
-// Make an array index expression.  END may be NULL.
-
-Expression*
-Expression::make_array_index(Expression* array, Expression* start,
-                            Expression* end, source_location location)
-{
-  // Taking a slice of a composite literal requires moving the literal
-  // onto the heap.
-  if (end != NULL && array->is_composite_literal())
-    {
-      array = Expression::make_heap_composite(array, location);
-      array = Expression::make_unary(OPERATOR_MULT, array, location);
-    }
-  return new Array_index_expression(array, start, end, location);
-}
-
-// A string index.  This is used for both indexing and slicing.
-
-class String_index_expression : public Expression
-{
- public:
-  String_index_expression(Expression* string, Expression* start,
-                         Expression* end, source_location location)
-    : Expression(EXPRESSION_STRING_INDEX, location),
-      string_(string), start_(start), end_(end)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_string_index(this->string_->copy(),
-                                        this->start_->copy(),
-                                        (this->end_ == NULL
-                                         ? NULL
-                                         : this->end_->copy()),
-                                        this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The string we are getting a value from.
-  Expression* string_;
-  // The start or only index.
-  Expression* start_;
-  // The end index of a slice.  This may be NULL for a single index,
-  // or it may be a nil expression for the length of the string.
-  Expression* end_;
-};
-
-// String index traversal.
-
-int
-String_index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->end_ != NULL)
-    {
-      if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Return the type of a string index.
-
-Type*
-String_index_expression::do_type()
-{
-  if (this->end_ == NULL)
-    return Type::lookup_integer_type("uint8");
-  else
-    return Type::make_string_type();
-}
-
-// Determine the type of a string index.
-
-void
-String_index_expression::do_determine_type(const Type_context*)
-{
-  this->string_->determine_type_no_context();
-  Type_context subcontext(NULL, true);
-  this->start_->determine_type(&subcontext);
-  if (this->end_ != NULL)
-    this->end_->determine_type(&subcontext);
-}
-
-// Check types of a string index.
-
-void
-String_index_expression::do_check_types(Gogo*)
-{
-  if (this->start_->type()->integer_type() == NULL)
-    this->report_error(_("index must be integer"));
-  if (this->end_ != NULL
-      && this->end_->type()->integer_type() == NULL
-      && !this->end_->is_nil_expression())
-    this->report_error(_("slice end must be integer"));
-
-  std::string sval;
-  bool sval_valid = this->string_->string_constant_value(&sval);
-
-  mpz_t ival;
-  mpz_init(ival);
-  Type* dummy;
-  if (this->start_->integer_constant_value(true, ival, &dummy))
-    {
-      if (mpz_sgn(ival) < 0
-         || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
-       {
-         error_at(this->start_->location(), "string index out of bounds");
-         this->set_is_error();
-       }
-    }
-  if (this->end_ != NULL && !this->end_->is_nil_expression())
-    {
-      if (this->end_->integer_constant_value(true, ival, &dummy))
-       {
-         if (mpz_sgn(ival) < 0
-             || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
-           {
-             error_at(this->end_->location(), "string index out of bounds");
-             this->set_is_error();
-           }
-       }
-    }
-  mpz_clear(ival);
-}
-
-// Get a tree for a string index.
-
-tree
-String_index_expression::do_get_tree(Translate_context* context)
-{
-  source_location loc = this->location();
-
-  tree string_tree = this->string_->get_tree(context);
-  if (string_tree == error_mark_node)
-    return error_mark_node;
-
-  if (this->string_->type()->points_to() != NULL)
-    string_tree = build_fold_indirect_ref(string_tree);
-  if (!DECL_P(string_tree))
-    string_tree = save_expr(string_tree);
-  tree string_type = TREE_TYPE(string_tree);
-
-  tree length_tree = String_type::length_tree(context->gogo(), string_tree);
-  length_tree = save_expr(length_tree);
-  tree length_type = TREE_TYPE(length_tree);
-
-  tree bad_index = boolean_false_node;
-
-  tree start_tree = this->start_->get_tree(context);
-  if (start_tree == error_mark_node)
-    return error_mark_node;
-  if (!DECL_P(start_tree))
-    start_tree = save_expr(start_tree);
-  if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
-    start_tree = convert_to_integer(length_type, start_tree);
-
-  bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
-                                      loc);
-
-  start_tree = fold_convert_loc(loc, length_type, start_tree);
-
-  int code = (this->end_ == NULL
-             ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
-             : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
-  tree crash = Gogo::runtime_error(code, loc);
-
-  if (this->end_ == NULL)
-    {
-      bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                                 bad_index,
-                                 fold_build2_loc(loc, GE_EXPR,
-                                                 boolean_type_node,
-                                                 start_tree, length_tree));
-
-      tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
-      tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
-                                bytes_tree,
-                                fold_convert_loc(loc, sizetype, start_tree));
-      tree index = build_fold_indirect_ref_loc(loc, ptr);
-
-      return build2(COMPOUND_EXPR, TREE_TYPE(index),
-                   build3(COND_EXPR, void_type_node,
-                          bad_index, crash, NULL_TREE),
-                   index);
-    }
-  else
-    {
-      tree end_tree;
-      if (this->end_->is_nil_expression())
-       end_tree = build_int_cst(length_type, -1);
-      else
-       {
-         end_tree = this->end_->get_tree(context);
-         if (end_tree == error_mark_node)
-           return error_mark_node;
-         if (!DECL_P(end_tree))
-           end_tree = save_expr(end_tree);
-         if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
-           end_tree = convert_to_integer(length_type, end_tree);
-
-         bad_index = Expression::check_bounds(end_tree, length_type,
-                                              bad_index, loc);
-
-         end_tree = fold_convert_loc(loc, length_type, end_tree);
-       }
-
-      static tree strslice_fndecl;
-      tree ret = Gogo::call_builtin(&strslice_fndecl,
-                                   loc,
-                                   "__go_string_slice",
-                                   3,
-                                   string_type,
-                                   string_type,
-                                   string_tree,
-                                   length_type,
-                                   start_tree,
-                                   length_type,
-                                   end_tree);
-      // This will panic if the bounds are out of range for the
-      // string.
-      TREE_NOTHROW(strslice_fndecl) = 0;
-
-      if (bad_index == boolean_false_node)
-       return ret;
-      else
-       return build2(COMPOUND_EXPR, TREE_TYPE(ret),
-                     build3(COND_EXPR, void_type_node,
-                            bad_index, crash, NULL_TREE),
-                     ret);
-    }
-}
-
-// Make a string index expression.  END may be NULL.
-
-Expression*
-Expression::make_string_index(Expression* string, Expression* start,
-                             Expression* end, source_location location)
-{
-  return new String_index_expression(string, start, end, location);
-}
-
-// Class Map_index.
-
-// Get the type of the map.
-
-Map_type*
-Map_index_expression::get_map_type() const
-{
-  Map_type* mt = this->map_->type()->deref()->map_type();
-  gcc_assert(mt != NULL);
-  return mt;
-}
-
-// Map index traversal.
-
-int
-Map_index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Expression::traverse(&this->index_, traverse);
-}
-
-// Return the type of a map index.
-
-Type*
-Map_index_expression::do_type()
-{
-  Type* type = this->get_map_type()->val_type();
-  // If this map index is in a tuple assignment, we actually return a
-  // pointer to the value type.  Tuple_map_assignment_statement is
-  // responsible for handling this correctly.  We need to get the type
-  // right in case this gets assigned to a temporary variable.
-  if (this->is_in_tuple_assignment_)
-    type = Type::make_pointer_type(type);
-  return type;
-}
-
-// Fix the type of a map index.
-
-void
-Map_index_expression::do_determine_type(const Type_context*)
-{
-  this->map_->determine_type_no_context();
-  Type_context subcontext(this->get_map_type()->key_type(), false);
-  this->index_->determine_type(&subcontext);
-}
-
-// Check types of a map index.
-
-void
-Map_index_expression::do_check_types(Gogo*)
-{
-  std::string reason;
-  if (!Type::are_assignable(this->get_map_type()->key_type(),
-                           this->index_->type(), &reason))
-    {
-      if (reason.empty())
-       this->report_error(_("incompatible type for map index"));
-      else
-       {
-         error_at(this->location(), "incompatible type for map index (%s)",
-                  reason.c_str());
-         this->set_is_error();
-       }
-    }
-}
-
-// Get a tree for a map index.
-
-tree
-Map_index_expression::do_get_tree(Translate_context* context)
-{
-  Map_type* type = this->get_map_type();
-
-  tree valptr = this->get_value_pointer(context, this->is_lvalue_);
-  if (valptr == error_mark_node)
-    return error_mark_node;
-  valptr = save_expr(valptr);
-
-  tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
-
-  if (this->is_lvalue_)
-    return build_fold_indirect_ref(valptr);
-  else if (this->is_in_tuple_assignment_)
-    {
-      // Tuple_map_assignment_statement is responsible for using this
-      // appropriately.
-      return valptr;
-    }
-  else
-    {
-      return fold_build3(COND_EXPR, val_type_tree,
-                        fold_build2(EQ_EXPR, boolean_type_node, valptr,
-                                    fold_convert(TREE_TYPE(valptr),
-                                                 null_pointer_node)),
-                        type->val_type()->get_init_tree(context->gogo(),
-                                                        false),
-                        build_fold_indirect_ref(valptr));
-    }
-}
-
-// Get a tree for the map index.  This returns a tree which evaluates
-// to a pointer to a value.  The pointer will be NULL if the key is
-// not in the map.
-
-tree
-Map_index_expression::get_value_pointer(Translate_context* context,
-                                       bool insert)
-{
-  Map_type* type = this->get_map_type();
-
-  tree map_tree = this->map_->get_tree(context);
-  tree index_tree = this->index_->get_tree(context);
-  index_tree = Expression::convert_for_assignment(context, type->key_type(),
-                                                 this->index_->type(),
-                                                 index_tree,
-                                                 this->location());
-  if (map_tree == error_mark_node || index_tree == error_mark_node)
-    return error_mark_node;
-
-  if (this->map_->type()->points_to() != NULL)
-    map_tree = build_fold_indirect_ref(map_tree);
-
-  // We need to pass in a pointer to the key, so stuff it into a
-  // variable.
-  tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
-  DECL_IGNORED_P(tmp) = 0;
-  DECL_INITIAL(tmp) = index_tree;
-  tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-  tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
-  TREE_ADDRESSABLE(tmp) = 1;
-
-  static tree map_index_fndecl;
-  tree call = Gogo::call_builtin(&map_index_fndecl,
-                                this->location(),
-                                "__go_map_index",
-                                3,
-                                const_ptr_type_node,
-                                TREE_TYPE(map_tree),
-                                map_tree,
-                                const_ptr_type_node,
-                                tmpref,
-                                boolean_type_node,
-                                (insert
-                                 ? boolean_true_node
-                                 : boolean_false_node));
-  // This can panic on a map of interface type if the interface holds
-  // an uncomparable or unhashable type.
-  TREE_NOTHROW(map_index_fndecl) = 0;
-
-  tree val_type_tree = type->val_type()->get_tree(context->gogo());
-  if (val_type_tree == error_mark_node)
-    return error_mark_node;
-  tree ptr_val_type_tree = build_pointer_type(val_type_tree);
-
-  return build2(COMPOUND_EXPR, ptr_val_type_tree,
-               make_tmp,
-               fold_convert(ptr_val_type_tree, call));
-}
-
-// Make a map index expression.
-
-Map_index_expression*
-Expression::make_map_index(Expression* map, Expression* index,
-                          source_location location)
-{
-  return new Map_index_expression(map, index, location);
-}
-
-// Class Field_reference_expression.
-
-// Return the type of a field reference.
-
-Type*
-Field_reference_expression::do_type()
-{
-  Struct_type* struct_type = this->expr_->type()->struct_type();
-  gcc_assert(struct_type != NULL);
-  return struct_type->field(this->field_index_)->type();
-}
-
-// Check the types for a field reference.
-
-void
-Field_reference_expression::do_check_types(Gogo*)
-{
-  Struct_type* struct_type = this->expr_->type()->struct_type();
-  gcc_assert(struct_type != NULL);
-  gcc_assert(struct_type->field(this->field_index_) != NULL);
-}
-
-// Get a tree for a field reference.
-
-tree
-Field_reference_expression::do_get_tree(Translate_context* context)
-{
-  tree struct_tree = this->expr_->get_tree(context);
-  if (struct_tree == error_mark_node
-      || TREE_TYPE(struct_tree) == error_mark_node)
-    return error_mark_node;
-  gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
-  tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
-  gcc_assert(field != NULL_TREE);
-  for (unsigned int i = this->field_index_; i > 0; --i)
-    {
-      field = DECL_CHAIN(field);
-      gcc_assert(field != NULL_TREE);
-    }
-  return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
-               NULL_TREE);
-}
-
-// Make a reference to a qualified identifier in an expression.
-
-Field_reference_expression*
-Expression::make_field_reference(Expression* expr, unsigned int field_index,
-                                source_location location)
-{
-  return new Field_reference_expression(expr, field_index, location);
-}
-
-// Class Interface_field_reference_expression.
-
-// Return a tree for the pointer to the function to call.
-
-tree
-Interface_field_reference_expression::get_function_tree(Translate_context*,
-                                                       tree expr)
-{
-  if (this->expr_->type()->points_to() != NULL)
-    expr = build_fold_indirect_ref(expr);
-
-  tree expr_type = TREE_TYPE(expr);
-  gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
-
-  tree field = TYPE_FIELDS(expr_type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
-
-  tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
-  gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
-
-  table = build_fold_indirect_ref(table);
-  gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
-
-  std::string name = Gogo::unpack_hidden_name(this->name_);
-  for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
-       field != NULL_TREE;
-       field = DECL_CHAIN(field))
-    {
-      if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
-       break;
-    }
-  gcc_assert(field != NULL_TREE);
-
-  return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
-}
-
-// Return a tree for the first argument to pass to the interface
-// function.
-
-tree
-Interface_field_reference_expression::get_underlying_object_tree(
-    Translate_context*,
-    tree expr)
-{
-  if (this->expr_->type()->points_to() != NULL)
-    expr = build_fold_indirect_ref(expr);
-
-  tree expr_type = TREE_TYPE(expr);
-  gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
-
-  tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
-
-  return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
-}
-
-// Traversal.
-
-int
-Interface_field_reference_expression::do_traverse(Traverse* traverse)
-{
-  return Expression::traverse(&this->expr_, traverse);
-}
-
-// Return the type of an interface field reference.
-
-Type*
-Interface_field_reference_expression::do_type()
-{
-  Type* expr_type = this->expr_->type();
-
-  Type* points_to = expr_type->points_to();
-  if (points_to != NULL)
-    expr_type = points_to;
-
-  Interface_type* interface_type = expr_type->interface_type();
-  if (interface_type == NULL)
-    return Type::make_error_type();
-
-  const Typed_identifier* method = interface_type->find_method(this->name_);
-  if (method == NULL)
-    return Type::make_error_type();
-
-  return method->type();
-}
-
-// Determine types.
-
-void
-Interface_field_reference_expression::do_determine_type(const Type_context*)
-{
-  this->expr_->determine_type_no_context();
-}
-
-// Check the types for an interface field reference.
-
-void
-Interface_field_reference_expression::do_check_types(Gogo*)
-{
-  Type* type = this->expr_->type();
-
-  Type* points_to = type->points_to();
-  if (points_to != NULL)
-    type = points_to;
-
-  Interface_type* interface_type = type->interface_type();
-  if (interface_type == NULL)
-    this->report_error(_("expected interface or pointer to interface"));
-  else
-    {
-      const Typed_identifier* method =
-       interface_type->find_method(this->name_);
-      if (method == NULL)
-       {
-         error_at(this->location(), "method %qs not in interface",
-                  Gogo::message_name(this->name_).c_str());
-         this->set_is_error();
-       }
-    }
-}
-
-// Get a tree for a reference to a field in an interface.  There is no
-// standard tree type representation for this: it's a function
-// attached to its first argument, like a Bound_method_expression.
-// The only places it may currently be used are in a Call_expression
-// or a Go_statement, which will take it apart directly.  So this has
-// nothing to do at present.
-
-tree
-Interface_field_reference_expression::do_get_tree(Translate_context*)
-{
-  gcc_unreachable();
-}
-
-// Make a reference to a field in an interface.
-
-Expression*
-Expression::make_interface_field_reference(Expression* expr,
-                                          const std::string& field,
-                                          source_location location)
-{
-  return new Interface_field_reference_expression(expr, field, location);
-}
-
-// A general selector.  This is a Parser_expression for LEFT.NAME.  It
-// is lowered after we know the type of the left hand side.
-
-class Selector_expression : public Parser_expression
-{
- public:
-  Selector_expression(Expression* left, const std::string& name,
-                     source_location location)
-    : Parser_expression(EXPRESSION_SELECTOR, location),
-      left_(left), name_(name)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Expression::traverse(&this->left_, traverse); }
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  Expression*
-  do_copy()
-  {
-    return new Selector_expression(this->left_->copy(), this->name_,
-                                  this->location());
-  }
-
- private:
-  Expression*
-  lower_method_expression(Gogo*);
-
-  // The expression on the left hand side.
-  Expression* left_;
-  // The name on the right hand side.
-  std::string name_;
-};
-
-// Lower a selector expression once we know the real type of the left
-// hand side.
-
-Expression*
-Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
-{
-  Expression* left = this->left_;
-  if (left->is_type_expression())
-    return this->lower_method_expression(gogo);
-  return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
-                                   this->location());
-}
-
-// Lower a method expression T.M or (*T).M.  We turn this into a
-// function literal.
-
-Expression*
-Selector_expression::lower_method_expression(Gogo* gogo)
-{
-  source_location location = this->location();
-  Type* type = this->left_->type();
-  const std::string& name(this->name_);
-
-  bool is_pointer;
-  if (type->points_to() == NULL)
-    is_pointer = false;
-  else
-    {
-      is_pointer = true;
-      type = type->points_to();
-    }
-  Named_type* nt = type->named_type();
-  if (nt == NULL)
-    {
-      error_at(location,
-              ("method expression requires named type or "
-               "pointer to named type"));
-      return Expression::make_error(location);
-    }
-
-  bool is_ambiguous;
-  Method* method = nt->method_function(name, &is_ambiguous);
-  if (method == NULL)
-    {
-      if (!is_ambiguous)
-       error_at(location, "type %<%s%> has no method %<%s%>",
-                nt->message_name().c_str(),
-                Gogo::message_name(name).c_str());
-      else
-       error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
-                Gogo::message_name(name).c_str(),
-                nt->message_name().c_str());
-      return Expression::make_error(location);
-    }
-
-  if (!is_pointer && !method->is_value_method())
-    {
-      error_at(location, "method requires pointer (use %<(*%s).%s)%>",
-              nt->message_name().c_str(),
-              Gogo::message_name(name).c_str());
-      return Expression::make_error(location);
-    }
-
-  // Build a new function type in which the receiver becomes the first
-  // argument.
-  Function_type* method_type = method->type();
-  gcc_assert(method_type->is_method());
-
-  const char* const receiver_name = "$this";
-  Typed_identifier_list* parameters = new Typed_identifier_list();
-  parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
-                                        location));
-
-  const Typed_identifier_list* method_parameters = method_type->parameters();
-  if (method_parameters != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = method_parameters->begin();
-          p != method_parameters->end();
-          ++p)
-       parameters->push_back(*p);
-    }
-
-  const Typed_identifier_list* method_results = method_type->results();
-  Typed_identifier_list* results;
-  if (method_results == NULL)
-    results = NULL;
-  else
-    {
-      results = new Typed_identifier_list();
-      for (Typed_identifier_list::const_iterator p = method_results->begin();
-          p != method_results->end();
-          ++p)
-       results->push_back(*p);
-    }
-  
-  Function_type* fntype = Type::make_function_type(NULL, parameters, results,
-                                                  location);
-  if (method_type->is_varargs())
-    fntype->set_is_varargs();
-
-  // We generate methods which always takes a pointer to the receiver
-  // as their first argument.  If this is for a pointer type, we can
-  // simply reuse the existing function.  We use an internal hack to
-  // get the right type.
-
-  if (is_pointer)
-    {
-      Named_object* mno = (method->needs_stub_method()
-                          ? method->stub_object()
-                          : method->named_object());
-      Expression* f = Expression::make_func_reference(mno, NULL, location);
-      f = Expression::make_cast(fntype, f, location);
-      Type_conversion_expression* tce =
-       static_cast<Type_conversion_expression*>(f);
-      tce->set_may_convert_function_types();
-      return f;
-    }
-
-  Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
-                                         location);
-
-  Named_object* vno = gogo->lookup(receiver_name, NULL);
-  gcc_assert(vno != NULL);
-  Expression* ve = Expression::make_var_reference(vno, location);
-  Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
-  gcc_assert(bm != NULL && !bm->is_error_expression());
-
-  Expression_list* args;
-  if (method_parameters == NULL)
-    args = NULL;
-  else
-    {
-      args = new Expression_list();
-      for (Typed_identifier_list::const_iterator p = method_parameters->begin();
-          p != method_parameters->end();
-          ++p)
-       {
-         vno = gogo->lookup(p->name(), NULL);
-         gcc_assert(vno != NULL);
-         args->push_back(Expression::make_var_reference(vno, location));
-       }
-    }
-
-  Call_expression* call = Expression::make_call(bm, args,
-                                               method_type->is_varargs(),
-                                               location);
-
-  size_t count = call->result_count();
-  Statement* s;
-  if (count == 0)
-    s = Statement::make_statement(call);
-  else
-    {
-      Expression_list* retvals = new Expression_list();
-      if (count <= 1)
-       retvals->push_back(call);
-      else
-       {
-         for (size_t i = 0; i < count; ++i)
-           retvals->push_back(Expression::make_call_result(call, i));
-       }
-      s = Statement::make_return_statement(no->func_value()->type()->results(),
-                                          retvals, location);
-    }
-  gogo->add_statement(s);
-
-  gogo->finish_function(location);
-
-  return Expression::make_func_reference(no, NULL, location);
-}
-
-// Make a selector expression.
-
-Expression*
-Expression::make_selector(Expression* left, const std::string& name,
-                         source_location location)
-{
-  return new Selector_expression(left, name, location);
-}
-
-// Implement the builtin function new.
-
-class Allocation_expression : public Expression
-{
- public:
-  Allocation_expression(Type* type, source_location location)
-    : Expression(EXPRESSION_ALLOCATION, location),
-      type_(type)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Type::traverse(this->type_, traverse); }
-
-  Type*
-  do_type()
-  { return Type::make_pointer_type(this->type_); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  { return new Allocation_expression(this->type_, this->location()); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type we are allocating.
-  Type* type_;
-};
-
-// Check the type of an allocation expression.
-
-void
-Allocation_expression::do_check_types(Gogo*)
-{
-  if (this->type_->function_type() != NULL)
-    this->report_error(_("invalid new of function type"));
-}
-
-// Return a tree for an allocation expression.
-
-tree
-Allocation_expression::do_get_tree(Translate_context* context)
-{
-  tree type_tree = this->type_->get_tree(context->gogo());
-  tree size_tree = TYPE_SIZE_UNIT(type_tree);
-  tree space = context->gogo()->allocate_memory(this->type_, size_tree,
-                                               this->location());
-  return fold_convert(build_pointer_type(type_tree), space);
-}
-
-// Make an allocation expression.
-
-Expression*
-Expression::make_allocation(Type* type, source_location location)
-{
-  return new Allocation_expression(type, location);
-}
-
-// Implement the builtin function make.
-
-class Make_expression : public Expression
-{
- public:
-  Make_expression(Type* type, Expression_list* args, source_location location)
-    : Expression(EXPRESSION_MAKE, location),
-      type_(type), args_(args)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Make_expression(this->type_, this->args_->copy(),
-                              this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type we are making.
-  Type* type_;
-  // The arguments to pass to the make routine.
-  Expression_list* args_;
-};
-
-// Traversal.
-
-int
-Make_expression::do_traverse(Traverse* traverse)
-{
-  if (this->args_ != NULL
-      && this->args_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Set types of arguments.
-
-void
-Make_expression::do_determine_type(const Type_context*)
-{
-  if (this->args_ != NULL)
-    {
-      Type_context context(Type::lookup_integer_type("int"), false);
-      for (Expression_list::const_iterator pe = this->args_->begin();
-          pe != this->args_->end();
-          ++pe)
-       (*pe)->determine_type(&context);
-    }
-}
-
-// Check types for a make expression.
-
-void
-Make_expression::do_check_types(Gogo*)
-{
-  if (this->type_->channel_type() == NULL
-      && this->type_->map_type() == NULL
-      && (this->type_->array_type() == NULL
-         || this->type_->array_type()->length() != NULL))
-    this->report_error(_("invalid type for make function"));
-  else if (!this->type_->check_make_expression(this->args_, this->location()))
-    this->set_is_error();
-}
-
-// Return a tree for a make expression.
-
-tree
-Make_expression::do_get_tree(Translate_context* context)
-{
-  return this->type_->make_expression_tree(context, this->args_,
-                                          this->location());
-}
-
-// Make a make expression.
-
-Expression*
-Expression::make_make(Type* type, Expression_list* args,
-                     source_location location)
-{
-  return new Make_expression(type, args, location);
-}
-
-// Construct a struct.
-
-class Struct_construction_expression : public Expression
-{
- public:
-  Struct_construction_expression(Type* type, Expression_list* vals,
-                                source_location location)
-    : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
-      type_(type), vals_(vals)
-  { }
-
-  // Return whether this is a constant initializer.
-  bool
-  is_constant_struct() const;
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Struct_construction_expression(this->type_, this->vals_->copy(),
-                                             this->location());
-  }
-
-  bool
-  do_is_addressable() const
-  { return true; }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The type of the struct to construct.
-  Type* type_;
-  // The list of values, in order of the fields in the struct.  A NULL
-  // entry means that the field should be zero-initialized.
-  Expression_list* vals_;
-};
-
-// Traversal.
-
-int
-Struct_construction_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Return whether this is a constant initializer.
-
-bool
-Struct_construction_expression::is_constant_struct() const
-{
-  if (this->vals_ == NULL)
-    return true;
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      if (*pv != NULL
-         && !(*pv)->is_constant()
-         && (!(*pv)->is_composite_literal()
-             || (*pv)->is_nonconstant_composite_literal()))
-       return false;
-    }
-
-  const Struct_field_list* fields = this->type_->struct_type()->fields();
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      // There are no constant constructors for interfaces.
-      if (pf->type()->interface_type() != NULL)
-       return false;
-    }
-
-  return true;
-}
-
-// Final type determination.
-
-void
-Struct_construction_expression::do_determine_type(const Type_context*)
-{
-  if (this->vals_ == NULL)
-    return;
-  const Struct_field_list* fields = this->type_->struct_type()->fields();
-  Expression_list::const_iterator pv = this->vals_->begin();
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++pv)
-    {
-      if (pv == this->vals_->end())
-       return;
-      if (*pv != NULL)
-       {
-         Type_context subcontext(pf->type(), false);
-         (*pv)->determine_type(&subcontext);
-       }
-    }
-}
-
-// Check types.
-
-void
-Struct_construction_expression::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Struct_type* st = this->type_->struct_type();
-  if (this->vals_->size() > st->field_count())
-    {
-      this->report_error(_("too many expressions for struct"));
-      return;
-    }
-
-  const Struct_field_list* fields = st->fields();
-  Expression_list::const_iterator pv = this->vals_->begin();
-  int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++pv, ++i)
-    {
-      if (pv == this->vals_->end())
-       {
-         this->report_error(_("too few expressions for struct"));
-         break;
-       }
-
-      if (*pv == NULL)
-       continue;
-
-      std::string reason;
-      if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
-       {
-         if (reason.empty())
-           error_at((*pv)->location(),
-                    "incompatible type for field %d in struct construction",
-                    i + 1);
-         else
-           error_at((*pv)->location(),
-                    ("incompatible type for field %d in "
-                     "struct construction (%s)"),
-                    i + 1, reason.c_str());
-         this->set_is_error();
-       }
-    }
-  gcc_assert(pv == this->vals_->end());
-}
-
-// Return a tree for constructing a struct.
-
-tree
-Struct_construction_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-
-  if (this->vals_ == NULL)
-    return this->type_->get_init_tree(gogo, false);
-
-  tree type_tree = this->type_->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-  gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-  bool is_constant = true;
-  const Struct_field_list* fields = this->type_->struct_type()->fields();
-  VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
-                                           fields->size());
-  Struct_field_list::const_iterator pf = fields->begin();
-  Expression_list::const_iterator pv = this->vals_->begin();
-  for (tree field = TYPE_FIELDS(type_tree);
-       field != NULL_TREE;
-       field = DECL_CHAIN(field), ++pf)
-    {
-      gcc_assert(pf != fields->end());
-
-      tree val;
-      if (pv == this->vals_->end())
-       val = pf->type()->get_init_tree(gogo, false);
-      else if (*pv == NULL)
-       {
-         val = pf->type()->get_init_tree(gogo, false);
-         ++pv;
-       }
-      else
-       {
-         val = Expression::convert_for_assignment(context, pf->type(),
-                                                  (*pv)->type(),
-                                                  (*pv)->get_tree(context),
-                                                  this->location());
-         ++pv;
-       }
-
-      if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
-       return error_mark_node;
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
-      elt->index = field;
-      elt->value = val;
-      if (!TREE_CONSTANT(val))
-       is_constant = false;
-    }
-  gcc_assert(pf == fields->end());
-
-  tree ret = build_constructor(type_tree, elts);
-  if (is_constant)
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Export a struct construction.
-
-void
-Struct_construction_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      exp->write_c_string(", ");
-      if (*pv != NULL)
-       (*pv)->export_expression(exp);
-    }
-  exp->write_c_string(")");
-}
-
-// Make a struct composite literal.  This used by the thunk code.
-
-Expression*
-Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
-                                         source_location location)
-{
-  gcc_assert(type->struct_type() != NULL);
-  return new Struct_construction_expression(type, vals, location);
-}
-
-// Construct an array.  This class is not used directly; instead we
-// use the child classes, Fixed_array_construction_expression and
-// Open_array_construction_expression.
-
-class Array_construction_expression : public Expression
-{
- protected:
-  Array_construction_expression(Expression_classification classification,
-                               Type* type, Expression_list* vals,
-                               source_location location)
-    : Expression(classification, location),
-      type_(type), vals_(vals)
-  { }
-
- public:
-  // Return whether this is a constant initializer.
-  bool
-  is_constant_array() const;
-
-  // Return the number of elements.
-  size_t
-  element_count() const
-  { return this->vals_ == NULL ? 0 : this->vals_->size(); }
-
-protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_is_addressable() const
-  { return true; }
-
-  void
-  do_export(Export*) const;
-
-  // The list of values.
-  Expression_list*
-  vals()
-  { return this->vals_; }
-
-  // Get a constructor tree for the array values.
-  tree
-  get_constructor_tree(Translate_context* context, tree type_tree);
-
- private:
-  // The type of the array to construct.
-  Type* type_;
-  // The list of values.
-  Expression_list* vals_;
-};
-
-// Traversal.
-
-int
-Array_construction_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Return whether this is a constant initializer.
-
-bool
-Array_construction_expression::is_constant_array() const
-{
-  if (this->vals_ == NULL)
-    return true;
-
-  // There are no constant constructors for interfaces.
-  if (this->type_->array_type()->element_type()->interface_type() != NULL)
-    return false;
-
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      if (*pv != NULL
-         && !(*pv)->is_constant()
-         && (!(*pv)->is_composite_literal()
-             || (*pv)->is_nonconstant_composite_literal()))
-       return false;
-    }
-  return true;
-}
-
-// Final type determination.
-
-void
-Array_construction_expression::do_determine_type(const Type_context*)
-{
-  if (this->vals_ == NULL)
-    return;
-  Type_context subcontext(this->type_->array_type()->element_type(), false);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      if (*pv != NULL)
-       (*pv)->determine_type(&subcontext);
-    }
-}
-
-// Check types.
-
-void
-Array_construction_expression::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Array_type* at = this->type_->array_type();
-  int i = 0;
-  Type* element_type = at->element_type();
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv, ++i)
-    {
-      if (*pv != NULL
-         && !Type::are_assignable(element_type, (*pv)->type(), NULL))
-       {
-         error_at((*pv)->location(),
-                  "incompatible type for element %d in composite literal",
-                  i + 1);
-         this->set_is_error();
-       }
-    }
-
-  Expression* length = at->length();
-  if (length != NULL)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* type;
-      if (at->length()->integer_constant_value(true, val, &type))
-       {
-         if (this->vals_->size() > mpz_get_ui(val))
-           this->report_error(_("too many elements in composite literal"));
-       }
-      mpz_clear(val);
-    }
-}
-
-// Get a constructor tree for the array values.
-
-tree
-Array_construction_expression::get_constructor_tree(Translate_context* context,
-                                                   tree type_tree)
-{
-  VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
-                                             (this->vals_ == NULL
-                                              ? 0
-                                              : this->vals_->size()));
-  Type* element_type = this->type_->array_type()->element_type();
-  bool is_constant = true;
-  if (this->vals_ != NULL)
-    {
-      size_t i = 0;
-      for (Expression_list::const_iterator pv = this->vals_->begin();
-          pv != this->vals_->end();
-          ++pv, ++i)
-       {
-         constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
-         elt->index = size_int(i);
-         if (*pv == NULL)
-           elt->value = element_type->get_init_tree(context->gogo(), false);
-         else
-           {
-             tree value_tree = (*pv)->get_tree(context);
-             elt->value = Expression::convert_for_assignment(context,
-                                                             element_type,
-                                                             (*pv)->type(),
-                                                             value_tree,
-                                                             this->location());
-           }
-         if (elt->value == error_mark_node)
-           return error_mark_node;
-         if (!TREE_CONSTANT(elt->value))
-           is_constant = false;
-       }
-    }
-
-  tree ret = build_constructor(type_tree, values);
-  if (is_constant)
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Export an array construction.
-
-void
-Array_construction_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  if (this->vals_ != NULL)
-    {
-      for (Expression_list::const_iterator pv = this->vals_->begin();
-          pv != this->vals_->end();
-          ++pv)
-       {
-         exp->write_c_string(", ");
-         if (*pv != NULL)
-           (*pv)->export_expression(exp);
-       }
-    }
-  exp->write_c_string(")");
-}
-
-// Construct a fixed array.
-
-class Fixed_array_construction_expression :
-  public Array_construction_expression
-{
- public:
-  Fixed_array_construction_expression(Type* type, Expression_list* vals,
-                                     source_location location)
-    : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
-                                   type, vals, location)
-  {
-    gcc_assert(type->array_type() != NULL
-              && type->array_type()->length() != NULL);
-  }
-
- protected:
-  Expression*
-  do_copy()
-  {
-    return new Fixed_array_construction_expression(this->type(),
-                                                  (this->vals() == NULL
-                                                   ? NULL
-                                                   : this->vals()->copy()),
-                                                  this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-};
-
-// Return a tree for constructing a fixed array.
-
-tree
-Fixed_array_construction_expression::do_get_tree(Translate_context* context)
-{
-  return this->get_constructor_tree(context,
-                                   this->type()->get_tree(context->gogo()));
-}
-
-// Construct an open array.
-
-class Open_array_construction_expression : public Array_construction_expression
-{
- public:
-  Open_array_construction_expression(Type* type, Expression_list* vals,
-                                    source_location location)
-    : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
-                                   type, vals, location)
-  {
-    gcc_assert(type->array_type() != NULL
-              && type->array_type()->length() == NULL);
-  }
-
- protected:
-  // Note that taking the address of an open array literal is invalid.
-
-  Expression*
-  do_copy()
-  {
-    return new Open_array_construction_expression(this->type(),
-                                                 (this->vals() == NULL
-                                                  ? NULL
-                                                  : this->vals()->copy()),
-                                                 this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-};
-
-// Return a tree for constructing an open array.
-
-tree
-Open_array_construction_expression::do_get_tree(Translate_context* context)
-{
-  Type* element_type = this->type()->array_type()->element_type();
-  tree element_type_tree = element_type->get_tree(context->gogo());
-  tree values;
-  tree length_tree;
-  if (this->vals() == NULL || this->vals()->empty())
-    {
-      // We need to create a unique value.
-      tree max = size_int(0);
-      tree constructor_type = build_array_type(element_type_tree,
-                                              build_index_type(max));
-      if (constructor_type == error_mark_node)
-       return error_mark_node;
-      VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
-      constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
-      elt->index = size_int(0);
-      elt->value = element_type->get_init_tree(context->gogo(), false);
-      values = build_constructor(constructor_type, vec);
-      if (TREE_CONSTANT(elt->value))
-       TREE_CONSTANT(values) = 1;
-      length_tree = size_int(0);
-    }
-  else
-    {
-      tree max = size_int(this->vals()->size() - 1);
-      tree constructor_type = build_array_type(element_type_tree,
-                                              build_index_type(max));
-      if (constructor_type == error_mark_node)
-       return error_mark_node;
-      values = this->get_constructor_tree(context, constructor_type);
-      length_tree = size_int(this->vals()->size());
-    }
-
-  if (values == error_mark_node)
-    return error_mark_node;
-
-  bool is_constant_initializer = TREE_CONSTANT(values);
-  bool is_in_function = context->function() != NULL;
-
-  if (is_constant_initializer)
-    {
-      tree tmp = build_decl(this->location(), VAR_DECL,
-                           create_tmp_var_name("C"), TREE_TYPE(values));
-      DECL_EXTERNAL(tmp) = 0;
-      TREE_PUBLIC(tmp) = 0;
-      TREE_STATIC(tmp) = 1;
-      DECL_ARTIFICIAL(tmp) = 1;
-      if (is_in_function)
-       {
-         // If this is not a function, we will only initialize the
-         // value once, so we can use this directly rather than
-         // copying it.  In that case we can't make it read-only,
-         // because the program is permitted to change it.
-         TREE_READONLY(tmp) = 1;
-         TREE_CONSTANT(tmp) = 1;
-       }
-      DECL_INITIAL(tmp) = values;
-      rest_of_decl_compilation(tmp, 1, 0);
-      values = tmp;
-    }
-
-  tree space;
-  tree set;
-  if (!is_in_function && is_constant_initializer)
-    {
-      // Outside of a function, we know the initializer will only run
-      // once.
-      space = build_fold_addr_expr(values);
-      set = NULL_TREE;
-    }
-  else
-    {
-      tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
-      space = context->gogo()->allocate_memory(element_type, memsize,
-                                              this->location());
-      space = save_expr(space);
-
-      tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
-      tree ref = build_fold_indirect_ref_loc(this->location(), s);
-      TREE_THIS_NOTRAP(ref) = 1;
-      set = build2(MODIFY_EXPR, void_type_node, ref, values);
-    }
-
-  // Build a constructor for the open array.
-
-  tree type_tree = this->type()->get_tree(context->gogo());
-  gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(type_tree);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), space);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), length_tree);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), length_tree);
-
-  tree constructor = build_constructor(type_tree, init);
-  if (!is_in_function && is_constant_initializer)
-    TREE_CONSTANT(constructor) = 1;
-
-  if (set == NULL_TREE)
-    return constructor;
-  else
-    return build2(COMPOUND_EXPR, type_tree, set, constructor);
-}
-
-// Make a slice composite literal.  This is used by the type
-// descriptor code.
-
-Expression*
-Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
-                                        source_location location)
-{
-  gcc_assert(type->is_open_array_type());
-  return new Open_array_construction_expression(type, vals, location);
-}
-
-// Construct a map.
-
-class Map_construction_expression : public Expression
-{
- public:
-  Map_construction_expression(Type* type, Expression_list* vals,
-                             source_location location)
-    : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
-      type_(type), vals_(vals)
-  { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Map_construction_expression(this->type_, this->vals_->copy(),
-                                          this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The type of the map to construct.
-  Type* type_;
-  // The list of values.
-  Expression_list* vals_;
-};
-
-// Traversal.
-
-int
-Map_construction_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Final type determination.
-
-void
-Map_construction_expression::do_determine_type(const Type_context*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Map_type* mt = this->type_->map_type();
-  Type_context key_context(mt->key_type(), false);
-  Type_context val_context(mt->val_type(), false);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      (*pv)->determine_type(&key_context);
-      ++pv;
-      (*pv)->determine_type(&val_context);
-    }
-}
-
-// Check types.
-
-void
-Map_construction_expression::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Map_type* mt = this->type_->map_type();
-  int i = 0;
-  Type* key_type = mt->key_type();
-  Type* val_type = mt->val_type();
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv, ++i)
-    {
-      if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
-       {
-         error_at((*pv)->location(),
-                  "incompatible type for element %d key in map construction",
-                  i + 1);
-         this->set_is_error();
-       }
-      ++pv;
-      if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
-       {
-         error_at((*pv)->location(),
-                  ("incompatible type for element %d value "
-                   "in map construction"),
-                  i + 1);
-         this->set_is_error();
-       }
-    }
-}
-
-// Return a tree for constructing a map.
-
-tree
-Map_construction_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  source_location loc = this->location();
-
-  Map_type* mt = this->type_->map_type();
-
-  // Build a struct to hold the key and value.
-  tree struct_type = make_node(RECORD_TYPE);
-
-  Type* key_type = mt->key_type();
-  tree id = get_identifier("__key");
-  tree key_field = build_decl(loc, FIELD_DECL, id, key_type->get_tree(gogo));
-  DECL_CONTEXT(key_field) = struct_type;
-  TYPE_FIELDS(struct_type) = key_field;
-
-  Type* val_type = mt->val_type();
-  id = get_identifier("__val");
-  tree val_field = build_decl(loc, FIELD_DECL, id, val_type->get_tree(gogo));
-  DECL_CONTEXT(val_field) = struct_type;
-  DECL_CHAIN(key_field) = val_field;
-
-  layout_type(struct_type);
-
-  bool is_constant = true;
-  size_t i = 0;
-  tree valaddr;
-  tree make_tmp;
-
-  if (this->vals_ == NULL || this->vals_->empty())
-    {
-      valaddr = null_pointer_node;
-      make_tmp = NULL_TREE;
-    }
-  else
-    {
-      VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
-                                                 this->vals_->size() / 2);
-
-      for (Expression_list::const_iterator pv = this->vals_->begin();
-          pv != this->vals_->end();
-          ++pv, ++i)
-       {
-         bool one_is_constant = true;
-
-         VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
-
-         constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
-         elt->index = key_field;
-         tree val_tree = (*pv)->get_tree(context);
-         elt->value = Expression::convert_for_assignment(context, key_type,
-                                                         (*pv)->type(),
-                                                         val_tree, loc);
-         if (elt->value == error_mark_node)
-           return error_mark_node;
-         if (!TREE_CONSTANT(elt->value))
-           one_is_constant = false;
-
-         ++pv;
-
-         elt = VEC_quick_push(constructor_elt, one, NULL);
-         elt->index = val_field;
-         val_tree = (*pv)->get_tree(context);
-         elt->value = Expression::convert_for_assignment(context, val_type,
-                                                         (*pv)->type(),
-                                                         val_tree, loc);
-         if (elt->value == error_mark_node)
-           return error_mark_node;
-         if (!TREE_CONSTANT(elt->value))
-           one_is_constant = false;
-
-         elt = VEC_quick_push(constructor_elt, values, NULL);
-         elt->index = size_int(i);
-         elt->value = build_constructor(struct_type, one);
-         if (one_is_constant)
-           TREE_CONSTANT(elt->value) = 1;
-         else
-           is_constant = false;
-       }
-
-      tree index_type = build_index_type(size_int(i - 1));
-      tree array_type = build_array_type(struct_type, index_type);
-      tree init = build_constructor(array_type, values);
-      if (is_constant)
-       TREE_CONSTANT(init) = 1;
-      tree tmp;
-      if (current_function_decl != NULL)
-       {
-         tmp = create_tmp_var(array_type, get_name(array_type));
-         DECL_INITIAL(tmp) = init;
-         make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
-         TREE_ADDRESSABLE(tmp) = 1;
-       }
-      else
-       {
-         tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
-         DECL_EXTERNAL(tmp) = 0;
-         TREE_PUBLIC(tmp) = 0;
-         TREE_STATIC(tmp) = 1;
-         DECL_ARTIFICIAL(tmp) = 1;
-         if (!TREE_CONSTANT(init))
-           make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
-                                      init);
-         else
-           {
-             TREE_READONLY(tmp) = 1;
-             TREE_CONSTANT(tmp) = 1;
-             DECL_INITIAL(tmp) = init;
-             make_tmp = NULL_TREE;
-           }
-         rest_of_decl_compilation(tmp, 1, 0);
-       }
-
-      valaddr = build_fold_addr_expr(tmp);
-    }
-
-  tree descriptor = gogo->map_descriptor(mt);
-
-  tree type_tree = this->type_->get_tree(gogo);
-
-  static tree construct_map_fndecl;
-  tree call = Gogo::call_builtin(&construct_map_fndecl,
-                                loc,
-                                "__go_construct_map",
-                                6,
-                                type_tree,
-                                TREE_TYPE(descriptor),
-                                descriptor,
-                                sizetype,
-                                size_int(i),
-                                sizetype,
-                                TYPE_SIZE_UNIT(struct_type),
-                                sizetype,
-                                byte_position(val_field),
-                                sizetype,
-                                TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
-                                const_ptr_type_node,
-                                fold_convert(const_ptr_type_node, valaddr));
-
-  tree ret;
-  if (make_tmp == NULL)
-    ret = call;
-  else
-    ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
-  return ret;
-}
-
-// Export an array construction.
-
-void
-Map_construction_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      exp->write_c_string(", ");
-      (*pv)->export_expression(exp);
-    }
-  exp->write_c_string(")");
-}
-
-// A general composite literal.  This is lowered to a type specific
-// version.
-
-class Composite_literal_expression : public Parser_expression
-{
- public:
-  Composite_literal_expression(Type* type, int depth, bool has_keys,
-                              Expression_list* vals, source_location location)
-    : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
-      type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  Expression*
-  do_copy()
-  {
-    return new Composite_literal_expression(this->type_, this->depth_,
-                                           this->has_keys_,
-                                           (this->vals_ == NULL
-                                            ? NULL
-                                            : this->vals_->copy()),
-                                           this->location());
-  }
-
- private:
-  Expression*
-  lower_struct(Type*);
-
-  Expression*
-  lower_array(Type*);
-
-  Expression*
-  make_array(Type*, Expression_list*);
-
-  Expression*
-  lower_map(Type*);
-
-  // The type of the composite literal.
-  Type* type_;
-  // The depth within a list of composite literals within a composite
-  // literal, when the type is omitted.
-  int depth_;
-  // The values to put in the composite literal.
-  Expression_list* vals_;
-  // If this is true, then VALS_ is a list of pairs: a key and a
-  // value.  In an array initializer, a missing key will be NULL.
-  bool has_keys_;
-};
-
-// Traversal.
-
-int
-Composite_literal_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Type::traverse(this->type_, traverse);
-}
-
-// Lower a generic composite literal into a specific version based on
-// the type.
-
-Expression*
-Composite_literal_expression::do_lower(Gogo*, Named_object*, int)
-{
-  Type* type = this->type_;
-
-  for (int depth = this->depth_; depth > 0; --depth)
-    {
-      if (type->array_type() != NULL)
-       type = type->array_type()->element_type();
-      else if (type->map_type() != NULL)
-       type = type->map_type()->val_type();
-      else
-       {
-         if (!type->is_error_type())
-           error_at(this->location(),
-                    ("may only omit types within composite literals "
-                     "of slice, array, or map type"));
-         return Expression::make_error(this->location());
-       }
-    }
-
-  if (type->is_error_type())
-    return Expression::make_error(this->location());
-  else if (type->struct_type() != NULL)
-    return this->lower_struct(type);
-  else if (type->array_type() != NULL)
-    return this->lower_array(type);
-  else if (type->map_type() != NULL)
-    return this->lower_map(type);
-  else
-    {
-      error_at(this->location(),
-              ("expected struct, slice, array, or map type "
-               "for composite literal"));
-      return Expression::make_error(this->location());
-    }
-}
-
-// Lower a struct composite literal.
-
-Expression*
-Composite_literal_expression::lower_struct(Type* type)
-{
-  source_location location = this->location();
-  Struct_type* st = type->struct_type();
-  if (this->vals_ == NULL || !this->has_keys_)
-    return new Struct_construction_expression(type, this->vals_, location);
-
-  size_t field_count = st->field_count();
-  std::vector<Expression*> vals(field_count);
-  Expression_list::const_iterator p = this->vals_->begin();
-  while (p != this->vals_->end())
-    {
-      Expression* name_expr = *p;
-
-      ++p;
-      gcc_assert(p != this->vals_->end());
-      Expression* val = *p;
-
-      ++p;
-
-      if (name_expr == NULL)
-       {
-         error_at(val->location(), "mixture of field and value initializers");
-         return Expression::make_error(location);
-       }
-
-      bool bad_key = false;
-      std::string name;
-      switch (name_expr->classification())
-       {
-       case EXPRESSION_UNKNOWN_REFERENCE:
-         name = name_expr->unknown_expression()->name();
-         break;
-
-       case EXPRESSION_CONST_REFERENCE:
-         name = static_cast<Const_expression*>(name_expr)->name();
-         break;
-
-       case EXPRESSION_TYPE:
-         {
-           Type* t = name_expr->type();
-           Named_type* nt = t->named_type();
-           if (nt == NULL)
-             bad_key = true;
-           else
-             name = nt->name();
-         }
-         break;
-
-       case EXPRESSION_VAR_REFERENCE:
-         name = name_expr->var_expression()->name();
-         break;
-
-       case EXPRESSION_FUNC_REFERENCE:
-         name = name_expr->func_expression()->name();
-         break;
-
-       case EXPRESSION_UNARY:
-         // If there is a local variable around with the same name as
-         // the field, and this occurs in the closure, then the
-         // parser may turn the field reference into an indirection
-         // through the closure.  FIXME: This is a mess.
-         {
-           bad_key = true;
-           Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
-           if (ue->op() == OPERATOR_MULT)
-             {
-               Field_reference_expression* fre =
-                 ue->operand()->field_reference_expression();
-               if (fre != NULL)
-                 {
-                   Struct_type* st =
-                     fre->expr()->type()->deref()->struct_type();
-                   if (st != NULL)
-                     {
-                       const Struct_field* sf = st->field(fre->field_index());
-                       name = sf->field_name();
-                       char buf[20];
-                       snprintf(buf, sizeof buf, "%u", fre->field_index());
-                       size_t buflen = strlen(buf);
-                       if (name.compare(name.length() - buflen, buflen, buf)
-                           == 0)
-                         {
-                           name = name.substr(0, name.length() - buflen);
-                           bad_key = false;
-                         }
-                     }
-                 }
-             }
-         }
-         break;
-
-       default:
-         bad_key = true;
-         break;
-       }
-      if (bad_key)
-       {
-         error_at(name_expr->location(), "expected struct field name");
-         return Expression::make_error(location);
-       }
-
-      unsigned int index;
-      const Struct_field* sf = st->find_local_field(name, &index);
-      if (sf == NULL)
-       {
-         error_at(name_expr->location(), "unknown field %qs in %qs",
-                  Gogo::message_name(name).c_str(),
-                  (type->named_type() != NULL
-                   ? type->named_type()->message_name().c_str()
-                   : "unnamed struct"));
-         return Expression::make_error(location);
-       }
-      if (vals[index] != NULL)
-       {
-         error_at(name_expr->location(),
-                  "duplicate value for field %qs in %qs",
-                  Gogo::message_name(name).c_str(),
-                  (type->named_type() != NULL
-                   ? type->named_type()->message_name().c_str()
-                   : "unnamed struct"));
-         return Expression::make_error(location);
-       }
-
-      vals[index] = val;
-    }
-
-  Expression_list* list = new Expression_list;
-  list->reserve(field_count);
-  for (size_t i = 0; i < field_count; ++i)
-    list->push_back(vals[i]);
-
-  return new Struct_construction_expression(type, list, location);
-}
-
-// Lower an array composite literal.
-
-Expression*
-Composite_literal_expression::lower_array(Type* type)
-{
-  source_location location = this->location();
-  if (this->vals_ == NULL || !this->has_keys_)
-    return this->make_array(type, this->vals_);
-
-  std::vector<Expression*> vals;
-  vals.reserve(this->vals_->size());
-  unsigned long index = 0;
-  Expression_list::const_iterator p = this->vals_->begin();
-  while (p != this->vals_->end())
-    {
-      Expression* index_expr = *p;
-
-      ++p;
-      gcc_assert(p != this->vals_->end());
-      Expression* val = *p;
-
-      ++p;
-
-      if (index_expr != NULL)
-       {
-         mpz_t ival;
-         mpz_init(ival);
-         Type* dummy;
-         if (!index_expr->integer_constant_value(true, ival, &dummy))
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(),
-                      "index expression is not integer constant");
-             return Expression::make_error(location);
-           }
-         if (mpz_sgn(ival) < 0)
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(), "index expression is negative");
-             return Expression::make_error(location);
-           }
-         index = mpz_get_ui(ival);
-         if (mpz_cmp_ui(ival, index) != 0)
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(), "index value overflow");
-             return Expression::make_error(location);
-           }
-         mpz_clear(ival);
-       }
-
-      if (index == vals.size())
-       vals.push_back(val);
-      else
-       {
-         if (index > vals.size())
-           {
-             vals.reserve(index + 32);
-             vals.resize(index + 1, static_cast<Expression*>(NULL));
-           }
-         if (vals[index] != NULL)
-           {
-             error_at((index_expr != NULL
-                       ? index_expr->location()
-                       : val->location()),
-                      "duplicate value for index %lu",
-                      index);
-             return Expression::make_error(location);
-           }
-         vals[index] = val;
-       }
-
-      ++index;
-    }
-
-  size_t size = vals.size();
-  Expression_list* list = new Expression_list;
-  list->reserve(size);
-  for (size_t i = 0; i < size; ++i)
-    list->push_back(vals[i]);
-
-  return this->make_array(type, list);
-}
-
-// Actually build the array composite literal. This handles
-// [...]{...}.
-
-Expression*
-Composite_literal_expression::make_array(Type* type, Expression_list* vals)
-{
-  source_location location = this->location();
-  Array_type* at = type->array_type();
-  if (at->length() != NULL && at->length()->is_nil_expression())
-    {
-      size_t size = vals == NULL ? 0 : vals->size();
-      mpz_t vlen;
-      mpz_init_set_ui(vlen, size);
-      Expression* elen = Expression::make_integer(&vlen, NULL, location);
-      mpz_clear(vlen);
-      at = Type::make_array_type(at->element_type(), elen);
-      type = at;
-    }
-  if (at->length() != NULL)
-    return new Fixed_array_construction_expression(type, vals, location);
-  else
-    return new Open_array_construction_expression(type, vals, location);
-}
-
-// Lower a map composite literal.
-
-Expression*
-Composite_literal_expression::lower_map(Type* type)
-{
-  source_location location = this->location();
-  if (this->vals_ != NULL)
-    {
-      if (!this->has_keys_)
-       {
-         error_at(location, "map composite literal must have keys");
-         return Expression::make_error(location);
-       }
-
-      for (Expression_list::const_iterator p = this->vals_->begin();
-          p != this->vals_->end();
-          p += 2)
-       {
-         if (*p == NULL)
-           {
-             ++p;
-             error_at((*p)->location(),
-                      "map composite literal must have keys for every value");
-             return Expression::make_error(location);
-           }
-       }
-    }
-
-  return new Map_construction_expression(type, this->vals_, location);
-}
-
-// Make a composite literal expression.
-
-Expression*
-Expression::make_composite_literal(Type* type, int depth, bool has_keys,
-                                  Expression_list* vals,
-                                  source_location location)
-{
-  return new Composite_literal_expression(type, depth, has_keys, vals,
-                                         location);
-}
-
-// Return whether this expression is a composite literal.
-
-bool
-Expression::is_composite_literal() const
-{
-  switch (this->classification_)
-    {
-    case EXPRESSION_COMPOSITE_LITERAL:
-    case EXPRESSION_STRUCT_CONSTRUCTION:
-    case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
-    case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
-    case EXPRESSION_MAP_CONSTRUCTION:
-      return true;
-    default:
-      return false;
-    }
-}
-
-// Return whether this expression is a composite literal which is not
-// constant.
-
-bool
-Expression::is_nonconstant_composite_literal() const
-{
-  switch (this->classification_)
-    {
-    case EXPRESSION_STRUCT_CONSTRUCTION:
-      {
-       const Struct_construction_expression *psce =
-         static_cast<const Struct_construction_expression*>(this);
-       return !psce->is_constant_struct();
-      }
-    case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
-      {
-       const Fixed_array_construction_expression *pace =
-         static_cast<const Fixed_array_construction_expression*>(this);
-       return !pace->is_constant_array();
-      }
-    case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
-      {
-       const Open_array_construction_expression *pace =
-         static_cast<const Open_array_construction_expression*>(this);
-       return !pace->is_constant_array();
-      }
-    case EXPRESSION_MAP_CONSTRUCTION:
-      return true;
-    default:
-      return false;
-    }
-}
-
-// Return true if this is a reference to a local variable.
-
-bool
-Expression::is_local_variable() const
-{
-  const Var_expression* ve = this->var_expression();
-  if (ve == NULL)
-    return false;
-  const Named_object* no = ve->named_object();
-  return (no->is_result_variable()
-         || (no->is_variable() && !no->var_value()->is_global()));
-}
-
-// Class Type_guard_expression.
-
-// Traversal.
-
-int
-Type_guard_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
-      || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Check types of a type guard expression.  The expression must have
-// an interface type, but the actual type conversion is checked at run
-// time.
-
-void
-Type_guard_expression::do_check_types(Gogo*)
-{
-  // 6g permits using a type guard with unsafe.pointer; we are
-  // compatible.
-  Type* expr_type = this->expr_->type();
-  if (expr_type->is_unsafe_pointer_type())
-    {
-      if (this->type_->points_to() == NULL
-         && (this->type_->integer_type() == NULL
-             || (this->type_->forwarded()
-                 != Type::lookup_integer_type("uintptr"))))
-       this->report_error(_("invalid unsafe.Pointer conversion"));
-    }
-  else if (this->type_->is_unsafe_pointer_type())
-    {
-      if (expr_type->points_to() == NULL
-         && (expr_type->integer_type() == NULL
-             || (expr_type->forwarded()
-                 != Type::lookup_integer_type("uintptr"))))
-       this->report_error(_("invalid unsafe.Pointer conversion"));
-    }
-  else if (expr_type->interface_type() == NULL)
-    this->report_error(_("type assertion only valid for interface types"));
-  else if (this->type_->interface_type() == NULL)
-    {
-      std::string reason;
-      if (!expr_type->interface_type()->implements_interface(this->type_,
-                                                            &reason))
-       {
-         if (reason.empty())
-           this->report_error(_("impossible type assertion: "
-                                "type does not implement interface"));
-         else
-           {
-             error_at(this->location(),
-                      ("impossible type assertion: "
-                       "type does not implement interface (%s)"),
-                      reason.c_str());
-             this->set_is_error();
-           }
-       }
-    }
-}
-
-// Return a tree for a type guard expression.
-
-tree
-Type_guard_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree expr_tree = this->expr_->get_tree(context);
-  if (expr_tree == error_mark_node)
-    return error_mark_node;
-  Type* expr_type = this->expr_->type();
-  if ((this->type_->is_unsafe_pointer_type()
-       && (expr_type->points_to() != NULL
-          || expr_type->integer_type() != NULL))
-      || (expr_type->is_unsafe_pointer_type()
-         && this->type_->points_to() != NULL))
-    return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
-  else if (expr_type->is_unsafe_pointer_type()
-          && this->type_->integer_type() != NULL)
-    return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
-  else if (this->type_->interface_type() != NULL)
-    return Expression::convert_interface_to_interface(context, this->type_,
-                                                     this->expr_->type(),
-                                                     expr_tree, true,
-                                                     this->location());
-  else
-    return Expression::convert_for_assignment(context, this->type_,
-                                             this->expr_->type(), expr_tree,
-                                             this->location());
-}
-
-// Make a type guard expression.
-
-Expression*
-Expression::make_type_guard(Expression* expr, Type* type,
-                           source_location location)
-{
-  return new Type_guard_expression(expr, type, location);
-}
-
-// Class Heap_composite_expression.
-
-// When you take the address of a composite literal, it is allocated
-// on the heap.  This class implements that.
-
-class Heap_composite_expression : public Expression
-{
- public:
-  Heap_composite_expression(Expression* expr, source_location location)
-    : Expression(EXPRESSION_HEAP_COMPOSITE, location),
-      expr_(expr)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Expression::traverse(&this->expr_, traverse); }
-
-  Type*
-  do_type()
-  { return Type::make_pointer_type(this->expr_->type()); }
-
-  void
-  do_determine_type(const Type_context*)
-  { this->expr_->determine_type_no_context(); }
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_heap_composite(this->expr_->copy(),
-                                          this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  // We only export global objects, and the parser does not generate
-  // this in global scope.
-  void
-  do_export(Export*) const
-  { gcc_unreachable(); }
-
- private:
-  // The composite literal which is being put on the heap.
-  Expression* expr_;
-};
-
-// Return a tree which allocates a composite literal on the heap.
-
-tree
-Heap_composite_expression::do_get_tree(Translate_context* context)
-{
-  tree expr_tree = this->expr_->get_tree(context);
-  if (expr_tree == error_mark_node)
-    return error_mark_node;
-  tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
-  gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
-  tree space = context->gogo()->allocate_memory(this->expr_->type(),
-                                               expr_size, this->location());
-  space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
-  space = save_expr(space);
-  tree ref = build_fold_indirect_ref_loc(this->location(), space);
-  TREE_THIS_NOTRAP(ref) = 1;
-  tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
-                   build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
-                   space);
-  SET_EXPR_LOCATION(ret, this->location());
-  return ret;
-}
-
-// Allocate a composite literal on the heap.
-
-Expression*
-Expression::make_heap_composite(Expression* expr, source_location location)
-{
-  return new Heap_composite_expression(expr, location);
-}
-
-// Class Receive_expression.
-
-// Return the type of a receive expression.
-
-Type*
-Receive_expression::do_type()
-{
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  if (channel_type == NULL)
-    return Type::make_error_type();
-  return channel_type->element_type();
-}
-
-// Check types for a receive expression.
-
-void
-Receive_expression::do_check_types(Gogo*)
-{
-  Type* type = this->channel_->type();
-  if (type->is_error_type())
-    {
-      this->set_is_error();
-      return;
-    }
-  if (type->channel_type() == NULL)
-    {
-      this->report_error(_("expected channel"));
-      return;
-    }
-  if (!type->channel_type()->may_receive())
-    {
-      this->report_error(_("invalid receive on send-only channel"));
-      return;
-    }
-}
-
-// Get a tree for a receive expression.
-
-tree
-Receive_expression::do_get_tree(Translate_context* context)
-{
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  gcc_assert(channel_type != NULL);
-  Type* element_type = channel_type->element_type();
-  tree element_type_tree = element_type->get_tree(context->gogo());
-
-  tree channel = this->channel_->get_tree(context);
-  if (element_type_tree == error_mark_node || channel == error_mark_node)
-    return error_mark_node;
-
-  return Gogo::receive_from_channel(element_type_tree, channel,
-                                   this->for_select_, this->location());
-}
-
-// Make a receive expression.
-
-Receive_expression*
-Expression::make_receive(Expression* channel, source_location location)
-{
-  return new Receive_expression(channel, location);
-}
-
-// Class Send_expression.
-
-// Traversal.
-
-int
-Send_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Expression::traverse(&this->val_, traverse);
-}
-
-// Get the type.
-
-Type*
-Send_expression::do_type()
-{
-  return Type::lookup_bool_type();
-}
-
-// Set types.
-
-void
-Send_expression::do_determine_type(const Type_context*)
-{
-  this->channel_->determine_type_no_context();
-
-  Type* type = this->channel_->type();
-  Type_context subcontext;
-  if (type->channel_type() != NULL)
-    subcontext.type = type->channel_type()->element_type();
-  this->val_->determine_type(&subcontext);
-}
-
-// Check types.
-
-void
-Send_expression::do_check_types(Gogo*)
-{
-  Type* type = this->channel_->type();
-  if (type->is_error_type())
-    {
-      this->set_is_error();
-      return;
-    }
-  Channel_type* channel_type = type->channel_type();
-  if (channel_type == NULL)
-    {
-      error_at(this->location(), "left operand of %<<-%> must be channel");
-      this->set_is_error();
-      return;
-    }
-  Type* element_type = channel_type->element_type();
-  if (element_type != NULL
-      && !Type::are_assignable(element_type, this->val_->type(), NULL))
-    {
-      this->report_error(_("incompatible types in send"));
-      return;
-    }
-  if (!channel_type->may_send())
-    {
-      this->report_error(_("invalid send on receive-only channel"));
-      return;
-    }
-}
-
-// Get a tree for a send expression.
-
-tree
-Send_expression::do_get_tree(Translate_context* context)
-{
-  tree channel = this->channel_->get_tree(context);
-  tree val = this->val_->get_tree(context);
-  if (channel == error_mark_node || val == error_mark_node)
-    return error_mark_node;
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  val = Expression::convert_for_assignment(context,
-                                          channel_type->element_type(),
-                                          this->val_->type(),
-                                          val,
-                                          this->location());
-  return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
-                              this->for_select_, this->location());
-}
-
-// Make a send expression
-
-Send_expression*
-Expression::make_send(Expression* channel, Expression* val,
-                     source_location location)
-{
-  return new Send_expression(channel, val, location);
-}
-
-// An expression which evaluates to a pointer to the type descriptor
-// of a type.
-
-class Type_descriptor_expression : public Expression
-{
- public:
-  Type_descriptor_expression(Type* type, source_location location)
-    : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
-      type_(type)
-  { }
-
- protected:
-  Type*
-  do_type()
-  { return Type::make_type_descriptor_ptr_type(); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context)
-  { return this->type_->type_descriptor_pointer(context->gogo()); }
-
- private:
-  // The type for which this is the descriptor.
-  Type* type_;
-};
-
-// Make a type descriptor expression.
-
-Expression*
-Expression::make_type_descriptor(Type* type, source_location location)
-{
-  return new Type_descriptor_expression(type, location);
-}
-
-// An expression which evaluates to some characteristic of a type.
-// This is only used to initialize fields of a type descriptor.  Using
-// a new expression class is slightly inefficient but gives us a good
-// separation between the frontend and the middle-end with regard to
-// how types are laid out.
-
-class Type_info_expression : public Expression
-{
- public:
-  Type_info_expression(Type* type, Type_info type_info)
-    : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
-      type_(type), type_info_(type_info)
-  { }
-
- protected:
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context);
-
- private:
-  // The type for which we are getting information.
-  Type* type_;
-  // What information we want.
-  Type_info type_info_;
-};
-
-// The type is chosen to match what the type descriptor struct
-// expects.
-
-Type*
-Type_info_expression::do_type()
-{
-  switch (this->type_info_)
-    {
-    case TYPE_INFO_SIZE:
-      return Type::lookup_integer_type("uintptr");
-    case TYPE_INFO_ALIGNMENT:
-    case TYPE_INFO_FIELD_ALIGNMENT:
-      return Type::lookup_integer_type("uint8");
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return type information in GENERIC.
-
-tree
-Type_info_expression::do_get_tree(Translate_context* context)
-{
-  tree type_tree = this->type_->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree val_type_tree = this->type()->get_tree(context->gogo());
-  gcc_assert(val_type_tree != error_mark_node);
-
-  if (this->type_info_ == TYPE_INFO_SIZE)
-    return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
-                           TYPE_SIZE_UNIT(type_tree));
-  else
-    {
-      unsigned HOST_WIDE_INT val;
-      if (this->type_info_ == TYPE_INFO_ALIGNMENT)
-       val = TYPE_ALIGN_UNIT(type_tree);
-      else
-       {
-         gcc_assert(this->type_info_ == TYPE_INFO_FIELD_ALIGNMENT);
-         val = TYPE_ALIGN(type_tree);
-#ifdef BIGGEST_FIELD_ALIGMENT
-         if (val > BIGGEST_FIELD_ALIGNMENT)
-           val = BIGGEST_FIELD_ALIGNMENT;
-#endif
-#ifdef ADJUST_FIELD_ALIGN
-         {
-           tree f = build_decl(UNKNOWN_LOCATION, FIELD_DECL, NULL, type_tree);
-           val = ADJUST_FIELD_ALIGN(f, val);
-         }
-#endif
-         val /= BITS_PER_UNIT;
-       }
-
-      return build_int_cstu(val_type_tree, val);
-    }
-}
-
-// Make a type info expression.
-
-Expression*
-Expression::make_type_info(Type* type, Type_info type_info)
-{
-  return new Type_info_expression(type, type_info);
-}
-
-// An expression which evaluates to the offset of a field within a
-// struct.  This, like Type_info_expression, q.v., is only used to
-// initialize fields of a type descriptor.
-
-class Struct_field_offset_expression : public Expression
-{
- public:
-  Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
-    : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
-      type_(type), field_(field)
-  { }
-
- protected:
-  Type*
-  do_type()
-  { return Type::lookup_integer_type("uintptr"); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context);
-
- private:
-  // The type of the struct.
-  Struct_type* type_;
-  // The field.
-  const Struct_field* field_;
-};
-
-// Return a struct field offset in GENERIC.
-
-tree
-Struct_field_offset_expression::do_get_tree(Translate_context* context)
-{
-  tree type_tree = this->type_->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree val_type_tree = this->type()->get_tree(context->gogo());
-  gcc_assert(val_type_tree != error_mark_node);
-
-  const Struct_field_list* fields = this->type_->fields();
-  tree struct_field_tree = TYPE_FIELDS(type_tree);
-  Struct_field_list::const_iterator p;
-  for (p = fields->begin();
-       p != fields->end();
-       ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
-    {
-      gcc_assert(struct_field_tree != NULL_TREE);
-      if (&*p == this->field_)
-       break;
-    }
-  gcc_assert(&*p == this->field_);
-
-  return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
-                         byte_position(struct_field_tree));
-}
-
-// Make an expression for a struct field offset.
-
-Expression*
-Expression::make_struct_field_offset(Struct_type* type,
-                                    const Struct_field* field)
-{
-  return new Struct_field_offset_expression(type, field);
-}
-
-// An expression which evaluates to the address of an unnamed label.
-
-class Label_addr_expression : public Expression
-{
- public:
-  Label_addr_expression(Label* label, source_location location)
-    : Expression(EXPRESSION_LABEL_ADDR, location),
-      label_(label)
-  { }
-
- protected:
-  Type*
-  do_type()
-  { return Type::make_pointer_type(Type::make_void_type()); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return new Label_addr_expression(this->label_, this->location()); }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->label_->get_addr(this->location()); }
-
- private:
-  // The label whose address we are taking.
-  Label* label_;
-};
-
-// Make an expression for the address of an unnamed label.
-
-Expression*
-Expression::make_label_addr(Label* label, source_location location)
-{
-  return new Label_addr_expression(label, location);
-}
-
-// Import an expression.  This comes at the end in order to see the
-// various class definitions.
-
-Expression*
-Expression::import_expression(Import* imp)
-{
-  int c = imp->peek_char();
-  if (imp->match_c_string("- ")
-      || imp->match_c_string("! ")
-      || imp->match_c_string("^ "))
-    return Unary_expression::do_import(imp);
-  else if (c == '(')
-    return Binary_expression::do_import(imp);
-  else if (imp->match_c_string("true")
-          || imp->match_c_string("false"))
-    return Boolean_expression::do_import(imp);
-  else if (c == '"')
-    return String_expression::do_import(imp);
-  else if (c == '-' || (c >= '0' && c <= '9'))
-    {
-      // This handles integers, floats and complex constants.
-      return Integer_expression::do_import(imp);
-    }
-  else if (imp->match_c_string("nil"))
-    return Nil_expression::do_import(imp);
-  else if (imp->match_c_string("convert"))
-    return Type_conversion_expression::do_import(imp);
-  else
-    {
-      error_at(imp->location(), "import error: expected expression");
-      return Expression::make_error(imp->location());
-    }
-}
-
-// Class Expression_list.
-
-// Traverse the list.
-
-int
-Expression_list::traverse(Traverse* traverse)
-{
-  for (Expression_list::iterator p = this->begin();
-       p != this->end();
-       ++p)
-    {
-      if (*p != NULL)
-       {
-         if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Copy the list.
-
-Expression_list*
-Expression_list::copy()
-{
-  Expression_list* ret = new Expression_list();
-  for (Expression_list::iterator p = this->begin();
-       p != this->end();
-       ++p)
-    {
-      if (*p == NULL)
-       ret->push_back(NULL);
-      else
-       ret->push_back((*p)->copy());
-    }
-  return ret;
-}
-
-// Return whether an expression list has an error expression.
-
-bool
-Expression_list::contains_error() const
-{
-  for (Expression_list::const_iterator p = this->begin();
-       p != this->end();
-       ++p)
-    if (*p != NULL && (*p)->is_error_expression())
-      return true;
-  return false;
-}
diff --git a/gcc/go/gofrontend/expressions.cc.merge-right.r172891 b/gcc/go/gofrontend/expressions.cc.merge-right.r172891
deleted file mode 100644 (file)
index 2c330ef..0000000
+++ /dev/null
@@ -1,12843 +0,0 @@
-// expressions.cc -- Go frontend expression handling.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "toplev.h"
-#include "intl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "tree-iterator.h"
-#include "convert.h"
-#include "real.h"
-#include "realmpfr.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "gogo.h"
-#include "types.h"
-#include "export.h"
-#include "import.h"
-#include "statements.h"
-#include "lex.h"
-#include "backend.h"
-#include "expressions.h"
-
-// Class Expression.
-
-Expression::Expression(Expression_classification classification,
-                      source_location location)
-  : classification_(classification), location_(location)
-{
-}
-
-Expression::~Expression()
-{
-}
-
-// If this expression has a constant integer value, return it.
-
-bool
-Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
-                                  Type** ptype) const
-{
-  *ptype = NULL;
-  return this->do_integer_constant_value(iota_is_constant, val, ptype);
-}
-
-// If this expression has a constant floating point value, return it.
-
-bool
-Expression::float_constant_value(mpfr_t val, Type** ptype) const
-{
-  *ptype = NULL;
-  if (this->do_float_constant_value(val, ptype))
-    return true;
-  mpz_t ival;
-  mpz_init(ival);
-  Type* t;
-  bool ret;
-  if (!this->do_integer_constant_value(false, ival, &t))
-    ret = false;
-  else
-    {
-      mpfr_set_z(val, ival, GMP_RNDN);
-      ret = true;
-    }
-  mpz_clear(ival);
-  return ret;
-}
-
-// If this expression has a constant complex value, return it.
-
-bool
-Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
-                                  Type** ptype) const
-{
-  *ptype = NULL;
-  if (this->do_complex_constant_value(real, imag, ptype))
-    return true;
-  Type *t;
-  if (this->float_constant_value(real, &t))
-    {
-      mpfr_set_ui(imag, 0, GMP_RNDN);
-      return true;
-    }
-  return false;
-}
-
-// Traverse the expressions.
-
-int
-Expression::traverse(Expression** pexpr, Traverse* traverse)
-{
-  Expression* expr = *pexpr;
-  if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
-    {
-      int t = traverse->expression(pexpr);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-  return expr->do_traverse(traverse);
-}
-
-// Traverse subexpressions of this expression.
-
-int
-Expression::traverse_subexpressions(Traverse* traverse)
-{
-  return this->do_traverse(traverse);
-}
-
-// Default implementation for do_traverse for child classes.
-
-int
-Expression::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// This virtual function is called by the parser if the value of this
-// expression is being discarded.  By default, we warn.  Expressions
-// with side effects override.
-
-void
-Expression::do_discarding_value()
-{
-  this->warn_about_unused_value();
-}
-
-// This virtual function is called to export expressions.  This will
-// only be used by expressions which may be constant.
-
-void
-Expression::do_export(Export*) const
-{
-  go_unreachable();
-}
-
-// Warn that the value of the expression is not used.
-
-void
-Expression::warn_about_unused_value()
-{
-  warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
-}
-
-// Note that this expression is an error.  This is called by children
-// when they discover an error.
-
-void
-Expression::set_is_error()
-{
-  this->classification_ = EXPRESSION_ERROR;
-}
-
-// For children to call to report an error conveniently.
-
-void
-Expression::report_error(const char* msg)
-{
-  error_at(this->location_, "%s", msg);
-  this->set_is_error();
-}
-
-// Set types of variables and constants.  This is implemented by the
-// child class.
-
-void
-Expression::determine_type(const Type_context* context)
-{
-  this->do_determine_type(context);
-}
-
-// Set types when there is no context.
-
-void
-Expression::determine_type_no_context()
-{
-  Type_context context;
-  this->do_determine_type(&context);
-}
-
-// Return a tree handling any conversions which must be done during
-// assignment.
-
-tree
-Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
-                                  Type* rhs_type, tree rhs_tree,
-                                  source_location location)
-{
-  if (lhs_type == rhs_type)
-    return rhs_tree;
-
-  if (lhs_type->is_error() || rhs_type->is_error())
-    return error_mark_node;
-
-  if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
-    return error_mark_node;
-
-  Gogo* gogo = context->gogo();
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  if (lhs_type->interface_type() != NULL)
-    {
-      if (rhs_type->interface_type() == NULL)
-       return Expression::convert_type_to_interface(context, lhs_type,
-                                                    rhs_type, rhs_tree,
-                                                    location);
-      else
-       return Expression::convert_interface_to_interface(context, lhs_type,
-                                                         rhs_type, rhs_tree,
-                                                         false, location);
-    }
-  else if (rhs_type->interface_type() != NULL)
-    return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
-                                                rhs_tree, location);
-  else if (lhs_type->is_open_array_type()
-          && rhs_type->is_nil_type())
-    {
-      // Assigning nil to an open array.
-      go_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
-
-      VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      tree field = TYPE_FIELDS(lhs_type_tree);
-      go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__values") == 0);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-
-      elt = VEC_quick_push(constructor_elt, init, NULL);
-      field = DECL_CHAIN(field);
-      go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__count") == 0);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
-
-      elt = VEC_quick_push(constructor_elt, init, NULL);
-      field = DECL_CHAIN(field);
-      go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__capacity") == 0);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
-
-      tree val = build_constructor(lhs_type_tree, init);
-      TREE_CONSTANT(val) = 1;
-
-      return val;
-    }
-  else if (rhs_type->is_nil_type())
-    {
-      // The left hand side should be a pointer type at the tree
-      // level.
-      go_assert(POINTER_TYPE_P(lhs_type_tree));
-      return fold_convert(lhs_type_tree, null_pointer_node);
-    }
-  else if (lhs_type_tree == TREE_TYPE(rhs_tree))
-    {
-      // No conversion is needed.
-      return rhs_tree;
-    }
-  else if (POINTER_TYPE_P(lhs_type_tree)
-          || INTEGRAL_TYPE_P(lhs_type_tree)
-          || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
-          || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
-    return fold_convert_loc(location, lhs_type_tree, rhs_tree);
-  else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
-          && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
-    {
-      // This conversion must be permitted by Go, or we wouldn't have
-      // gotten here.
-      go_assert(int_size_in_bytes(lhs_type_tree)
-                == int_size_in_bytes(TREE_TYPE(rhs_tree)));
-      return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
-                            rhs_tree);
-    }
-  else
-    {
-      go_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
-      return rhs_tree;
-    }
-}
-
-// Return a tree for a conversion from a non-interface type to an
-// interface type.
-
-tree
-Expression::convert_type_to_interface(Translate_context* context,
-                                     Type* lhs_type, Type* rhs_type,
-                                     tree rhs_tree, source_location location)
-{
-  Gogo* gogo = context->gogo();
-  Interface_type* lhs_interface_type = lhs_type->interface_type();
-  bool lhs_is_empty = lhs_interface_type->is_empty();
-
-  // Since RHS_TYPE is a static type, we can create the interface
-  // method table at compile time.
-
-  // When setting an interface to nil, we just set both fields to
-  // NULL.
-  if (rhs_type->is_nil_type())
-    return lhs_type->get_init_tree(gogo, false);
-
-  // This should have been checked already.
-  go_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  // An interface is a tuple.  If LHS_TYPE is an empty interface type,
-  // then the first field is the type descriptor for RHS_TYPE.
-  // Otherwise it is the interface method table for RHS_TYPE.
-  tree first_field_value;
-  if (lhs_is_empty)
-    first_field_value = rhs_type->type_descriptor_pointer(gogo);
-  else
-    {
-      // Build the interface method table for this interface and this
-      // object type: a list of function pointers for each interface
-      // method.
-      Named_type* rhs_named_type = rhs_type->named_type();
-      bool is_pointer = false;
-      if (rhs_named_type == NULL)
-       {
-         rhs_named_type = rhs_type->deref()->named_type();
-         is_pointer = true;
-       }
-      tree method_table;
-      if (rhs_named_type == NULL)
-       method_table = null_pointer_node;
-      else
-       method_table =
-         rhs_named_type->interface_method_table(gogo, lhs_interface_type,
-                                                is_pointer);
-      first_field_value = fold_convert_loc(location, const_ptr_type_node,
-                                          method_table);
-    }
-  if (first_field_value == error_mark_node)
-    return error_mark_node;
-
-  // Start building a constructor for the value we will return.
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(lhs_type_tree);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                   (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
-  elt->index = field;
-  elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
-  elt->index = field;
-
-  if (rhs_type->points_to() != NULL)
-    {
-      //  We are assigning a pointer to the interface; the interface
-      // holds the pointer itself.
-      elt->value = rhs_tree;
-      return build_constructor(lhs_type_tree, init);
-    }
-
-  // We are assigning a non-pointer value to the interface; the
-  // interface gets a copy of the value in the heap.
-
-  tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
-
-  tree space = gogo->allocate_memory(rhs_type, object_size, location);
-  space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
-                          space);
-  space = save_expr(space);
-
-  tree ref = build_fold_indirect_ref_loc(location, space);
-  TREE_THIS_NOTRAP(ref) = 1;
-  tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
-                            ref, rhs_tree);
-
-  elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
-
-  return build2(COMPOUND_EXPR, lhs_type_tree, set,
-               build_constructor(lhs_type_tree, init));
-}
-
-// Return a tree for the type descriptor of RHS_TREE, which has
-// interface type RHS_TYPE.  If RHS_TREE is nil the result will be
-// NULL.
-
-tree
-Expression::get_interface_type_descriptor(Translate_context*,
-                                         Type* rhs_type, tree rhs_tree,
-                                         source_location location)
-{
-  tree rhs_type_tree = TREE_TYPE(rhs_tree);
-  go_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
-  tree rhs_field = TYPE_FIELDS(rhs_type_tree);
-  tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
-                 NULL_TREE);
-  if (rhs_type->interface_type()->is_empty())
-    {
-      go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
-                       "__type_descriptor") == 0);
-      return v;
-    }
-
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
-            == 0);
-  go_assert(POINTER_TYPE_P(TREE_TYPE(v)));
-  v = save_expr(v);
-  tree v1 = build_fold_indirect_ref_loc(location, v);
-  go_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
-  tree f = TYPE_FIELDS(TREE_TYPE(v1));
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
-            == 0);
-  v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
-
-  tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
-                           fold_convert_loc(location, TREE_TYPE(v),
-                                            null_pointer_node));
-  tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
-  return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
-                        eq, n, v1);
-}
-
-// Return a tree for the conversion of an interface type to an
-// interface type.
-
-tree
-Expression::convert_interface_to_interface(Translate_context* context,
-                                          Type *lhs_type, Type *rhs_type,
-                                          tree rhs_tree, bool for_type_guard,
-                                          source_location location)
-{
-  Gogo* gogo = context->gogo();
-  Interface_type* lhs_interface_type = lhs_type->interface_type();
-  bool lhs_is_empty = lhs_interface_type->is_empty();
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  // In the general case this requires runtime examination of the type
-  // method table to match it up with the interface methods.
-
-  // FIXME: If all of the methods in the right hand side interface
-  // also appear in the left hand side interface, then we don't need
-  // to do a runtime check, although we still need to build a new
-  // method table.
-
-  // Get the type descriptor for the right hand side.  This will be
-  // NULL for a nil interface.
-
-  if (!DECL_P(rhs_tree))
-    rhs_tree = save_expr(rhs_tree);
-
-  tree rhs_type_descriptor =
-    Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
-                                             location);
-
-  // The result is going to be a two element constructor.
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(lhs_type_tree);
-  elt->index = field;
-
-  if (for_type_guard)
-    {
-      // A type assertion fails when converting a nil interface.
-      tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
-      static tree assert_interface_decl;
-      tree call = Gogo::call_builtin(&assert_interface_decl,
-                                    location,
-                                    "__go_assert_interface",
-                                    2,
-                                    ptr_type_node,
-                                    TREE_TYPE(lhs_type_descriptor),
-                                    lhs_type_descriptor,
-                                    TREE_TYPE(rhs_type_descriptor),
-                                    rhs_type_descriptor);
-      if (call == error_mark_node)
-       return error_mark_node;
-      // This will panic if the interface conversion fails.
-      TREE_NOTHROW(assert_interface_decl) = 0;
-      elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
-    }
-  else if (lhs_is_empty)
-    {
-      // A convertion to an empty interface always succeeds, and the
-      // first field is just the type descriptor of the object.
-      go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__type_descriptor") == 0);
-      go_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
-      elt->value = rhs_type_descriptor;
-    }
-  else
-    {
-      // A conversion to a non-empty interface may fail, but unlike a
-      // type assertion converting nil will always succeed.
-      go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
-                == 0);
-      tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
-      static tree convert_interface_decl;
-      tree call = Gogo::call_builtin(&convert_interface_decl,
-                                    location,
-                                    "__go_convert_interface",
-                                    2,
-                                    ptr_type_node,
-                                    TREE_TYPE(lhs_type_descriptor),
-                                    lhs_type_descriptor,
-                                    TREE_TYPE(rhs_type_descriptor),
-                                    rhs_type_descriptor);
-      if (call == error_mark_node)
-       return error_mark_node;
-      // This will panic if the interface conversion fails.
-      TREE_NOTHROW(convert_interface_decl) = 0;
-      elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
-    }
-
-  // The second field is simply the object pointer.
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
-  elt->index = field;
-
-  tree rhs_type_tree = TREE_TYPE(rhs_tree);
-  go_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
-  tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
-  elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
-                     NULL_TREE);
-
-  return build_constructor(lhs_type_tree, init);
-}
-
-// Return a tree for the conversion of an interface type to a
-// non-interface type.
-
-tree
-Expression::convert_interface_to_type(Translate_context* context,
-                                     Type *lhs_type, Type* rhs_type,
-                                     tree rhs_tree, source_location location)
-{
-  Gogo* gogo = context->gogo();
-  tree rhs_type_tree = TREE_TYPE(rhs_tree);
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  // Call a function to check that the type is valid.  The function
-  // will panic with an appropriate runtime type error if the type is
-  // not valid.
-
-  tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
-
-  if (!DECL_P(rhs_tree))
-    rhs_tree = save_expr(rhs_tree);
-
-  tree rhs_type_descriptor =
-    Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
-                                             location);
-
-  tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
-
-  static tree check_interface_type_decl;
-  tree call = Gogo::call_builtin(&check_interface_type_decl,
-                                location,
-                                "__go_check_interface_type",
-                                3,
-                                void_type_node,
-                                TREE_TYPE(lhs_type_descriptor),
-                                lhs_type_descriptor,
-                                TREE_TYPE(rhs_type_descriptor),
-                                rhs_type_descriptor,
-                                TREE_TYPE(rhs_inter_descriptor),
-                                rhs_inter_descriptor);
-  if (call == error_mark_node)
-    return error_mark_node;
-  // This call will panic if the conversion is invalid.
-  TREE_NOTHROW(check_interface_type_decl) = 0;
-
-  // If the call succeeds, pull out the value.
-  go_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
-  tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
-  tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
-                   NULL_TREE);
-
-  // If the value is a pointer, then it is the value we want.
-  // Otherwise it points to the value.
-  if (lhs_type->points_to() == NULL)
-    {
-      val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
-      val = build_fold_indirect_ref_loc(location, val);
-    }
-
-  return build2(COMPOUND_EXPR, lhs_type_tree, call,
-               fold_convert_loc(location, lhs_type_tree, val));
-}
-
-// Convert an expression to a tree.  This is implemented by the child
-// class.  Not that it is not in general safe to call this multiple
-// times for a single expression, but that we don't catch such errors.
-
-tree
-Expression::get_tree(Translate_context* context)
-{
-  // The child may have marked this expression as having an error.
-  if (this->classification_ == EXPRESSION_ERROR)
-    return error_mark_node;
-
-  return this->do_get_tree(context);
-}
-
-// Return a tree for VAL in TYPE.
-
-tree
-Expression::integer_constant_tree(mpz_t val, tree type)
-{
-  if (type == error_mark_node)
-    return error_mark_node;
-  else if (TREE_CODE(type) == INTEGER_TYPE)
-    return double_int_to_tree(type,
-                             mpz_get_double_int(type, val, true));
-  else if (TREE_CODE(type) == REAL_TYPE)
-    {
-      mpfr_t fval;
-      mpfr_init_set_z(fval, val, GMP_RNDN);
-      tree ret = Expression::float_constant_tree(fval, type);
-      mpfr_clear(fval);
-      return ret;
-    }
-  else if (TREE_CODE(type) == COMPLEX_TYPE)
-    {
-      mpfr_t fval;
-      mpfr_init_set_z(fval, val, GMP_RNDN);
-      tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
-      mpfr_clear(fval);
-      tree imag = build_real_from_int_cst(TREE_TYPE(type),
-                                         integer_zero_node);
-      return build_complex(type, real, imag);
-    }
-  else
-    go_unreachable();
-}
-
-// Return a tree for VAL in TYPE.
-
-tree
-Expression::float_constant_tree(mpfr_t val, tree type)
-{
-  if (type == error_mark_node)
-    return error_mark_node;
-  else if (TREE_CODE(type) == INTEGER_TYPE)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      mpfr_get_z(ival, val, GMP_RNDN);
-      tree ret = Expression::integer_constant_tree(ival, type);
-      mpz_clear(ival);
-      return ret;
-    }
-  else if (TREE_CODE(type) == REAL_TYPE)
-    {
-      REAL_VALUE_TYPE r1;
-      real_from_mpfr(&r1, val, type, GMP_RNDN);
-      REAL_VALUE_TYPE r2;
-      real_convert(&r2, TYPE_MODE(type), &r1);
-      return build_real(type, r2);
-    }
-  else if (TREE_CODE(type) == COMPLEX_TYPE)
-    {
-      REAL_VALUE_TYPE r1;
-      real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
-      REAL_VALUE_TYPE r2;
-      real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
-      tree imag = build_real_from_int_cst(TREE_TYPE(type),
-                                         integer_zero_node);
-      return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
-    }
-  else
-    go_unreachable();
-}
-
-// Return a tree for REAL/IMAG in TYPE.
-
-tree
-Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
-{
-  if (type == error_mark_node)
-    return error_mark_node;
-  else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE)
-    return Expression::float_constant_tree(real, type);
-  else if (TREE_CODE(type) == COMPLEX_TYPE)
-    {
-      REAL_VALUE_TYPE r1;
-      real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
-      REAL_VALUE_TYPE r2;
-      real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
-
-      REAL_VALUE_TYPE r3;
-      real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
-      REAL_VALUE_TYPE r4;
-      real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
-
-      return build_complex(type, build_real(TREE_TYPE(type), r2),
-                          build_real(TREE_TYPE(type), r4));
-    }
-  else
-    go_unreachable();
-}
-
-// Return a tree which evaluates to true if VAL, of arbitrary integer
-// type, is negative or is more than the maximum value of BOUND_TYPE.
-// If SOFAR is not NULL, it is or'red into the result.  The return
-// value may be NULL if SOFAR is NULL.
-
-tree
-Expression::check_bounds(tree val, tree bound_type, tree sofar,
-                        source_location loc)
-{
-  tree val_type = TREE_TYPE(val);
-  tree ret = NULL_TREE;
-
-  if (!TYPE_UNSIGNED(val_type))
-    {
-      ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
-                           build_int_cst(val_type, 0));
-      if (ret == boolean_false_node)
-       ret = NULL_TREE;
-    }
-
-  if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
-      || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
-    {
-      tree max = TYPE_MAX_VALUE(bound_type);
-      tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
-                                fold_convert_loc(loc, val_type, max));
-      if (big == boolean_false_node)
-       ;
-      else if (ret == NULL_TREE)
-       ret = big;
-      else
-       ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                             ret, big);
-    }
-
-  if (ret == NULL_TREE)
-    return sofar;
-  else if (sofar == NULL_TREE)
-    return ret;
-  else
-    return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                          sofar, ret);
-}
-
-// Error expressions.  This are used to avoid cascading errors.
-
-class Error_expression : public Expression
-{
- public:
-  Error_expression(source_location location)
-    : Expression(EXPRESSION_ERROR, location)
-  { }
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_integer_constant_value(bool, mpz_t val, Type**) const
-  {
-    mpz_set_ui(val, 0);
-    return true;
-  }
-
-  bool
-  do_float_constant_value(mpfr_t val, Type**) const
-  {
-    mpfr_set_ui(val, 0, GMP_RNDN);
-    return true;
-  }
-
-  bool
-  do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
-  {
-    mpfr_set_ui(real, 0, GMP_RNDN);
-    mpfr_set_ui(imag, 0, GMP_RNDN);
-    return true;
-  }
-
-  void
-  do_discarding_value()
-  { }
-
-  Type*
-  do_type()
-  { return Type::make_error_type(); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  bool
-  do_is_addressable() const
-  { return true; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return error_mark_node; }
-};
-
-Expression*
-Expression::make_error(source_location location)
-{
-  return new Error_expression(location);
-}
-
-// An expression which is really a type.  This is used during parsing.
-// It is an error if these survive after lowering.
-
-class
-Type_expression : public Expression
-{
- public:
-  Type_expression(Type* type, source_location location)
-    : Expression(EXPRESSION_TYPE, location),
-      type_(type)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Type::traverse(this->type_, traverse); }
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  void
-  do_check_types(Gogo*)
-  { this->report_error(_("invalid use of type")); }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  // The type which we are representing as an expression.
-  Type* type_;
-};
-
-Expression*
-Expression::make_type(Type* type, source_location location)
-{
-  return new Type_expression(type, location);
-}
-
-// Class Parser_expression.
-
-Type*
-Parser_expression::do_type()
-{
-  // We should never really ask for the type of a Parser_expression.
-  // However, it can happen, at least when we have an invalid const
-  // whose initializer refers to the const itself.  In that case we
-  // may ask for the type when lowering the const itself.
-  go_assert(saw_errors());
-  return Type::make_error_type();
-}
-
-// Class Var_expression.
-
-// Lower a variable expression.  Here we just make sure that the
-// initialization expression of the variable has been lowered.  This
-// ensures that we will be able to determine the type of the variable
-// if necessary.
-
-Expression*
-Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  if (this->variable_->is_variable())
-    {
-      Variable* var = this->variable_->var_value();
-      // This is either a local variable or a global variable.  A
-      // reference to a variable which is local to an enclosing
-      // function will be a reference to a field in a closure.
-      if (var->is_global())
-       function = NULL;
-      var->lower_init_expression(gogo, function);
-    }
-  return this;
-}
-
-// Return the type of a reference to a variable.
-
-Type*
-Var_expression::do_type()
-{
-  if (this->variable_->is_variable())
-    return this->variable_->var_value()->type();
-  else if (this->variable_->is_result_variable())
-    return this->variable_->result_var_value()->type();
-  else
-    go_unreachable();
-}
-
-// Determine the type of a reference to a variable.
-
-void
-Var_expression::do_determine_type(const Type_context*)
-{
-  if (this->variable_->is_variable())
-    this->variable_->var_value()->determine_type();
-}
-
-// Something takes the address of this variable.  This means that we
-// may want to move the variable onto the heap.
-
-void
-Var_expression::do_address_taken(bool escapes)
-{
-  if (!escapes)
-    ;
-  else if (this->variable_->is_variable())
-    this->variable_->var_value()->set_address_taken();
-  else if (this->variable_->is_result_variable())
-    this->variable_->result_var_value()->set_address_taken();
-  else
-    go_unreachable();
-}
-
-// Get the tree for a reference to a variable.
-
-tree
-Var_expression::do_get_tree(Translate_context* context)
-{
-  Bvariable* bvar = this->variable_->get_backend_variable(context->gogo(),
-                                                         context->function());
-  tree ret = var_to_tree(bvar);
-  if (ret == error_mark_node)
-    return error_mark_node;
-  bool is_in_heap;
-  if (this->variable_->is_variable())
-    is_in_heap = this->variable_->var_value()->is_in_heap();
-  else if (this->variable_->is_result_variable())
-    is_in_heap = this->variable_->result_var_value()->is_in_heap();
-  else
-    go_unreachable();
-  if (is_in_heap)
-    {
-      ret = build_fold_indirect_ref_loc(this->location(), ret);
-      TREE_THIS_NOTRAP(ret) = 1;
-    }
-  return ret;
-}
-
-// Make a reference to a variable in an expression.
-
-Expression*
-Expression::make_var_reference(Named_object* var, source_location location)
-{
-  if (var->is_sink())
-    return Expression::make_sink(location);
-
-  // FIXME: Creating a new object for each reference to a variable is
-  // wasteful.
-  return new Var_expression(var, location);
-}
-
-// Class Temporary_reference_expression.
-
-// The type.
-
-Type*
-Temporary_reference_expression::do_type()
-{
-  return this->statement_->type();
-}
-
-// Called if something takes the address of this temporary variable.
-// We never have to move temporary variables to the heap, but we do
-// need to know that they must live in the stack rather than in a
-// register.
-
-void
-Temporary_reference_expression::do_address_taken(bool)
-{
-  this->statement_->set_is_address_taken();
-}
-
-// Get a tree referring to the variable.
-
-tree
-Temporary_reference_expression::do_get_tree(Translate_context* context)
-{
-  Bvariable* bvar = this->statement_->get_backend_variable(context);
-
-  // The gcc backend can't represent the same set of recursive types
-  // that the Go frontend can.  In some cases this means that a
-  // temporary variable won't have the right backend type.  Correct
-  // that here by adding a type cast.  We need to use base() to push
-  // the circularity down one level.
-  tree ret = var_to_tree(bvar);
-  if (POINTER_TYPE_P(TREE_TYPE(ret)) && VOID_TYPE_P(TREE_TYPE(TREE_TYPE(ret))))
-    {
-      tree type_tree = this->type()->base()->get_tree(context->gogo());
-      ret = fold_convert_loc(this->location(), type_tree, ret);
-    }
-  return ret;
-}
-
-// Make a reference to a temporary variable.
-
-Expression*
-Expression::make_temporary_reference(Temporary_statement* statement,
-                                    source_location location)
-{
-  return new Temporary_reference_expression(statement, location);
-}
-
-// A sink expression--a use of the blank identifier _.
-
-class Sink_expression : public Expression
-{
- public:
-  Sink_expression(source_location location)
-    : Expression(EXPRESSION_SINK, location),
-      type_(NULL), var_(NULL_TREE)
-  { }
-
- protected:
-  void
-  do_discarding_value()
-  { }
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  Expression*
-  do_copy()
-  { return new Sink_expression(this->location()); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type of this sink variable.
-  Type* type_;
-  // The temporary variable we generate.
-  tree var_;
-};
-
-// Return the type of a sink expression.
-
-Type*
-Sink_expression::do_type()
-{
-  if (this->type_ == NULL)
-    return Type::make_sink_type();
-  return this->type_;
-}
-
-// Determine the type of a sink expression.
-
-void
-Sink_expression::do_determine_type(const Type_context* context)
-{
-  if (context->type != NULL)
-    this->type_ = context->type;
-}
-
-// Return a temporary variable for a sink expression.  This will
-// presumably be a write-only variable which the middle-end will drop.
-
-tree
-Sink_expression::do_get_tree(Translate_context* context)
-{
-  if (this->var_ == NULL_TREE)
-    {
-      go_assert(this->type_ != NULL && !this->type_->is_sink_type());
-      this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
-                                 "blank");
-    }
-  return this->var_;
-}
-
-// Make a sink expression.
-
-Expression*
-Expression::make_sink(source_location location)
-{
-  return new Sink_expression(location);
-}
-
-// Class Func_expression.
-
-// FIXME: Can a function expression appear in a constant expression?
-// The value is unchanging.  Initializing a constant to the address of
-// a function seems like it could work, though there might be little
-// point to it.
-
-// Traversal.
-
-int
-Func_expression::do_traverse(Traverse* traverse)
-{
-  return (this->closure_ == NULL
-         ? TRAVERSE_CONTINUE
-         : Expression::traverse(&this->closure_, traverse));
-}
-
-// Return the type of a function expression.
-
-Type*
-Func_expression::do_type()
-{
-  if (this->function_->is_function())
-    return this->function_->func_value()->type();
-  else if (this->function_->is_function_declaration())
-    return this->function_->func_declaration_value()->type();
-  else
-    go_unreachable();
-}
-
-// Get the tree for a function expression without evaluating the
-// closure.
-
-tree
-Func_expression::get_tree_without_closure(Gogo* gogo)
-{
-  Function_type* fntype;
-  if (this->function_->is_function())
-    fntype = this->function_->func_value()->type();
-  else if (this->function_->is_function_declaration())
-    fntype = this->function_->func_declaration_value()->type();
-  else
-    go_unreachable();
-
-  // Builtin functions are handled specially by Call_expression.  We
-  // can't take their address.
-  if (fntype->is_builtin())
-    {
-      error_at(this->location(), "invalid use of special builtin function %qs",
-              this->function_->name().c_str());
-      return error_mark_node;
-    }
-
-  Named_object* no = this->function_;
-
-  tree id = no->get_id(gogo);
-  if (id == error_mark_node)
-    return error_mark_node;
-
-  tree fndecl;
-  if (no->is_function())
-    fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
-  else if (no->is_function_declaration())
-    fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
-  else
-    go_unreachable();
-
-  if (fndecl == error_mark_node)
-    return error_mark_node;
-
-  return build_fold_addr_expr_loc(this->location(), fndecl);
-}
-
-// Get the tree for a function expression.  This is used when we take
-// the address of a function rather than simply calling it.  If the
-// function has a closure, we must use a trampoline.
-
-tree
-Func_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-
-  tree fnaddr = this->get_tree_without_closure(gogo);
-  if (fnaddr == error_mark_node)
-    return error_mark_node;
-
-  go_assert(TREE_CODE(fnaddr) == ADDR_EXPR
-            && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
-  TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
-
-  // For a normal non-nested function call, that is all we have to do.
-  if (!this->function_->is_function()
-      || this->function_->func_value()->enclosing() == NULL)
-    {
-      go_assert(this->closure_ == NULL);
-      return fnaddr;
-    }
-
-  // For a nested function call, we have to always allocate a
-  // trampoline.  If we don't always allocate, then closures will not
-  // be reliably distinct.
-  Expression* closure = this->closure_;
-  tree closure_tree;
-  if (closure == NULL)
-    closure_tree = null_pointer_node;
-  else
-    {
-      // Get the value of the closure.  This will be a pointer to
-      // space allocated on the heap.
-      closure_tree = closure->get_tree(context);
-      if (closure_tree == error_mark_node)
-       return error_mark_node;
-      go_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
-    }
-
-  // Now we need to build some code on the heap.  This code will load
-  // the static chain pointer with the closure and then jump to the
-  // body of the function.  The normal gcc approach is to build the
-  // code on the stack.  Unfortunately we can not do that, as Go
-  // permits us to return the function pointer.
-
-  return gogo->make_trampoline(fnaddr, closure_tree, this->location());
-}
-
-// Make a reference to a function in an expression.
-
-Expression*
-Expression::make_func_reference(Named_object* function, Expression* closure,
-                               source_location location)
-{
-  return new Func_expression(function, closure, location);
-}
-
-// Class Unknown_expression.
-
-// Return the name of an unknown expression.
-
-const std::string&
-Unknown_expression::name() const
-{
-  return this->named_object_->name();
-}
-
-// Lower a reference to an unknown name.
-
-Expression*
-Unknown_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location location = this->location();
-  Named_object* no = this->named_object_;
-  Named_object* real;
-  if (!no->is_unknown())
-    real = no;
-  else
-    {
-      real = no->unknown_value()->real_named_object();
-      if (real == NULL)
-       {
-         if (this->is_composite_literal_key_)
-           return this;
-         error_at(location, "reference to undefined name %qs",
-                  this->named_object_->message_name().c_str());
-         return Expression::make_error(location);
-       }
-    }
-  switch (real->classification())
-    {
-    case Named_object::NAMED_OBJECT_CONST:
-      return Expression::make_const_reference(real, location);
-    case Named_object::NAMED_OBJECT_TYPE:
-      return Expression::make_type(real->type_value(), location);
-    case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-      if (this->is_composite_literal_key_)
-       return this;
-      error_at(location, "reference to undefined type %qs",
-              real->message_name().c_str());
-      return Expression::make_error(location);
-    case Named_object::NAMED_OBJECT_VAR:
-      return Expression::make_var_reference(real, location);
-    case Named_object::NAMED_OBJECT_FUNC:
-    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-      return Expression::make_func_reference(real, NULL, location);
-    case Named_object::NAMED_OBJECT_PACKAGE:
-      if (this->is_composite_literal_key_)
-       return this;
-      error_at(location, "unexpected reference to package");
-      return Expression::make_error(location);
-    default:
-      go_unreachable();
-    }
-}
-
-// Make a reference to an unknown name.
-
-Expression*
-Expression::make_unknown_reference(Named_object* no, source_location location)
-{
-  go_assert(no->resolve()->is_unknown());
-  return new Unknown_expression(no, location);
-}
-
-// A boolean expression.
-
-class Boolean_expression : public Expression
-{
- public:
-  Boolean_expression(bool val, source_location location)
-    : Expression(EXPRESSION_BOOLEAN, location),
-      val_(val), type_(NULL)
-  { }
-
-  static Expression*
-  do_import(Import*);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->val_ ? boolean_true_node : boolean_false_node; }
-
-  void
-  do_export(Export* exp) const
-  { exp->write_c_string(this->val_ ? "true" : "false"); }
-
- private:
-  // The constant.
-  bool val_;
-  // The type as determined by context.
-  Type* type_;
-};
-
-// Get the type.
-
-Type*
-Boolean_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_boolean_type();
-  return this->type_;
-}
-
-// Set the type from the context.
-
-void
-Boolean_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL && context->type->is_boolean_type())
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_bool_type();
-}
-
-// Import a boolean constant.
-
-Expression*
-Boolean_expression::do_import(Import* imp)
-{
-  if (imp->peek_char() == 't')
-    {
-      imp->require_c_string("true");
-      return Expression::make_boolean(true, imp->location());
-    }
-  else
-    {
-      imp->require_c_string("false");
-      return Expression::make_boolean(false, imp->location());
-    }
-}
-
-// Make a boolean expression.
-
-Expression*
-Expression::make_boolean(bool val, source_location location)
-{
-  return new Boolean_expression(val, location);
-}
-
-// Class String_expression.
-
-// Get the type.
-
-Type*
-String_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_string_type();
-  return this->type_;
-}
-
-// Set the type from the context.
-
-void
-String_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL && context->type->is_string_type())
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_string_type();
-}
-
-// Build a string constant.
-
-tree
-String_expression::do_get_tree(Translate_context* context)
-{
-  return context->gogo()->go_string_constant_tree(this->val_);
-}
-
-// Export a string expression.
-
-void
-String_expression::do_export(Export* exp) const
-{
-  std::string s;
-  s.reserve(this->val_.length() * 4 + 2);
-  s += '"';
-  for (std::string::const_iterator p = this->val_.begin();
-       p != this->val_.end();
-       ++p)
-    {
-      if (*p == '\\' || *p == '"')
-       {
-         s += '\\';
-         s += *p;
-       }
-      else if (*p >= 0x20 && *p < 0x7f)
-       s += *p;
-      else if (*p == '\n')
-       s += "\\n";
-      else if (*p == '\t')
-       s += "\\t";
-      else
-       {
-         s += "\\x";
-         unsigned char c = *p;
-         unsigned int dig = c >> 4;
-         s += dig < 10 ? '0' + dig : 'A' + dig - 10;
-         dig = c & 0xf;
-         s += dig < 10 ? '0' + dig : 'A' + dig - 10;
-       }
-    }
-  s += '"';
-  exp->write_string(s);
-}
-
-// Import a string expression.
-
-Expression*
-String_expression::do_import(Import* imp)
-{
-  imp->require_c_string("\"");
-  std::string val;
-  while (true)
-    {
-      int c = imp->get_char();
-      if (c == '"' || c == -1)
-       break;
-      if (c != '\\')
-       val += static_cast<char>(c);
-      else
-       {
-         c = imp->get_char();
-         if (c == '\\' || c == '"')
-           val += static_cast<char>(c);
-         else if (c == 'n')
-           val += '\n';
-         else if (c == 't')
-           val += '\t';
-         else if (c == 'x')
-           {
-             c = imp->get_char();
-             unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
-             c = imp->get_char();
-             unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
-             char v = (vh << 4) | vl;
-             val += v;
-           }
-         else
-           {
-             error_at(imp->location(), "bad string constant");
-             return Expression::make_error(imp->location());
-           }
-       }
-    }
-  return Expression::make_string(val, imp->location());
-}
-
-// Make a string expression.
-
-Expression*
-Expression::make_string(const std::string& val, source_location location)
-{
-  return new String_expression(val, location);
-}
-
-// Make an integer expression.
-
-class Integer_expression : public Expression
-{
- public:
-  Integer_expression(const mpz_t* val, Type* type, source_location location)
-    : Expression(EXPRESSION_INTEGER, location),
-      type_(type)
-  { mpz_init_set(this->val_, *val); }
-
-  static Expression*
-  do_import(Import*);
-
-  // Return whether VAL fits in the type.
-  static bool
-  check_constant(mpz_t val, Type*, source_location);
-
-  // Write VAL to export data.
-  static void
-  export_integer(Export* exp, const mpz_t val);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context* context);
-
-  void
-  do_check_types(Gogo*);
-
-  tree
-  do_get_tree(Translate_context*);
-
-  Expression*
-  do_copy()
-  { return Expression::make_integer(&this->val_, this->type_,
-                                   this->location()); }
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The integer value.
-  mpz_t val_;
-  // The type so far.
-  Type* type_;
-};
-
-// Return an integer constant value.
-
-bool
-Integer_expression::do_integer_constant_value(bool, mpz_t val,
-                                             Type** ptype) const
-{
-  if (this->type_ != NULL)
-    *ptype = this->type_;
-  mpz_set(val, this->val_);
-  return true;
-}
-
-// Return the current type.  If we haven't set the type yet, we return
-// an abstract integer type.
-
-Type*
-Integer_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_abstract_integer_type();
-  return this->type_;
-}
-
-// Set the type of the integer value.  Here we may switch from an
-// abstract type to a real type.
-
-void
-Integer_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL
-          && (context->type->integer_type() != NULL
-              || context->type->float_type() != NULL
-              || context->type->complex_type() != NULL))
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_integer_type("int");
-}
-
-// Return true if the integer VAL fits in the range of the type TYPE.
-// Otherwise give an error and return false.  TYPE may be NULL.
-
-bool
-Integer_expression::check_constant(mpz_t val, Type* type,
-                                  source_location location)
-{
-  if (type == NULL)
-    return true;
-  Integer_type* itype = type->integer_type();
-  if (itype == NULL || itype->is_abstract())
-    return true;
-
-  int bits = mpz_sizeinbase(val, 2);
-
-  if (itype->is_unsigned())
-    {
-      // For an unsigned type we can only accept a nonnegative number,
-      // and we must be able to represent at least BITS.
-      if (mpz_sgn(val) >= 0
-         && bits <= itype->bits())
-       return true;
-    }
-  else
-    {
-      // For a signed type we need an extra bit to indicate the sign.
-      // We have to handle the most negative integer specially.
-      if (bits + 1 <= itype->bits()
-         || (bits <= itype->bits()
-             && mpz_sgn(val) < 0
-             && (mpz_scan1(val, 0)
-                 == static_cast<unsigned long>(itype->bits() - 1))
-             && mpz_scan0(val, itype->bits()) == ULONG_MAX))
-       return true;
-    }
-
-  error_at(location, "integer constant overflow");
-  return false;
-}
-
-// Check the type of an integer constant.
-
-void
-Integer_expression::do_check_types(Gogo*)
-{
-  if (this->type_ == NULL)
-    return;
-  if (!Integer_expression::check_constant(this->val_, this->type_,
-                                         this->location()))
-    this->set_is_error();
-}
-
-// Get a tree for an integer constant.
-
-tree
-Integer_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type;
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    type = this->type_->get_tree(gogo);
-  else if (this->type_ != NULL && this->type_->float_type() != NULL)
-    {
-      // We are converting to an abstract floating point type.
-      type = Type::lookup_float_type("float64")->get_tree(gogo);
-    }
-  else if (this->type_ != NULL && this->type_->complex_type() != NULL)
-    {
-      // We are converting to an abstract complex type.
-      type = Type::lookup_complex_type("complex128")->get_tree(gogo);
-    }
-  else
-    {
-      // If we still have an abstract type here, then this is being
-      // used in a constant expression which didn't get reduced for
-      // some reason.  Use a type which will fit the value.  We use <,
-      // not <=, because we need an extra bit for the sign bit.
-      int bits = mpz_sizeinbase(this->val_, 2);
-      if (bits < INT_TYPE_SIZE)
-       type = Type::lookup_integer_type("int")->get_tree(gogo);
-      else if (bits < 64)
-       type = Type::lookup_integer_type("int64")->get_tree(gogo);
-      else
-       type = long_long_integer_type_node;
-    }
-  return Expression::integer_constant_tree(this->val_, type);
-}
-
-// Write VAL to export data.
-
-void
-Integer_expression::export_integer(Export* exp, const mpz_t val)
-{
-  char* s = mpz_get_str(NULL, 10, val);
-  exp->write_c_string(s);
-  free(s);
-}
-
-// Export an integer in a constant expression.
-
-void
-Integer_expression::do_export(Export* exp) const
-{
-  Integer_expression::export_integer(exp, this->val_);
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Import an integer, floating point, or complex value.  This handles
-// all these types because they all start with digits.
-
-Expression*
-Integer_expression::do_import(Import* imp)
-{
-  std::string num = imp->read_identifier();
-  imp->require_c_string(" ");
-  if (!num.empty() && num[num.length() - 1] == 'i')
-    {
-      mpfr_t real;
-      size_t plus_pos = num.find('+', 1);
-      size_t minus_pos = num.find('-', 1);
-      size_t pos;
-      if (plus_pos == std::string::npos)
-       pos = minus_pos;
-      else if (minus_pos == std::string::npos)
-       pos = plus_pos;
-      else
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  num.c_str());
-         return Expression::make_error(imp->location());
-       }
-      if (pos == std::string::npos)
-       mpfr_set_ui(real, 0, GMP_RNDN);
-      else
-       {
-         std::string real_str = num.substr(0, pos);
-         if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
-           {
-             error_at(imp->location(), "bad number in import data: %qs",
-                      real_str.c_str());
-             return Expression::make_error(imp->location());
-           }
-       }
-
-      std::string imag_str;
-      if (pos == std::string::npos)
-       imag_str = num;
-      else
-       imag_str = num.substr(pos);
-      imag_str = imag_str.substr(0, imag_str.size() - 1);
-      mpfr_t imag;
-      if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  imag_str.c_str());
-         return Expression::make_error(imp->location());
-       }
-      Expression* ret = Expression::make_complex(&real, &imag, NULL,
-                                                imp->location());
-      mpfr_clear(real);
-      mpfr_clear(imag);
-      return ret;
-    }
-  else if (num.find('.') == std::string::npos
-          && num.find('E') == std::string::npos)
-    {
-      mpz_t val;
-      if (mpz_init_set_str(val, num.c_str(), 10) != 0)
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  num.c_str());
-         return Expression::make_error(imp->location());
-       }
-      Expression* ret = Expression::make_integer(&val, NULL, imp->location());
-      mpz_clear(val);
-      return ret;
-    }
-  else
-    {
-      mpfr_t val;
-      if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  num.c_str());
-         return Expression::make_error(imp->location());
-       }
-      Expression* ret = Expression::make_float(&val, NULL, imp->location());
-      mpfr_clear(val);
-      return ret;
-    }
-}
-
-// Build a new integer value.
-
-Expression*
-Expression::make_integer(const mpz_t* val, Type* type,
-                        source_location location)
-{
-  return new Integer_expression(val, type, location);
-}
-
-// Floats.
-
-class Float_expression : public Expression
-{
- public:
-  Float_expression(const mpfr_t* val, Type* type, source_location location)
-    : Expression(EXPRESSION_FLOAT, location),
-      type_(type)
-  {
-    mpfr_init_set(this->val_, *val, GMP_RNDN);
-  }
-
-  // Constrain VAL to fit into TYPE.
-  static void
-  constrain_float(mpfr_t val, Type* type);
-
-  // Return whether VAL fits in the type.
-  static bool
-  check_constant(mpfr_t val, Type*, source_location);
-
-  // Write VAL to export data.
-  static void
-  export_float(Export* exp, const mpfr_t val);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_float_constant_value(mpfr_t val, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  { return Expression::make_float(&this->val_, this->type_,
-                                 this->location()); }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The floating point value.
-  mpfr_t val_;
-  // The type so far.
-  Type* type_;
-};
-
-// Constrain VAL to fit into TYPE.
-
-void
-Float_expression::constrain_float(mpfr_t val, Type* type)
-{
-  Float_type* ftype = type->float_type();
-  if (ftype != NULL && !ftype->is_abstract())
-    mpfr_prec_round(val, ftype->bits(), GMP_RNDN);
-}
-
-// Return a floating point constant value.
-
-bool
-Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  if (this->type_ != NULL)
-    *ptype = this->type_;
-  mpfr_set(val, this->val_, GMP_RNDN);
-  return true;
-}
-
-// Return the current type.  If we haven't set the type yet, we return
-// an abstract float type.
-
-Type*
-Float_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_abstract_float_type();
-  return this->type_;
-}
-
-// Set the type of the float value.  Here we may switch from an
-// abstract type to a real type.
-
-void
-Float_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL
-          && (context->type->integer_type() != NULL
-              || context->type->float_type() != NULL
-              || context->type->complex_type() != NULL))
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_float_type("float64");
-}
-
-// Return true if the floating point value VAL fits in the range of
-// the type TYPE.  Otherwise give an error and return false.  TYPE may
-// be NULL.
-
-bool
-Float_expression::check_constant(mpfr_t val, Type* type,
-                                source_location location)
-{
-  if (type == NULL)
-    return true;
-  Float_type* ftype = type->float_type();
-  if (ftype == NULL || ftype->is_abstract())
-    return true;
-
-  // A NaN or Infinity always fits in the range of the type.
-  if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
-    return true;
-
-  mp_exp_t exp = mpfr_get_exp(val);
-  mp_exp_t max_exp;
-  switch (ftype->bits())
-    {
-    case 32:
-      max_exp = 128;
-      break;
-    case 64:
-      max_exp = 1024;
-      break;
-    default:
-      go_unreachable();
-    }
-  if (exp > max_exp)
-    {
-      error_at(location, "floating point constant overflow");
-      return false;
-    }
-  return true;
-}
-
-// Check the type of a float value.
-
-void
-Float_expression::do_check_types(Gogo*)
-{
-  if (this->type_ == NULL)
-    return;
-
-  if (!Float_expression::check_constant(this->val_, this->type_,
-                                       this->location()))
-    this->set_is_error();
-
-  Integer_type* integer_type = this->type_->integer_type();
-  if (integer_type != NULL)
-    {
-      if (!mpfr_integer_p(this->val_))
-       this->report_error(_("floating point constant truncated to integer"));
-      else
-       {
-         go_assert(!integer_type->is_abstract());
-         mpz_t ival;
-         mpz_init(ival);
-         mpfr_get_z(ival, this->val_, GMP_RNDN);
-         Integer_expression::check_constant(ival, integer_type,
-                                            this->location());
-         mpz_clear(ival);
-       }
-    }
-}
-
-// Get a tree for a float constant.
-
-tree
-Float_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type;
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    type = this->type_->get_tree(gogo);
-  else if (this->type_ != NULL && this->type_->integer_type() != NULL)
-    {
-      // We have an abstract integer type.  We just hope for the best.
-      type = Type::lookup_integer_type("int")->get_tree(gogo);
-    }
-  else
-    {
-      // If we still have an abstract type here, then this is being
-      // used in a constant expression which didn't get reduced.  We
-      // just use float64 and hope for the best.
-      type = Type::lookup_float_type("float64")->get_tree(gogo);
-    }
-  return Expression::float_constant_tree(this->val_, type);
-}
-
-// Write a floating point number to export data.
-
-void
-Float_expression::export_float(Export *exp, const mpfr_t val)
-{
-  mp_exp_t exponent;
-  char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
-  if (*s == '-')
-    exp->write_c_string("-");
-  exp->write_c_string("0.");
-  exp->write_c_string(*s == '-' ? s + 1 : s);
-  mpfr_free_str(s);
-  char buf[30];
-  snprintf(buf, sizeof buf, "E%ld", exponent);
-  exp->write_c_string(buf);
-}
-
-// Export a floating point number in a constant expression.
-
-void
-Float_expression::do_export(Export* exp) const
-{
-  Float_expression::export_float(exp, this->val_);
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Make a float expression.
-
-Expression*
-Expression::make_float(const mpfr_t* val, Type* type, source_location location)
-{
-  return new Float_expression(val, type, location);
-}
-
-// Complex numbers.
-
-class Complex_expression : public Expression
-{
- public:
-  Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
-                    source_location location)
-    : Expression(EXPRESSION_COMPLEX, location),
-      type_(type)
-  {
-    mpfr_init_set(this->real_, *real, GMP_RNDN);
-    mpfr_init_set(this->imag_, *imag, GMP_RNDN);
-  }
-
-  // Constrain REAL/IMAG to fit into TYPE.
-  static void
-  constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
-
-  // Return whether REAL/IMAG fits in the type.
-  static bool
-  check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
-
-  // Write REAL/IMAG to export data.
-  static void
-  export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_complex(&this->real_, &this->imag_, this->type_,
-                                   this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The real part.
-  mpfr_t real_;
-  // The imaginary part;
-  mpfr_t imag_;
-  // The type if known.
-  Type* type_;
-};
-
-// Constrain REAL/IMAG to fit into TYPE.
-
-void
-Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
-{
-  Complex_type* ctype = type->complex_type();
-  if (ctype != NULL && !ctype->is_abstract())
-    {
-      mpfr_prec_round(real, ctype->bits() / 2, GMP_RNDN);
-      mpfr_prec_round(imag, ctype->bits() / 2, GMP_RNDN);
-    }
-}
-
-// Return a complex constant value.
-
-bool
-Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                             Type** ptype) const
-{
-  if (this->type_ != NULL)
-    *ptype = this->type_;
-  mpfr_set(real, this->real_, GMP_RNDN);
-  mpfr_set(imag, this->imag_, GMP_RNDN);
-  return true;
-}
-
-// Return the current type.  If we haven't set the type yet, we return
-// an abstract complex type.
-
-Type*
-Complex_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_abstract_complex_type();
-  return this->type_;
-}
-
-// Set the type of the complex value.  Here we may switch from an
-// abstract type to a real type.
-
-void
-Complex_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL
-          && context->type->complex_type() != NULL)
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_complex_type("complex128");
-}
-
-// Return true if the complex value REAL/IMAG fits in the range of the
-// type TYPE.  Otherwise give an error and return false.  TYPE may be
-// NULL.
-
-bool
-Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
-                                  source_location location)
-{
-  if (type == NULL)
-    return true;
-  Complex_type* ctype = type->complex_type();
-  if (ctype == NULL || ctype->is_abstract())
-    return true;
-
-  mp_exp_t max_exp;
-  switch (ctype->bits())
-    {
-    case 64:
-      max_exp = 128;
-      break;
-    case 128:
-      max_exp = 1024;
-      break;
-    default:
-      go_unreachable();
-    }
-
-  // A NaN or Infinity always fits in the range of the type.
-  if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
-    {
-      if (mpfr_get_exp(real) > max_exp)
-       {
-         error_at(location, "complex real part constant overflow");
-         return false;
-       }
-    }
-
-  if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
-    {
-      if (mpfr_get_exp(imag) > max_exp)
-       {
-         error_at(location, "complex imaginary part constant overflow");
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Check the type of a complex value.
-
-void
-Complex_expression::do_check_types(Gogo*)
-{
-  if (this->type_ == NULL)
-    return;
-
-  if (!Complex_expression::check_constant(this->real_, this->imag_,
-                                         this->type_, this->location()))
-    this->set_is_error();
-}
-
-// Get a tree for a complex constant.
-
-tree
-Complex_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type;
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    type = this->type_->get_tree(gogo);
-  else
-    {
-      // If we still have an abstract type here, this this is being
-      // used in a constant expression which didn't get reduced.  We
-      // just use complex128 and hope for the best.
-      type = Type::lookup_complex_type("complex128")->get_tree(gogo);
-    }
-  return Expression::complex_constant_tree(this->real_, this->imag_, type);
-}
-
-// Write REAL/IMAG to export data.
-
-void
-Complex_expression::export_complex(Export* exp, const mpfr_t real,
-                                  const mpfr_t imag)
-{
-  if (!mpfr_zero_p(real))
-    {
-      Float_expression::export_float(exp, real);
-      if (mpfr_sgn(imag) > 0)
-       exp->write_c_string("+");
-    }
-  Float_expression::export_float(exp, imag);
-  exp->write_c_string("i");
-}
-
-// Export a complex number in a constant expression.
-
-void
-Complex_expression::do_export(Export* exp) const
-{
-  Complex_expression::export_complex(exp, this->real_, this->imag_);
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Make a complex expression.
-
-Expression*
-Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
-                        source_location location)
-{
-  return new Complex_expression(real, imag, type, location);
-}
-
-// Find a named object in an expression.
-
-class Find_named_object : public Traverse
-{
- public:
-  Find_named_object(Named_object* no)
-    : Traverse(traverse_expressions),
-      no_(no), found_(false)
-  { }
-
-  // Whether we found the object.
-  bool
-  found() const
-  { return this->found_; }
-
- protected:
-  int
-  expression(Expression**);
-
- private:
-  // The object we are looking for.
-  Named_object* no_;
-  // Whether we found it.
-  bool found_;
-};
-
-// A reference to a const in an expression.
-
-class Const_expression : public Expression
-{
- public:
-  Const_expression(Named_object* constant, source_location location)
-    : Expression(EXPRESSION_CONST_REFERENCE, location),
-      constant_(constant), type_(NULL), seen_(false)
-  { }
-
-  Named_object*
-  named_object()
-  { return this->constant_; }
-
-  // Check that the initializer does not refer to the constant itself.
-  void
-  check_for_init_loop();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_integer_constant_value(bool, mpz_t val, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t val, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
-
-  bool
-  do_string_constant_value(std::string* val) const
-  { return this->constant_->const_value()->expr()->string_constant_value(val); }
-
-  Type*
-  do_type();
-
-  // The type of a const is set by the declaration, not the use.
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context);
-
-  // When exporting a reference to a const as part of a const
-  // expression, we export the value.  We ignore the fact that it has
-  // a name.
-  void
-  do_export(Export* exp) const
-  { this->constant_->const_value()->expr()->export_expression(exp); }
-
- private:
-  // The constant.
-  Named_object* constant_;
-  // The type of this reference.  This is used if the constant has an
-  // abstract type.
-  Type* type_;
-  // Used to prevent infinite recursion when a constant incorrectly
-  // refers to itself.
-  mutable bool seen_;
-};
-
-// Traversal.
-
-int
-Const_expression::do_traverse(Traverse* traverse)
-{
-  if (this->type_ != NULL)
-    return Type::traverse(this->type_, traverse);
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a constant expression.  This is where we convert the
-// predeclared constant iota into an integer value.
-
-Expression*
-Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
-{
-  if (this->constant_->const_value()->expr()->classification()
-      == EXPRESSION_IOTA)
-    {
-      if (iota_value == -1)
-       {
-         error_at(this->location(),
-                  "iota is only defined in const declarations");
-         iota_value = 0;
-       }
-      mpz_t val;
-      mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
-      Expression* ret = Expression::make_integer(&val, NULL,
-                                                this->location());
-      mpz_clear(val);
-      return ret;
-    }
-
-  // Make sure that the constant itself has been lowered.
-  gogo->lower_constant(this->constant_);
-
-  return this;
-}
-
-// Return an integer constant value.
-
-bool
-Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
-                                           Type** ptype) const
-{
-  if (this->seen_)
-    return false;
-
-  Type* ctype;
-  if (this->type_ != NULL)
-    ctype = this->type_;
-  else
-    ctype = this->constant_->const_value()->type();
-  if (ctype != NULL && ctype->integer_type() == NULL)
-    return false;
-
-  Expression* e = this->constant_->const_value()->expr();
-
-  this->seen_ = true;
-
-  Type* t;
-  bool r = e->integer_constant_value(iota_is_constant, val, &t);
-
-  this->seen_ = false;
-
-  if (r
-      && ctype != NULL
-      && !Integer_expression::check_constant(val, ctype, this->location()))
-    return false;
-
-  *ptype = ctype != NULL ? ctype : t;
-  return r;
-}
-
-// Return a floating point constant value.
-
-bool
-Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  if (this->seen_)
-    return false;
-
-  Type* ctype;
-  if (this->type_ != NULL)
-    ctype = this->type_;
-  else
-    ctype = this->constant_->const_value()->type();
-  if (ctype != NULL && ctype->float_type() == NULL)
-    return false;
-
-  this->seen_ = true;
-
-  Type* t;
-  bool r = this->constant_->const_value()->expr()->float_constant_value(val,
-                                                                       &t);
-
-  this->seen_ = false;
-
-  if (r && ctype != NULL)
-    {
-      if (!Float_expression::check_constant(val, ctype, this->location()))
-       return false;
-      Float_expression::constrain_float(val, ctype);
-    }
-  *ptype = ctype != NULL ? ctype : t;
-  return r;
-}
-
-// Return a complex constant value.
-
-bool
-Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                           Type **ptype) const
-{
-  if (this->seen_)
-    return false;
-
-  Type* ctype;
-  if (this->type_ != NULL)
-    ctype = this->type_;
-  else
-    ctype = this->constant_->const_value()->type();
-  if (ctype != NULL && ctype->complex_type() == NULL)
-    return false;
-
-  this->seen_ = true;
-
-  Type *t;
-  bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
-                                                                         imag,
-                                                                         &t);
-
-  this->seen_ = false;
-
-  if (r && ctype != NULL)
-    {
-      if (!Complex_expression::check_constant(real, imag, ctype,
-                                             this->location()))
-       return false;
-      Complex_expression::constrain_complex(real, imag, ctype);
-    }
-  *ptype = ctype != NULL ? ctype : t;
-  return r;
-}
-
-// Return the type of the const reference.
-
-Type*
-Const_expression::do_type()
-{
-  if (this->type_ != NULL)
-    return this->type_;
-
-  Named_constant* nc = this->constant_->const_value();
-
-  if (this->seen_ || nc->lowering())
-    {
-      this->report_error(_("constant refers to itself"));
-      this->type_ = Type::make_error_type();
-      return this->type_;
-    }
-
-  this->seen_ = true;
-
-  Type* ret = nc->type();
-
-  if (ret != NULL)
-    {
-      this->seen_ = false;
-      return ret;
-    }
-
-  // During parsing, a named constant may have a NULL type, but we
-  // must not return a NULL type here.
-  ret = nc->expr()->type();
-
-  this->seen_ = false;
-
-  return ret;
-}
-
-// Set the type of the const reference.
-
-void
-Const_expression::do_determine_type(const Type_context* context)
-{
-  Type* ctype = this->constant_->const_value()->type();
-  Type* cetype = (ctype != NULL
-                 ? ctype
-                 : this->constant_->const_value()->expr()->type());
-  if (ctype != NULL && !ctype->is_abstract())
-    ;
-  else if (context->type != NULL
-          && (context->type->integer_type() != NULL
-              || context->type->float_type() != NULL
-              || context->type->complex_type() != NULL)
-          && (cetype->integer_type() != NULL
-              || cetype->float_type() != NULL
-              || cetype->complex_type() != NULL))
-    this->type_ = context->type;
-  else if (context->type != NULL
-          && context->type->is_string_type()
-          && cetype->is_string_type())
-    this->type_ = context->type;
-  else if (context->type != NULL
-          && context->type->is_boolean_type()
-          && cetype->is_boolean_type())
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    {
-      if (cetype->is_abstract())
-       cetype = cetype->make_non_abstract_type();
-      this->type_ = cetype;
-    }
-}
-
-// Check for a loop in which the initializer of a constant refers to
-// the constant itself.
-
-void
-Const_expression::check_for_init_loop()
-{
-  if (this->type_ != NULL && this->type_->is_error())
-    return;
-
-  if (this->seen_)
-    {
-      this->report_error(_("constant refers to itself"));
-      this->type_ = Type::make_error_type();
-      return;
-    }
-
-  Expression* init = this->constant_->const_value()->expr();
-  Find_named_object find_named_object(this->constant_);
-
-  this->seen_ = true;
-  Expression::traverse(&init, &find_named_object);
-  this->seen_ = false;
-
-  if (find_named_object.found())
-    {
-      if (this->type_ == NULL || !this->type_->is_error())
-       {
-         this->report_error(_("constant refers to itself"));
-         this->type_ = Type::make_error_type();
-       }
-      return;
-    }
-}
-
-// Check types of a const reference.
-
-void
-Const_expression::do_check_types(Gogo*)
-{
-  if (this->type_ != NULL && this->type_->is_error())
-    return;
-
-  this->check_for_init_loop();
-
-  if (this->type_ == NULL || this->type_->is_abstract())
-    return;
-
-  // Check for integer overflow.
-  if (this->type_->integer_type() != NULL)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      Type* dummy;
-      if (!this->integer_constant_value(true, ival, &dummy))
-       {
-         mpfr_t fval;
-         mpfr_init(fval);
-         Expression* cexpr = this->constant_->const_value()->expr();
-         if (cexpr->float_constant_value(fval, &dummy))
-           {
-             if (!mpfr_integer_p(fval))
-               this->report_error(_("floating point constant "
-                                    "truncated to integer"));
-             else
-               {
-                 mpfr_get_z(ival, fval, GMP_RNDN);
-                 Integer_expression::check_constant(ival, this->type_,
-                                                    this->location());
-               }
-           }
-         mpfr_clear(fval);
-       }
-      mpz_clear(ival);
-    }
-}
-
-// Return a tree for the const reference.
-
-tree
-Const_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type_tree;
-  if (this->type_ == NULL)
-    type_tree = NULL_TREE;
-  else
-    {
-      type_tree = this->type_->get_tree(gogo);
-      if (type_tree == error_mark_node)
-       return error_mark_node;
-    }
-
-  // If the type has been set for this expression, but the underlying
-  // object is an abstract int or float, we try to get the abstract
-  // value.  Otherwise we may lose something in the conversion.
-  if (this->type_ != NULL
-      && (this->constant_->const_value()->type() == NULL
-         || this->constant_->const_value()->type()->is_abstract()))
-    {
-      Expression* expr = this->constant_->const_value()->expr();
-      mpz_t ival;
-      mpz_init(ival);
-      Type* t;
-      if (expr->integer_constant_value(true, ival, &t))
-       {
-         tree ret = Expression::integer_constant_tree(ival, type_tree);
-         mpz_clear(ival);
-         return ret;
-       }
-      mpz_clear(ival);
-
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (expr->float_constant_value(fval, &t))
-       {
-         tree ret = Expression::float_constant_tree(fval, type_tree);
-         mpfr_clear(fval);
-         return ret;
-       }
-
-      mpfr_t imag;
-      mpfr_init(imag);
-      if (expr->complex_constant_value(fval, imag, &t))
-       {
-         tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
-         mpfr_clear(fval);
-         mpfr_clear(imag);
-         return ret;
-       }
-      mpfr_clear(imag);
-      mpfr_clear(fval);
-    }
-
-  tree const_tree = this->constant_->get_tree(gogo, context->function());
-  if (this->type_ == NULL
-      || const_tree == error_mark_node
-      || TREE_TYPE(const_tree) == error_mark_node)
-    return const_tree;
-
-  tree ret;
-  if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
-    ret = fold_convert(type_tree, const_tree);
-  else if (TREE_CODE(type_tree) == INTEGER_TYPE)
-    ret = fold(convert_to_integer(type_tree, const_tree));
-  else if (TREE_CODE(type_tree) == REAL_TYPE)
-    ret = fold(convert_to_real(type_tree, const_tree));
-  else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
-    ret = fold(convert_to_complex(type_tree, const_tree));
-  else
-    go_unreachable();
-  return ret;
-}
-
-// Make a reference to a constant in an expression.
-
-Expression*
-Expression::make_const_reference(Named_object* constant,
-                                source_location location)
-{
-  return new Const_expression(constant, location);
-}
-
-// Find a named object in an expression.
-
-int
-Find_named_object::expression(Expression** pexpr)
-{
-  switch ((*pexpr)->classification())
-    {
-    case Expression::EXPRESSION_CONST_REFERENCE:
-      {
-       Const_expression* ce = static_cast<Const_expression*>(*pexpr);
-       if (ce->named_object() == this->no_)
-         break;
-
-       // We need to check a constant initializer explicitly, as
-       // loops here will not be caught by the loop checking for
-       // variable initializers.
-       ce->check_for_init_loop();
-
-       return TRAVERSE_CONTINUE;
-      }
-
-    case Expression::EXPRESSION_VAR_REFERENCE:
-      if ((*pexpr)->var_expression()->named_object() == this->no_)
-       break;
-      return TRAVERSE_CONTINUE;
-    case Expression::EXPRESSION_FUNC_REFERENCE:
-      if ((*pexpr)->func_expression()->named_object() == this->no_)
-       break;
-      return TRAVERSE_CONTINUE;
-    default:
-      return TRAVERSE_CONTINUE;
-    }
-  this->found_ = true;
-  return TRAVERSE_EXIT;
-}
-
-// The nil value.
-
-class Nil_expression : public Expression
-{
- public:
-  Nil_expression(source_location location)
-    : Expression(EXPRESSION_NIL, location)
-  { }
-
-  static Expression*
-  do_import(Import*);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  Type*
-  do_type()
-  { return Type::make_nil_type(); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return null_pointer_node; }
-
-  void
-  do_export(Export* exp) const
-  { exp->write_c_string("nil"); }
-};
-
-// Import a nil expression.
-
-Expression*
-Nil_expression::do_import(Import* imp)
-{
-  imp->require_c_string("nil");
-  return Expression::make_nil(imp->location());
-}
-
-// Make a nil expression.
-
-Expression*
-Expression::make_nil(source_location location)
-{
-  return new Nil_expression(location);
-}
-
-// The value of the predeclared constant iota.  This is little more
-// than a marker.  This will be lowered to an integer in
-// Const_expression::do_lower, which is where we know the value that
-// it should have.
-
-class Iota_expression : public Parser_expression
-{
- public:
-  Iota_expression(source_location location)
-    : Parser_expression(EXPRESSION_IOTA, location)
-  { }
-
- protected:
-  Expression*
-  do_lower(Gogo*, Named_object*, int)
-  { go_unreachable(); }
-
-  // There should only ever be one of these.
-  Expression*
-  do_copy()
-  { go_unreachable(); }
-};
-
-// Make an iota expression.  This is only called for one case: the
-// value of the predeclared constant iota.
-
-Expression*
-Expression::make_iota()
-{
-  static Iota_expression iota_expression(UNKNOWN_LOCATION);
-  return &iota_expression;
-}
-
-// A type conversion expression.
-
-class Type_conversion_expression : public Expression
-{
- public:
-  Type_conversion_expression(Type* type, Expression* expr,
-                            source_location location)
-    : Expression(EXPRESSION_CONVERSION, location),
-      type_(type), expr_(expr), may_convert_function_types_(false)
-  { }
-
-  // Return the type to which we are converting.
-  Type*
-  type() const
-  { return this->type_; }
-
-  // Return the expression which we are converting.
-  Expression*
-  expr() const
-  { return this->expr_; }
-
-  // Permit converting from one function type to another.  This is
-  // used internally for method expressions.
-  void
-  set_may_convert_function_types()
-  {
-    this->may_convert_function_types_ = true;
-  }
-
-  // Import a type conversion expression.
-  static Expression*
-  do_import(Import*);
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const
-  { return this->expr_->is_constant(); }
-
-  bool
-  do_integer_constant_value(bool, mpz_t, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
-
-  bool
-  do_string_constant_value(std::string*) const;
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*)
-  {
-    Type_context subcontext(this->type_, false);
-    this->expr_->determine_type(&subcontext);
-  }
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Type_conversion_expression(this->type_, this->expr_->copy(),
-                                         this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context* context);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The type to convert to.
-  Type* type_;
-  // The expression to convert.
-  Expression* expr_;
-  // True if this is permitted to convert function types.  This is
-  // used internally for method expressions.
-  bool may_convert_function_types_;
-};
-
-// Traversal.
-
-int
-Type_conversion_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
-      || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Convert to a constant at lowering time.
-
-Expression*
-Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
-{
-  Type* type = this->type_;
-  Expression* val = this->expr_;
-  source_location location = this->location();
-
-  if (type->integer_type() != NULL)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      Type* dummy;
-      if (val->integer_constant_value(false, ival, &dummy))
-       {
-         if (!Integer_expression::check_constant(ival, type, location))
-           mpz_set_ui(ival, 0);
-         Expression* ret = Expression::make_integer(&ival, type, location);
-         mpz_clear(ival);
-         return ret;
-       }
-
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (val->float_constant_value(fval, &dummy))
-       {
-         if (!mpfr_integer_p(fval))
-           {
-             error_at(location,
-                      "floating point constant truncated to integer");
-             return Expression::make_error(location);
-           }
-         mpfr_get_z(ival, fval, GMP_RNDN);
-         if (!Integer_expression::check_constant(ival, type, location))
-           mpz_set_ui(ival, 0);
-         Expression* ret = Expression::make_integer(&ival, type, location);
-         mpfr_clear(fval);
-         mpz_clear(ival);
-         return ret;
-       }
-      mpfr_clear(fval);
-      mpz_clear(ival);
-    }
-
-  if (type->float_type() != NULL)
-    {
-      mpfr_t fval;
-      mpfr_init(fval);
-      Type* dummy;
-      if (val->float_constant_value(fval, &dummy))
-       {
-         if (!Float_expression::check_constant(fval, type, location))
-           mpfr_set_ui(fval, 0, GMP_RNDN);
-         Float_expression::constrain_float(fval, type);
-         Expression *ret = Expression::make_float(&fval, type, location);
-         mpfr_clear(fval);
-         return ret;
-       }
-      mpfr_clear(fval);
-    }
-
-  if (type->complex_type() != NULL)
-    {
-      mpfr_t real;
-      mpfr_t imag;
-      mpfr_init(real);
-      mpfr_init(imag);
-      Type* dummy;
-      if (val->complex_constant_value(real, imag, &dummy))
-       {
-         if (!Complex_expression::check_constant(real, imag, type, location))
-           {
-             mpfr_set_ui(real, 0, GMP_RNDN);
-             mpfr_set_ui(imag, 0, GMP_RNDN);
-           }
-         Complex_expression::constrain_complex(real, imag, type);
-         Expression* ret = Expression::make_complex(&real, &imag, type,
-                                                    location);
-         mpfr_clear(real);
-         mpfr_clear(imag);
-         return ret;
-       }
-      mpfr_clear(real);
-      mpfr_clear(imag);
-    }
-
-  if (type->is_open_array_type() && type->named_type() == NULL)
-    {
-      Type* element_type = type->array_type()->element_type()->forwarded();
-      bool is_byte = element_type == Type::lookup_integer_type("uint8");
-      bool is_int = element_type == Type::lookup_integer_type("int");
-      if (is_byte || is_int)
-       {
-         std::string s;
-         if (val->string_constant_value(&s))
-           {
-             Expression_list* vals = new Expression_list();
-             if (is_byte)
-               {
-                 for (std::string::const_iterator p = s.begin();
-                      p != s.end();
-                      p++)
-                   {
-                     mpz_t val;
-                     mpz_init_set_ui(val, static_cast<unsigned char>(*p));
-                     Expression* v = Expression::make_integer(&val,
-                                                              element_type,
-                                                              location);
-                     vals->push_back(v);
-                     mpz_clear(val);
-                   }
-               }
-             else
-               {
-                 const char *p = s.data();
-                 const char *pend = s.data() + s.length();
-                 while (p < pend)
-                   {
-                     unsigned int c;
-                     int adv = Lex::fetch_char(p, &c);
-                     if (adv == 0)
-                       {
-                         warning_at(this->location(), 0,
-                                    "invalid UTF-8 encoding");
-                         adv = 1;
-                       }
-                     p += adv;
-                     mpz_t val;
-                     mpz_init_set_ui(val, c);
-                     Expression* v = Expression::make_integer(&val,
-                                                              element_type,
-                                                              location);
-                     vals->push_back(v);
-                     mpz_clear(val);
-                   }
-               }
-
-             return Expression::make_slice_composite_literal(type, vals,
-                                                             location);
-           }
-       }
-    }
-
-  return this;
-}
-
-// Return the constant integer value if there is one.
-
-bool
-Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
-                                                     mpz_t val,
-                                                     Type** ptype) const
-{
-  if (this->type_->integer_type() == NULL)
-    return false;
-
-  mpz_t ival;
-  mpz_init(ival);
-  Type* dummy;
-  if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
-    {
-      if (!Integer_expression::check_constant(ival, this->type_,
-                                             this->location()))
-       {
-         mpz_clear(ival);
-         return false;
-       }
-      mpz_set(val, ival);
-      mpz_clear(ival);
-      *ptype = this->type_;
-      return true;
-    }
-  mpz_clear(ival);
-
-  mpfr_t fval;
-  mpfr_init(fval);
-  if (this->expr_->float_constant_value(fval, &dummy))
-    {
-      mpfr_get_z(val, fval, GMP_RNDN);
-      mpfr_clear(fval);
-      if (!Integer_expression::check_constant(val, this->type_,
-                                             this->location()))
-       return false;
-      *ptype = this->type_;
-      return true;
-    }
-  mpfr_clear(fval);
-
-  return false;
-}
-
-// Return the constant floating point value if there is one.
-
-bool
-Type_conversion_expression::do_float_constant_value(mpfr_t val,
-                                                   Type** ptype) const
-{
-  if (this->type_->float_type() == NULL)
-    return false;
-
-  mpfr_t fval;
-  mpfr_init(fval);
-  Type* dummy;
-  if (this->expr_->float_constant_value(fval, &dummy))
-    {
-      if (!Float_expression::check_constant(fval, this->type_,
-                                           this->location()))
-       {
-         mpfr_clear(fval);
-         return false;
-       }
-      mpfr_set(val, fval, GMP_RNDN);
-      mpfr_clear(fval);
-      Float_expression::constrain_float(val, this->type_);
-      *ptype = this->type_;
-      return true;
-    }
-  mpfr_clear(fval);
-
-  return false;
-}
-
-// Return the constant complex value if there is one.
-
-bool
-Type_conversion_expression::do_complex_constant_value(mpfr_t real,
-                                                     mpfr_t imag,
-                                                     Type **ptype) const
-{
-  if (this->type_->complex_type() == NULL)
-    return false;
-
-  mpfr_t rval;
-  mpfr_t ival;
-  mpfr_init(rval);
-  mpfr_init(ival);
-  Type* dummy;
-  if (this->expr_->complex_constant_value(rval, ival, &dummy))
-    {
-      if (!Complex_expression::check_constant(rval, ival, this->type_,
-                                             this->location()))
-       {
-         mpfr_clear(rval);
-         mpfr_clear(ival);
-         return false;
-       }
-      mpfr_set(real, rval, GMP_RNDN);
-      mpfr_set(imag, ival, GMP_RNDN);
-      mpfr_clear(rval);
-      mpfr_clear(ival);
-      Complex_expression::constrain_complex(real, imag, this->type_);
-      *ptype = this->type_;
-      return true;
-    }
-  mpfr_clear(rval);
-  mpfr_clear(ival);
-
-  return false;  
-}
-
-// Return the constant string value if there is one.
-
-bool
-Type_conversion_expression::do_string_constant_value(std::string* val) const
-{
-  if (this->type_->is_string_type()
-      && this->expr_->type()->integer_type() != NULL)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      Type* dummy;
-      if (this->expr_->integer_constant_value(false, ival, &dummy))
-       {
-         unsigned long ulval = mpz_get_ui(ival);
-         if (mpz_cmp_ui(ival, ulval) == 0)
-           {
-             Lex::append_char(ulval, true, val, this->location());
-             mpz_clear(ival);
-             return true;
-           }
-       }
-      mpz_clear(ival);
-    }
-
-  // FIXME: Could handle conversion from const []int here.
-
-  return false;
-}
-
-// Check that types are convertible.
-
-void
-Type_conversion_expression::do_check_types(Gogo*)
-{
-  Type* type = this->type_;
-  Type* expr_type = this->expr_->type();
-  std::string reason;
-
-  if (type->is_error() || expr_type->is_error())
-    {
-      this->set_is_error();
-      return;
-    }
-
-  if (this->may_convert_function_types_
-      && type->function_type() != NULL
-      && expr_type->function_type() != NULL)
-    return;
-
-  if (Type::are_convertible(type, expr_type, &reason))
-    return;
-
-  error_at(this->location(), "%s", reason.c_str());
-  this->set_is_error();
-}
-
-// Get a tree for a type conversion.
-
-tree
-Type_conversion_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type_tree = this->type_->get_tree(gogo);
-  tree expr_tree = this->expr_->get_tree(context);
-
-  if (type_tree == error_mark_node
-      || expr_tree == error_mark_node
-      || TREE_TYPE(expr_tree) == error_mark_node)
-    return error_mark_node;
-
-  if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
-    return fold_convert(type_tree, expr_tree);
-
-  Type* type = this->type_;
-  Type* expr_type = this->expr_->type();
-  tree ret;
-  if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
-    ret = Expression::convert_for_assignment(context, type, expr_type,
-                                            expr_tree, this->location());
-  else if (type->integer_type() != NULL)
-    {
-      if (expr_type->integer_type() != NULL
-         || expr_type->float_type() != NULL
-         || expr_type->is_unsafe_pointer_type())
-       ret = fold(convert_to_integer(type_tree, expr_tree));
-      else
-       go_unreachable();
-    }
-  else if (type->float_type() != NULL)
-    {
-      if (expr_type->integer_type() != NULL
-         || expr_type->float_type() != NULL)
-       ret = fold(convert_to_real(type_tree, expr_tree));
-      else
-       go_unreachable();
-    }
-  else if (type->complex_type() != NULL)
-    {
-      if (expr_type->complex_type() != NULL)
-       ret = fold(convert_to_complex(type_tree, expr_tree));
-      else
-       go_unreachable();
-    }
-  else if (type->is_string_type()
-          && expr_type->integer_type() != NULL)
-    {
-      expr_tree = fold_convert(integer_type_node, expr_tree);
-      if (host_integerp(expr_tree, 0))
-       {
-         HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
-         std::string s;
-         Lex::append_char(intval, true, &s, this->location());
-         Expression* se = Expression::make_string(s, this->location());
-         return se->get_tree(context);
-       }
-
-      static tree int_to_string_fndecl;
-      ret = Gogo::call_builtin(&int_to_string_fndecl,
-                              this->location(),
-                              "__go_int_to_string",
-                              1,
-                              type_tree,
-                              integer_type_node,
-                              fold_convert(integer_type_node, expr_tree));
-    }
-  else if (type->is_string_type()
-          && (expr_type->array_type() != NULL
-              || (expr_type->points_to() != NULL
-                  && expr_type->points_to()->array_type() != NULL)))
-    {
-      Type* t = expr_type;
-      if (t->points_to() != NULL)
-       {
-         t = t->points_to();
-         expr_tree = build_fold_indirect_ref(expr_tree);
-       }
-      if (!DECL_P(expr_tree))
-       expr_tree = save_expr(expr_tree);
-      Array_type* a = t->array_type();
-      Type* e = a->element_type()->forwarded();
-      go_assert(e->integer_type() != NULL);
-      tree valptr = fold_convert(const_ptr_type_node,
-                                a->value_pointer_tree(gogo, expr_tree));
-      tree len = a->length_tree(gogo, expr_tree);
-      len = fold_convert_loc(this->location(), integer_type_node, len);
-      if (e->integer_type()->is_unsigned()
-         && e->integer_type()->bits() == 8)
-       {
-         static tree byte_array_to_string_fndecl;
-         ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
-                                  this->location(),
-                                  "__go_byte_array_to_string",
-                                  2,
-                                  type_tree,
-                                  const_ptr_type_node,
-                                  valptr,
-                                  integer_type_node,
-                                  len);
-       }
-      else
-       {
-         go_assert(e == Type::lookup_integer_type("int"));
-         static tree int_array_to_string_fndecl;
-         ret = Gogo::call_builtin(&int_array_to_string_fndecl,
-                                  this->location(),
-                                  "__go_int_array_to_string",
-                                  2,
-                                  type_tree,
-                                  const_ptr_type_node,
-                                  valptr,
-                                  integer_type_node,
-                                  len);
-       }
-    }
-  else if (type->is_open_array_type() && expr_type->is_string_type())
-    {
-      Type* e = type->array_type()->element_type()->forwarded();
-      go_assert(e->integer_type() != NULL);
-      if (e->integer_type()->is_unsigned()
-         && e->integer_type()->bits() == 8)
-       {
-         static tree string_to_byte_array_fndecl;
-         ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
-                                  this->location(),
-                                  "__go_string_to_byte_array",
-                                  1,
-                                  type_tree,
-                                  TREE_TYPE(expr_tree),
-                                  expr_tree);
-       }
-      else
-       {
-         go_assert(e == Type::lookup_integer_type("int"));
-         static tree string_to_int_array_fndecl;
-         ret = Gogo::call_builtin(&string_to_int_array_fndecl,
-                                  this->location(),
-                                  "__go_string_to_int_array",
-                                  1,
-                                  type_tree,
-                                  TREE_TYPE(expr_tree),
-                                  expr_tree);
-       }
-    }
-  else if ((type->is_unsafe_pointer_type()
-           && expr_type->points_to() != NULL)
-          || (expr_type->is_unsafe_pointer_type()
-              && type->points_to() != NULL))
-    ret = fold_convert(type_tree, expr_tree);
-  else if (type->is_unsafe_pointer_type()
-          && expr_type->integer_type() != NULL)
-    ret = convert_to_pointer(type_tree, expr_tree);
-  else if (this->may_convert_function_types_
-          && type->function_type() != NULL
-          && expr_type->function_type() != NULL)
-    ret = fold_convert_loc(this->location(), type_tree, expr_tree);
-  else
-    ret = Expression::convert_for_assignment(context, type, expr_type,
-                                            expr_tree, this->location());
-
-  return ret;
-}
-
-// Output a type conversion in a constant expression.
-
-void
-Type_conversion_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  exp->write_c_string(", ");
-  this->expr_->export_expression(exp);
-  exp->write_c_string(")");
-}
-
-// Import a type conversion or a struct construction.
-
-Expression*
-Type_conversion_expression::do_import(Import* imp)
-{
-  imp->require_c_string("convert(");
-  Type* type = imp->read_type();
-  imp->require_c_string(", ");
-  Expression* val = Expression::import_expression(imp);
-  imp->require_c_string(")");
-  return Expression::make_cast(type, val, imp->location());
-}
-
-// Make a type cast expression.
-
-Expression*
-Expression::make_cast(Type* type, Expression* val, source_location location)
-{
-  if (type->is_error_type() || val->is_error_expression())
-    return Expression::make_error(location);
-  return new Type_conversion_expression(type, val, location);
-}
-
-// An unsafe type conversion, used to pass values to builtin functions.
-
-class Unsafe_type_conversion_expression : public Expression
-{
- public:
-  Unsafe_type_conversion_expression(Type* type, Expression* expr,
-                                   source_location location)
-    : Expression(EXPRESSION_UNSAFE_CONVERSION, location),
-      type_(type), expr_(expr)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  {
-    return new Unsafe_type_conversion_expression(this->type_,
-                                                this->expr_->copy(),
-                                                this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type to convert to.
-  Type* type_;
-  // The expression to convert.
-  Expression* expr_;
-};
-
-// Traversal.
-
-int
-Unsafe_type_conversion_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
-      || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Convert to backend representation.
-
-tree
-Unsafe_type_conversion_expression::do_get_tree(Translate_context* context)
-{
-  // We are only called for a limited number of cases.
-
-  Type* t = this->type_;
-  Type* et = this->expr_->type();
-
-  tree type_tree = this->type_->get_tree(context->gogo());
-  tree expr_tree = this->expr_->get_tree(context);
-  if (type_tree == error_mark_node || expr_tree == error_mark_node)
-    return error_mark_node;
-
-  source_location loc = this->location();
-
-  bool use_view_convert = false;
-  if (t->is_open_array_type())
-    {
-      go_assert(et->is_open_array_type());
-      use_view_convert = true;
-    }
-  else if (t->map_type() != NULL)
-    go_assert(et->map_type() != NULL);
-  else if (t->channel_type() != NULL)
-    go_assert(et->channel_type() != NULL);
-  else if (t->points_to() != NULL && t->points_to()->channel_type() != NULL)
-    go_assert((et->points_to() != NULL
-               && et->points_to()->channel_type() != NULL)
-              || et->is_nil_type());
-  else if (t->is_unsafe_pointer_type())
-    go_assert(et->points_to() != NULL || et->is_nil_type());
-  else if (et->is_unsafe_pointer_type())
-    go_assert(t->points_to() != NULL);
-  else if (t->interface_type() != NULL && !t->interface_type()->is_empty())
-    {
-      go_assert(et->interface_type() != NULL
-                && !et->interface_type()->is_empty());
-      use_view_convert = true;
-    }
-  else if (t->interface_type() != NULL && t->interface_type()->is_empty())
-    {
-      go_assert(et->interface_type() != NULL
-                && et->interface_type()->is_empty());
-      use_view_convert = true;
-    }
-  else if (t->integer_type() != NULL)
-    {
-      go_assert(et->is_boolean_type()
-                || et->integer_type() != NULL
-                || et->function_type() != NULL
-                || et->points_to() != NULL
-                || et->map_type() != NULL
-                || et->channel_type() != NULL);
-      return convert_to_integer(type_tree, expr_tree);
-    }
-  else
-    go_unreachable();
-
-  if (use_view_convert)
-    return fold_build1_loc(loc, VIEW_CONVERT_EXPR, type_tree, expr_tree);
-  else
-    return fold_convert_loc(loc, type_tree, expr_tree);
-}
-
-// Make an unsafe type conversion expression.
-
-Expression*
-Expression::make_unsafe_cast(Type* type, Expression* expr,
-                            source_location location)
-{
-  return new Unsafe_type_conversion_expression(type, expr, location);
-}
-
-// Unary expressions.
-
-class Unary_expression : public Expression
-{
- public:
-  Unary_expression(Operator op, Expression* expr, source_location location)
-    : Expression(EXPRESSION_UNARY, location),
-      op_(op), escapes_(true), expr_(expr)
-  { }
-
-  // Return the operator.
-  Operator
-  op() const
-  { return this->op_; }
-
-  // Return the operand.
-  Expression*
-  operand() const
-  { return this->expr_; }
-
-  // Record that an address expression does not escape.
-  void
-  set_does_not_escape()
-  {
-    go_assert(this->op_ == OPERATOR_AND);
-    this->escapes_ = false;
-  }
-
-  // Apply unary opcode OP to UVAL, setting VAL.  Return true if this
-  // could be done, false if not.
-  static bool
-  eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
-              source_location);
-
-  // Apply unary opcode OP to UVAL, setting VAL.  Return true if this
-  // could be done, false if not.
-  static bool
-  eval_float(Operator op, mpfr_t uval, mpfr_t val);
-
-  // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG.  Return
-  // true if this could be done, false if not.
-  static bool
-  eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
-              mpfr_t imag);
-
-  static Expression*
-  do_import(Import*);
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Expression::traverse(&this->expr_, traverse); }
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const;
-
-  bool
-  do_integer_constant_value(bool, mpz_t, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_unary(this->op_, this->expr_->copy(),
-                                 this->location());
-  }
-
-  bool
-  do_is_addressable() const
-  { return this->op_ == OPERATOR_MULT; }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The unary operator to apply.
-  Operator op_;
-  // Normally true.  False if this is an address expression which does
-  // not escape the current function.
-  bool escapes_;
-  // The operand.
-  Expression* expr_;
-};
-
-// If we are taking the address of a composite literal, and the
-// contents are not constant, then we want to make a heap composite
-// instead.
-
-Expression*
-Unary_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location loc = this->location();
-  Operator op = this->op_;
-  Expression* expr = this->expr_;
-
-  if (op == OPERATOR_MULT && expr->is_type_expression())
-    return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
-
-  // *&x simplifies to x.  *(*T)(unsafe.Pointer)(&x) does not require
-  // moving x to the heap.  FIXME: Is it worth doing a real escape
-  // analysis here?  This case is found in math/unsafe.go and is
-  // therefore worth special casing.
-  if (op == OPERATOR_MULT)
-    {
-      Expression* e = expr;
-      while (e->classification() == EXPRESSION_CONVERSION)
-       {
-         Type_conversion_expression* te
-           = static_cast<Type_conversion_expression*>(e);
-         e = te->expr();
-       }
-
-      if (e->classification() == EXPRESSION_UNARY)
-       {
-         Unary_expression* ue = static_cast<Unary_expression*>(e);
-         if (ue->op_ == OPERATOR_AND)
-           {
-             if (e == expr)
-               {
-                 // *&x == x.
-                 return ue->expr_;
-               }
-             ue->set_does_not_escape();
-           }
-       }
-    }
-
-  // Catching an invalid indirection of unsafe.Pointer here avoid
-  // having to deal with TYPE_VOID in other places.
-  if (op == OPERATOR_MULT && expr->type()->is_unsafe_pointer_type())
-    {
-      error_at(this->location(), "invalid indirect of %<unsafe.Pointer%>");
-      return Expression::make_error(this->location());
-    }
-
-  if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
-      || op == OPERATOR_NOT || op == OPERATOR_XOR)
-    {
-      Expression* ret = NULL;
-
-      mpz_t eval;
-      mpz_init(eval);
-      Type* etype;
-      if (expr->integer_constant_value(false, eval, &etype))
-       {
-         mpz_t val;
-         mpz_init(val);
-         if (Unary_expression::eval_integer(op, etype, eval, val, loc))
-           ret = Expression::make_integer(&val, etype, loc);
-         mpz_clear(val);
-       }
-      mpz_clear(eval);
-      if (ret != NULL)
-       return ret;
-
-      if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
-       {
-         mpfr_t fval;
-         mpfr_init(fval);
-         Type* ftype;
-         if (expr->float_constant_value(fval, &ftype))
-           {
-             mpfr_t val;
-             mpfr_init(val);
-             if (Unary_expression::eval_float(op, fval, val))
-               ret = Expression::make_float(&val, ftype, loc);
-             mpfr_clear(val);
-           }
-         if (ret != NULL)
-           {
-             mpfr_clear(fval);
-             return ret;
-           }
-
-         mpfr_t ival;
-         mpfr_init(ival);
-         if (expr->complex_constant_value(fval, ival, &ftype))
-           {
-             mpfr_t real;
-             mpfr_t imag;
-             mpfr_init(real);
-             mpfr_init(imag);
-             if (Unary_expression::eval_complex(op, fval, ival, real, imag))
-               ret = Expression::make_complex(&real, &imag, ftype, loc);
-             mpfr_clear(real);
-             mpfr_clear(imag);
-           }
-         mpfr_clear(ival);
-         mpfr_clear(fval);
-         if (ret != NULL)
-           return ret;
-       }
-    }
-
-  return this;
-}
-
-// Return whether a unary expression is a constant.
-
-bool
-Unary_expression::do_is_constant() const
-{
-  if (this->op_ == OPERATOR_MULT)
-    {
-      // Indirecting through a pointer is only constant if the object
-      // to which the expression points is constant, but we currently
-      // have no way to determine that.
-      return false;
-    }
-  else if (this->op_ == OPERATOR_AND)
-    {
-      // Taking the address of a variable is constant if it is a
-      // global variable, not constant otherwise.  In other cases
-      // taking the address is probably not a constant.
-      Var_expression* ve = this->expr_->var_expression();
-      if (ve != NULL)
-       {
-         Named_object* no = ve->named_object();
-         return no->is_variable() && no->var_value()->is_global();
-       }
-      return false;
-    }
-  else
-    return this->expr_->is_constant();
-}
-
-// Apply unary opcode OP to UVAL, setting VAL.  UTYPE is the type of
-// UVAL, if known; it may be NULL.  Return true if this could be done,
-// false if not.
-
-bool
-Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
-                              source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_PLUS:
-      mpz_set(val, uval);
-      return true;
-    case OPERATOR_MINUS:
-      mpz_neg(val, uval);
-      return Integer_expression::check_constant(val, utype, location);
-    case OPERATOR_NOT:
-      mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
-      return true;
-    case OPERATOR_XOR:
-      if (utype == NULL
-         || utype->integer_type() == NULL
-         || utype->integer_type()->is_abstract())
-       mpz_com(val, uval);
-      else
-       {
-         // The number of HOST_WIDE_INTs that it takes to represent
-         // UVAL.
-         size_t count = ((mpz_sizeinbase(uval, 2)
-                          + HOST_BITS_PER_WIDE_INT
-                          - 1)
-                         / HOST_BITS_PER_WIDE_INT);
-
-         unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
-         memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
-
-         size_t ecount;
-         mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
-         go_assert(ecount <= count);
-
-         // Trim down to the number of words required by the type.
-         size_t obits = utype->integer_type()->bits();
-         if (!utype->integer_type()->is_unsigned())
-           ++obits;
-         size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
-                          / HOST_BITS_PER_WIDE_INT);
-         go_assert(ocount <= count);
-
-         for (size_t i = 0; i < ocount; ++i)
-           phwi[i] = ~phwi[i];
-
-         size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
-         if (clearbits != 0)
-           phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
-                                >> clearbits);
-
-         mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
-
-         delete[] phwi;
-       }
-      return Integer_expression::check_constant(val, utype, location);
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-      return false;
-    default:
-      go_unreachable();
-    }
-}
-
-// Apply unary opcode OP to UVAL, setting VAL.  Return true if this
-// could be done, false if not.
-
-bool
-Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
-{
-  switch (op)
-    {
-    case OPERATOR_PLUS:
-      mpfr_set(val, uval, GMP_RNDN);
-      return true;
-    case OPERATOR_MINUS:
-      mpfr_neg(val, uval, GMP_RNDN);
-      return true;
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-      return false;
-    default:
-      go_unreachable();
-    }
-}
-
-// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG.  Return true
-// if this could be done, false if not.
-
-bool
-Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
-                              mpfr_t real, mpfr_t imag)
-{
-  switch (op)
-    {
-    case OPERATOR_PLUS:
-      mpfr_set(real, rval, GMP_RNDN);
-      mpfr_set(imag, ival, GMP_RNDN);
-      return true;
-    case OPERATOR_MINUS:
-      mpfr_neg(real, rval, GMP_RNDN);
-      mpfr_neg(imag, ival, GMP_RNDN);
-      return true;
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-      return false;
-    default:
-      go_unreachable();
-    }
-}
-
-// Return the integral constant value of a unary expression, if it has one.
-
-bool
-Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
-                                           Type** ptype) const
-{
-  mpz_t uval;
-  mpz_init(uval);
-  bool ret;
-  if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
-    ret = false;
-  else
-    ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
-                                        this->location());
-  mpz_clear(uval);
-  return ret;
-}
-
-// Return the floating point constant value of a unary expression, if
-// it has one.
-
-bool
-Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  mpfr_t uval;
-  mpfr_init(uval);
-  bool ret;
-  if (!this->expr_->float_constant_value(uval, ptype))
-    ret = false;
-  else
-    ret = Unary_expression::eval_float(this->op_, uval, val);
-  mpfr_clear(uval);
-  return ret;
-}
-
-// Return the complex constant value of a unary expression, if it has
-// one.
-
-bool
-Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                           Type** ptype) const
-{
-  mpfr_t rval;
-  mpfr_t ival;
-  mpfr_init(rval);
-  mpfr_init(ival);
-  bool ret;
-  if (!this->expr_->complex_constant_value(rval, ival, ptype))
-    ret = false;
-  else
-    ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
-  mpfr_clear(rval);
-  mpfr_clear(ival);
-  return ret;
-}
-
-// Return the type of a unary expression.
-
-Type*
-Unary_expression::do_type()
-{
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-      return this->expr_->type();
-
-    case OPERATOR_AND:
-      return Type::make_pointer_type(this->expr_->type());
-
-    case OPERATOR_MULT:
-      {
-       Type* subtype = this->expr_->type();
-       Type* points_to = subtype->points_to();
-       if (points_to == NULL)
-         return Type::make_error_type();
-       return points_to;
-      }
-
-    default:
-      go_unreachable();
-    }
-}
-
-// Determine abstract types for a unary expression.
-
-void
-Unary_expression::do_determine_type(const Type_context* context)
-{
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-      this->expr_->determine_type(context);
-      break;
-
-    case OPERATOR_AND:
-      // Taking the address of something.
-      {
-       Type* subtype = (context->type == NULL
-                        ? NULL
-                        : context->type->points_to());
-       Type_context subcontext(subtype, false);
-       this->expr_->determine_type(&subcontext);
-      }
-      break;
-
-    case OPERATOR_MULT:
-      // Indirecting through a pointer.
-      {
-       Type* subtype = (context->type == NULL
-                        ? NULL
-                        : Type::make_pointer_type(context->type));
-       Type_context subcontext(subtype, false);
-       this->expr_->determine_type(&subcontext);
-      }
-      break;
-
-    default:
-      go_unreachable();
-    }
-}
-
-// Check types for a unary expression.
-
-void
-Unary_expression::do_check_types(Gogo*)
-{
-  Type* type = this->expr_->type();
-  if (type->is_error())
-    {
-      this->set_is_error();
-      return;
-    }
-
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL)
-       this->report_error(_("expected numeric type"));
-      break;
-
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-      if (type->integer_type() == NULL
-         && !type->is_boolean_type())
-       this->report_error(_("expected integer or boolean type"));
-      break;
-
-    case OPERATOR_AND:
-      if (!this->expr_->is_addressable())
-       this->report_error(_("invalid operand for unary %<&%>"));
-      else
-       this->expr_->address_taken(this->escapes_);
-      break;
-
-    case OPERATOR_MULT:
-      // Indirecting through a pointer.
-      if (type->points_to() == NULL)
-       this->report_error(_("expected pointer"));
-      break;
-
-    default:
-      go_unreachable();
-    }
-}
-
-// Get a tree for a unary expression.
-
-tree
-Unary_expression::do_get_tree(Translate_context* context)
-{
-  tree expr = this->expr_->get_tree(context);
-  if (expr == error_mark_node)
-    return error_mark_node;
-
-  source_location loc = this->location();
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-      return expr;
-
-    case OPERATOR_MINUS:
-      {
-       tree type = TREE_TYPE(expr);
-       tree compute_type = excess_precision_type(type);
-       if (compute_type != NULL_TREE)
-         expr = ::convert(compute_type, expr);
-       tree ret = fold_build1_loc(loc, NEGATE_EXPR,
-                                  (compute_type != NULL_TREE
-                                   ? compute_type
-                                   : type),
-                                  expr);
-       if (compute_type != NULL_TREE)
-         ret = ::convert(type, ret);
-       return ret;
-      }
-
-    case OPERATOR_NOT:
-      if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
-       return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
-      else
-       return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
-                              build_int_cst(TREE_TYPE(expr), 0));
-
-    case OPERATOR_XOR:
-      return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
-
-    case OPERATOR_AND:
-      // We should not see a non-constant constructor here; cases
-      // where we would see one should have been moved onto the heap
-      // at parse time.  Taking the address of a nonconstant
-      // constructor will not do what the programmer expects.
-      go_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
-      go_assert(TREE_CODE(expr) != ADDR_EXPR);
-
-      // Build a decl for a constant constructor.
-      if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
-       {
-         tree decl = build_decl(this->location(), VAR_DECL,
-                                create_tmp_var_name("C"), TREE_TYPE(expr));
-         DECL_EXTERNAL(decl) = 0;
-         TREE_PUBLIC(decl) = 0;
-         TREE_READONLY(decl) = 1;
-         TREE_CONSTANT(decl) = 1;
-         TREE_STATIC(decl) = 1;
-         TREE_ADDRESSABLE(decl) = 1;
-         DECL_ARTIFICIAL(decl) = 1;
-         DECL_INITIAL(decl) = expr;
-         rest_of_decl_compilation(decl, 1, 0);
-         expr = decl;
-       }
-
-      return build_fold_addr_expr_loc(loc, expr);
-
-    case OPERATOR_MULT:
-      {
-       go_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
-
-       // If we are dereferencing the pointer to a large struct, we
-       // need to check for nil.  We don't bother to check for small
-       // structs because we expect the system to crash on a nil
-       // pointer dereference.
-       HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
-       if (s == -1 || s >= 4096)
-         {
-           if (!DECL_P(expr))
-             expr = save_expr(expr);
-           tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
-                                          expr,
-                                          fold_convert(TREE_TYPE(expr),
-                                                       null_pointer_node));
-           tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
-                                            loc);
-           expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
-                                  build3(COND_EXPR, void_type_node,
-                                         compare, crash, NULL_TREE),
-                                  expr);
-         }
-
-       // If the type of EXPR is a recursive pointer type, then we
-       // need to insert a cast before indirecting.
-       if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
-         {
-           Type* pt = this->expr_->type()->points_to();
-           tree ind = pt->get_tree(context->gogo());
-           expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
-         }
-
-       return build_fold_indirect_ref_loc(loc, expr);
-      }
-
-    default:
-      go_unreachable();
-    }
-}
-
-// Export a unary expression.
-
-void
-Unary_expression::do_export(Export* exp) const
-{
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-      exp->write_c_string("+ ");
-      break;
-    case OPERATOR_MINUS:
-      exp->write_c_string("- ");
-      break;
-    case OPERATOR_NOT:
-      exp->write_c_string("! ");
-      break;
-    case OPERATOR_XOR:
-      exp->write_c_string("^ ");
-      break;
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-    default:
-      go_unreachable();
-    }
-  this->expr_->export_expression(exp);
-}
-
-// Import a unary expression.
-
-Expression*
-Unary_expression::do_import(Import* imp)
-{
-  Operator op;
-  switch (imp->get_char())
-    {
-    case '+':
-      op = OPERATOR_PLUS;
-      break;
-    case '-':
-      op = OPERATOR_MINUS;
-      break;
-    case '!':
-      op = OPERATOR_NOT;
-      break;
-    case '^':
-      op = OPERATOR_XOR;
-      break;
-    default:
-      go_unreachable();
-    }
-  imp->require_c_string(" ");
-  Expression* expr = Expression::import_expression(imp);
-  return Expression::make_unary(op, expr, imp->location());
-}
-
-// Make a unary expression.
-
-Expression*
-Expression::make_unary(Operator op, Expression* expr, source_location location)
-{
-  return new Unary_expression(op, expr, location);
-}
-
-// If this is an indirection through a pointer, return the expression
-// being pointed through.  Otherwise return this.
-
-Expression*
-Expression::deref()
-{
-  if (this->classification_ == EXPRESSION_UNARY)
-    {
-      Unary_expression* ue = static_cast<Unary_expression*>(this);
-      if (ue->op() == OPERATOR_MULT)
-       return ue->operand();
-    }
-  return this;
-}
-
-// Class Binary_expression.
-
-// Traversal.
-
-int
-Binary_expression::do_traverse(Traverse* traverse)
-{
-  int t = Expression::traverse(&this->left_, traverse);
-  if (t == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Expression::traverse(&this->right_, traverse);
-}
-
-// Compare integer constants according to OP.
-
-bool
-Binary_expression::compare_integer(Operator op, mpz_t left_val,
-                                  mpz_t right_val)
-{
-  int i = mpz_cmp(left_val, right_val);
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      return i == 0;
-    case OPERATOR_NOTEQ:
-      return i != 0;
-    case OPERATOR_LT:
-      return i < 0;
-    case OPERATOR_LE:
-      return i <= 0;
-    case OPERATOR_GT:
-      return i > 0;
-    case OPERATOR_GE:
-      return i >= 0;
-    default:
-      go_unreachable();
-    }
-}
-
-// Compare floating point constants according to OP.
-
-bool
-Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
-                                mpfr_t right_val)
-{
-  int i;
-  if (type == NULL)
-    i = mpfr_cmp(left_val, right_val);
-  else
-    {
-      mpfr_t lv;
-      mpfr_init_set(lv, left_val, GMP_RNDN);
-      mpfr_t rv;
-      mpfr_init_set(rv, right_val, GMP_RNDN);
-      Float_expression::constrain_float(lv, type);
-      Float_expression::constrain_float(rv, type);
-      i = mpfr_cmp(lv, rv);
-      mpfr_clear(lv);
-      mpfr_clear(rv);
-    }
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      return i == 0;
-    case OPERATOR_NOTEQ:
-      return i != 0;
-    case OPERATOR_LT:
-      return i < 0;
-    case OPERATOR_LE:
-      return i <= 0;
-    case OPERATOR_GT:
-      return i > 0;
-    case OPERATOR_GE:
-      return i >= 0;
-    default:
-      go_unreachable();
-    }
-}
-
-// Compare complex constants according to OP.  Complex numbers may
-// only be compared for equality.
-
-bool
-Binary_expression::compare_complex(Operator op, Type* type,
-                                  mpfr_t left_real, mpfr_t left_imag,
-                                  mpfr_t right_real, mpfr_t right_imag)
-{
-  bool is_equal;
-  if (type == NULL)
-    is_equal = (mpfr_cmp(left_real, right_real) == 0
-               && mpfr_cmp(left_imag, right_imag) == 0);
-  else
-    {
-      mpfr_t lr;
-      mpfr_t li;
-      mpfr_init_set(lr, left_real, GMP_RNDN);
-      mpfr_init_set(li, left_imag, GMP_RNDN);
-      mpfr_t rr;
-      mpfr_t ri;
-      mpfr_init_set(rr, right_real, GMP_RNDN);
-      mpfr_init_set(ri, right_imag, GMP_RNDN);
-      Complex_expression::constrain_complex(lr, li, type);
-      Complex_expression::constrain_complex(rr, ri, type);
-      is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
-      mpfr_clear(lr);
-      mpfr_clear(li);
-      mpfr_clear(rr);
-      mpfr_clear(ri);
-    }
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      return is_equal;
-    case OPERATOR_NOTEQ:
-      return !is_equal;
-    default:
-      go_unreachable();
-    }
-}
-
-// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
-// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
-// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL.  Return true if
-// this could be done, false if not.
-
-bool
-Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
-                               Type* right_type, mpz_t right_val,
-                               source_location location, mpz_t val)
-{
-  bool is_shift_op = false;
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      // These return boolean values.  We should probably handle them
-      // anyhow in case a type conversion is used on the result.
-      return false;
-    case OPERATOR_PLUS:
-      mpz_add(val, left_val, right_val);
-      break;
-    case OPERATOR_MINUS:
-      mpz_sub(val, left_val, right_val);
-      break;
-    case OPERATOR_OR:
-      mpz_ior(val, left_val, right_val);
-      break;
-    case OPERATOR_XOR:
-      mpz_xor(val, left_val, right_val);
-      break;
-    case OPERATOR_MULT:
-      mpz_mul(val, left_val, right_val);
-      break;
-    case OPERATOR_DIV:
-      if (mpz_sgn(right_val) != 0)
-       mpz_tdiv_q(val, left_val, right_val);
-      else
-       {
-         error_at(location, "division by zero");
-         mpz_set_ui(val, 0);
-         return true;
-       }
-      break;
-    case OPERATOR_MOD:
-      if (mpz_sgn(right_val) != 0)
-       mpz_tdiv_r(val, left_val, right_val);
-      else
-       {
-         error_at(location, "division by zero");
-         mpz_set_ui(val, 0);
-         return true;
-       }
-      break;
-    case OPERATOR_LSHIFT:
-      {
-       unsigned long shift = mpz_get_ui(right_val);
-       if (mpz_cmp_ui(right_val, shift) != 0 || shift > 0x100000)
-         {
-           error_at(location, "shift count overflow");
-           mpz_set_ui(val, 0);
-           return true;
-         }
-       mpz_mul_2exp(val, left_val, shift);
-       is_shift_op = true;
-       break;
-      }
-      break;
-    case OPERATOR_RSHIFT:
-      {
-       unsigned long shift = mpz_get_ui(right_val);
-       if (mpz_cmp_ui(right_val, shift) != 0)
-         {
-           error_at(location, "shift count overflow");
-           mpz_set_ui(val, 0);
-           return true;
-         }
-       if (mpz_cmp_ui(left_val, 0) >= 0)
-         mpz_tdiv_q_2exp(val, left_val, shift);
-       else
-         mpz_fdiv_q_2exp(val, left_val, shift);
-       is_shift_op = true;
-       break;
-      }
-      break;
-    case OPERATOR_AND:
-      mpz_and(val, left_val, right_val);
-      break;
-    case OPERATOR_BITCLEAR:
-      {
-       mpz_t tval;
-       mpz_init(tval);
-       mpz_com(tval, right_val);
-       mpz_and(val, left_val, tval);
-       mpz_clear(tval);
-      }
-      break;
-    default:
-      go_unreachable();
-    }
-
-  Type* type = left_type;
-  if (!is_shift_op)
-    {
-      if (type == NULL)
-       type = right_type;
-      else if (type != right_type && right_type != NULL)
-       {
-         if (type->is_abstract())
-           type = right_type;
-         else if (!right_type->is_abstract())
-           {
-             // This look like a type error which should be diagnosed
-             // elsewhere.  Don't do anything here, to avoid an
-             // unhelpful chain of error messages.
-             return true;
-           }
-       }
-    }
-
-  if (type != NULL && !type->is_abstract())
-    {
-      // We have to check the operands too, as we have implicitly
-      // coerced them to TYPE.
-      if ((type != left_type
-          && !Integer_expression::check_constant(left_val, type, location))
-         || (!is_shift_op
-             && type != right_type
-             && !Integer_expression::check_constant(right_val, type,
-                                                    location))
-         || !Integer_expression::check_constant(val, type, location))
-       mpz_set_ui(val, 0);
-    }
-
-  return true;
-}
-
-// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
-// Return true if this could be done, false if not.
-
-bool
-Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
-                             Type* right_type, mpfr_t right_val,
-                             mpfr_t val, source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      // These return boolean values.  We should probably handle them
-      // anyhow in case a type conversion is used on the result.
-      return false;
-    case OPERATOR_PLUS:
-      mpfr_add(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_MINUS:
-      mpfr_sub(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_OR:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_BITCLEAR:
-      return false;
-    case OPERATOR_MULT:
-      mpfr_mul(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_DIV:
-      if (mpfr_zero_p(right_val))
-       error_at(location, "division by zero");
-      mpfr_div(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_MOD:
-      return false;
-    case OPERATOR_LSHIFT:
-    case OPERATOR_RSHIFT:
-      return false;
-    default:
-      go_unreachable();
-    }
-
-  Type* type = left_type;
-  if (type == NULL)
-    type = right_type;
-  else if (type != right_type && right_type != NULL)
-    {
-      if (type->is_abstract())
-       type = right_type;
-      else if (!right_type->is_abstract())
-       {
-         // This looks like a type error which should be diagnosed
-         // elsewhere.  Don't do anything here, to avoid an unhelpful
-         // chain of error messages.
-         return true;
-       }
-    }
-
-  if (type != NULL && !type->is_abstract())
-    {
-      if ((type != left_type
-          && !Float_expression::check_constant(left_val, type, location))
-         || (type != right_type
-             && !Float_expression::check_constant(right_val, type,
-                                                  location))
-         || !Float_expression::check_constant(val, type, location))
-       mpfr_set_ui(val, 0, GMP_RNDN);
-    }
-
-  return true;
-}
-
-// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
-// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG.  Return true if this
-// could be done, false if not.
-
-bool
-Binary_expression::eval_complex(Operator op, Type* left_type,
-                               mpfr_t left_real, mpfr_t left_imag,
-                               Type *right_type,
-                               mpfr_t right_real, mpfr_t right_imag,
-                               mpfr_t real, mpfr_t imag,
-                               source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      // These return boolean values and must be handled differently.
-      return false;
-    case OPERATOR_PLUS:
-      mpfr_add(real, left_real, right_real, GMP_RNDN);
-      mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
-      break;
-    case OPERATOR_MINUS:
-      mpfr_sub(real, left_real, right_real, GMP_RNDN);
-      mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
-      break;
-    case OPERATOR_OR:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_BITCLEAR:
-      return false;
-    case OPERATOR_MULT:
-      {
-       // You might think that multiplying two complex numbers would
-       // be simple, and you would be right, until you start to think
-       // about getting the right answer for infinity.  If one
-       // operand here is infinity and the other is anything other
-       // than zero or NaN, then we are going to wind up subtracting
-       // two infinity values.  That will give us a NaN, but the
-       // correct answer is infinity.
-
-       mpfr_t lrrr;
-       mpfr_init(lrrr);
-       mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
-
-       mpfr_t lrri;
-       mpfr_init(lrri);
-       mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
-
-       mpfr_t lirr;
-       mpfr_init(lirr);
-       mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
-
-       mpfr_t liri;
-       mpfr_init(liri);
-       mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
-
-       mpfr_sub(real, lrrr, liri, GMP_RNDN);
-       mpfr_add(imag, lrri, lirr, GMP_RNDN);
-
-       // If we get NaN on both sides, check whether it should really
-       // be infinity.  The rule is that if either side of the
-       // complex number is infinity, then the whole value is
-       // infinity, even if the other side is NaN.  So the only case
-       // we have to fix is the one in which both sides are NaN.
-       if (mpfr_nan_p(real) && mpfr_nan_p(imag)
-           && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
-           && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
-         {
-           bool is_infinity = false;
-
-           mpfr_t lr;
-           mpfr_t li;
-           mpfr_init_set(lr, left_real, GMP_RNDN);
-           mpfr_init_set(li, left_imag, GMP_RNDN);
-
-           mpfr_t rr;
-           mpfr_t ri;
-           mpfr_init_set(rr, right_real, GMP_RNDN);
-           mpfr_init_set(ri, right_imag, GMP_RNDN);
-
-           // If the left side is infinity, then the result is
-           // infinity.
-           if (mpfr_inf_p(lr) || mpfr_inf_p(li))
-             {
-               mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(lr, lr, left_real, GMP_RNDN);
-               mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(li, li, left_imag, GMP_RNDN);
-               if (mpfr_nan_p(rr))
-                 {
-                   mpfr_set_ui(rr, 0, GMP_RNDN);
-                   mpfr_copysign(rr, rr, right_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(ri))
-                 {
-                   mpfr_set_ui(ri, 0, GMP_RNDN);
-                   mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
-                 }
-               is_infinity = true;
-             }
-
-           // If the right side is infinity, then the result is
-           // infinity.
-           if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
-             {
-               mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(rr, rr, right_real, GMP_RNDN);
-               mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
-               if (mpfr_nan_p(lr))
-                 {
-                   mpfr_set_ui(lr, 0, GMP_RNDN);
-                   mpfr_copysign(lr, lr, left_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(li))
-                 {
-                   mpfr_set_ui(li, 0, GMP_RNDN);
-                   mpfr_copysign(li, li, left_imag, GMP_RNDN);
-                 }
-               is_infinity = true;
-             }
-
-           // If we got an overflow in the intermediate computations,
-           // then the result is infinity.
-           if (!is_infinity
-               && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
-                   || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
-             {
-               if (mpfr_nan_p(lr))
-                 {
-                   mpfr_set_ui(lr, 0, GMP_RNDN);
-                   mpfr_copysign(lr, lr, left_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(li))
-                 {
-                   mpfr_set_ui(li, 0, GMP_RNDN);
-                   mpfr_copysign(li, li, left_imag, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(rr))
-                 {
-                   mpfr_set_ui(rr, 0, GMP_RNDN);
-                   mpfr_copysign(rr, rr, right_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(ri))
-                 {
-                   mpfr_set_ui(ri, 0, GMP_RNDN);
-                   mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
-                 }
-               is_infinity = true;
-             }
-
-           if (is_infinity)
-             {
-               mpfr_mul(lrrr, lr, rr, GMP_RNDN);
-               mpfr_mul(lrri, lr, ri, GMP_RNDN);
-               mpfr_mul(lirr, li, rr, GMP_RNDN);
-               mpfr_mul(liri, li, ri, GMP_RNDN);
-               mpfr_sub(real, lrrr, liri, GMP_RNDN);
-               mpfr_add(imag, lrri, lirr, GMP_RNDN);
-               mpfr_set_inf(real, mpfr_sgn(real));
-               mpfr_set_inf(imag, mpfr_sgn(imag));
-             }
-
-           mpfr_clear(lr);
-           mpfr_clear(li);
-           mpfr_clear(rr);
-           mpfr_clear(ri);
-         }
-
-       mpfr_clear(lrrr);
-       mpfr_clear(lrri);
-       mpfr_clear(lirr);
-       mpfr_clear(liri);                                 
-      }
-      break;
-    case OPERATOR_DIV:
-      {
-       // For complex division we want to avoid having an
-       // intermediate overflow turn the whole result in a NaN.  We
-       // scale the values to try to avoid this.
-
-       if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
-         error_at(location, "division by zero");
-
-       mpfr_t rra;
-       mpfr_t ria;
-       mpfr_init(rra);
-       mpfr_init(ria);
-       mpfr_abs(rra, right_real, GMP_RNDN);
-       mpfr_abs(ria, right_imag, GMP_RNDN);
-       mpfr_t t;
-       mpfr_init(t);
-       mpfr_max(t, rra, ria, GMP_RNDN);
-
-       mpfr_t rr;
-       mpfr_t ri;
-       mpfr_init_set(rr, right_real, GMP_RNDN);
-       mpfr_init_set(ri, right_imag, GMP_RNDN);
-       long ilogbw = 0;
-       if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
-         {
-           ilogbw = mpfr_get_exp(t);
-           mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
-           mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
-         }
-
-       mpfr_t denom;
-       mpfr_init(denom);
-       mpfr_mul(denom, rr, rr, GMP_RNDN);
-       mpfr_mul(t, ri, ri, GMP_RNDN);
-       mpfr_add(denom, denom, t, GMP_RNDN);
-
-       mpfr_mul(real, left_real, rr, GMP_RNDN);
-       mpfr_mul(t, left_imag, ri, GMP_RNDN);
-       mpfr_add(real, real, t, GMP_RNDN);
-       mpfr_div(real, real, denom, GMP_RNDN);
-       mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
-
-       mpfr_mul(imag, left_imag, rr, GMP_RNDN);
-       mpfr_mul(t, left_real, ri, GMP_RNDN);
-       mpfr_sub(imag, imag, t, GMP_RNDN);
-       mpfr_div(imag, imag, denom, GMP_RNDN);
-       mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
-
-       // If we wind up with NaN on both sides, check whether we
-       // should really have infinity.  The rule is that if either
-       // side of the complex number is infinity, then the whole
-       // value is infinity, even if the other side is NaN.  So the
-       // only case we have to fix is the one in which both sides are
-       // NaN.
-       if (mpfr_nan_p(real) && mpfr_nan_p(imag)
-           && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
-           && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
-         {
-           if (mpfr_zero_p(denom))
-             {
-               mpfr_set_inf(real, mpfr_sgn(rr));
-               mpfr_mul(real, real, left_real, GMP_RNDN);
-               mpfr_set_inf(imag, mpfr_sgn(rr));
-               mpfr_mul(imag, imag, left_imag, GMP_RNDN);
-             }
-           else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
-                    && mpfr_number_p(rr) && mpfr_number_p(ri))
-             {
-               mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t, t, left_real, GMP_RNDN);
-
-               mpfr_t t2;
-               mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
-
-               mpfr_t t3;
-               mpfr_init(t3);
-               mpfr_mul(t3, t, rr, GMP_RNDN);
-
-               mpfr_t t4;
-               mpfr_init(t4);
-               mpfr_mul(t4, t2, ri, GMP_RNDN);
-
-               mpfr_add(t3, t3, t4, GMP_RNDN);
-               mpfr_set_inf(real, mpfr_sgn(t3));
-
-               mpfr_mul(t3, t2, rr, GMP_RNDN);
-               mpfr_mul(t4, t, ri, GMP_RNDN);
-               mpfr_sub(t3, t3, t4, GMP_RNDN);
-               mpfr_set_inf(imag, mpfr_sgn(t3));
-
-               mpfr_clear(t2);
-               mpfr_clear(t3);
-               mpfr_clear(t4);
-             }
-           else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
-                    && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
-             {
-               mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t, t, rr, GMP_RNDN);
-
-               mpfr_t t2;
-               mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t2, t2, ri, GMP_RNDN);
-
-               mpfr_t t3;
-               mpfr_init(t3);
-               mpfr_mul(t3, left_real, t, GMP_RNDN);
-
-               mpfr_t t4;
-               mpfr_init(t4);
-               mpfr_mul(t4, left_imag, t2, GMP_RNDN);
-
-               mpfr_add(t3, t3, t4, GMP_RNDN);
-               mpfr_set_ui(real, 0, GMP_RNDN);
-               mpfr_mul(real, real, t3, GMP_RNDN);
-
-               mpfr_mul(t3, left_imag, t, GMP_RNDN);
-               mpfr_mul(t4, left_real, t2, GMP_RNDN);
-               mpfr_sub(t3, t3, t4, GMP_RNDN);
-               mpfr_set_ui(imag, 0, GMP_RNDN);
-               mpfr_mul(imag, imag, t3, GMP_RNDN);
-
-               mpfr_clear(t2);
-               mpfr_clear(t3);
-               mpfr_clear(t4);
-             }
-         }
-
-       mpfr_clear(denom);
-       mpfr_clear(rr);
-       mpfr_clear(ri);
-       mpfr_clear(t);
-       mpfr_clear(rra);
-       mpfr_clear(ria);
-      }
-      break;
-    case OPERATOR_MOD:
-      return false;
-    case OPERATOR_LSHIFT:
-    case OPERATOR_RSHIFT:
-      return false;
-    default:
-      go_unreachable();
-    }
-
-  Type* type = left_type;
-  if (type == NULL)
-    type = right_type;
-  else if (type != right_type && right_type != NULL)
-    {
-      if (type->is_abstract())
-       type = right_type;
-      else if (!right_type->is_abstract())
-       {
-         // This looks like a type error which should be diagnosed
-         // elsewhere.  Don't do anything here, to avoid an unhelpful
-         // chain of error messages.
-         return true;
-       }
-    }
-
-  if (type != NULL && !type->is_abstract())
-    {
-      if ((type != left_type
-          && !Complex_expression::check_constant(left_real, left_imag,
-                                                 type, location))
-         || (type != right_type
-             && !Complex_expression::check_constant(right_real, right_imag,
-                                                    type, location))
-         || !Complex_expression::check_constant(real, imag, type,
-                                                location))
-       {
-         mpfr_set_ui(real, 0, GMP_RNDN);
-         mpfr_set_ui(imag, 0, GMP_RNDN);
-       }
-    }
-
-  return true;
-}
-
-// Lower a binary expression.  We have to evaluate constant
-// expressions now, in order to implement Go's unlimited precision
-// constants.
-
-Expression*
-Binary_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location location = this->location();
-  Operator op = this->op_;
-  Expression* left = this->left_;
-  Expression* right = this->right_;
-
-  const bool is_comparison = (op == OPERATOR_EQEQ
-                             || op == OPERATOR_NOTEQ
-                             || op == OPERATOR_LT
-                             || op == OPERATOR_LE
-                             || op == OPERATOR_GT
-                             || op == OPERATOR_GE);
-
-  // Integer constant expressions.
-  {
-    mpz_t left_val;
-    mpz_init(left_val);
-    Type* left_type;
-    mpz_t right_val;
-    mpz_init(right_val);
-    Type* right_type;
-    if (left->integer_constant_value(false, left_val, &left_type)
-       && right->integer_constant_value(false, right_val, &right_type))
-      {
-       Expression* ret = NULL;
-       if (left_type != right_type
-           && left_type != NULL
-           && right_type != NULL
-           && left_type->base() != right_type->base()
-           && op != OPERATOR_LSHIFT
-           && op != OPERATOR_RSHIFT)
-         {
-           // May be a type error--let it be diagnosed later.
-         }
-       else if (is_comparison)
-         {
-           bool b = Binary_expression::compare_integer(op, left_val,
-                                                       right_val);
-           ret = Expression::make_cast(Type::lookup_bool_type(),
-                                       Expression::make_boolean(b, location),
-                                       location);
-         }
-       else
-         {
-           mpz_t val;
-           mpz_init(val);
-
-           if (Binary_expression::eval_integer(op, left_type, left_val,
-                                               right_type, right_val,
-                                               location, val))
-             {
-               go_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
-               Type* type;
-               if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
-                 type = left_type;
-               else if (left_type == NULL)
-                 type = right_type;
-               else if (right_type == NULL)
-                 type = left_type;
-               else if (!left_type->is_abstract()
-                        && left_type->named_type() != NULL)
-                 type = left_type;
-               else if (!right_type->is_abstract()
-                        && right_type->named_type() != NULL)
-                 type = right_type;
-               else if (!left_type->is_abstract())
-                 type = left_type;
-               else if (!right_type->is_abstract())
-                 type = right_type;
-               else if (left_type->float_type() != NULL)
-                 type = left_type;
-               else if (right_type->float_type() != NULL)
-                 type = right_type;
-               else if (left_type->complex_type() != NULL)
-                 type = left_type;
-               else if (right_type->complex_type() != NULL)
-                 type = right_type;
-               else
-                 type = left_type;
-               ret = Expression::make_integer(&val, type, location);
-             }
-
-           mpz_clear(val);
-         }
-
-       if (ret != NULL)
-         {
-           mpz_clear(right_val);
-           mpz_clear(left_val);
-           return ret;
-         }
-      }
-    mpz_clear(right_val);
-    mpz_clear(left_val);
-  }
-
-  // Floating point constant expressions.
-  {
-    mpfr_t left_val;
-    mpfr_init(left_val);
-    Type* left_type;
-    mpfr_t right_val;
-    mpfr_init(right_val);
-    Type* right_type;
-    if (left->float_constant_value(left_val, &left_type)
-       && right->float_constant_value(right_val, &right_type))
-      {
-       Expression* ret = NULL;
-       if (left_type != right_type
-           && left_type != NULL
-           && right_type != NULL
-           && left_type->base() != right_type->base()
-           && op != OPERATOR_LSHIFT
-           && op != OPERATOR_RSHIFT)
-         {
-           // May be a type error--let it be diagnosed later.
-         }
-       else if (is_comparison)
-         {
-           bool b = Binary_expression::compare_float(op,
-                                                     (left_type != NULL
-                                                      ? left_type
-                                                      : right_type),
-                                                     left_val, right_val);
-           ret = Expression::make_boolean(b, location);
-         }
-       else
-         {
-           mpfr_t val;
-           mpfr_init(val);
-
-           if (Binary_expression::eval_float(op, left_type, left_val,
-                                             right_type, right_val, val,
-                                             location))
-             {
-               go_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
-                          && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
-               Type* type;
-               if (left_type == NULL)
-                 type = right_type;
-               else if (right_type == NULL)
-                 type = left_type;
-               else if (!left_type->is_abstract()
-                        && left_type->named_type() != NULL)
-                 type = left_type;
-               else if (!right_type->is_abstract()
-                        && right_type->named_type() != NULL)
-                 type = right_type;
-               else if (!left_type->is_abstract())
-                 type = left_type;
-               else if (!right_type->is_abstract())
-                 type = right_type;
-               else if (left_type->float_type() != NULL)
-                 type = left_type;
-               else if (right_type->float_type() != NULL)
-                 type = right_type;
-               else
-                 type = left_type;
-               ret = Expression::make_float(&val, type, location);
-             }
-
-           mpfr_clear(val);
-         }
-
-       if (ret != NULL)
-         {
-           mpfr_clear(right_val);
-           mpfr_clear(left_val);
-           return ret;
-         }
-      }
-    mpfr_clear(right_val);
-    mpfr_clear(left_val);
-  }
-
-  // Complex constant expressions.
-  {
-    mpfr_t left_real;
-    mpfr_t left_imag;
-    mpfr_init(left_real);
-    mpfr_init(left_imag);
-    Type* left_type;
-
-    mpfr_t right_real;
-    mpfr_t right_imag;
-    mpfr_init(right_real);
-    mpfr_init(right_imag);
-    Type* right_type;
-
-    if (left->complex_constant_value(left_real, left_imag, &left_type)
-       && right->complex_constant_value(right_real, right_imag, &right_type))
-      {
-       Expression* ret = NULL;
-       if (left_type != right_type
-           && left_type != NULL
-           && right_type != NULL
-           && left_type->base() != right_type->base())
-         {
-           // May be a type error--let it be diagnosed later.
-         }
-       else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
-         {
-           bool b = Binary_expression::compare_complex(op,
-                                                       (left_type != NULL
-                                                        ? left_type
-                                                        : right_type),
-                                                       left_real,
-                                                       left_imag,
-                                                       right_real,
-                                                       right_imag);
-           ret = Expression::make_boolean(b, location);
-         }
-       else
-         {
-           mpfr_t real;
-           mpfr_t imag;
-           mpfr_init(real);
-           mpfr_init(imag);
-
-           if (Binary_expression::eval_complex(op, left_type,
-                                               left_real, left_imag,
-                                               right_type,
-                                               right_real, right_imag,
-                                               real, imag,
-                                               location))
-             {
-               go_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
-                          && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
-               Type* type;
-               if (left_type == NULL)
-                 type = right_type;
-               else if (right_type == NULL)
-                 type = left_type;
-               else if (!left_type->is_abstract()
-                        && left_type->named_type() != NULL)
-                 type = left_type;
-               else if (!right_type->is_abstract()
-                        && right_type->named_type() != NULL)
-                 type = right_type;
-               else if (!left_type->is_abstract())
-                 type = left_type;
-               else if (!right_type->is_abstract())
-                 type = right_type;
-               else if (left_type->complex_type() != NULL)
-                 type = left_type;
-               else if (right_type->complex_type() != NULL)
-                 type = right_type;
-               else
-                 type = left_type;
-               ret = Expression::make_complex(&real, &imag, type,
-                                              location);
-             }
-           mpfr_clear(real);
-           mpfr_clear(imag);
-         }
-
-       if (ret != NULL)
-         {
-           mpfr_clear(left_real);
-           mpfr_clear(left_imag);
-           mpfr_clear(right_real);
-           mpfr_clear(right_imag);
-           return ret;
-         }
-      }
-
-    mpfr_clear(left_real);
-    mpfr_clear(left_imag);
-    mpfr_clear(right_real);
-    mpfr_clear(right_imag);
-  }
-
-  // String constant expressions.
-  if (op == OPERATOR_PLUS
-      && left->type()->is_string_type()
-      && right->type()->is_string_type())
-    {
-      std::string left_string;
-      std::string right_string;
-      if (left->string_constant_value(&left_string)
-         && right->string_constant_value(&right_string))
-       return Expression::make_string(left_string + right_string, location);
-    }
-
-  return this;
-}
-
-// Return the integer constant value, if it has one.
-
-bool
-Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
-                                            Type** ptype) const
-{
-  mpz_t left_val;
-  mpz_init(left_val);
-  Type* left_type;
-  if (!this->left_->integer_constant_value(iota_is_constant, left_val,
-                                          &left_type))
-    {
-      mpz_clear(left_val);
-      return false;
-    }
-
-  mpz_t right_val;
-  mpz_init(right_val);
-  Type* right_type;
-  if (!this->right_->integer_constant_value(iota_is_constant, right_val,
-                                           &right_type))
-    {
-      mpz_clear(right_val);
-      mpz_clear(left_val);
-      return false;
-    }
-
-  bool ret;
-  if (left_type != right_type
-      && left_type != NULL
-      && right_type != NULL
-      && left_type->base() != right_type->base()
-      && this->op_ != OPERATOR_RSHIFT
-      && this->op_ != OPERATOR_LSHIFT)
-    ret = false;
-  else
-    ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
-                                         right_type, right_val,
-                                         this->location(), val);
-
-  mpz_clear(right_val);
-  mpz_clear(left_val);
-
-  if (ret)
-    *ptype = left_type;
-
-  return ret;
-}
-
-// Return the floating point constant value, if it has one.
-
-bool
-Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  mpfr_t left_val;
-  mpfr_init(left_val);
-  Type* left_type;
-  if (!this->left_->float_constant_value(left_val, &left_type))
-    {
-      mpfr_clear(left_val);
-      return false;
-    }
-
-  mpfr_t right_val;
-  mpfr_init(right_val);
-  Type* right_type;
-  if (!this->right_->float_constant_value(right_val, &right_type))
-    {
-      mpfr_clear(right_val);
-      mpfr_clear(left_val);
-      return false;
-    }
-
-  bool ret;
-  if (left_type != right_type
-      && left_type != NULL
-      && right_type != NULL
-      && left_type->base() != right_type->base())
-    ret = false;
-  else
-    ret = Binary_expression::eval_float(this->op_, left_type, left_val,
-                                       right_type, right_val,
-                                       val, this->location());
-
-  mpfr_clear(left_val);
-  mpfr_clear(right_val);
-
-  if (ret)
-    *ptype = left_type;
-
-  return ret;
-}
-
-// Return the complex constant value, if it has one.
-
-bool
-Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                            Type** ptype) const
-{
-  mpfr_t left_real;
-  mpfr_t left_imag;
-  mpfr_init(left_real);
-  mpfr_init(left_imag);
-  Type* left_type;
-  if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
-    {
-      mpfr_clear(left_real);
-      mpfr_clear(left_imag);
-      return false;
-    }
-
-  mpfr_t right_real;
-  mpfr_t right_imag;
-  mpfr_init(right_real);
-  mpfr_init(right_imag);
-  Type* right_type;
-  if (!this->right_->complex_constant_value(right_real, right_imag,
-                                           &right_type))
-    {
-      mpfr_clear(left_real);
-      mpfr_clear(left_imag);
-      mpfr_clear(right_real);
-      mpfr_clear(right_imag);
-      return false;
-    }
-
-  bool ret;
-  if (left_type != right_type
-      && left_type != NULL
-      && right_type != NULL
-      && left_type->base() != right_type->base())
-    ret = false;
-  else
-    ret = Binary_expression::eval_complex(this->op_, left_type,
-                                         left_real, left_imag,
-                                         right_type,
-                                         right_real, right_imag,
-                                         real, imag,
-                                         this->location());
-  mpfr_clear(left_real);
-  mpfr_clear(left_imag);
-  mpfr_clear(right_real);
-  mpfr_clear(right_imag);
-
-  if (ret)
-    *ptype = left_type;
-
-  return ret;
-}
-
-// Note that the value is being discarded.
-
-void
-Binary_expression::do_discarding_value()
-{
-  if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
-    this->right_->discarding_value();
-  else
-    this->warn_about_unused_value();
-}
-
-// Get type.
-
-Type*
-Binary_expression::do_type()
-{
-  if (this->classification() == EXPRESSION_ERROR)
-    return Type::make_error_type();
-
-  switch (this->op_)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      return Type::lookup_bool_type();
-
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-    case OPERATOR_OR:
-    case OPERATOR_XOR:
-    case OPERATOR_MULT:
-    case OPERATOR_DIV:
-    case OPERATOR_MOD:
-    case OPERATOR_AND:
-    case OPERATOR_BITCLEAR:
-      {
-       Type* left_type = this->left_->type();
-       Type* right_type = this->right_->type();
-       if (left_type->is_error())
-         return left_type;
-       else if (right_type->is_error())
-         return right_type;
-       else if (!Type::are_compatible_for_binop(left_type, right_type))
-         {
-           this->report_error(_("incompatible types in binary expression"));
-           return Type::make_error_type();
-         }
-       else if (!left_type->is_abstract() && left_type->named_type() != NULL)
-         return left_type;
-       else if (!right_type->is_abstract() && right_type->named_type() != NULL)
-         return right_type;
-       else if (!left_type->is_abstract())
-         return left_type;
-       else if (!right_type->is_abstract())
-         return right_type;
-       else if (left_type->complex_type() != NULL)
-         return left_type;
-       else if (right_type->complex_type() != NULL)
-         return right_type;
-       else if (left_type->float_type() != NULL)
-         return left_type;
-       else if (right_type->float_type() != NULL)
-         return right_type;
-       else
-         return left_type;
-      }
-
-    case OPERATOR_LSHIFT:
-    case OPERATOR_RSHIFT:
-      return this->left_->type();
-
-    default:
-      go_unreachable();
-    }
-}
-
-// Set type for a binary expression.
-
-void
-Binary_expression::do_determine_type(const Type_context* context)
-{
-  Type* tleft = this->left_->type();
-  Type* tright = this->right_->type();
-
-  // Both sides should have the same type, except for the shift
-  // operations.  For a comparison, we should ignore the incoming
-  // type.
-
-  bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
-                     || this->op_ == OPERATOR_RSHIFT);
-
-  bool is_comparison = (this->op_ == OPERATOR_EQEQ
-                       || this->op_ == OPERATOR_NOTEQ
-                       || this->op_ == OPERATOR_LT
-                       || this->op_ == OPERATOR_LE
-                       || this->op_ == OPERATOR_GT
-                       || this->op_ == OPERATOR_GE);
-
-  Type_context subcontext(*context);
-
-  if (is_comparison)
-    {
-      // In a comparison, the context does not determine the types of
-      // the operands.
-      subcontext.type = NULL;
-    }
-
-  // Set the context for the left hand operand.
-  if (is_shift_op)
-    {
-      // The right hand operand plays no role in determining the type
-      // of the left hand operand.  A shift of an abstract integer in
-      // a string context gets special treatment, which may be a
-      // language bug.
-      if (subcontext.type != NULL
-         && subcontext.type->is_string_type()
-         && tleft->is_abstract())
-       error_at(this->location(), "shift of non-integer operand");
-    }
-  else if (!tleft->is_abstract())
-    subcontext.type = tleft;
-  else if (!tright->is_abstract())
-    subcontext.type = tright;
-  else if (subcontext.type == NULL)
-    {
-      if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
-         || (tleft->float_type() != NULL && tright->float_type() != NULL)
-         || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
-       {
-         // Both sides have an abstract integer, abstract float, or
-         // abstract complex type.  Just let CONTEXT determine
-         // whether they may remain abstract or not.
-       }
-      else if (tleft->complex_type() != NULL)
-       subcontext.type = tleft;
-      else if (tright->complex_type() != NULL)
-       subcontext.type = tright;
-      else if (tleft->float_type() != NULL)
-       subcontext.type = tleft;
-      else if (tright->float_type() != NULL)
-       subcontext.type = tright;
-      else
-       subcontext.type = tleft;
-
-      if (subcontext.type != NULL && !context->may_be_abstract)
-       subcontext.type = subcontext.type->make_non_abstract_type();
-    }
-
-  this->left_->determine_type(&subcontext);
-
-  // The context for the right hand operand is the same as for the
-  // left hand operand, except for a shift operator.
-  if (is_shift_op)
-    {
-      subcontext.type = Type::lookup_integer_type("uint");
-      subcontext.may_be_abstract = false;
-    }
-
-  this->right_->determine_type(&subcontext);
-}
-
-// Report an error if the binary operator OP does not support TYPE.
-// Return whether the operation is OK.  This should not be used for
-// shift.
-
-bool
-Binary_expression::check_operator_type(Operator op, Type* type,
-                                      source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-      if (!type->is_boolean_type())
-       {
-         error_at(location, "expected boolean type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL
-         && !type->is_string_type()
-         && type->points_to() == NULL
-         && !type->is_nil_type()
-         && !type->is_boolean_type()
-         && type->interface_type() == NULL
-         && (type->array_type() == NULL
-             || type->array_type()->length() != NULL)
-         && type->map_type() == NULL
-         && type->channel_type() == NULL
-         && type->function_type() == NULL)
-       {
-         error_at(location,
-                  ("expected integer, floating, complex, string, pointer, "
-                   "boolean, interface, slice, map, channel, "
-                   "or function type"));
-         return false;
-       }
-      break;
-
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && !type->is_string_type())
-       {
-         error_at(location, "expected integer, floating, or string type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_PLUS:
-    case OPERATOR_PLUSEQ:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL
-         && !type->is_string_type())
-       {
-         error_at(location,
-                  "expected integer, floating, complex, or string type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_MINUS:
-    case OPERATOR_MINUSEQ:
-    case OPERATOR_MULT:
-    case OPERATOR_MULTEQ:
-    case OPERATOR_DIV:
-    case OPERATOR_DIVEQ:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL)
-       {
-         error_at(location, "expected integer, floating, or complex type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_MOD:
-    case OPERATOR_MODEQ:
-    case OPERATOR_OR:
-    case OPERATOR_OREQ:
-    case OPERATOR_AND:
-    case OPERATOR_ANDEQ:
-    case OPERATOR_XOR:
-    case OPERATOR_XOREQ:
-    case OPERATOR_BITCLEAR:
-    case OPERATOR_BITCLEAREQ:
-      if (type->integer_type() == NULL)
-       {
-         error_at(location, "expected integer type");
-         return false;
-       }
-      break;
-
-    default:
-      go_unreachable();
-    }
-
-  return true;
-}
-
-// Check types.
-
-void
-Binary_expression::do_check_types(Gogo*)
-{
-  if (this->classification() == EXPRESSION_ERROR)
-    return;
-
-  Type* left_type = this->left_->type();
-  Type* right_type = this->right_->type();
-  if (left_type->is_error() || right_type->is_error())
-    {
-      this->set_is_error();
-      return;
-    }
-
-  if (this->op_ == OPERATOR_EQEQ
-      || this->op_ == OPERATOR_NOTEQ
-      || this->op_ == OPERATOR_LT
-      || this->op_ == OPERATOR_LE
-      || this->op_ == OPERATOR_GT
-      || this->op_ == OPERATOR_GE)
-    {
-      if (!Type::are_assignable(left_type, right_type, NULL)
-         && !Type::are_assignable(right_type, left_type, NULL))
-       {
-         this->report_error(_("incompatible types in binary expression"));
-         return;
-       }
-      if (!Binary_expression::check_operator_type(this->op_, left_type,
-                                                 this->location())
-         || !Binary_expression::check_operator_type(this->op_, right_type,
-                                                    this->location()))
-       {
-         this->set_is_error();
-         return;
-       }
-    }
-  else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
-    {
-      if (!Type::are_compatible_for_binop(left_type, right_type))
-       {
-         this->report_error(_("incompatible types in binary expression"));
-         return;
-       }
-      if (!Binary_expression::check_operator_type(this->op_, left_type,
-                                                 this->location()))
-       {
-         this->set_is_error();
-         return;
-       }
-    }
-  else
-    {
-      if (left_type->integer_type() == NULL)
-       this->report_error(_("shift of non-integer operand"));
-
-      if (!right_type->is_abstract()
-         && (right_type->integer_type() == NULL
-             || !right_type->integer_type()->is_unsigned()))
-       this->report_error(_("shift count not unsigned integer"));
-      else
-       {
-         mpz_t val;
-         mpz_init(val);
-         Type* type;
-         if (this->right_->integer_constant_value(true, val, &type))
-           {
-             if (mpz_sgn(val) < 0)
-               {
-                 this->report_error(_("negative shift count"));
-                 mpz_set_ui(val, 0);
-                 source_location rloc = this->right_->location();
-                 this->right_ = Expression::make_integer(&val, right_type,
-                                                         rloc);
-               }
-           }
-         mpz_clear(val);
-       }
-    }
-}
-
-// Get a tree for a binary expression.
-
-tree
-Binary_expression::do_get_tree(Translate_context* context)
-{
-  tree left = this->left_->get_tree(context);
-  tree right = this->right_->get_tree(context);
-
-  if (left == error_mark_node || right == error_mark_node)
-    return error_mark_node;
-
-  enum tree_code code;
-  bool use_left_type = true;
-  bool is_shift_op = false;
-  switch (this->op_)
-    {
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      return Expression::comparison_tree(context, this->op_,
-                                        this->left_->type(), left,
-                                        this->right_->type(), right,
-                                        this->location());
-
-    case OPERATOR_OROR:
-      code = TRUTH_ORIF_EXPR;
-      use_left_type = false;
-      break;
-    case OPERATOR_ANDAND:
-      code = TRUTH_ANDIF_EXPR;
-      use_left_type = false;
-      break;
-    case OPERATOR_PLUS:
-      code = PLUS_EXPR;
-      break;
-    case OPERATOR_MINUS:
-      code = MINUS_EXPR;
-      break;
-    case OPERATOR_OR:
-      code = BIT_IOR_EXPR;
-      break;
-    case OPERATOR_XOR:
-      code = BIT_XOR_EXPR;
-      break;
-    case OPERATOR_MULT:
-      code = MULT_EXPR;
-      break;
-    case OPERATOR_DIV:
-      {
-       Type *t = this->left_->type();
-       if (t->float_type() != NULL || t->complex_type() != NULL)
-         code = RDIV_EXPR;
-       else
-         code = TRUNC_DIV_EXPR;
-      }
-      break;
-    case OPERATOR_MOD:
-      code = TRUNC_MOD_EXPR;
-      break;
-    case OPERATOR_LSHIFT:
-      code = LSHIFT_EXPR;
-      is_shift_op = true;
-      break;
-    case OPERATOR_RSHIFT:
-      code = RSHIFT_EXPR;
-      is_shift_op = true;
-      break;
-    case OPERATOR_AND:
-      code = BIT_AND_EXPR;
-      break;
-    case OPERATOR_BITCLEAR:
-      right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
-      code = BIT_AND_EXPR;
-      break;
-    default:
-      go_unreachable();
-    }
-
-  tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
-
-  if (this->left_->type()->is_string_type())
-    {
-      go_assert(this->op_ == OPERATOR_PLUS);
-      tree string_type = Type::make_string_type()->get_tree(context->gogo());
-      static tree string_plus_decl;
-      return Gogo::call_builtin(&string_plus_decl,
-                               this->location(),
-                               "__go_string_plus",
-                               2,
-                               string_type,
-                               string_type,
-                               left,
-                               string_type,
-                               right);
-    }
-
-  tree compute_type = excess_precision_type(type);
-  if (compute_type != NULL_TREE)
-    {
-      left = ::convert(compute_type, left);
-      right = ::convert(compute_type, right);
-    }
-
-  tree eval_saved = NULL_TREE;
-  if (is_shift_op)
-    {
-      // Make sure the values are evaluated.
-      if (!DECL_P(left) && TREE_SIDE_EFFECTS(left))
-       {
-         left = save_expr(left);
-         eval_saved = left;
-       }
-      if (!DECL_P(right) && TREE_SIDE_EFFECTS(right))
-       {
-         right = save_expr(right);
-         if (eval_saved == NULL_TREE)
-           eval_saved = right;
-         else
-           eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
-                                        void_type_node, eval_saved, right);
-       }
-    }
-
-  tree ret = fold_build2_loc(this->location(),
-                            code,
-                            compute_type != NULL_TREE ? compute_type : type,
-                            left, right);
-
-  if (compute_type != NULL_TREE)
-    ret = ::convert(type, ret);
-
-  // In Go, a shift larger than the size of the type is well-defined.
-  // This is not true in GENERIC, so we need to insert a conditional.
-  if (is_shift_op)
-    {
-      go_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
-      go_assert(this->left_->type()->integer_type() != NULL);
-      int bits = TYPE_PRECISION(TREE_TYPE(left));
-
-      tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
-                                build_int_cst_type(TREE_TYPE(right), bits));
-
-      tree overflow_result = fold_convert_loc(this->location(),
-                                             TREE_TYPE(left),
-                                             integer_zero_node);
-      if (this->op_ == OPERATOR_RSHIFT
-         && !this->left_->type()->integer_type()->is_unsigned())
-       {
-         tree neg = fold_build2_loc(this->location(), LT_EXPR,
-                                    boolean_type_node, left,
-                                    fold_convert_loc(this->location(),
-                                                     TREE_TYPE(left),
-                                                     integer_zero_node));
-         tree neg_one = fold_build2_loc(this->location(),
-                                        MINUS_EXPR, TREE_TYPE(left),
-                                        fold_convert_loc(this->location(),
-                                                         TREE_TYPE(left),
-                                                         integer_zero_node),
-                                        fold_convert_loc(this->location(),
-                                                         TREE_TYPE(left),
-                                                         integer_one_node));
-         overflow_result = fold_build3_loc(this->location(), COND_EXPR,
-                                           TREE_TYPE(left), neg, neg_one,
-                                           overflow_result);
-       }
-
-      ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
-                           compare, ret, overflow_result);
-
-      if (eval_saved != NULL_TREE)
-       ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
-                             TREE_TYPE(ret), eval_saved, ret);
-    }
-
-  return ret;
-}
-
-// Export a binary expression.
-
-void
-Binary_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("(");
-  this->left_->export_expression(exp);
-  switch (this->op_)
-    {
-    case OPERATOR_OROR:
-      exp->write_c_string(" || ");
-      break;
-    case OPERATOR_ANDAND:
-      exp->write_c_string(" && ");
-      break;
-    case OPERATOR_EQEQ:
-      exp->write_c_string(" == ");
-      break;
-    case OPERATOR_NOTEQ:
-      exp->write_c_string(" != ");
-      break;
-    case OPERATOR_LT:
-      exp->write_c_string(" < ");
-      break;
-    case OPERATOR_LE:
-      exp->write_c_string(" <= ");
-      break;
-    case OPERATOR_GT:
-      exp->write_c_string(" > ");
-      break;
-    case OPERATOR_GE:
-      exp->write_c_string(" >= ");
-      break;
-    case OPERATOR_PLUS:
-      exp->write_c_string(" + ");
-      break;
-    case OPERATOR_MINUS:
-      exp->write_c_string(" - ");
-      break;
-    case OPERATOR_OR:
-      exp->write_c_string(" | ");
-      break;
-    case OPERATOR_XOR:
-      exp->write_c_string(" ^ ");
-      break;
-    case OPERATOR_MULT:
-      exp->write_c_string(" * ");
-      break;
-    case OPERATOR_DIV:
-      exp->write_c_string(" / ");
-      break;
-    case OPERATOR_MOD:
-      exp->write_c_string(" % ");
-      break;
-    case OPERATOR_LSHIFT:
-      exp->write_c_string(" << ");
-      break;
-    case OPERATOR_RSHIFT:
-      exp->write_c_string(" >> ");
-      break;
-    case OPERATOR_AND:
-      exp->write_c_string(" & ");
-      break;
-    case OPERATOR_BITCLEAR:
-      exp->write_c_string(" &^ ");
-      break;
-    default:
-      go_unreachable();
-    }
-  this->right_->export_expression(exp);
-  exp->write_c_string(")");
-}
-
-// Import a binary expression.
-
-Expression*
-Binary_expression::do_import(Import* imp)
-{
-  imp->require_c_string("(");
-
-  Expression* left = Expression::import_expression(imp);
-
-  Operator op;
-  if (imp->match_c_string(" || "))
-    {
-      op = OPERATOR_OROR;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" && "))
-    {
-      op = OPERATOR_ANDAND;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" == "))
-    {
-      op = OPERATOR_EQEQ;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" != "))
-    {
-      op = OPERATOR_NOTEQ;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" < "))
-    {
-      op = OPERATOR_LT;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" <= "))
-    {
-      op = OPERATOR_LE;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" > "))
-    {
-      op = OPERATOR_GT;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" >= "))
-    {
-      op = OPERATOR_GE;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" + "))
-    {
-      op = OPERATOR_PLUS;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" - "))
-    {
-      op = OPERATOR_MINUS;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" | "))
-    {
-      op = OPERATOR_OR;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" ^ "))
-    {
-      op = OPERATOR_XOR;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" * "))
-    {
-      op = OPERATOR_MULT;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" / "))
-    {
-      op = OPERATOR_DIV;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" % "))
-    {
-      op = OPERATOR_MOD;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" << "))
-    {
-      op = OPERATOR_LSHIFT;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" >> "))
-    {
-      op = OPERATOR_RSHIFT;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" & "))
-    {
-      op = OPERATOR_AND;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" &^ "))
-    {
-      op = OPERATOR_BITCLEAR;
-      imp->advance(4);
-    }
-  else
-    {
-      error_at(imp->location(), "unrecognized binary operator");
-      return Expression::make_error(imp->location());
-    }
-
-  Expression* right = Expression::import_expression(imp);
-
-  imp->require_c_string(")");
-
-  return Expression::make_binary(op, left, right, imp->location());
-}
-
-// Make a binary expression.
-
-Expression*
-Expression::make_binary(Operator op, Expression* left, Expression* right,
-                       source_location location)
-{
-  return new Binary_expression(op, left, right, location);
-}
-
-// Implement a comparison.
-
-tree
-Expression::comparison_tree(Translate_context* context, Operator op,
-                           Type* left_type, tree left_tree,
-                           Type* right_type, tree right_tree,
-                           source_location location)
-{
-  enum tree_code code;
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      code = EQ_EXPR;
-      break;
-    case OPERATOR_NOTEQ:
-      code = NE_EXPR;
-      break;
-    case OPERATOR_LT:
-      code = LT_EXPR;
-      break;
-    case OPERATOR_LE:
-      code = LE_EXPR;
-      break;
-    case OPERATOR_GT:
-      code = GT_EXPR;
-      break;
-    case OPERATOR_GE:
-      code = GE_EXPR;
-      break;
-    default:
-      go_unreachable();
-    }
-
-  if (left_type->is_string_type() && right_type->is_string_type())
-    {
-      tree string_type = Type::make_string_type()->get_tree(context->gogo());
-      static tree string_compare_decl;
-      left_tree = Gogo::call_builtin(&string_compare_decl,
-                                    location,
-                                    "__go_strcmp",
-                                    2,
-                                    integer_type_node,
-                                    string_type,
-                                    left_tree,
-                                    string_type,
-                                    right_tree);
-      right_tree = build_int_cst_type(integer_type_node, 0);
-    }
-  else if ((left_type->interface_type() != NULL
-           && right_type->interface_type() == NULL
-           && !right_type->is_nil_type())
-          || (left_type->interface_type() == NULL
-              && !left_type->is_nil_type()
-              && right_type->interface_type() != NULL))
-    {
-      // Comparing an interface value to a non-interface value.
-      if (left_type->interface_type() == NULL)
-       {
-         std::swap(left_type, right_type);
-         std::swap(left_tree, right_tree);
-       }
-
-      // The right operand is not an interface.  We need to take its
-      // address if it is not a pointer.
-      tree make_tmp;
-      tree arg;
-      if (right_type->points_to() != NULL)
-       {
-         make_tmp = NULL_TREE;
-         arg = right_tree;
-       }
-      else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
-       {
-         make_tmp = NULL_TREE;
-         arg = build_fold_addr_expr_loc(location, right_tree);
-         if (DECL_P(right_tree))
-           TREE_ADDRESSABLE(right_tree) = 1;
-       }
-      else
-       {
-         tree tmp = create_tmp_var(TREE_TYPE(right_tree),
-                                   get_name(right_tree));
-         DECL_IGNORED_P(tmp) = 0;
-         DECL_INITIAL(tmp) = right_tree;
-         TREE_ADDRESSABLE(tmp) = 1;
-         make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-         SET_EXPR_LOCATION(make_tmp, location);
-         arg = build_fold_addr_expr_loc(location, tmp);
-       }
-      arg = fold_convert_loc(location, ptr_type_node, arg);
-
-      tree descriptor = right_type->type_descriptor_pointer(context->gogo());
-
-      if (left_type->interface_type()->is_empty())
-       {
-         static tree empty_interface_value_compare_decl;
-         left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
-                                        location,
-                                        "__go_empty_interface_value_compare",
-                                        3,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(descriptor),
-                                        descriptor,
-                                        ptr_type_node,
-                                        arg);
-         if (left_tree == error_mark_node)
-           return error_mark_node;
-         // This can panic if the type is not comparable.
-         TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
-       }
-      else
-       {
-         static tree interface_value_compare_decl;
-         left_tree = Gogo::call_builtin(&interface_value_compare_decl,
-                                        location,
-                                        "__go_interface_value_compare",
-                                        3,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(descriptor),
-                                        descriptor,
-                                        ptr_type_node,
-                                        arg);
-         if (left_tree == error_mark_node)
-           return error_mark_node;
-         // This can panic if the type is not comparable.
-         TREE_NOTHROW(interface_value_compare_decl) = 0;
-       }
-      right_tree = build_int_cst_type(integer_type_node, 0);
-
-      if (make_tmp != NULL_TREE)
-       left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
-                          left_tree);
-    }
-  else if (left_type->interface_type() != NULL
-          && right_type->interface_type() != NULL)
-    {
-      if (left_type->interface_type()->is_empty()
-         && right_type->interface_type()->is_empty())
-       {
-         static tree empty_interface_compare_decl;
-         left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
-                                        location,
-                                        "__go_empty_interface_compare",
-                                        2,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(right_tree),
-                                        right_tree);
-         if (left_tree == error_mark_node)
-           return error_mark_node;
-         // This can panic if the type is uncomparable.
-         TREE_NOTHROW(empty_interface_compare_decl) = 0;
-       }
-      else if (!left_type->interface_type()->is_empty()
-              && !right_type->interface_type()->is_empty())
-       {
-         static tree interface_compare_decl;
-         left_tree = Gogo::call_builtin(&interface_compare_decl,
-                                        location,
-                                        "__go_interface_compare",
-                                        2,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(right_tree),
-                                        right_tree);
-         if (left_tree == error_mark_node)
-           return error_mark_node;
-         // This can panic if the type is uncomparable.
-         TREE_NOTHROW(interface_compare_decl) = 0;
-       }
-      else
-       {
-         if (left_type->interface_type()->is_empty())
-           {
-             go_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ);
-             std::swap(left_type, right_type);
-             std::swap(left_tree, right_tree);
-           }
-         go_assert(!left_type->interface_type()->is_empty());
-         go_assert(right_type->interface_type()->is_empty());
-         static tree interface_empty_compare_decl;
-         left_tree = Gogo::call_builtin(&interface_empty_compare_decl,
-                                        location,
-                                        "__go_interface_empty_compare",
-                                        2,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(right_tree),
-                                        right_tree);
-         if (left_tree == error_mark_node)
-           return error_mark_node;
-         // This can panic if the type is uncomparable.
-         TREE_NOTHROW(interface_empty_compare_decl) = 0;
-       }
-
-      right_tree = build_int_cst_type(integer_type_node, 0);
-    }
-
-  if (left_type->is_nil_type()
-      && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
-    {
-      std::swap(left_type, right_type);
-      std::swap(left_tree, right_tree);
-    }
-
-  if (right_type->is_nil_type())
-    {
-      if (left_type->array_type() != NULL
-         && left_type->array_type()->length() == NULL)
-       {
-         Array_type* at = left_type->array_type();
-         left_tree = at->value_pointer_tree(context->gogo(), left_tree);
-         right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
-       }
-      else if (left_type->interface_type() != NULL)
-       {
-         // An interface is nil if the first field is nil.
-         tree left_type_tree = TREE_TYPE(left_tree);
-         go_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
-         tree field = TYPE_FIELDS(left_type_tree);
-         left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
-                            field, NULL_TREE);
-         right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
-       }
-      else
-       {
-         go_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
-         right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
-       }
-    }
-
-  if (left_tree == error_mark_node || right_tree == error_mark_node)
-    return error_mark_node;
-
-  tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
-  if (CAN_HAVE_LOCATION_P(ret))
-    SET_EXPR_LOCATION(ret, location);
-  return ret;
-}
-
-// Class Bound_method_expression.
-
-// Traversal.
-
-int
-Bound_method_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Expression::traverse(&this->method_, traverse);
-}
-
-// Return the type of a bound method expression.  The type of this
-// object is really the type of the method with no receiver.  We
-// should be able to get away with just returning the type of the
-// method.
-
-Type*
-Bound_method_expression::do_type()
-{
-  return this->method_->type();
-}
-
-// Determine the types of a method expression.
-
-void
-Bound_method_expression::do_determine_type(const Type_context*)
-{
-  this->method_->determine_type_no_context();
-  Type* mtype = this->method_->type();
-  Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
-  if (fntype == NULL || !fntype->is_method())
-    this->expr_->determine_type_no_context();
-  else
-    {
-      Type_context subcontext(fntype->receiver()->type(), false);
-      this->expr_->determine_type(&subcontext);
-    }
-}
-
-// Check the types of a method expression.
-
-void
-Bound_method_expression::do_check_types(Gogo*)
-{
-  Type* type = this->method_->type()->deref();
-  if (type == NULL
-      || type->function_type() == NULL
-      || !type->function_type()->is_method())
-    this->report_error(_("object is not a method"));
-  else
-    {
-      Type* rtype = type->function_type()->receiver()->type()->deref();
-      Type* etype = (this->expr_type_ != NULL
-                    ? this->expr_type_
-                    : this->expr_->type());
-      etype = etype->deref();
-      if (!Type::are_identical(rtype, etype, true, NULL))
-       this->report_error(_("method type does not match object type"));
-    }
-}
-
-// Get the tree for a method expression.  There is no standard tree
-// representation for this.  The only places it may currently be used
-// are in a Call_expression or a Go_statement, which will take it
-// apart directly.  So this has nothing to do at present.
-
-tree
-Bound_method_expression::do_get_tree(Translate_context*)
-{
-  error_at(this->location(), "reference to method other than calling it");
-  return error_mark_node;
-}
-
-// Make a method expression.
-
-Bound_method_expression*
-Expression::make_bound_method(Expression* expr, Expression* method,
-                             source_location location)
-{
-  return new Bound_method_expression(expr, method, location);
-}
-
-// Class Builtin_call_expression.  This is used for a call to a
-// builtin function.
-
-class Builtin_call_expression : public Call_expression
-{
- public:
-  Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
-                         bool is_varargs, source_location location);
-
- protected:
-  // This overrides Call_expression::do_lower.
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const;
-
-  bool
-  do_integer_constant_value(bool, mpz_t, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
-                                      this->args()->copy(),
-                                      this->is_varargs(),
-                                      this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
-  virtual bool
-  do_is_recover_call() const;
-
-  virtual void
-  do_set_recover_arg(Expression*);
-
- private:
-  // The builtin functions.
-  enum Builtin_function_code
-    {
-      BUILTIN_INVALID,
-
-      // Predeclared builtin functions.
-      BUILTIN_APPEND,
-      BUILTIN_CAP,
-      BUILTIN_CLOSE,
-      BUILTIN_COMPLEX,
-      BUILTIN_COPY,
-      BUILTIN_IMAG,
-      BUILTIN_LEN,
-      BUILTIN_MAKE,
-      BUILTIN_NEW,
-      BUILTIN_PANIC,
-      BUILTIN_PRINT,
-      BUILTIN_PRINTLN,
-      BUILTIN_REAL,
-      BUILTIN_RECOVER,
-
-      // Builtin functions from the unsafe package.
-      BUILTIN_ALIGNOF,
-      BUILTIN_OFFSETOF,
-      BUILTIN_SIZEOF
-    };
-
-  Expression*
-  one_arg() const;
-
-  bool
-  check_one_arg();
-
-  static Type*
-  real_imag_type(Type*);
-
-  static Type*
-  complex_type(Type*);
-
-  // A pointer back to the general IR structure.  This avoids a global
-  // variable, or passing it around everywhere.
-  Gogo* gogo_;
-  // The builtin function being called.
-  Builtin_function_code code_;
-  // Used to stop endless loops when the length of an array uses len
-  // or cap of the array itself.
-  mutable bool seen_;
-};
-
-Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
-                                                Expression* fn,
-                                                Expression_list* args,
-                                                bool is_varargs,
-                                                source_location location)
-  : Call_expression(fn, args, is_varargs, location),
-    gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
-{
-  Func_expression* fnexp = this->fn()->func_expression();
-  go_assert(fnexp != NULL);
-  const std::string& name(fnexp->named_object()->name());
-  if (name == "append")
-    this->code_ = BUILTIN_APPEND;
-  else if (name == "cap")
-    this->code_ = BUILTIN_CAP;
-  else if (name == "close")
-    this->code_ = BUILTIN_CLOSE;
-  else if (name == "complex")
-    this->code_ = BUILTIN_COMPLEX;
-  else if (name == "copy")
-    this->code_ = BUILTIN_COPY;
-  else if (name == "imag")
-    this->code_ = BUILTIN_IMAG;
-  else if (name == "len")
-    this->code_ = BUILTIN_LEN;
-  else if (name == "make")
-    this->code_ = BUILTIN_MAKE;
-  else if (name == "new")
-    this->code_ = BUILTIN_NEW;
-  else if (name == "panic")
-    this->code_ = BUILTIN_PANIC;
-  else if (name == "print")
-    this->code_ = BUILTIN_PRINT;
-  else if (name == "println")
-    this->code_ = BUILTIN_PRINTLN;
-  else if (name == "real")
-    this->code_ = BUILTIN_REAL;
-  else if (name == "recover")
-    this->code_ = BUILTIN_RECOVER;
-  else if (name == "Alignof")
-    this->code_ = BUILTIN_ALIGNOF;
-  else if (name == "Offsetof")
-    this->code_ = BUILTIN_OFFSETOF;
-  else if (name == "Sizeof")
-    this->code_ = BUILTIN_SIZEOF;
-  else
-    go_unreachable();
-}
-
-// Return whether this is a call to recover.  This is a virtual
-// function called from the parent class.
-
-bool
-Builtin_call_expression::do_is_recover_call() const
-{
-  if (this->classification() == EXPRESSION_ERROR)
-    return false;
-  return this->code_ == BUILTIN_RECOVER;
-}
-
-// Set the argument for a call to recover.
-
-void
-Builtin_call_expression::do_set_recover_arg(Expression* arg)
-{
-  const Expression_list* args = this->args();
-  go_assert(args == NULL || args->empty());
-  Expression_list* new_args = new Expression_list();
-  new_args->push_back(arg);
-  this->set_args(new_args);
-}
-
-// A traversal class which looks for a call expression.
-
-class Find_call_expression : public Traverse
-{
- public:
-  Find_call_expression()
-    : Traverse(traverse_expressions),
-      found_(false)
-  { }
-
-  int
-  expression(Expression**);
-
-  bool
-  found()
-  { return this->found_; }
-
- private:
-  bool found_;
-};
-
-int
-Find_call_expression::expression(Expression** pexpr)
-{
-  if ((*pexpr)->call_expression() != NULL)
-    {
-      this->found_ = true;
-      return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a builtin call expression.  This turns new and make into
-// specific expressions.  We also convert to a constant if we can.
-
-Expression*
-Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  if (this->is_varargs() && this->code_ != BUILTIN_APPEND)
-    {
-      this->report_error(_("invalid use of %<...%> with builtin function"));
-      return Expression::make_error(this->location());
-    }
-
-  if (this->code_ == BUILTIN_NEW)
-    {
-      const Expression_list* args = this->args();
-      if (args == NULL || args->size() < 1)
-       this->report_error(_("not enough arguments"));
-      else if (args->size() > 1)
-       this->report_error(_("too many arguments"));
-      else
-       {
-         Expression* arg = args->front();
-         if (!arg->is_type_expression())
-           {
-             error_at(arg->location(), "expected type");
-             this->set_is_error();
-           }
-         else
-           return Expression::make_allocation(arg->type(), this->location());
-       }
-    }
-  else if (this->code_ == BUILTIN_MAKE)
-    {
-      const Expression_list* args = this->args();
-      if (args == NULL || args->size() < 1)
-       this->report_error(_("not enough arguments"));
-      else
-       {
-         Expression* arg = args->front();
-         if (!arg->is_type_expression())
-           {
-             error_at(arg->location(), "expected type");
-             this->set_is_error();
-           }
-         else
-           {
-             Expression_list* newargs;
-             if (args->size() == 1)
-               newargs = NULL;
-             else
-               {
-                 newargs = new Expression_list();
-                 Expression_list::const_iterator p = args->begin();
-                 ++p;
-                 for (; p != args->end(); ++p)
-                   newargs->push_back(*p);
-               }
-             return Expression::make_make(arg->type(), newargs,
-                                          this->location());
-           }
-       }
-    }
-  else if (this->is_constant())
-    {
-      // We can only lower len and cap if there are no function calls
-      // in the arguments.  Otherwise we have to make the call.
-      if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
-       {
-         Expression* arg = this->one_arg();
-         if (!arg->is_constant())
-           {
-             Find_call_expression find_call;
-             Expression::traverse(&arg, &find_call);
-             if (find_call.found())
-               return this;
-           }
-       }
-
-      mpz_t ival;
-      mpz_init(ival);
-      Type* type;
-      if (this->integer_constant_value(true, ival, &type))
-       {
-         Expression* ret = Expression::make_integer(&ival, type,
-                                                    this->location());
-         mpz_clear(ival);
-         return ret;
-       }
-      mpz_clear(ival);
-
-      mpfr_t rval;
-      mpfr_init(rval);
-      if (this->float_constant_value(rval, &type))
-       {
-         Expression* ret = Expression::make_float(&rval, type,
-                                                  this->location());
-         mpfr_clear(rval);
-         return ret;
-       }
-
-      mpfr_t imag;
-      mpfr_init(imag);
-      if (this->complex_constant_value(rval, imag, &type))
-       {
-         Expression* ret = Expression::make_complex(&rval, &imag, type,
-                                                    this->location());
-         mpfr_clear(rval);
-         mpfr_clear(imag);
-         return ret;
-       }
-      mpfr_clear(rval);
-      mpfr_clear(imag);
-    }
-  else if (this->code_ == BUILTIN_RECOVER)
-    {
-      if (function != NULL)
-       function->func_value()->set_calls_recover();
-      else
-       {
-         // Calling recover outside of a function always returns the
-         // nil empty interface.
-         Type* eface = Type::make_interface_type(NULL, this->location());
-         return Expression::make_cast(eface,
-                                      Expression::make_nil(this->location()),
-                                      this->location());
-       }
-    }
-  else if (this->code_ == BUILTIN_APPEND)
-    {
-      // Lower the varargs.
-      const Expression_list* args = this->args();
-      if (args == NULL || args->empty())
-       return this;
-      Type* slice_type = args->front()->type();
-      if (!slice_type->is_open_array_type())
-       {
-         error_at(args->front()->location(), "argument 1 must be a slice");
-         this->set_is_error();
-         return this;
-       }
-      return this->lower_varargs(gogo, function, slice_type, 2);
-    }
-
-  return this;
-}
-
-// Return the type of the real or imag functions, given the type of
-// the argument.  We need to map complex to float, complex64 to
-// float32, and complex128 to float64, so it has to be done by name.
-// This returns NULL if it can't figure out the type.
-
-Type*
-Builtin_call_expression::real_imag_type(Type* arg_type)
-{
-  if (arg_type == NULL || arg_type->is_abstract())
-    return NULL;
-  Named_type* nt = arg_type->named_type();
-  if (nt == NULL)
-    return NULL;
-  while (nt->real_type()->named_type() != NULL)
-    nt = nt->real_type()->named_type();
-  if (nt->name() == "complex64")
-    return Type::lookup_float_type("float32");
-  else if (nt->name() == "complex128")
-    return Type::lookup_float_type("float64");
-  else
-    return NULL;
-}
-
-// Return the type of the complex function, given the type of one of the
-// argments.  Like real_imag_type, we have to map by name.
-
-Type*
-Builtin_call_expression::complex_type(Type* arg_type)
-{
-  if (arg_type == NULL || arg_type->is_abstract())
-    return NULL;
-  Named_type* nt = arg_type->named_type();
-  if (nt == NULL)
-    return NULL;
-  while (nt->real_type()->named_type() != NULL)
-    nt = nt->real_type()->named_type();
-  if (nt->name() == "float32")
-    return Type::lookup_complex_type("complex64");
-  else if (nt->name() == "float64")
-    return Type::lookup_complex_type("complex128");
-  else
-    return NULL;
-}
-
-// Return a single argument, or NULL if there isn't one.
-
-Expression*
-Builtin_call_expression::one_arg() const
-{
-  const Expression_list* args = this->args();
-  if (args->size() != 1)
-    return NULL;
-  return args->front();
-}
-
-// Return whether this is constant: len of a string, or len or cap of
-// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
-
-bool
-Builtin_call_expression::do_is_constant() const
-{
-  switch (this->code_)
-    {
-    case BUILTIN_LEN:
-    case BUILTIN_CAP:
-      {
-       if (this->seen_)
-         return false;
-
-       Expression* arg = this->one_arg();
-       if (arg == NULL)
-         return false;
-       Type* arg_type = arg->type();
-
-       if (arg_type->points_to() != NULL
-           && arg_type->points_to()->array_type() != NULL
-           && !arg_type->points_to()->is_open_array_type())
-         arg_type = arg_type->points_to();
-
-       if (arg_type->array_type() != NULL
-           && arg_type->array_type()->length() != NULL)
-         return true;
-
-       if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
-         {
-           this->seen_ = true;
-           bool ret = arg->is_constant();
-           this->seen_ = false;
-           return ret;
-         }
-      }
-      break;
-
-    case BUILTIN_SIZEOF:
-    case BUILTIN_ALIGNOF:
-      return this->one_arg() != NULL;
-
-    case BUILTIN_OFFSETOF:
-      {
-       Expression* arg = this->one_arg();
-       if (arg == NULL)
-         return false;
-       return arg->field_reference_expression() != NULL;
-      }
-
-    case BUILTIN_COMPLEX:
-      {
-       const Expression_list* args = this->args();
-       if (args != NULL && args->size() == 2)
-         return args->front()->is_constant() && args->back()->is_constant();
-      }
-      break;
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      {
-       Expression* arg = this->one_arg();
-       return arg != NULL && arg->is_constant();
-      }
-
-    default:
-      break;
-    }
-
-  return false;
-}
-
-// Return an integer constant value if possible.
-
-bool
-Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
-                                                  mpz_t val,
-                                                  Type** ptype) const
-{
-  if (this->code_ == BUILTIN_LEN
-      || this->code_ == BUILTIN_CAP)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-      Type* arg_type = arg->type();
-
-      if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
-       {
-         std::string sval;
-         if (arg->string_constant_value(&sval))
-           {
-             mpz_set_ui(val, sval.length());
-             *ptype = Type::lookup_integer_type("int");
-             return true;
-           }
-       }
-
-      if (arg_type->points_to() != NULL
-         && arg_type->points_to()->array_type() != NULL
-         && !arg_type->points_to()->is_open_array_type())
-       arg_type = arg_type->points_to();
-
-      if (arg_type->array_type() != NULL
-         && arg_type->array_type()->length() != NULL)
-       {
-         if (this->seen_)
-           return false;
-         Expression* e = arg_type->array_type()->length();
-         this->seen_ = true;
-         bool r = e->integer_constant_value(iota_is_constant, val, ptype);
-         this->seen_ = false;
-         if (r)
-           {
-             *ptype = Type::lookup_integer_type("int");
-             return true;
-           }
-       }
-    }
-  else if (this->code_ == BUILTIN_SIZEOF
-          || this->code_ == BUILTIN_ALIGNOF)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-      Type* arg_type = arg->type();
-      if (arg_type->is_error())
-       return false;
-      if (arg_type->is_abstract())
-       return false;
-      if (arg_type->named_type() != NULL)
-       arg_type->named_type()->convert(this->gogo_);
-      tree arg_type_tree = arg_type->get_tree(this->gogo_);
-      if (arg_type_tree == error_mark_node)
-       return false;
-      unsigned long val_long;
-      if (this->code_ == BUILTIN_SIZEOF)
-       {
-         tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
-         go_assert(TREE_CODE(type_size) == INTEGER_CST);
-         if (TREE_INT_CST_HIGH(type_size) != 0)
-           return false;
-         unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
-         val_long = static_cast<unsigned long>(val_wide);
-         if (val_long != val_wide)
-           return false;
-       }
-      else if (this->code_ == BUILTIN_ALIGNOF)
-       {
-         if (arg->field_reference_expression() == NULL)
-           val_long = go_type_alignment(arg_type_tree);
-         else
-           {
-             // Calling unsafe.Alignof(s.f) returns the alignment of
-             // the type of f when it is used as a field in a struct.
-             val_long = go_field_alignment(arg_type_tree);
-           }
-       }
-      else
-       go_unreachable();
-      mpz_set_ui(val, val_long);
-      *ptype = NULL;
-      return true;
-    }
-  else if (this->code_ == BUILTIN_OFFSETOF)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-      Field_reference_expression* farg = arg->field_reference_expression();
-      if (farg == NULL)
-       return false;
-      Expression* struct_expr = farg->expr();
-      Type* st = struct_expr->type();
-      if (st->struct_type() == NULL)
-       return false;
-      if (st->named_type() != NULL)
-       st->named_type()->convert(this->gogo_);
-      tree struct_tree = st->get_tree(this->gogo_);
-      go_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
-      tree field = TYPE_FIELDS(struct_tree);
-      for (unsigned int index = farg->field_index(); index > 0; --index)
-       {
-         field = DECL_CHAIN(field);
-         go_assert(field != NULL_TREE);
-       }
-      HOST_WIDE_INT offset_wide = int_byte_position (field);
-      if (offset_wide < 0)
-       return false;
-      unsigned long offset_long = static_cast<unsigned long>(offset_wide);
-      if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
-       return false;
-      mpz_set_ui(val, offset_long);
-      return true;
-    }
-  return false;
-}
-
-// Return a floating point constant value if possible.
-
-bool
-Builtin_call_expression::do_float_constant_value(mpfr_t val,
-                                                Type** ptype) const
-{
-  if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-
-      mpfr_t real;
-      mpfr_t imag;
-      mpfr_init(real);
-      mpfr_init(imag);
-
-      bool ret = false;
-      Type* type;
-      if (arg->complex_constant_value(real, imag, &type))
-       {
-         if (this->code_ == BUILTIN_REAL)
-           mpfr_set(val, real, GMP_RNDN);
-         else
-           mpfr_set(val, imag, GMP_RNDN);
-         *ptype = Builtin_call_expression::real_imag_type(type);
-         ret = true;
-       }
-
-      mpfr_clear(real);
-      mpfr_clear(imag);
-      return ret;
-    }
-
-  return false;
-}
-
-// Return a complex constant value if possible.
-
-bool
-Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                                  Type** ptype) const
-{
-  if (this->code_ == BUILTIN_COMPLEX)
-    {
-      const Expression_list* args = this->args();
-      if (args == NULL || args->size() != 2)
-       return false;
-
-      mpfr_t r;
-      mpfr_init(r);
-      Type* rtype;
-      if (!args->front()->float_constant_value(r, &rtype))
-       {
-         mpfr_clear(r);
-         return false;
-       }
-
-      mpfr_t i;
-      mpfr_init(i);
-
-      bool ret = false;
-      Type* itype;
-      if (args->back()->float_constant_value(i, &itype)
-         && Type::are_identical(rtype, itype, false, NULL))
-       {
-         mpfr_set(real, r, GMP_RNDN);
-         mpfr_set(imag, i, GMP_RNDN);
-         *ptype = Builtin_call_expression::complex_type(rtype);
-         ret = true;
-       }
-
-      mpfr_clear(r);
-      mpfr_clear(i);
-
-      return ret;
-    }
-
-  return false;
-}
-
-// Return the type.
-
-Type*
-Builtin_call_expression::do_type()
-{
-  switch (this->code_)
-    {
-    case BUILTIN_INVALID:
-    default:
-      go_unreachable();
-
-    case BUILTIN_NEW:
-    case BUILTIN_MAKE:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->empty())
-         return Type::make_error_type();
-       return Type::make_pointer_type(args->front()->type());
-      }
-
-    case BUILTIN_CAP:
-    case BUILTIN_COPY:
-    case BUILTIN_LEN:
-    case BUILTIN_ALIGNOF:
-    case BUILTIN_OFFSETOF:
-    case BUILTIN_SIZEOF:
-      return Type::lookup_integer_type("int");
-
-    case BUILTIN_CLOSE:
-    case BUILTIN_PANIC:
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      return Type::make_void_type();
-
-    case BUILTIN_RECOVER:
-      return Type::make_interface_type(NULL, BUILTINS_LOCATION);
-
-    case BUILTIN_APPEND:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->empty())
-         return Type::make_error_type();
-       return args->front()->type();
-      }
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      {
-       Expression* arg = this->one_arg();
-       if (arg == NULL)
-         return Type::make_error_type();
-       Type* t = arg->type();
-       if (t->is_abstract())
-         t = t->make_non_abstract_type();
-       t = Builtin_call_expression::real_imag_type(t);
-       if (t == NULL)
-         t = Type::make_error_type();
-       return t;
-      }
-
-    case BUILTIN_COMPLEX:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() != 2)
-         return Type::make_error_type();
-       Type* t = args->front()->type();
-       if (t->is_abstract())
-         {
-           t = args->back()->type();
-           if (t->is_abstract())
-             t = t->make_non_abstract_type();
-         }
-       t = Builtin_call_expression::complex_type(t);
-       if (t == NULL)
-         t = Type::make_error_type();
-       return t;
-      }
-    }
-}
-
-// Determine the type.
-
-void
-Builtin_call_expression::do_determine_type(const Type_context* context)
-{
-  if (!this->determining_types())
-    return;
-
-  this->fn()->determine_type_no_context();
-
-  const Expression_list* args = this->args();
-
-  bool is_print;
-  Type* arg_type = NULL;
-  switch (this->code_)
-    {
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      // Do not force a large integer constant to "int".
-      is_print = true;
-      break;
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      arg_type = Builtin_call_expression::complex_type(context->type);
-      is_print = false;
-      break;
-
-    case BUILTIN_COMPLEX:
-      {
-       // For the complex function the type of one operand can
-       // determine the type of the other, as in a binary expression.
-       arg_type = Builtin_call_expression::real_imag_type(context->type);
-       if (args != NULL && args->size() == 2)
-         {
-           Type* t1 = args->front()->type();
-           Type* t2 = args->front()->type();
-           if (!t1->is_abstract())
-             arg_type = t1;
-           else if (!t2->is_abstract())
-             arg_type = t2;
-         }
-       is_print = false;
-      }
-      break;
-
-    default:
-      is_print = false;
-      break;
-    }
-
-  if (args != NULL)
-    {
-      for (Expression_list::const_iterator pa = args->begin();
-          pa != args->end();
-          ++pa)
-       {
-         Type_context subcontext;
-         subcontext.type = arg_type;
-
-         if (is_print)
-           {
-             // We want to print large constants, we so can't just
-             // use the appropriate nonabstract type.  Use uint64 for
-             // an integer if we know it is nonnegative, otherwise
-             // use int64 for a integer, otherwise use float64 for a
-             // float or complex128 for a complex.
-             Type* want_type = NULL;
-             Type* atype = (*pa)->type();
-             if (atype->is_abstract())
-               {
-                 if (atype->integer_type() != NULL)
-                   {
-                     mpz_t val;
-                     mpz_init(val);
-                     Type* dummy;
-                     if (this->integer_constant_value(true, val, &dummy)
-                         && mpz_sgn(val) >= 0)
-                       want_type = Type::lookup_integer_type("uint64");
-                     else
-                       want_type = Type::lookup_integer_type("int64");
-                     mpz_clear(val);
-                   }
-                 else if (atype->float_type() != NULL)
-                   want_type = Type::lookup_float_type("float64");
-                 else if (atype->complex_type() != NULL)
-                   want_type = Type::lookup_complex_type("complex128");
-                 else if (atype->is_abstract_string_type())
-                   want_type = Type::lookup_string_type();
-                 else if (atype->is_abstract_boolean_type())
-                   want_type = Type::lookup_bool_type();
-                 else
-                   go_unreachable();
-                 subcontext.type = want_type;
-               }
-           }
-
-         (*pa)->determine_type(&subcontext);
-       }
-    }
-}
-
-// If there is exactly one argument, return true.  Otherwise give an
-// error message and return false.
-
-bool
-Builtin_call_expression::check_one_arg()
-{
-  const Expression_list* args = this->args();
-  if (args == NULL || args->size() < 1)
-    {
-      this->report_error(_("not enough arguments"));
-      return false;
-    }
-  else if (args->size() > 1)
-    {
-      this->report_error(_("too many arguments"));
-      return false;
-    }
-  if (args->front()->is_error_expression()
-      || args->front()->type()->is_error())
-    {
-      this->set_is_error();
-      return false;
-    }
-  return true;
-}
-
-// Check argument types for a builtin function.
-
-void
-Builtin_call_expression::do_check_types(Gogo*)
-{
-  switch (this->code_)
-    {
-    case BUILTIN_INVALID:
-    case BUILTIN_NEW:
-    case BUILTIN_MAKE:
-      return;
-
-    case BUILTIN_LEN:
-    case BUILTIN_CAP:
-      {
-       // The single argument may be either a string or an array or a
-       // map or a channel, or a pointer to a closed array.
-       if (this->check_one_arg())
-         {
-           Type* arg_type = this->one_arg()->type();
-           if (arg_type->points_to() != NULL
-               && arg_type->points_to()->array_type() != NULL
-               && !arg_type->points_to()->is_open_array_type())
-             arg_type = arg_type->points_to();
-           if (this->code_ == BUILTIN_CAP)
-             {
-               if (!arg_type->is_error()
-                   && arg_type->array_type() == NULL
-                   && arg_type->channel_type() == NULL)
-                 this->report_error(_("argument must be array or slice "
-                                      "or channel"));
-             }
-           else
-             {
-               if (!arg_type->is_error()
-                   && !arg_type->is_string_type()
-                   && arg_type->array_type() == NULL
-                   && arg_type->map_type() == NULL
-                   && arg_type->channel_type() == NULL)
-                 this->report_error(_("argument must be string or "
-                                      "array or slice or map or channel"));
-             }
-         }
-      }
-      break;
-
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL)
-         {
-           if (this->code_ == BUILTIN_PRINT)
-             warning_at(this->location(), 0,
-                        "no arguments for builtin function %<%s%>",
-                        (this->code_ == BUILTIN_PRINT
-                         ? "print"
-                         : "println"));
-         }
-       else
-         {
-           for (Expression_list::const_iterator p = args->begin();
-                p != args->end();
-                ++p)
-             {
-               Type* type = (*p)->type();
-               if (type->is_error()
-                   || type->is_string_type()
-                   || type->integer_type() != NULL
-                   || type->float_type() != NULL
-                   || type->complex_type() != NULL
-                   || type->is_boolean_type()
-                   || type->points_to() != NULL
-                   || type->interface_type() != NULL
-                   || type->channel_type() != NULL
-                   || type->map_type() != NULL
-                   || type->function_type() != NULL
-                   || type->is_open_array_type())
-                 ;
-               else
-                 this->report_error(_("unsupported argument type to "
-                                      "builtin function"));
-             }
-         }
-      }
-      break;
-
-    case BUILTIN_CLOSE:
-      if (this->check_one_arg())
-       {
-         if (this->one_arg()->type()->channel_type() == NULL)
-           this->report_error(_("argument must be channel"));
-       }
-      break;
-
-    case BUILTIN_PANIC:
-    case BUILTIN_SIZEOF:
-    case BUILTIN_ALIGNOF:
-      this->check_one_arg();
-      break;
-
-    case BUILTIN_RECOVER:
-      if (this->args() != NULL && !this->args()->empty())
-       this->report_error(_("too many arguments"));
-      break;
-
-    case BUILTIN_OFFSETOF:
-      if (this->check_one_arg())
-       {
-         Expression* arg = this->one_arg();
-         if (arg->field_reference_expression() == NULL)
-           this->report_error(_("argument must be a field reference"));
-       }
-      break;
-
-    case BUILTIN_COPY:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() < 2)
-         {
-           this->report_error(_("not enough arguments"));
-           break;
-         }
-       else if (args->size() > 2)
-         {
-           this->report_error(_("too many arguments"));
-           break;
-         }
-       Type* arg1_type = args->front()->type();
-       Type* arg2_type = args->back()->type();
-       if (arg1_type->is_error() || arg2_type->is_error())
-         break;
-
-       Type* e1;
-       if (arg1_type->is_open_array_type())
-         e1 = arg1_type->array_type()->element_type();
-       else
-         {
-           this->report_error(_("left argument must be a slice"));
-           break;
-         }
-
-       Type* e2;
-       if (arg2_type->is_open_array_type())
-         e2 = arg2_type->array_type()->element_type();
-       else if (arg2_type->is_string_type())
-         e2 = Type::lookup_integer_type("uint8");
-       else
-         {
-           this->report_error(_("right argument must be a slice or a string"));
-           break;
-         }
-
-       if (!Type::are_identical(e1, e2, true, NULL))
-         this->report_error(_("element types must be the same"));
-      }
-      break;
-
-    case BUILTIN_APPEND:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() < 2)
-         {
-           this->report_error(_("not enough arguments"));
-           break;
-         }
-       if (args->size() > 2)
-         {
-           this->report_error(_("too many arguments"));
-           break;
-         }
-       std::string reason;
-       if (!Type::are_assignable(args->front()->type(), args->back()->type(),
-                                 &reason))
-         {
-           if (reason.empty())
-             this->report_error(_("arguments 1 and 2 have different types"));
-           else
-             {
-               error_at(this->location(),
-                        "arguments 1 and 2 have different types (%s)",
-                        reason.c_str());
-               this->set_is_error();
-             }
-         }
-       break;
-      }
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      if (this->check_one_arg())
-       {
-         if (this->one_arg()->type()->complex_type() == NULL)
-           this->report_error(_("argument must have complex type"));
-       }
-      break;
-
-    case BUILTIN_COMPLEX:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() < 2)
-         this->report_error(_("not enough arguments"));
-       else if (args->size() > 2)
-         this->report_error(_("too many arguments"));
-       else if (args->front()->is_error_expression()
-                || args->front()->type()->is_error()
-                || args->back()->is_error_expression()
-                || args->back()->type()->is_error())
-         this->set_is_error();
-       else if (!Type::are_identical(args->front()->type(),
-                                     args->back()->type(), true, NULL))
-         this->report_error(_("complex arguments must have identical types"));
-       else if (args->front()->type()->float_type() == NULL)
-         this->report_error(_("complex arguments must have "
-                              "floating-point type"));
-      }
-      break;
-
-    default:
-      go_unreachable();
-    }
-}
-
-// Return the tree for a builtin function.
-
-tree
-Builtin_call_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  source_location location = this->location();
-  switch (this->code_)
-    {
-    case BUILTIN_INVALID:
-    case BUILTIN_NEW:
-    case BUILTIN_MAKE:
-      go_unreachable();
-
-    case BUILTIN_LEN:
-    case BUILTIN_CAP:
-      {
-       const Expression_list* args = this->args();
-       go_assert(args != NULL && args->size() == 1);
-       Expression* arg = *args->begin();
-       Type* arg_type = arg->type();
-
-       if (this->seen_)
-         {
-           go_assert(saw_errors());
-           return error_mark_node;
-         }
-       this->seen_ = true;
-
-       tree arg_tree = arg->get_tree(context);
-
-       this->seen_ = false;
-
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-
-       if (arg_type->points_to() != NULL)
-         {
-           arg_type = arg_type->points_to();
-           go_assert(arg_type->array_type() != NULL
-                      && !arg_type->is_open_array_type());
-           go_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
-           arg_tree = build_fold_indirect_ref(arg_tree);
-         }
-
-       tree val_tree;
-       if (this->code_ == BUILTIN_LEN)
-         {
-           if (arg_type->is_string_type())
-             val_tree = String_type::length_tree(gogo, arg_tree);
-           else if (arg_type->array_type() != NULL)
-             {
-               if (this->seen_)
-                 {
-                   go_assert(saw_errors());
-                   return error_mark_node;
-                 }
-               this->seen_ = true;
-               val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
-               this->seen_ = false;
-             }
-           else if (arg_type->map_type() != NULL)
-             {
-               static tree map_len_fndecl;
-               val_tree = Gogo::call_builtin(&map_len_fndecl,
-                                             location,
-                                             "__go_map_len",
-                                             1,
-                                             integer_type_node,
-                                             arg_type->get_tree(gogo),
-                                             arg_tree);
-             }
-           else if (arg_type->channel_type() != NULL)
-             {
-               static tree chan_len_fndecl;
-               val_tree = Gogo::call_builtin(&chan_len_fndecl,
-                                             location,
-                                             "__go_chan_len",
-                                             1,
-                                             integer_type_node,
-                                             arg_type->get_tree(gogo),
-                                             arg_tree);
-             }
-           else
-             go_unreachable();
-         }
-       else
-         {
-           if (arg_type->array_type() != NULL)
-             {
-               if (this->seen_)
-                 {
-                   go_assert(saw_errors());
-                   return error_mark_node;
-                 }
-               this->seen_ = true;
-               val_tree = arg_type->array_type()->capacity_tree(gogo,
-                                                                arg_tree);
-               this->seen_ = false;
-             }
-           else if (arg_type->channel_type() != NULL)
-             {
-               static tree chan_cap_fndecl;
-               val_tree = Gogo::call_builtin(&chan_cap_fndecl,
-                                             location,
-                                             "__go_chan_cap",
-                                             1,
-                                             integer_type_node,
-                                             arg_type->get_tree(gogo),
-                                             arg_tree);
-             }
-           else
-             go_unreachable();
-         }
-
-       if (val_tree == error_mark_node)
-         return error_mark_node;
-
-       tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
-       if (type_tree == TREE_TYPE(val_tree))
-         return val_tree;
-       else
-         return fold(convert_to_integer(type_tree, val_tree));
-      }
-
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      {
-       const bool is_ln = this->code_ == BUILTIN_PRINTLN;
-       tree stmt_list = NULL_TREE;
-
-       const Expression_list* call_args = this->args();
-       if (call_args != NULL)
-         {
-           for (Expression_list::const_iterator p = call_args->begin();
-                p != call_args->end();
-                ++p)
-             {
-               if (is_ln && p != call_args->begin())
-                 {
-                   static tree print_space_fndecl;
-                   tree call = Gogo::call_builtin(&print_space_fndecl,
-                                                  location,
-                                                  "__go_print_space",
-                                                  0,
-                                                  void_type_node);
-                   if (call == error_mark_node)
-                     return error_mark_node;
-                   append_to_statement_list(call, &stmt_list);
-                 }
-
-               Type* type = (*p)->type();
-
-               tree arg = (*p)->get_tree(context);
-               if (arg == error_mark_node)
-                 return error_mark_node;
-
-               tree* pfndecl;
-               const char* fnname;
-               if (type->is_string_type())
-                 {
-                   static tree print_string_fndecl;
-                   pfndecl = &print_string_fndecl;
-                   fnname = "__go_print_string";
-                 }
-               else if (type->integer_type() != NULL
-                        && type->integer_type()->is_unsigned())
-                 {
-                   static tree print_uint64_fndecl;
-                   pfndecl = &print_uint64_fndecl;
-                   fnname = "__go_print_uint64";
-                   Type* itype = Type::lookup_integer_type("uint64");
-                   arg = fold_convert_loc(location, itype->get_tree(gogo),
-                                          arg);
-                 }
-               else if (type->integer_type() != NULL)
-                 {
-                   static tree print_int64_fndecl;
-                   pfndecl = &print_int64_fndecl;
-                   fnname = "__go_print_int64";
-                   Type* itype = Type::lookup_integer_type("int64");
-                   arg = fold_convert_loc(location, itype->get_tree(gogo),
-                                          arg);
-                 }
-               else if (type->float_type() != NULL)
-                 {
-                   static tree print_double_fndecl;
-                   pfndecl = &print_double_fndecl;
-                   fnname = "__go_print_double";
-                   arg = fold_convert_loc(location, double_type_node, arg);
-                 }
-               else if (type->complex_type() != NULL)
-                 {
-                   static tree print_complex_fndecl;
-                   pfndecl = &print_complex_fndecl;
-                   fnname = "__go_print_complex";
-                   arg = fold_convert_loc(location, complex_double_type_node,
-                                          arg);
-                 }
-               else if (type->is_boolean_type())
-                 {
-                   static tree print_bool_fndecl;
-                   pfndecl = &print_bool_fndecl;
-                   fnname = "__go_print_bool";
-                 }
-               else if (type->points_to() != NULL
-                        || type->channel_type() != NULL
-                        || type->map_type() != NULL
-                        || type->function_type() != NULL)
-                 {
-                   static tree print_pointer_fndecl;
-                   pfndecl = &print_pointer_fndecl;
-                   fnname = "__go_print_pointer";
-                   arg = fold_convert_loc(location, ptr_type_node, arg);
-                 }
-               else if (type->interface_type() != NULL)
-                 {
-                   if (type->interface_type()->is_empty())
-                     {
-                       static tree print_empty_interface_fndecl;
-                       pfndecl = &print_empty_interface_fndecl;
-                       fnname = "__go_print_empty_interface";
-                     }
-                   else
-                     {
-                       static tree print_interface_fndecl;
-                       pfndecl = &print_interface_fndecl;
-                       fnname = "__go_print_interface";
-                     }
-                 }
-               else if (type->is_open_array_type())
-                 {
-                   static tree print_slice_fndecl;
-                   pfndecl = &print_slice_fndecl;
-                   fnname = "__go_print_slice";
-                 }
-               else
-                 go_unreachable();
-
-               tree call = Gogo::call_builtin(pfndecl,
-                                              location,
-                                              fnname,
-                                              1,
-                                              void_type_node,
-                                              TREE_TYPE(arg),
-                                              arg);
-               if (call == error_mark_node)
-                 return error_mark_node;
-               append_to_statement_list(call, &stmt_list);
-             }
-         }
-
-       if (is_ln)
-         {
-           static tree print_nl_fndecl;
-           tree call = Gogo::call_builtin(&print_nl_fndecl,
-                                          location,
-                                          "__go_print_nl",
-                                          0,
-                                          void_type_node);
-           if (call == error_mark_node)
-             return error_mark_node;
-           append_to_statement_list(call, &stmt_list);
-         }
-
-       return stmt_list;
-      }
-
-    case BUILTIN_PANIC:
-      {
-       const Expression_list* args = this->args();
-       go_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-       Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
-       arg_tree = Expression::convert_for_assignment(context, empty,
-                                                     arg->type(),
-                                                     arg_tree, location);
-       static tree panic_fndecl;
-       tree call = Gogo::call_builtin(&panic_fndecl,
-                                      location,
-                                      "__go_panic",
-                                      1,
-                                      void_type_node,
-                                      TREE_TYPE(arg_tree),
-                                      arg_tree);
-       if (call == error_mark_node)
-         return error_mark_node;
-       // This function will throw an exception.
-       TREE_NOTHROW(panic_fndecl) = 0;
-       // This function will not return.
-       TREE_THIS_VOLATILE(panic_fndecl) = 1;
-       return call;
-      }
-
-    case BUILTIN_RECOVER:
-      {
-       // The argument is set when building recover thunks.  It's a
-       // boolean value which is true if we can recover a value now.
-       const Expression_list* args = this->args();
-       go_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-
-       Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
-       tree empty_tree = empty->get_tree(context->gogo());
-
-       Type* nil_type = Type::make_nil_type();
-       Expression* nil = Expression::make_nil(location);
-       tree nil_tree = nil->get_tree(context);
-       tree empty_nil_tree = Expression::convert_for_assignment(context,
-                                                                empty,
-                                                                nil_type,
-                                                                nil_tree,
-                                                                location);
-
-       // We need to handle a deferred call to recover specially,
-       // because it changes whether it can recover a panic or not.
-       // See test7 in test/recover1.go.
-       tree call;
-       if (this->is_deferred())
-         {
-           static tree deferred_recover_fndecl;
-           call = Gogo::call_builtin(&deferred_recover_fndecl,
-                                     location,
-                                     "__go_deferred_recover",
-                                     0,
-                                     empty_tree);
-         }
-       else
-         {
-           static tree recover_fndecl;
-           call = Gogo::call_builtin(&recover_fndecl,
-                                     location,
-                                     "__go_recover",
-                                     0,
-                                     empty_tree);
-         }
-       if (call == error_mark_node)
-         return error_mark_node;
-       return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
-                              call, empty_nil_tree);
-      }
-
-    case BUILTIN_CLOSE:
-      {
-       const Expression_list* args = this->args();
-       go_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-       static tree close_fndecl;
-       return Gogo::call_builtin(&close_fndecl,
-                                 location,
-                                 "__go_builtin_close",
-                                 1,
-                                 void_type_node,
-                                 TREE_TYPE(arg_tree),
-                                 arg_tree);
-      }
-
-    case BUILTIN_SIZEOF:
-    case BUILTIN_OFFSETOF:
-    case BUILTIN_ALIGNOF:
-      {
-       mpz_t val;
-       mpz_init(val);
-       Type* dummy;
-       bool b = this->integer_constant_value(true, val, &dummy);
-       if (!b)
-         {
-           go_assert(saw_errors());
-           return error_mark_node;
-         }
-       tree type = Type::lookup_integer_type("int")->get_tree(gogo);
-       tree ret = Expression::integer_constant_tree(val, type);
-       mpz_clear(val);
-       return ret;
-      }
-
-    case BUILTIN_COPY:
-      {
-       const Expression_list* args = this->args();
-       go_assert(args != NULL && args->size() == 2);
-       Expression* arg1 = args->front();
-       Expression* arg2 = args->back();
-
-       tree arg1_tree = arg1->get_tree(context);
-       tree arg2_tree = arg2->get_tree(context);
-       if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
-         return error_mark_node;
-
-       Type* arg1_type = arg1->type();
-       Array_type* at = arg1_type->array_type();
-       arg1_tree = save_expr(arg1_tree);
-       tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
-       tree arg1_len = at->length_tree(gogo, arg1_tree);
-       if (arg1_val == error_mark_node || arg1_len == error_mark_node)
-         return error_mark_node;
-
-       Type* arg2_type = arg2->type();
-       tree arg2_val;
-       tree arg2_len;
-       if (arg2_type->is_open_array_type())
-         {
-           at = arg2_type->array_type();
-           arg2_tree = save_expr(arg2_tree);
-           arg2_val = at->value_pointer_tree(gogo, arg2_tree);
-           arg2_len = at->length_tree(gogo, arg2_tree);
-         }
-       else
-         {
-           arg2_tree = save_expr(arg2_tree);
-           arg2_val = String_type::bytes_tree(gogo, arg2_tree);
-           arg2_len = String_type::length_tree(gogo, arg2_tree);
-         }
-       if (arg2_val == error_mark_node || arg2_len == error_mark_node)
-         return error_mark_node;
-
-       arg1_len = save_expr(arg1_len);
-       arg2_len = save_expr(arg2_len);
-       tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
-                                  fold_build2_loc(location, LT_EXPR,
-                                                  boolean_type_node,
-                                                  arg1_len, arg2_len),
-                                  arg1_len, arg2_len);
-       len = save_expr(len);
-
-       Type* element_type = at->element_type();
-       tree element_type_tree = element_type->get_tree(gogo);
-       if (element_type_tree == error_mark_node)
-         return error_mark_node;
-       tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-       tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
-                                         len);
-       bytecount = fold_build2_loc(location, MULT_EXPR,
-                                   TREE_TYPE(element_size),
-                                   bytecount, element_size);
-       bytecount = fold_convert_loc(location, size_type_node, bytecount);
-
-       arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
-       arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
-
-       static tree copy_fndecl;
-       tree call = Gogo::call_builtin(&copy_fndecl,
-                                      location,
-                                      "__go_copy",
-                                      3,
-                                      void_type_node,
-                                      ptr_type_node,
-                                      arg1_val,
-                                      ptr_type_node,
-                                      arg2_val,
-                                      size_type_node,
-                                      bytecount);
-       if (call == error_mark_node)
-         return error_mark_node;
-
-       return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
-                              call, len);
-      }
-
-    case BUILTIN_APPEND:
-      {
-       const Expression_list* args = this->args();
-       go_assert(args != NULL && args->size() == 2);
-       Expression* arg1 = args->front();
-       Expression* arg2 = args->back();
-
-       tree arg1_tree = arg1->get_tree(context);
-       tree arg2_tree = arg2->get_tree(context);
-       if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
-         return error_mark_node;
-
-       Array_type* at = arg1->type()->array_type();
-       Type* element_type = at->element_type();
-
-       arg2_tree = Expression::convert_for_assignment(context, at,
-                                                      arg2->type(),
-                                                      arg2_tree,
-                                                      location);
-       if (arg2_tree == error_mark_node)
-         return error_mark_node;
-
-       arg2_tree = save_expr(arg2_tree);
-       tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
-       tree arg2_len = at->length_tree(gogo, arg2_tree);
-       if (arg2_val == error_mark_node || arg2_len == error_mark_node)
-         return error_mark_node;
-       arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
-       arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
-
-       tree element_type_tree = element_type->get_tree(gogo);
-       if (element_type_tree == error_mark_node)
-         return error_mark_node;
-       tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-       element_size = fold_convert_loc(location, size_type_node,
-                                       element_size);
-
-       // We rebuild the decl each time since the slice types may
-       // change.
-       tree append_fndecl = NULL_TREE;
-       return Gogo::call_builtin(&append_fndecl,
-                                 location,
-                                 "__go_append",
-                                 4,
-                                 TREE_TYPE(arg1_tree),
-                                 TREE_TYPE(arg1_tree),
-                                 arg1_tree,
-                                 ptr_type_node,
-                                 arg2_val,
-                                 size_type_node,
-                                 arg2_len,
-                                 size_type_node,
-                                 element_size);
-      }
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      {
-       const Expression_list* args = this->args();
-       go_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-       go_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
-       if (this->code_ == BUILTIN_REAL)
-         return fold_build1_loc(location, REALPART_EXPR,
-                                TREE_TYPE(TREE_TYPE(arg_tree)),
-                                arg_tree);
-       else
-         return fold_build1_loc(location, IMAGPART_EXPR,
-                                TREE_TYPE(TREE_TYPE(arg_tree)),
-                                arg_tree);
-      }
-
-    case BUILTIN_COMPLEX:
-      {
-       const Expression_list* args = this->args();
-       go_assert(args != NULL && args->size() == 2);
-       tree r = args->front()->get_tree(context);
-       tree i = args->back()->get_tree(context);
-       if (r == error_mark_node || i == error_mark_node)
-         return error_mark_node;
-       go_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
-                  == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
-       go_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
-       return fold_build2_loc(location, COMPLEX_EXPR,
-                              build_complex_type(TREE_TYPE(r)),
-                              r, i);
-      }
-
-    default:
-      go_unreachable();
-    }
-}
-
-// We have to support exporting a builtin call expression, because
-// code can set a constant to the result of a builtin expression.
-
-void
-Builtin_call_expression::do_export(Export* exp) const
-{
-  bool ok = false;
-
-  mpz_t val;
-  mpz_init(val);
-  Type* dummy;
-  if (this->integer_constant_value(true, val, &dummy))
-    {
-      Integer_expression::export_integer(exp, val);
-      ok = true;
-    }
-  mpz_clear(val);
-
-  if (!ok)
-    {
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (this->float_constant_value(fval, &dummy))
-       {
-         Float_expression::export_float(exp, fval);
-         ok = true;
-       }
-      mpfr_clear(fval);
-    }
-
-  if (!ok)
-    {
-      mpfr_t real;
-      mpfr_t imag;
-      mpfr_init(real);
-      mpfr_init(imag);
-      if (this->complex_constant_value(real, imag, &dummy))
-       {
-         Complex_expression::export_complex(exp, real, imag);
-         ok = true;
-       }
-      mpfr_clear(real);
-      mpfr_clear(imag);
-    }
-
-  if (!ok)
-    {
-      error_at(this->location(), "value is not constant");
-      return;
-    }
-
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Class Call_expression.
-
-// Traversal.
-
-int
-Call_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->args_ != NULL)
-    {
-      if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a call statement.
-
-Expression*
-Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  // A type case can look like a function call.
-  if (this->fn_->is_type_expression()
-      && this->args_ != NULL
-      && this->args_->size() == 1)
-    return Expression::make_cast(this->fn_->type(), this->args_->front(),
-                                this->location());
-
-  // Recognize a call to a builtin function.
-  Func_expression* fne = this->fn_->func_expression();
-  if (fne != NULL
-      && fne->named_object()->is_function_declaration()
-      && fne->named_object()->func_declaration_value()->type()->is_builtin())
-    return new Builtin_call_expression(gogo, this->fn_, this->args_,
-                                      this->is_varargs_, this->location());
-
-  // Handle an argument which is a call to a function which returns
-  // multiple results.
-  if (this->args_ != NULL
-      && this->args_->size() == 1
-      && this->args_->front()->call_expression() != NULL
-      && this->fn_->type()->function_type() != NULL)
-    {
-      Function_type* fntype = this->fn_->type()->function_type();
-      size_t rc = this->args_->front()->call_expression()->result_count();
-      if (rc > 1
-         && fntype->parameters() != NULL
-         && (fntype->parameters()->size() == rc
-             || (fntype->is_varargs()
-                 && fntype->parameters()->size() - 1 <= rc)))
-       {
-         Call_expression* call = this->args_->front()->call_expression();
-         Expression_list* args = new Expression_list;
-         for (size_t i = 0; i < rc; ++i)
-           args->push_back(Expression::make_call_result(call, i));
-         // We can't return a new call expression here, because this
-         // one may be referenced by Call_result expressions.  We
-         // also can't delete the old arguments, because we may still
-         // traverse them somewhere up the call stack.  FIXME.
-         this->args_ = args;
-       }
-    }
-
-  // Handle a call to a varargs function by packaging up the extra
-  // parameters.
-  if (this->fn_->type()->function_type() != NULL
-      && this->fn_->type()->function_type()->is_varargs())
-    {
-      Function_type* fntype = this->fn_->type()->function_type();
-      const Typed_identifier_list* parameters = fntype->parameters();
-      go_assert(parameters != NULL && !parameters->empty());
-      Type* varargs_type = parameters->back().type();
-      return this->lower_varargs(gogo, function, varargs_type,
-                                parameters->size());
-    }
-
-  return this;
-}
-
-// Lower a call to a varargs function.  FUNCTION is the function in
-// which the call occurs--it's not the function we are calling.
-// VARARGS_TYPE is the type of the varargs parameter, a slice type.
-// PARAM_COUNT is the number of parameters of the function we are
-// calling; the last of these parameters will be the varargs
-// parameter.
-
-Expression*
-Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
-                              Type* varargs_type, size_t param_count)
-{
-  if (this->varargs_are_lowered_)
-    return this;
-
-  source_location loc = this->location();
-
-  go_assert(param_count > 0);
-  go_assert(varargs_type->is_open_array_type());
-
-  size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
-  if (arg_count < param_count - 1)
-    {
-      // Not enough arguments; will be caught in check_types.
-      return this;
-    }
-
-  Expression_list* old_args = this->args_;
-  Expression_list* new_args = new Expression_list();
-  bool push_empty_arg = false;
-  if (old_args == NULL || old_args->empty())
-    {
-      go_assert(param_count == 1);
-      push_empty_arg = true;
-    }
-  else
-    {
-      Expression_list::const_iterator pa;
-      int i = 1;
-      for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
-       {
-         if (static_cast<size_t>(i) == param_count)
-           break;
-         new_args->push_back(*pa);
-       }
-
-      // We have reached the varargs parameter.
-
-      bool issued_error = false;
-      if (pa == old_args->end())
-       push_empty_arg = true;
-      else if (pa + 1 == old_args->end() && this->is_varargs_)
-       new_args->push_back(*pa);
-      else if (this->is_varargs_)
-       {
-         this->report_error(_("too many arguments"));
-         return this;
-       }
-      else
-       {
-         Type* element_type = varargs_type->array_type()->element_type();
-         Expression_list* vals = new Expression_list;
-         for (; pa != old_args->end(); ++pa, ++i)
-           {
-             // Check types here so that we get a better message.
-             Type* patype = (*pa)->type();
-             source_location paloc = (*pa)->location();
-             if (!this->check_argument_type(i, element_type, patype,
-                                            paloc, issued_error))
-               continue;
-             vals->push_back(*pa);
-           }
-         Expression* val =
-           Expression::make_slice_composite_literal(varargs_type, vals, loc);
-         new_args->push_back(val);
-       }
-    }
-
-  if (push_empty_arg)
-    new_args->push_back(Expression::make_nil(loc));
-
-  // We can't return a new call expression here, because this one may
-  // be referenced by Call_result expressions.  FIXME.
-  if (old_args != NULL)
-    delete old_args;
-  this->args_ = new_args;
-  this->varargs_are_lowered_ = true;
-
-  // Lower all the new subexpressions.
-  Expression* ret = this;
-  gogo->lower_expression(function, &ret);
-  go_assert(ret == this);
-  return ret;
-}
-
-// Get the function type.  Returns NULL if we don't know the type.  If
-// this returns NULL, and if_ERROR is true, issues an error.
-
-Function_type*
-Call_expression::get_function_type() const
-{
-  return this->fn_->type()->function_type();
-}
-
-// Return the number of values which this call will return.
-
-size_t
-Call_expression::result_count() const
-{
-  const Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    return 0;
-  if (fntype->results() == NULL)
-    return 0;
-  return fntype->results()->size();
-}
-
-// Return whether this is a call to the predeclared function recover.
-
-bool
-Call_expression::is_recover_call() const
-{
-  return this->do_is_recover_call();
-}
-
-// Set the argument to the recover function.
-
-void
-Call_expression::set_recover_arg(Expression* arg)
-{
-  this->do_set_recover_arg(arg);
-}
-
-// Virtual functions also implemented by Builtin_call_expression.
-
-bool
-Call_expression::do_is_recover_call() const
-{
-  return false;
-}
-
-void
-Call_expression::do_set_recover_arg(Expression*)
-{
-  go_unreachable();
-}
-
-// Get the type.
-
-Type*
-Call_expression::do_type()
-{
-  if (this->type_ != NULL)
-    return this->type_;
-
-  Type* ret;
-  Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    return Type::make_error_type();
-
-  const Typed_identifier_list* results = fntype->results();
-  if (results == NULL)
-    ret = Type::make_void_type();
-  else if (results->size() == 1)
-    ret = results->begin()->type();
-  else
-    ret = Type::make_call_multiple_result_type(this);
-
-  this->type_ = ret;
-
-  return this->type_;
-}
-
-// Determine types for a call expression.  We can use the function
-// parameter types to set the types of the arguments.
-
-void
-Call_expression::do_determine_type(const Type_context*)
-{
-  if (!this->determining_types())
-    return;
-
-  this->fn_->determine_type_no_context();
-  Function_type* fntype = this->get_function_type();
-  const Typed_identifier_list* parameters = NULL;
-  if (fntype != NULL)
-    parameters = fntype->parameters();
-  if (this->args_ != NULL)
-    {
-      Typed_identifier_list::const_iterator pt;
-      if (parameters != NULL)
-       pt = parameters->begin();
-      for (Expression_list::const_iterator pa = this->args_->begin();
-          pa != this->args_->end();
-          ++pa)
-       {
-         if (parameters != NULL && pt != parameters->end())
-           {
-             Type_context subcontext(pt->type(), false);
-             (*pa)->determine_type(&subcontext);
-             ++pt;
-           }
-         else
-           (*pa)->determine_type_no_context();
-       }
-    }
-}
-
-// Called when determining types for a Call_expression.  Return true
-// if we should go ahead, false if they have already been determined.
-
-bool
-Call_expression::determining_types()
-{
-  if (this->types_are_determined_)
-    return false;
-  else
-    {
-      this->types_are_determined_ = true;
-      return true;
-    }
-}
-
-// Check types for parameter I.
-
-bool
-Call_expression::check_argument_type(int i, const Type* parameter_type,
-                                    const Type* argument_type,
-                                    source_location argument_location,
-                                    bool issued_error)
-{
-  std::string reason;
-  if (!Type::are_assignable(parameter_type, argument_type, &reason))
-    {
-      if (!issued_error)
-       {
-         if (reason.empty())
-           error_at(argument_location, "argument %d has incompatible type", i);
-         else
-           error_at(argument_location,
-                    "argument %d has incompatible type (%s)",
-                    i, reason.c_str());
-       }
-      this->set_is_error();
-      return false;
-    }
-  return true;
-}
-
-// Check types.
-
-void
-Call_expression::do_check_types(Gogo*)
-{
-  Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    {
-      if (!this->fn_->type()->is_error())
-       this->report_error(_("expected function"));
-      return;
-    }
-
-  if (fntype->is_method())
-    {
-      // We don't support pointers to methods, so the function has to
-      // be a bound method expression.
-      Bound_method_expression* bme = this->fn_->bound_method_expression();
-      if (bme == NULL)
-       {
-         this->report_error(_("method call without object"));
-         return;
-       }
-      Type* first_arg_type = bme->first_argument()->type();
-      if (first_arg_type->points_to() == NULL)
-       {
-         // When passing a value, we need to check that we are
-         // permitted to copy it.  The language permits copying
-         // hidden fields for a method receiver.
-         std::string reason;
-         if (!Type::are_assignable_hidden_ok(fntype->receiver()->type(),
-                                             first_arg_type, &reason))
-           {
-             if (reason.empty())
-               this->report_error(_("incompatible type for receiver"));
-             else
-               {
-                 error_at(this->location(),
-                          "incompatible type for receiver (%s)",
-                          reason.c_str());
-                 this->set_is_error();
-               }
-           }
-       }
-    }
-
-  // Note that varargs was handled by the lower_varargs() method, so
-  // we don't have to worry about it here.
-
-  const Typed_identifier_list* parameters = fntype->parameters();
-  if (this->args_ == NULL)
-    {
-      if (parameters != NULL && !parameters->empty())
-       this->report_error(_("not enough arguments"));
-    }
-  else if (parameters == NULL)
-    this->report_error(_("too many arguments"));
-  else
-    {
-      int i = 0;
-      Typed_identifier_list::const_iterator pt = parameters->begin();
-      for (Expression_list::const_iterator pa = this->args_->begin();
-          pa != this->args_->end();
-          ++pa, ++pt, ++i)
-       {
-         if (pt == parameters->end())
-           {
-             this->report_error(_("too many arguments"));
-             return;
-           }
-         this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
-                                   (*pa)->location(), false);
-       }
-      if (pt != parameters->end())
-       this->report_error(_("not enough arguments"));
-    }
-}
-
-// Return whether we have to use a temporary variable to ensure that
-// we evaluate this call expression in order.  If the call returns no
-// results then it will inevitably be executed last.  If the call
-// returns more than one result then it will be used with Call_result
-// expressions.  So we only have to use a temporary variable if the
-// call returns exactly one result.
-
-bool
-Call_expression::do_must_eval_in_order() const
-{
-  return this->result_count() == 1;
-}
-
-// Get the function and the first argument to use when calling a bound
-// method.
-
-tree
-Call_expression::bound_method_function(Translate_context* context,
-                                      Bound_method_expression* bound_method,
-                                      tree* first_arg_ptr)
-{
-  Expression* first_argument = bound_method->first_argument();
-  tree first_arg = first_argument->get_tree(context);
-  if (first_arg == error_mark_node)
-    return error_mark_node;
-
-  // We always pass a pointer to the first argument when calling a
-  // method.
-  if (first_argument->type()->points_to() == NULL)
-    {
-      tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
-      if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
-         || DECL_P(first_arg)
-         || TREE_CODE(first_arg) == INDIRECT_REF
-         || TREE_CODE(first_arg) == COMPONENT_REF)
-       {
-         first_arg = build_fold_addr_expr(first_arg);
-         if (DECL_P(first_arg))
-           TREE_ADDRESSABLE(first_arg) = 1;
-       }
-      else
-       {
-         tree tmp = create_tmp_var(TREE_TYPE(first_arg),
-                                   get_name(first_arg));
-         DECL_IGNORED_P(tmp) = 0;
-         DECL_INITIAL(tmp) = first_arg;
-         first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
-                            build1(DECL_EXPR, void_type_node, tmp),
-                            build_fold_addr_expr(tmp));
-         TREE_ADDRESSABLE(tmp) = 1;
-       }
-      if (first_arg == error_mark_node)
-       return error_mark_node;
-    }
-
-  Type* fatype = bound_method->first_argument_type();
-  if (fatype != NULL)
-    {
-      if (fatype->points_to() == NULL)
-       fatype = Type::make_pointer_type(fatype);
-      first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
-      if (first_arg == error_mark_node
-         || TREE_TYPE(first_arg) == error_mark_node)
-       return error_mark_node;
-    }
-
-  *first_arg_ptr = first_arg;
-
-  return bound_method->method()->get_tree(context);
-}
-
-// Get the function and the first argument to use when calling an
-// interface method.
-
-tree
-Call_expression::interface_method_function(
-    Translate_context* context,
-    Interface_field_reference_expression* interface_method,
-    tree* first_arg_ptr)
-{
-  tree expr = interface_method->expr()->get_tree(context);
-  if (expr == error_mark_node)
-    return error_mark_node;
-  expr = save_expr(expr);
-  tree first_arg = interface_method->get_underlying_object_tree(context, expr);
-  if (first_arg == error_mark_node)
-    return error_mark_node;
-  *first_arg_ptr = first_arg;
-  return interface_method->get_function_tree(context, expr);
-}
-
-// Build the call expression.
-
-tree
-Call_expression::do_get_tree(Translate_context* context)
-{
-  if (this->tree_ != NULL_TREE)
-    return this->tree_;
-
-  Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    return error_mark_node;
-
-  if (this->fn_->is_error_expression())
-    return error_mark_node;
-
-  Gogo* gogo = context->gogo();
-  source_location location = this->location();
-
-  Func_expression* func = this->fn_->func_expression();
-  Bound_method_expression* bound_method = this->fn_->bound_method_expression();
-  Interface_field_reference_expression* interface_method =
-    this->fn_->interface_field_reference_expression();
-  const bool has_closure = func != NULL && func->closure() != NULL;
-  const bool is_method = bound_method != NULL || interface_method != NULL;
-  go_assert(!fntype->is_method() || is_method);
-
-  int nargs;
-  tree* args;
-  if (this->args_ == NULL || this->args_->empty())
-    {
-      nargs = is_method ? 1 : 0;
-      args = nargs == 0 ? NULL : new tree[nargs];
-    }
-  else
-    {
-      const Typed_identifier_list* params = fntype->parameters();
-      go_assert(params != NULL);
-
-      nargs = this->args_->size();
-      int i = is_method ? 1 : 0;
-      nargs += i;
-      args = new tree[nargs];
-
-      Typed_identifier_list::const_iterator pp = params->begin();
-      Expression_list::const_iterator pe;
-      for (pe = this->args_->begin();
-          pe != this->args_->end();
-          ++pe, ++pp, ++i)
-       {
-         go_assert(pp != params->end());
-         tree arg_val = (*pe)->get_tree(context);
-         args[i] = Expression::convert_for_assignment(context,
-                                                      pp->type(),
-                                                      (*pe)->type(),
-                                                      arg_val,
-                                                      location);
-         if (args[i] == error_mark_node)
-           {
-             delete[] args;
-             return error_mark_node;
-           }
-       }
-      go_assert(pp == params->end());
-      go_assert(i == nargs);
-    }
-
-  tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
-  if (rettype == error_mark_node)
-    {
-      delete[] args;
-      return error_mark_node;
-    }
-
-  tree fn;
-  if (has_closure)
-    fn = func->get_tree_without_closure(gogo);
-  else if (!is_method)
-    fn = this->fn_->get_tree(context);
-  else if (bound_method != NULL)
-    fn = this->bound_method_function(context, bound_method, &args[0]);
-  else if (interface_method != NULL)
-    fn = this->interface_method_function(context, interface_method, &args[0]);
-  else
-    go_unreachable();
-
-  if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
-    {
-      delete[] args;
-      return error_mark_node;
-    }
-
-  tree fndecl = fn;
-  if (TREE_CODE(fndecl) == ADDR_EXPR)
-    fndecl = TREE_OPERAND(fndecl, 0);
-
-  // Add a type cast in case the type of the function is a recursive
-  // type which refers to itself.
-  if (!DECL_P(fndecl) || !DECL_IS_BUILTIN(fndecl))
-    {
-      tree fnt = fntype->get_tree(gogo);
-      if (fnt == error_mark_node)
-       return error_mark_node;
-      fn = fold_convert_loc(location, fnt, fn);
-    }
-
-  // This is to support builtin math functions when using 80387 math.
-  tree excess_type = NULL_TREE;
-  if (TREE_CODE(fndecl) == FUNCTION_DECL
-      && DECL_IS_BUILTIN(fndecl)
-      && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
-      && nargs > 0
-      && ((SCALAR_FLOAT_TYPE_P(rettype)
-          && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
-         || (COMPLEX_FLOAT_TYPE_P(rettype)
-             && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
-    {
-      excess_type = excess_precision_type(TREE_TYPE(args[0]));
-      if (excess_type != NULL_TREE)
-       {
-         tree excess_fndecl = mathfn_built_in(excess_type,
-                                              DECL_FUNCTION_CODE(fndecl));
-         if (excess_fndecl == NULL_TREE)
-           excess_type = NULL_TREE;
-         else
-           {
-             fn = build_fold_addr_expr_loc(location, excess_fndecl);
-             for (int i = 0; i < nargs; ++i)
-               args[i] = ::convert(excess_type, args[i]);
-           }
-       }
-    }
-
-  tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
-                             fn, nargs, args);
-  delete[] args;
-
-  SET_EXPR_LOCATION(ret, location);
-
-  if (has_closure)
-    {
-      tree closure_tree = func->closure()->get_tree(context);
-      if (closure_tree != error_mark_node)
-       CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
-    }
-
-  // If this is a recursive function type which returns itself, as in
-  //   type F func() F
-  // we have used ptr_type_node for the return type.  Add a cast here
-  // to the correct type.
-  if (TREE_TYPE(ret) == ptr_type_node)
-    {
-      tree t = this->type()->base()->get_tree(gogo);
-      ret = fold_convert_loc(location, t, ret);
-    }
-
-  if (excess_type != NULL_TREE)
-    {
-      // Calling convert here can undo our excess precision change.
-      // That may or may not be a bug in convert_to_real.
-      ret = build1(NOP_EXPR, rettype, ret);
-    }
-
-  // If there is more than one result, we will refer to the call
-  // multiple times.
-  if (fntype->results() != NULL && fntype->results()->size() > 1)
-    ret = save_expr(ret);
-
-  this->tree_ = ret;
-
-  return ret;
-}
-
-// Make a call expression.
-
-Call_expression*
-Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
-                     source_location location)
-{
-  return new Call_expression(fn, args, is_varargs, location);
-}
-
-// A single result from a call which returns multiple results.
-
-class Call_result_expression : public Expression
-{
- public:
-  Call_result_expression(Call_expression* call, unsigned int index)
-    : Expression(EXPRESSION_CALL_RESULT, call->location()),
-      call_(call), index_(index)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Call_result_expression(this->call_->call_expression(),
-                                     this->index_);
-  }
-
-  bool
-  do_must_eval_in_order() const
-  { return true; }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The underlying call expression.
-  Expression* call_;
-  // Which result we want.
-  unsigned int index_;
-};
-
-// Traverse a call result.
-
-int
-Call_result_expression::do_traverse(Traverse* traverse)
-{
-  if (traverse->remember_expression(this->call_))
-    {
-      // We have already traversed the call expression.
-      return TRAVERSE_CONTINUE;
-    }
-  return Expression::traverse(&this->call_, traverse);
-}
-
-// Get the type.
-
-Type*
-Call_result_expression::do_type()
-{
-  if (this->classification() == EXPRESSION_ERROR)
-    return Type::make_error_type();
-
-  // THIS->CALL_ can be replaced with a temporary reference due to
-  // Call_expression::do_must_eval_in_order when there is an error.
-  Call_expression* ce = this->call_->call_expression();
-  if (ce == NULL)
-    {
-      this->set_is_error();
-      return Type::make_error_type();
-    }
-  Function_type* fntype = ce->get_function_type();
-  if (fntype == NULL)
-    {
-      this->set_is_error();
-      return Type::make_error_type();
-    }
-  const Typed_identifier_list* results = fntype->results();
-  if (results == NULL)
-    {
-      this->report_error(_("number of results does not match "
-                          "number of values"));
-      return Type::make_error_type();
-    }
-  Typed_identifier_list::const_iterator pr = results->begin();
-  for (unsigned int i = 0; i < this->index_; ++i)
-    {
-      if (pr == results->end())
-       break;
-      ++pr;
-    }
-  if (pr == results->end())
-    {
-      this->report_error(_("number of results does not match "
-                          "number of values"));
-      return Type::make_error_type();
-    }
-  return pr->type();
-}
-
-// Check the type.  Just make sure that we trigger the warning in
-// do_type.
-
-void
-Call_result_expression::do_check_types(Gogo*)
-{
-  this->type();
-}
-
-// Determine the type.  We have nothing to do here, but the 0 result
-// needs to pass down to the caller.
-
-void
-Call_result_expression::do_determine_type(const Type_context*)
-{
-  this->call_->determine_type_no_context();
-}
-
-// Return the tree.
-
-tree
-Call_result_expression::do_get_tree(Translate_context* context)
-{
-  tree call_tree = this->call_->get_tree(context);
-  if (call_tree == error_mark_node)
-    return error_mark_node;
-  if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
-    {
-      go_assert(saw_errors());
-      return error_mark_node;
-    }
-  tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
-  for (unsigned int i = 0; i < this->index_; ++i)
-    {
-      go_assert(field != NULL_TREE);
-      field = DECL_CHAIN(field);
-    }
-  go_assert(field != NULL_TREE);
-  return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
-}
-
-// Make a reference to a single result of a call which returns
-// multiple results.
-
-Expression*
-Expression::make_call_result(Call_expression* call, unsigned int index)
-{
-  return new Call_result_expression(call, index);
-}
-
-// Class Index_expression.
-
-// Traversal.
-
-int
-Index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
-      || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
-      || (this->end_ != NULL
-         && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower an index expression.  This converts the generic index
-// expression into an array index, a string index, or a map index.
-
-Expression*
-Index_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location location = this->location();
-  Expression* left = this->left_;
-  Expression* start = this->start_;
-  Expression* end = this->end_;
-
-  Type* type = left->type();
-  if (type->is_error())
-    return Expression::make_error(location);
-  else if (left->is_type_expression())
-    {
-      error_at(location, "attempt to index type expression");
-      return Expression::make_error(location);
-    }
-  else if (type->array_type() != NULL)
-    return Expression::make_array_index(left, start, end, location);
-  else if (type->points_to() != NULL
-          && type->points_to()->array_type() != NULL
-          && !type->points_to()->is_open_array_type())
-    {
-      Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
-                                                location);
-      return Expression::make_array_index(deref, start, end, location);
-    }
-  else if (type->is_string_type())
-    return Expression::make_string_index(left, start, end, location);
-  else if (type->map_type() != NULL)
-    {
-      if (end != NULL)
-       {
-         error_at(location, "invalid slice of map");
-         return Expression::make_error(location);
-       }
-      Map_index_expression* ret= Expression::make_map_index(left, start,
-                                                           location);
-      if (this->is_lvalue_)
-       ret->set_is_lvalue();
-      return ret;
-    }
-  else
-    {
-      error_at(location,
-              "attempt to index object which is not array, string, or map");
-      return Expression::make_error(location);
-    }
-}
-
-// Make an index expression.
-
-Expression*
-Expression::make_index(Expression* left, Expression* start, Expression* end,
-                      source_location location)
-{
-  return new Index_expression(left, start, end, location);
-}
-
-// An array index.  This is used for both indexing and slicing.
-
-class Array_index_expression : public Expression
-{
- public:
-  Array_index_expression(Expression* array, Expression* start,
-                        Expression* end, source_location location)
-    : Expression(EXPRESSION_ARRAY_INDEX, location),
-      array_(array), start_(start), end_(end), type_(NULL)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_array_index(this->array_->copy(),
-                                       this->start_->copy(),
-                                       (this->end_ == NULL
-                                        ? NULL
-                                        : this->end_->copy()),
-                                       this->location());
-  }
-
-  bool
-  do_is_addressable() const;
-
-  void
-  do_address_taken(bool escapes)
-  { this->array_->address_taken(escapes); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The array we are getting a value from.
-  Expression* array_;
-  // The start or only index.
-  Expression* start_;
-  // The end index of a slice.  This may be NULL for a simple array
-  // index, or it may be a nil expression for the length of the array.
-  Expression* end_;
-  // The type of the expression.
-  Type* type_;
-};
-
-// Array index traversal.
-
-int
-Array_index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->end_ != NULL)
-    {
-      if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Return the type of an array index.
-
-Type*
-Array_index_expression::do_type()
-{
-  if (this->type_ == NULL)
-    {
-     Array_type* type = this->array_->type()->array_type();
-      if (type == NULL)
-       this->type_ = Type::make_error_type();
-      else if (this->end_ == NULL)
-       this->type_ = type->element_type();
-      else if (type->is_open_array_type())
-       {
-         // A slice of a slice has the same type as the original
-         // slice.
-         this->type_ = this->array_->type()->deref();
-       }
-      else
-       {
-         // A slice of an array is a slice.
-         this->type_ = Type::make_array_type(type->element_type(), NULL);
-       }
-    }
-  return this->type_;
-}
-
-// Set the type of an array index.
-
-void
-Array_index_expression::do_determine_type(const Type_context*)
-{
-  this->array_->determine_type_no_context();
-  this->start_->determine_type_no_context();
-  if (this->end_ != NULL)
-    this->end_->determine_type_no_context();
-}
-
-// Check types of an array index.
-
-void
-Array_index_expression::do_check_types(Gogo*)
-{
-  if (this->start_->type()->integer_type() == NULL)
-    this->report_error(_("index must be integer"));
-  if (this->end_ != NULL
-      && this->end_->type()->integer_type() == NULL
-      && !this->end_->is_nil_expression())
-    this->report_error(_("slice end must be integer"));
-
-  Array_type* array_type = this->array_->type()->array_type();
-  if (array_type == NULL)
-    {
-      go_assert(this->array_->type()->is_error());
-      return;
-    }
-
-  unsigned int int_bits =
-    Type::lookup_integer_type("int")->integer_type()->bits();
-
-  Type* dummy;
-  mpz_t lval;
-  mpz_init(lval);
-  bool lval_valid = (array_type->length() != NULL
-                    && array_type->length()->integer_constant_value(true,
-                                                                    lval,
-                                                                    &dummy));
-  mpz_t ival;
-  mpz_init(ival);
-  if (this->start_->integer_constant_value(true, ival, &dummy))
-    {
-      if (mpz_sgn(ival) < 0
-         || mpz_sizeinbase(ival, 2) >= int_bits
-         || (lval_valid
-             && (this->end_ == NULL
-                 ? mpz_cmp(ival, lval) >= 0
-                 : mpz_cmp(ival, lval) > 0)))
-       {
-         error_at(this->start_->location(), "array index out of bounds");
-         this->set_is_error();
-       }
-    }
-  if (this->end_ != NULL && !this->end_->is_nil_expression())
-    {
-      if (this->end_->integer_constant_value(true, ival, &dummy))
-       {
-         if (mpz_sgn(ival) < 0
-             || mpz_sizeinbase(ival, 2) >= int_bits
-             || (lval_valid && mpz_cmp(ival, lval) > 0))
-           {
-             error_at(this->end_->location(), "array index out of bounds");
-             this->set_is_error();
-           }
-       }
-    }
-  mpz_clear(ival);
-  mpz_clear(lval);
-
-  // A slice of an array requires an addressable array.  A slice of a
-  // slice is always possible.
-  if (this->end_ != NULL && !array_type->is_open_array_type())
-    {
-      if (!this->array_->is_addressable())
-       this->report_error(_("array is not addressable"));
-      else
-       this->array_->address_taken(true);
-    }
-}
-
-// Return whether this expression is addressable.
-
-bool
-Array_index_expression::do_is_addressable() const
-{
-  // A slice expression is not addressable.
-  if (this->end_ != NULL)
-    return false;
-
-  // An index into a slice is addressable.
-  if (this->array_->type()->is_open_array_type())
-    return true;
-
-  // An index into an array is addressable if the array is
-  // addressable.
-  return this->array_->is_addressable();
-}
-
-// Get a tree for an array index.
-
-tree
-Array_index_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  source_location loc = this->location();
-
-  Array_type* array_type = this->array_->type()->array_type();
-  if (array_type == NULL)
-    {
-      go_assert(this->array_->type()->is_error());
-      return error_mark_node;
-    }
-
-  tree type_tree = array_type->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree array_tree = this->array_->get_tree(context);
-  if (array_tree == error_mark_node)
-    return error_mark_node;
-
-  if (array_type->length() == NULL && !DECL_P(array_tree))
-    array_tree = save_expr(array_tree);
-  tree length_tree = array_type->length_tree(gogo, array_tree);
-  if (length_tree == error_mark_node)
-    return error_mark_node;
-  length_tree = save_expr(length_tree);
-  tree length_type = TREE_TYPE(length_tree);
-
-  tree bad_index = boolean_false_node;
-
-  tree start_tree = this->start_->get_tree(context);
-  if (start_tree == error_mark_node)
-    return error_mark_node;
-  if (!DECL_P(start_tree))
-    start_tree = save_expr(start_tree);
-  if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
-    start_tree = convert_to_integer(length_type, start_tree);
-
-  bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
-                                      loc);
-
-  start_tree = fold_convert_loc(loc, length_type, start_tree);
-  bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
-                             fold_build2_loc(loc,
-                                             (this->end_ == NULL
-                                              ? GE_EXPR
-                                              : GT_EXPR),
-                                             boolean_type_node, start_tree,
-                                             length_tree));
-
-  int code = (array_type->length() != NULL
-             ? (this->end_ == NULL
-                ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
-                : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
-             : (this->end_ == NULL
-                ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
-                : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
-  tree crash = Gogo::runtime_error(code, loc);
-
-  if (this->end_ == NULL)
-    {
-      // Simple array indexing.  This has to return an l-value, so
-      // wrap the index check into START_TREE.
-      start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
-                         build3(COND_EXPR, void_type_node,
-                                bad_index, crash, NULL_TREE),
-                         start_tree);
-      start_tree = fold_convert_loc(loc, sizetype, start_tree);
-
-      if (array_type->length() != NULL)
-       {
-         // Fixed array.
-         return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
-                       start_tree, NULL_TREE, NULL_TREE);
-       }
-      else
-       {
-         // Open array.
-         tree values = array_type->value_pointer_tree(gogo, array_tree);
-         tree element_type_tree = array_type->element_type()->get_tree(gogo);
-         if (element_type_tree == error_mark_node)
-           return error_mark_node;
-         tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-         tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
-                                       start_tree, element_size);
-         tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
-                                    TREE_TYPE(values), values, offset);
-         return build_fold_indirect_ref(ptr);
-       }
-    }
-
-  // Array slice.
-
-  tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
-  if (capacity_tree == error_mark_node)
-    return error_mark_node;
-  capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
-
-  tree end_tree;
-  if (this->end_->is_nil_expression())
-    end_tree = length_tree;
-  else
-    {
-      end_tree = this->end_->get_tree(context);
-      if (end_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(end_tree))
-       end_tree = save_expr(end_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
-       end_tree = convert_to_integer(length_type, end_tree);
-
-      bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
-                                          loc);
-
-      end_tree = fold_convert_loc(loc, length_type, end_tree);
-
-      capacity_tree = save_expr(capacity_tree);
-      tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                                    fold_build2_loc(loc, LT_EXPR,
-                                                    boolean_type_node,
-                                                    end_tree, start_tree),
-                                    fold_build2_loc(loc, GT_EXPR,
-                                                    boolean_type_node,
-                                                    end_tree, capacity_tree));
-      bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                                 bad_index, bad_end);
-    }
-
-  tree element_type_tree = array_type->element_type()->get_tree(gogo);
-  if (element_type_tree == error_mark_node)
-    return error_mark_node;
-  tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-
-  tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
-                               fold_convert_loc(loc, sizetype, start_tree),
-                               element_size);
-
-  tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
-  if (value_pointer == error_mark_node)
-    return error_mark_node;
-
-  value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
-                                 TREE_TYPE(value_pointer),
-                                 value_pointer, offset);
-
-  tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
-                                           end_tree, start_tree);
-
-  tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
-                                             capacity_tree, start_tree);
-
-  tree struct_tree = this->type()->get_tree(gogo);
-  go_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(struct_tree);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  elt->index = field;
-  elt->value = value_pointer;
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-  elt->index = field;
-  elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
-  elt->index = field;
-  elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
-
-  tree constructor = build_constructor(struct_tree, init);
-
-  if (TREE_CONSTANT(value_pointer)
-      && TREE_CONSTANT(result_length_tree)
-      && TREE_CONSTANT(result_capacity_tree))
-    TREE_CONSTANT(constructor) = 1;
-
-  return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
-                        build3(COND_EXPR, void_type_node,
-                               bad_index, crash, NULL_TREE),
-                        constructor);
-}
-
-// Make an array index expression.  END may be NULL.
-
-Expression*
-Expression::make_array_index(Expression* array, Expression* start,
-                            Expression* end, source_location location)
-{
-  // Taking a slice of a composite literal requires moving the literal
-  // onto the heap.
-  if (end != NULL && array->is_composite_literal())
-    {
-      array = Expression::make_heap_composite(array, location);
-      array = Expression::make_unary(OPERATOR_MULT, array, location);
-    }
-  return new Array_index_expression(array, start, end, location);
-}
-
-// A string index.  This is used for both indexing and slicing.
-
-class String_index_expression : public Expression
-{
- public:
-  String_index_expression(Expression* string, Expression* start,
-                         Expression* end, source_location location)
-    : Expression(EXPRESSION_STRING_INDEX, location),
-      string_(string), start_(start), end_(end)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_string_index(this->string_->copy(),
-                                        this->start_->copy(),
-                                        (this->end_ == NULL
-                                         ? NULL
-                                         : this->end_->copy()),
-                                        this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The string we are getting a value from.
-  Expression* string_;
-  // The start or only index.
-  Expression* start_;
-  // The end index of a slice.  This may be NULL for a single index,
-  // or it may be a nil expression for the length of the string.
-  Expression* end_;
-};
-
-// String index traversal.
-
-int
-String_index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->end_ != NULL)
-    {
-      if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Return the type of a string index.
-
-Type*
-String_index_expression::do_type()
-{
-  if (this->end_ == NULL)
-    return Type::lookup_integer_type("uint8");
-  else
-    return this->string_->type();
-}
-
-// Determine the type of a string index.
-
-void
-String_index_expression::do_determine_type(const Type_context*)
-{
-  this->string_->determine_type_no_context();
-  this->start_->determine_type_no_context();
-  if (this->end_ != NULL)
-    this->end_->determine_type_no_context();
-}
-
-// Check types of a string index.
-
-void
-String_index_expression::do_check_types(Gogo*)
-{
-  if (this->start_->type()->integer_type() == NULL)
-    this->report_error(_("index must be integer"));
-  if (this->end_ != NULL
-      && this->end_->type()->integer_type() == NULL
-      && !this->end_->is_nil_expression())
-    this->report_error(_("slice end must be integer"));
-
-  std::string sval;
-  bool sval_valid = this->string_->string_constant_value(&sval);
-
-  mpz_t ival;
-  mpz_init(ival);
-  Type* dummy;
-  if (this->start_->integer_constant_value(true, ival, &dummy))
-    {
-      if (mpz_sgn(ival) < 0
-         || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
-       {
-         error_at(this->start_->location(), "string index out of bounds");
-         this->set_is_error();
-       }
-    }
-  if (this->end_ != NULL && !this->end_->is_nil_expression())
-    {
-      if (this->end_->integer_constant_value(true, ival, &dummy))
-       {
-         if (mpz_sgn(ival) < 0
-             || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
-           {
-             error_at(this->end_->location(), "string index out of bounds");
-             this->set_is_error();
-           }
-       }
-    }
-  mpz_clear(ival);
-}
-
-// Get a tree for a string index.
-
-tree
-String_index_expression::do_get_tree(Translate_context* context)
-{
-  source_location loc = this->location();
-
-  tree string_tree = this->string_->get_tree(context);
-  if (string_tree == error_mark_node)
-    return error_mark_node;
-
-  if (this->string_->type()->points_to() != NULL)
-    string_tree = build_fold_indirect_ref(string_tree);
-  if (!DECL_P(string_tree))
-    string_tree = save_expr(string_tree);
-  tree string_type = TREE_TYPE(string_tree);
-
-  tree length_tree = String_type::length_tree(context->gogo(), string_tree);
-  length_tree = save_expr(length_tree);
-  tree length_type = TREE_TYPE(length_tree);
-
-  tree bad_index = boolean_false_node;
-
-  tree start_tree = this->start_->get_tree(context);
-  if (start_tree == error_mark_node)
-    return error_mark_node;
-  if (!DECL_P(start_tree))
-    start_tree = save_expr(start_tree);
-  if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
-    start_tree = convert_to_integer(length_type, start_tree);
-
-  bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
-                                      loc);
-
-  start_tree = fold_convert_loc(loc, length_type, start_tree);
-
-  int code = (this->end_ == NULL
-             ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
-             : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
-  tree crash = Gogo::runtime_error(code, loc);
-
-  if (this->end_ == NULL)
-    {
-      bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                                 bad_index,
-                                 fold_build2_loc(loc, GE_EXPR,
-                                                 boolean_type_node,
-                                                 start_tree, length_tree));
-
-      tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
-      tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
-                                bytes_tree,
-                                fold_convert_loc(loc, sizetype, start_tree));
-      tree index = build_fold_indirect_ref_loc(loc, ptr);
-
-      return build2(COMPOUND_EXPR, TREE_TYPE(index),
-                   build3(COND_EXPR, void_type_node,
-                          bad_index, crash, NULL_TREE),
-                   index);
-    }
-  else
-    {
-      tree end_tree;
-      if (this->end_->is_nil_expression())
-       end_tree = build_int_cst(length_type, -1);
-      else
-       {
-         end_tree = this->end_->get_tree(context);
-         if (end_tree == error_mark_node)
-           return error_mark_node;
-         if (!DECL_P(end_tree))
-           end_tree = save_expr(end_tree);
-         if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
-           end_tree = convert_to_integer(length_type, end_tree);
-
-         bad_index = Expression::check_bounds(end_tree, length_type,
-                                              bad_index, loc);
-
-         end_tree = fold_convert_loc(loc, length_type, end_tree);
-       }
-
-      static tree strslice_fndecl;
-      tree ret = Gogo::call_builtin(&strslice_fndecl,
-                                   loc,
-                                   "__go_string_slice",
-                                   3,
-                                   string_type,
-                                   string_type,
-                                   string_tree,
-                                   length_type,
-                                   start_tree,
-                                   length_type,
-                                   end_tree);
-      if (ret == error_mark_node)
-       return error_mark_node;
-      // This will panic if the bounds are out of range for the
-      // string.
-      TREE_NOTHROW(strslice_fndecl) = 0;
-
-      if (bad_index == boolean_false_node)
-       return ret;
-      else
-       return build2(COMPOUND_EXPR, TREE_TYPE(ret),
-                     build3(COND_EXPR, void_type_node,
-                            bad_index, crash, NULL_TREE),
-                     ret);
-    }
-}
-
-// Make a string index expression.  END may be NULL.
-
-Expression*
-Expression::make_string_index(Expression* string, Expression* start,
-                             Expression* end, source_location location)
-{
-  return new String_index_expression(string, start, end, location);
-}
-
-// Class Map_index.
-
-// Get the type of the map.
-
-Map_type*
-Map_index_expression::get_map_type() const
-{
-  Map_type* mt = this->map_->type()->deref()->map_type();
-  if (mt == NULL)
-    go_assert(saw_errors());
-  return mt;
-}
-
-// Map index traversal.
-
-int
-Map_index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Expression::traverse(&this->index_, traverse);
-}
-
-// Return the type of a map index.
-
-Type*
-Map_index_expression::do_type()
-{
-  Map_type* mt = this->get_map_type();
-  if (mt == NULL)
-    return Type::make_error_type();
-  Type* type = mt->val_type();
-  // If this map index is in a tuple assignment, we actually return a
-  // pointer to the value type.  Tuple_map_assignment_statement is
-  // responsible for handling this correctly.  We need to get the type
-  // right in case this gets assigned to a temporary variable.
-  if (this->is_in_tuple_assignment_)
-    type = Type::make_pointer_type(type);
-  return type;
-}
-
-// Fix the type of a map index.
-
-void
-Map_index_expression::do_determine_type(const Type_context*)
-{
-  this->map_->determine_type_no_context();
-  Map_type* mt = this->get_map_type();
-  Type* key_type = mt == NULL ? NULL : mt->key_type();
-  Type_context subcontext(key_type, false);
-  this->index_->determine_type(&subcontext);
-}
-
-// Check types of a map index.
-
-void
-Map_index_expression::do_check_types(Gogo*)
-{
-  std::string reason;
-  Map_type* mt = this->get_map_type();
-  if (mt == NULL)
-    return;
-  if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
-    {
-      if (reason.empty())
-       this->report_error(_("incompatible type for map index"));
-      else
-       {
-         error_at(this->location(), "incompatible type for map index (%s)",
-                  reason.c_str());
-         this->set_is_error();
-       }
-    }
-}
-
-// Get a tree for a map index.
-
-tree
-Map_index_expression::do_get_tree(Translate_context* context)
-{
-  Map_type* type = this->get_map_type();
-  if (type == NULL)
-    return error_mark_node;
-
-  tree valptr = this->get_value_pointer(context, this->is_lvalue_);
-  if (valptr == error_mark_node)
-    return error_mark_node;
-  valptr = save_expr(valptr);
-
-  tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
-
-  if (this->is_lvalue_)
-    return build_fold_indirect_ref(valptr);
-  else if (this->is_in_tuple_assignment_)
-    {
-      // Tuple_map_assignment_statement is responsible for using this
-      // appropriately.
-      return valptr;
-    }
-  else
-    {
-      return fold_build3(COND_EXPR, val_type_tree,
-                        fold_build2(EQ_EXPR, boolean_type_node, valptr,
-                                    fold_convert(TREE_TYPE(valptr),
-                                                 null_pointer_node)),
-                        type->val_type()->get_init_tree(context->gogo(),
-                                                        false),
-                        build_fold_indirect_ref(valptr));
-    }
-}
-
-// Get a tree for the map index.  This returns a tree which evaluates
-// to a pointer to a value.  The pointer will be NULL if the key is
-// not in the map.
-
-tree
-Map_index_expression::get_value_pointer(Translate_context* context,
-                                       bool insert)
-{
-  Map_type* type = this->get_map_type();
-  if (type == NULL)
-    return error_mark_node;
-
-  tree map_tree = this->map_->get_tree(context);
-  tree index_tree = this->index_->get_tree(context);
-  index_tree = Expression::convert_for_assignment(context, type->key_type(),
-                                                 this->index_->type(),
-                                                 index_tree,
-                                                 this->location());
-  if (map_tree == error_mark_node || index_tree == error_mark_node)
-    return error_mark_node;
-
-  if (this->map_->type()->points_to() != NULL)
-    map_tree = build_fold_indirect_ref(map_tree);
-
-  // We need to pass in a pointer to the key, so stuff it into a
-  // variable.
-  tree tmp;
-  tree make_tmp;
-  if (current_function_decl != NULL)
-    {
-      tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
-      DECL_IGNORED_P(tmp) = 0;
-      DECL_INITIAL(tmp) = index_tree;
-      make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-      TREE_ADDRESSABLE(tmp) = 1;
-    }
-  else
-    {
-      tmp = build_decl(this->location(), VAR_DECL, create_tmp_var_name("M"),
-                      TREE_TYPE(index_tree));
-      DECL_EXTERNAL(tmp) = 0;
-      TREE_PUBLIC(tmp) = 0;
-      TREE_STATIC(tmp) = 1;
-      DECL_ARTIFICIAL(tmp) = 1;
-      if (!TREE_CONSTANT(index_tree))
-       make_tmp = fold_build2_loc(this->location(), INIT_EXPR, void_type_node,
-                                  tmp, index_tree);
-      else
-       {
-         TREE_READONLY(tmp) = 1;
-         TREE_CONSTANT(tmp) = 1;
-         DECL_INITIAL(tmp) = index_tree;
-         make_tmp = NULL_TREE;
-       }
-      rest_of_decl_compilation(tmp, 1, 0);
-    }
-  tree tmpref = fold_convert_loc(this->location(), const_ptr_type_node,
-                                build_fold_addr_expr_loc(this->location(),
-                                                         tmp));
-
-  static tree map_index_fndecl;
-  tree call = Gogo::call_builtin(&map_index_fndecl,
-                                this->location(),
-                                "__go_map_index",
-                                3,
-                                const_ptr_type_node,
-                                TREE_TYPE(map_tree),
-                                map_tree,
-                                const_ptr_type_node,
-                                tmpref,
-                                boolean_type_node,
-                                (insert
-                                 ? boolean_true_node
-                                 : boolean_false_node));
-  if (call == error_mark_node)
-    return error_mark_node;
-  // This can panic on a map of interface type if the interface holds
-  // an uncomparable or unhashable type.
-  TREE_NOTHROW(map_index_fndecl) = 0;
-
-  tree val_type_tree = type->val_type()->get_tree(context->gogo());
-  if (val_type_tree == error_mark_node)
-    return error_mark_node;
-  tree ptr_val_type_tree = build_pointer_type(val_type_tree);
-
-  tree ret = fold_convert_loc(this->location(), ptr_val_type_tree, call);
-  if (make_tmp != NULL_TREE)
-    ret = build2(COMPOUND_EXPR, ptr_val_type_tree, make_tmp, ret);
-  return ret;
-}
-
-// Make a map index expression.
-
-Map_index_expression*
-Expression::make_map_index(Expression* map, Expression* index,
-                          source_location location)
-{
-  return new Map_index_expression(map, index, location);
-}
-
-// Class Field_reference_expression.
-
-// Return the type of a field reference.
-
-Type*
-Field_reference_expression::do_type()
-{
-  Type* type = this->expr_->type();
-  if (type->is_error())
-    return type;
-  Struct_type* struct_type = type->struct_type();
-  go_assert(struct_type != NULL);
-  return struct_type->field(this->field_index_)->type();
-}
-
-// Check the types for a field reference.
-
-void
-Field_reference_expression::do_check_types(Gogo*)
-{
-  Type* type = this->expr_->type();
-  if (type->is_error())
-    return;
-  Struct_type* struct_type = type->struct_type();
-  go_assert(struct_type != NULL);
-  go_assert(struct_type->field(this->field_index_) != NULL);
-}
-
-// Get a tree for a field reference.
-
-tree
-Field_reference_expression::do_get_tree(Translate_context* context)
-{
-  tree struct_tree = this->expr_->get_tree(context);
-  if (struct_tree == error_mark_node
-      || TREE_TYPE(struct_tree) == error_mark_node)
-    return error_mark_node;
-  go_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
-  tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
-  if (field == NULL_TREE)
-    {
-      // This can happen for a type which refers to itself indirectly
-      // and then turns out to be erroneous.
-      go_assert(saw_errors());
-      return error_mark_node;
-    }
-  for (unsigned int i = this->field_index_; i > 0; --i)
-    {
-      field = DECL_CHAIN(field);
-      go_assert(field != NULL_TREE);
-    }
-  if (TREE_TYPE(field) == error_mark_node)
-    return error_mark_node;
-  return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
-               NULL_TREE);
-}
-
-// Make a reference to a qualified identifier in an expression.
-
-Field_reference_expression*
-Expression::make_field_reference(Expression* expr, unsigned int field_index,
-                                source_location location)
-{
-  return new Field_reference_expression(expr, field_index, location);
-}
-
-// Class Interface_field_reference_expression.
-
-// Return a tree for the pointer to the function to call.
-
-tree
-Interface_field_reference_expression::get_function_tree(Translate_context*,
-                                                       tree expr)
-{
-  if (this->expr_->type()->points_to() != NULL)
-    expr = build_fold_indirect_ref(expr);
-
-  tree expr_type = TREE_TYPE(expr);
-  go_assert(TREE_CODE(expr_type) == RECORD_TYPE);
-
-  tree field = TYPE_FIELDS(expr_type);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
-
-  tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
-  go_assert(POINTER_TYPE_P(TREE_TYPE(table)));
-
-  table = build_fold_indirect_ref(table);
-  go_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
-
-  std::string name = Gogo::unpack_hidden_name(this->name_);
-  for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
-       field != NULL_TREE;
-       field = DECL_CHAIN(field))
-    {
-      if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
-       break;
-    }
-  go_assert(field != NULL_TREE);
-
-  return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
-}
-
-// Return a tree for the first argument to pass to the interface
-// function.
-
-tree
-Interface_field_reference_expression::get_underlying_object_tree(
-    Translate_context*,
-    tree expr)
-{
-  if (this->expr_->type()->points_to() != NULL)
-    expr = build_fold_indirect_ref(expr);
-
-  tree expr_type = TREE_TYPE(expr);
-  go_assert(TREE_CODE(expr_type) == RECORD_TYPE);
-
-  tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
-
-  return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
-}
-
-// Traversal.
-
-int
-Interface_field_reference_expression::do_traverse(Traverse* traverse)
-{
-  return Expression::traverse(&this->expr_, traverse);
-}
-
-// Return the type of an interface field reference.
-
-Type*
-Interface_field_reference_expression::do_type()
-{
-  Type* expr_type = this->expr_->type();
-
-  Type* points_to = expr_type->points_to();
-  if (points_to != NULL)
-    expr_type = points_to;
-
-  Interface_type* interface_type = expr_type->interface_type();
-  if (interface_type == NULL)
-    return Type::make_error_type();
-
-  const Typed_identifier* method = interface_type->find_method(this->name_);
-  if (method == NULL)
-    return Type::make_error_type();
-
-  return method->type();
-}
-
-// Determine types.
-
-void
-Interface_field_reference_expression::do_determine_type(const Type_context*)
-{
-  this->expr_->determine_type_no_context();
-}
-
-// Check the types for an interface field reference.
-
-void
-Interface_field_reference_expression::do_check_types(Gogo*)
-{
-  Type* type = this->expr_->type();
-
-  Type* points_to = type->points_to();
-  if (points_to != NULL)
-    type = points_to;
-
-  Interface_type* interface_type = type->interface_type();
-  if (interface_type == NULL)
-    {
-      if (!type->is_error_type())
-       this->report_error(_("expected interface or pointer to interface"));
-    }
-  else
-    {
-      const Typed_identifier* method =
-       interface_type->find_method(this->name_);
-      if (method == NULL)
-       {
-         error_at(this->location(), "method %qs not in interface",
-                  Gogo::message_name(this->name_).c_str());
-         this->set_is_error();
-       }
-    }
-}
-
-// Get a tree for a reference to a field in an interface.  There is no
-// standard tree type representation for this: it's a function
-// attached to its first argument, like a Bound_method_expression.
-// The only places it may currently be used are in a Call_expression
-// or a Go_statement, which will take it apart directly.  So this has
-// nothing to do at present.
-
-tree
-Interface_field_reference_expression::do_get_tree(Translate_context*)
-{
-  go_unreachable();
-}
-
-// Make a reference to a field in an interface.
-
-Expression*
-Expression::make_interface_field_reference(Expression* expr,
-                                          const std::string& field,
-                                          source_location location)
-{
-  return new Interface_field_reference_expression(expr, field, location);
-}
-
-// A general selector.  This is a Parser_expression for LEFT.NAME.  It
-// is lowered after we know the type of the left hand side.
-
-class Selector_expression : public Parser_expression
-{
- public:
-  Selector_expression(Expression* left, const std::string& name,
-                     source_location location)
-    : Parser_expression(EXPRESSION_SELECTOR, location),
-      left_(left), name_(name)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Expression::traverse(&this->left_, traverse); }
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  Expression*
-  do_copy()
-  {
-    return new Selector_expression(this->left_->copy(), this->name_,
-                                  this->location());
-  }
-
- private:
-  Expression*
-  lower_method_expression(Gogo*);
-
-  // The expression on the left hand side.
-  Expression* left_;
-  // The name on the right hand side.
-  std::string name_;
-};
-
-// Lower a selector expression once we know the real type of the left
-// hand side.
-
-Expression*
-Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
-{
-  Expression* left = this->left_;
-  if (left->is_type_expression())
-    return this->lower_method_expression(gogo);
-  return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
-                                   this->location());
-}
-
-// Lower a method expression T.M or (*T).M.  We turn this into a
-// function literal.
-
-Expression*
-Selector_expression::lower_method_expression(Gogo* gogo)
-{
-  source_location location = this->location();
-  Type* type = this->left_->type();
-  const std::string& name(this->name_);
-
-  bool is_pointer;
-  if (type->points_to() == NULL)
-    is_pointer = false;
-  else
-    {
-      is_pointer = true;
-      type = type->points_to();
-    }
-  Named_type* nt = type->named_type();
-  if (nt == NULL)
-    {
-      error_at(location,
-              ("method expression requires named type or "
-               "pointer to named type"));
-      return Expression::make_error(location);
-    }
-
-  bool is_ambiguous;
-  Method* method = nt->method_function(name, &is_ambiguous);
-  const Typed_identifier* imethod = NULL;
-  if (method == NULL && !is_pointer)
-    {
-      Interface_type* it = nt->interface_type();
-      if (it != NULL)
-       imethod = it->find_method(name);
-    }
-
-  if (method == NULL && imethod == NULL)
-    {
-      if (!is_ambiguous)
-       error_at(location, "type %<%s%s%> has no method %<%s%>",
-                is_pointer ? "*" : "",
-                nt->message_name().c_str(),
-                Gogo::message_name(name).c_str());
-      else
-       error_at(location, "method %<%s%s%> is ambiguous in type %<%s%>",
-                Gogo::message_name(name).c_str(),
-                is_pointer ? "*" : "",
-                nt->message_name().c_str());
-      return Expression::make_error(location);
-    }
-
-  if (method != NULL && !is_pointer && !method->is_value_method())
-    {
-      error_at(location, "method requires pointer (use %<(*%s).%s)%>",
-              nt->message_name().c_str(),
-              Gogo::message_name(name).c_str());
-      return Expression::make_error(location);
-    }
-
-  // Build a new function type in which the receiver becomes the first
-  // argument.
-  Function_type* method_type;
-  if (method != NULL)
-    {
-      method_type = method->type();
-      go_assert(method_type->is_method());
-    }
-  else
-    {
-      method_type = imethod->type()->function_type();
-      go_assert(method_type != NULL && !method_type->is_method());
-    }
-
-  const char* const receiver_name = "$this";
-  Typed_identifier_list* parameters = new Typed_identifier_list();
-  parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
-                                        location));
-
-  const Typed_identifier_list* method_parameters = method_type->parameters();
-  if (method_parameters != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = method_parameters->begin();
-          p != method_parameters->end();
-          ++p)
-       parameters->push_back(*p);
-    }
-
-  const Typed_identifier_list* method_results = method_type->results();
-  Typed_identifier_list* results;
-  if (method_results == NULL)
-    results = NULL;
-  else
-    {
-      results = new Typed_identifier_list();
-      for (Typed_identifier_list::const_iterator p = method_results->begin();
-          p != method_results->end();
-          ++p)
-       results->push_back(*p);
-    }
-  
-  Function_type* fntype = Type::make_function_type(NULL, parameters, results,
-                                                  location);
-  if (method_type->is_varargs())
-    fntype->set_is_varargs();
-
-  // We generate methods which always takes a pointer to the receiver
-  // as their first argument.  If this is for a pointer type, we can
-  // simply reuse the existing function.  We use an internal hack to
-  // get the right type.
-
-  if (method != NULL && is_pointer)
-    {
-      Named_object* mno = (method->needs_stub_method()
-                          ? method->stub_object()
-                          : method->named_object());
-      Expression* f = Expression::make_func_reference(mno, NULL, location);
-      f = Expression::make_cast(fntype, f, location);
-      Type_conversion_expression* tce =
-       static_cast<Type_conversion_expression*>(f);
-      tce->set_may_convert_function_types();
-      return f;
-    }
-
-  Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
-                                         location);
-
-  Named_object* vno = gogo->lookup(receiver_name, NULL);
-  go_assert(vno != NULL);
-  Expression* ve = Expression::make_var_reference(vno, location);
-  Expression* bm;
-  if (method != NULL)
-    bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
-  else
-    bm = Expression::make_interface_field_reference(ve, name, location);
-
-  // Even though we found the method above, if it has an error type we
-  // may see an error here.
-  if (bm->is_error_expression())
-    {
-      gogo->finish_function(location);
-      return bm;
-    }
-
-  Expression_list* args;
-  if (method_parameters == NULL)
-    args = NULL;
-  else
-    {
-      args = new Expression_list();
-      for (Typed_identifier_list::const_iterator p = method_parameters->begin();
-          p != method_parameters->end();
-          ++p)
-       {
-         vno = gogo->lookup(p->name(), NULL);
-         go_assert(vno != NULL);
-         args->push_back(Expression::make_var_reference(vno, location));
-       }
-    }
-
-  Call_expression* call = Expression::make_call(bm, args,
-                                               method_type->is_varargs(),
-                                               location);
-
-  size_t count = call->result_count();
-  Statement* s;
-  if (count == 0)
-    s = Statement::make_statement(call);
-  else
-    {
-      Expression_list* retvals = new Expression_list();
-      if (count <= 1)
-       retvals->push_back(call);
-      else
-       {
-         for (size_t i = 0; i < count; ++i)
-           retvals->push_back(Expression::make_call_result(call, i));
-       }
-      s = Statement::make_return_statement(retvals, location);
-    }
-  gogo->add_statement(s);
-
-  gogo->finish_function(location);
-
-  return Expression::make_func_reference(no, NULL, location);
-}
-
-// Make a selector expression.
-
-Expression*
-Expression::make_selector(Expression* left, const std::string& name,
-                         source_location location)
-{
-  return new Selector_expression(left, name, location);
-}
-
-// Implement the builtin function new.
-
-class Allocation_expression : public Expression
-{
- public:
-  Allocation_expression(Type* type, source_location location)
-    : Expression(EXPRESSION_ALLOCATION, location),
-      type_(type)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Type::traverse(this->type_, traverse); }
-
-  Type*
-  do_type()
-  { return Type::make_pointer_type(this->type_); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  { return new Allocation_expression(this->type_, this->location()); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type we are allocating.
-  Type* type_;
-};
-
-// Check the type of an allocation expression.
-
-void
-Allocation_expression::do_check_types(Gogo*)
-{
-  if (this->type_->function_type() != NULL)
-    this->report_error(_("invalid new of function type"));
-}
-
-// Return a tree for an allocation expression.
-
-tree
-Allocation_expression::do_get_tree(Translate_context* context)
-{
-  tree type_tree = this->type_->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-  tree size_tree = TYPE_SIZE_UNIT(type_tree);
-  tree space = context->gogo()->allocate_memory(this->type_, size_tree,
-                                               this->location());
-  if (space == error_mark_node)
-    return error_mark_node;
-  return fold_convert(build_pointer_type(type_tree), space);
-}
-
-// Make an allocation expression.
-
-Expression*
-Expression::make_allocation(Type* type, source_location location)
-{
-  return new Allocation_expression(type, location);
-}
-
-// Implement the builtin function make.
-
-class Make_expression : public Expression
-{
- public:
-  Make_expression(Type* type, Expression_list* args, source_location location)
-    : Expression(EXPRESSION_MAKE, location),
-      type_(type), args_(args)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Make_expression(this->type_, this->args_->copy(),
-                              this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type we are making.
-  Type* type_;
-  // The arguments to pass to the make routine.
-  Expression_list* args_;
-};
-
-// Traversal.
-
-int
-Make_expression::do_traverse(Traverse* traverse)
-{
-  if (this->args_ != NULL
-      && this->args_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Set types of arguments.
-
-void
-Make_expression::do_determine_type(const Type_context*)
-{
-  if (this->args_ != NULL)
-    {
-      Type_context context(Type::lookup_integer_type("int"), false);
-      for (Expression_list::const_iterator pe = this->args_->begin();
-          pe != this->args_->end();
-          ++pe)
-       (*pe)->determine_type(&context);
-    }
-}
-
-// Check types for a make expression.
-
-void
-Make_expression::do_check_types(Gogo*)
-{
-  if (this->type_->channel_type() == NULL
-      && this->type_->map_type() == NULL
-      && (this->type_->array_type() == NULL
-         || this->type_->array_type()->length() != NULL))
-    this->report_error(_("invalid type for make function"));
-  else if (!this->type_->check_make_expression(this->args_, this->location()))
-    this->set_is_error();
-}
-
-// Return a tree for a make expression.
-
-tree
-Make_expression::do_get_tree(Translate_context* context)
-{
-  return this->type_->make_expression_tree(context, this->args_,
-                                          this->location());
-}
-
-// Make a make expression.
-
-Expression*
-Expression::make_make(Type* type, Expression_list* args,
-                     source_location location)
-{
-  return new Make_expression(type, args, location);
-}
-
-// Construct a struct.
-
-class Struct_construction_expression : public Expression
-{
- public:
-  Struct_construction_expression(Type* type, Expression_list* vals,
-                                source_location location)
-    : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
-      type_(type), vals_(vals)
-  { }
-
-  // Return whether this is a constant initializer.
-  bool
-  is_constant_struct() const;
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Struct_construction_expression(this->type_, this->vals_->copy(),
-                                             this->location());
-  }
-
-  bool
-  do_is_addressable() const
-  { return true; }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The type of the struct to construct.
-  Type* type_;
-  // The list of values, in order of the fields in the struct.  A NULL
-  // entry means that the field should be zero-initialized.
-  Expression_list* vals_;
-};
-
-// Traversal.
-
-int
-Struct_construction_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Return whether this is a constant initializer.
-
-bool
-Struct_construction_expression::is_constant_struct() const
-{
-  if (this->vals_ == NULL)
-    return true;
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      if (*pv != NULL
-         && !(*pv)->is_constant()
-         && (!(*pv)->is_composite_literal()
-             || (*pv)->is_nonconstant_composite_literal()))
-       return false;
-    }
-
-  const Struct_field_list* fields = this->type_->struct_type()->fields();
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      // There are no constant constructors for interfaces.
-      if (pf->type()->interface_type() != NULL)
-       return false;
-    }
-
-  return true;
-}
-
-// Final type determination.
-
-void
-Struct_construction_expression::do_determine_type(const Type_context*)
-{
-  if (this->vals_ == NULL)
-    return;
-  const Struct_field_list* fields = this->type_->struct_type()->fields();
-  Expression_list::const_iterator pv = this->vals_->begin();
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++pv)
-    {
-      if (pv == this->vals_->end())
-       return;
-      if (*pv != NULL)
-       {
-         Type_context subcontext(pf->type(), false);
-         (*pv)->determine_type(&subcontext);
-       }
-    }
-  // Extra values are an error we will report elsewhere; we still want
-  // to determine the type to avoid knockon errors.
-  for (; pv != this->vals_->end(); ++pv)
-    (*pv)->determine_type_no_context();
-}
-
-// Check types.
-
-void
-Struct_construction_expression::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Struct_type* st = this->type_->struct_type();
-  if (this->vals_->size() > st->field_count())
-    {
-      this->report_error(_("too many expressions for struct"));
-      return;
-    }
-
-  const Struct_field_list* fields = st->fields();
-  Expression_list::const_iterator pv = this->vals_->begin();
-  int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++pv, ++i)
-    {
-      if (pv == this->vals_->end())
-       {
-         this->report_error(_("too few expressions for struct"));
-         break;
-       }
-
-      if (*pv == NULL)
-       continue;
-
-      std::string reason;
-      if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
-       {
-         if (reason.empty())
-           error_at((*pv)->location(),
-                    "incompatible type for field %d in struct construction",
-                    i + 1);
-         else
-           error_at((*pv)->location(),
-                    ("incompatible type for field %d in "
-                     "struct construction (%s)"),
-                    i + 1, reason.c_str());
-         this->set_is_error();
-       }
-    }
-  go_assert(pv == this->vals_->end());
-}
-
-// Return a tree for constructing a struct.
-
-tree
-Struct_construction_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-
-  if (this->vals_ == NULL)
-    return this->type_->get_init_tree(gogo, false);
-
-  tree type_tree = this->type_->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-  go_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-  bool is_constant = true;
-  const Struct_field_list* fields = this->type_->struct_type()->fields();
-  VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
-                                           fields->size());
-  Struct_field_list::const_iterator pf = fields->begin();
-  Expression_list::const_iterator pv = this->vals_->begin();
-  for (tree field = TYPE_FIELDS(type_tree);
-       field != NULL_TREE;
-       field = DECL_CHAIN(field), ++pf)
-    {
-      go_assert(pf != fields->end());
-
-      tree val;
-      if (pv == this->vals_->end())
-       val = pf->type()->get_init_tree(gogo, false);
-      else if (*pv == NULL)
-       {
-         val = pf->type()->get_init_tree(gogo, false);
-         ++pv;
-       }
-      else
-       {
-         val = Expression::convert_for_assignment(context, pf->type(),
-                                                  (*pv)->type(),
-                                                  (*pv)->get_tree(context),
-                                                  this->location());
-         ++pv;
-       }
-
-      if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
-       return error_mark_node;
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
-      elt->index = field;
-      elt->value = val;
-      if (!TREE_CONSTANT(val))
-       is_constant = false;
-    }
-  go_assert(pf == fields->end());
-
-  tree ret = build_constructor(type_tree, elts);
-  if (is_constant)
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Export a struct construction.
-
-void
-Struct_construction_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      exp->write_c_string(", ");
-      if (*pv != NULL)
-       (*pv)->export_expression(exp);
-    }
-  exp->write_c_string(")");
-}
-
-// Make a struct composite literal.  This used by the thunk code.
-
-Expression*
-Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
-                                         source_location location)
-{
-  go_assert(type->struct_type() != NULL);
-  return new Struct_construction_expression(type, vals, location);
-}
-
-// Construct an array.  This class is not used directly; instead we
-// use the child classes, Fixed_array_construction_expression and
-// Open_array_construction_expression.
-
-class Array_construction_expression : public Expression
-{
- protected:
-  Array_construction_expression(Expression_classification classification,
-                               Type* type, Expression_list* vals,
-                               source_location location)
-    : Expression(classification, location),
-      type_(type), vals_(vals)
-  { }
-
- public:
-  // Return whether this is a constant initializer.
-  bool
-  is_constant_array() const;
-
-  // Return the number of elements.
-  size_t
-  element_count() const
-  { return this->vals_ == NULL ? 0 : this->vals_->size(); }
-
-protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_is_addressable() const
-  { return true; }
-
-  void
-  do_export(Export*) const;
-
-  // The list of values.
-  Expression_list*
-  vals()
-  { return this->vals_; }
-
-  // Get a constructor tree for the array values.
-  tree
-  get_constructor_tree(Translate_context* context, tree type_tree);
-
- private:
-  // The type of the array to construct.
-  Type* type_;
-  // The list of values.
-  Expression_list* vals_;
-};
-
-// Traversal.
-
-int
-Array_construction_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Return whether this is a constant initializer.
-
-bool
-Array_construction_expression::is_constant_array() const
-{
-  if (this->vals_ == NULL)
-    return true;
-
-  // There are no constant constructors for interfaces.
-  if (this->type_->array_type()->element_type()->interface_type() != NULL)
-    return false;
-
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      if (*pv != NULL
-         && !(*pv)->is_constant()
-         && (!(*pv)->is_composite_literal()
-             || (*pv)->is_nonconstant_composite_literal()))
-       return false;
-    }
-  return true;
-}
-
-// Final type determination.
-
-void
-Array_construction_expression::do_determine_type(const Type_context*)
-{
-  if (this->vals_ == NULL)
-    return;
-  Type_context subcontext(this->type_->array_type()->element_type(), false);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      if (*pv != NULL)
-       (*pv)->determine_type(&subcontext);
-    }
-}
-
-// Check types.
-
-void
-Array_construction_expression::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Array_type* at = this->type_->array_type();
-  int i = 0;
-  Type* element_type = at->element_type();
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv, ++i)
-    {
-      if (*pv != NULL
-         && !Type::are_assignable(element_type, (*pv)->type(), NULL))
-       {
-         error_at((*pv)->location(),
-                  "incompatible type for element %d in composite literal",
-                  i + 1);
-         this->set_is_error();
-       }
-    }
-
-  Expression* length = at->length();
-  if (length != NULL)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* type;
-      if (at->length()->integer_constant_value(true, val, &type))
-       {
-         if (this->vals_->size() > mpz_get_ui(val))
-           this->report_error(_("too many elements in composite literal"));
-       }
-      mpz_clear(val);
-    }
-}
-
-// Get a constructor tree for the array values.
-
-tree
-Array_construction_expression::get_constructor_tree(Translate_context* context,
-                                                   tree type_tree)
-{
-  VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
-                                             (this->vals_ == NULL
-                                              ? 0
-                                              : this->vals_->size()));
-  Type* element_type = this->type_->array_type()->element_type();
-  bool is_constant = true;
-  if (this->vals_ != NULL)
-    {
-      size_t i = 0;
-      for (Expression_list::const_iterator pv = this->vals_->begin();
-          pv != this->vals_->end();
-          ++pv, ++i)
-       {
-         constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
-         elt->index = size_int(i);
-         if (*pv == NULL)
-           elt->value = element_type->get_init_tree(context->gogo(), false);
-         else
-           {
-             tree value_tree = (*pv)->get_tree(context);
-             elt->value = Expression::convert_for_assignment(context,
-                                                             element_type,
-                                                             (*pv)->type(),
-                                                             value_tree,
-                                                             this->location());
-           }
-         if (elt->value == error_mark_node)
-           return error_mark_node;
-         if (!TREE_CONSTANT(elt->value))
-           is_constant = false;
-       }
-    }
-
-  tree ret = build_constructor(type_tree, values);
-  if (is_constant)
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Export an array construction.
-
-void
-Array_construction_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  if (this->vals_ != NULL)
-    {
-      for (Expression_list::const_iterator pv = this->vals_->begin();
-          pv != this->vals_->end();
-          ++pv)
-       {
-         exp->write_c_string(", ");
-         if (*pv != NULL)
-           (*pv)->export_expression(exp);
-       }
-    }
-  exp->write_c_string(")");
-}
-
-// Construct a fixed array.
-
-class Fixed_array_construction_expression :
-  public Array_construction_expression
-{
- public:
-  Fixed_array_construction_expression(Type* type, Expression_list* vals,
-                                     source_location location)
-    : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
-                                   type, vals, location)
-  {
-    go_assert(type->array_type() != NULL
-              && type->array_type()->length() != NULL);
-  }
-
- protected:
-  Expression*
-  do_copy()
-  {
-    return new Fixed_array_construction_expression(this->type(),
-                                                  (this->vals() == NULL
-                                                   ? NULL
-                                                   : this->vals()->copy()),
-                                                  this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-};
-
-// Return a tree for constructing a fixed array.
-
-tree
-Fixed_array_construction_expression::do_get_tree(Translate_context* context)
-{
-  return this->get_constructor_tree(context,
-                                   this->type()->get_tree(context->gogo()));
-}
-
-// Construct an open array.
-
-class Open_array_construction_expression : public Array_construction_expression
-{
- public:
-  Open_array_construction_expression(Type* type, Expression_list* vals,
-                                    source_location location)
-    : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
-                                   type, vals, location)
-  {
-    go_assert(type->array_type() != NULL
-              && type->array_type()->length() == NULL);
-  }
-
- protected:
-  // Note that taking the address of an open array literal is invalid.
-
-  Expression*
-  do_copy()
-  {
-    return new Open_array_construction_expression(this->type(),
-                                                 (this->vals() == NULL
-                                                  ? NULL
-                                                  : this->vals()->copy()),
-                                                 this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-};
-
-// Return a tree for constructing an open array.
-
-tree
-Open_array_construction_expression::do_get_tree(Translate_context* context)
-{
-  Array_type* array_type = this->type()->array_type();
-  if (array_type == NULL)
-    {
-      go_assert(this->type()->is_error());
-      return error_mark_node;
-    }
-
-  Type* element_type = array_type->element_type();
-  tree element_type_tree = element_type->get_tree(context->gogo());
-  if (element_type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree values;
-  tree length_tree;
-  if (this->vals() == NULL || this->vals()->empty())
-    {
-      // We need to create a unique value.
-      tree max = size_int(0);
-      tree constructor_type = build_array_type(element_type_tree,
-                                              build_index_type(max));
-      if (constructor_type == error_mark_node)
-       return error_mark_node;
-      VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
-      constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
-      elt->index = size_int(0);
-      elt->value = element_type->get_init_tree(context->gogo(), false);
-      values = build_constructor(constructor_type, vec);
-      if (TREE_CONSTANT(elt->value))
-       TREE_CONSTANT(values) = 1;
-      length_tree = size_int(0);
-    }
-  else
-    {
-      tree max = size_int(this->vals()->size() - 1);
-      tree constructor_type = build_array_type(element_type_tree,
-                                              build_index_type(max));
-      if (constructor_type == error_mark_node)
-       return error_mark_node;
-      values = this->get_constructor_tree(context, constructor_type);
-      length_tree = size_int(this->vals()->size());
-    }
-
-  if (values == error_mark_node)
-    return error_mark_node;
-
-  bool is_constant_initializer = TREE_CONSTANT(values);
-
-  // We have to copy the initial values into heap memory if we are in
-  // a function or if the values are not constants.  We also have to
-  // copy them if they may contain pointers in a non-constant context,
-  // as otherwise the garbage collector won't see them.
-  bool copy_to_heap = (context->function() != NULL
-                      || !is_constant_initializer
-                      || (element_type->has_pointer()
-                          && !context->is_const()));
-
-  if (is_constant_initializer)
-    {
-      tree tmp = build_decl(this->location(), VAR_DECL,
-                           create_tmp_var_name("C"), TREE_TYPE(values));
-      DECL_EXTERNAL(tmp) = 0;
-      TREE_PUBLIC(tmp) = 0;
-      TREE_STATIC(tmp) = 1;
-      DECL_ARTIFICIAL(tmp) = 1;
-      if (copy_to_heap)
-       {
-         // If we are not copying the value to the heap, we will only
-         // initialize the value once, so we can use this directly
-         // rather than copying it.  In that case we can't make it
-         // read-only, because the program is permitted to change it.
-         TREE_READONLY(tmp) = 1;
-         TREE_CONSTANT(tmp) = 1;
-       }
-      DECL_INITIAL(tmp) = values;
-      rest_of_decl_compilation(tmp, 1, 0);
-      values = tmp;
-    }
-
-  tree space;
-  tree set;
-  if (!copy_to_heap)
-    {
-      // the initializer will only run once.
-      space = build_fold_addr_expr(values);
-      set = NULL_TREE;
-    }
-  else
-    {
-      tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
-      space = context->gogo()->allocate_memory(element_type, memsize,
-                                              this->location());
-      space = save_expr(space);
-
-      tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
-      tree ref = build_fold_indirect_ref_loc(this->location(), s);
-      TREE_THIS_NOTRAP(ref) = 1;
-      set = build2(MODIFY_EXPR, void_type_node, ref, values);
-    }
-
-  // Build a constructor for the open array.
-
-  tree type_tree = this->type()->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-  go_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(type_tree);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), space);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), length_tree);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), length_tree);
-
-  tree constructor = build_constructor(type_tree, init);
-  if (constructor == error_mark_node)
-    return error_mark_node;
-  if (!copy_to_heap)
-    TREE_CONSTANT(constructor) = 1;
-
-  if (set == NULL_TREE)
-    return constructor;
-  else
-    return build2(COMPOUND_EXPR, type_tree, set, constructor);
-}
-
-// Make a slice composite literal.  This is used by the type
-// descriptor code.
-
-Expression*
-Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
-                                        source_location location)
-{
-  go_assert(type->is_open_array_type());
-  return new Open_array_construction_expression(type, vals, location);
-}
-
-// Construct a map.
-
-class Map_construction_expression : public Expression
-{
- public:
-  Map_construction_expression(Type* type, Expression_list* vals,
-                             source_location location)
-    : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
-      type_(type), vals_(vals)
-  { go_assert(vals == NULL || vals->size() % 2 == 0); }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Map_construction_expression(this->type_, this->vals_->copy(),
-                                          this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The type of the map to construct.
-  Type* type_;
-  // The list of values.
-  Expression_list* vals_;
-};
-
-// Traversal.
-
-int
-Map_construction_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Final type determination.
-
-void
-Map_construction_expression::do_determine_type(const Type_context*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Map_type* mt = this->type_->map_type();
-  Type_context key_context(mt->key_type(), false);
-  Type_context val_context(mt->val_type(), false);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      (*pv)->determine_type(&key_context);
-      ++pv;
-      (*pv)->determine_type(&val_context);
-    }
-}
-
-// Check types.
-
-void
-Map_construction_expression::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Map_type* mt = this->type_->map_type();
-  int i = 0;
-  Type* key_type = mt->key_type();
-  Type* val_type = mt->val_type();
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv, ++i)
-    {
-      if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
-       {
-         error_at((*pv)->location(),
-                  "incompatible type for element %d key in map construction",
-                  i + 1);
-         this->set_is_error();
-       }
-      ++pv;
-      if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
-       {
-         error_at((*pv)->location(),
-                  ("incompatible type for element %d value "
-                   "in map construction"),
-                  i + 1);
-         this->set_is_error();
-       }
-    }
-}
-
-// Return a tree for constructing a map.
-
-tree
-Map_construction_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  source_location loc = this->location();
-
-  Map_type* mt = this->type_->map_type();
-
-  // Build a struct to hold the key and value.
-  tree struct_type = make_node(RECORD_TYPE);
-
-  Type* key_type = mt->key_type();
-  tree id = get_identifier("__key");
-  tree key_type_tree = key_type->get_tree(gogo);
-  if (key_type_tree == error_mark_node)
-    return error_mark_node;
-  tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
-  DECL_CONTEXT(key_field) = struct_type;
-  TYPE_FIELDS(struct_type) = key_field;
-
-  Type* val_type = mt->val_type();
-  id = get_identifier("__val");
-  tree val_type_tree = val_type->get_tree(gogo);
-  if (val_type_tree == error_mark_node)
-    return error_mark_node;
-  tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
-  DECL_CONTEXT(val_field) = struct_type;
-  DECL_CHAIN(key_field) = val_field;
-
-  layout_type(struct_type);
-
-  bool is_constant = true;
-  size_t i = 0;
-  tree valaddr;
-  tree make_tmp;
-
-  if (this->vals_ == NULL || this->vals_->empty())
-    {
-      valaddr = null_pointer_node;
-      make_tmp = NULL_TREE;
-    }
-  else
-    {
-      VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
-                                                 this->vals_->size() / 2);
-
-      for (Expression_list::const_iterator pv = this->vals_->begin();
-          pv != this->vals_->end();
-          ++pv, ++i)
-       {
-         bool one_is_constant = true;
-
-         VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
-
-         constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
-         elt->index = key_field;
-         tree val_tree = (*pv)->get_tree(context);
-         elt->value = Expression::convert_for_assignment(context, key_type,
-                                                         (*pv)->type(),
-                                                         val_tree, loc);
-         if (elt->value == error_mark_node)
-           return error_mark_node;
-         if (!TREE_CONSTANT(elt->value))
-           one_is_constant = false;
-
-         ++pv;
-
-         elt = VEC_quick_push(constructor_elt, one, NULL);
-         elt->index = val_field;
-         val_tree = (*pv)->get_tree(context);
-         elt->value = Expression::convert_for_assignment(context, val_type,
-                                                         (*pv)->type(),
-                                                         val_tree, loc);
-         if (elt->value == error_mark_node)
-           return error_mark_node;
-         if (!TREE_CONSTANT(elt->value))
-           one_is_constant = false;
-
-         elt = VEC_quick_push(constructor_elt, values, NULL);
-         elt->index = size_int(i);
-         elt->value = build_constructor(struct_type, one);
-         if (one_is_constant)
-           TREE_CONSTANT(elt->value) = 1;
-         else
-           is_constant = false;
-       }
-
-      tree index_type = build_index_type(size_int(i - 1));
-      tree array_type = build_array_type(struct_type, index_type);
-      tree init = build_constructor(array_type, values);
-      if (is_constant)
-       TREE_CONSTANT(init) = 1;
-      tree tmp;
-      if (current_function_decl != NULL)
-       {
-         tmp = create_tmp_var(array_type, get_name(array_type));
-         DECL_INITIAL(tmp) = init;
-         make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
-         TREE_ADDRESSABLE(tmp) = 1;
-       }
-      else
-       {
-         tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
-         DECL_EXTERNAL(tmp) = 0;
-         TREE_PUBLIC(tmp) = 0;
-         TREE_STATIC(tmp) = 1;
-         DECL_ARTIFICIAL(tmp) = 1;
-         if (!TREE_CONSTANT(init))
-           make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
-                                      init);
-         else
-           {
-             TREE_READONLY(tmp) = 1;
-             TREE_CONSTANT(tmp) = 1;
-             DECL_INITIAL(tmp) = init;
-             make_tmp = NULL_TREE;
-           }
-         rest_of_decl_compilation(tmp, 1, 0);
-       }
-
-      valaddr = build_fold_addr_expr(tmp);
-    }
-
-  tree descriptor = gogo->map_descriptor(mt);
-
-  tree type_tree = this->type_->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  static tree construct_map_fndecl;
-  tree call = Gogo::call_builtin(&construct_map_fndecl,
-                                loc,
-                                "__go_construct_map",
-                                6,
-                                type_tree,
-                                TREE_TYPE(descriptor),
-                                descriptor,
-                                sizetype,
-                                size_int(i),
-                                sizetype,
-                                TYPE_SIZE_UNIT(struct_type),
-                                sizetype,
-                                byte_position(val_field),
-                                sizetype,
-                                TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
-                                const_ptr_type_node,
-                                fold_convert(const_ptr_type_node, valaddr));
-  if (call == error_mark_node)
-    return error_mark_node;
-
-  tree ret;
-  if (make_tmp == NULL)
-    ret = call;
-  else
-    ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
-  return ret;
-}
-
-// Export an array construction.
-
-void
-Map_construction_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      exp->write_c_string(", ");
-      (*pv)->export_expression(exp);
-    }
-  exp->write_c_string(")");
-}
-
-// A general composite literal.  This is lowered to a type specific
-// version.
-
-class Composite_literal_expression : public Parser_expression
-{
- public:
-  Composite_literal_expression(Type* type, int depth, bool has_keys,
-                              Expression_list* vals, source_location location)
-    : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
-      type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  Expression*
-  do_copy()
-  {
-    return new Composite_literal_expression(this->type_, this->depth_,
-                                           this->has_keys_,
-                                           (this->vals_ == NULL
-                                            ? NULL
-                                            : this->vals_->copy()),
-                                           this->location());
-  }
-
- private:
-  Expression*
-  lower_struct(Gogo*, Type*);
-
-  Expression*
-  lower_array(Type*);
-
-  Expression*
-  make_array(Type*, Expression_list*);
-
-  Expression*
-  lower_map(Gogo*, Named_object*, Type*);
-
-  // The type of the composite literal.
-  Type* type_;
-  // The depth within a list of composite literals within a composite
-  // literal, when the type is omitted.
-  int depth_;
-  // The values to put in the composite literal.
-  Expression_list* vals_;
-  // If this is true, then VALS_ is a list of pairs: a key and a
-  // value.  In an array initializer, a missing key will be NULL.
-  bool has_keys_;
-};
-
-// Traversal.
-
-int
-Composite_literal_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Type::traverse(this->type_, traverse);
-}
-
-// Lower a generic composite literal into a specific version based on
-// the type.
-
-Expression*
-Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  Type* type = this->type_;
-
-  for (int depth = this->depth_; depth > 0; --depth)
-    {
-      if (type->array_type() != NULL)
-       type = type->array_type()->element_type();
-      else if (type->map_type() != NULL)
-       type = type->map_type()->val_type();
-      else
-       {
-         if (!type->is_error())
-           error_at(this->location(),
-                    ("may only omit types within composite literals "
-                     "of slice, array, or map type"));
-         return Expression::make_error(this->location());
-       }
-    }
-
-  if (type->is_error())
-    return Expression::make_error(this->location());
-  else if (type->struct_type() != NULL)
-    return this->lower_struct(gogo, type);
-  else if (type->array_type() != NULL)
-    return this->lower_array(type);
-  else if (type->map_type() != NULL)
-    return this->lower_map(gogo, function, type);
-  else
-    {
-      error_at(this->location(),
-              ("expected struct, slice, array, or map type "
-               "for composite literal"));
-      return Expression::make_error(this->location());
-    }
-}
-
-// Lower a struct composite literal.
-
-Expression*
-Composite_literal_expression::lower_struct(Gogo* gogo, Type* type)
-{
-  source_location location = this->location();
-  Struct_type* st = type->struct_type();
-  if (this->vals_ == NULL || !this->has_keys_)
-    return new Struct_construction_expression(type, this->vals_, location);
-
-  size_t field_count = st->field_count();
-  std::vector<Expression*> vals(field_count);
-  Expression_list::const_iterator p = this->vals_->begin();
-  while (p != this->vals_->end())
-    {
-      Expression* name_expr = *p;
-
-      ++p;
-      go_assert(p != this->vals_->end());
-      Expression* val = *p;
-
-      ++p;
-
-      if (name_expr == NULL)
-       {
-         error_at(val->location(), "mixture of field and value initializers");
-         return Expression::make_error(location);
-       }
-
-      bool bad_key = false;
-      std::string name;
-      const Named_object* no = NULL;
-      switch (name_expr->classification())
-       {
-       case EXPRESSION_UNKNOWN_REFERENCE:
-         name = name_expr->unknown_expression()->name();
-         break;
-
-       case EXPRESSION_CONST_REFERENCE:
-         no = static_cast<Const_expression*>(name_expr)->named_object();
-         break;
-
-       case EXPRESSION_TYPE:
-         {
-           Type* t = name_expr->type();
-           Named_type* nt = t->named_type();
-           if (nt == NULL)
-             bad_key = true;
-           else
-             no = nt->named_object();
-         }
-         break;
-
-       case EXPRESSION_VAR_REFERENCE:
-         no = name_expr->var_expression()->named_object();
-         break;
-
-       case EXPRESSION_FUNC_REFERENCE:
-         no = name_expr->func_expression()->named_object();
-         break;
-
-       case EXPRESSION_UNARY:
-         // If there is a local variable around with the same name as
-         // the field, and this occurs in the closure, then the
-         // parser may turn the field reference into an indirection
-         // through the closure.  FIXME: This is a mess.
-         {
-           bad_key = true;
-           Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
-           if (ue->op() == OPERATOR_MULT)
-             {
-               Field_reference_expression* fre =
-                 ue->operand()->field_reference_expression();
-               if (fre != NULL)
-                 {
-                   Struct_type* st =
-                     fre->expr()->type()->deref()->struct_type();
-                   if (st != NULL)
-                     {
-                       const Struct_field* sf = st->field(fre->field_index());
-                       name = sf->field_name();
-                       char buf[20];
-                       snprintf(buf, sizeof buf, "%u", fre->field_index());
-                       size_t buflen = strlen(buf);
-                       if (name.compare(name.length() - buflen, buflen, buf)
-                           == 0)
-                         {
-                           name = name.substr(0, name.length() - buflen);
-                           bad_key = false;
-                         }
-                     }
-                 }
-             }
-         }
-         break;
-
-       default:
-         bad_key = true;
-         break;
-       }
-      if (bad_key)
-       {
-         error_at(name_expr->location(), "expected struct field name");
-         return Expression::make_error(location);
-       }
-
-      if (no != NULL)
-       {
-         name = no->name();
-
-         // A predefined name won't be packed.  If it starts with a
-         // lower case letter we need to check for that case, because
-         // the field name will be packed.
-         if (!Gogo::is_hidden_name(name)
-             && name[0] >= 'a'
-             && name[0] <= 'z')
-           {
-             Named_object* gno = gogo->lookup_global(name.c_str());
-             if (gno == no)
-               name = gogo->pack_hidden_name(name, false);
-           }
-       }
-
-      unsigned int index;
-      const Struct_field* sf = st->find_local_field(name, &index);
-      if (sf == NULL)
-       {
-         error_at(name_expr->location(), "unknown field %qs in %qs",
-                  Gogo::message_name(name).c_str(),
-                  (type->named_type() != NULL
-                   ? type->named_type()->message_name().c_str()
-                   : "unnamed struct"));
-         return Expression::make_error(location);
-       }
-      if (vals[index] != NULL)
-       {
-         error_at(name_expr->location(),
-                  "duplicate value for field %qs in %qs",
-                  Gogo::message_name(name).c_str(),
-                  (type->named_type() != NULL
-                   ? type->named_type()->message_name().c_str()
-                   : "unnamed struct"));
-         return Expression::make_error(location);
-       }
-
-      vals[index] = val;
-    }
-
-  Expression_list* list = new Expression_list;
-  list->reserve(field_count);
-  for (size_t i = 0; i < field_count; ++i)
-    list->push_back(vals[i]);
-
-  return new Struct_construction_expression(type, list, location);
-}
-
-// Lower an array composite literal.
-
-Expression*
-Composite_literal_expression::lower_array(Type* type)
-{
-  source_location location = this->location();
-  if (this->vals_ == NULL || !this->has_keys_)
-    return this->make_array(type, this->vals_);
-
-  std::vector<Expression*> vals;
-  vals.reserve(this->vals_->size());
-  unsigned long index = 0;
-  Expression_list::const_iterator p = this->vals_->begin();
-  while (p != this->vals_->end())
-    {
-      Expression* index_expr = *p;
-
-      ++p;
-      go_assert(p != this->vals_->end());
-      Expression* val = *p;
-
-      ++p;
-
-      if (index_expr != NULL)
-       {
-         mpz_t ival;
-         mpz_init(ival);
-
-         Type* dummy;
-         if (!index_expr->integer_constant_value(true, ival, &dummy))
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(),
-                      "index expression is not integer constant");
-             return Expression::make_error(location);
-           }
-
-         if (mpz_sgn(ival) < 0)
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(), "index expression is negative");
-             return Expression::make_error(location);
-           }
-
-         index = mpz_get_ui(ival);
-         if (mpz_cmp_ui(ival, index) != 0)
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(), "index value overflow");
-             return Expression::make_error(location);
-           }
-
-         Named_type* ntype = Type::lookup_integer_type("int");
-         Integer_type* inttype = ntype->integer_type();
-         mpz_t max;
-         mpz_init_set_ui(max, 1);
-         mpz_mul_2exp(max, max, inttype->bits() - 1);
-         bool ok = mpz_cmp(ival, max) < 0;
-         mpz_clear(max);
-         if (!ok)
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(), "index value overflow");
-             return Expression::make_error(location);
-           }
-
-         mpz_clear(ival);
-
-         // FIXME: Our representation isn't very good; this avoids
-         // thrashing.
-         if (index > 0x1000000)
-           {
-             error_at(index_expr->location(), "index too large for compiler");
-             return Expression::make_error(location);
-           }
-       }
-
-      if (index == vals.size())
-       vals.push_back(val);
-      else
-       {
-         if (index > vals.size())
-           {
-             vals.reserve(index + 32);
-             vals.resize(index + 1, static_cast<Expression*>(NULL));
-           }
-         if (vals[index] != NULL)
-           {
-             error_at((index_expr != NULL
-                       ? index_expr->location()
-                       : val->location()),
-                      "duplicate value for index %lu",
-                      index);
-             return Expression::make_error(location);
-           }
-         vals[index] = val;
-       }
-
-      ++index;
-    }
-
-  size_t size = vals.size();
-  Expression_list* list = new Expression_list;
-  list->reserve(size);
-  for (size_t i = 0; i < size; ++i)
-    list->push_back(vals[i]);
-
-  return this->make_array(type, list);
-}
-
-// Actually build the array composite literal. This handles
-// [...]{...}.
-
-Expression*
-Composite_literal_expression::make_array(Type* type, Expression_list* vals)
-{
-  source_location location = this->location();
-  Array_type* at = type->array_type();
-  if (at->length() != NULL && at->length()->is_nil_expression())
-    {
-      size_t size = vals == NULL ? 0 : vals->size();
-      mpz_t vlen;
-      mpz_init_set_ui(vlen, size);
-      Expression* elen = Expression::make_integer(&vlen, NULL, location);
-      mpz_clear(vlen);
-      at = Type::make_array_type(at->element_type(), elen);
-      type = at;
-    }
-  if (at->length() != NULL)
-    return new Fixed_array_construction_expression(type, vals, location);
-  else
-    return new Open_array_construction_expression(type, vals, location);
-}
-
-// Lower a map composite literal.
-
-Expression*
-Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
-                                       Type* type)
-{
-  source_location location = this->location();
-  if (this->vals_ != NULL)
-    {
-      if (!this->has_keys_)
-       {
-         error_at(location, "map composite literal must have keys");
-         return Expression::make_error(location);
-       }
-
-      for (Expression_list::iterator p = this->vals_->begin();
-          p != this->vals_->end();
-          p += 2)
-       {
-         if (*p == NULL)
-           {
-             ++p;
-             error_at((*p)->location(),
-                      "map composite literal must have keys for every value");
-             return Expression::make_error(location);
-           }
-         // Make sure we have lowered the key; it may not have been
-         // lowered in order to handle keys for struct composite
-         // literals.  Lower it now to get the right error message.
-         if ((*p)->unknown_expression() != NULL)
-           {
-             (*p)->unknown_expression()->clear_is_composite_literal_key();
-             gogo->lower_expression(function, &*p);
-             go_assert((*p)->is_error_expression());
-             return Expression::make_error(location);
-           }
-       }
-    }
-
-  return new Map_construction_expression(type, this->vals_, location);
-}
-
-// Make a composite literal expression.
-
-Expression*
-Expression::make_composite_literal(Type* type, int depth, bool has_keys,
-                                  Expression_list* vals,
-                                  source_location location)
-{
-  return new Composite_literal_expression(type, depth, has_keys, vals,
-                                         location);
-}
-
-// Return whether this expression is a composite literal.
-
-bool
-Expression::is_composite_literal() const
-{
-  switch (this->classification_)
-    {
-    case EXPRESSION_COMPOSITE_LITERAL:
-    case EXPRESSION_STRUCT_CONSTRUCTION:
-    case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
-    case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
-    case EXPRESSION_MAP_CONSTRUCTION:
-      return true;
-    default:
-      return false;
-    }
-}
-
-// Return whether this expression is a composite literal which is not
-// constant.
-
-bool
-Expression::is_nonconstant_composite_literal() const
-{
-  switch (this->classification_)
-    {
-    case EXPRESSION_STRUCT_CONSTRUCTION:
-      {
-       const Struct_construction_expression *psce =
-         static_cast<const Struct_construction_expression*>(this);
-       return !psce->is_constant_struct();
-      }
-    case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
-      {
-       const Fixed_array_construction_expression *pace =
-         static_cast<const Fixed_array_construction_expression*>(this);
-       return !pace->is_constant_array();
-      }
-    case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
-      {
-       const Open_array_construction_expression *pace =
-         static_cast<const Open_array_construction_expression*>(this);
-       return !pace->is_constant_array();
-      }
-    case EXPRESSION_MAP_CONSTRUCTION:
-      return true;
-    default:
-      return false;
-    }
-}
-
-// Return true if this is a reference to a local variable.
-
-bool
-Expression::is_local_variable() const
-{
-  const Var_expression* ve = this->var_expression();
-  if (ve == NULL)
-    return false;
-  const Named_object* no = ve->named_object();
-  return (no->is_result_variable()
-         || (no->is_variable() && !no->var_value()->is_global()));
-}
-
-// Class Type_guard_expression.
-
-// Traversal.
-
-int
-Type_guard_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
-      || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Check types of a type guard expression.  The expression must have
-// an interface type, but the actual type conversion is checked at run
-// time.
-
-void
-Type_guard_expression::do_check_types(Gogo*)
-{
-  // 6g permits using a type guard with unsafe.pointer; we are
-  // compatible.
-  Type* expr_type = this->expr_->type();
-  if (expr_type->is_unsafe_pointer_type())
-    {
-      if (this->type_->points_to() == NULL
-         && (this->type_->integer_type() == NULL
-             || (this->type_->forwarded()
-                 != Type::lookup_integer_type("uintptr"))))
-       this->report_error(_("invalid unsafe.Pointer conversion"));
-    }
-  else if (this->type_->is_unsafe_pointer_type())
-    {
-      if (expr_type->points_to() == NULL
-         && (expr_type->integer_type() == NULL
-             || (expr_type->forwarded()
-                 != Type::lookup_integer_type("uintptr"))))
-       this->report_error(_("invalid unsafe.Pointer conversion"));
-    }
-  else if (expr_type->interface_type() == NULL)
-    {
-      if (!expr_type->is_error() && !this->type_->is_error())
-       this->report_error(_("type assertion only valid for interface types"));
-      this->set_is_error();
-    }
-  else if (this->type_->interface_type() == NULL)
-    {
-      std::string reason;
-      if (!expr_type->interface_type()->implements_interface(this->type_,
-                                                            &reason))
-       {
-         if (!this->type_->is_error())
-           {
-             if (reason.empty())
-               this->report_error(_("impossible type assertion: "
-                                    "type does not implement interface"));
-             else
-               error_at(this->location(),
-                        ("impossible type assertion: "
-                         "type does not implement interface (%s)"),
-                        reason.c_str());
-           }
-         this->set_is_error();
-       }
-    }
-}
-
-// Return a tree for a type guard expression.
-
-tree
-Type_guard_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree expr_tree = this->expr_->get_tree(context);
-  if (expr_tree == error_mark_node)
-    return error_mark_node;
-  Type* expr_type = this->expr_->type();
-  if ((this->type_->is_unsafe_pointer_type()
-       && (expr_type->points_to() != NULL
-          || expr_type->integer_type() != NULL))
-      || (expr_type->is_unsafe_pointer_type()
-         && this->type_->points_to() != NULL))
-    return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
-  else if (expr_type->is_unsafe_pointer_type()
-          && this->type_->integer_type() != NULL)
-    return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
-  else if (this->type_->interface_type() != NULL)
-    return Expression::convert_interface_to_interface(context, this->type_,
-                                                     this->expr_->type(),
-                                                     expr_tree, true,
-                                                     this->location());
-  else
-    return Expression::convert_for_assignment(context, this->type_,
-                                             this->expr_->type(), expr_tree,
-                                             this->location());
-}
-
-// Make a type guard expression.
-
-Expression*
-Expression::make_type_guard(Expression* expr, Type* type,
-                           source_location location)
-{
-  return new Type_guard_expression(expr, type, location);
-}
-
-// Class Heap_composite_expression.
-
-// When you take the address of a composite literal, it is allocated
-// on the heap.  This class implements that.
-
-class Heap_composite_expression : public Expression
-{
- public:
-  Heap_composite_expression(Expression* expr, source_location location)
-    : Expression(EXPRESSION_HEAP_COMPOSITE, location),
-      expr_(expr)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Expression::traverse(&this->expr_, traverse); }
-
-  Type*
-  do_type()
-  { return Type::make_pointer_type(this->expr_->type()); }
-
-  void
-  do_determine_type(const Type_context*)
-  { this->expr_->determine_type_no_context(); }
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_heap_composite(this->expr_->copy(),
-                                          this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  // We only export global objects, and the parser does not generate
-  // this in global scope.
-  void
-  do_export(Export*) const
-  { go_unreachable(); }
-
- private:
-  // The composite literal which is being put on the heap.
-  Expression* expr_;
-};
-
-// Return a tree which allocates a composite literal on the heap.
-
-tree
-Heap_composite_expression::do_get_tree(Translate_context* context)
-{
-  tree expr_tree = this->expr_->get_tree(context);
-  if (expr_tree == error_mark_node)
-    return error_mark_node;
-  tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
-  go_assert(TREE_CODE(expr_size) == INTEGER_CST);
-  tree space = context->gogo()->allocate_memory(this->expr_->type(),
-                                               expr_size, this->location());
-  space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
-  space = save_expr(space);
-  tree ref = build_fold_indirect_ref_loc(this->location(), space);
-  TREE_THIS_NOTRAP(ref) = 1;
-  tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
-                   build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
-                   space);
-  SET_EXPR_LOCATION(ret, this->location());
-  return ret;
-}
-
-// Allocate a composite literal on the heap.
-
-Expression*
-Expression::make_heap_composite(Expression* expr, source_location location)
-{
-  return new Heap_composite_expression(expr, location);
-}
-
-// Class Receive_expression.
-
-// Return the type of a receive expression.
-
-Type*
-Receive_expression::do_type()
-{
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  if (channel_type == NULL)
-    return Type::make_error_type();
-  return channel_type->element_type();
-}
-
-// Check types for a receive expression.
-
-void
-Receive_expression::do_check_types(Gogo*)
-{
-  Type* type = this->channel_->type();
-  if (type->is_error())
-    {
-      this->set_is_error();
-      return;
-    }
-  if (type->channel_type() == NULL)
-    {
-      this->report_error(_("expected channel"));
-      return;
-    }
-  if (!type->channel_type()->may_receive())
-    {
-      this->report_error(_("invalid receive on send-only channel"));
-      return;
-    }
-}
-
-// Get a tree for a receive expression.
-
-tree
-Receive_expression::do_get_tree(Translate_context* context)
-{
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  if (channel_type == NULL)
-    {
-      go_assert(this->channel_->type()->is_error());
-      return error_mark_node;
-    }
-  Type* element_type = channel_type->element_type();
-  tree element_type_tree = element_type->get_tree(context->gogo());
-
-  tree channel = this->channel_->get_tree(context);
-  if (element_type_tree == error_mark_node || channel == error_mark_node)
-    return error_mark_node;
-
-  return Gogo::receive_from_channel(element_type_tree, channel,
-                                   this->for_select_, this->location());
-}
-
-// Make a receive expression.
-
-Receive_expression*
-Expression::make_receive(Expression* channel, source_location location)
-{
-  return new Receive_expression(channel, location);
-}
-
-// An expression which evaluates to a pointer to the type descriptor
-// of a type.
-
-class Type_descriptor_expression : public Expression
-{
- public:
-  Type_descriptor_expression(Type* type, source_location location)
-    : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
-      type_(type)
-  { }
-
- protected:
-  Type*
-  do_type()
-  { return Type::make_type_descriptor_ptr_type(); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context)
-  { return this->type_->type_descriptor_pointer(context->gogo()); }
-
- private:
-  // The type for which this is the descriptor.
-  Type* type_;
-};
-
-// Make a type descriptor expression.
-
-Expression*
-Expression::make_type_descriptor(Type* type, source_location location)
-{
-  return new Type_descriptor_expression(type, location);
-}
-
-// An expression which evaluates to some characteristic of a type.
-// This is only used to initialize fields of a type descriptor.  Using
-// a new expression class is slightly inefficient but gives us a good
-// separation between the frontend and the middle-end with regard to
-// how types are laid out.
-
-class Type_info_expression : public Expression
-{
- public:
-  Type_info_expression(Type* type, Type_info type_info)
-    : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
-      type_(type), type_info_(type_info)
-  { }
-
- protected:
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context);
-
- private:
-  // The type for which we are getting information.
-  Type* type_;
-  // What information we want.
-  Type_info type_info_;
-};
-
-// The type is chosen to match what the type descriptor struct
-// expects.
-
-Type*
-Type_info_expression::do_type()
-{
-  switch (this->type_info_)
-    {
-    case TYPE_INFO_SIZE:
-      return Type::lookup_integer_type("uintptr");
-    case TYPE_INFO_ALIGNMENT:
-    case TYPE_INFO_FIELD_ALIGNMENT:
-      return Type::lookup_integer_type("uint8");
-    default:
-      go_unreachable();
-    }
-}
-
-// Return type information in GENERIC.
-
-tree
-Type_info_expression::do_get_tree(Translate_context* context)
-{
-  tree type_tree = this->type_->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree val_type_tree = this->type()->get_tree(context->gogo());
-  go_assert(val_type_tree != error_mark_node);
-
-  if (this->type_info_ == TYPE_INFO_SIZE)
-    return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
-                           TYPE_SIZE_UNIT(type_tree));
-  else
-    {
-      unsigned int val;
-      if (this->type_info_ == TYPE_INFO_ALIGNMENT)
-       val = go_type_alignment(type_tree);
-      else
-       val = go_field_alignment(type_tree);
-      return build_int_cstu(val_type_tree, val);
-    }
-}
-
-// Make a type info expression.
-
-Expression*
-Expression::make_type_info(Type* type, Type_info type_info)
-{
-  return new Type_info_expression(type, type_info);
-}
-
-// An expression which evaluates to the offset of a field within a
-// struct.  This, like Type_info_expression, q.v., is only used to
-// initialize fields of a type descriptor.
-
-class Struct_field_offset_expression : public Expression
-{
- public:
-  Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
-    : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
-      type_(type), field_(field)
-  { }
-
- protected:
-  Type*
-  do_type()
-  { return Type::lookup_integer_type("uintptr"); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context);
-
- private:
-  // The type of the struct.
-  Struct_type* type_;
-  // The field.
-  const Struct_field* field_;
-};
-
-// Return a struct field offset in GENERIC.
-
-tree
-Struct_field_offset_expression::do_get_tree(Translate_context* context)
-{
-  tree type_tree = this->type_->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree val_type_tree = this->type()->get_tree(context->gogo());
-  go_assert(val_type_tree != error_mark_node);
-
-  const Struct_field_list* fields = this->type_->fields();
-  tree struct_field_tree = TYPE_FIELDS(type_tree);
-  Struct_field_list::const_iterator p;
-  for (p = fields->begin();
-       p != fields->end();
-       ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
-    {
-      go_assert(struct_field_tree != NULL_TREE);
-      if (&*p == this->field_)
-       break;
-    }
-  go_assert(&*p == this->field_);
-
-  return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
-                         byte_position(struct_field_tree));
-}
-
-// Make an expression for a struct field offset.
-
-Expression*
-Expression::make_struct_field_offset(Struct_type* type,
-                                    const Struct_field* field)
-{
-  return new Struct_field_offset_expression(type, field);
-}
-
-// An expression which evaluates to the address of an unnamed label.
-
-class Label_addr_expression : public Expression
-{
- public:
-  Label_addr_expression(Label* label, source_location location)
-    : Expression(EXPRESSION_LABEL_ADDR, location),
-      label_(label)
-  { }
-
- protected:
-  Type*
-  do_type()
-  { return Type::make_pointer_type(Type::make_void_type()); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return new Label_addr_expression(this->label_, this->location()); }
-
-  tree
-  do_get_tree(Translate_context* context)
-  {
-    return expr_to_tree(this->label_->get_addr(context, this->location()));
-  }
-
- private:
-  // The label whose address we are taking.
-  Label* label_;
-};
-
-// Make an expression for the address of an unnamed label.
-
-Expression*
-Expression::make_label_addr(Label* label, source_location location)
-{
-  return new Label_addr_expression(label, location);
-}
-
-// Import an expression.  This comes at the end in order to see the
-// various class definitions.
-
-Expression*
-Expression::import_expression(Import* imp)
-{
-  int c = imp->peek_char();
-  if (imp->match_c_string("- ")
-      || imp->match_c_string("! ")
-      || imp->match_c_string("^ "))
-    return Unary_expression::do_import(imp);
-  else if (c == '(')
-    return Binary_expression::do_import(imp);
-  else if (imp->match_c_string("true")
-          || imp->match_c_string("false"))
-    return Boolean_expression::do_import(imp);
-  else if (c == '"')
-    return String_expression::do_import(imp);
-  else if (c == '-' || (c >= '0' && c <= '9'))
-    {
-      // This handles integers, floats and complex constants.
-      return Integer_expression::do_import(imp);
-    }
-  else if (imp->match_c_string("nil"))
-    return Nil_expression::do_import(imp);
-  else if (imp->match_c_string("convert"))
-    return Type_conversion_expression::do_import(imp);
-  else
-    {
-      error_at(imp->location(), "import error: expected expression");
-      return Expression::make_error(imp->location());
-    }
-}
-
-// Class Expression_list.
-
-// Traverse the list.
-
-int
-Expression_list::traverse(Traverse* traverse)
-{
-  for (Expression_list::iterator p = this->begin();
-       p != this->end();
-       ++p)
-    {
-      if (*p != NULL)
-       {
-         if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Copy the list.
-
-Expression_list*
-Expression_list::copy()
-{
-  Expression_list* ret = new Expression_list();
-  for (Expression_list::iterator p = this->begin();
-       p != this->end();
-       ++p)
-    {
-      if (*p == NULL)
-       ret->push_back(NULL);
-      else
-       ret->push_back((*p)->copy());
-    }
-  return ret;
-}
-
-// Return whether an expression list has an error expression.
-
-bool
-Expression_list::contains_error() const
-{
-  for (Expression_list::const_iterator p = this->begin();
-       p != this->end();
-       ++p)
-    if (*p != NULL && (*p)->is_error_expression())
-      return true;
-  return false;
-}
diff --git a/gcc/go/gofrontend/expressions.cc.working b/gcc/go/gofrontend/expressions.cc.working
deleted file mode 100644 (file)
index 861d5c0..0000000
+++ /dev/null
@@ -1,12663 +0,0 @@
-// expressions.cc -- Go frontend expression handling.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "toplev.h"
-#include "intl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "tree-iterator.h"
-#include "convert.h"
-#include "real.h"
-#include "realmpfr.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "gogo.h"
-#include "types.h"
-#include "export.h"
-#include "import.h"
-#include "statements.h"
-#include "lex.h"
-#include "expressions.h"
-
-// Class Expression.
-
-Expression::Expression(Expression_classification classification,
-                      source_location location)
-  : classification_(classification), location_(location)
-{
-}
-
-Expression::~Expression()
-{
-}
-
-// If this expression has a constant integer value, return it.
-
-bool
-Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
-                                  Type** ptype) const
-{
-  *ptype = NULL;
-  return this->do_integer_constant_value(iota_is_constant, val, ptype);
-}
-
-// If this expression has a constant floating point value, return it.
-
-bool
-Expression::float_constant_value(mpfr_t val, Type** ptype) const
-{
-  *ptype = NULL;
-  if (this->do_float_constant_value(val, ptype))
-    return true;
-  mpz_t ival;
-  mpz_init(ival);
-  Type* t;
-  bool ret;
-  if (!this->do_integer_constant_value(false, ival, &t))
-    ret = false;
-  else
-    {
-      mpfr_set_z(val, ival, GMP_RNDN);
-      ret = true;
-    }
-  mpz_clear(ival);
-  return ret;
-}
-
-// If this expression has a constant complex value, return it.
-
-bool
-Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
-                                  Type** ptype) const
-{
-  *ptype = NULL;
-  if (this->do_complex_constant_value(real, imag, ptype))
-    return true;
-  Type *t;
-  if (this->float_constant_value(real, &t))
-    {
-      mpfr_set_ui(imag, 0, GMP_RNDN);
-      return true;
-    }
-  return false;
-}
-
-// Traverse the expressions.
-
-int
-Expression::traverse(Expression** pexpr, Traverse* traverse)
-{
-  Expression* expr = *pexpr;
-  if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
-    {
-      int t = traverse->expression(pexpr);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-  return expr->do_traverse(traverse);
-}
-
-// Traverse subexpressions of this expression.
-
-int
-Expression::traverse_subexpressions(Traverse* traverse)
-{
-  return this->do_traverse(traverse);
-}
-
-// Default implementation for do_traverse for child classes.
-
-int
-Expression::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// This virtual function is called by the parser if the value of this
-// expression is being discarded.  By default, we warn.  Expressions
-// with side effects override.
-
-void
-Expression::do_discarding_value()
-{
-  this->warn_about_unused_value();
-}
-
-// This virtual function is called to export expressions.  This will
-// only be used by expressions which may be constant.
-
-void
-Expression::do_export(Export*) const
-{
-  gcc_unreachable();
-}
-
-// Warn that the value of the expression is not used.
-
-void
-Expression::warn_about_unused_value()
-{
-  warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
-}
-
-// Note that this expression is an error.  This is called by children
-// when they discover an error.
-
-void
-Expression::set_is_error()
-{
-  this->classification_ = EXPRESSION_ERROR;
-}
-
-// For children to call to report an error conveniently.
-
-void
-Expression::report_error(const char* msg)
-{
-  error_at(this->location_, "%s", msg);
-  this->set_is_error();
-}
-
-// Set types of variables and constants.  This is implemented by the
-// child class.
-
-void
-Expression::determine_type(const Type_context* context)
-{
-  this->do_determine_type(context);
-}
-
-// Set types when there is no context.
-
-void
-Expression::determine_type_no_context()
-{
-  Type_context context;
-  this->do_determine_type(&context);
-}
-
-// Return a tree handling any conversions which must be done during
-// assignment.
-
-tree
-Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
-                                  Type* rhs_type, tree rhs_tree,
-                                  source_location location)
-{
-  if (lhs_type == rhs_type)
-    return rhs_tree;
-
-  if (lhs_type->is_error_type() || rhs_type->is_error_type())
-    return error_mark_node;
-
-  if (lhs_type->is_undefined() || rhs_type->is_undefined())
-    {
-      // Make sure we report the error.
-      lhs_type->base();
-      rhs_type->base();
-      return error_mark_node;
-    }
-
-  if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
-    return error_mark_node;
-
-  Gogo* gogo = context->gogo();
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  if (lhs_type->interface_type() != NULL)
-    {
-      if (rhs_type->interface_type() == NULL)
-       return Expression::convert_type_to_interface(context, lhs_type,
-                                                    rhs_type, rhs_tree,
-                                                    location);
-      else
-       return Expression::convert_interface_to_interface(context, lhs_type,
-                                                         rhs_type, rhs_tree,
-                                                         false, location);
-    }
-  else if (rhs_type->interface_type() != NULL)
-    return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
-                                                rhs_tree, location);
-  else if (lhs_type->is_open_array_type()
-          && rhs_type->is_nil_type())
-    {
-      // Assigning nil to an open array.
-      gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
-
-      VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      tree field = TYPE_FIELDS(lhs_type_tree);
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__values") == 0);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-
-      elt = VEC_quick_push(constructor_elt, init, NULL);
-      field = DECL_CHAIN(field);
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__count") == 0);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
-
-      elt = VEC_quick_push(constructor_elt, init, NULL);
-      field = DECL_CHAIN(field);
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__capacity") == 0);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
-
-      tree val = build_constructor(lhs_type_tree, init);
-      TREE_CONSTANT(val) = 1;
-
-      return val;
-    }
-  else if (rhs_type->is_nil_type())
-    {
-      // The left hand side should be a pointer type at the tree
-      // level.
-      gcc_assert(POINTER_TYPE_P(lhs_type_tree));
-      return fold_convert(lhs_type_tree, null_pointer_node);
-    }
-  else if (lhs_type_tree == TREE_TYPE(rhs_tree))
-    {
-      // No conversion is needed.
-      return rhs_tree;
-    }
-  else if (POINTER_TYPE_P(lhs_type_tree)
-          || INTEGRAL_TYPE_P(lhs_type_tree)
-          || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
-          || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
-    return fold_convert_loc(location, lhs_type_tree, rhs_tree);
-  else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
-          && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
-    {
-      // This conversion must be permitted by Go, or we wouldn't have
-      // gotten here.
-      gcc_assert(int_size_in_bytes(lhs_type_tree)
-                == int_size_in_bytes(TREE_TYPE(rhs_tree)));
-      return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
-                            rhs_tree);
-    }
-  else
-    {
-      gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
-      return rhs_tree;
-    }
-}
-
-// Return a tree for a conversion from a non-interface type to an
-// interface type.
-
-tree
-Expression::convert_type_to_interface(Translate_context* context,
-                                     Type* lhs_type, Type* rhs_type,
-                                     tree rhs_tree, source_location location)
-{
-  Gogo* gogo = context->gogo();
-  Interface_type* lhs_interface_type = lhs_type->interface_type();
-  bool lhs_is_empty = lhs_interface_type->is_empty();
-
-  // Since RHS_TYPE is a static type, we can create the interface
-  // method table at compile time.
-
-  // When setting an interface to nil, we just set both fields to
-  // NULL.
-  if (rhs_type->is_nil_type())
-    return lhs_type->get_init_tree(gogo, false);
-
-  // This should have been checked already.
-  gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  // An interface is a tuple.  If LHS_TYPE is an empty interface type,
-  // then the first field is the type descriptor for RHS_TYPE.
-  // Otherwise it is the interface method table for RHS_TYPE.
-  tree first_field_value;
-  if (lhs_is_empty)
-    first_field_value = rhs_type->type_descriptor_pointer(gogo);
-  else
-    {
-      // Build the interface method table for this interface and this
-      // object type: a list of function pointers for each interface
-      // method.
-      Named_type* rhs_named_type = rhs_type->named_type();
-      bool is_pointer = false;
-      if (rhs_named_type == NULL)
-       {
-         rhs_named_type = rhs_type->deref()->named_type();
-         is_pointer = true;
-       }
-      tree method_table;
-      if (rhs_named_type == NULL)
-       method_table = null_pointer_node;
-      else
-       method_table =
-         rhs_named_type->interface_method_table(gogo, lhs_interface_type,
-                                                is_pointer);
-      first_field_value = fold_convert_loc(location, const_ptr_type_node,
-                                          method_table);
-    }
-  if (first_field_value == error_mark_node)
-    return error_mark_node;
-
-  // Start building a constructor for the value we will return.
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(lhs_type_tree);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                   (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
-  elt->index = field;
-  elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
-  elt->index = field;
-
-  if (rhs_type->points_to() != NULL)
-    {
-      //  We are assigning a pointer to the interface; the interface
-      // holds the pointer itself.
-      elt->value = rhs_tree;
-      return build_constructor(lhs_type_tree, init);
-    }
-
-  // We are assigning a non-pointer value to the interface; the
-  // interface gets a copy of the value in the heap.
-
-  tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
-
-  tree space = gogo->allocate_memory(rhs_type, object_size, location);
-  space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
-                          space);
-  space = save_expr(space);
-
-  tree ref = build_fold_indirect_ref_loc(location, space);
-  TREE_THIS_NOTRAP(ref) = 1;
-  tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
-                            ref, rhs_tree);
-
-  elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
-
-  return build2(COMPOUND_EXPR, lhs_type_tree, set,
-               build_constructor(lhs_type_tree, init));
-}
-
-// Return a tree for the type descriptor of RHS_TREE, which has
-// interface type RHS_TYPE.  If RHS_TREE is nil the result will be
-// NULL.
-
-tree
-Expression::get_interface_type_descriptor(Translate_context*,
-                                         Type* rhs_type, tree rhs_tree,
-                                         source_location location)
-{
-  tree rhs_type_tree = TREE_TYPE(rhs_tree);
-  gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
-  tree rhs_field = TYPE_FIELDS(rhs_type_tree);
-  tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
-                 NULL_TREE);
-  if (rhs_type->interface_type()->is_empty())
-    {
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
-                       "__type_descriptor") == 0);
-      return v;
-    }
-
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
-            == 0);
-  gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
-  v = save_expr(v);
-  tree v1 = build_fold_indirect_ref_loc(location, v);
-  gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
-  tree f = TYPE_FIELDS(TREE_TYPE(v1));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
-            == 0);
-  v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
-
-  tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
-                           fold_convert_loc(location, TREE_TYPE(v),
-                                            null_pointer_node));
-  tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
-  return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
-                        eq, n, v1);
-}
-
-// Return a tree for the conversion of an interface type to an
-// interface type.
-
-tree
-Expression::convert_interface_to_interface(Translate_context* context,
-                                          Type *lhs_type, Type *rhs_type,
-                                          tree rhs_tree, bool for_type_guard,
-                                          source_location location)
-{
-  Gogo* gogo = context->gogo();
-  Interface_type* lhs_interface_type = lhs_type->interface_type();
-  bool lhs_is_empty = lhs_interface_type->is_empty();
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  // In the general case this requires runtime examination of the type
-  // method table to match it up with the interface methods.
-
-  // FIXME: If all of the methods in the right hand side interface
-  // also appear in the left hand side interface, then we don't need
-  // to do a runtime check, although we still need to build a new
-  // method table.
-
-  // Get the type descriptor for the right hand side.  This will be
-  // NULL for a nil interface.
-
-  if (!DECL_P(rhs_tree))
-    rhs_tree = save_expr(rhs_tree);
-
-  tree rhs_type_descriptor =
-    Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
-                                             location);
-
-  // The result is going to be a two element constructor.
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(lhs_type_tree);
-  elt->index = field;
-
-  if (for_type_guard)
-    {
-      // A type assertion fails when converting a nil interface.
-      tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
-      static tree assert_interface_decl;
-      tree call = Gogo::call_builtin(&assert_interface_decl,
-                                    location,
-                                    "__go_assert_interface",
-                                    2,
-                                    ptr_type_node,
-                                    TREE_TYPE(lhs_type_descriptor),
-                                    lhs_type_descriptor,
-                                    TREE_TYPE(rhs_type_descriptor),
-                                    rhs_type_descriptor);
-      if (call == error_mark_node)
-       return error_mark_node;
-      // This will panic if the interface conversion fails.
-      TREE_NOTHROW(assert_interface_decl) = 0;
-      elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
-    }
-  else if (lhs_is_empty)
-    {
-      // A convertion to an empty interface always succeeds, and the
-      // first field is just the type descriptor of the object.
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__type_descriptor") == 0);
-      gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
-      elt->value = rhs_type_descriptor;
-    }
-  else
-    {
-      // A conversion to a non-empty interface may fail, but unlike a
-      // type assertion converting nil will always succeed.
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
-                == 0);
-      tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
-      static tree convert_interface_decl;
-      tree call = Gogo::call_builtin(&convert_interface_decl,
-                                    location,
-                                    "__go_convert_interface",
-                                    2,
-                                    ptr_type_node,
-                                    TREE_TYPE(lhs_type_descriptor),
-                                    lhs_type_descriptor,
-                                    TREE_TYPE(rhs_type_descriptor),
-                                    rhs_type_descriptor);
-      if (call == error_mark_node)
-       return error_mark_node;
-      // This will panic if the interface conversion fails.
-      TREE_NOTHROW(convert_interface_decl) = 0;
-      elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
-    }
-
-  // The second field is simply the object pointer.
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
-  elt->index = field;
-
-  tree rhs_type_tree = TREE_TYPE(rhs_tree);
-  gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
-  tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
-  elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
-                     NULL_TREE);
-
-  return build_constructor(lhs_type_tree, init);
-}
-
-// Return a tree for the conversion of an interface type to a
-// non-interface type.
-
-tree
-Expression::convert_interface_to_type(Translate_context* context,
-                                     Type *lhs_type, Type* rhs_type,
-                                     tree rhs_tree, source_location location)
-{
-  Gogo* gogo = context->gogo();
-  tree rhs_type_tree = TREE_TYPE(rhs_tree);
-
-  tree lhs_type_tree = lhs_type->get_tree(gogo);
-  if (lhs_type_tree == error_mark_node)
-    return error_mark_node;
-
-  // Call a function to check that the type is valid.  The function
-  // will panic with an appropriate runtime type error if the type is
-  // not valid.
-
-  tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
-
-  if (!DECL_P(rhs_tree))
-    rhs_tree = save_expr(rhs_tree);
-
-  tree rhs_type_descriptor =
-    Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
-                                             location);
-
-  tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
-
-  static tree check_interface_type_decl;
-  tree call = Gogo::call_builtin(&check_interface_type_decl,
-                                location,
-                                "__go_check_interface_type",
-                                3,
-                                void_type_node,
-                                TREE_TYPE(lhs_type_descriptor),
-                                lhs_type_descriptor,
-                                TREE_TYPE(rhs_type_descriptor),
-                                rhs_type_descriptor,
-                                TREE_TYPE(rhs_inter_descriptor),
-                                rhs_inter_descriptor);
-  if (call == error_mark_node)
-    return error_mark_node;
-  // This call will panic if the conversion is invalid.
-  TREE_NOTHROW(check_interface_type_decl) = 0;
-
-  // If the call succeeds, pull out the value.
-  gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
-  tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
-  tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
-                   NULL_TREE);
-
-  // If the value is a pointer, then it is the value we want.
-  // Otherwise it points to the value.
-  if (lhs_type->points_to() == NULL)
-    {
-      val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
-      val = build_fold_indirect_ref_loc(location, val);
-    }
-
-  return build2(COMPOUND_EXPR, lhs_type_tree, call,
-               fold_convert_loc(location, lhs_type_tree, val));
-}
-
-// Convert an expression to a tree.  This is implemented by the child
-// class.  Not that it is not in general safe to call this multiple
-// times for a single expression, but that we don't catch such errors.
-
-tree
-Expression::get_tree(Translate_context* context)
-{
-  // The child may have marked this expression as having an error.
-  if (this->classification_ == EXPRESSION_ERROR)
-    return error_mark_node;
-
-  return this->do_get_tree(context);
-}
-
-// Return a tree for VAL in TYPE.
-
-tree
-Expression::integer_constant_tree(mpz_t val, tree type)
-{
-  if (type == error_mark_node)
-    return error_mark_node;
-  else if (TREE_CODE(type) == INTEGER_TYPE)
-    return double_int_to_tree(type,
-                             mpz_get_double_int(type, val, true));
-  else if (TREE_CODE(type) == REAL_TYPE)
-    {
-      mpfr_t fval;
-      mpfr_init_set_z(fval, val, GMP_RNDN);
-      tree ret = Expression::float_constant_tree(fval, type);
-      mpfr_clear(fval);
-      return ret;
-    }
-  else if (TREE_CODE(type) == COMPLEX_TYPE)
-    {
-      mpfr_t fval;
-      mpfr_init_set_z(fval, val, GMP_RNDN);
-      tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
-      mpfr_clear(fval);
-      tree imag = build_real_from_int_cst(TREE_TYPE(type),
-                                         integer_zero_node);
-      return build_complex(type, real, imag);
-    }
-  else
-    gcc_unreachable();
-}
-
-// Return a tree for VAL in TYPE.
-
-tree
-Expression::float_constant_tree(mpfr_t val, tree type)
-{
-  if (type == error_mark_node)
-    return error_mark_node;
-  else if (TREE_CODE(type) == INTEGER_TYPE)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      mpfr_get_z(ival, val, GMP_RNDN);
-      tree ret = Expression::integer_constant_tree(ival, type);
-      mpz_clear(ival);
-      return ret;
-    }
-  else if (TREE_CODE(type) == REAL_TYPE)
-    {
-      REAL_VALUE_TYPE r1;
-      real_from_mpfr(&r1, val, type, GMP_RNDN);
-      REAL_VALUE_TYPE r2;
-      real_convert(&r2, TYPE_MODE(type), &r1);
-      return build_real(type, r2);
-    }
-  else if (TREE_CODE(type) == COMPLEX_TYPE)
-    {
-      REAL_VALUE_TYPE r1;
-      real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
-      REAL_VALUE_TYPE r2;
-      real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
-      tree imag = build_real_from_int_cst(TREE_TYPE(type),
-                                         integer_zero_node);
-      return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
-    }
-  else
-    gcc_unreachable();
-}
-
-// Return a tree for REAL/IMAG in TYPE.
-
-tree
-Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
-{
-  if (type == error_mark_node)
-    return error_mark_node;
-  else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE)
-    return Expression::float_constant_tree(real, type);
-  else if (TREE_CODE(type) == COMPLEX_TYPE)
-    {
-      REAL_VALUE_TYPE r1;
-      real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
-      REAL_VALUE_TYPE r2;
-      real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
-
-      REAL_VALUE_TYPE r3;
-      real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
-      REAL_VALUE_TYPE r4;
-      real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
-
-      return build_complex(type, build_real(TREE_TYPE(type), r2),
-                          build_real(TREE_TYPE(type), r4));
-    }
-  else
-    gcc_unreachable();
-}
-
-// Return a tree which evaluates to true if VAL, of arbitrary integer
-// type, is negative or is more than the maximum value of BOUND_TYPE.
-// If SOFAR is not NULL, it is or'red into the result.  The return
-// value may be NULL if SOFAR is NULL.
-
-tree
-Expression::check_bounds(tree val, tree bound_type, tree sofar,
-                        source_location loc)
-{
-  tree val_type = TREE_TYPE(val);
-  tree ret = NULL_TREE;
-
-  if (!TYPE_UNSIGNED(val_type))
-    {
-      ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
-                           build_int_cst(val_type, 0));
-      if (ret == boolean_false_node)
-       ret = NULL_TREE;
-    }
-
-  if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
-      || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
-    {
-      tree max = TYPE_MAX_VALUE(bound_type);
-      tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
-                                fold_convert_loc(loc, val_type, max));
-      if (big == boolean_false_node)
-       ;
-      else if (ret == NULL_TREE)
-       ret = big;
-      else
-       ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                             ret, big);
-    }
-
-  if (ret == NULL_TREE)
-    return sofar;
-  else if (sofar == NULL_TREE)
-    return ret;
-  else
-    return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                          sofar, ret);
-}
-
-// Error expressions.  This are used to avoid cascading errors.
-
-class Error_expression : public Expression
-{
- public:
-  Error_expression(source_location location)
-    : Expression(EXPRESSION_ERROR, location)
-  { }
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_integer_constant_value(bool, mpz_t val, Type**) const
-  {
-    mpz_set_ui(val, 0);
-    return true;
-  }
-
-  bool
-  do_float_constant_value(mpfr_t val, Type**) const
-  {
-    mpfr_set_ui(val, 0, GMP_RNDN);
-    return true;
-  }
-
-  bool
-  do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
-  {
-    mpfr_set_ui(real, 0, GMP_RNDN);
-    mpfr_set_ui(imag, 0, GMP_RNDN);
-    return true;
-  }
-
-  void
-  do_discarding_value()
-  { }
-
-  Type*
-  do_type()
-  { return Type::make_error_type(); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  bool
-  do_is_addressable() const
-  { return true; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return error_mark_node; }
-};
-
-Expression*
-Expression::make_error(source_location location)
-{
-  return new Error_expression(location);
-}
-
-// An expression which is really a type.  This is used during parsing.
-// It is an error if these survive after lowering.
-
-class
-Type_expression : public Expression
-{
- public:
-  Type_expression(Type* type, source_location location)
-    : Expression(EXPRESSION_TYPE, location),
-      type_(type)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Type::traverse(this->type_, traverse); }
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  void
-  do_check_types(Gogo*)
-  { this->report_error(_("invalid use of type")); }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // The type which we are representing as an expression.
-  Type* type_;
-};
-
-Expression*
-Expression::make_type(Type* type, source_location location)
-{
-  return new Type_expression(type, location);
-}
-
-// Class Parser_expression.
-
-Type*
-Parser_expression::do_type()
-{
-  // We should never really ask for the type of a Parser_expression.
-  // However, it can happen, at least when we have an invalid const
-  // whose initializer refers to the const itself.  In that case we
-  // may ask for the type when lowering the const itself.
-  gcc_assert(saw_errors());
-  return Type::make_error_type();
-}
-
-// Class Var_expression.
-
-// Lower a variable expression.  Here we just make sure that the
-// initialization expression of the variable has been lowered.  This
-// ensures that we will be able to determine the type of the variable
-// if necessary.
-
-Expression*
-Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  if (this->variable_->is_variable())
-    {
-      Variable* var = this->variable_->var_value();
-      // This is either a local variable or a global variable.  A
-      // reference to a variable which is local to an enclosing
-      // function will be a reference to a field in a closure.
-      if (var->is_global())
-       function = NULL;
-      var->lower_init_expression(gogo, function);
-    }
-  return this;
-}
-
-// Return the type of a reference to a variable.
-
-Type*
-Var_expression::do_type()
-{
-  if (this->variable_->is_variable())
-    return this->variable_->var_value()->type();
-  else if (this->variable_->is_result_variable())
-    return this->variable_->result_var_value()->type();
-  else
-    gcc_unreachable();
-}
-
-// Determine the type of a reference to a variable.
-
-void
-Var_expression::do_determine_type(const Type_context*)
-{
-  if (this->variable_->is_variable())
-    this->variable_->var_value()->determine_type();
-}
-
-// Something takes the address of this variable.  This means that we
-// may want to move the variable onto the heap.
-
-void
-Var_expression::do_address_taken(bool escapes)
-{
-  if (!escapes)
-    ;
-  else if (this->variable_->is_variable())
-    this->variable_->var_value()->set_address_taken();
-  else if (this->variable_->is_result_variable())
-    this->variable_->result_var_value()->set_address_taken();
-  else
-    gcc_unreachable();
-}
-
-// Get the tree for a reference to a variable.
-
-tree
-Var_expression::do_get_tree(Translate_context* context)
-{
-  return this->variable_->get_tree(context->gogo(), context->function());
-}
-
-// Make a reference to a variable in an expression.
-
-Expression*
-Expression::make_var_reference(Named_object* var, source_location location)
-{
-  if (var->is_sink())
-    return Expression::make_sink(location);
-
-  // FIXME: Creating a new object for each reference to a variable is
-  // wasteful.
-  return new Var_expression(var, location);
-}
-
-// Class Temporary_reference_expression.
-
-// The type.
-
-Type*
-Temporary_reference_expression::do_type()
-{
-  return this->statement_->type();
-}
-
-// Called if something takes the address of this temporary variable.
-// We never have to move temporary variables to the heap, but we do
-// need to know that they must live in the stack rather than in a
-// register.
-
-void
-Temporary_reference_expression::do_address_taken(bool)
-{
-  this->statement_->set_is_address_taken();
-}
-
-// Get a tree referring to the variable.
-
-tree
-Temporary_reference_expression::do_get_tree(Translate_context*)
-{
-  return this->statement_->get_decl();
-}
-
-// Make a reference to a temporary variable.
-
-Expression*
-Expression::make_temporary_reference(Temporary_statement* statement,
-                                    source_location location)
-{
-  return new Temporary_reference_expression(statement, location);
-}
-
-// A sink expression--a use of the blank identifier _.
-
-class Sink_expression : public Expression
-{
- public:
-  Sink_expression(source_location location)
-    : Expression(EXPRESSION_SINK, location),
-      type_(NULL), var_(NULL_TREE)
-  { }
-
- protected:
-  void
-  do_discarding_value()
-  { }
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  Expression*
-  do_copy()
-  { return new Sink_expression(this->location()); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type of this sink variable.
-  Type* type_;
-  // The temporary variable we generate.
-  tree var_;
-};
-
-// Return the type of a sink expression.
-
-Type*
-Sink_expression::do_type()
-{
-  if (this->type_ == NULL)
-    return Type::make_sink_type();
-  return this->type_;
-}
-
-// Determine the type of a sink expression.
-
-void
-Sink_expression::do_determine_type(const Type_context* context)
-{
-  if (context->type != NULL)
-    this->type_ = context->type;
-}
-
-// Return a temporary variable for a sink expression.  This will
-// presumably be a write-only variable which the middle-end will drop.
-
-tree
-Sink_expression::do_get_tree(Translate_context* context)
-{
-  if (this->var_ == NULL_TREE)
-    {
-      gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
-      this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
-                                 "blank");
-    }
-  return this->var_;
-}
-
-// Make a sink expression.
-
-Expression*
-Expression::make_sink(source_location location)
-{
-  return new Sink_expression(location);
-}
-
-// Class Func_expression.
-
-// FIXME: Can a function expression appear in a constant expression?
-// The value is unchanging.  Initializing a constant to the address of
-// a function seems like it could work, though there might be little
-// point to it.
-
-// Traversal.
-
-int
-Func_expression::do_traverse(Traverse* traverse)
-{
-  return (this->closure_ == NULL
-         ? TRAVERSE_CONTINUE
-         : Expression::traverse(&this->closure_, traverse));
-}
-
-// Return the type of a function expression.
-
-Type*
-Func_expression::do_type()
-{
-  if (this->function_->is_function())
-    return this->function_->func_value()->type();
-  else if (this->function_->is_function_declaration())
-    return this->function_->func_declaration_value()->type();
-  else
-    gcc_unreachable();
-}
-
-// Get the tree for a function expression without evaluating the
-// closure.
-
-tree
-Func_expression::get_tree_without_closure(Gogo* gogo)
-{
-  Function_type* fntype;
-  if (this->function_->is_function())
-    fntype = this->function_->func_value()->type();
-  else if (this->function_->is_function_declaration())
-    fntype = this->function_->func_declaration_value()->type();
-  else
-    gcc_unreachable();
-
-  // Builtin functions are handled specially by Call_expression.  We
-  // can't take their address.
-  if (fntype->is_builtin())
-    {
-      error_at(this->location(), "invalid use of special builtin function %qs",
-              this->function_->name().c_str());
-      return error_mark_node;
-    }
-
-  Named_object* no = this->function_;
-
-  tree id = no->get_id(gogo);
-  if (id == error_mark_node)
-    return error_mark_node;
-
-  tree fndecl;
-  if (no->is_function())
-    fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
-  else if (no->is_function_declaration())
-    fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
-  else
-    gcc_unreachable();
-
-  if (fndecl == error_mark_node)
-    return error_mark_node;
-
-  return build_fold_addr_expr_loc(this->location(), fndecl);
-}
-
-// Get the tree for a function expression.  This is used when we take
-// the address of a function rather than simply calling it.  If the
-// function has a closure, we must use a trampoline.
-
-tree
-Func_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-
-  tree fnaddr = this->get_tree_without_closure(gogo);
-  if (fnaddr == error_mark_node)
-    return error_mark_node;
-
-  gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
-            && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
-  TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
-
-  // For a normal non-nested function call, that is all we have to do.
-  if (!this->function_->is_function()
-      || this->function_->func_value()->enclosing() == NULL)
-    {
-      gcc_assert(this->closure_ == NULL);
-      return fnaddr;
-    }
-
-  // For a nested function call, we have to always allocate a
-  // trampoline.  If we don't always allocate, then closures will not
-  // be reliably distinct.
-  Expression* closure = this->closure_;
-  tree closure_tree;
-  if (closure == NULL)
-    closure_tree = null_pointer_node;
-  else
-    {
-      // Get the value of the closure.  This will be a pointer to
-      // space allocated on the heap.
-      closure_tree = closure->get_tree(context);
-      if (closure_tree == error_mark_node)
-       return error_mark_node;
-      gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
-    }
-
-  // Now we need to build some code on the heap.  This code will load
-  // the static chain pointer with the closure and then jump to the
-  // body of the function.  The normal gcc approach is to build the
-  // code on the stack.  Unfortunately we can not do that, as Go
-  // permits us to return the function pointer.
-
-  return gogo->make_trampoline(fnaddr, closure_tree, this->location());
-}
-
-// Make a reference to a function in an expression.
-
-Expression*
-Expression::make_func_reference(Named_object* function, Expression* closure,
-                               source_location location)
-{
-  return new Func_expression(function, closure, location);
-}
-
-// Class Unknown_expression.
-
-// Return the name of an unknown expression.
-
-const std::string&
-Unknown_expression::name() const
-{
-  return this->named_object_->name();
-}
-
-// Lower a reference to an unknown name.
-
-Expression*
-Unknown_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location location = this->location();
-  Named_object* no = this->named_object_;
-  Named_object* real;
-  if (!no->is_unknown())
-    real = no;
-  else
-    {
-      real = no->unknown_value()->real_named_object();
-      if (real == NULL)
-       {
-         if (this->is_composite_literal_key_)
-           return this;
-         error_at(location, "reference to undefined name %qs",
-                  this->named_object_->message_name().c_str());
-         return Expression::make_error(location);
-       }
-    }
-  switch (real->classification())
-    {
-    case Named_object::NAMED_OBJECT_CONST:
-      return Expression::make_const_reference(real, location);
-    case Named_object::NAMED_OBJECT_TYPE:
-      return Expression::make_type(real->type_value(), location);
-    case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-      if (this->is_composite_literal_key_)
-       return this;
-      error_at(location, "reference to undefined type %qs",
-              real->message_name().c_str());
-      return Expression::make_error(location);
-    case Named_object::NAMED_OBJECT_VAR:
-      return Expression::make_var_reference(real, location);
-    case Named_object::NAMED_OBJECT_FUNC:
-    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-      return Expression::make_func_reference(real, NULL, location);
-    case Named_object::NAMED_OBJECT_PACKAGE:
-      if (this->is_composite_literal_key_)
-       return this;
-      error_at(location, "unexpected reference to package");
-      return Expression::make_error(location);
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Make a reference to an unknown name.
-
-Expression*
-Expression::make_unknown_reference(Named_object* no, source_location location)
-{
-  gcc_assert(no->resolve()->is_unknown());
-  return new Unknown_expression(no, location);
-}
-
-// A boolean expression.
-
-class Boolean_expression : public Expression
-{
- public:
-  Boolean_expression(bool val, source_location location)
-    : Expression(EXPRESSION_BOOLEAN, location),
-      val_(val), type_(NULL)
-  { }
-
-  static Expression*
-  do_import(Import*);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->val_ ? boolean_true_node : boolean_false_node; }
-
-  void
-  do_export(Export* exp) const
-  { exp->write_c_string(this->val_ ? "true" : "false"); }
-
- private:
-  // The constant.
-  bool val_;
-  // The type as determined by context.
-  Type* type_;
-};
-
-// Get the type.
-
-Type*
-Boolean_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_boolean_type();
-  return this->type_;
-}
-
-// Set the type from the context.
-
-void
-Boolean_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL && context->type->is_boolean_type())
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_bool_type();
-}
-
-// Import a boolean constant.
-
-Expression*
-Boolean_expression::do_import(Import* imp)
-{
-  if (imp->peek_char() == 't')
-    {
-      imp->require_c_string("true");
-      return Expression::make_boolean(true, imp->location());
-    }
-  else
-    {
-      imp->require_c_string("false");
-      return Expression::make_boolean(false, imp->location());
-    }
-}
-
-// Make a boolean expression.
-
-Expression*
-Expression::make_boolean(bool val, source_location location)
-{
-  return new Boolean_expression(val, location);
-}
-
-// Class String_expression.
-
-// Get the type.
-
-Type*
-String_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_string_type();
-  return this->type_;
-}
-
-// Set the type from the context.
-
-void
-String_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL && context->type->is_string_type())
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_string_type();
-}
-
-// Build a string constant.
-
-tree
-String_expression::do_get_tree(Translate_context* context)
-{
-  return context->gogo()->go_string_constant_tree(this->val_);
-}
-
-// Export a string expression.
-
-void
-String_expression::do_export(Export* exp) const
-{
-  std::string s;
-  s.reserve(this->val_.length() * 4 + 2);
-  s += '"';
-  for (std::string::const_iterator p = this->val_.begin();
-       p != this->val_.end();
-       ++p)
-    {
-      if (*p == '\\' || *p == '"')
-       {
-         s += '\\';
-         s += *p;
-       }
-      else if (*p >= 0x20 && *p < 0x7f)
-       s += *p;
-      else if (*p == '\n')
-       s += "\\n";
-      else if (*p == '\t')
-       s += "\\t";
-      else
-       {
-         s += "\\x";
-         unsigned char c = *p;
-         unsigned int dig = c >> 4;
-         s += dig < 10 ? '0' + dig : 'A' + dig - 10;
-         dig = c & 0xf;
-         s += dig < 10 ? '0' + dig : 'A' + dig - 10;
-       }
-    }
-  s += '"';
-  exp->write_string(s);
-}
-
-// Import a string expression.
-
-Expression*
-String_expression::do_import(Import* imp)
-{
-  imp->require_c_string("\"");
-  std::string val;
-  while (true)
-    {
-      int c = imp->get_char();
-      if (c == '"' || c == -1)
-       break;
-      if (c != '\\')
-       val += static_cast<char>(c);
-      else
-       {
-         c = imp->get_char();
-         if (c == '\\' || c == '"')
-           val += static_cast<char>(c);
-         else if (c == 'n')
-           val += '\n';
-         else if (c == 't')
-           val += '\t';
-         else if (c == 'x')
-           {
-             c = imp->get_char();
-             unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
-             c = imp->get_char();
-             unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
-             char v = (vh << 4) | vl;
-             val += v;
-           }
-         else
-           {
-             error_at(imp->location(), "bad string constant");
-             return Expression::make_error(imp->location());
-           }
-       }
-    }
-  return Expression::make_string(val, imp->location());
-}
-
-// Make a string expression.
-
-Expression*
-Expression::make_string(const std::string& val, source_location location)
-{
-  return new String_expression(val, location);
-}
-
-// Make an integer expression.
-
-class Integer_expression : public Expression
-{
- public:
-  Integer_expression(const mpz_t* val, Type* type, source_location location)
-    : Expression(EXPRESSION_INTEGER, location),
-      type_(type)
-  { mpz_init_set(this->val_, *val); }
-
-  static Expression*
-  do_import(Import*);
-
-  // Return whether VAL fits in the type.
-  static bool
-  check_constant(mpz_t val, Type*, source_location);
-
-  // Write VAL to export data.
-  static void
-  export_integer(Export* exp, const mpz_t val);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context* context);
-
-  void
-  do_check_types(Gogo*);
-
-  tree
-  do_get_tree(Translate_context*);
-
-  Expression*
-  do_copy()
-  { return Expression::make_integer(&this->val_, this->type_,
-                                   this->location()); }
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The integer value.
-  mpz_t val_;
-  // The type so far.
-  Type* type_;
-};
-
-// Return an integer constant value.
-
-bool
-Integer_expression::do_integer_constant_value(bool, mpz_t val,
-                                             Type** ptype) const
-{
-  if (this->type_ != NULL)
-    *ptype = this->type_;
-  mpz_set(val, this->val_);
-  return true;
-}
-
-// Return the current type.  If we haven't set the type yet, we return
-// an abstract integer type.
-
-Type*
-Integer_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_abstract_integer_type();
-  return this->type_;
-}
-
-// Set the type of the integer value.  Here we may switch from an
-// abstract type to a real type.
-
-void
-Integer_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL
-          && (context->type->integer_type() != NULL
-              || context->type->float_type() != NULL
-              || context->type->complex_type() != NULL))
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_integer_type("int");
-}
-
-// Return true if the integer VAL fits in the range of the type TYPE.
-// Otherwise give an error and return false.  TYPE may be NULL.
-
-bool
-Integer_expression::check_constant(mpz_t val, Type* type,
-                                  source_location location)
-{
-  if (type == NULL)
-    return true;
-  Integer_type* itype = type->integer_type();
-  if (itype == NULL || itype->is_abstract())
-    return true;
-
-  int bits = mpz_sizeinbase(val, 2);
-
-  if (itype->is_unsigned())
-    {
-      // For an unsigned type we can only accept a nonnegative number,
-      // and we must be able to represent at least BITS.
-      if (mpz_sgn(val) >= 0
-         && bits <= itype->bits())
-       return true;
-    }
-  else
-    {
-      // For a signed type we need an extra bit to indicate the sign.
-      // We have to handle the most negative integer specially.
-      if (bits + 1 <= itype->bits()
-         || (bits <= itype->bits()
-             && mpz_sgn(val) < 0
-             && (mpz_scan1(val, 0)
-                 == static_cast<unsigned long>(itype->bits() - 1))
-             && mpz_scan0(val, itype->bits()) == ULONG_MAX))
-       return true;
-    }
-
-  error_at(location, "integer constant overflow");
-  return false;
-}
-
-// Check the type of an integer constant.
-
-void
-Integer_expression::do_check_types(Gogo*)
-{
-  if (this->type_ == NULL)
-    return;
-  if (!Integer_expression::check_constant(this->val_, this->type_,
-                                         this->location()))
-    this->set_is_error();
-}
-
-// Get a tree for an integer constant.
-
-tree
-Integer_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type;
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    type = this->type_->get_tree(gogo);
-  else if (this->type_ != NULL && this->type_->float_type() != NULL)
-    {
-      // We are converting to an abstract floating point type.
-      type = Type::lookup_float_type("float64")->get_tree(gogo);
-    }
-  else if (this->type_ != NULL && this->type_->complex_type() != NULL)
-    {
-      // We are converting to an abstract complex type.
-      type = Type::lookup_complex_type("complex128")->get_tree(gogo);
-    }
-  else
-    {
-      // If we still have an abstract type here, then this is being
-      // used in a constant expression which didn't get reduced for
-      // some reason.  Use a type which will fit the value.  We use <,
-      // not <=, because we need an extra bit for the sign bit.
-      int bits = mpz_sizeinbase(this->val_, 2);
-      if (bits < INT_TYPE_SIZE)
-       type = Type::lookup_integer_type("int")->get_tree(gogo);
-      else if (bits < 64)
-       type = Type::lookup_integer_type("int64")->get_tree(gogo);
-      else
-       type = long_long_integer_type_node;
-    }
-  return Expression::integer_constant_tree(this->val_, type);
-}
-
-// Write VAL to export data.
-
-void
-Integer_expression::export_integer(Export* exp, const mpz_t val)
-{
-  char* s = mpz_get_str(NULL, 10, val);
-  exp->write_c_string(s);
-  free(s);
-}
-
-// Export an integer in a constant expression.
-
-void
-Integer_expression::do_export(Export* exp) const
-{
-  Integer_expression::export_integer(exp, this->val_);
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Import an integer, floating point, or complex value.  This handles
-// all these types because they all start with digits.
-
-Expression*
-Integer_expression::do_import(Import* imp)
-{
-  std::string num = imp->read_identifier();
-  imp->require_c_string(" ");
-  if (!num.empty() && num[num.length() - 1] == 'i')
-    {
-      mpfr_t real;
-      size_t plus_pos = num.find('+', 1);
-      size_t minus_pos = num.find('-', 1);
-      size_t pos;
-      if (plus_pos == std::string::npos)
-       pos = minus_pos;
-      else if (minus_pos == std::string::npos)
-       pos = plus_pos;
-      else
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  num.c_str());
-         return Expression::make_error(imp->location());
-       }
-      if (pos == std::string::npos)
-       mpfr_set_ui(real, 0, GMP_RNDN);
-      else
-       {
-         std::string real_str = num.substr(0, pos);
-         if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
-           {
-             error_at(imp->location(), "bad number in import data: %qs",
-                      real_str.c_str());
-             return Expression::make_error(imp->location());
-           }
-       }
-
-      std::string imag_str;
-      if (pos == std::string::npos)
-       imag_str = num;
-      else
-       imag_str = num.substr(pos);
-      imag_str = imag_str.substr(0, imag_str.size() - 1);
-      mpfr_t imag;
-      if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  imag_str.c_str());
-         return Expression::make_error(imp->location());
-       }
-      Expression* ret = Expression::make_complex(&real, &imag, NULL,
-                                                imp->location());
-      mpfr_clear(real);
-      mpfr_clear(imag);
-      return ret;
-    }
-  else if (num.find('.') == std::string::npos
-          && num.find('E') == std::string::npos)
-    {
-      mpz_t val;
-      if (mpz_init_set_str(val, num.c_str(), 10) != 0)
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  num.c_str());
-         return Expression::make_error(imp->location());
-       }
-      Expression* ret = Expression::make_integer(&val, NULL, imp->location());
-      mpz_clear(val);
-      return ret;
-    }
-  else
-    {
-      mpfr_t val;
-      if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
-       {
-         error_at(imp->location(), "bad number in import data: %qs",
-                  num.c_str());
-         return Expression::make_error(imp->location());
-       }
-      Expression* ret = Expression::make_float(&val, NULL, imp->location());
-      mpfr_clear(val);
-      return ret;
-    }
-}
-
-// Build a new integer value.
-
-Expression*
-Expression::make_integer(const mpz_t* val, Type* type,
-                        source_location location)
-{
-  return new Integer_expression(val, type, location);
-}
-
-// Floats.
-
-class Float_expression : public Expression
-{
- public:
-  Float_expression(const mpfr_t* val, Type* type, source_location location)
-    : Expression(EXPRESSION_FLOAT, location),
-      type_(type)
-  {
-    mpfr_init_set(this->val_, *val, GMP_RNDN);
-  }
-
-  // Constrain VAL to fit into TYPE.
-  static void
-  constrain_float(mpfr_t val, Type* type);
-
-  // Return whether VAL fits in the type.
-  static bool
-  check_constant(mpfr_t val, Type*, source_location);
-
-  // Write VAL to export data.
-  static void
-  export_float(Export* exp, const mpfr_t val);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_float_constant_value(mpfr_t val, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  { return Expression::make_float(&this->val_, this->type_,
-                                 this->location()); }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The floating point value.
-  mpfr_t val_;
-  // The type so far.
-  Type* type_;
-};
-
-// Constrain VAL to fit into TYPE.
-
-void
-Float_expression::constrain_float(mpfr_t val, Type* type)
-{
-  Float_type* ftype = type->float_type();
-  if (ftype != NULL && !ftype->is_abstract())
-    {
-      tree type_tree = ftype->type_tree();
-      REAL_VALUE_TYPE rvt;
-      real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
-      real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
-      mpfr_from_real(val, &rvt, GMP_RNDN);
-    }
-}
-
-// Return a floating point constant value.
-
-bool
-Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  if (this->type_ != NULL)
-    *ptype = this->type_;
-  mpfr_set(val, this->val_, GMP_RNDN);
-  return true;
-}
-
-// Return the current type.  If we haven't set the type yet, we return
-// an abstract float type.
-
-Type*
-Float_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_abstract_float_type();
-  return this->type_;
-}
-
-// Set the type of the float value.  Here we may switch from an
-// abstract type to a real type.
-
-void
-Float_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL
-          && (context->type->integer_type() != NULL
-              || context->type->float_type() != NULL
-              || context->type->complex_type() != NULL))
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_float_type("float64");
-}
-
-// Return true if the floating point value VAL fits in the range of
-// the type TYPE.  Otherwise give an error and return false.  TYPE may
-// be NULL.
-
-bool
-Float_expression::check_constant(mpfr_t val, Type* type,
-                                source_location location)
-{
-  if (type == NULL)
-    return true;
-  Float_type* ftype = type->float_type();
-  if (ftype == NULL || ftype->is_abstract())
-    return true;
-
-  // A NaN or Infinity always fits in the range of the type.
-  if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
-    return true;
-
-  mp_exp_t exp = mpfr_get_exp(val);
-  mp_exp_t max_exp;
-  switch (ftype->bits())
-    {
-    case 32:
-      max_exp = 128;
-      break;
-    case 64:
-      max_exp = 1024;
-      break;
-    default:
-      gcc_unreachable();
-    }
-  if (exp > max_exp)
-    {
-      error_at(location, "floating point constant overflow");
-      return false;
-    }
-  return true;
-}
-
-// Check the type of a float value.
-
-void
-Float_expression::do_check_types(Gogo*)
-{
-  if (this->type_ == NULL)
-    return;
-
-  if (!Float_expression::check_constant(this->val_, this->type_,
-                                       this->location()))
-    this->set_is_error();
-
-  Integer_type* integer_type = this->type_->integer_type();
-  if (integer_type != NULL)
-    {
-      if (!mpfr_integer_p(this->val_))
-       this->report_error(_("floating point constant truncated to integer"));
-      else
-       {
-         gcc_assert(!integer_type->is_abstract());
-         mpz_t ival;
-         mpz_init(ival);
-         mpfr_get_z(ival, this->val_, GMP_RNDN);
-         Integer_expression::check_constant(ival, integer_type,
-                                            this->location());
-         mpz_clear(ival);
-       }
-    }
-}
-
-// Get a tree for a float constant.
-
-tree
-Float_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type;
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    type = this->type_->get_tree(gogo);
-  else if (this->type_ != NULL && this->type_->integer_type() != NULL)
-    {
-      // We have an abstract integer type.  We just hope for the best.
-      type = Type::lookup_integer_type("int")->get_tree(gogo);
-    }
-  else
-    {
-      // If we still have an abstract type here, then this is being
-      // used in a constant expression which didn't get reduced.  We
-      // just use float64 and hope for the best.
-      type = Type::lookup_float_type("float64")->get_tree(gogo);
-    }
-  return Expression::float_constant_tree(this->val_, type);
-}
-
-// Write a floating point number to export data.
-
-void
-Float_expression::export_float(Export *exp, const mpfr_t val)
-{
-  mp_exp_t exponent;
-  char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
-  if (*s == '-')
-    exp->write_c_string("-");
-  exp->write_c_string("0.");
-  exp->write_c_string(*s == '-' ? s + 1 : s);
-  mpfr_free_str(s);
-  char buf[30];
-  snprintf(buf, sizeof buf, "E%ld", exponent);
-  exp->write_c_string(buf);
-}
-
-// Export a floating point number in a constant expression.
-
-void
-Float_expression::do_export(Export* exp) const
-{
-  Float_expression::export_float(exp, this->val_);
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Make a float expression.
-
-Expression*
-Expression::make_float(const mpfr_t* val, Type* type, source_location location)
-{
-  return new Float_expression(val, type, location);
-}
-
-// Complex numbers.
-
-class Complex_expression : public Expression
-{
- public:
-  Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
-                    source_location location)
-    : Expression(EXPRESSION_COMPLEX, location),
-      type_(type)
-  {
-    mpfr_init_set(this->real_, *real, GMP_RNDN);
-    mpfr_init_set(this->imag_, *imag, GMP_RNDN);
-  }
-
-  // Constrain REAL/IMAG to fit into TYPE.
-  static void
-  constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
-
-  // Return whether REAL/IMAG fits in the type.
-  static bool
-  check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
-
-  // Write REAL/IMAG to export data.
-  static void
-  export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_complex(&this->real_, &this->imag_, this->type_,
-                                   this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The real part.
-  mpfr_t real_;
-  // The imaginary part;
-  mpfr_t imag_;
-  // The type if known.
-  Type* type_;
-};
-
-// Constrain REAL/IMAG to fit into TYPE.
-
-void
-Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
-{
-  Complex_type* ctype = type->complex_type();
-  if (ctype != NULL && !ctype->is_abstract())
-    {
-      tree type_tree = ctype->type_tree();
-
-      REAL_VALUE_TYPE rvt;
-      real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
-      real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
-      mpfr_from_real(real, &rvt, GMP_RNDN);
-
-      real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
-      real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
-      mpfr_from_real(imag, &rvt, GMP_RNDN);
-    }
-}
-
-// Return a complex constant value.
-
-bool
-Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                             Type** ptype) const
-{
-  if (this->type_ != NULL)
-    *ptype = this->type_;
-  mpfr_set(real, this->real_, GMP_RNDN);
-  mpfr_set(imag, this->imag_, GMP_RNDN);
-  return true;
-}
-
-// Return the current type.  If we haven't set the type yet, we return
-// an abstract complex type.
-
-Type*
-Complex_expression::do_type()
-{
-  if (this->type_ == NULL)
-    this->type_ = Type::make_abstract_complex_type();
-  return this->type_;
-}
-
-// Set the type of the complex value.  Here we may switch from an
-// abstract type to a real type.
-
-void
-Complex_expression::do_determine_type(const Type_context* context)
-{
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    ;
-  else if (context->type != NULL
-          && context->type->complex_type() != NULL)
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    this->type_ = Type::lookup_complex_type("complex128");
-}
-
-// Return true if the complex value REAL/IMAG fits in the range of the
-// type TYPE.  Otherwise give an error and return false.  TYPE may be
-// NULL.
-
-bool
-Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
-                                  source_location location)
-{
-  if (type == NULL)
-    return true;
-  Complex_type* ctype = type->complex_type();
-  if (ctype == NULL || ctype->is_abstract())
-    return true;
-
-  mp_exp_t max_exp;
-  switch (ctype->bits())
-    {
-    case 64:
-      max_exp = 128;
-      break;
-    case 128:
-      max_exp = 1024;
-      break;
-    default:
-      gcc_unreachable();
-    }
-
-  // A NaN or Infinity always fits in the range of the type.
-  if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
-    {
-      if (mpfr_get_exp(real) > max_exp)
-       {
-         error_at(location, "complex real part constant overflow");
-         return false;
-       }
-    }
-
-  if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
-    {
-      if (mpfr_get_exp(imag) > max_exp)
-       {
-         error_at(location, "complex imaginary part constant overflow");
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Check the type of a complex value.
-
-void
-Complex_expression::do_check_types(Gogo*)
-{
-  if (this->type_ == NULL)
-    return;
-
-  if (!Complex_expression::check_constant(this->real_, this->imag_,
-                                         this->type_, this->location()))
-    this->set_is_error();
-}
-
-// Get a tree for a complex constant.
-
-tree
-Complex_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type;
-  if (this->type_ != NULL && !this->type_->is_abstract())
-    type = this->type_->get_tree(gogo);
-  else
-    {
-      // If we still have an abstract type here, this this is being
-      // used in a constant expression which didn't get reduced.  We
-      // just use complex128 and hope for the best.
-      type = Type::lookup_complex_type("complex128")->get_tree(gogo);
-    }
-  return Expression::complex_constant_tree(this->real_, this->imag_, type);
-}
-
-// Write REAL/IMAG to export data.
-
-void
-Complex_expression::export_complex(Export* exp, const mpfr_t real,
-                                  const mpfr_t imag)
-{
-  if (!mpfr_zero_p(real))
-    {
-      Float_expression::export_float(exp, real);
-      if (mpfr_sgn(imag) > 0)
-       exp->write_c_string("+");
-    }
-  Float_expression::export_float(exp, imag);
-  exp->write_c_string("i");
-}
-
-// Export a complex number in a constant expression.
-
-void
-Complex_expression::do_export(Export* exp) const
-{
-  Complex_expression::export_complex(exp, this->real_, this->imag_);
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Make a complex expression.
-
-Expression*
-Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
-                        source_location location)
-{
-  return new Complex_expression(real, imag, type, location);
-}
-
-// Find a named object in an expression.
-
-class Find_named_object : public Traverse
-{
- public:
-  Find_named_object(Named_object* no)
-    : Traverse(traverse_expressions),
-      no_(no), found_(false)
-  { }
-
-  // Whether we found the object.
-  bool
-  found() const
-  { return this->found_; }
-
- protected:
-  int
-  expression(Expression**);
-
- private:
-  // The object we are looking for.
-  Named_object* no_;
-  // Whether we found it.
-  bool found_;
-};
-
-// A reference to a const in an expression.
-
-class Const_expression : public Expression
-{
- public:
-  Const_expression(Named_object* constant, source_location location)
-    : Expression(EXPRESSION_CONST_REFERENCE, location),
-      constant_(constant), type_(NULL), seen_(false)
-  { }
-
-  Named_object*
-  named_object()
-  { return this->constant_; }
-
-  // Check that the initializer does not refer to the constant itself.
-  void
-  check_for_init_loop();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const
-  { return true; }
-
-  bool
-  do_integer_constant_value(bool, mpz_t val, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t val, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
-
-  bool
-  do_string_constant_value(std::string* val) const
-  { return this->constant_->const_value()->expr()->string_constant_value(val); }
-
-  Type*
-  do_type();
-
-  // The type of a const is set by the declaration, not the use.
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context);
-
-  // When exporting a reference to a const as part of a const
-  // expression, we export the value.  We ignore the fact that it has
-  // a name.
-  void
-  do_export(Export* exp) const
-  { this->constant_->const_value()->expr()->export_expression(exp); }
-
- private:
-  // The constant.
-  Named_object* constant_;
-  // The type of this reference.  This is used if the constant has an
-  // abstract type.
-  Type* type_;
-  // Used to prevent infinite recursion when a constant incorrectly
-  // refers to itself.
-  mutable bool seen_;
-};
-
-// Traversal.
-
-int
-Const_expression::do_traverse(Traverse* traverse)
-{
-  if (this->type_ != NULL)
-    return Type::traverse(this->type_, traverse);
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a constant expression.  This is where we convert the
-// predeclared constant iota into an integer value.
-
-Expression*
-Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
-{
-  if (this->constant_->const_value()->expr()->classification()
-      == EXPRESSION_IOTA)
-    {
-      if (iota_value == -1)
-       {
-         error_at(this->location(),
-                  "iota is only defined in const declarations");
-         iota_value = 0;
-       }
-      mpz_t val;
-      mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
-      Expression* ret = Expression::make_integer(&val, NULL,
-                                                this->location());
-      mpz_clear(val);
-      return ret;
-    }
-
-  // Make sure that the constant itself has been lowered.
-  gogo->lower_constant(this->constant_);
-
-  return this;
-}
-
-// Return an integer constant value.
-
-bool
-Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
-                                           Type** ptype) const
-{
-  if (this->seen_)
-    return false;
-
-  Type* ctype;
-  if (this->type_ != NULL)
-    ctype = this->type_;
-  else
-    ctype = this->constant_->const_value()->type();
-  if (ctype != NULL && ctype->integer_type() == NULL)
-    return false;
-
-  Expression* e = this->constant_->const_value()->expr();
-
-  this->seen_ = true;
-
-  Type* t;
-  bool r = e->integer_constant_value(iota_is_constant, val, &t);
-
-  this->seen_ = false;
-
-  if (r
-      && ctype != NULL
-      && !Integer_expression::check_constant(val, ctype, this->location()))
-    return false;
-
-  *ptype = ctype != NULL ? ctype : t;
-  return r;
-}
-
-// Return a floating point constant value.
-
-bool
-Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  if (this->seen_)
-    return false;
-
-  Type* ctype;
-  if (this->type_ != NULL)
-    ctype = this->type_;
-  else
-    ctype = this->constant_->const_value()->type();
-  if (ctype != NULL && ctype->float_type() == NULL)
-    return false;
-
-  this->seen_ = true;
-
-  Type* t;
-  bool r = this->constant_->const_value()->expr()->float_constant_value(val,
-                                                                       &t);
-
-  this->seen_ = false;
-
-  if (r && ctype != NULL)
-    {
-      if (!Float_expression::check_constant(val, ctype, this->location()))
-       return false;
-      Float_expression::constrain_float(val, ctype);
-    }
-  *ptype = ctype != NULL ? ctype : t;
-  return r;
-}
-
-// Return a complex constant value.
-
-bool
-Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                           Type **ptype) const
-{
-  if (this->seen_)
-    return false;
-
-  Type* ctype;
-  if (this->type_ != NULL)
-    ctype = this->type_;
-  else
-    ctype = this->constant_->const_value()->type();
-  if (ctype != NULL && ctype->complex_type() == NULL)
-    return false;
-
-  this->seen_ = true;
-
-  Type *t;
-  bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
-                                                                         imag,
-                                                                         &t);
-
-  this->seen_ = false;
-
-  if (r && ctype != NULL)
-    {
-      if (!Complex_expression::check_constant(real, imag, ctype,
-                                             this->location()))
-       return false;
-      Complex_expression::constrain_complex(real, imag, ctype);
-    }
-  *ptype = ctype != NULL ? ctype : t;
-  return r;
-}
-
-// Return the type of the const reference.
-
-Type*
-Const_expression::do_type()
-{
-  if (this->type_ != NULL)
-    return this->type_;
-
-  Named_constant* nc = this->constant_->const_value();
-
-  if (this->seen_ || nc->lowering())
-    {
-      this->report_error(_("constant refers to itself"));
-      this->type_ = Type::make_error_type();
-      return this->type_;
-    }
-
-  this->seen_ = true;
-
-  Type* ret = nc->type();
-
-  if (ret != NULL)
-    {
-      this->seen_ = false;
-      return ret;
-    }
-
-  // During parsing, a named constant may have a NULL type, but we
-  // must not return a NULL type here.
-  ret = nc->expr()->type();
-
-  this->seen_ = false;
-
-  return ret;
-}
-
-// Set the type of the const reference.
-
-void
-Const_expression::do_determine_type(const Type_context* context)
-{
-  Type* ctype = this->constant_->const_value()->type();
-  Type* cetype = (ctype != NULL
-                 ? ctype
-                 : this->constant_->const_value()->expr()->type());
-  if (ctype != NULL && !ctype->is_abstract())
-    ;
-  else if (context->type != NULL
-          && (context->type->integer_type() != NULL
-              || context->type->float_type() != NULL
-              || context->type->complex_type() != NULL)
-          && (cetype->integer_type() != NULL
-              || cetype->float_type() != NULL
-              || cetype->complex_type() != NULL))
-    this->type_ = context->type;
-  else if (context->type != NULL
-          && context->type->is_string_type()
-          && cetype->is_string_type())
-    this->type_ = context->type;
-  else if (context->type != NULL
-          && context->type->is_boolean_type()
-          && cetype->is_boolean_type())
-    this->type_ = context->type;
-  else if (!context->may_be_abstract)
-    {
-      if (cetype->is_abstract())
-       cetype = cetype->make_non_abstract_type();
-      this->type_ = cetype;
-    }
-}
-
-// Check for a loop in which the initializer of a constant refers to
-// the constant itself.
-
-void
-Const_expression::check_for_init_loop()
-{
-  if (this->type_ != NULL && this->type_->is_error_type())
-    return;
-
-  if (this->seen_)
-    {
-      this->report_error(_("constant refers to itself"));
-      this->type_ = Type::make_error_type();
-      return;
-    }
-
-  Expression* init = this->constant_->const_value()->expr();
-  Find_named_object find_named_object(this->constant_);
-
-  this->seen_ = true;
-  Expression::traverse(&init, &find_named_object);
-  this->seen_ = false;
-
-  if (find_named_object.found())
-    {
-      if (this->type_ == NULL || !this->type_->is_error_type())
-       {
-         this->report_error(_("constant refers to itself"));
-         this->type_ = Type::make_error_type();
-       }
-      return;
-    }
-}
-
-// Check types of a const reference.
-
-void
-Const_expression::do_check_types(Gogo*)
-{
-  if (this->type_ != NULL && this->type_->is_error_type())
-    return;
-
-  this->check_for_init_loop();
-
-  if (this->type_ == NULL || this->type_->is_abstract())
-    return;
-
-  // Check for integer overflow.
-  if (this->type_->integer_type() != NULL)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      Type* dummy;
-      if (!this->integer_constant_value(true, ival, &dummy))
-       {
-         mpfr_t fval;
-         mpfr_init(fval);
-         Expression* cexpr = this->constant_->const_value()->expr();
-         if (cexpr->float_constant_value(fval, &dummy))
-           {
-             if (!mpfr_integer_p(fval))
-               this->report_error(_("floating point constant "
-                                    "truncated to integer"));
-             else
-               {
-                 mpfr_get_z(ival, fval, GMP_RNDN);
-                 Integer_expression::check_constant(ival, this->type_,
-                                                    this->location());
-               }
-           }
-         mpfr_clear(fval);
-       }
-      mpz_clear(ival);
-    }
-}
-
-// Return a tree for the const reference.
-
-tree
-Const_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type_tree;
-  if (this->type_ == NULL)
-    type_tree = NULL_TREE;
-  else
-    {
-      type_tree = this->type_->get_tree(gogo);
-      if (type_tree == error_mark_node)
-       return error_mark_node;
-    }
-
-  // If the type has been set for this expression, but the underlying
-  // object is an abstract int or float, we try to get the abstract
-  // value.  Otherwise we may lose something in the conversion.
-  if (this->type_ != NULL
-      && (this->constant_->const_value()->type() == NULL
-         || this->constant_->const_value()->type()->is_abstract()))
-    {
-      Expression* expr = this->constant_->const_value()->expr();
-      mpz_t ival;
-      mpz_init(ival);
-      Type* t;
-      if (expr->integer_constant_value(true, ival, &t))
-       {
-         tree ret = Expression::integer_constant_tree(ival, type_tree);
-         mpz_clear(ival);
-         return ret;
-       }
-      mpz_clear(ival);
-
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (expr->float_constant_value(fval, &t))
-       {
-         tree ret = Expression::float_constant_tree(fval, type_tree);
-         mpfr_clear(fval);
-         return ret;
-       }
-
-      mpfr_t imag;
-      mpfr_init(imag);
-      if (expr->complex_constant_value(fval, imag, &t))
-       {
-         tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
-         mpfr_clear(fval);
-         mpfr_clear(imag);
-         return ret;
-       }
-      mpfr_clear(imag);
-      mpfr_clear(fval);
-    }
-
-  tree const_tree = this->constant_->get_tree(gogo, context->function());
-  if (this->type_ == NULL
-      || const_tree == error_mark_node
-      || TREE_TYPE(const_tree) == error_mark_node)
-    return const_tree;
-
-  tree ret;
-  if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
-    ret = fold_convert(type_tree, const_tree);
-  else if (TREE_CODE(type_tree) == INTEGER_TYPE)
-    ret = fold(convert_to_integer(type_tree, const_tree));
-  else if (TREE_CODE(type_tree) == REAL_TYPE)
-    ret = fold(convert_to_real(type_tree, const_tree));
-  else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
-    ret = fold(convert_to_complex(type_tree, const_tree));
-  else
-    gcc_unreachable();
-  return ret;
-}
-
-// Make a reference to a constant in an expression.
-
-Expression*
-Expression::make_const_reference(Named_object* constant,
-                                source_location location)
-{
-  return new Const_expression(constant, location);
-}
-
-// Find a named object in an expression.
-
-int
-Find_named_object::expression(Expression** pexpr)
-{
-  switch ((*pexpr)->classification())
-    {
-    case Expression::EXPRESSION_CONST_REFERENCE:
-      {
-       Const_expression* ce = static_cast<Const_expression*>(*pexpr);
-       if (ce->named_object() == this->no_)
-         break;
-
-       // We need to check a constant initializer explicitly, as
-       // loops here will not be caught by the loop checking for
-       // variable initializers.
-       ce->check_for_init_loop();
-
-       return TRAVERSE_CONTINUE;
-      }
-
-    case Expression::EXPRESSION_VAR_REFERENCE:
-      if ((*pexpr)->var_expression()->named_object() == this->no_)
-       break;
-      return TRAVERSE_CONTINUE;
-    case Expression::EXPRESSION_FUNC_REFERENCE:
-      if ((*pexpr)->func_expression()->named_object() == this->no_)
-       break;
-      return TRAVERSE_CONTINUE;
-    default:
-      return TRAVERSE_CONTINUE;
-    }
-  this->found_ = true;
-  return TRAVERSE_EXIT;
-}
-
-// The nil value.
-
-class Nil_expression : public Expression
-{
- public:
-  Nil_expression(source_location location)
-    : Expression(EXPRESSION_NIL, location)
-  { }
-
-  static Expression*
-  do_import(Import*);
-
- protected:
-  bool
-  do_is_constant() const
-  { return true; }
-
-  Type*
-  do_type()
-  { return Type::make_nil_type(); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return null_pointer_node; }
-
-  void
-  do_export(Export* exp) const
-  { exp->write_c_string("nil"); }
-};
-
-// Import a nil expression.
-
-Expression*
-Nil_expression::do_import(Import* imp)
-{
-  imp->require_c_string("nil");
-  return Expression::make_nil(imp->location());
-}
-
-// Make a nil expression.
-
-Expression*
-Expression::make_nil(source_location location)
-{
-  return new Nil_expression(location);
-}
-
-// The value of the predeclared constant iota.  This is little more
-// than a marker.  This will be lowered to an integer in
-// Const_expression::do_lower, which is where we know the value that
-// it should have.
-
-class Iota_expression : public Parser_expression
-{
- public:
-  Iota_expression(source_location location)
-    : Parser_expression(EXPRESSION_IOTA, location)
-  { }
-
- protected:
-  Expression*
-  do_lower(Gogo*, Named_object*, int)
-  { gcc_unreachable(); }
-
-  // There should only ever be one of these.
-  Expression*
-  do_copy()
-  { gcc_unreachable(); }
-};
-
-// Make an iota expression.  This is only called for one case: the
-// value of the predeclared constant iota.
-
-Expression*
-Expression::make_iota()
-{
-  static Iota_expression iota_expression(UNKNOWN_LOCATION);
-  return &iota_expression;
-}
-
-// A type conversion expression.
-
-class Type_conversion_expression : public Expression
-{
- public:
-  Type_conversion_expression(Type* type, Expression* expr,
-                            source_location location)
-    : Expression(EXPRESSION_CONVERSION, location),
-      type_(type), expr_(expr), may_convert_function_types_(false)
-  { }
-
-  // Return the type to which we are converting.
-  Type*
-  type() const
-  { return this->type_; }
-
-  // Return the expression which we are converting.
-  Expression*
-  expr() const
-  { return this->expr_; }
-
-  // Permit converting from one function type to another.  This is
-  // used internally for method expressions.
-  void
-  set_may_convert_function_types()
-  {
-    this->may_convert_function_types_ = true;
-  }
-
-  // Import a type conversion expression.
-  static Expression*
-  do_import(Import*);
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const
-  { return this->expr_->is_constant(); }
-
-  bool
-  do_integer_constant_value(bool, mpz_t, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
-
-  bool
-  do_string_constant_value(std::string*) const;
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*)
-  {
-    Type_context subcontext(this->type_, false);
-    this->expr_->determine_type(&subcontext);
-  }
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Type_conversion_expression(this->type_, this->expr_->copy(),
-                                         this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context* context);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The type to convert to.
-  Type* type_;
-  // The expression to convert.
-  Expression* expr_;
-  // True if this is permitted to convert function types.  This is
-  // used internally for method expressions.
-  bool may_convert_function_types_;
-};
-
-// Traversal.
-
-int
-Type_conversion_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
-      || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Convert to a constant at lowering time.
-
-Expression*
-Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
-{
-  Type* type = this->type_;
-  Expression* val = this->expr_;
-  source_location location = this->location();
-
-  if (type->integer_type() != NULL)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      Type* dummy;
-      if (val->integer_constant_value(false, ival, &dummy))
-       {
-         if (!Integer_expression::check_constant(ival, type, location))
-           mpz_set_ui(ival, 0);
-         Expression* ret = Expression::make_integer(&ival, type, location);
-         mpz_clear(ival);
-         return ret;
-       }
-
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (val->float_constant_value(fval, &dummy))
-       {
-         if (!mpfr_integer_p(fval))
-           {
-             error_at(location,
-                      "floating point constant truncated to integer");
-             return Expression::make_error(location);
-           }
-         mpfr_get_z(ival, fval, GMP_RNDN);
-         if (!Integer_expression::check_constant(ival, type, location))
-           mpz_set_ui(ival, 0);
-         Expression* ret = Expression::make_integer(&ival, type, location);
-         mpfr_clear(fval);
-         mpz_clear(ival);
-         return ret;
-       }
-      mpfr_clear(fval);
-      mpz_clear(ival);
-    }
-
-  if (type->float_type() != NULL)
-    {
-      mpfr_t fval;
-      mpfr_init(fval);
-      Type* dummy;
-      if (val->float_constant_value(fval, &dummy))
-       {
-         if (!Float_expression::check_constant(fval, type, location))
-           mpfr_set_ui(fval, 0, GMP_RNDN);
-         Float_expression::constrain_float(fval, type);
-         Expression *ret = Expression::make_float(&fval, type, location);
-         mpfr_clear(fval);
-         return ret;
-       }
-      mpfr_clear(fval);
-    }
-
-  if (type->complex_type() != NULL)
-    {
-      mpfr_t real;
-      mpfr_t imag;
-      mpfr_init(real);
-      mpfr_init(imag);
-      Type* dummy;
-      if (val->complex_constant_value(real, imag, &dummy))
-       {
-         if (!Complex_expression::check_constant(real, imag, type, location))
-           {
-             mpfr_set_ui(real, 0, GMP_RNDN);
-             mpfr_set_ui(imag, 0, GMP_RNDN);
-           }
-         Complex_expression::constrain_complex(real, imag, type);
-         Expression* ret = Expression::make_complex(&real, &imag, type,
-                                                    location);
-         mpfr_clear(real);
-         mpfr_clear(imag);
-         return ret;
-       }
-      mpfr_clear(real);
-      mpfr_clear(imag);
-    }
-
-  if (type->is_open_array_type() && type->named_type() == NULL)
-    {
-      Type* element_type = type->array_type()->element_type()->forwarded();
-      bool is_byte = element_type == Type::lookup_integer_type("uint8");
-      bool is_int = element_type == Type::lookup_integer_type("int");
-      if (is_byte || is_int)
-       {
-         std::string s;
-         if (val->string_constant_value(&s))
-           {
-             Expression_list* vals = new Expression_list();
-             if (is_byte)
-               {
-                 for (std::string::const_iterator p = s.begin();
-                      p != s.end();
-                      p++)
-                   {
-                     mpz_t val;
-                     mpz_init_set_ui(val, static_cast<unsigned char>(*p));
-                     Expression* v = Expression::make_integer(&val,
-                                                              element_type,
-                                                              location);
-                     vals->push_back(v);
-                     mpz_clear(val);
-                   }
-               }
-             else
-               {
-                 const char *p = s.data();
-                 const char *pend = s.data() + s.length();
-                 while (p < pend)
-                   {
-                     unsigned int c;
-                     int adv = Lex::fetch_char(p, &c);
-                     if (adv == 0)
-                       {
-                         warning_at(this->location(), 0,
-                                    "invalid UTF-8 encoding");
-                         adv = 1;
-                       }
-                     p += adv;
-                     mpz_t val;
-                     mpz_init_set_ui(val, c);
-                     Expression* v = Expression::make_integer(&val,
-                                                              element_type,
-                                                              location);
-                     vals->push_back(v);
-                     mpz_clear(val);
-                   }
-               }
-
-             return Expression::make_slice_composite_literal(type, vals,
-                                                             location);
-           }
-       }
-    }
-
-  return this;
-}
-
-// Return the constant integer value if there is one.
-
-bool
-Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
-                                                     mpz_t val,
-                                                     Type** ptype) const
-{
-  if (this->type_->integer_type() == NULL)
-    return false;
-
-  mpz_t ival;
-  mpz_init(ival);
-  Type* dummy;
-  if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
-    {
-      if (!Integer_expression::check_constant(ival, this->type_,
-                                             this->location()))
-       {
-         mpz_clear(ival);
-         return false;
-       }
-      mpz_set(val, ival);
-      mpz_clear(ival);
-      *ptype = this->type_;
-      return true;
-    }
-  mpz_clear(ival);
-
-  mpfr_t fval;
-  mpfr_init(fval);
-  if (this->expr_->float_constant_value(fval, &dummy))
-    {
-      mpfr_get_z(val, fval, GMP_RNDN);
-      mpfr_clear(fval);
-      if (!Integer_expression::check_constant(val, this->type_,
-                                             this->location()))
-       return false;
-      *ptype = this->type_;
-      return true;
-    }
-  mpfr_clear(fval);
-
-  return false;
-}
-
-// Return the constant floating point value if there is one.
-
-bool
-Type_conversion_expression::do_float_constant_value(mpfr_t val,
-                                                   Type** ptype) const
-{
-  if (this->type_->float_type() == NULL)
-    return false;
-
-  mpfr_t fval;
-  mpfr_init(fval);
-  Type* dummy;
-  if (this->expr_->float_constant_value(fval, &dummy))
-    {
-      if (!Float_expression::check_constant(fval, this->type_,
-                                           this->location()))
-       {
-         mpfr_clear(fval);
-         return false;
-       }
-      mpfr_set(val, fval, GMP_RNDN);
-      mpfr_clear(fval);
-      Float_expression::constrain_float(val, this->type_);
-      *ptype = this->type_;
-      return true;
-    }
-  mpfr_clear(fval);
-
-  return false;
-}
-
-// Return the constant complex value if there is one.
-
-bool
-Type_conversion_expression::do_complex_constant_value(mpfr_t real,
-                                                     mpfr_t imag,
-                                                     Type **ptype) const
-{
-  if (this->type_->complex_type() == NULL)
-    return false;
-
-  mpfr_t rval;
-  mpfr_t ival;
-  mpfr_init(rval);
-  mpfr_init(ival);
-  Type* dummy;
-  if (this->expr_->complex_constant_value(rval, ival, &dummy))
-    {
-      if (!Complex_expression::check_constant(rval, ival, this->type_,
-                                             this->location()))
-       {
-         mpfr_clear(rval);
-         mpfr_clear(ival);
-         return false;
-       }
-      mpfr_set(real, rval, GMP_RNDN);
-      mpfr_set(imag, ival, GMP_RNDN);
-      mpfr_clear(rval);
-      mpfr_clear(ival);
-      Complex_expression::constrain_complex(real, imag, this->type_);
-      *ptype = this->type_;
-      return true;
-    }
-  mpfr_clear(rval);
-  mpfr_clear(ival);
-
-  return false;  
-}
-
-// Return the constant string value if there is one.
-
-bool
-Type_conversion_expression::do_string_constant_value(std::string* val) const
-{
-  if (this->type_->is_string_type()
-      && this->expr_->type()->integer_type() != NULL)
-    {
-      mpz_t ival;
-      mpz_init(ival);
-      Type* dummy;
-      if (this->expr_->integer_constant_value(false, ival, &dummy))
-       {
-         unsigned long ulval = mpz_get_ui(ival);
-         if (mpz_cmp_ui(ival, ulval) == 0)
-           {
-             Lex::append_char(ulval, true, val, this->location());
-             mpz_clear(ival);
-             return true;
-           }
-       }
-      mpz_clear(ival);
-    }
-
-  // FIXME: Could handle conversion from const []int here.
-
-  return false;
-}
-
-// Check that types are convertible.
-
-void
-Type_conversion_expression::do_check_types(Gogo*)
-{
-  Type* type = this->type_;
-  Type* expr_type = this->expr_->type();
-  std::string reason;
-
-  if (type->is_error_type()
-      || type->is_undefined()
-      || expr_type->is_error_type()
-      || expr_type->is_undefined())
-    {
-      // Make sure we emit an error for an undefined type.
-      type->base();
-      expr_type->base();
-      this->set_is_error();
-      return;
-    }
-
-  if (this->may_convert_function_types_
-      && type->function_type() != NULL
-      && expr_type->function_type() != NULL)
-    return;
-
-  if (Type::are_convertible(type, expr_type, &reason))
-    return;
-
-  error_at(this->location(), "%s", reason.c_str());
-  this->set_is_error();
-}
-
-// Get a tree for a type conversion.
-
-tree
-Type_conversion_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree type_tree = this->type_->get_tree(gogo);
-  tree expr_tree = this->expr_->get_tree(context);
-
-  if (type_tree == error_mark_node
-      || expr_tree == error_mark_node
-      || TREE_TYPE(expr_tree) == error_mark_node)
-    return error_mark_node;
-
-  if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
-    return fold_convert(type_tree, expr_tree);
-
-  Type* type = this->type_;
-  Type* expr_type = this->expr_->type();
-  tree ret;
-  if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
-    ret = Expression::convert_for_assignment(context, type, expr_type,
-                                            expr_tree, this->location());
-  else if (type->integer_type() != NULL)
-    {
-      if (expr_type->integer_type() != NULL
-         || expr_type->float_type() != NULL
-         || expr_type->is_unsafe_pointer_type())
-       ret = fold(convert_to_integer(type_tree, expr_tree));
-      else
-       gcc_unreachable();
-    }
-  else if (type->float_type() != NULL)
-    {
-      if (expr_type->integer_type() != NULL
-         || expr_type->float_type() != NULL)
-       ret = fold(convert_to_real(type_tree, expr_tree));
-      else
-       gcc_unreachable();
-    }
-  else if (type->complex_type() != NULL)
-    {
-      if (expr_type->complex_type() != NULL)
-       ret = fold(convert_to_complex(type_tree, expr_tree));
-      else
-       gcc_unreachable();
-    }
-  else if (type->is_string_type()
-          && expr_type->integer_type() != NULL)
-    {
-      expr_tree = fold_convert(integer_type_node, expr_tree);
-      if (host_integerp(expr_tree, 0))
-       {
-         HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
-         std::string s;
-         Lex::append_char(intval, true, &s, this->location());
-         Expression* se = Expression::make_string(s, this->location());
-         return se->get_tree(context);
-       }
-
-      static tree int_to_string_fndecl;
-      ret = Gogo::call_builtin(&int_to_string_fndecl,
-                              this->location(),
-                              "__go_int_to_string",
-                              1,
-                              type_tree,
-                              integer_type_node,
-                              fold_convert(integer_type_node, expr_tree));
-    }
-  else if (type->is_string_type()
-          && (expr_type->array_type() != NULL
-              || (expr_type->points_to() != NULL
-                  && expr_type->points_to()->array_type() != NULL)))
-    {
-      Type* t = expr_type;
-      if (t->points_to() != NULL)
-       {
-         t = t->points_to();
-         expr_tree = build_fold_indirect_ref(expr_tree);
-       }
-      if (!DECL_P(expr_tree))
-       expr_tree = save_expr(expr_tree);
-      Array_type* a = t->array_type();
-      Type* e = a->element_type()->forwarded();
-      gcc_assert(e->integer_type() != NULL);
-      tree valptr = fold_convert(const_ptr_type_node,
-                                a->value_pointer_tree(gogo, expr_tree));
-      tree len = a->length_tree(gogo, expr_tree);
-      len = fold_convert_loc(this->location(), size_type_node, len);
-      if (e->integer_type()->is_unsigned()
-         && e->integer_type()->bits() == 8)
-       {
-         static tree byte_array_to_string_fndecl;
-         ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
-                                  this->location(),
-                                  "__go_byte_array_to_string",
-                                  2,
-                                  type_tree,
-                                  const_ptr_type_node,
-                                  valptr,
-                                  size_type_node,
-                                  len);
-       }
-      else
-       {
-         gcc_assert(e == Type::lookup_integer_type("int"));
-         static tree int_array_to_string_fndecl;
-         ret = Gogo::call_builtin(&int_array_to_string_fndecl,
-                                  this->location(),
-                                  "__go_int_array_to_string",
-                                  2,
-                                  type_tree,
-                                  const_ptr_type_node,
-                                  valptr,
-                                  size_type_node,
-                                  len);
-       }
-    }
-  else if (type->is_open_array_type() && expr_type->is_string_type())
-    {
-      Type* e = type->array_type()->element_type()->forwarded();
-      gcc_assert(e->integer_type() != NULL);
-      if (e->integer_type()->is_unsigned()
-         && e->integer_type()->bits() == 8)
-       {
-         static tree string_to_byte_array_fndecl;
-         ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
-                                  this->location(),
-                                  "__go_string_to_byte_array",
-                                  1,
-                                  type_tree,
-                                  TREE_TYPE(expr_tree),
-                                  expr_tree);
-       }
-      else
-       {
-         gcc_assert(e == Type::lookup_integer_type("int"));
-         static tree string_to_int_array_fndecl;
-         ret = Gogo::call_builtin(&string_to_int_array_fndecl,
-                                  this->location(),
-                                  "__go_string_to_int_array",
-                                  1,
-                                  type_tree,
-                                  TREE_TYPE(expr_tree),
-                                  expr_tree);
-       }
-    }
-  else if ((type->is_unsafe_pointer_type()
-           && expr_type->points_to() != NULL)
-          || (expr_type->is_unsafe_pointer_type()
-              && type->points_to() != NULL))
-    ret = fold_convert(type_tree, expr_tree);
-  else if (type->is_unsafe_pointer_type()
-          && expr_type->integer_type() != NULL)
-    ret = convert_to_pointer(type_tree, expr_tree);
-  else if (this->may_convert_function_types_
-          && type->function_type() != NULL
-          && expr_type->function_type() != NULL)
-    ret = fold_convert_loc(this->location(), type_tree, expr_tree);
-  else
-    ret = Expression::convert_for_assignment(context, type, expr_type,
-                                            expr_tree, this->location());
-
-  return ret;
-}
-
-// Output a type conversion in a constant expression.
-
-void
-Type_conversion_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  exp->write_c_string(", ");
-  this->expr_->export_expression(exp);
-  exp->write_c_string(")");
-}
-
-// Import a type conversion or a struct construction.
-
-Expression*
-Type_conversion_expression::do_import(Import* imp)
-{
-  imp->require_c_string("convert(");
-  Type* type = imp->read_type();
-  imp->require_c_string(", ");
-  Expression* val = Expression::import_expression(imp);
-  imp->require_c_string(")");
-  return Expression::make_cast(type, val, imp->location());
-}
-
-// Make a type cast expression.
-
-Expression*
-Expression::make_cast(Type* type, Expression* val, source_location location)
-{
-  if (type->is_error_type() || val->is_error_expression())
-    return Expression::make_error(location);
-  return new Type_conversion_expression(type, val, location);
-}
-
-// Unary expressions.
-
-class Unary_expression : public Expression
-{
- public:
-  Unary_expression(Operator op, Expression* expr, source_location location)
-    : Expression(EXPRESSION_UNARY, location),
-      op_(op), escapes_(true), expr_(expr)
-  { }
-
-  // Return the operator.
-  Operator
-  op() const
-  { return this->op_; }
-
-  // Return the operand.
-  Expression*
-  operand() const
-  { return this->expr_; }
-
-  // Record that an address expression does not escape.
-  void
-  set_does_not_escape()
-  {
-    gcc_assert(this->op_ == OPERATOR_AND);
-    this->escapes_ = false;
-  }
-
-  // Apply unary opcode OP to UVAL, setting VAL.  Return true if this
-  // could be done, false if not.
-  static bool
-  eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
-              source_location);
-
-  // Apply unary opcode OP to UVAL, setting VAL.  Return true if this
-  // could be done, false if not.
-  static bool
-  eval_float(Operator op, mpfr_t uval, mpfr_t val);
-
-  // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG.  Return
-  // true if this could be done, false if not.
-  static bool
-  eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
-              mpfr_t imag);
-
-  static Expression*
-  do_import(Import*);
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Expression::traverse(&this->expr_, traverse); }
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const;
-
-  bool
-  do_integer_constant_value(bool, mpz_t, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_unary(this->op_, this->expr_->copy(),
-                                 this->location());
-  }
-
-  bool
-  do_is_addressable() const
-  { return this->op_ == OPERATOR_MULT; }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The unary operator to apply.
-  Operator op_;
-  // Normally true.  False if this is an address expression which does
-  // not escape the current function.
-  bool escapes_;
-  // The operand.
-  Expression* expr_;
-};
-
-// If we are taking the address of a composite literal, and the
-// contents are not constant, then we want to make a heap composite
-// instead.
-
-Expression*
-Unary_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location loc = this->location();
-  Operator op = this->op_;
-  Expression* expr = this->expr_;
-
-  if (op == OPERATOR_MULT && expr->is_type_expression())
-    return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
-
-  // *&x simplifies to x.  *(*T)(unsafe.Pointer)(&x) does not require
-  // moving x to the heap.  FIXME: Is it worth doing a real escape
-  // analysis here?  This case is found in math/unsafe.go and is
-  // therefore worth special casing.
-  if (op == OPERATOR_MULT)
-    {
-      Expression* e = expr;
-      while (e->classification() == EXPRESSION_CONVERSION)
-       {
-         Type_conversion_expression* te
-           = static_cast<Type_conversion_expression*>(e);
-         e = te->expr();
-       }
-
-      if (e->classification() == EXPRESSION_UNARY)
-       {
-         Unary_expression* ue = static_cast<Unary_expression*>(e);
-         if (ue->op_ == OPERATOR_AND)
-           {
-             if (e == expr)
-               {
-                 // *&x == x.
-                 return ue->expr_;
-               }
-             ue->set_does_not_escape();
-           }
-       }
-    }
-
-  if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
-      || op == OPERATOR_NOT || op == OPERATOR_XOR)
-    {
-      Expression* ret = NULL;
-
-      mpz_t eval;
-      mpz_init(eval);
-      Type* etype;
-      if (expr->integer_constant_value(false, eval, &etype))
-       {
-         mpz_t val;
-         mpz_init(val);
-         if (Unary_expression::eval_integer(op, etype, eval, val, loc))
-           ret = Expression::make_integer(&val, etype, loc);
-         mpz_clear(val);
-       }
-      mpz_clear(eval);
-      if (ret != NULL)
-       return ret;
-
-      if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
-       {
-         mpfr_t fval;
-         mpfr_init(fval);
-         Type* ftype;
-         if (expr->float_constant_value(fval, &ftype))
-           {
-             mpfr_t val;
-             mpfr_init(val);
-             if (Unary_expression::eval_float(op, fval, val))
-               ret = Expression::make_float(&val, ftype, loc);
-             mpfr_clear(val);
-           }
-         if (ret != NULL)
-           {
-             mpfr_clear(fval);
-             return ret;
-           }
-
-         mpfr_t ival;
-         mpfr_init(ival);
-         if (expr->complex_constant_value(fval, ival, &ftype))
-           {
-             mpfr_t real;
-             mpfr_t imag;
-             mpfr_init(real);
-             mpfr_init(imag);
-             if (Unary_expression::eval_complex(op, fval, ival, real, imag))
-               ret = Expression::make_complex(&real, &imag, ftype, loc);
-             mpfr_clear(real);
-             mpfr_clear(imag);
-           }
-         mpfr_clear(ival);
-         mpfr_clear(fval);
-         if (ret != NULL)
-           return ret;
-       }
-    }
-
-  return this;
-}
-
-// Return whether a unary expression is a constant.
-
-bool
-Unary_expression::do_is_constant() const
-{
-  if (this->op_ == OPERATOR_MULT)
-    {
-      // Indirecting through a pointer is only constant if the object
-      // to which the expression points is constant, but we currently
-      // have no way to determine that.
-      return false;
-    }
-  else if (this->op_ == OPERATOR_AND)
-    {
-      // Taking the address of a variable is constant if it is a
-      // global variable, not constant otherwise.  In other cases
-      // taking the address is probably not a constant.
-      Var_expression* ve = this->expr_->var_expression();
-      if (ve != NULL)
-       {
-         Named_object* no = ve->named_object();
-         return no->is_variable() && no->var_value()->is_global();
-       }
-      return false;
-    }
-  else
-    return this->expr_->is_constant();
-}
-
-// Apply unary opcode OP to UVAL, setting VAL.  UTYPE is the type of
-// UVAL, if known; it may be NULL.  Return true if this could be done,
-// false if not.
-
-bool
-Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
-                              source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_PLUS:
-      mpz_set(val, uval);
-      return true;
-    case OPERATOR_MINUS:
-      mpz_neg(val, uval);
-      return Integer_expression::check_constant(val, utype, location);
-    case OPERATOR_NOT:
-      mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
-      return true;
-    case OPERATOR_XOR:
-      if (utype == NULL
-         || utype->integer_type() == NULL
-         || utype->integer_type()->is_abstract())
-       mpz_com(val, uval);
-      else
-       {
-         // The number of HOST_WIDE_INTs that it takes to represent
-         // UVAL.
-         size_t count = ((mpz_sizeinbase(uval, 2)
-                          + HOST_BITS_PER_WIDE_INT
-                          - 1)
-                         / HOST_BITS_PER_WIDE_INT);
-
-         unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
-         memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
-
-         size_t ecount;
-         mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
-         gcc_assert(ecount <= count);
-
-         // Trim down to the number of words required by the type.
-         size_t obits = utype->integer_type()->bits();
-         if (!utype->integer_type()->is_unsigned())
-           ++obits;
-         size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
-                          / HOST_BITS_PER_WIDE_INT);
-         gcc_assert(ocount <= ocount);
-
-         for (size_t i = 0; i < ocount; ++i)
-           phwi[i] = ~phwi[i];
-
-         size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
-         if (clearbits != 0)
-           phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
-                                >> clearbits);
-
-         mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
-
-         delete[] phwi;
-       }
-      return Integer_expression::check_constant(val, utype, location);
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-      return false;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Apply unary opcode OP to UVAL, setting VAL.  Return true if this
-// could be done, false if not.
-
-bool
-Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
-{
-  switch (op)
-    {
-    case OPERATOR_PLUS:
-      mpfr_set(val, uval, GMP_RNDN);
-      return true;
-    case OPERATOR_MINUS:
-      mpfr_neg(val, uval, GMP_RNDN);
-      return true;
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-      return false;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG.  Return true
-// if this could be done, false if not.
-
-bool
-Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
-                              mpfr_t real, mpfr_t imag)
-{
-  switch (op)
-    {
-    case OPERATOR_PLUS:
-      mpfr_set(real, rval, GMP_RNDN);
-      mpfr_set(imag, ival, GMP_RNDN);
-      return true;
-    case OPERATOR_MINUS:
-      mpfr_neg(real, rval, GMP_RNDN);
-      mpfr_neg(imag, ival, GMP_RNDN);
-      return true;
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-      return false;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return the integral constant value of a unary expression, if it has one.
-
-bool
-Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
-                                           Type** ptype) const
-{
-  mpz_t uval;
-  mpz_init(uval);
-  bool ret;
-  if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
-    ret = false;
-  else
-    ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
-                                        this->location());
-  mpz_clear(uval);
-  return ret;
-}
-
-// Return the floating point constant value of a unary expression, if
-// it has one.
-
-bool
-Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  mpfr_t uval;
-  mpfr_init(uval);
-  bool ret;
-  if (!this->expr_->float_constant_value(uval, ptype))
-    ret = false;
-  else
-    ret = Unary_expression::eval_float(this->op_, uval, val);
-  mpfr_clear(uval);
-  return ret;
-}
-
-// Return the complex constant value of a unary expression, if it has
-// one.
-
-bool
-Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                           Type** ptype) const
-{
-  mpfr_t rval;
-  mpfr_t ival;
-  mpfr_init(rval);
-  mpfr_init(ival);
-  bool ret;
-  if (!this->expr_->complex_constant_value(rval, ival, ptype))
-    ret = false;
-  else
-    ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
-  mpfr_clear(rval);
-  mpfr_clear(ival);
-  return ret;
-}
-
-// Return the type of a unary expression.
-
-Type*
-Unary_expression::do_type()
-{
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-      return this->expr_->type();
-
-    case OPERATOR_AND:
-      return Type::make_pointer_type(this->expr_->type());
-
-    case OPERATOR_MULT:
-      {
-       Type* subtype = this->expr_->type();
-       Type* points_to = subtype->points_to();
-       if (points_to == NULL)
-         return Type::make_error_type();
-       return points_to;
-      }
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Determine abstract types for a unary expression.
-
-void
-Unary_expression::do_determine_type(const Type_context* context)
-{
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-      this->expr_->determine_type(context);
-      break;
-
-    case OPERATOR_AND:
-      // Taking the address of something.
-      {
-       Type* subtype = (context->type == NULL
-                        ? NULL
-                        : context->type->points_to());
-       Type_context subcontext(subtype, false);
-       this->expr_->determine_type(&subcontext);
-      }
-      break;
-
-    case OPERATOR_MULT:
-      // Indirecting through a pointer.
-      {
-       Type* subtype = (context->type == NULL
-                        ? NULL
-                        : Type::make_pointer_type(context->type));
-       Type_context subcontext(subtype, false);
-       this->expr_->determine_type(&subcontext);
-      }
-      break;
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Check types for a unary expression.
-
-void
-Unary_expression::do_check_types(Gogo*)
-{
-  Type* type = this->expr_->type();
-  if (type->is_error_type())
-    {
-      this->set_is_error();
-      return;
-    }
-
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL)
-       this->report_error(_("expected numeric type"));
-      break;
-
-    case OPERATOR_NOT:
-    case OPERATOR_XOR:
-      if (type->integer_type() == NULL
-         && !type->is_boolean_type())
-       this->report_error(_("expected integer or boolean type"));
-      break;
-
-    case OPERATOR_AND:
-      if (!this->expr_->is_addressable())
-       this->report_error(_("invalid operand for unary %<&%>"));
-      else
-       this->expr_->address_taken(this->escapes_);
-      break;
-
-    case OPERATOR_MULT:
-      // Indirecting through a pointer.
-      if (type->points_to() == NULL)
-       this->report_error(_("expected pointer"));
-      break;
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Get a tree for a unary expression.
-
-tree
-Unary_expression::do_get_tree(Translate_context* context)
-{
-  tree expr = this->expr_->get_tree(context);
-  if (expr == error_mark_node)
-    return error_mark_node;
-
-  source_location loc = this->location();
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-      return expr;
-
-    case OPERATOR_MINUS:
-      {
-       tree type = TREE_TYPE(expr);
-       tree compute_type = excess_precision_type(type);
-       if (compute_type != NULL_TREE)
-         expr = ::convert(compute_type, expr);
-       tree ret = fold_build1_loc(loc, NEGATE_EXPR,
-                                  (compute_type != NULL_TREE
-                                   ? compute_type
-                                   : type),
-                                  expr);
-       if (compute_type != NULL_TREE)
-         ret = ::convert(type, ret);
-       return ret;
-      }
-
-    case OPERATOR_NOT:
-      if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
-       return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
-      else
-       return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
-                              build_int_cst(TREE_TYPE(expr), 0));
-
-    case OPERATOR_XOR:
-      return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
-
-    case OPERATOR_AND:
-      // We should not see a non-constant constructor here; cases
-      // where we would see one should have been moved onto the heap
-      // at parse time.  Taking the address of a nonconstant
-      // constructor will not do what the programmer expects.
-      gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
-      gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
-
-      // Build a decl for a constant constructor.
-      if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
-       {
-         tree decl = build_decl(this->location(), VAR_DECL,
-                                create_tmp_var_name("C"), TREE_TYPE(expr));
-         DECL_EXTERNAL(decl) = 0;
-         TREE_PUBLIC(decl) = 0;
-         TREE_READONLY(decl) = 1;
-         TREE_CONSTANT(decl) = 1;
-         TREE_STATIC(decl) = 1;
-         TREE_ADDRESSABLE(decl) = 1;
-         DECL_ARTIFICIAL(decl) = 1;
-         DECL_INITIAL(decl) = expr;
-         rest_of_decl_compilation(decl, 1, 0);
-         expr = decl;
-       }
-
-      return build_fold_addr_expr_loc(loc, expr);
-
-    case OPERATOR_MULT:
-      {
-       gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
-
-       // If we are dereferencing the pointer to a large struct, we
-       // need to check for nil.  We don't bother to check for small
-       // structs because we expect the system to crash on a nil
-       // pointer dereference.
-       HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
-       if (s == -1 || s >= 4096)
-         {
-           if (!DECL_P(expr))
-             expr = save_expr(expr);
-           tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
-                                          expr,
-                                          fold_convert(TREE_TYPE(expr),
-                                                       null_pointer_node));
-           tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
-                                            loc);
-           expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
-                                  build3(COND_EXPR, void_type_node,
-                                         compare, crash, NULL_TREE),
-                                  expr);
-         }
-
-       // If the type of EXPR is a recursive pointer type, then we
-       // need to insert a cast before indirecting.
-       if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
-         {
-           Type* pt = this->expr_->type()->points_to();
-           tree ind = pt->get_tree(context->gogo());
-           expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
-         }
-
-       return build_fold_indirect_ref_loc(loc, expr);
-      }
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Export a unary expression.
-
-void
-Unary_expression::do_export(Export* exp) const
-{
-  switch (this->op_)
-    {
-    case OPERATOR_PLUS:
-      exp->write_c_string("+ ");
-      break;
-    case OPERATOR_MINUS:
-      exp->write_c_string("- ");
-      break;
-    case OPERATOR_NOT:
-      exp->write_c_string("! ");
-      break;
-    case OPERATOR_XOR:
-      exp->write_c_string("^ ");
-      break;
-    case OPERATOR_AND:
-    case OPERATOR_MULT:
-    default:
-      gcc_unreachable();
-    }
-  this->expr_->export_expression(exp);
-}
-
-// Import a unary expression.
-
-Expression*
-Unary_expression::do_import(Import* imp)
-{
-  Operator op;
-  switch (imp->get_char())
-    {
-    case '+':
-      op = OPERATOR_PLUS;
-      break;
-    case '-':
-      op = OPERATOR_MINUS;
-      break;
-    case '!':
-      op = OPERATOR_NOT;
-      break;
-    case '^':
-      op = OPERATOR_XOR;
-      break;
-    default:
-      gcc_unreachable();
-    }
-  imp->require_c_string(" ");
-  Expression* expr = Expression::import_expression(imp);
-  return Expression::make_unary(op, expr, imp->location());
-}
-
-// Make a unary expression.
-
-Expression*
-Expression::make_unary(Operator op, Expression* expr, source_location location)
-{
-  return new Unary_expression(op, expr, location);
-}
-
-// If this is an indirection through a pointer, return the expression
-// being pointed through.  Otherwise return this.
-
-Expression*
-Expression::deref()
-{
-  if (this->classification_ == EXPRESSION_UNARY)
-    {
-      Unary_expression* ue = static_cast<Unary_expression*>(this);
-      if (ue->op() == OPERATOR_MULT)
-       return ue->operand();
-    }
-  return this;
-}
-
-// Class Binary_expression.
-
-// Traversal.
-
-int
-Binary_expression::do_traverse(Traverse* traverse)
-{
-  int t = Expression::traverse(&this->left_, traverse);
-  if (t == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Expression::traverse(&this->right_, traverse);
-}
-
-// Compare integer constants according to OP.
-
-bool
-Binary_expression::compare_integer(Operator op, mpz_t left_val,
-                                  mpz_t right_val)
-{
-  int i = mpz_cmp(left_val, right_val);
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      return i == 0;
-    case OPERATOR_NOTEQ:
-      return i != 0;
-    case OPERATOR_LT:
-      return i < 0;
-    case OPERATOR_LE:
-      return i <= 0;
-    case OPERATOR_GT:
-      return i > 0;
-    case OPERATOR_GE:
-      return i >= 0;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Compare floating point constants according to OP.
-
-bool
-Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
-                                mpfr_t right_val)
-{
-  int i;
-  if (type == NULL)
-    i = mpfr_cmp(left_val, right_val);
-  else
-    {
-      mpfr_t lv;
-      mpfr_init_set(lv, left_val, GMP_RNDN);
-      mpfr_t rv;
-      mpfr_init_set(rv, right_val, GMP_RNDN);
-      Float_expression::constrain_float(lv, type);
-      Float_expression::constrain_float(rv, type);
-      i = mpfr_cmp(lv, rv);
-      mpfr_clear(lv);
-      mpfr_clear(rv);
-    }
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      return i == 0;
-    case OPERATOR_NOTEQ:
-      return i != 0;
-    case OPERATOR_LT:
-      return i < 0;
-    case OPERATOR_LE:
-      return i <= 0;
-    case OPERATOR_GT:
-      return i > 0;
-    case OPERATOR_GE:
-      return i >= 0;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Compare complex constants according to OP.  Complex numbers may
-// only be compared for equality.
-
-bool
-Binary_expression::compare_complex(Operator op, Type* type,
-                                  mpfr_t left_real, mpfr_t left_imag,
-                                  mpfr_t right_real, mpfr_t right_imag)
-{
-  bool is_equal;
-  if (type == NULL)
-    is_equal = (mpfr_cmp(left_real, right_real) == 0
-               && mpfr_cmp(left_imag, right_imag) == 0);
-  else
-    {
-      mpfr_t lr;
-      mpfr_t li;
-      mpfr_init_set(lr, left_real, GMP_RNDN);
-      mpfr_init_set(li, left_imag, GMP_RNDN);
-      mpfr_t rr;
-      mpfr_t ri;
-      mpfr_init_set(rr, right_real, GMP_RNDN);
-      mpfr_init_set(ri, right_imag, GMP_RNDN);
-      Complex_expression::constrain_complex(lr, li, type);
-      Complex_expression::constrain_complex(rr, ri, type);
-      is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
-      mpfr_clear(lr);
-      mpfr_clear(li);
-      mpfr_clear(rr);
-      mpfr_clear(ri);
-    }
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      return is_equal;
-    case OPERATOR_NOTEQ:
-      return !is_equal;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
-// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
-// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL.  Return true if
-// this could be done, false if not.
-
-bool
-Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
-                               Type* right_type, mpz_t right_val,
-                               source_location location, mpz_t val)
-{
-  bool is_shift_op = false;
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      // These return boolean values.  We should probably handle them
-      // anyhow in case a type conversion is used on the result.
-      return false;
-    case OPERATOR_PLUS:
-      mpz_add(val, left_val, right_val);
-      break;
-    case OPERATOR_MINUS:
-      mpz_sub(val, left_val, right_val);
-      break;
-    case OPERATOR_OR:
-      mpz_ior(val, left_val, right_val);
-      break;
-    case OPERATOR_XOR:
-      mpz_xor(val, left_val, right_val);
-      break;
-    case OPERATOR_MULT:
-      mpz_mul(val, left_val, right_val);
-      break;
-    case OPERATOR_DIV:
-      if (mpz_sgn(right_val) != 0)
-       mpz_tdiv_q(val, left_val, right_val);
-      else
-       {
-         error_at(location, "division by zero");
-         mpz_set_ui(val, 0);
-         return true;
-       }
-      break;
-    case OPERATOR_MOD:
-      if (mpz_sgn(right_val) != 0)
-       mpz_tdiv_r(val, left_val, right_val);
-      else
-       {
-         error_at(location, "division by zero");
-         mpz_set_ui(val, 0);
-         return true;
-       }
-      break;
-    case OPERATOR_LSHIFT:
-      {
-       unsigned long shift = mpz_get_ui(right_val);
-       if (mpz_cmp_ui(right_val, shift) != 0 || shift > 0x100000)
-         {
-           error_at(location, "shift count overflow");
-           mpz_set_ui(val, 0);
-           return true;
-         }
-       mpz_mul_2exp(val, left_val, shift);
-       is_shift_op = true;
-       break;
-      }
-      break;
-    case OPERATOR_RSHIFT:
-      {
-       unsigned long shift = mpz_get_ui(right_val);
-       if (mpz_cmp_ui(right_val, shift) != 0)
-         {
-           error_at(location, "shift count overflow");
-           mpz_set_ui(val, 0);
-           return true;
-         }
-       if (mpz_cmp_ui(left_val, 0) >= 0)
-         mpz_tdiv_q_2exp(val, left_val, shift);
-       else
-         mpz_fdiv_q_2exp(val, left_val, shift);
-       is_shift_op = true;
-       break;
-      }
-      break;
-    case OPERATOR_AND:
-      mpz_and(val, left_val, right_val);
-      break;
-    case OPERATOR_BITCLEAR:
-      {
-       mpz_t tval;
-       mpz_init(tval);
-       mpz_com(tval, right_val);
-       mpz_and(val, left_val, tval);
-       mpz_clear(tval);
-      }
-      break;
-    default:
-      gcc_unreachable();
-    }
-
-  Type* type = left_type;
-  if (!is_shift_op)
-    {
-      if (type == NULL)
-       type = right_type;
-      else if (type != right_type && right_type != NULL)
-       {
-         if (type->is_abstract())
-           type = right_type;
-         else if (!right_type->is_abstract())
-           {
-             // This look like a type error which should be diagnosed
-             // elsewhere.  Don't do anything here, to avoid an
-             // unhelpful chain of error messages.
-             return true;
-           }
-       }
-    }
-
-  if (type != NULL && !type->is_abstract())
-    {
-      // We have to check the operands too, as we have implicitly
-      // coerced them to TYPE.
-      if ((type != left_type
-          && !Integer_expression::check_constant(left_val, type, location))
-         || (!is_shift_op
-             && type != right_type
-             && !Integer_expression::check_constant(right_val, type,
-                                                    location))
-         || !Integer_expression::check_constant(val, type, location))
-       mpz_set_ui(val, 0);
-    }
-
-  return true;
-}
-
-// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
-// Return true if this could be done, false if not.
-
-bool
-Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
-                             Type* right_type, mpfr_t right_val,
-                             mpfr_t val, source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      // These return boolean values.  We should probably handle them
-      // anyhow in case a type conversion is used on the result.
-      return false;
-    case OPERATOR_PLUS:
-      mpfr_add(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_MINUS:
-      mpfr_sub(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_OR:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_BITCLEAR:
-      return false;
-    case OPERATOR_MULT:
-      mpfr_mul(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_DIV:
-      if (mpfr_zero_p(right_val))
-       error_at(location, "division by zero");
-      mpfr_div(val, left_val, right_val, GMP_RNDN);
-      break;
-    case OPERATOR_MOD:
-      return false;
-    case OPERATOR_LSHIFT:
-    case OPERATOR_RSHIFT:
-      return false;
-    default:
-      gcc_unreachable();
-    }
-
-  Type* type = left_type;
-  if (type == NULL)
-    type = right_type;
-  else if (type != right_type && right_type != NULL)
-    {
-      if (type->is_abstract())
-       type = right_type;
-      else if (!right_type->is_abstract())
-       {
-         // This looks like a type error which should be diagnosed
-         // elsewhere.  Don't do anything here, to avoid an unhelpful
-         // chain of error messages.
-         return true;
-       }
-    }
-
-  if (type != NULL && !type->is_abstract())
-    {
-      if ((type != left_type
-          && !Float_expression::check_constant(left_val, type, location))
-         || (type != right_type
-             && !Float_expression::check_constant(right_val, type,
-                                                  location))
-         || !Float_expression::check_constant(val, type, location))
-       mpfr_set_ui(val, 0, GMP_RNDN);
-    }
-
-  return true;
-}
-
-// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
-// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG.  Return true if this
-// could be done, false if not.
-
-bool
-Binary_expression::eval_complex(Operator op, Type* left_type,
-                               mpfr_t left_real, mpfr_t left_imag,
-                               Type *right_type,
-                               mpfr_t right_real, mpfr_t right_imag,
-                               mpfr_t real, mpfr_t imag,
-                               source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      // These return boolean values and must be handled differently.
-      return false;
-    case OPERATOR_PLUS:
-      mpfr_add(real, left_real, right_real, GMP_RNDN);
-      mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
-      break;
-    case OPERATOR_MINUS:
-      mpfr_sub(real, left_real, right_real, GMP_RNDN);
-      mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
-      break;
-    case OPERATOR_OR:
-    case OPERATOR_XOR:
-    case OPERATOR_AND:
-    case OPERATOR_BITCLEAR:
-      return false;
-    case OPERATOR_MULT:
-      {
-       // You might think that multiplying two complex numbers would
-       // be simple, and you would be right, until you start to think
-       // about getting the right answer for infinity.  If one
-       // operand here is infinity and the other is anything other
-       // than zero or NaN, then we are going to wind up subtracting
-       // two infinity values.  That will give us a NaN, but the
-       // correct answer is infinity.
-
-       mpfr_t lrrr;
-       mpfr_init(lrrr);
-       mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
-
-       mpfr_t lrri;
-       mpfr_init(lrri);
-       mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
-
-       mpfr_t lirr;
-       mpfr_init(lirr);
-       mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
-
-       mpfr_t liri;
-       mpfr_init(liri);
-       mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
-
-       mpfr_sub(real, lrrr, liri, GMP_RNDN);
-       mpfr_add(imag, lrri, lirr, GMP_RNDN);
-
-       // If we get NaN on both sides, check whether it should really
-       // be infinity.  The rule is that if either side of the
-       // complex number is infinity, then the whole value is
-       // infinity, even if the other side is NaN.  So the only case
-       // we have to fix is the one in which both sides are NaN.
-       if (mpfr_nan_p(real) && mpfr_nan_p(imag)
-           && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
-           && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
-         {
-           bool is_infinity = false;
-
-           mpfr_t lr;
-           mpfr_t li;
-           mpfr_init_set(lr, left_real, GMP_RNDN);
-           mpfr_init_set(li, left_imag, GMP_RNDN);
-
-           mpfr_t rr;
-           mpfr_t ri;
-           mpfr_init_set(rr, right_real, GMP_RNDN);
-           mpfr_init_set(ri, right_imag, GMP_RNDN);
-
-           // If the left side is infinity, then the result is
-           // infinity.
-           if (mpfr_inf_p(lr) || mpfr_inf_p(li))
-             {
-               mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(lr, lr, left_real, GMP_RNDN);
-               mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(li, li, left_imag, GMP_RNDN);
-               if (mpfr_nan_p(rr))
-                 {
-                   mpfr_set_ui(rr, 0, GMP_RNDN);
-                   mpfr_copysign(rr, rr, right_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(ri))
-                 {
-                   mpfr_set_ui(ri, 0, GMP_RNDN);
-                   mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
-                 }
-               is_infinity = true;
-             }
-
-           // If the right side is infinity, then the result is
-           // infinity.
-           if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
-             {
-               mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(rr, rr, right_real, GMP_RNDN);
-               mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
-               if (mpfr_nan_p(lr))
-                 {
-                   mpfr_set_ui(lr, 0, GMP_RNDN);
-                   mpfr_copysign(lr, lr, left_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(li))
-                 {
-                   mpfr_set_ui(li, 0, GMP_RNDN);
-                   mpfr_copysign(li, li, left_imag, GMP_RNDN);
-                 }
-               is_infinity = true;
-             }
-
-           // If we got an overflow in the intermediate computations,
-           // then the result is infinity.
-           if (!is_infinity
-               && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
-                   || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
-             {
-               if (mpfr_nan_p(lr))
-                 {
-                   mpfr_set_ui(lr, 0, GMP_RNDN);
-                   mpfr_copysign(lr, lr, left_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(li))
-                 {
-                   mpfr_set_ui(li, 0, GMP_RNDN);
-                   mpfr_copysign(li, li, left_imag, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(rr))
-                 {
-                   mpfr_set_ui(rr, 0, GMP_RNDN);
-                   mpfr_copysign(rr, rr, right_real, GMP_RNDN);
-                 }
-               if (mpfr_nan_p(ri))
-                 {
-                   mpfr_set_ui(ri, 0, GMP_RNDN);
-                   mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
-                 }
-               is_infinity = true;
-             }
-
-           if (is_infinity)
-             {
-               mpfr_mul(lrrr, lr, rr, GMP_RNDN);
-               mpfr_mul(lrri, lr, ri, GMP_RNDN);
-               mpfr_mul(lirr, li, rr, GMP_RNDN);
-               mpfr_mul(liri, li, ri, GMP_RNDN);
-               mpfr_sub(real, lrrr, liri, GMP_RNDN);
-               mpfr_add(imag, lrri, lirr, GMP_RNDN);
-               mpfr_set_inf(real, mpfr_sgn(real));
-               mpfr_set_inf(imag, mpfr_sgn(imag));
-             }
-
-           mpfr_clear(lr);
-           mpfr_clear(li);
-           mpfr_clear(rr);
-           mpfr_clear(ri);
-         }
-
-       mpfr_clear(lrrr);
-       mpfr_clear(lrri);
-       mpfr_clear(lirr);
-       mpfr_clear(liri);                                 
-      }
-      break;
-    case OPERATOR_DIV:
-      {
-       // For complex division we want to avoid having an
-       // intermediate overflow turn the whole result in a NaN.  We
-       // scale the values to try to avoid this.
-
-       if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
-         error_at(location, "division by zero");
-
-       mpfr_t rra;
-       mpfr_t ria;
-       mpfr_init(rra);
-       mpfr_init(ria);
-       mpfr_abs(rra, right_real, GMP_RNDN);
-       mpfr_abs(ria, right_imag, GMP_RNDN);
-       mpfr_t t;
-       mpfr_init(t);
-       mpfr_max(t, rra, ria, GMP_RNDN);
-
-       mpfr_t rr;
-       mpfr_t ri;
-       mpfr_init_set(rr, right_real, GMP_RNDN);
-       mpfr_init_set(ri, right_imag, GMP_RNDN);
-       long ilogbw = 0;
-       if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
-         {
-           ilogbw = mpfr_get_exp(t);
-           mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
-           mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
-         }
-
-       mpfr_t denom;
-       mpfr_init(denom);
-       mpfr_mul(denom, rr, rr, GMP_RNDN);
-       mpfr_mul(t, ri, ri, GMP_RNDN);
-       mpfr_add(denom, denom, t, GMP_RNDN);
-
-       mpfr_mul(real, left_real, rr, GMP_RNDN);
-       mpfr_mul(t, left_imag, ri, GMP_RNDN);
-       mpfr_add(real, real, t, GMP_RNDN);
-       mpfr_div(real, real, denom, GMP_RNDN);
-       mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
-
-       mpfr_mul(imag, left_imag, rr, GMP_RNDN);
-       mpfr_mul(t, left_real, ri, GMP_RNDN);
-       mpfr_sub(imag, imag, t, GMP_RNDN);
-       mpfr_div(imag, imag, denom, GMP_RNDN);
-       mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
-
-       // If we wind up with NaN on both sides, check whether we
-       // should really have infinity.  The rule is that if either
-       // side of the complex number is infinity, then the whole
-       // value is infinity, even if the other side is NaN.  So the
-       // only case we have to fix is the one in which both sides are
-       // NaN.
-       if (mpfr_nan_p(real) && mpfr_nan_p(imag)
-           && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
-           && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
-         {
-           if (mpfr_zero_p(denom))
-             {
-               mpfr_set_inf(real, mpfr_sgn(rr));
-               mpfr_mul(real, real, left_real, GMP_RNDN);
-               mpfr_set_inf(imag, mpfr_sgn(rr));
-               mpfr_mul(imag, imag, left_imag, GMP_RNDN);
-             }
-           else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
-                    && mpfr_number_p(rr) && mpfr_number_p(ri))
-             {
-               mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t, t, left_real, GMP_RNDN);
-
-               mpfr_t t2;
-               mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
-
-               mpfr_t t3;
-               mpfr_init(t3);
-               mpfr_mul(t3, t, rr, GMP_RNDN);
-
-               mpfr_t t4;
-               mpfr_init(t4);
-               mpfr_mul(t4, t2, ri, GMP_RNDN);
-
-               mpfr_add(t3, t3, t4, GMP_RNDN);
-               mpfr_set_inf(real, mpfr_sgn(t3));
-
-               mpfr_mul(t3, t2, rr, GMP_RNDN);
-               mpfr_mul(t4, t, ri, GMP_RNDN);
-               mpfr_sub(t3, t3, t4, GMP_RNDN);
-               mpfr_set_inf(imag, mpfr_sgn(t3));
-
-               mpfr_clear(t2);
-               mpfr_clear(t3);
-               mpfr_clear(t4);
-             }
-           else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
-                    && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
-             {
-               mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t, t, rr, GMP_RNDN);
-
-               mpfr_t t2;
-               mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
-               mpfr_copysign(t2, t2, ri, GMP_RNDN);
-
-               mpfr_t t3;
-               mpfr_init(t3);
-               mpfr_mul(t3, left_real, t, GMP_RNDN);
-
-               mpfr_t t4;
-               mpfr_init(t4);
-               mpfr_mul(t4, left_imag, t2, GMP_RNDN);
-
-               mpfr_add(t3, t3, t4, GMP_RNDN);
-               mpfr_set_ui(real, 0, GMP_RNDN);
-               mpfr_mul(real, real, t3, GMP_RNDN);
-
-               mpfr_mul(t3, left_imag, t, GMP_RNDN);
-               mpfr_mul(t4, left_real, t2, GMP_RNDN);
-               mpfr_sub(t3, t3, t4, GMP_RNDN);
-               mpfr_set_ui(imag, 0, GMP_RNDN);
-               mpfr_mul(imag, imag, t3, GMP_RNDN);
-
-               mpfr_clear(t2);
-               mpfr_clear(t3);
-               mpfr_clear(t4);
-             }
-         }
-
-       mpfr_clear(denom);
-       mpfr_clear(rr);
-       mpfr_clear(ri);
-       mpfr_clear(t);
-       mpfr_clear(rra);
-       mpfr_clear(ria);
-      }
-      break;
-    case OPERATOR_MOD:
-      return false;
-    case OPERATOR_LSHIFT:
-    case OPERATOR_RSHIFT:
-      return false;
-    default:
-      gcc_unreachable();
-    }
-
-  Type* type = left_type;
-  if (type == NULL)
-    type = right_type;
-  else if (type != right_type && right_type != NULL)
-    {
-      if (type->is_abstract())
-       type = right_type;
-      else if (!right_type->is_abstract())
-       {
-         // This looks like a type error which should be diagnosed
-         // elsewhere.  Don't do anything here, to avoid an unhelpful
-         // chain of error messages.
-         return true;
-       }
-    }
-
-  if (type != NULL && !type->is_abstract())
-    {
-      if ((type != left_type
-          && !Complex_expression::check_constant(left_real, left_imag,
-                                                 type, location))
-         || (type != right_type
-             && !Complex_expression::check_constant(right_real, right_imag,
-                                                    type, location))
-         || !Complex_expression::check_constant(real, imag, type,
-                                                location))
-       {
-         mpfr_set_ui(real, 0, GMP_RNDN);
-         mpfr_set_ui(imag, 0, GMP_RNDN);
-       }
-    }
-
-  return true;
-}
-
-// Lower a binary expression.  We have to evaluate constant
-// expressions now, in order to implement Go's unlimited precision
-// constants.
-
-Expression*
-Binary_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location location = this->location();
-  Operator op = this->op_;
-  Expression* left = this->left_;
-  Expression* right = this->right_;
-
-  const bool is_comparison = (op == OPERATOR_EQEQ
-                             || op == OPERATOR_NOTEQ
-                             || op == OPERATOR_LT
-                             || op == OPERATOR_LE
-                             || op == OPERATOR_GT
-                             || op == OPERATOR_GE);
-
-  // Integer constant expressions.
-  {
-    mpz_t left_val;
-    mpz_init(left_val);
-    Type* left_type;
-    mpz_t right_val;
-    mpz_init(right_val);
-    Type* right_type;
-    if (left->integer_constant_value(false, left_val, &left_type)
-       && right->integer_constant_value(false, right_val, &right_type))
-      {
-       Expression* ret = NULL;
-       if (left_type != right_type
-           && left_type != NULL
-           && right_type != NULL
-           && left_type->base() != right_type->base()
-           && op != OPERATOR_LSHIFT
-           && op != OPERATOR_RSHIFT)
-         {
-           // May be a type error--let it be diagnosed later.
-         }
-       else if (is_comparison)
-         {
-           bool b = Binary_expression::compare_integer(op, left_val,
-                                                       right_val);
-           ret = Expression::make_cast(Type::lookup_bool_type(),
-                                       Expression::make_boolean(b, location),
-                                       location);
-         }
-       else
-         {
-           mpz_t val;
-           mpz_init(val);
-
-           if (Binary_expression::eval_integer(op, left_type, left_val,
-                                               right_type, right_val,
-                                               location, val))
-             {
-               gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
-               Type* type;
-               if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
-                 type = left_type;
-               else if (left_type == NULL)
-                 type = right_type;
-               else if (right_type == NULL)
-                 type = left_type;
-               else if (!left_type->is_abstract()
-                        && left_type->named_type() != NULL)
-                 type = left_type;
-               else if (!right_type->is_abstract()
-                        && right_type->named_type() != NULL)
-                 type = right_type;
-               else if (!left_type->is_abstract())
-                 type = left_type;
-               else if (!right_type->is_abstract())
-                 type = right_type;
-               else if (left_type->float_type() != NULL)
-                 type = left_type;
-               else if (right_type->float_type() != NULL)
-                 type = right_type;
-               else if (left_type->complex_type() != NULL)
-                 type = left_type;
-               else if (right_type->complex_type() != NULL)
-                 type = right_type;
-               else
-                 type = left_type;
-               ret = Expression::make_integer(&val, type, location);
-             }
-
-           mpz_clear(val);
-         }
-
-       if (ret != NULL)
-         {
-           mpz_clear(right_val);
-           mpz_clear(left_val);
-           return ret;
-         }
-      }
-    mpz_clear(right_val);
-    mpz_clear(left_val);
-  }
-
-  // Floating point constant expressions.
-  {
-    mpfr_t left_val;
-    mpfr_init(left_val);
-    Type* left_type;
-    mpfr_t right_val;
-    mpfr_init(right_val);
-    Type* right_type;
-    if (left->float_constant_value(left_val, &left_type)
-       && right->float_constant_value(right_val, &right_type))
-      {
-       Expression* ret = NULL;
-       if (left_type != right_type
-           && left_type != NULL
-           && right_type != NULL
-           && left_type->base() != right_type->base()
-           && op != OPERATOR_LSHIFT
-           && op != OPERATOR_RSHIFT)
-         {
-           // May be a type error--let it be diagnosed later.
-         }
-       else if (is_comparison)
-         {
-           bool b = Binary_expression::compare_float(op,
-                                                     (left_type != NULL
-                                                      ? left_type
-                                                      : right_type),
-                                                     left_val, right_val);
-           ret = Expression::make_boolean(b, location);
-         }
-       else
-         {
-           mpfr_t val;
-           mpfr_init(val);
-
-           if (Binary_expression::eval_float(op, left_type, left_val,
-                                             right_type, right_val, val,
-                                             location))
-             {
-               gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
-                          && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
-               Type* type;
-               if (left_type == NULL)
-                 type = right_type;
-               else if (right_type == NULL)
-                 type = left_type;
-               else if (!left_type->is_abstract()
-                        && left_type->named_type() != NULL)
-                 type = left_type;
-               else if (!right_type->is_abstract()
-                        && right_type->named_type() != NULL)
-                 type = right_type;
-               else if (!left_type->is_abstract())
-                 type = left_type;
-               else if (!right_type->is_abstract())
-                 type = right_type;
-               else if (left_type->float_type() != NULL)
-                 type = left_type;
-               else if (right_type->float_type() != NULL)
-                 type = right_type;
-               else
-                 type = left_type;
-               ret = Expression::make_float(&val, type, location);
-             }
-
-           mpfr_clear(val);
-         }
-
-       if (ret != NULL)
-         {
-           mpfr_clear(right_val);
-           mpfr_clear(left_val);
-           return ret;
-         }
-      }
-    mpfr_clear(right_val);
-    mpfr_clear(left_val);
-  }
-
-  // Complex constant expressions.
-  {
-    mpfr_t left_real;
-    mpfr_t left_imag;
-    mpfr_init(left_real);
-    mpfr_init(left_imag);
-    Type* left_type;
-
-    mpfr_t right_real;
-    mpfr_t right_imag;
-    mpfr_init(right_real);
-    mpfr_init(right_imag);
-    Type* right_type;
-
-    if (left->complex_constant_value(left_real, left_imag, &left_type)
-       && right->complex_constant_value(right_real, right_imag, &right_type))
-      {
-       Expression* ret = NULL;
-       if (left_type != right_type
-           && left_type != NULL
-           && right_type != NULL
-           && left_type->base() != right_type->base())
-         {
-           // May be a type error--let it be diagnosed later.
-         }
-       else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
-         {
-           bool b = Binary_expression::compare_complex(op,
-                                                       (left_type != NULL
-                                                        ? left_type
-                                                        : right_type),
-                                                       left_real,
-                                                       left_imag,
-                                                       right_real,
-                                                       right_imag);
-           ret = Expression::make_boolean(b, location);
-         }
-       else
-         {
-           mpfr_t real;
-           mpfr_t imag;
-           mpfr_init(real);
-           mpfr_init(imag);
-
-           if (Binary_expression::eval_complex(op, left_type,
-                                               left_real, left_imag,
-                                               right_type,
-                                               right_real, right_imag,
-                                               real, imag,
-                                               location))
-             {
-               gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
-                          && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
-               Type* type;
-               if (left_type == NULL)
-                 type = right_type;
-               else if (right_type == NULL)
-                 type = left_type;
-               else if (!left_type->is_abstract()
-                        && left_type->named_type() != NULL)
-                 type = left_type;
-               else if (!right_type->is_abstract()
-                        && right_type->named_type() != NULL)
-                 type = right_type;
-               else if (!left_type->is_abstract())
-                 type = left_type;
-               else if (!right_type->is_abstract())
-                 type = right_type;
-               else if (left_type->complex_type() != NULL)
-                 type = left_type;
-               else if (right_type->complex_type() != NULL)
-                 type = right_type;
-               else
-                 type = left_type;
-               ret = Expression::make_complex(&real, &imag, type,
-                                              location);
-             }
-           mpfr_clear(real);
-           mpfr_clear(imag);
-         }
-
-       if (ret != NULL)
-         {
-           mpfr_clear(left_real);
-           mpfr_clear(left_imag);
-           mpfr_clear(right_real);
-           mpfr_clear(right_imag);
-           return ret;
-         }
-      }
-
-    mpfr_clear(left_real);
-    mpfr_clear(left_imag);
-    mpfr_clear(right_real);
-    mpfr_clear(right_imag);
-  }
-
-  // String constant expressions.
-  if (op == OPERATOR_PLUS
-      && left->type()->is_string_type()
-      && right->type()->is_string_type())
-    {
-      std::string left_string;
-      std::string right_string;
-      if (left->string_constant_value(&left_string)
-         && right->string_constant_value(&right_string))
-       return Expression::make_string(left_string + right_string, location);
-    }
-
-  return this;
-}
-
-// Return the integer constant value, if it has one.
-
-bool
-Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
-                                            Type** ptype) const
-{
-  mpz_t left_val;
-  mpz_init(left_val);
-  Type* left_type;
-  if (!this->left_->integer_constant_value(iota_is_constant, left_val,
-                                          &left_type))
-    {
-      mpz_clear(left_val);
-      return false;
-    }
-
-  mpz_t right_val;
-  mpz_init(right_val);
-  Type* right_type;
-  if (!this->right_->integer_constant_value(iota_is_constant, right_val,
-                                           &right_type))
-    {
-      mpz_clear(right_val);
-      mpz_clear(left_val);
-      return false;
-    }
-
-  bool ret;
-  if (left_type != right_type
-      && left_type != NULL
-      && right_type != NULL
-      && left_type->base() != right_type->base()
-      && this->op_ != OPERATOR_RSHIFT
-      && this->op_ != OPERATOR_LSHIFT)
-    ret = false;
-  else
-    ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
-                                         right_type, right_val,
-                                         this->location(), val);
-
-  mpz_clear(right_val);
-  mpz_clear(left_val);
-
-  if (ret)
-    *ptype = left_type;
-
-  return ret;
-}
-
-// Return the floating point constant value, if it has one.
-
-bool
-Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
-{
-  mpfr_t left_val;
-  mpfr_init(left_val);
-  Type* left_type;
-  if (!this->left_->float_constant_value(left_val, &left_type))
-    {
-      mpfr_clear(left_val);
-      return false;
-    }
-
-  mpfr_t right_val;
-  mpfr_init(right_val);
-  Type* right_type;
-  if (!this->right_->float_constant_value(right_val, &right_type))
-    {
-      mpfr_clear(right_val);
-      mpfr_clear(left_val);
-      return false;
-    }
-
-  bool ret;
-  if (left_type != right_type
-      && left_type != NULL
-      && right_type != NULL
-      && left_type->base() != right_type->base())
-    ret = false;
-  else
-    ret = Binary_expression::eval_float(this->op_, left_type, left_val,
-                                       right_type, right_val,
-                                       val, this->location());
-
-  mpfr_clear(left_val);
-  mpfr_clear(right_val);
-
-  if (ret)
-    *ptype = left_type;
-
-  return ret;
-}
-
-// Return the complex constant value, if it has one.
-
-bool
-Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                            Type** ptype) const
-{
-  mpfr_t left_real;
-  mpfr_t left_imag;
-  mpfr_init(left_real);
-  mpfr_init(left_imag);
-  Type* left_type;
-  if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
-    {
-      mpfr_clear(left_real);
-      mpfr_clear(left_imag);
-      return false;
-    }
-
-  mpfr_t right_real;
-  mpfr_t right_imag;
-  mpfr_init(right_real);
-  mpfr_init(right_imag);
-  Type* right_type;
-  if (!this->right_->complex_constant_value(right_real, right_imag,
-                                           &right_type))
-    {
-      mpfr_clear(left_real);
-      mpfr_clear(left_imag);
-      mpfr_clear(right_real);
-      mpfr_clear(right_imag);
-      return false;
-    }
-
-  bool ret;
-  if (left_type != right_type
-      && left_type != NULL
-      && right_type != NULL
-      && left_type->base() != right_type->base())
-    ret = false;
-  else
-    ret = Binary_expression::eval_complex(this->op_, left_type,
-                                         left_real, left_imag,
-                                         right_type,
-                                         right_real, right_imag,
-                                         real, imag,
-                                         this->location());
-  mpfr_clear(left_real);
-  mpfr_clear(left_imag);
-  mpfr_clear(right_real);
-  mpfr_clear(right_imag);
-
-  if (ret)
-    *ptype = left_type;
-
-  return ret;
-}
-
-// Note that the value is being discarded.
-
-void
-Binary_expression::do_discarding_value()
-{
-  if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
-    this->right_->discarding_value();
-  else
-    this->warn_about_unused_value();
-}
-
-// Get type.
-
-Type*
-Binary_expression::do_type()
-{
-  if (this->classification() == EXPRESSION_ERROR)
-    return Type::make_error_type();
-
-  switch (this->op_)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      return Type::lookup_bool_type();
-
-    case OPERATOR_PLUS:
-    case OPERATOR_MINUS:
-    case OPERATOR_OR:
-    case OPERATOR_XOR:
-    case OPERATOR_MULT:
-    case OPERATOR_DIV:
-    case OPERATOR_MOD:
-    case OPERATOR_AND:
-    case OPERATOR_BITCLEAR:
-      {
-       Type* left_type = this->left_->type();
-       Type* right_type = this->right_->type();
-       if (left_type->is_error_type())
-         return left_type;
-       else if (right_type->is_error_type())
-         return right_type;
-       else if (!Type::are_compatible_for_binop(left_type, right_type))
-         {
-           this->report_error(_("incompatible types in binary expression"));
-           return Type::make_error_type();
-         }
-       else if (!left_type->is_abstract() && left_type->named_type() != NULL)
-         return left_type;
-       else if (!right_type->is_abstract() && right_type->named_type() != NULL)
-         return right_type;
-       else if (!left_type->is_abstract())
-         return left_type;
-       else if (!right_type->is_abstract())
-         return right_type;
-       else if (left_type->complex_type() != NULL)
-         return left_type;
-       else if (right_type->complex_type() != NULL)
-         return right_type;
-       else if (left_type->float_type() != NULL)
-         return left_type;
-       else if (right_type->float_type() != NULL)
-         return right_type;
-       else
-         return left_type;
-      }
-
-    case OPERATOR_LSHIFT:
-    case OPERATOR_RSHIFT:
-      return this->left_->type();
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Set type for a binary expression.
-
-void
-Binary_expression::do_determine_type(const Type_context* context)
-{
-  Type* tleft = this->left_->type();
-  Type* tright = this->right_->type();
-
-  // Both sides should have the same type, except for the shift
-  // operations.  For a comparison, we should ignore the incoming
-  // type.
-
-  bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
-                     || this->op_ == OPERATOR_RSHIFT);
-
-  bool is_comparison = (this->op_ == OPERATOR_EQEQ
-                       || this->op_ == OPERATOR_NOTEQ
-                       || this->op_ == OPERATOR_LT
-                       || this->op_ == OPERATOR_LE
-                       || this->op_ == OPERATOR_GT
-                       || this->op_ == OPERATOR_GE);
-
-  Type_context subcontext(*context);
-
-  if (is_comparison)
-    {
-      // In a comparison, the context does not determine the types of
-      // the operands.
-      subcontext.type = NULL;
-    }
-
-  // Set the context for the left hand operand.
-  if (is_shift_op)
-    {
-      // The right hand operand plays no role in determining the type
-      // of the left hand operand.  A shift of an abstract integer in
-      // a string context gets special treatment, which may be a
-      // language bug.
-      if (subcontext.type != NULL
-         && subcontext.type->is_string_type()
-         && tleft->is_abstract())
-       error_at(this->location(), "shift of non-integer operand");
-    }
-  else if (!tleft->is_abstract())
-    subcontext.type = tleft;
-  else if (!tright->is_abstract())
-    subcontext.type = tright;
-  else if (subcontext.type == NULL)
-    {
-      if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
-         || (tleft->float_type() != NULL && tright->float_type() != NULL)
-         || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
-       {
-         // Both sides have an abstract integer, abstract float, or
-         // abstract complex type.  Just let CONTEXT determine
-         // whether they may remain abstract or not.
-       }
-      else if (tleft->complex_type() != NULL)
-       subcontext.type = tleft;
-      else if (tright->complex_type() != NULL)
-       subcontext.type = tright;
-      else if (tleft->float_type() != NULL)
-       subcontext.type = tleft;
-      else if (tright->float_type() != NULL)
-       subcontext.type = tright;
-      else
-       subcontext.type = tleft;
-
-      if (subcontext.type != NULL && !context->may_be_abstract)
-       subcontext.type = subcontext.type->make_non_abstract_type();
-    }
-
-  this->left_->determine_type(&subcontext);
-
-  // The context for the right hand operand is the same as for the
-  // left hand operand, except for a shift operator.
-  if (is_shift_op)
-    {
-      subcontext.type = Type::lookup_integer_type("uint");
-      subcontext.may_be_abstract = false;
-    }
-
-  this->right_->determine_type(&subcontext);
-}
-
-// Report an error if the binary operator OP does not support TYPE.
-// Return whether the operation is OK.  This should not be used for
-// shift.
-
-bool
-Binary_expression::check_operator_type(Operator op, Type* type,
-                                      source_location location)
-{
-  switch (op)
-    {
-    case OPERATOR_OROR:
-    case OPERATOR_ANDAND:
-      if (!type->is_boolean_type())
-       {
-         error_at(location, "expected boolean type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL
-         && !type->is_string_type()
-         && type->points_to() == NULL
-         && !type->is_nil_type()
-         && !type->is_boolean_type()
-         && type->interface_type() == NULL
-         && (type->array_type() == NULL
-             || type->array_type()->length() != NULL)
-         && type->map_type() == NULL
-         && type->channel_type() == NULL
-         && type->function_type() == NULL)
-       {
-         error_at(location,
-                  ("expected integer, floating, complex, string, pointer, "
-                   "boolean, interface, slice, map, channel, "
-                   "or function type"));
-         return false;
-       }
-      break;
-
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && !type->is_string_type())
-       {
-         error_at(location, "expected integer, floating, or string type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_PLUS:
-    case OPERATOR_PLUSEQ:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL
-         && !type->is_string_type())
-       {
-         error_at(location,
-                  "expected integer, floating, complex, or string type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_MINUS:
-    case OPERATOR_MINUSEQ:
-    case OPERATOR_MULT:
-    case OPERATOR_MULTEQ:
-    case OPERATOR_DIV:
-    case OPERATOR_DIVEQ:
-      if (type->integer_type() == NULL
-         && type->float_type() == NULL
-         && type->complex_type() == NULL)
-       {
-         error_at(location, "expected integer, floating, or complex type");
-         return false;
-       }
-      break;
-
-    case OPERATOR_MOD:
-    case OPERATOR_MODEQ:
-    case OPERATOR_OR:
-    case OPERATOR_OREQ:
-    case OPERATOR_AND:
-    case OPERATOR_ANDEQ:
-    case OPERATOR_XOR:
-    case OPERATOR_XOREQ:
-    case OPERATOR_BITCLEAR:
-    case OPERATOR_BITCLEAREQ:
-      if (type->integer_type() == NULL)
-       {
-         error_at(location, "expected integer type");
-         return false;
-       }
-      break;
-
-    default:
-      gcc_unreachable();
-    }
-
-  return true;
-}
-
-// Check types.
-
-void
-Binary_expression::do_check_types(Gogo*)
-{
-  if (this->classification() == EXPRESSION_ERROR)
-    return;
-
-  Type* left_type = this->left_->type();
-  Type* right_type = this->right_->type();
-  if (left_type->is_error_type() || right_type->is_error_type())
-    {
-      this->set_is_error();
-      return;
-    }
-
-  if (this->op_ == OPERATOR_EQEQ
-      || this->op_ == OPERATOR_NOTEQ
-      || this->op_ == OPERATOR_LT
-      || this->op_ == OPERATOR_LE
-      || this->op_ == OPERATOR_GT
-      || this->op_ == OPERATOR_GE)
-    {
-      if (!Type::are_assignable(left_type, right_type, NULL)
-         && !Type::are_assignable(right_type, left_type, NULL))
-       {
-         this->report_error(_("incompatible types in binary expression"));
-         return;
-       }
-      if (!Binary_expression::check_operator_type(this->op_, left_type,
-                                                 this->location())
-         || !Binary_expression::check_operator_type(this->op_, right_type,
-                                                    this->location()))
-       {
-         this->set_is_error();
-         return;
-       }
-    }
-  else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
-    {
-      if (!Type::are_compatible_for_binop(left_type, right_type))
-       {
-         this->report_error(_("incompatible types in binary expression"));
-         return;
-       }
-      if (!Binary_expression::check_operator_type(this->op_, left_type,
-                                                 this->location()))
-       {
-         this->set_is_error();
-         return;
-       }
-    }
-  else
-    {
-      if (left_type->integer_type() == NULL)
-       this->report_error(_("shift of non-integer operand"));
-
-      if (!right_type->is_abstract()
-         && (right_type->integer_type() == NULL
-             || !right_type->integer_type()->is_unsigned()))
-       this->report_error(_("shift count not unsigned integer"));
-      else
-       {
-         mpz_t val;
-         mpz_init(val);
-         Type* type;
-         if (this->right_->integer_constant_value(true, val, &type))
-           {
-             if (mpz_sgn(val) < 0)
-               this->report_error(_("negative shift count"));
-           }
-         mpz_clear(val);
-       }
-    }
-}
-
-// Get a tree for a binary expression.
-
-tree
-Binary_expression::do_get_tree(Translate_context* context)
-{
-  tree left = this->left_->get_tree(context);
-  tree right = this->right_->get_tree(context);
-
-  if (left == error_mark_node || right == error_mark_node)
-    return error_mark_node;
-
-  enum tree_code code;
-  bool use_left_type = true;
-  bool is_shift_op = false;
-  switch (this->op_)
-    {
-    case OPERATOR_EQEQ:
-    case OPERATOR_NOTEQ:
-    case OPERATOR_LT:
-    case OPERATOR_LE:
-    case OPERATOR_GT:
-    case OPERATOR_GE:
-      return Expression::comparison_tree(context, this->op_,
-                                        this->left_->type(), left,
-                                        this->right_->type(), right,
-                                        this->location());
-
-    case OPERATOR_OROR:
-      code = TRUTH_ORIF_EXPR;
-      use_left_type = false;
-      break;
-    case OPERATOR_ANDAND:
-      code = TRUTH_ANDIF_EXPR;
-      use_left_type = false;
-      break;
-    case OPERATOR_PLUS:
-      code = PLUS_EXPR;
-      break;
-    case OPERATOR_MINUS:
-      code = MINUS_EXPR;
-      break;
-    case OPERATOR_OR:
-      code = BIT_IOR_EXPR;
-      break;
-    case OPERATOR_XOR:
-      code = BIT_XOR_EXPR;
-      break;
-    case OPERATOR_MULT:
-      code = MULT_EXPR;
-      break;
-    case OPERATOR_DIV:
-      {
-       Type *t = this->left_->type();
-       if (t->float_type() != NULL || t->complex_type() != NULL)
-         code = RDIV_EXPR;
-       else
-         code = TRUNC_DIV_EXPR;
-      }
-      break;
-    case OPERATOR_MOD:
-      code = TRUNC_MOD_EXPR;
-      break;
-    case OPERATOR_LSHIFT:
-      code = LSHIFT_EXPR;
-      is_shift_op = true;
-      break;
-    case OPERATOR_RSHIFT:
-      code = RSHIFT_EXPR;
-      is_shift_op = true;
-      break;
-    case OPERATOR_AND:
-      code = BIT_AND_EXPR;
-      break;
-    case OPERATOR_BITCLEAR:
-      right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
-      code = BIT_AND_EXPR;
-      break;
-    default:
-      gcc_unreachable();
-    }
-
-  tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
-
-  if (this->left_->type()->is_string_type())
-    {
-      gcc_assert(this->op_ == OPERATOR_PLUS);
-      tree string_type = Type::make_string_type()->get_tree(context->gogo());
-      static tree string_plus_decl;
-      return Gogo::call_builtin(&string_plus_decl,
-                               this->location(),
-                               "__go_string_plus",
-                               2,
-                               string_type,
-                               string_type,
-                               left,
-                               string_type,
-                               right);
-    }
-
-  tree compute_type = excess_precision_type(type);
-  if (compute_type != NULL_TREE)
-    {
-      left = ::convert(compute_type, left);
-      right = ::convert(compute_type, right);
-    }
-
-  tree eval_saved = NULL_TREE;
-  if (is_shift_op)
-    {
-      // Make sure the values are evaluated.
-      if (!DECL_P(left) && TREE_SIDE_EFFECTS(left))
-       {
-         left = save_expr(left);
-         eval_saved = left;
-       }
-      if (!DECL_P(right) && TREE_SIDE_EFFECTS(right))
-       {
-         right = save_expr(right);
-         if (eval_saved == NULL_TREE)
-           eval_saved = right;
-         else
-           eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
-                                        void_type_node, eval_saved, right);
-       }
-    }
-
-  tree ret = fold_build2_loc(this->location(),
-                            code,
-                            compute_type != NULL_TREE ? compute_type : type,
-                            left, right);
-
-  if (compute_type != NULL_TREE)
-    ret = ::convert(type, ret);
-
-  // In Go, a shift larger than the size of the type is well-defined.
-  // This is not true in GENERIC, so we need to insert a conditional.
-  if (is_shift_op)
-    {
-      gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
-      gcc_assert(this->left_->type()->integer_type() != NULL);
-      int bits = TYPE_PRECISION(TREE_TYPE(left));
-
-      tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
-                                build_int_cst_type(TREE_TYPE(right), bits));
-
-      tree overflow_result = fold_convert_loc(this->location(),
-                                             TREE_TYPE(left),
-                                             integer_zero_node);
-      if (this->op_ == OPERATOR_RSHIFT
-         && !this->left_->type()->integer_type()->is_unsigned())
-       {
-         tree neg = fold_build2_loc(this->location(), LT_EXPR,
-                                    boolean_type_node, left,
-                                    fold_convert_loc(this->location(),
-                                                     TREE_TYPE(left),
-                                                     integer_zero_node));
-         tree neg_one = fold_build2_loc(this->location(),
-                                        MINUS_EXPR, TREE_TYPE(left),
-                                        fold_convert_loc(this->location(),
-                                                         TREE_TYPE(left),
-                                                         integer_zero_node),
-                                        fold_convert_loc(this->location(),
-                                                         TREE_TYPE(left),
-                                                         integer_one_node));
-         overflow_result = fold_build3_loc(this->location(), COND_EXPR,
-                                           TREE_TYPE(left), neg, neg_one,
-                                           overflow_result);
-       }
-
-      ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
-                           compare, ret, overflow_result);
-
-      if (eval_saved != NULL_TREE)
-       ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
-                             TREE_TYPE(ret), eval_saved, ret);
-    }
-
-  return ret;
-}
-
-// Export a binary expression.
-
-void
-Binary_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("(");
-  this->left_->export_expression(exp);
-  switch (this->op_)
-    {
-    case OPERATOR_OROR:
-      exp->write_c_string(" || ");
-      break;
-    case OPERATOR_ANDAND:
-      exp->write_c_string(" && ");
-      break;
-    case OPERATOR_EQEQ:
-      exp->write_c_string(" == ");
-      break;
-    case OPERATOR_NOTEQ:
-      exp->write_c_string(" != ");
-      break;
-    case OPERATOR_LT:
-      exp->write_c_string(" < ");
-      break;
-    case OPERATOR_LE:
-      exp->write_c_string(" <= ");
-      break;
-    case OPERATOR_GT:
-      exp->write_c_string(" > ");
-      break;
-    case OPERATOR_GE:
-      exp->write_c_string(" >= ");
-      break;
-    case OPERATOR_PLUS:
-      exp->write_c_string(" + ");
-      break;
-    case OPERATOR_MINUS:
-      exp->write_c_string(" - ");
-      break;
-    case OPERATOR_OR:
-      exp->write_c_string(" | ");
-      break;
-    case OPERATOR_XOR:
-      exp->write_c_string(" ^ ");
-      break;
-    case OPERATOR_MULT:
-      exp->write_c_string(" * ");
-      break;
-    case OPERATOR_DIV:
-      exp->write_c_string(" / ");
-      break;
-    case OPERATOR_MOD:
-      exp->write_c_string(" % ");
-      break;
-    case OPERATOR_LSHIFT:
-      exp->write_c_string(" << ");
-      break;
-    case OPERATOR_RSHIFT:
-      exp->write_c_string(" >> ");
-      break;
-    case OPERATOR_AND:
-      exp->write_c_string(" & ");
-      break;
-    case OPERATOR_BITCLEAR:
-      exp->write_c_string(" &^ ");
-      break;
-    default:
-      gcc_unreachable();
-    }
-  this->right_->export_expression(exp);
-  exp->write_c_string(")");
-}
-
-// Import a binary expression.
-
-Expression*
-Binary_expression::do_import(Import* imp)
-{
-  imp->require_c_string("(");
-
-  Expression* left = Expression::import_expression(imp);
-
-  Operator op;
-  if (imp->match_c_string(" || "))
-    {
-      op = OPERATOR_OROR;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" && "))
-    {
-      op = OPERATOR_ANDAND;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" == "))
-    {
-      op = OPERATOR_EQEQ;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" != "))
-    {
-      op = OPERATOR_NOTEQ;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" < "))
-    {
-      op = OPERATOR_LT;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" <= "))
-    {
-      op = OPERATOR_LE;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" > "))
-    {
-      op = OPERATOR_GT;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" >= "))
-    {
-      op = OPERATOR_GE;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" + "))
-    {
-      op = OPERATOR_PLUS;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" - "))
-    {
-      op = OPERATOR_MINUS;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" | "))
-    {
-      op = OPERATOR_OR;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" ^ "))
-    {
-      op = OPERATOR_XOR;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" * "))
-    {
-      op = OPERATOR_MULT;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" / "))
-    {
-      op = OPERATOR_DIV;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" % "))
-    {
-      op = OPERATOR_MOD;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" << "))
-    {
-      op = OPERATOR_LSHIFT;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" >> "))
-    {
-      op = OPERATOR_RSHIFT;
-      imp->advance(4);
-    }
-  else if (imp->match_c_string(" & "))
-    {
-      op = OPERATOR_AND;
-      imp->advance(3);
-    }
-  else if (imp->match_c_string(" &^ "))
-    {
-      op = OPERATOR_BITCLEAR;
-      imp->advance(4);
-    }
-  else
-    {
-      error_at(imp->location(), "unrecognized binary operator");
-      return Expression::make_error(imp->location());
-    }
-
-  Expression* right = Expression::import_expression(imp);
-
-  imp->require_c_string(")");
-
-  return Expression::make_binary(op, left, right, imp->location());
-}
-
-// Make a binary expression.
-
-Expression*
-Expression::make_binary(Operator op, Expression* left, Expression* right,
-                       source_location location)
-{
-  return new Binary_expression(op, left, right, location);
-}
-
-// Implement a comparison.
-
-tree
-Expression::comparison_tree(Translate_context* context, Operator op,
-                           Type* left_type, tree left_tree,
-                           Type* right_type, tree right_tree,
-                           source_location location)
-{
-  enum tree_code code;
-  switch (op)
-    {
-    case OPERATOR_EQEQ:
-      code = EQ_EXPR;
-      break;
-    case OPERATOR_NOTEQ:
-      code = NE_EXPR;
-      break;
-    case OPERATOR_LT:
-      code = LT_EXPR;
-      break;
-    case OPERATOR_LE:
-      code = LE_EXPR;
-      break;
-    case OPERATOR_GT:
-      code = GT_EXPR;
-      break;
-    case OPERATOR_GE:
-      code = GE_EXPR;
-      break;
-    default:
-      gcc_unreachable();
-    }
-
-  if (left_type->is_string_type() && right_type->is_string_type())
-    {
-      tree string_type = Type::make_string_type()->get_tree(context->gogo());
-      static tree string_compare_decl;
-      left_tree = Gogo::call_builtin(&string_compare_decl,
-                                    location,
-                                    "__go_strcmp",
-                                    2,
-                                    integer_type_node,
-                                    string_type,
-                                    left_tree,
-                                    string_type,
-                                    right_tree);
-      right_tree = build_int_cst_type(integer_type_node, 0);
-    }
-  else if ((left_type->interface_type() != NULL
-           && right_type->interface_type() == NULL
-           && !right_type->is_nil_type())
-          || (left_type->interface_type() == NULL
-              && !left_type->is_nil_type()
-              && right_type->interface_type() != NULL))
-    {
-      // Comparing an interface value to a non-interface value.
-      if (left_type->interface_type() == NULL)
-       {
-         std::swap(left_type, right_type);
-         std::swap(left_tree, right_tree);
-       }
-
-      // The right operand is not an interface.  We need to take its
-      // address if it is not a pointer.
-      tree make_tmp;
-      tree arg;
-      if (right_type->points_to() != NULL)
-       {
-         make_tmp = NULL_TREE;
-         arg = right_tree;
-       }
-      else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
-       {
-         make_tmp = NULL_TREE;
-         arg = build_fold_addr_expr_loc(location, right_tree);
-         if (DECL_P(right_tree))
-           TREE_ADDRESSABLE(right_tree) = 1;
-       }
-      else
-       {
-         tree tmp = create_tmp_var(TREE_TYPE(right_tree),
-                                   get_name(right_tree));
-         DECL_IGNORED_P(tmp) = 0;
-         DECL_INITIAL(tmp) = right_tree;
-         TREE_ADDRESSABLE(tmp) = 1;
-         make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-         SET_EXPR_LOCATION(make_tmp, location);
-         arg = build_fold_addr_expr_loc(location, tmp);
-       }
-      arg = fold_convert_loc(location, ptr_type_node, arg);
-
-      tree descriptor = right_type->type_descriptor_pointer(context->gogo());
-
-      if (left_type->interface_type()->is_empty())
-       {
-         static tree empty_interface_value_compare_decl;
-         left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
-                                        location,
-                                        "__go_empty_interface_value_compare",
-                                        3,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(descriptor),
-                                        descriptor,
-                                        ptr_type_node,
-                                        arg);
-         if (left_tree == error_mark_node)
-           return error_mark_node;
-         // This can panic if the type is not comparable.
-         TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
-       }
-      else
-       {
-         static tree interface_value_compare_decl;
-         left_tree = Gogo::call_builtin(&interface_value_compare_decl,
-                                        location,
-                                        "__go_interface_value_compare",
-                                        3,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(descriptor),
-                                        descriptor,
-                                        ptr_type_node,
-                                        arg);
-         if (left_tree == error_mark_node)
-           return error_mark_node;
-         // This can panic if the type is not comparable.
-         TREE_NOTHROW(interface_value_compare_decl) = 0;
-       }
-      right_tree = build_int_cst_type(integer_type_node, 0);
-
-      if (make_tmp != NULL_TREE)
-       left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
-                          left_tree);
-    }
-  else if (left_type->interface_type() != NULL
-          && right_type->interface_type() != NULL)
-    {
-      if (left_type->interface_type()->is_empty()
-         && right_type->interface_type()->is_empty())
-       {
-         static tree empty_interface_compare_decl;
-         left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
-                                        location,
-                                        "__go_empty_interface_compare",
-                                        2,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(right_tree),
-                                        right_tree);
-         if (left_tree == error_mark_node)
-           return error_mark_node;
-         // This can panic if the type is uncomparable.
-         TREE_NOTHROW(empty_interface_compare_decl) = 0;
-       }
-      else if (!left_type->interface_type()->is_empty()
-              && !right_type->interface_type()->is_empty())
-       {
-         static tree interface_compare_decl;
-         left_tree = Gogo::call_builtin(&interface_compare_decl,
-                                        location,
-                                        "__go_interface_compare",
-                                        2,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(right_tree),
-                                        right_tree);
-         if (left_tree == error_mark_node)
-           return error_mark_node;
-         // This can panic if the type is uncomparable.
-         TREE_NOTHROW(interface_compare_decl) = 0;
-       }
-      else
-       {
-         if (left_type->interface_type()->is_empty())
-           {
-             gcc_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ);
-             std::swap(left_type, right_type);
-             std::swap(left_tree, right_tree);
-           }
-         gcc_assert(!left_type->interface_type()->is_empty());
-         gcc_assert(right_type->interface_type()->is_empty());
-         static tree interface_empty_compare_decl;
-         left_tree = Gogo::call_builtin(&interface_empty_compare_decl,
-                                        location,
-                                        "__go_interface_empty_compare",
-                                        2,
-                                        integer_type_node,
-                                        TREE_TYPE(left_tree),
-                                        left_tree,
-                                        TREE_TYPE(right_tree),
-                                        right_tree);
-         if (left_tree == error_mark_node)
-           return error_mark_node;
-         // This can panic if the type is uncomparable.
-         TREE_NOTHROW(interface_empty_compare_decl) = 0;
-       }
-
-      right_tree = build_int_cst_type(integer_type_node, 0);
-    }
-
-  if (left_type->is_nil_type()
-      && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
-    {
-      std::swap(left_type, right_type);
-      std::swap(left_tree, right_tree);
-    }
-
-  if (right_type->is_nil_type())
-    {
-      if (left_type->array_type() != NULL
-         && left_type->array_type()->length() == NULL)
-       {
-         Array_type* at = left_type->array_type();
-         left_tree = at->value_pointer_tree(context->gogo(), left_tree);
-         right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
-       }
-      else if (left_type->interface_type() != NULL)
-       {
-         // An interface is nil if the first field is nil.
-         tree left_type_tree = TREE_TYPE(left_tree);
-         gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
-         tree field = TYPE_FIELDS(left_type_tree);
-         left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
-                            field, NULL_TREE);
-         right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
-       }
-      else
-       {
-         gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
-         right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
-       }
-    }
-
-  if (left_tree == error_mark_node || right_tree == error_mark_node)
-    return error_mark_node;
-
-  tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
-  if (CAN_HAVE_LOCATION_P(ret))
-    SET_EXPR_LOCATION(ret, location);
-  return ret;
-}
-
-// Class Bound_method_expression.
-
-// Traversal.
-
-int
-Bound_method_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Expression::traverse(&this->method_, traverse);
-}
-
-// Return the type of a bound method expression.  The type of this
-// object is really the type of the method with no receiver.  We
-// should be able to get away with just returning the type of the
-// method.
-
-Type*
-Bound_method_expression::do_type()
-{
-  return this->method_->type();
-}
-
-// Determine the types of a method expression.
-
-void
-Bound_method_expression::do_determine_type(const Type_context*)
-{
-  this->method_->determine_type_no_context();
-  Type* mtype = this->method_->type();
-  Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
-  if (fntype == NULL || !fntype->is_method())
-    this->expr_->determine_type_no_context();
-  else
-    {
-      Type_context subcontext(fntype->receiver()->type(), false);
-      this->expr_->determine_type(&subcontext);
-    }
-}
-
-// Check the types of a method expression.
-
-void
-Bound_method_expression::do_check_types(Gogo*)
-{
-  Type* type = this->method_->type()->deref();
-  if (type == NULL
-      || type->function_type() == NULL
-      || !type->function_type()->is_method())
-    this->report_error(_("object is not a method"));
-  else
-    {
-      Type* rtype = type->function_type()->receiver()->type()->deref();
-      Type* etype = (this->expr_type_ != NULL
-                    ? this->expr_type_
-                    : this->expr_->type());
-      etype = etype->deref();
-      if (!Type::are_identical(rtype, etype, true, NULL))
-       this->report_error(_("method type does not match object type"));
-    }
-}
-
-// Get the tree for a method expression.  There is no standard tree
-// representation for this.  The only places it may currently be used
-// are in a Call_expression or a Go_statement, which will take it
-// apart directly.  So this has nothing to do at present.
-
-tree
-Bound_method_expression::do_get_tree(Translate_context*)
-{
-  error_at(this->location(), "reference to method other than calling it");
-  return error_mark_node;
-}
-
-// Make a method expression.
-
-Bound_method_expression*
-Expression::make_bound_method(Expression* expr, Expression* method,
-                             source_location location)
-{
-  return new Bound_method_expression(expr, method, location);
-}
-
-// Class Builtin_call_expression.  This is used for a call to a
-// builtin function.
-
-class Builtin_call_expression : public Call_expression
-{
- public:
-  Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
-                         bool is_varargs, source_location location);
-
- protected:
-  // This overrides Call_expression::do_lower.
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  bool
-  do_is_constant() const;
-
-  bool
-  do_integer_constant_value(bool, mpz_t, Type**) const;
-
-  bool
-  do_float_constant_value(mpfr_t, Type**) const;
-
-  bool
-  do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
-                                      this->args()->copy(),
-                                      this->is_varargs(),
-                                      this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
-  virtual bool
-  do_is_recover_call() const;
-
-  virtual void
-  do_set_recover_arg(Expression*);
-
- private:
-  // The builtin functions.
-  enum Builtin_function_code
-    {
-      BUILTIN_INVALID,
-
-      // Predeclared builtin functions.
-      BUILTIN_APPEND,
-      BUILTIN_CAP,
-      BUILTIN_CLOSE,
-      BUILTIN_COMPLEX,
-      BUILTIN_COPY,
-      BUILTIN_IMAG,
-      BUILTIN_LEN,
-      BUILTIN_MAKE,
-      BUILTIN_NEW,
-      BUILTIN_PANIC,
-      BUILTIN_PRINT,
-      BUILTIN_PRINTLN,
-      BUILTIN_REAL,
-      BUILTIN_RECOVER,
-
-      // Builtin functions from the unsafe package.
-      BUILTIN_ALIGNOF,
-      BUILTIN_OFFSETOF,
-      BUILTIN_SIZEOF
-    };
-
-  Expression*
-  one_arg() const;
-
-  bool
-  check_one_arg();
-
-  static Type*
-  real_imag_type(Type*);
-
-  static Type*
-  complex_type(Type*);
-
-  // A pointer back to the general IR structure.  This avoids a global
-  // variable, or passing it around everywhere.
-  Gogo* gogo_;
-  // The builtin function being called.
-  Builtin_function_code code_;
-  // Used to stop endless loops when the length of an array uses len
-  // or cap of the array itself.
-  mutable bool seen_;
-};
-
-Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
-                                                Expression* fn,
-                                                Expression_list* args,
-                                                bool is_varargs,
-                                                source_location location)
-  : Call_expression(fn, args, is_varargs, location),
-    gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
-{
-  Func_expression* fnexp = this->fn()->func_expression();
-  gcc_assert(fnexp != NULL);
-  const std::string& name(fnexp->named_object()->name());
-  if (name == "append")
-    this->code_ = BUILTIN_APPEND;
-  else if (name == "cap")
-    this->code_ = BUILTIN_CAP;
-  else if (name == "close")
-    this->code_ = BUILTIN_CLOSE;
-  else if (name == "complex")
-    this->code_ = BUILTIN_COMPLEX;
-  else if (name == "copy")
-    this->code_ = BUILTIN_COPY;
-  else if (name == "imag")
-    this->code_ = BUILTIN_IMAG;
-  else if (name == "len")
-    this->code_ = BUILTIN_LEN;
-  else if (name == "make")
-    this->code_ = BUILTIN_MAKE;
-  else if (name == "new")
-    this->code_ = BUILTIN_NEW;
-  else if (name == "panic")
-    this->code_ = BUILTIN_PANIC;
-  else if (name == "print")
-    this->code_ = BUILTIN_PRINT;
-  else if (name == "println")
-    this->code_ = BUILTIN_PRINTLN;
-  else if (name == "real")
-    this->code_ = BUILTIN_REAL;
-  else if (name == "recover")
-    this->code_ = BUILTIN_RECOVER;
-  else if (name == "Alignof")
-    this->code_ = BUILTIN_ALIGNOF;
-  else if (name == "Offsetof")
-    this->code_ = BUILTIN_OFFSETOF;
-  else if (name == "Sizeof")
-    this->code_ = BUILTIN_SIZEOF;
-  else
-    gcc_unreachable();
-}
-
-// Return whether this is a call to recover.  This is a virtual
-// function called from the parent class.
-
-bool
-Builtin_call_expression::do_is_recover_call() const
-{
-  if (this->classification() == EXPRESSION_ERROR)
-    return false;
-  return this->code_ == BUILTIN_RECOVER;
-}
-
-// Set the argument for a call to recover.
-
-void
-Builtin_call_expression::do_set_recover_arg(Expression* arg)
-{
-  const Expression_list* args = this->args();
-  gcc_assert(args == NULL || args->empty());
-  Expression_list* new_args = new Expression_list();
-  new_args->push_back(arg);
-  this->set_args(new_args);
-}
-
-// A traversal class which looks for a call expression.
-
-class Find_call_expression : public Traverse
-{
- public:
-  Find_call_expression()
-    : Traverse(traverse_expressions),
-      found_(false)
-  { }
-
-  int
-  expression(Expression**);
-
-  bool
-  found()
-  { return this->found_; }
-
- private:
-  bool found_;
-};
-
-int
-Find_call_expression::expression(Expression** pexpr)
-{
-  if ((*pexpr)->call_expression() != NULL)
-    {
-      this->found_ = true;
-      return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a builtin call expression.  This turns new and make into
-// specific expressions.  We also convert to a constant if we can.
-
-Expression*
-Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  if (this->code_ == BUILTIN_NEW)
-    {
-      const Expression_list* args = this->args();
-      if (args == NULL || args->size() < 1)
-       this->report_error(_("not enough arguments"));
-      else if (args->size() > 1)
-       this->report_error(_("too many arguments"));
-      else
-       {
-         Expression* arg = args->front();
-         if (!arg->is_type_expression())
-           {
-             error_at(arg->location(), "expected type");
-             this->set_is_error();
-           }
-         else
-           return Expression::make_allocation(arg->type(), this->location());
-       }
-    }
-  else if (this->code_ == BUILTIN_MAKE)
-    {
-      const Expression_list* args = this->args();
-      if (args == NULL || args->size() < 1)
-       this->report_error(_("not enough arguments"));
-      else
-       {
-         Expression* arg = args->front();
-         if (!arg->is_type_expression())
-           {
-             error_at(arg->location(), "expected type");
-             this->set_is_error();
-           }
-         else
-           {
-             Expression_list* newargs;
-             if (args->size() == 1)
-               newargs = NULL;
-             else
-               {
-                 newargs = new Expression_list();
-                 Expression_list::const_iterator p = args->begin();
-                 ++p;
-                 for (; p != args->end(); ++p)
-                   newargs->push_back(*p);
-               }
-             return Expression::make_make(arg->type(), newargs,
-                                          this->location());
-           }
-       }
-    }
-  else if (this->is_constant())
-    {
-      // We can only lower len and cap if there are no function calls
-      // in the arguments.  Otherwise we have to make the call.
-      if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
-       {
-         Expression* arg = this->one_arg();
-         if (!arg->is_constant())
-           {
-             Find_call_expression find_call;
-             Expression::traverse(&arg, &find_call);
-             if (find_call.found())
-               return this;
-           }
-       }
-
-      mpz_t ival;
-      mpz_init(ival);
-      Type* type;
-      if (this->integer_constant_value(true, ival, &type))
-       {
-         Expression* ret = Expression::make_integer(&ival, type,
-                                                    this->location());
-         mpz_clear(ival);
-         return ret;
-       }
-      mpz_clear(ival);
-
-      mpfr_t rval;
-      mpfr_init(rval);
-      if (this->float_constant_value(rval, &type))
-       {
-         Expression* ret = Expression::make_float(&rval, type,
-                                                  this->location());
-         mpfr_clear(rval);
-         return ret;
-       }
-
-      mpfr_t imag;
-      mpfr_init(imag);
-      if (this->complex_constant_value(rval, imag, &type))
-       {
-         Expression* ret = Expression::make_complex(&rval, &imag, type,
-                                                    this->location());
-         mpfr_clear(rval);
-         mpfr_clear(imag);
-         return ret;
-       }
-      mpfr_clear(rval);
-      mpfr_clear(imag);
-    }
-  else if (this->code_ == BUILTIN_RECOVER)
-    {
-      if (function != NULL)
-       function->func_value()->set_calls_recover();
-      else
-       {
-         // Calling recover outside of a function always returns the
-         // nil empty interface.
-         Type* eface = Type::make_interface_type(NULL, this->location());
-         return Expression::make_cast(eface,
-                                      Expression::make_nil(this->location()),
-                                      this->location());
-       }
-    }
-  else if (this->code_ == BUILTIN_APPEND)
-    {
-      // Lower the varargs.
-      const Expression_list* args = this->args();
-      if (args == NULL || args->empty())
-       return this;
-      Type* slice_type = args->front()->type();
-      if (!slice_type->is_open_array_type())
-       {
-         error_at(args->front()->location(), "argument 1 must be a slice");
-         this->set_is_error();
-         return this;
-       }
-      return this->lower_varargs(gogo, function, slice_type, 2);
-    }
-
-  return this;
-}
-
-// Return the type of the real or imag functions, given the type of
-// the argument.  We need to map complex to float, complex64 to
-// float32, and complex128 to float64, so it has to be done by name.
-// This returns NULL if it can't figure out the type.
-
-Type*
-Builtin_call_expression::real_imag_type(Type* arg_type)
-{
-  if (arg_type == NULL || arg_type->is_abstract())
-    return NULL;
-  Named_type* nt = arg_type->named_type();
-  if (nt == NULL)
-    return NULL;
-  while (nt->real_type()->named_type() != NULL)
-    nt = nt->real_type()->named_type();
-  if (nt->name() == "complex64")
-    return Type::lookup_float_type("float32");
-  else if (nt->name() == "complex128")
-    return Type::lookup_float_type("float64");
-  else
-    return NULL;
-}
-
-// Return the type of the complex function, given the type of one of the
-// argments.  Like real_imag_type, we have to map by name.
-
-Type*
-Builtin_call_expression::complex_type(Type* arg_type)
-{
-  if (arg_type == NULL || arg_type->is_abstract())
-    return NULL;
-  Named_type* nt = arg_type->named_type();
-  if (nt == NULL)
-    return NULL;
-  while (nt->real_type()->named_type() != NULL)
-    nt = nt->real_type()->named_type();
-  if (nt->name() == "float32")
-    return Type::lookup_complex_type("complex64");
-  else if (nt->name() == "float64")
-    return Type::lookup_complex_type("complex128");
-  else
-    return NULL;
-}
-
-// Return a single argument, or NULL if there isn't one.
-
-Expression*
-Builtin_call_expression::one_arg() const
-{
-  const Expression_list* args = this->args();
-  if (args->size() != 1)
-    return NULL;
-  return args->front();
-}
-
-// Return whether this is constant: len of a string, or len or cap of
-// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
-
-bool
-Builtin_call_expression::do_is_constant() const
-{
-  switch (this->code_)
-    {
-    case BUILTIN_LEN:
-    case BUILTIN_CAP:
-      {
-       if (this->seen_)
-         return false;
-
-       Expression* arg = this->one_arg();
-       if (arg == NULL)
-         return false;
-       Type* arg_type = arg->type();
-
-       if (arg_type->points_to() != NULL
-           && arg_type->points_to()->array_type() != NULL
-           && !arg_type->points_to()->is_open_array_type())
-         arg_type = arg_type->points_to();
-
-       if (arg_type->array_type() != NULL
-           && arg_type->array_type()->length() != NULL)
-         return true;
-
-       if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
-         {
-           this->seen_ = true;
-           bool ret = arg->is_constant();
-           this->seen_ = false;
-           return ret;
-         }
-      }
-      break;
-
-    case BUILTIN_SIZEOF:
-    case BUILTIN_ALIGNOF:
-      return this->one_arg() != NULL;
-
-    case BUILTIN_OFFSETOF:
-      {
-       Expression* arg = this->one_arg();
-       if (arg == NULL)
-         return false;
-       return arg->field_reference_expression() != NULL;
-      }
-
-    case BUILTIN_COMPLEX:
-      {
-       const Expression_list* args = this->args();
-       if (args != NULL && args->size() == 2)
-         return args->front()->is_constant() && args->back()->is_constant();
-      }
-      break;
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      {
-       Expression* arg = this->one_arg();
-       return arg != NULL && arg->is_constant();
-      }
-
-    default:
-      break;
-    }
-
-  return false;
-}
-
-// Return an integer constant value if possible.
-
-bool
-Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
-                                                  mpz_t val,
-                                                  Type** ptype) const
-{
-  if (this->code_ == BUILTIN_LEN
-      || this->code_ == BUILTIN_CAP)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-      Type* arg_type = arg->type();
-
-      if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
-       {
-         std::string sval;
-         if (arg->string_constant_value(&sval))
-           {
-             mpz_set_ui(val, sval.length());
-             *ptype = Type::lookup_integer_type("int");
-             return true;
-           }
-       }
-
-      if (arg_type->points_to() != NULL
-         && arg_type->points_to()->array_type() != NULL
-         && !arg_type->points_to()->is_open_array_type())
-       arg_type = arg_type->points_to();
-
-      if (arg_type->array_type() != NULL
-         && arg_type->array_type()->length() != NULL)
-       {
-         if (this->seen_)
-           return false;
-         Expression* e = arg_type->array_type()->length();
-         this->seen_ = true;
-         bool r = e->integer_constant_value(iota_is_constant, val, ptype);
-         this->seen_ = false;
-         if (r)
-           {
-             *ptype = Type::lookup_integer_type("int");
-             return true;
-           }
-       }
-    }
-  else if (this->code_ == BUILTIN_SIZEOF
-          || this->code_ == BUILTIN_ALIGNOF)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-      Type* arg_type = arg->type();
-      if (arg_type->is_error_type() || arg_type->is_undefined())
-       return false;
-      if (arg_type->is_abstract())
-       return false;
-      if (arg_type->named_type() != NULL)
-       arg_type->named_type()->convert(this->gogo_);
-      tree arg_type_tree = arg_type->get_tree(this->gogo_);
-      if (arg_type_tree == error_mark_node)
-       return false;
-      unsigned long val_long;
-      if (this->code_ == BUILTIN_SIZEOF)
-       {
-         tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
-         gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
-         if (TREE_INT_CST_HIGH(type_size) != 0)
-           return false;
-         unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
-         val_long = static_cast<unsigned long>(val_wide);
-         if (val_long != val_wide)
-           return false;
-       }
-      else if (this->code_ == BUILTIN_ALIGNOF)
-       {
-         if (arg->field_reference_expression() == NULL)
-           val_long = go_type_alignment(arg_type_tree);
-         else
-           {
-             // Calling unsafe.Alignof(s.f) returns the alignment of
-             // the type of f when it is used as a field in a struct.
-             val_long = go_field_alignment(arg_type_tree);
-           }
-       }
-      else
-       gcc_unreachable();
-      mpz_set_ui(val, val_long);
-      *ptype = NULL;
-      return true;
-    }
-  else if (this->code_ == BUILTIN_OFFSETOF)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-      Field_reference_expression* farg = arg->field_reference_expression();
-      if (farg == NULL)
-       return false;
-      Expression* struct_expr = farg->expr();
-      Type* st = struct_expr->type();
-      if (st->struct_type() == NULL)
-       return false;
-      if (st->named_type() != NULL)
-       st->named_type()->convert(this->gogo_);
-      tree struct_tree = st->get_tree(this->gogo_);
-      gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
-      tree field = TYPE_FIELDS(struct_tree);
-      for (unsigned int index = farg->field_index(); index > 0; --index)
-       {
-         field = DECL_CHAIN(field);
-         gcc_assert(field != NULL_TREE);
-       }
-      HOST_WIDE_INT offset_wide = int_byte_position (field);
-      if (offset_wide < 0)
-       return false;
-      unsigned long offset_long = static_cast<unsigned long>(offset_wide);
-      if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
-       return false;
-      mpz_set_ui(val, offset_long);
-      return true;
-    }
-  return false;
-}
-
-// Return a floating point constant value if possible.
-
-bool
-Builtin_call_expression::do_float_constant_value(mpfr_t val,
-                                                Type** ptype) const
-{
-  if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
-    {
-      Expression* arg = this->one_arg();
-      if (arg == NULL)
-       return false;
-
-      mpfr_t real;
-      mpfr_t imag;
-      mpfr_init(real);
-      mpfr_init(imag);
-
-      bool ret = false;
-      Type* type;
-      if (arg->complex_constant_value(real, imag, &type))
-       {
-         if (this->code_ == BUILTIN_REAL)
-           mpfr_set(val, real, GMP_RNDN);
-         else
-           mpfr_set(val, imag, GMP_RNDN);
-         *ptype = Builtin_call_expression::real_imag_type(type);
-         ret = true;
-       }
-
-      mpfr_clear(real);
-      mpfr_clear(imag);
-      return ret;
-    }
-
-  return false;
-}
-
-// Return a complex constant value if possible.
-
-bool
-Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
-                                                  Type** ptype) const
-{
-  if (this->code_ == BUILTIN_COMPLEX)
-    {
-      const Expression_list* args = this->args();
-      if (args == NULL || args->size() != 2)
-       return false;
-
-      mpfr_t r;
-      mpfr_init(r);
-      Type* rtype;
-      if (!args->front()->float_constant_value(r, &rtype))
-       {
-         mpfr_clear(r);
-         return false;
-       }
-
-      mpfr_t i;
-      mpfr_init(i);
-
-      bool ret = false;
-      Type* itype;
-      if (args->back()->float_constant_value(i, &itype)
-         && Type::are_identical(rtype, itype, false, NULL))
-       {
-         mpfr_set(real, r, GMP_RNDN);
-         mpfr_set(imag, i, GMP_RNDN);
-         *ptype = Builtin_call_expression::complex_type(rtype);
-         ret = true;
-       }
-
-      mpfr_clear(r);
-      mpfr_clear(i);
-
-      return ret;
-    }
-
-  return false;
-}
-
-// Return the type.
-
-Type*
-Builtin_call_expression::do_type()
-{
-  switch (this->code_)
-    {
-    case BUILTIN_INVALID:
-    default:
-      gcc_unreachable();
-
-    case BUILTIN_NEW:
-    case BUILTIN_MAKE:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->empty())
-         return Type::make_error_type();
-       return Type::make_pointer_type(args->front()->type());
-      }
-
-    case BUILTIN_CAP:
-    case BUILTIN_COPY:
-    case BUILTIN_LEN:
-    case BUILTIN_ALIGNOF:
-    case BUILTIN_OFFSETOF:
-    case BUILTIN_SIZEOF:
-      return Type::lookup_integer_type("int");
-
-    case BUILTIN_CLOSE:
-    case BUILTIN_PANIC:
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      return Type::make_void_type();
-
-    case BUILTIN_RECOVER:
-      return Type::make_interface_type(NULL, BUILTINS_LOCATION);
-
-    case BUILTIN_APPEND:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->empty())
-         return Type::make_error_type();
-       return args->front()->type();
-      }
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      {
-       Expression* arg = this->one_arg();
-       if (arg == NULL)
-         return Type::make_error_type();
-       Type* t = arg->type();
-       if (t->is_abstract())
-         t = t->make_non_abstract_type();
-       t = Builtin_call_expression::real_imag_type(t);
-       if (t == NULL)
-         t = Type::make_error_type();
-       return t;
-      }
-
-    case BUILTIN_COMPLEX:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() != 2)
-         return Type::make_error_type();
-       Type* t = args->front()->type();
-       if (t->is_abstract())
-         {
-           t = args->back()->type();
-           if (t->is_abstract())
-             t = t->make_non_abstract_type();
-         }
-       t = Builtin_call_expression::complex_type(t);
-       if (t == NULL)
-         t = Type::make_error_type();
-       return t;
-      }
-    }
-}
-
-// Determine the type.
-
-void
-Builtin_call_expression::do_determine_type(const Type_context* context)
-{
-  if (!this->determining_types())
-    return;
-
-  this->fn()->determine_type_no_context();
-
-  const Expression_list* args = this->args();
-
-  bool is_print;
-  Type* arg_type = NULL;
-  switch (this->code_)
-    {
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      // Do not force a large integer constant to "int".
-      is_print = true;
-      break;
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      arg_type = Builtin_call_expression::complex_type(context->type);
-      is_print = false;
-      break;
-
-    case BUILTIN_COMPLEX:
-      {
-       // For the complex function the type of one operand can
-       // determine the type of the other, as in a binary expression.
-       arg_type = Builtin_call_expression::real_imag_type(context->type);
-       if (args != NULL && args->size() == 2)
-         {
-           Type* t1 = args->front()->type();
-           Type* t2 = args->front()->type();
-           if (!t1->is_abstract())
-             arg_type = t1;
-           else if (!t2->is_abstract())
-             arg_type = t2;
-         }
-       is_print = false;
-      }
-      break;
-
-    default:
-      is_print = false;
-      break;
-    }
-
-  if (args != NULL)
-    {
-      for (Expression_list::const_iterator pa = args->begin();
-          pa != args->end();
-          ++pa)
-       {
-         Type_context subcontext;
-         subcontext.type = arg_type;
-
-         if (is_print)
-           {
-             // We want to print large constants, we so can't just
-             // use the appropriate nonabstract type.  Use uint64 for
-             // an integer if we know it is nonnegative, otherwise
-             // use int64 for a integer, otherwise use float64 for a
-             // float or complex128 for a complex.
-             Type* want_type = NULL;
-             Type* atype = (*pa)->type();
-             if (atype->is_abstract())
-               {
-                 if (atype->integer_type() != NULL)
-                   {
-                     mpz_t val;
-                     mpz_init(val);
-                     Type* dummy;
-                     if (this->integer_constant_value(true, val, &dummy)
-                         && mpz_sgn(val) >= 0)
-                       want_type = Type::lookup_integer_type("uint64");
-                     else
-                       want_type = Type::lookup_integer_type("int64");
-                     mpz_clear(val);
-                   }
-                 else if (atype->float_type() != NULL)
-                   want_type = Type::lookup_float_type("float64");
-                 else if (atype->complex_type() != NULL)
-                   want_type = Type::lookup_complex_type("complex128");
-                 else if (atype->is_abstract_string_type())
-                   want_type = Type::lookup_string_type();
-                 else if (atype->is_abstract_boolean_type())
-                   want_type = Type::lookup_bool_type();
-                 else
-                   gcc_unreachable();
-                 subcontext.type = want_type;
-               }
-           }
-
-         (*pa)->determine_type(&subcontext);
-       }
-    }
-}
-
-// If there is exactly one argument, return true.  Otherwise give an
-// error message and return false.
-
-bool
-Builtin_call_expression::check_one_arg()
-{
-  const Expression_list* args = this->args();
-  if (args == NULL || args->size() < 1)
-    {
-      this->report_error(_("not enough arguments"));
-      return false;
-    }
-  else if (args->size() > 1)
-    {
-      this->report_error(_("too many arguments"));
-      return false;
-    }
-  if (args->front()->is_error_expression()
-      || args->front()->type()->is_error_type()
-      || args->front()->type()->is_undefined())
-    {
-      this->set_is_error();
-      return false;
-    }
-  return true;
-}
-
-// Check argument types for a builtin function.
-
-void
-Builtin_call_expression::do_check_types(Gogo*)
-{
-  switch (this->code_)
-    {
-    case BUILTIN_INVALID:
-    case BUILTIN_NEW:
-    case BUILTIN_MAKE:
-      return;
-
-    case BUILTIN_LEN:
-    case BUILTIN_CAP:
-      {
-       // The single argument may be either a string or an array or a
-       // map or a channel, or a pointer to a closed array.
-       if (this->check_one_arg())
-         {
-           Type* arg_type = this->one_arg()->type();
-           if (arg_type->points_to() != NULL
-               && arg_type->points_to()->array_type() != NULL
-               && !arg_type->points_to()->is_open_array_type())
-             arg_type = arg_type->points_to();
-           if (this->code_ == BUILTIN_CAP)
-             {
-               if (!arg_type->is_error_type()
-                   && arg_type->array_type() == NULL
-                   && arg_type->channel_type() == NULL)
-                 this->report_error(_("argument must be array or slice "
-                                      "or channel"));
-             }
-           else
-             {
-               if (!arg_type->is_error_type()
-                   && !arg_type->is_string_type()
-                   && arg_type->array_type() == NULL
-                   && arg_type->map_type() == NULL
-                   && arg_type->channel_type() == NULL)
-                 this->report_error(_("argument must be string or "
-                                      "array or slice or map or channel"));
-             }
-         }
-      }
-      break;
-
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL)
-         {
-           if (this->code_ == BUILTIN_PRINT)
-             warning_at(this->location(), 0,
-                        "no arguments for builtin function %<%s%>",
-                        (this->code_ == BUILTIN_PRINT
-                         ? "print"
-                         : "println"));
-         }
-       else
-         {
-           for (Expression_list::const_iterator p = args->begin();
-                p != args->end();
-                ++p)
-             {
-               Type* type = (*p)->type();
-               if (type->is_error_type()
-                   || type->is_string_type()
-                   || type->integer_type() != NULL
-                   || type->float_type() != NULL
-                   || type->complex_type() != NULL
-                   || type->is_boolean_type()
-                   || type->points_to() != NULL
-                   || type->interface_type() != NULL
-                   || type->channel_type() != NULL
-                   || type->map_type() != NULL
-                   || type->function_type() != NULL
-                   || type->is_open_array_type())
-                 ;
-               else
-                 this->report_error(_("unsupported argument type to "
-                                      "builtin function"));
-             }
-         }
-      }
-      break;
-
-    case BUILTIN_CLOSE:
-      if (this->check_one_arg())
-       {
-         if (this->one_arg()->type()->channel_type() == NULL)
-           this->report_error(_("argument must be channel"));
-       }
-      break;
-
-    case BUILTIN_PANIC:
-    case BUILTIN_SIZEOF:
-    case BUILTIN_ALIGNOF:
-      this->check_one_arg();
-      break;
-
-    case BUILTIN_RECOVER:
-      if (this->args() != NULL && !this->args()->empty())
-       this->report_error(_("too many arguments"));
-      break;
-
-    case BUILTIN_OFFSETOF:
-      if (this->check_one_arg())
-       {
-         Expression* arg = this->one_arg();
-         if (arg->field_reference_expression() == NULL)
-           this->report_error(_("argument must be a field reference"));
-       }
-      break;
-
-    case BUILTIN_COPY:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() < 2)
-         {
-           this->report_error(_("not enough arguments"));
-           break;
-         }
-       else if (args->size() > 2)
-         {
-           this->report_error(_("too many arguments"));
-           break;
-         }
-       Type* arg1_type = args->front()->type();
-       Type* arg2_type = args->back()->type();
-       if (arg1_type->is_error_type() || arg2_type->is_error_type())
-         break;
-
-       Type* e1;
-       if (arg1_type->is_open_array_type())
-         e1 = arg1_type->array_type()->element_type();
-       else
-         {
-           this->report_error(_("left argument must be a slice"));
-           break;
-         }
-
-       Type* e2;
-       if (arg2_type->is_open_array_type())
-         e2 = arg2_type->array_type()->element_type();
-       else if (arg2_type->is_string_type())
-         e2 = Type::lookup_integer_type("uint8");
-       else
-         {
-           this->report_error(_("right argument must be a slice or a string"));
-           break;
-         }
-
-       if (!Type::are_identical(e1, e2, true, NULL))
-         this->report_error(_("element types must be the same"));
-      }
-      break;
-
-    case BUILTIN_APPEND:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() < 2)
-         {
-           this->report_error(_("not enough arguments"));
-           break;
-         }
-       if (args->size() > 2)
-         {
-           this->report_error(_("too many arguments"));
-           break;
-         }
-       std::string reason;
-       if (!Type::are_assignable(args->front()->type(), args->back()->type(),
-                                 &reason))
-         {
-           if (reason.empty())
-             this->report_error(_("arguments 1 and 2 have different types"));
-           else
-             {
-               error_at(this->location(),
-                        "arguments 1 and 2 have different types (%s)",
-                        reason.c_str());
-               this->set_is_error();
-             }
-         }
-       break;
-      }
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      if (this->check_one_arg())
-       {
-         if (this->one_arg()->type()->complex_type() == NULL)
-           this->report_error(_("argument must have complex type"));
-       }
-      break;
-
-    case BUILTIN_COMPLEX:
-      {
-       const Expression_list* args = this->args();
-       if (args == NULL || args->size() < 2)
-         this->report_error(_("not enough arguments"));
-       else if (args->size() > 2)
-         this->report_error(_("too many arguments"));
-       else if (args->front()->is_error_expression()
-                || args->front()->type()->is_error_type()
-                || args->back()->is_error_expression()
-                || args->back()->type()->is_error_type())
-         this->set_is_error();
-       else if (!Type::are_identical(args->front()->type(),
-                                     args->back()->type(), true, NULL))
-         this->report_error(_("complex arguments must have identical types"));
-       else if (args->front()->type()->float_type() == NULL)
-         this->report_error(_("complex arguments must have "
-                              "floating-point type"));
-      }
-      break;
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return the tree for a builtin function.
-
-tree
-Builtin_call_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  source_location location = this->location();
-  switch (this->code_)
-    {
-    case BUILTIN_INVALID:
-    case BUILTIN_NEW:
-    case BUILTIN_MAKE:
-      gcc_unreachable();
-
-    case BUILTIN_LEN:
-    case BUILTIN_CAP:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 1);
-       Expression* arg = *args->begin();
-       Type* arg_type = arg->type();
-
-       if (this->seen_)
-         {
-           gcc_assert(saw_errors());
-           return error_mark_node;
-         }
-       this->seen_ = true;
-
-       tree arg_tree = arg->get_tree(context);
-
-       this->seen_ = false;
-
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-
-       if (arg_type->points_to() != NULL)
-         {
-           arg_type = arg_type->points_to();
-           gcc_assert(arg_type->array_type() != NULL
-                      && !arg_type->is_open_array_type());
-           gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
-           arg_tree = build_fold_indirect_ref(arg_tree);
-         }
-
-       tree val_tree;
-       if (this->code_ == BUILTIN_LEN)
-         {
-           if (arg_type->is_string_type())
-             val_tree = String_type::length_tree(gogo, arg_tree);
-           else if (arg_type->array_type() != NULL)
-             {
-               if (this->seen_)
-                 {
-                   gcc_assert(saw_errors());
-                   return error_mark_node;
-                 }
-               this->seen_ = true;
-               val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
-               this->seen_ = false;
-             }
-           else if (arg_type->map_type() != NULL)
-             {
-               static tree map_len_fndecl;
-               val_tree = Gogo::call_builtin(&map_len_fndecl,
-                                             location,
-                                             "__go_map_len",
-                                             1,
-                                             sizetype,
-                                             arg_type->get_tree(gogo),
-                                             arg_tree);
-             }
-           else if (arg_type->channel_type() != NULL)
-             {
-               static tree chan_len_fndecl;
-               val_tree = Gogo::call_builtin(&chan_len_fndecl,
-                                             location,
-                                             "__go_chan_len",
-                                             1,
-                                             sizetype,
-                                             arg_type->get_tree(gogo),
-                                             arg_tree);
-             }
-           else
-             gcc_unreachable();
-         }
-       else
-         {
-           if (arg_type->array_type() != NULL)
-             {
-               if (this->seen_)
-                 {
-                   gcc_assert(saw_errors());
-                   return error_mark_node;
-                 }
-               this->seen_ = true;
-               val_tree = arg_type->array_type()->capacity_tree(gogo,
-                                                                arg_tree);
-               this->seen_ = false;
-             }
-           else if (arg_type->channel_type() != NULL)
-             {
-               static tree chan_cap_fndecl;
-               val_tree = Gogo::call_builtin(&chan_cap_fndecl,
-                                             location,
-                                             "__go_chan_cap",
-                                             1,
-                                             sizetype,
-                                             arg_type->get_tree(gogo),
-                                             arg_tree);
-             }
-           else
-             gcc_unreachable();
-         }
-
-       if (val_tree == error_mark_node)
-         return error_mark_node;
-
-       tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
-       if (type_tree == TREE_TYPE(val_tree))
-         return val_tree;
-       else
-         return fold(convert_to_integer(type_tree, val_tree));
-      }
-
-    case BUILTIN_PRINT:
-    case BUILTIN_PRINTLN:
-      {
-       const bool is_ln = this->code_ == BUILTIN_PRINTLN;
-       tree stmt_list = NULL_TREE;
-
-       const Expression_list* call_args = this->args();
-       if (call_args != NULL)
-         {
-           for (Expression_list::const_iterator p = call_args->begin();
-                p != call_args->end();
-                ++p)
-             {
-               if (is_ln && p != call_args->begin())
-                 {
-                   static tree print_space_fndecl;
-                   tree call = Gogo::call_builtin(&print_space_fndecl,
-                                                  location,
-                                                  "__go_print_space",
-                                                  0,
-                                                  void_type_node);
-                   if (call == error_mark_node)
-                     return error_mark_node;
-                   append_to_statement_list(call, &stmt_list);
-                 }
-
-               Type* type = (*p)->type();
-
-               tree arg = (*p)->get_tree(context);
-               if (arg == error_mark_node)
-                 return error_mark_node;
-
-               tree* pfndecl;
-               const char* fnname;
-               if (type->is_string_type())
-                 {
-                   static tree print_string_fndecl;
-                   pfndecl = &print_string_fndecl;
-                   fnname = "__go_print_string";
-                 }
-               else if (type->integer_type() != NULL
-                        && type->integer_type()->is_unsigned())
-                 {
-                   static tree print_uint64_fndecl;
-                   pfndecl = &print_uint64_fndecl;
-                   fnname = "__go_print_uint64";
-                   Type* itype = Type::lookup_integer_type("uint64");
-                   arg = fold_convert_loc(location, itype->get_tree(gogo),
-                                          arg);
-                 }
-               else if (type->integer_type() != NULL)
-                 {
-                   static tree print_int64_fndecl;
-                   pfndecl = &print_int64_fndecl;
-                   fnname = "__go_print_int64";
-                   Type* itype = Type::lookup_integer_type("int64");
-                   arg = fold_convert_loc(location, itype->get_tree(gogo),
-                                          arg);
-                 }
-               else if (type->float_type() != NULL)
-                 {
-                   static tree print_double_fndecl;
-                   pfndecl = &print_double_fndecl;
-                   fnname = "__go_print_double";
-                   arg = fold_convert_loc(location, double_type_node, arg);
-                 }
-               else if (type->complex_type() != NULL)
-                 {
-                   static tree print_complex_fndecl;
-                   pfndecl = &print_complex_fndecl;
-                   fnname = "__go_print_complex";
-                   arg = fold_convert_loc(location, complex_double_type_node,
-                                          arg);
-                 }
-               else if (type->is_boolean_type())
-                 {
-                   static tree print_bool_fndecl;
-                   pfndecl = &print_bool_fndecl;
-                   fnname = "__go_print_bool";
-                 }
-               else if (type->points_to() != NULL
-                        || type->channel_type() != NULL
-                        || type->map_type() != NULL
-                        || type->function_type() != NULL)
-                 {
-                   static tree print_pointer_fndecl;
-                   pfndecl = &print_pointer_fndecl;
-                   fnname = "__go_print_pointer";
-                   arg = fold_convert_loc(location, ptr_type_node, arg);
-                 }
-               else if (type->interface_type() != NULL)
-                 {
-                   if (type->interface_type()->is_empty())
-                     {
-                       static tree print_empty_interface_fndecl;
-                       pfndecl = &print_empty_interface_fndecl;
-                       fnname = "__go_print_empty_interface";
-                     }
-                   else
-                     {
-                       static tree print_interface_fndecl;
-                       pfndecl = &print_interface_fndecl;
-                       fnname = "__go_print_interface";
-                     }
-                 }
-               else if (type->is_open_array_type())
-                 {
-                   static tree print_slice_fndecl;
-                   pfndecl = &print_slice_fndecl;
-                   fnname = "__go_print_slice";
-                 }
-               else
-                 gcc_unreachable();
-
-               tree call = Gogo::call_builtin(pfndecl,
-                                              location,
-                                              fnname,
-                                              1,
-                                              void_type_node,
-                                              TREE_TYPE(arg),
-                                              arg);
-               if (call == error_mark_node)
-                 return error_mark_node;
-               append_to_statement_list(call, &stmt_list);
-             }
-         }
-
-       if (is_ln)
-         {
-           static tree print_nl_fndecl;
-           tree call = Gogo::call_builtin(&print_nl_fndecl,
-                                          location,
-                                          "__go_print_nl",
-                                          0,
-                                          void_type_node);
-           if (call == error_mark_node)
-             return error_mark_node;
-           append_to_statement_list(call, &stmt_list);
-         }
-
-       return stmt_list;
-      }
-
-    case BUILTIN_PANIC:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-       Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
-       arg_tree = Expression::convert_for_assignment(context, empty,
-                                                     arg->type(),
-                                                     arg_tree, location);
-       static tree panic_fndecl;
-       tree call = Gogo::call_builtin(&panic_fndecl,
-                                      location,
-                                      "__go_panic",
-                                      1,
-                                      void_type_node,
-                                      TREE_TYPE(arg_tree),
-                                      arg_tree);
-       if (call == error_mark_node)
-         return error_mark_node;
-       // This function will throw an exception.
-       TREE_NOTHROW(panic_fndecl) = 0;
-       // This function will not return.
-       TREE_THIS_VOLATILE(panic_fndecl) = 1;
-       return call;
-      }
-
-    case BUILTIN_RECOVER:
-      {
-       // The argument is set when building recover thunks.  It's a
-       // boolean value which is true if we can recover a value now.
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-
-       Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
-       tree empty_tree = empty->get_tree(context->gogo());
-
-       Type* nil_type = Type::make_nil_type();
-       Expression* nil = Expression::make_nil(location);
-       tree nil_tree = nil->get_tree(context);
-       tree empty_nil_tree = Expression::convert_for_assignment(context,
-                                                                empty,
-                                                                nil_type,
-                                                                nil_tree,
-                                                                location);
-
-       // We need to handle a deferred call to recover specially,
-       // because it changes whether it can recover a panic or not.
-       // See test7 in test/recover1.go.
-       tree call;
-       if (this->is_deferred())
-         {
-           static tree deferred_recover_fndecl;
-           call = Gogo::call_builtin(&deferred_recover_fndecl,
-                                     location,
-                                     "__go_deferred_recover",
-                                     0,
-                                     empty_tree);
-         }
-       else
-         {
-           static tree recover_fndecl;
-           call = Gogo::call_builtin(&recover_fndecl,
-                                     location,
-                                     "__go_recover",
-                                     0,
-                                     empty_tree);
-         }
-       if (call == error_mark_node)
-         return error_mark_node;
-       return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
-                              call, empty_nil_tree);
-      }
-
-    case BUILTIN_CLOSE:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-       static tree close_fndecl;
-       return Gogo::call_builtin(&close_fndecl,
-                                 location,
-                                 "__go_builtin_close",
-                                 1,
-                                 void_type_node,
-                                 TREE_TYPE(arg_tree),
-                                 arg_tree);
-      }
-
-    case BUILTIN_SIZEOF:
-    case BUILTIN_OFFSETOF:
-    case BUILTIN_ALIGNOF:
-      {
-       mpz_t val;
-       mpz_init(val);
-       Type* dummy;
-       bool b = this->integer_constant_value(true, val, &dummy);
-       if (!b)
-         {
-           gcc_assert(saw_errors());
-           return error_mark_node;
-         }
-       tree type = Type::lookup_integer_type("int")->get_tree(gogo);
-       tree ret = Expression::integer_constant_tree(val, type);
-       mpz_clear(val);
-       return ret;
-      }
-
-    case BUILTIN_COPY:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 2);
-       Expression* arg1 = args->front();
-       Expression* arg2 = args->back();
-
-       tree arg1_tree = arg1->get_tree(context);
-       tree arg2_tree = arg2->get_tree(context);
-       if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
-         return error_mark_node;
-
-       Type* arg1_type = arg1->type();
-       Array_type* at = arg1_type->array_type();
-       arg1_tree = save_expr(arg1_tree);
-       tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
-       tree arg1_len = at->length_tree(gogo, arg1_tree);
-       if (arg1_val == error_mark_node || arg1_len == error_mark_node)
-         return error_mark_node;
-
-       Type* arg2_type = arg2->type();
-       tree arg2_val;
-       tree arg2_len;
-       if (arg2_type->is_open_array_type())
-         {
-           at = arg2_type->array_type();
-           arg2_tree = save_expr(arg2_tree);
-           arg2_val = at->value_pointer_tree(gogo, arg2_tree);
-           arg2_len = at->length_tree(gogo, arg2_tree);
-         }
-       else
-         {
-           arg2_tree = save_expr(arg2_tree);
-           arg2_val = String_type::bytes_tree(gogo, arg2_tree);
-           arg2_len = String_type::length_tree(gogo, arg2_tree);
-         }
-       if (arg2_val == error_mark_node || arg2_len == error_mark_node)
-         return error_mark_node;
-
-       arg1_len = save_expr(arg1_len);
-       arg2_len = save_expr(arg2_len);
-       tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
-                                  fold_build2_loc(location, LT_EXPR,
-                                                  boolean_type_node,
-                                                  arg1_len, arg2_len),
-                                  arg1_len, arg2_len);
-       len = save_expr(len);
-
-       Type* element_type = at->element_type();
-       tree element_type_tree = element_type->get_tree(gogo);
-       if (element_type_tree == error_mark_node)
-         return error_mark_node;
-       tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-       tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
-                                         len);
-       bytecount = fold_build2_loc(location, MULT_EXPR,
-                                   TREE_TYPE(element_size),
-                                   bytecount, element_size);
-       bytecount = fold_convert_loc(location, size_type_node, bytecount);
-
-       arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
-       arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
-
-       static tree copy_fndecl;
-       tree call = Gogo::call_builtin(&copy_fndecl,
-                                      location,
-                                      "__go_copy",
-                                      3,
-                                      void_type_node,
-                                      ptr_type_node,
-                                      arg1_val,
-                                      ptr_type_node,
-                                      arg2_val,
-                                      size_type_node,
-                                      bytecount);
-       if (call == error_mark_node)
-         return error_mark_node;
-
-       return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
-                              call, len);
-      }
-
-    case BUILTIN_APPEND:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 2);
-       Expression* arg1 = args->front();
-       Expression* arg2 = args->back();
-
-       tree arg1_tree = arg1->get_tree(context);
-       tree arg2_tree = arg2->get_tree(context);
-       if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
-         return error_mark_node;
-
-       Array_type* at = arg1->type()->array_type();
-       Type* element_type = at->element_type();
-
-       arg2_tree = Expression::convert_for_assignment(context, at,
-                                                      arg2->type(),
-                                                      arg2_tree,
-                                                      location);
-       if (arg2_tree == error_mark_node)
-         return error_mark_node;
-
-       arg2_tree = save_expr(arg2_tree);
-       tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
-       tree arg2_len = at->length_tree(gogo, arg2_tree);
-       if (arg2_val == error_mark_node || arg2_len == error_mark_node)
-         return error_mark_node;
-       arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
-       arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
-
-       tree element_type_tree = element_type->get_tree(gogo);
-       if (element_type_tree == error_mark_node)
-         return error_mark_node;
-       tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-       element_size = fold_convert_loc(location, size_type_node,
-                                       element_size);
-
-       // We rebuild the decl each time since the slice types may
-       // change.
-       tree append_fndecl = NULL_TREE;
-       return Gogo::call_builtin(&append_fndecl,
-                                 location,
-                                 "__go_append",
-                                 4,
-                                 TREE_TYPE(arg1_tree),
-                                 TREE_TYPE(arg1_tree),
-                                 arg1_tree,
-                                 ptr_type_node,
-                                 arg2_val,
-                                 size_type_node,
-                                 arg2_len,
-                                 size_type_node,
-                                 element_size);
-      }
-
-    case BUILTIN_REAL:
-    case BUILTIN_IMAG:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 1);
-       Expression* arg = args->front();
-       tree arg_tree = arg->get_tree(context);
-       if (arg_tree == error_mark_node)
-         return error_mark_node;
-       gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
-       if (this->code_ == BUILTIN_REAL)
-         return fold_build1_loc(location, REALPART_EXPR,
-                                TREE_TYPE(TREE_TYPE(arg_tree)),
-                                arg_tree);
-       else
-         return fold_build1_loc(location, IMAGPART_EXPR,
-                                TREE_TYPE(TREE_TYPE(arg_tree)),
-                                arg_tree);
-      }
-
-    case BUILTIN_COMPLEX:
-      {
-       const Expression_list* args = this->args();
-       gcc_assert(args != NULL && args->size() == 2);
-       tree r = args->front()->get_tree(context);
-       tree i = args->back()->get_tree(context);
-       if (r == error_mark_node || i == error_mark_node)
-         return error_mark_node;
-       gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
-                  == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
-       gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
-       return fold_build2_loc(location, COMPLEX_EXPR,
-                              build_complex_type(TREE_TYPE(r)),
-                              r, i);
-      }
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// We have to support exporting a builtin call expression, because
-// code can set a constant to the result of a builtin expression.
-
-void
-Builtin_call_expression::do_export(Export* exp) const
-{
-  bool ok = false;
-
-  mpz_t val;
-  mpz_init(val);
-  Type* dummy;
-  if (this->integer_constant_value(true, val, &dummy))
-    {
-      Integer_expression::export_integer(exp, val);
-      ok = true;
-    }
-  mpz_clear(val);
-
-  if (!ok)
-    {
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (this->float_constant_value(fval, &dummy))
-       {
-         Float_expression::export_float(exp, fval);
-         ok = true;
-       }
-      mpfr_clear(fval);
-    }
-
-  if (!ok)
-    {
-      mpfr_t real;
-      mpfr_t imag;
-      mpfr_init(real);
-      mpfr_init(imag);
-      if (this->complex_constant_value(real, imag, &dummy))
-       {
-         Complex_expression::export_complex(exp, real, imag);
-         ok = true;
-       }
-      mpfr_clear(real);
-      mpfr_clear(imag);
-    }
-
-  if (!ok)
-    {
-      error_at(this->location(), "value is not constant");
-      return;
-    }
-
-  // A trailing space lets us reliably identify the end of the number.
-  exp->write_c_string(" ");
-}
-
-// Class Call_expression.
-
-// Traversal.
-
-int
-Call_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->args_ != NULL)
-    {
-      if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a call statement.
-
-Expression*
-Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  // A type case can look like a function call.
-  if (this->fn_->is_type_expression()
-      && this->args_ != NULL
-      && this->args_->size() == 1)
-    return Expression::make_cast(this->fn_->type(), this->args_->front(),
-                                this->location());
-
-  // Recognize a call to a builtin function.
-  Func_expression* fne = this->fn_->func_expression();
-  if (fne != NULL
-      && fne->named_object()->is_function_declaration()
-      && fne->named_object()->func_declaration_value()->type()->is_builtin())
-    return new Builtin_call_expression(gogo, this->fn_, this->args_,
-                                      this->is_varargs_, this->location());
-
-  // Handle an argument which is a call to a function which returns
-  // multiple results.
-  if (this->args_ != NULL
-      && this->args_->size() == 1
-      && this->args_->front()->call_expression() != NULL
-      && this->fn_->type()->function_type() != NULL)
-    {
-      Function_type* fntype = this->fn_->type()->function_type();
-      size_t rc = this->args_->front()->call_expression()->result_count();
-      if (rc > 1
-         && fntype->parameters() != NULL
-         && (fntype->parameters()->size() == rc
-             || (fntype->is_varargs()
-                 && fntype->parameters()->size() - 1 <= rc)))
-       {
-         Call_expression* call = this->args_->front()->call_expression();
-         Expression_list* args = new Expression_list;
-         for (size_t i = 0; i < rc; ++i)
-           args->push_back(Expression::make_call_result(call, i));
-         // We can't return a new call expression here, because this
-         // one may be referenced by Call_result expressions.  We
-         // also can't delete the old arguments, because we may still
-         // traverse them somewhere up the call stack.  FIXME.
-         this->args_ = args;
-       }
-    }
-
-  // Handle a call to a varargs function by packaging up the extra
-  // parameters.
-  if (this->fn_->type()->function_type() != NULL
-      && this->fn_->type()->function_type()->is_varargs())
-    {
-      Function_type* fntype = this->fn_->type()->function_type();
-      const Typed_identifier_list* parameters = fntype->parameters();
-      gcc_assert(parameters != NULL && !parameters->empty());
-      Type* varargs_type = parameters->back().type();
-      return this->lower_varargs(gogo, function, varargs_type,
-                                parameters->size());
-    }
-
-  return this;
-}
-
-// Lower a call to a varargs function.  FUNCTION is the function in
-// which the call occurs--it's not the function we are calling.
-// VARARGS_TYPE is the type of the varargs parameter, a slice type.
-// PARAM_COUNT is the number of parameters of the function we are
-// calling; the last of these parameters will be the varargs
-// parameter.
-
-Expression*
-Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
-                              Type* varargs_type, size_t param_count)
-{
-  if (this->varargs_are_lowered_)
-    return this;
-
-  source_location loc = this->location();
-
-  gcc_assert(param_count > 0);
-  gcc_assert(varargs_type->is_open_array_type());
-
-  size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
-  if (arg_count < param_count - 1)
-    {
-      // Not enough arguments; will be caught in check_types.
-      return this;
-    }
-
-  Expression_list* old_args = this->args_;
-  Expression_list* new_args = new Expression_list();
-  bool push_empty_arg = false;
-  if (old_args == NULL || old_args->empty())
-    {
-      gcc_assert(param_count == 1);
-      push_empty_arg = true;
-    }
-  else
-    {
-      Expression_list::const_iterator pa;
-      int i = 1;
-      for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
-       {
-         if (static_cast<size_t>(i) == param_count)
-           break;
-         new_args->push_back(*pa);
-       }
-
-      // We have reached the varargs parameter.
-
-      bool issued_error = false;
-      if (pa == old_args->end())
-       push_empty_arg = true;
-      else if (pa + 1 == old_args->end() && this->is_varargs_)
-       new_args->push_back(*pa);
-      else if (this->is_varargs_)
-       {
-         this->report_error(_("too many arguments"));
-         return this;
-       }
-      else
-       {
-         Type* element_type = varargs_type->array_type()->element_type();
-         Expression_list* vals = new Expression_list;
-         for (; pa != old_args->end(); ++pa, ++i)
-           {
-             // Check types here so that we get a better message.
-             Type* patype = (*pa)->type();
-             source_location paloc = (*pa)->location();
-             if (!this->check_argument_type(i, element_type, patype,
-                                            paloc, issued_error))
-               continue;
-             vals->push_back(*pa);
-           }
-         Expression* val =
-           Expression::make_slice_composite_literal(varargs_type, vals, loc);
-         new_args->push_back(val);
-       }
-    }
-
-  if (push_empty_arg)
-    new_args->push_back(Expression::make_nil(loc));
-
-  // We can't return a new call expression here, because this one may
-  // be referenced by Call_result expressions.  FIXME.
-  if (old_args != NULL)
-    delete old_args;
-  this->args_ = new_args;
-  this->varargs_are_lowered_ = true;
-
-  // Lower all the new subexpressions.
-  Expression* ret = this;
-  gogo->lower_expression(function, &ret);
-  gcc_assert(ret == this);
-  return ret;
-}
-
-// Get the function type.  Returns NULL if we don't know the type.  If
-// this returns NULL, and if_ERROR is true, issues an error.
-
-Function_type*
-Call_expression::get_function_type() const
-{
-  return this->fn_->type()->function_type();
-}
-
-// Return the number of values which this call will return.
-
-size_t
-Call_expression::result_count() const
-{
-  const Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    return 0;
-  if (fntype->results() == NULL)
-    return 0;
-  return fntype->results()->size();
-}
-
-// Return whether this is a call to the predeclared function recover.
-
-bool
-Call_expression::is_recover_call() const
-{
-  return this->do_is_recover_call();
-}
-
-// Set the argument to the recover function.
-
-void
-Call_expression::set_recover_arg(Expression* arg)
-{
-  this->do_set_recover_arg(arg);
-}
-
-// Virtual functions also implemented by Builtin_call_expression.
-
-bool
-Call_expression::do_is_recover_call() const
-{
-  return false;
-}
-
-void
-Call_expression::do_set_recover_arg(Expression*)
-{
-  gcc_unreachable();
-}
-
-// Get the type.
-
-Type*
-Call_expression::do_type()
-{
-  if (this->type_ != NULL)
-    return this->type_;
-
-  Type* ret;
-  Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    return Type::make_error_type();
-
-  const Typed_identifier_list* results = fntype->results();
-  if (results == NULL)
-    ret = Type::make_void_type();
-  else if (results->size() == 1)
-    ret = results->begin()->type();
-  else
-    ret = Type::make_call_multiple_result_type(this);
-
-  this->type_ = ret;
-
-  return this->type_;
-}
-
-// Determine types for a call expression.  We can use the function
-// parameter types to set the types of the arguments.
-
-void
-Call_expression::do_determine_type(const Type_context*)
-{
-  if (!this->determining_types())
-    return;
-
-  this->fn_->determine_type_no_context();
-  Function_type* fntype = this->get_function_type();
-  const Typed_identifier_list* parameters = NULL;
-  if (fntype != NULL)
-    parameters = fntype->parameters();
-  if (this->args_ != NULL)
-    {
-      Typed_identifier_list::const_iterator pt;
-      if (parameters != NULL)
-       pt = parameters->begin();
-      for (Expression_list::const_iterator pa = this->args_->begin();
-          pa != this->args_->end();
-          ++pa)
-       {
-         if (parameters != NULL && pt != parameters->end())
-           {
-             Type_context subcontext(pt->type(), false);
-             (*pa)->determine_type(&subcontext);
-             ++pt;
-           }
-         else
-           (*pa)->determine_type_no_context();
-       }
-    }
-}
-
-// Called when determining types for a Call_expression.  Return true
-// if we should go ahead, false if they have already been determined.
-
-bool
-Call_expression::determining_types()
-{
-  if (this->types_are_determined_)
-    return false;
-  else
-    {
-      this->types_are_determined_ = true;
-      return true;
-    }
-}
-
-// Check types for parameter I.
-
-bool
-Call_expression::check_argument_type(int i, const Type* parameter_type,
-                                    const Type* argument_type,
-                                    source_location argument_location,
-                                    bool issued_error)
-{
-  std::string reason;
-  if (!Type::are_assignable(parameter_type, argument_type, &reason))
-    {
-      if (!issued_error)
-       {
-         if (reason.empty())
-           error_at(argument_location, "argument %d has incompatible type", i);
-         else
-           error_at(argument_location,
-                    "argument %d has incompatible type (%s)",
-                    i, reason.c_str());
-       }
-      this->set_is_error();
-      return false;
-    }
-  return true;
-}
-
-// Check types.
-
-void
-Call_expression::do_check_types(Gogo*)
-{
-  Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    {
-      if (!this->fn_->type()->is_error_type())
-       this->report_error(_("expected function"));
-      return;
-    }
-
-  if (fntype->is_method())
-    {
-      // We don't support pointers to methods, so the function has to
-      // be a bound method expression.
-      Bound_method_expression* bme = this->fn_->bound_method_expression();
-      if (bme == NULL)
-       {
-         this->report_error(_("method call without object"));
-         return;
-       }
-      Type* first_arg_type = bme->first_argument()->type();
-      if (first_arg_type->points_to() == NULL)
-       {
-         // When passing a value, we need to check that we are
-         // permitted to copy it.
-         std::string reason;
-         if (!Type::are_assignable(fntype->receiver()->type(),
-                                   first_arg_type, &reason))
-           {
-             if (reason.empty())
-               this->report_error(_("incompatible type for receiver"));
-             else
-               {
-                 error_at(this->location(),
-                          "incompatible type for receiver (%s)",
-                          reason.c_str());
-                 this->set_is_error();
-               }
-           }
-       }
-    }
-
-  // Note that varargs was handled by the lower_varargs() method, so
-  // we don't have to worry about it here.
-
-  const Typed_identifier_list* parameters = fntype->parameters();
-  if (this->args_ == NULL)
-    {
-      if (parameters != NULL && !parameters->empty())
-       this->report_error(_("not enough arguments"));
-    }
-  else if (parameters == NULL)
-    this->report_error(_("too many arguments"));
-  else
-    {
-      int i = 0;
-      Typed_identifier_list::const_iterator pt = parameters->begin();
-      for (Expression_list::const_iterator pa = this->args_->begin();
-          pa != this->args_->end();
-          ++pa, ++pt, ++i)
-       {
-         if (pt == parameters->end())
-           {
-             this->report_error(_("too many arguments"));
-             return;
-           }
-         this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
-                                   (*pa)->location(), false);
-       }
-      if (pt != parameters->end())
-       this->report_error(_("not enough arguments"));
-    }
-}
-
-// Return whether we have to use a temporary variable to ensure that
-// we evaluate this call expression in order.  If the call returns no
-// results then it will inevitably be executed last.  If the call
-// returns more than one result then it will be used with Call_result
-// expressions.  So we only have to use a temporary variable if the
-// call returns exactly one result.
-
-bool
-Call_expression::do_must_eval_in_order() const
-{
-  return this->result_count() == 1;
-}
-
-// Get the function and the first argument to use when calling a bound
-// method.
-
-tree
-Call_expression::bound_method_function(Translate_context* context,
-                                      Bound_method_expression* bound_method,
-                                      tree* first_arg_ptr)
-{
-  Expression* first_argument = bound_method->first_argument();
-  tree first_arg = first_argument->get_tree(context);
-  if (first_arg == error_mark_node)
-    return error_mark_node;
-
-  // We always pass a pointer to the first argument when calling a
-  // method.
-  if (first_argument->type()->points_to() == NULL)
-    {
-      tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
-      if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
-         || DECL_P(first_arg)
-         || TREE_CODE(first_arg) == INDIRECT_REF
-         || TREE_CODE(first_arg) == COMPONENT_REF)
-       {
-         first_arg = build_fold_addr_expr(first_arg);
-         if (DECL_P(first_arg))
-           TREE_ADDRESSABLE(first_arg) = 1;
-       }
-      else
-       {
-         tree tmp = create_tmp_var(TREE_TYPE(first_arg),
-                                   get_name(first_arg));
-         DECL_IGNORED_P(tmp) = 0;
-         DECL_INITIAL(tmp) = first_arg;
-         first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
-                            build1(DECL_EXPR, void_type_node, tmp),
-                            build_fold_addr_expr(tmp));
-         TREE_ADDRESSABLE(tmp) = 1;
-       }
-      if (first_arg == error_mark_node)
-       return error_mark_node;
-    }
-
-  Type* fatype = bound_method->first_argument_type();
-  if (fatype != NULL)
-    {
-      if (fatype->points_to() == NULL)
-       fatype = Type::make_pointer_type(fatype);
-      first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
-      if (first_arg == error_mark_node
-         || TREE_TYPE(first_arg) == error_mark_node)
-       return error_mark_node;
-    }
-
-  *first_arg_ptr = first_arg;
-
-  return bound_method->method()->get_tree(context);
-}
-
-// Get the function and the first argument to use when calling an
-// interface method.
-
-tree
-Call_expression::interface_method_function(
-    Translate_context* context,
-    Interface_field_reference_expression* interface_method,
-    tree* first_arg_ptr)
-{
-  tree expr = interface_method->expr()->get_tree(context);
-  if (expr == error_mark_node)
-    return error_mark_node;
-  expr = save_expr(expr);
-  tree first_arg = interface_method->get_underlying_object_tree(context, expr);
-  if (first_arg == error_mark_node)
-    return error_mark_node;
-  *first_arg_ptr = first_arg;
-  return interface_method->get_function_tree(context, expr);
-}
-
-// Build the call expression.
-
-tree
-Call_expression::do_get_tree(Translate_context* context)
-{
-  if (this->tree_ != NULL_TREE)
-    return this->tree_;
-
-  Function_type* fntype = this->get_function_type();
-  if (fntype == NULL)
-    return error_mark_node;
-
-  if (this->fn_->is_error_expression())
-    return error_mark_node;
-
-  Gogo* gogo = context->gogo();
-  source_location location = this->location();
-
-  Func_expression* func = this->fn_->func_expression();
-  Bound_method_expression* bound_method = this->fn_->bound_method_expression();
-  Interface_field_reference_expression* interface_method =
-    this->fn_->interface_field_reference_expression();
-  const bool has_closure = func != NULL && func->closure() != NULL;
-  const bool is_method = bound_method != NULL || interface_method != NULL;
-  gcc_assert(!fntype->is_method() || is_method);
-
-  int nargs;
-  tree* args;
-  if (this->args_ == NULL || this->args_->empty())
-    {
-      nargs = is_method ? 1 : 0;
-      args = nargs == 0 ? NULL : new tree[nargs];
-    }
-  else
-    {
-      const Typed_identifier_list* params = fntype->parameters();
-      gcc_assert(params != NULL);
-
-      nargs = this->args_->size();
-      int i = is_method ? 1 : 0;
-      nargs += i;
-      args = new tree[nargs];
-
-      Typed_identifier_list::const_iterator pp = params->begin();
-      Expression_list::const_iterator pe;
-      for (pe = this->args_->begin();
-          pe != this->args_->end();
-          ++pe, ++pp, ++i)
-       {
-         gcc_assert(pp != params->end());
-         tree arg_val = (*pe)->get_tree(context);
-         args[i] = Expression::convert_for_assignment(context,
-                                                      pp->type(),
-                                                      (*pe)->type(),
-                                                      arg_val,
-                                                      location);
-         if (args[i] == error_mark_node)
-           {
-             delete[] args;
-             return error_mark_node;
-           }
-       }
-      gcc_assert(pp == params->end());
-      gcc_assert(i == nargs);
-    }
-
-  tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
-  if (rettype == error_mark_node)
-    {
-      delete[] args;
-      return error_mark_node;
-    }
-
-  tree fn;
-  if (has_closure)
-    fn = func->get_tree_without_closure(gogo);
-  else if (!is_method)
-    fn = this->fn_->get_tree(context);
-  else if (bound_method != NULL)
-    fn = this->bound_method_function(context, bound_method, &args[0]);
-  else if (interface_method != NULL)
-    fn = this->interface_method_function(context, interface_method, &args[0]);
-  else
-    gcc_unreachable();
-
-  if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
-    {
-      delete[] args;
-      return error_mark_node;
-    }
-
-  tree fndecl = fn;
-  if (TREE_CODE(fndecl) == ADDR_EXPR)
-    fndecl = TREE_OPERAND(fndecl, 0);
-
-  // Add a type cast in case the type of the function is a recursive
-  // type which refers to itself.
-  if (!DECL_P(fndecl) || !DECL_IS_BUILTIN(fndecl))
-    {
-      tree fnt = fntype->get_tree(gogo);
-      if (fnt == error_mark_node)
-       return error_mark_node;
-      fn = fold_convert_loc(location, fnt, fn);
-    }
-
-  // This is to support builtin math functions when using 80387 math.
-  tree excess_type = NULL_TREE;
-  if (DECL_P(fndecl)
-      && DECL_IS_BUILTIN(fndecl)
-      && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
-      && nargs > 0
-      && ((SCALAR_FLOAT_TYPE_P(rettype)
-          && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
-         || (COMPLEX_FLOAT_TYPE_P(rettype)
-             && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
-    {
-      excess_type = excess_precision_type(TREE_TYPE(args[0]));
-      if (excess_type != NULL_TREE)
-       {
-         tree excess_fndecl = mathfn_built_in(excess_type,
-                                              DECL_FUNCTION_CODE(fndecl));
-         if (excess_fndecl == NULL_TREE)
-           excess_type = NULL_TREE;
-         else
-           {
-             fn = build_fold_addr_expr_loc(location, excess_fndecl);
-             for (int i = 0; i < nargs; ++i)
-               args[i] = ::convert(excess_type, args[i]);
-           }
-       }
-    }
-
-  tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
-                             fn, nargs, args);
-  delete[] args;
-
-  SET_EXPR_LOCATION(ret, location);
-
-  if (has_closure)
-    {
-      tree closure_tree = func->closure()->get_tree(context);
-      if (closure_tree != error_mark_node)
-       CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
-    }
-
-  // If this is a recursive function type which returns itself, as in
-  //   type F func() F
-  // we have used ptr_type_node for the return type.  Add a cast here
-  // to the correct type.
-  if (TREE_TYPE(ret) == ptr_type_node)
-    {
-      tree t = this->type()->base()->get_tree(gogo);
-      ret = fold_convert_loc(location, t, ret);
-    }
-
-  if (excess_type != NULL_TREE)
-    {
-      // Calling convert here can undo our excess precision change.
-      // That may or may not be a bug in convert_to_real.
-      ret = build1(NOP_EXPR, rettype, ret);
-    }
-
-  // If there is more than one result, we will refer to the call
-  // multiple times.
-  if (fntype->results() != NULL && fntype->results()->size() > 1)
-    ret = save_expr(ret);
-
-  this->tree_ = ret;
-
-  return ret;
-}
-
-// Make a call expression.
-
-Call_expression*
-Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
-                     source_location location)
-{
-  return new Call_expression(fn, args, is_varargs, location);
-}
-
-// A single result from a call which returns multiple results.
-
-class Call_result_expression : public Expression
-{
- public:
-  Call_result_expression(Call_expression* call, unsigned int index)
-    : Expression(EXPRESSION_CALL_RESULT, call->location()),
-      call_(call), index_(index)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Call_result_expression(this->call_->call_expression(),
-                                     this->index_);
-  }
-
-  bool
-  do_must_eval_in_order() const
-  { return true; }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The underlying call expression.
-  Expression* call_;
-  // Which result we want.
-  unsigned int index_;
-};
-
-// Traverse a call result.
-
-int
-Call_result_expression::do_traverse(Traverse* traverse)
-{
-  if (traverse->remember_expression(this->call_))
-    {
-      // We have already traversed the call expression.
-      return TRAVERSE_CONTINUE;
-    }
-  return Expression::traverse(&this->call_, traverse);
-}
-
-// Get the type.
-
-Type*
-Call_result_expression::do_type()
-{
-  if (this->classification() == EXPRESSION_ERROR)
-    return Type::make_error_type();
-
-  // THIS->CALL_ can be replaced with a temporary reference due to
-  // Call_expression::do_must_eval_in_order when there is an error.
-  Call_expression* ce = this->call_->call_expression();
-  if (ce == NULL)
-    {
-      this->set_is_error();
-      return Type::make_error_type();
-    }
-  Function_type* fntype = ce->get_function_type();
-  if (fntype == NULL)
-    {
-      this->set_is_error();
-      return Type::make_error_type();
-    }
-  const Typed_identifier_list* results = fntype->results();
-  if (results == NULL)
-    {
-      this->report_error(_("number of results does not match "
-                          "number of values"));
-      return Type::make_error_type();
-    }
-  Typed_identifier_list::const_iterator pr = results->begin();
-  for (unsigned int i = 0; i < this->index_; ++i)
-    {
-      if (pr == results->end())
-       break;
-      ++pr;
-    }
-  if (pr == results->end())
-    {
-      this->report_error(_("number of results does not match "
-                          "number of values"));
-      return Type::make_error_type();
-    }
-  return pr->type();
-}
-
-// Check the type.  Just make sure that we trigger the warning in
-// do_type.
-
-void
-Call_result_expression::do_check_types(Gogo*)
-{
-  this->type();
-}
-
-// Determine the type.  We have nothing to do here, but the 0 result
-// needs to pass down to the caller.
-
-void
-Call_result_expression::do_determine_type(const Type_context*)
-{
-  this->call_->determine_type_no_context();
-}
-
-// Return the tree.
-
-tree
-Call_result_expression::do_get_tree(Translate_context* context)
-{
-  tree call_tree = this->call_->get_tree(context);
-  if (call_tree == error_mark_node)
-    return error_mark_node;
-  if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
-    {
-      gcc_assert(saw_errors());
-      return error_mark_node;
-    }
-  tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
-  for (unsigned int i = 0; i < this->index_; ++i)
-    {
-      gcc_assert(field != NULL_TREE);
-      field = DECL_CHAIN(field);
-    }
-  gcc_assert(field != NULL_TREE);
-  return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
-}
-
-// Make a reference to a single result of a call which returns
-// multiple results.
-
-Expression*
-Expression::make_call_result(Call_expression* call, unsigned int index)
-{
-  return new Call_result_expression(call, index);
-}
-
-// Class Index_expression.
-
-// Traversal.
-
-int
-Index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
-      || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
-      || (this->end_ != NULL
-         && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower an index expression.  This converts the generic index
-// expression into an array index, a string index, or a map index.
-
-Expression*
-Index_expression::do_lower(Gogo*, Named_object*, int)
-{
-  source_location location = this->location();
-  Expression* left = this->left_;
-  Expression* start = this->start_;
-  Expression* end = this->end_;
-
-  Type* type = left->type();
-  if (type->is_error_type())
-    return Expression::make_error(location);
-  else if (left->is_type_expression())
-    {
-      error_at(location, "attempt to index type expression");
-      return Expression::make_error(location);
-    }
-  else if (type->array_type() != NULL)
-    return Expression::make_array_index(left, start, end, location);
-  else if (type->points_to() != NULL
-          && type->points_to()->array_type() != NULL
-          && !type->points_to()->is_open_array_type())
-    {
-      Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
-                                                location);
-      return Expression::make_array_index(deref, start, end, location);
-    }
-  else if (type->is_string_type())
-    return Expression::make_string_index(left, start, end, location);
-  else if (type->map_type() != NULL)
-    {
-      if (end != NULL)
-       {
-         error_at(location, "invalid slice of map");
-         return Expression::make_error(location);
-       }
-      Map_index_expression* ret= Expression::make_map_index(left, start,
-                                                           location);
-      if (this->is_lvalue_)
-       ret->set_is_lvalue();
-      return ret;
-    }
-  else
-    {
-      error_at(location,
-              "attempt to index object which is not array, string, or map");
-      return Expression::make_error(location);
-    }
-}
-
-// Make an index expression.
-
-Expression*
-Expression::make_index(Expression* left, Expression* start, Expression* end,
-                      source_location location)
-{
-  return new Index_expression(left, start, end, location);
-}
-
-// An array index.  This is used for both indexing and slicing.
-
-class Array_index_expression : public Expression
-{
- public:
-  Array_index_expression(Expression* array, Expression* start,
-                        Expression* end, source_location location)
-    : Expression(EXPRESSION_ARRAY_INDEX, location),
-      array_(array), start_(start), end_(end), type_(NULL)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_array_index(this->array_->copy(),
-                                       this->start_->copy(),
-                                       (this->end_ == NULL
-                                        ? NULL
-                                        : this->end_->copy()),
-                                       this->location());
-  }
-
-  bool
-  do_is_addressable() const;
-
-  void
-  do_address_taken(bool escapes)
-  { this->array_->address_taken(escapes); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The array we are getting a value from.
-  Expression* array_;
-  // The start or only index.
-  Expression* start_;
-  // The end index of a slice.  This may be NULL for a simple array
-  // index, or it may be a nil expression for the length of the array.
-  Expression* end_;
-  // The type of the expression.
-  Type* type_;
-};
-
-// Array index traversal.
-
-int
-Array_index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->end_ != NULL)
-    {
-      if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Return the type of an array index.
-
-Type*
-Array_index_expression::do_type()
-{
-  if (this->type_ == NULL)
-    {
-     Array_type* type = this->array_->type()->array_type();
-      if (type == NULL)
-       this->type_ = Type::make_error_type();
-      else if (this->end_ == NULL)
-       this->type_ = type->element_type();
-      else if (type->is_open_array_type())
-       {
-         // A slice of a slice has the same type as the original
-         // slice.
-         this->type_ = this->array_->type()->deref();
-       }
-      else
-       {
-         // A slice of an array is a slice.
-         this->type_ = Type::make_array_type(type->element_type(), NULL);
-       }
-    }
-  return this->type_;
-}
-
-// Set the type of an array index.
-
-void
-Array_index_expression::do_determine_type(const Type_context*)
-{
-  this->array_->determine_type_no_context();
-  this->start_->determine_type_no_context();
-  if (this->end_ != NULL)
-    this->end_->determine_type_no_context();
-}
-
-// Check types of an array index.
-
-void
-Array_index_expression::do_check_types(Gogo*)
-{
-  if (this->start_->type()->integer_type() == NULL)
-    this->report_error(_("index must be integer"));
-  if (this->end_ != NULL
-      && this->end_->type()->integer_type() == NULL
-      && !this->end_->is_nil_expression())
-    this->report_error(_("slice end must be integer"));
-
-  Array_type* array_type = this->array_->type()->array_type();
-  if (array_type == NULL)
-    {
-      gcc_assert(this->array_->type()->is_error_type());
-      return;
-    }
-
-  unsigned int int_bits =
-    Type::lookup_integer_type("int")->integer_type()->bits();
-
-  Type* dummy;
-  mpz_t lval;
-  mpz_init(lval);
-  bool lval_valid = (array_type->length() != NULL
-                    && array_type->length()->integer_constant_value(true,
-                                                                    lval,
-                                                                    &dummy));
-  mpz_t ival;
-  mpz_init(ival);
-  if (this->start_->integer_constant_value(true, ival, &dummy))
-    {
-      if (mpz_sgn(ival) < 0
-         || mpz_sizeinbase(ival, 2) >= int_bits
-         || (lval_valid
-             && (this->end_ == NULL
-                 ? mpz_cmp(ival, lval) >= 0
-                 : mpz_cmp(ival, lval) > 0)))
-       {
-         error_at(this->start_->location(), "array index out of bounds");
-         this->set_is_error();
-       }
-    }
-  if (this->end_ != NULL && !this->end_->is_nil_expression())
-    {
-      if (this->end_->integer_constant_value(true, ival, &dummy))
-       {
-         if (mpz_sgn(ival) < 0
-             || mpz_sizeinbase(ival, 2) >= int_bits
-             || (lval_valid && mpz_cmp(ival, lval) > 0))
-           {
-             error_at(this->end_->location(), "array index out of bounds");
-             this->set_is_error();
-           }
-       }
-    }
-  mpz_clear(ival);
-  mpz_clear(lval);
-
-  // A slice of an array requires an addressable array.  A slice of a
-  // slice is always possible.
-  if (this->end_ != NULL
-      && !array_type->is_open_array_type()
-      && !this->array_->is_addressable())
-    this->report_error(_("array is not addressable"));
-}
-
-// Return whether this expression is addressable.
-
-bool
-Array_index_expression::do_is_addressable() const
-{
-  // A slice expression is not addressable.
-  if (this->end_ != NULL)
-    return false;
-
-  // An index into a slice is addressable.
-  if (this->array_->type()->is_open_array_type())
-    return true;
-
-  // An index into an array is addressable if the array is
-  // addressable.
-  return this->array_->is_addressable();
-}
-
-// Get a tree for an array index.
-
-tree
-Array_index_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  source_location loc = this->location();
-
-  Array_type* array_type = this->array_->type()->array_type();
-  if (array_type == NULL)
-    {
-      gcc_assert(this->array_->type()->is_error_type());
-      return error_mark_node;
-    }
-
-  tree type_tree = array_type->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree array_tree = this->array_->get_tree(context);
-  if (array_tree == error_mark_node)
-    return error_mark_node;
-
-  if (array_type->length() == NULL && !DECL_P(array_tree))
-    array_tree = save_expr(array_tree);
-  tree length_tree = array_type->length_tree(gogo, array_tree);
-  if (length_tree == error_mark_node)
-    return error_mark_node;
-  length_tree = save_expr(length_tree);
-  tree length_type = TREE_TYPE(length_tree);
-
-  tree bad_index = boolean_false_node;
-
-  tree start_tree = this->start_->get_tree(context);
-  if (start_tree == error_mark_node)
-    return error_mark_node;
-  if (!DECL_P(start_tree))
-    start_tree = save_expr(start_tree);
-  if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
-    start_tree = convert_to_integer(length_type, start_tree);
-
-  bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
-                                      loc);
-
-  start_tree = fold_convert_loc(loc, length_type, start_tree);
-  bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
-                             fold_build2_loc(loc,
-                                             (this->end_ == NULL
-                                              ? GE_EXPR
-                                              : GT_EXPR),
-                                             boolean_type_node, start_tree,
-                                             length_tree));
-
-  int code = (array_type->length() != NULL
-             ? (this->end_ == NULL
-                ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
-                : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
-             : (this->end_ == NULL
-                ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
-                : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
-  tree crash = Gogo::runtime_error(code, loc);
-
-  if (this->end_ == NULL)
-    {
-      // Simple array indexing.  This has to return an l-value, so
-      // wrap the index check into START_TREE.
-      start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
-                         build3(COND_EXPR, void_type_node,
-                                bad_index, crash, NULL_TREE),
-                         start_tree);
-      start_tree = fold_convert_loc(loc, sizetype, start_tree);
-
-      if (array_type->length() != NULL)
-       {
-         // Fixed array.
-         return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
-                       start_tree, NULL_TREE, NULL_TREE);
-       }
-      else
-       {
-         // Open array.
-         tree values = array_type->value_pointer_tree(gogo, array_tree);
-         tree element_type_tree = array_type->element_type()->get_tree(gogo);
-         if (element_type_tree == error_mark_node)
-           return error_mark_node;
-         tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-         tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
-                                       start_tree, element_size);
-         tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
-                                    TREE_TYPE(values), values, offset);
-         return build_fold_indirect_ref(ptr);
-       }
-    }
-
-  // Array slice.
-
-  tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
-  if (capacity_tree == error_mark_node)
-    return error_mark_node;
-  capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
-
-  tree end_tree;
-  if (this->end_->is_nil_expression())
-    end_tree = length_tree;
-  else
-    {
-      end_tree = this->end_->get_tree(context);
-      if (end_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(end_tree))
-       end_tree = save_expr(end_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
-       end_tree = convert_to_integer(length_type, end_tree);
-
-      bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
-                                          loc);
-
-      end_tree = fold_convert_loc(loc, length_type, end_tree);
-
-      capacity_tree = save_expr(capacity_tree);
-      tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                                    fold_build2_loc(loc, LT_EXPR,
-                                                    boolean_type_node,
-                                                    end_tree, start_tree),
-                                    fold_build2_loc(loc, GT_EXPR,
-                                                    boolean_type_node,
-                                                    end_tree, capacity_tree));
-      bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                                 bad_index, bad_end);
-    }
-
-  tree element_type_tree = array_type->element_type()->get_tree(gogo);
-  if (element_type_tree == error_mark_node)
-    return error_mark_node;
-  tree element_size = TYPE_SIZE_UNIT(element_type_tree);
-
-  tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
-                               fold_convert_loc(loc, sizetype, start_tree),
-                               element_size);
-
-  tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
-  if (value_pointer == error_mark_node)
-    return error_mark_node;
-
-  value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
-                                 TREE_TYPE(value_pointer),
-                                 value_pointer, offset);
-
-  tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
-                                           end_tree, start_tree);
-
-  tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
-                                             capacity_tree, start_tree);
-
-  tree struct_tree = this->type()->get_tree(gogo);
-  gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(struct_tree);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  elt->index = field;
-  elt->value = value_pointer;
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-  elt->index = field;
-  elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
-  elt->index = field;
-  elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
-
-  tree constructor = build_constructor(struct_tree, init);
-
-  if (TREE_CONSTANT(value_pointer)
-      && TREE_CONSTANT(result_length_tree)
-      && TREE_CONSTANT(result_capacity_tree))
-    TREE_CONSTANT(constructor) = 1;
-
-  return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
-                        build3(COND_EXPR, void_type_node,
-                               bad_index, crash, NULL_TREE),
-                        constructor);
-}
-
-// Make an array index expression.  END may be NULL.
-
-Expression*
-Expression::make_array_index(Expression* array, Expression* start,
-                            Expression* end, source_location location)
-{
-  // Taking a slice of a composite literal requires moving the literal
-  // onto the heap.
-  if (end != NULL && array->is_composite_literal())
-    {
-      array = Expression::make_heap_composite(array, location);
-      array = Expression::make_unary(OPERATOR_MULT, array, location);
-    }
-  return new Array_index_expression(array, start, end, location);
-}
-
-// A string index.  This is used for both indexing and slicing.
-
-class String_index_expression : public Expression
-{
- public:
-  String_index_expression(Expression* string, Expression* start,
-                         Expression* end, source_location location)
-    : Expression(EXPRESSION_STRING_INDEX, location),
-      string_(string), start_(start), end_(end)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_string_index(this->string_->copy(),
-                                        this->start_->copy(),
-                                        (this->end_ == NULL
-                                         ? NULL
-                                         : this->end_->copy()),
-                                        this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The string we are getting a value from.
-  Expression* string_;
-  // The start or only index.
-  Expression* start_;
-  // The end index of a slice.  This may be NULL for a single index,
-  // or it may be a nil expression for the length of the string.
-  Expression* end_;
-};
-
-// String index traversal.
-
-int
-String_index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->end_ != NULL)
-    {
-      if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Return the type of a string index.
-
-Type*
-String_index_expression::do_type()
-{
-  if (this->end_ == NULL)
-    return Type::lookup_integer_type("uint8");
-  else
-    return this->string_->type();
-}
-
-// Determine the type of a string index.
-
-void
-String_index_expression::do_determine_type(const Type_context*)
-{
-  this->string_->determine_type_no_context();
-  this->start_->determine_type_no_context();
-  if (this->end_ != NULL)
-    this->end_->determine_type_no_context();
-}
-
-// Check types of a string index.
-
-void
-String_index_expression::do_check_types(Gogo*)
-{
-  if (this->start_->type()->integer_type() == NULL)
-    this->report_error(_("index must be integer"));
-  if (this->end_ != NULL
-      && this->end_->type()->integer_type() == NULL
-      && !this->end_->is_nil_expression())
-    this->report_error(_("slice end must be integer"));
-
-  std::string sval;
-  bool sval_valid = this->string_->string_constant_value(&sval);
-
-  mpz_t ival;
-  mpz_init(ival);
-  Type* dummy;
-  if (this->start_->integer_constant_value(true, ival, &dummy))
-    {
-      if (mpz_sgn(ival) < 0
-         || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
-       {
-         error_at(this->start_->location(), "string index out of bounds");
-         this->set_is_error();
-       }
-    }
-  if (this->end_ != NULL && !this->end_->is_nil_expression())
-    {
-      if (this->end_->integer_constant_value(true, ival, &dummy))
-       {
-         if (mpz_sgn(ival) < 0
-             || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
-           {
-             error_at(this->end_->location(), "string index out of bounds");
-             this->set_is_error();
-           }
-       }
-    }
-  mpz_clear(ival);
-}
-
-// Get a tree for a string index.
-
-tree
-String_index_expression::do_get_tree(Translate_context* context)
-{
-  source_location loc = this->location();
-
-  tree string_tree = this->string_->get_tree(context);
-  if (string_tree == error_mark_node)
-    return error_mark_node;
-
-  if (this->string_->type()->points_to() != NULL)
-    string_tree = build_fold_indirect_ref(string_tree);
-  if (!DECL_P(string_tree))
-    string_tree = save_expr(string_tree);
-  tree string_type = TREE_TYPE(string_tree);
-
-  tree length_tree = String_type::length_tree(context->gogo(), string_tree);
-  length_tree = save_expr(length_tree);
-  tree length_type = TREE_TYPE(length_tree);
-
-  tree bad_index = boolean_false_node;
-
-  tree start_tree = this->start_->get_tree(context);
-  if (start_tree == error_mark_node)
-    return error_mark_node;
-  if (!DECL_P(start_tree))
-    start_tree = save_expr(start_tree);
-  if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
-    start_tree = convert_to_integer(length_type, start_tree);
-
-  bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
-                                      loc);
-
-  start_tree = fold_convert_loc(loc, length_type, start_tree);
-
-  int code = (this->end_ == NULL
-             ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
-             : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
-  tree crash = Gogo::runtime_error(code, loc);
-
-  if (this->end_ == NULL)
-    {
-      bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
-                                 bad_index,
-                                 fold_build2_loc(loc, GE_EXPR,
-                                                 boolean_type_node,
-                                                 start_tree, length_tree));
-
-      tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
-      tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
-                                bytes_tree,
-                                fold_convert_loc(loc, sizetype, start_tree));
-      tree index = build_fold_indirect_ref_loc(loc, ptr);
-
-      return build2(COMPOUND_EXPR, TREE_TYPE(index),
-                   build3(COND_EXPR, void_type_node,
-                          bad_index, crash, NULL_TREE),
-                   index);
-    }
-  else
-    {
-      tree end_tree;
-      if (this->end_->is_nil_expression())
-       end_tree = build_int_cst(length_type, -1);
-      else
-       {
-         end_tree = this->end_->get_tree(context);
-         if (end_tree == error_mark_node)
-           return error_mark_node;
-         if (!DECL_P(end_tree))
-           end_tree = save_expr(end_tree);
-         if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
-           end_tree = convert_to_integer(length_type, end_tree);
-
-         bad_index = Expression::check_bounds(end_tree, length_type,
-                                              bad_index, loc);
-
-         end_tree = fold_convert_loc(loc, length_type, end_tree);
-       }
-
-      static tree strslice_fndecl;
-      tree ret = Gogo::call_builtin(&strslice_fndecl,
-                                   loc,
-                                   "__go_string_slice",
-                                   3,
-                                   string_type,
-                                   string_type,
-                                   string_tree,
-                                   length_type,
-                                   start_tree,
-                                   length_type,
-                                   end_tree);
-      if (ret == error_mark_node)
-       return error_mark_node;
-      // This will panic if the bounds are out of range for the
-      // string.
-      TREE_NOTHROW(strslice_fndecl) = 0;
-
-      if (bad_index == boolean_false_node)
-       return ret;
-      else
-       return build2(COMPOUND_EXPR, TREE_TYPE(ret),
-                     build3(COND_EXPR, void_type_node,
-                            bad_index, crash, NULL_TREE),
-                     ret);
-    }
-}
-
-// Make a string index expression.  END may be NULL.
-
-Expression*
-Expression::make_string_index(Expression* string, Expression* start,
-                             Expression* end, source_location location)
-{
-  return new String_index_expression(string, start, end, location);
-}
-
-// Class Map_index.
-
-// Get the type of the map.
-
-Map_type*
-Map_index_expression::get_map_type() const
-{
-  Map_type* mt = this->map_->type()->deref()->map_type();
-  if (mt == NULL)
-    gcc_assert(saw_errors());
-  return mt;
-}
-
-// Map index traversal.
-
-int
-Map_index_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Expression::traverse(&this->index_, traverse);
-}
-
-// Return the type of a map index.
-
-Type*
-Map_index_expression::do_type()
-{
-  Map_type* mt = this->get_map_type();
-  if (mt == NULL)
-    return Type::make_error_type();
-  Type* type = mt->val_type();
-  // If this map index is in a tuple assignment, we actually return a
-  // pointer to the value type.  Tuple_map_assignment_statement is
-  // responsible for handling this correctly.  We need to get the type
-  // right in case this gets assigned to a temporary variable.
-  if (this->is_in_tuple_assignment_)
-    type = Type::make_pointer_type(type);
-  return type;
-}
-
-// Fix the type of a map index.
-
-void
-Map_index_expression::do_determine_type(const Type_context*)
-{
-  this->map_->determine_type_no_context();
-  Map_type* mt = this->get_map_type();
-  Type* key_type = mt == NULL ? NULL : mt->key_type();
-  Type_context subcontext(key_type, false);
-  this->index_->determine_type(&subcontext);
-}
-
-// Check types of a map index.
-
-void
-Map_index_expression::do_check_types(Gogo*)
-{
-  std::string reason;
-  Map_type* mt = this->get_map_type();
-  if (mt == NULL)
-    return;
-  if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
-    {
-      if (reason.empty())
-       this->report_error(_("incompatible type for map index"));
-      else
-       {
-         error_at(this->location(), "incompatible type for map index (%s)",
-                  reason.c_str());
-         this->set_is_error();
-       }
-    }
-}
-
-// Get a tree for a map index.
-
-tree
-Map_index_expression::do_get_tree(Translate_context* context)
-{
-  Map_type* type = this->get_map_type();
-  if (type == NULL)
-    return error_mark_node;
-
-  tree valptr = this->get_value_pointer(context, this->is_lvalue_);
-  if (valptr == error_mark_node)
-    return error_mark_node;
-  valptr = save_expr(valptr);
-
-  tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
-
-  if (this->is_lvalue_)
-    return build_fold_indirect_ref(valptr);
-  else if (this->is_in_tuple_assignment_)
-    {
-      // Tuple_map_assignment_statement is responsible for using this
-      // appropriately.
-      return valptr;
-    }
-  else
-    {
-      return fold_build3(COND_EXPR, val_type_tree,
-                        fold_build2(EQ_EXPR, boolean_type_node, valptr,
-                                    fold_convert(TREE_TYPE(valptr),
-                                                 null_pointer_node)),
-                        type->val_type()->get_init_tree(context->gogo(),
-                                                        false),
-                        build_fold_indirect_ref(valptr));
-    }
-}
-
-// Get a tree for the map index.  This returns a tree which evaluates
-// to a pointer to a value.  The pointer will be NULL if the key is
-// not in the map.
-
-tree
-Map_index_expression::get_value_pointer(Translate_context* context,
-                                       bool insert)
-{
-  Map_type* type = this->get_map_type();
-  if (type == NULL)
-    return error_mark_node;
-
-  tree map_tree = this->map_->get_tree(context);
-  tree index_tree = this->index_->get_tree(context);
-  index_tree = Expression::convert_for_assignment(context, type->key_type(),
-                                                 this->index_->type(),
-                                                 index_tree,
-                                                 this->location());
-  if (map_tree == error_mark_node || index_tree == error_mark_node)
-    return error_mark_node;
-
-  if (this->map_->type()->points_to() != NULL)
-    map_tree = build_fold_indirect_ref(map_tree);
-
-  // We need to pass in a pointer to the key, so stuff it into a
-  // variable.
-  tree tmp;
-  tree make_tmp;
-  if (current_function_decl != NULL)
-    {
-      tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
-      DECL_IGNORED_P(tmp) = 0;
-      DECL_INITIAL(tmp) = index_tree;
-      make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-      TREE_ADDRESSABLE(tmp) = 1;
-    }
-  else
-    {
-      tmp = build_decl(this->location(), VAR_DECL, create_tmp_var_name("M"),
-                      TREE_TYPE(index_tree));
-      DECL_EXTERNAL(tmp) = 0;
-      TREE_PUBLIC(tmp) = 0;
-      TREE_STATIC(tmp) = 1;
-      DECL_ARTIFICIAL(tmp) = 1;
-      if (!TREE_CONSTANT(index_tree))
-       make_tmp = fold_build2_loc(this->location(), INIT_EXPR, void_type_node,
-                                  tmp, index_tree);
-      else
-       {
-         TREE_READONLY(tmp) = 1;
-         TREE_CONSTANT(tmp) = 1;
-         DECL_INITIAL(tmp) = index_tree;
-         make_tmp = NULL_TREE;
-       }
-      rest_of_decl_compilation(tmp, 1, 0);
-    }
-  tree tmpref = fold_convert_loc(this->location(), const_ptr_type_node,
-                                build_fold_addr_expr_loc(this->location(),
-                                                         tmp));
-
-  static tree map_index_fndecl;
-  tree call = Gogo::call_builtin(&map_index_fndecl,
-                                this->location(),
-                                "__go_map_index",
-                                3,
-                                const_ptr_type_node,
-                                TREE_TYPE(map_tree),
-                                map_tree,
-                                const_ptr_type_node,
-                                tmpref,
-                                boolean_type_node,
-                                (insert
-                                 ? boolean_true_node
-                                 : boolean_false_node));
-  if (call == error_mark_node)
-    return error_mark_node;
-  // This can panic on a map of interface type if the interface holds
-  // an uncomparable or unhashable type.
-  TREE_NOTHROW(map_index_fndecl) = 0;
-
-  tree val_type_tree = type->val_type()->get_tree(context->gogo());
-  if (val_type_tree == error_mark_node)
-    return error_mark_node;
-  tree ptr_val_type_tree = build_pointer_type(val_type_tree);
-
-  tree ret = fold_convert_loc(this->location(), ptr_val_type_tree, call);
-  if (make_tmp != NULL_TREE)
-    ret = build2(COMPOUND_EXPR, ptr_val_type_tree, make_tmp, ret);
-  return ret;
-}
-
-// Make a map index expression.
-
-Map_index_expression*
-Expression::make_map_index(Expression* map, Expression* index,
-                          source_location location)
-{
-  return new Map_index_expression(map, index, location);
-}
-
-// Class Field_reference_expression.
-
-// Return the type of a field reference.
-
-Type*
-Field_reference_expression::do_type()
-{
-  Type* type = this->expr_->type();
-  if (type->is_error_type())
-    return type;
-  Struct_type* struct_type = type->struct_type();
-  gcc_assert(struct_type != NULL);
-  return struct_type->field(this->field_index_)->type();
-}
-
-// Check the types for a field reference.
-
-void
-Field_reference_expression::do_check_types(Gogo*)
-{
-  Type* type = this->expr_->type();
-  if (type->is_error_type())
-    return;
-  Struct_type* struct_type = type->struct_type();
-  gcc_assert(struct_type != NULL);
-  gcc_assert(struct_type->field(this->field_index_) != NULL);
-}
-
-// Get a tree for a field reference.
-
-tree
-Field_reference_expression::do_get_tree(Translate_context* context)
-{
-  tree struct_tree = this->expr_->get_tree(context);
-  if (struct_tree == error_mark_node
-      || TREE_TYPE(struct_tree) == error_mark_node)
-    return error_mark_node;
-  gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
-  tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
-  if (field == NULL_TREE)
-    {
-      // This can happen for a type which refers to itself indirectly
-      // and then turns out to be erroneous.
-      gcc_assert(saw_errors());
-      return error_mark_node;
-    }
-  for (unsigned int i = this->field_index_; i > 0; --i)
-    {
-      field = DECL_CHAIN(field);
-      gcc_assert(field != NULL_TREE);
-    }
-  if (TREE_TYPE(field) == error_mark_node)
-    return error_mark_node;
-  return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
-               NULL_TREE);
-}
-
-// Make a reference to a qualified identifier in an expression.
-
-Field_reference_expression*
-Expression::make_field_reference(Expression* expr, unsigned int field_index,
-                                source_location location)
-{
-  return new Field_reference_expression(expr, field_index, location);
-}
-
-// Class Interface_field_reference_expression.
-
-// Return a tree for the pointer to the function to call.
-
-tree
-Interface_field_reference_expression::get_function_tree(Translate_context*,
-                                                       tree expr)
-{
-  if (this->expr_->type()->points_to() != NULL)
-    expr = build_fold_indirect_ref(expr);
-
-  tree expr_type = TREE_TYPE(expr);
-  gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
-
-  tree field = TYPE_FIELDS(expr_type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
-
-  tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
-  gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
-
-  table = build_fold_indirect_ref(table);
-  gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
-
-  std::string name = Gogo::unpack_hidden_name(this->name_);
-  for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
-       field != NULL_TREE;
-       field = DECL_CHAIN(field))
-    {
-      if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
-       break;
-    }
-  gcc_assert(field != NULL_TREE);
-
-  return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
-}
-
-// Return a tree for the first argument to pass to the interface
-// function.
-
-tree
-Interface_field_reference_expression::get_underlying_object_tree(
-    Translate_context*,
-    tree expr)
-{
-  if (this->expr_->type()->points_to() != NULL)
-    expr = build_fold_indirect_ref(expr);
-
-  tree expr_type = TREE_TYPE(expr);
-  gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
-
-  tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
-
-  return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
-}
-
-// Traversal.
-
-int
-Interface_field_reference_expression::do_traverse(Traverse* traverse)
-{
-  return Expression::traverse(&this->expr_, traverse);
-}
-
-// Return the type of an interface field reference.
-
-Type*
-Interface_field_reference_expression::do_type()
-{
-  Type* expr_type = this->expr_->type();
-
-  Type* points_to = expr_type->points_to();
-  if (points_to != NULL)
-    expr_type = points_to;
-
-  Interface_type* interface_type = expr_type->interface_type();
-  if (interface_type == NULL)
-    return Type::make_error_type();
-
-  const Typed_identifier* method = interface_type->find_method(this->name_);
-  if (method == NULL)
-    return Type::make_error_type();
-
-  return method->type();
-}
-
-// Determine types.
-
-void
-Interface_field_reference_expression::do_determine_type(const Type_context*)
-{
-  this->expr_->determine_type_no_context();
-}
-
-// Check the types for an interface field reference.
-
-void
-Interface_field_reference_expression::do_check_types(Gogo*)
-{
-  Type* type = this->expr_->type();
-
-  Type* points_to = type->points_to();
-  if (points_to != NULL)
-    type = points_to;
-
-  Interface_type* interface_type = type->interface_type();
-  if (interface_type == NULL)
-    this->report_error(_("expected interface or pointer to interface"));
-  else
-    {
-      const Typed_identifier* method =
-       interface_type->find_method(this->name_);
-      if (method == NULL)
-       {
-         error_at(this->location(), "method %qs not in interface",
-                  Gogo::message_name(this->name_).c_str());
-         this->set_is_error();
-       }
-    }
-}
-
-// Get a tree for a reference to a field in an interface.  There is no
-// standard tree type representation for this: it's a function
-// attached to its first argument, like a Bound_method_expression.
-// The only places it may currently be used are in a Call_expression
-// or a Go_statement, which will take it apart directly.  So this has
-// nothing to do at present.
-
-tree
-Interface_field_reference_expression::do_get_tree(Translate_context*)
-{
-  gcc_unreachable();
-}
-
-// Make a reference to a field in an interface.
-
-Expression*
-Expression::make_interface_field_reference(Expression* expr,
-                                          const std::string& field,
-                                          source_location location)
-{
-  return new Interface_field_reference_expression(expr, field, location);
-}
-
-// A general selector.  This is a Parser_expression for LEFT.NAME.  It
-// is lowered after we know the type of the left hand side.
-
-class Selector_expression : public Parser_expression
-{
- public:
-  Selector_expression(Expression* left, const std::string& name,
-                     source_location location)
-    : Parser_expression(EXPRESSION_SELECTOR, location),
-      left_(left), name_(name)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Expression::traverse(&this->left_, traverse); }
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  Expression*
-  do_copy()
-  {
-    return new Selector_expression(this->left_->copy(), this->name_,
-                                  this->location());
-  }
-
- private:
-  Expression*
-  lower_method_expression(Gogo*);
-
-  // The expression on the left hand side.
-  Expression* left_;
-  // The name on the right hand side.
-  std::string name_;
-};
-
-// Lower a selector expression once we know the real type of the left
-// hand side.
-
-Expression*
-Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
-{
-  Expression* left = this->left_;
-  if (left->is_type_expression())
-    return this->lower_method_expression(gogo);
-  return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
-                                   this->location());
-}
-
-// Lower a method expression T.M or (*T).M.  We turn this into a
-// function literal.
-
-Expression*
-Selector_expression::lower_method_expression(Gogo* gogo)
-{
-  source_location location = this->location();
-  Type* type = this->left_->type();
-  const std::string& name(this->name_);
-
-  bool is_pointer;
-  if (type->points_to() == NULL)
-    is_pointer = false;
-  else
-    {
-      is_pointer = true;
-      type = type->points_to();
-    }
-  Named_type* nt = type->named_type();
-  if (nt == NULL)
-    {
-      error_at(location,
-              ("method expression requires named type or "
-               "pointer to named type"));
-      return Expression::make_error(location);
-    }
-
-  bool is_ambiguous;
-  Method* method = nt->method_function(name, &is_ambiguous);
-  if (method == NULL)
-    {
-      if (!is_ambiguous)
-       error_at(location, "type %<%s%> has no method %<%s%>",
-                nt->message_name().c_str(),
-                Gogo::message_name(name).c_str());
-      else
-       error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
-                Gogo::message_name(name).c_str(),
-                nt->message_name().c_str());
-      return Expression::make_error(location);
-    }
-
-  if (!is_pointer && !method->is_value_method())
-    {
-      error_at(location, "method requires pointer (use %<(*%s).%s)%>",
-              nt->message_name().c_str(),
-              Gogo::message_name(name).c_str());
-      return Expression::make_error(location);
-    }
-
-  // Build a new function type in which the receiver becomes the first
-  // argument.
-  Function_type* method_type = method->type();
-  gcc_assert(method_type->is_method());
-
-  const char* const receiver_name = "$this";
-  Typed_identifier_list* parameters = new Typed_identifier_list();
-  parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
-                                        location));
-
-  const Typed_identifier_list* method_parameters = method_type->parameters();
-  if (method_parameters != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = method_parameters->begin();
-          p != method_parameters->end();
-          ++p)
-       parameters->push_back(*p);
-    }
-
-  const Typed_identifier_list* method_results = method_type->results();
-  Typed_identifier_list* results;
-  if (method_results == NULL)
-    results = NULL;
-  else
-    {
-      results = new Typed_identifier_list();
-      for (Typed_identifier_list::const_iterator p = method_results->begin();
-          p != method_results->end();
-          ++p)
-       results->push_back(*p);
-    }
-  
-  Function_type* fntype = Type::make_function_type(NULL, parameters, results,
-                                                  location);
-  if (method_type->is_varargs())
-    fntype->set_is_varargs();
-
-  // We generate methods which always takes a pointer to the receiver
-  // as their first argument.  If this is for a pointer type, we can
-  // simply reuse the existing function.  We use an internal hack to
-  // get the right type.
-
-  if (is_pointer)
-    {
-      Named_object* mno = (method->needs_stub_method()
-                          ? method->stub_object()
-                          : method->named_object());
-      Expression* f = Expression::make_func_reference(mno, NULL, location);
-      f = Expression::make_cast(fntype, f, location);
-      Type_conversion_expression* tce =
-       static_cast<Type_conversion_expression*>(f);
-      tce->set_may_convert_function_types();
-      return f;
-    }
-
-  Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
-                                         location);
-
-  Named_object* vno = gogo->lookup(receiver_name, NULL);
-  gcc_assert(vno != NULL);
-  Expression* ve = Expression::make_var_reference(vno, location);
-  Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
-
-  // Even though we found the method above, if it has an error type we
-  // may see an error here.
-  if (bm->is_error_expression())
-    {
-      gogo->finish_function(location);
-      return bm;
-    }
-
-  Expression_list* args;
-  if (method_parameters == NULL)
-    args = NULL;
-  else
-    {
-      args = new Expression_list();
-      for (Typed_identifier_list::const_iterator p = method_parameters->begin();
-          p != method_parameters->end();
-          ++p)
-       {
-         vno = gogo->lookup(p->name(), NULL);
-         gcc_assert(vno != NULL);
-         args->push_back(Expression::make_var_reference(vno, location));
-       }
-    }
-
-  Call_expression* call = Expression::make_call(bm, args,
-                                               method_type->is_varargs(),
-                                               location);
-
-  size_t count = call->result_count();
-  Statement* s;
-  if (count == 0)
-    s = Statement::make_statement(call);
-  else
-    {
-      Expression_list* retvals = new Expression_list();
-      if (count <= 1)
-       retvals->push_back(call);
-      else
-       {
-         for (size_t i = 0; i < count; ++i)
-           retvals->push_back(Expression::make_call_result(call, i));
-       }
-      s = Statement::make_return_statement(no->func_value()->type()->results(),
-                                          retvals, location);
-    }
-  gogo->add_statement(s);
-
-  gogo->finish_function(location);
-
-  return Expression::make_func_reference(no, NULL, location);
-}
-
-// Make a selector expression.
-
-Expression*
-Expression::make_selector(Expression* left, const std::string& name,
-                         source_location location)
-{
-  return new Selector_expression(left, name, location);
-}
-
-// Implement the builtin function new.
-
-class Allocation_expression : public Expression
-{
- public:
-  Allocation_expression(Type* type, source_location location)
-    : Expression(EXPRESSION_ALLOCATION, location),
-      type_(type)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Type::traverse(this->type_, traverse); }
-
-  Type*
-  do_type()
-  { return Type::make_pointer_type(this->type_); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  { return new Allocation_expression(this->type_, this->location()); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type we are allocating.
-  Type* type_;
-};
-
-// Check the type of an allocation expression.
-
-void
-Allocation_expression::do_check_types(Gogo*)
-{
-  if (this->type_->function_type() != NULL)
-    this->report_error(_("invalid new of function type"));
-}
-
-// Return a tree for an allocation expression.
-
-tree
-Allocation_expression::do_get_tree(Translate_context* context)
-{
-  tree type_tree = this->type_->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-  tree size_tree = TYPE_SIZE_UNIT(type_tree);
-  tree space = context->gogo()->allocate_memory(this->type_, size_tree,
-                                               this->location());
-  if (space == error_mark_node)
-    return error_mark_node;
-  return fold_convert(build_pointer_type(type_tree), space);
-}
-
-// Make an allocation expression.
-
-Expression*
-Expression::make_allocation(Type* type, source_location location)
-{
-  return new Allocation_expression(type, location);
-}
-
-// Implement the builtin function make.
-
-class Make_expression : public Expression
-{
- public:
-  Make_expression(Type* type, Expression_list* args, source_location location)
-    : Expression(EXPRESSION_MAKE, location),
-      type_(type), args_(args)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Make_expression(this->type_, this->args_->copy(),
-                              this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type we are making.
-  Type* type_;
-  // The arguments to pass to the make routine.
-  Expression_list* args_;
-};
-
-// Traversal.
-
-int
-Make_expression::do_traverse(Traverse* traverse)
-{
-  if (this->args_ != NULL
-      && this->args_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Set types of arguments.
-
-void
-Make_expression::do_determine_type(const Type_context*)
-{
-  if (this->args_ != NULL)
-    {
-      Type_context context(Type::lookup_integer_type("int"), false);
-      for (Expression_list::const_iterator pe = this->args_->begin();
-          pe != this->args_->end();
-          ++pe)
-       (*pe)->determine_type(&context);
-    }
-}
-
-// Check types for a make expression.
-
-void
-Make_expression::do_check_types(Gogo*)
-{
-  if (this->type_->channel_type() == NULL
-      && this->type_->map_type() == NULL
-      && (this->type_->array_type() == NULL
-         || this->type_->array_type()->length() != NULL))
-    this->report_error(_("invalid type for make function"));
-  else if (!this->type_->check_make_expression(this->args_, this->location()))
-    this->set_is_error();
-}
-
-// Return a tree for a make expression.
-
-tree
-Make_expression::do_get_tree(Translate_context* context)
-{
-  return this->type_->make_expression_tree(context, this->args_,
-                                          this->location());
-}
-
-// Make a make expression.
-
-Expression*
-Expression::make_make(Type* type, Expression_list* args,
-                     source_location location)
-{
-  return new Make_expression(type, args, location);
-}
-
-// Construct a struct.
-
-class Struct_construction_expression : public Expression
-{
- public:
-  Struct_construction_expression(Type* type, Expression_list* vals,
-                                source_location location)
-    : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
-      type_(type), vals_(vals)
-  { }
-
-  // Return whether this is a constant initializer.
-  bool
-  is_constant_struct() const;
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Struct_construction_expression(this->type_, this->vals_->copy(),
-                                             this->location());
-  }
-
-  bool
-  do_is_addressable() const
-  { return true; }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The type of the struct to construct.
-  Type* type_;
-  // The list of values, in order of the fields in the struct.  A NULL
-  // entry means that the field should be zero-initialized.
-  Expression_list* vals_;
-};
-
-// Traversal.
-
-int
-Struct_construction_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Return whether this is a constant initializer.
-
-bool
-Struct_construction_expression::is_constant_struct() const
-{
-  if (this->vals_ == NULL)
-    return true;
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      if (*pv != NULL
-         && !(*pv)->is_constant()
-         && (!(*pv)->is_composite_literal()
-             || (*pv)->is_nonconstant_composite_literal()))
-       return false;
-    }
-
-  const Struct_field_list* fields = this->type_->struct_type()->fields();
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      // There are no constant constructors for interfaces.
-      if (pf->type()->interface_type() != NULL)
-       return false;
-    }
-
-  return true;
-}
-
-// Final type determination.
-
-void
-Struct_construction_expression::do_determine_type(const Type_context*)
-{
-  if (this->vals_ == NULL)
-    return;
-  const Struct_field_list* fields = this->type_->struct_type()->fields();
-  Expression_list::const_iterator pv = this->vals_->begin();
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++pv)
-    {
-      if (pv == this->vals_->end())
-       return;
-      if (*pv != NULL)
-       {
-         Type_context subcontext(pf->type(), false);
-         (*pv)->determine_type(&subcontext);
-       }
-    }
-  // Extra values are an error we will report elsewhere; we still want
-  // to determine the type to avoid knockon errors.
-  for (; pv != this->vals_->end(); ++pv)
-    (*pv)->determine_type_no_context();
-}
-
-// Check types.
-
-void
-Struct_construction_expression::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Struct_type* st = this->type_->struct_type();
-  if (this->vals_->size() > st->field_count())
-    {
-      this->report_error(_("too many expressions for struct"));
-      return;
-    }
-
-  const Struct_field_list* fields = st->fields();
-  Expression_list::const_iterator pv = this->vals_->begin();
-  int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++pv, ++i)
-    {
-      if (pv == this->vals_->end())
-       {
-         this->report_error(_("too few expressions for struct"));
-         break;
-       }
-
-      if (*pv == NULL)
-       continue;
-
-      std::string reason;
-      if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
-       {
-         if (reason.empty())
-           error_at((*pv)->location(),
-                    "incompatible type for field %d in struct construction",
-                    i + 1);
-         else
-           error_at((*pv)->location(),
-                    ("incompatible type for field %d in "
-                     "struct construction (%s)"),
-                    i + 1, reason.c_str());
-         this->set_is_error();
-       }
-    }
-  gcc_assert(pv == this->vals_->end());
-}
-
-// Return a tree for constructing a struct.
-
-tree
-Struct_construction_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-
-  if (this->vals_ == NULL)
-    return this->type_->get_init_tree(gogo, false);
-
-  tree type_tree = this->type_->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-  gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-  bool is_constant = true;
-  const Struct_field_list* fields = this->type_->struct_type()->fields();
-  VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
-                                           fields->size());
-  Struct_field_list::const_iterator pf = fields->begin();
-  Expression_list::const_iterator pv = this->vals_->begin();
-  for (tree field = TYPE_FIELDS(type_tree);
-       field != NULL_TREE;
-       field = DECL_CHAIN(field), ++pf)
-    {
-      gcc_assert(pf != fields->end());
-
-      tree val;
-      if (pv == this->vals_->end())
-       val = pf->type()->get_init_tree(gogo, false);
-      else if (*pv == NULL)
-       {
-         val = pf->type()->get_init_tree(gogo, false);
-         ++pv;
-       }
-      else
-       {
-         val = Expression::convert_for_assignment(context, pf->type(),
-                                                  (*pv)->type(),
-                                                  (*pv)->get_tree(context),
-                                                  this->location());
-         ++pv;
-       }
-
-      if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
-       return error_mark_node;
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
-      elt->index = field;
-      elt->value = val;
-      if (!TREE_CONSTANT(val))
-       is_constant = false;
-    }
-  gcc_assert(pf == fields->end());
-
-  tree ret = build_constructor(type_tree, elts);
-  if (is_constant)
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Export a struct construction.
-
-void
-Struct_construction_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      exp->write_c_string(", ");
-      if (*pv != NULL)
-       (*pv)->export_expression(exp);
-    }
-  exp->write_c_string(")");
-}
-
-// Make a struct composite literal.  This used by the thunk code.
-
-Expression*
-Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
-                                         source_location location)
-{
-  gcc_assert(type->struct_type() != NULL);
-  return new Struct_construction_expression(type, vals, location);
-}
-
-// Construct an array.  This class is not used directly; instead we
-// use the child classes, Fixed_array_construction_expression and
-// Open_array_construction_expression.
-
-class Array_construction_expression : public Expression
-{
- protected:
-  Array_construction_expression(Expression_classification classification,
-                               Type* type, Expression_list* vals,
-                               source_location location)
-    : Expression(classification, location),
-      type_(type), vals_(vals)
-  { }
-
- public:
-  // Return whether this is a constant initializer.
-  bool
-  is_constant_array() const;
-
-  // Return the number of elements.
-  size_t
-  element_count() const
-  { return this->vals_ == NULL ? 0 : this->vals_->size(); }
-
-protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_is_addressable() const
-  { return true; }
-
-  void
-  do_export(Export*) const;
-
-  // The list of values.
-  Expression_list*
-  vals()
-  { return this->vals_; }
-
-  // Get a constructor tree for the array values.
-  tree
-  get_constructor_tree(Translate_context* context, tree type_tree);
-
- private:
-  // The type of the array to construct.
-  Type* type_;
-  // The list of values.
-  Expression_list* vals_;
-};
-
-// Traversal.
-
-int
-Array_construction_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Return whether this is a constant initializer.
-
-bool
-Array_construction_expression::is_constant_array() const
-{
-  if (this->vals_ == NULL)
-    return true;
-
-  // There are no constant constructors for interfaces.
-  if (this->type_->array_type()->element_type()->interface_type() != NULL)
-    return false;
-
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      if (*pv != NULL
-         && !(*pv)->is_constant()
-         && (!(*pv)->is_composite_literal()
-             || (*pv)->is_nonconstant_composite_literal()))
-       return false;
-    }
-  return true;
-}
-
-// Final type determination.
-
-void
-Array_construction_expression::do_determine_type(const Type_context*)
-{
-  if (this->vals_ == NULL)
-    return;
-  Type_context subcontext(this->type_->array_type()->element_type(), false);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      if (*pv != NULL)
-       (*pv)->determine_type(&subcontext);
-    }
-}
-
-// Check types.
-
-void
-Array_construction_expression::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Array_type* at = this->type_->array_type();
-  int i = 0;
-  Type* element_type = at->element_type();
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv, ++i)
-    {
-      if (*pv != NULL
-         && !Type::are_assignable(element_type, (*pv)->type(), NULL))
-       {
-         error_at((*pv)->location(),
-                  "incompatible type for element %d in composite literal",
-                  i + 1);
-         this->set_is_error();
-       }
-    }
-
-  Expression* length = at->length();
-  if (length != NULL)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* type;
-      if (at->length()->integer_constant_value(true, val, &type))
-       {
-         if (this->vals_->size() > mpz_get_ui(val))
-           this->report_error(_("too many elements in composite literal"));
-       }
-      mpz_clear(val);
-    }
-}
-
-// Get a constructor tree for the array values.
-
-tree
-Array_construction_expression::get_constructor_tree(Translate_context* context,
-                                                   tree type_tree)
-{
-  VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
-                                             (this->vals_ == NULL
-                                              ? 0
-                                              : this->vals_->size()));
-  Type* element_type = this->type_->array_type()->element_type();
-  bool is_constant = true;
-  if (this->vals_ != NULL)
-    {
-      size_t i = 0;
-      for (Expression_list::const_iterator pv = this->vals_->begin();
-          pv != this->vals_->end();
-          ++pv, ++i)
-       {
-         constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
-         elt->index = size_int(i);
-         if (*pv == NULL)
-           elt->value = element_type->get_init_tree(context->gogo(), false);
-         else
-           {
-             tree value_tree = (*pv)->get_tree(context);
-             elt->value = Expression::convert_for_assignment(context,
-                                                             element_type,
-                                                             (*pv)->type(),
-                                                             value_tree,
-                                                             this->location());
-           }
-         if (elt->value == error_mark_node)
-           return error_mark_node;
-         if (!TREE_CONSTANT(elt->value))
-           is_constant = false;
-       }
-    }
-
-  tree ret = build_constructor(type_tree, values);
-  if (is_constant)
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Export an array construction.
-
-void
-Array_construction_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  if (this->vals_ != NULL)
-    {
-      for (Expression_list::const_iterator pv = this->vals_->begin();
-          pv != this->vals_->end();
-          ++pv)
-       {
-         exp->write_c_string(", ");
-         if (*pv != NULL)
-           (*pv)->export_expression(exp);
-       }
-    }
-  exp->write_c_string(")");
-}
-
-// Construct a fixed array.
-
-class Fixed_array_construction_expression :
-  public Array_construction_expression
-{
- public:
-  Fixed_array_construction_expression(Type* type, Expression_list* vals,
-                                     source_location location)
-    : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
-                                   type, vals, location)
-  {
-    gcc_assert(type->array_type() != NULL
-              && type->array_type()->length() != NULL);
-  }
-
- protected:
-  Expression*
-  do_copy()
-  {
-    return new Fixed_array_construction_expression(this->type(),
-                                                  (this->vals() == NULL
-                                                   ? NULL
-                                                   : this->vals()->copy()),
-                                                  this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-};
-
-// Return a tree for constructing a fixed array.
-
-tree
-Fixed_array_construction_expression::do_get_tree(Translate_context* context)
-{
-  return this->get_constructor_tree(context,
-                                   this->type()->get_tree(context->gogo()));
-}
-
-// Construct an open array.
-
-class Open_array_construction_expression : public Array_construction_expression
-{
- public:
-  Open_array_construction_expression(Type* type, Expression_list* vals,
-                                    source_location location)
-    : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
-                                   type, vals, location)
-  {
-    gcc_assert(type->array_type() != NULL
-              && type->array_type()->length() == NULL);
-  }
-
- protected:
-  // Note that taking the address of an open array literal is invalid.
-
-  Expression*
-  do_copy()
-  {
-    return new Open_array_construction_expression(this->type(),
-                                                 (this->vals() == NULL
-                                                  ? NULL
-                                                  : this->vals()->copy()),
-                                                 this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-};
-
-// Return a tree for constructing an open array.
-
-tree
-Open_array_construction_expression::do_get_tree(Translate_context* context)
-{
-  Array_type* array_type = this->type()->array_type();
-  if (array_type == NULL)
-    {
-      gcc_assert(this->type()->is_error_type());
-      return error_mark_node;
-    }
-
-  Type* element_type = array_type->element_type();
-  tree element_type_tree = element_type->get_tree(context->gogo());
-  if (element_type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree values;
-  tree length_tree;
-  if (this->vals() == NULL || this->vals()->empty())
-    {
-      // We need to create a unique value.
-      tree max = size_int(0);
-      tree constructor_type = build_array_type(element_type_tree,
-                                              build_index_type(max));
-      if (constructor_type == error_mark_node)
-       return error_mark_node;
-      VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
-      constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
-      elt->index = size_int(0);
-      elt->value = element_type->get_init_tree(context->gogo(), false);
-      values = build_constructor(constructor_type, vec);
-      if (TREE_CONSTANT(elt->value))
-       TREE_CONSTANT(values) = 1;
-      length_tree = size_int(0);
-    }
-  else
-    {
-      tree max = size_int(this->vals()->size() - 1);
-      tree constructor_type = build_array_type(element_type_tree,
-                                              build_index_type(max));
-      if (constructor_type == error_mark_node)
-       return error_mark_node;
-      values = this->get_constructor_tree(context, constructor_type);
-      length_tree = size_int(this->vals()->size());
-    }
-
-  if (values == error_mark_node)
-    return error_mark_node;
-
-  bool is_constant_initializer = TREE_CONSTANT(values);
-
-  // We have to copy the initial values into heap memory if we are in
-  // a function or if the values are not constants.  We also have to
-  // copy them if they may contain pointers in a non-constant context,
-  // as otherwise the garbage collector won't see them.
-  bool copy_to_heap = (context->function() != NULL
-                      || !is_constant_initializer
-                      || (element_type->has_pointer()
-                          && !context->is_const()));
-
-  if (is_constant_initializer)
-    {
-      tree tmp = build_decl(this->location(), VAR_DECL,
-                           create_tmp_var_name("C"), TREE_TYPE(values));
-      DECL_EXTERNAL(tmp) = 0;
-      TREE_PUBLIC(tmp) = 0;
-      TREE_STATIC(tmp) = 1;
-      DECL_ARTIFICIAL(tmp) = 1;
-      if (copy_to_heap)
-       {
-         // If we are not copying the value to the heap, we will only
-         // initialize the value once, so we can use this directly
-         // rather than copying it.  In that case we can't make it
-         // read-only, because the program is permitted to change it.
-         TREE_READONLY(tmp) = 1;
-         TREE_CONSTANT(tmp) = 1;
-       }
-      DECL_INITIAL(tmp) = values;
-      rest_of_decl_compilation(tmp, 1, 0);
-      values = tmp;
-    }
-
-  tree space;
-  tree set;
-  if (!copy_to_heap)
-    {
-      // the initializer will only run once.
-      space = build_fold_addr_expr(values);
-      set = NULL_TREE;
-    }
-  else
-    {
-      tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
-      space = context->gogo()->allocate_memory(element_type, memsize,
-                                              this->location());
-      space = save_expr(space);
-
-      tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
-      tree ref = build_fold_indirect_ref_loc(this->location(), s);
-      TREE_THIS_NOTRAP(ref) = 1;
-      set = build2(MODIFY_EXPR, void_type_node, ref, values);
-    }
-
-  // Build a constructor for the open array.
-
-  tree type_tree = this->type()->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-  gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(type_tree);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), space);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), length_tree);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), length_tree);
-
-  tree constructor = build_constructor(type_tree, init);
-  if (constructor == error_mark_node)
-    return error_mark_node;
-  if (!copy_to_heap)
-    TREE_CONSTANT(constructor) = 1;
-
-  if (set == NULL_TREE)
-    return constructor;
-  else
-    return build2(COMPOUND_EXPR, type_tree, set, constructor);
-}
-
-// Make a slice composite literal.  This is used by the type
-// descriptor code.
-
-Expression*
-Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
-                                        source_location location)
-{
-  gcc_assert(type->is_open_array_type());
-  return new Open_array_construction_expression(type, vals, location);
-}
-
-// Construct a map.
-
-class Map_construction_expression : public Expression
-{
- public:
-  Map_construction_expression(Type* type, Expression_list* vals,
-                             source_location location)
-    : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
-      type_(type), vals_(vals)
-  { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Type*
-  do_type()
-  { return this->type_; }
-
-  void
-  do_determine_type(const Type_context*);
-
-  void
-  do_check_types(Gogo*);
-
-  Expression*
-  do_copy()
-  {
-    return new Map_construction_expression(this->type_, this->vals_->copy(),
-                                          this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  void
-  do_export(Export*) const;
-
- private:
-  // The type of the map to construct.
-  Type* type_;
-  // The list of values.
-  Expression_list* vals_;
-};
-
-// Traversal.
-
-int
-Map_construction_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Final type determination.
-
-void
-Map_construction_expression::do_determine_type(const Type_context*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Map_type* mt = this->type_->map_type();
-  Type_context key_context(mt->key_type(), false);
-  Type_context val_context(mt->val_type(), false);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      (*pv)->determine_type(&key_context);
-      ++pv;
-      (*pv)->determine_type(&val_context);
-    }
-}
-
-// Check types.
-
-void
-Map_construction_expression::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  Map_type* mt = this->type_->map_type();
-  int i = 0;
-  Type* key_type = mt->key_type();
-  Type* val_type = mt->val_type();
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv, ++i)
-    {
-      if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
-       {
-         error_at((*pv)->location(),
-                  "incompatible type for element %d key in map construction",
-                  i + 1);
-         this->set_is_error();
-       }
-      ++pv;
-      if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
-       {
-         error_at((*pv)->location(),
-                  ("incompatible type for element %d value "
-                   "in map construction"),
-                  i + 1);
-         this->set_is_error();
-       }
-    }
-}
-
-// Return a tree for constructing a map.
-
-tree
-Map_construction_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  source_location loc = this->location();
-
-  Map_type* mt = this->type_->map_type();
-
-  // Build a struct to hold the key and value.
-  tree struct_type = make_node(RECORD_TYPE);
-
-  Type* key_type = mt->key_type();
-  tree id = get_identifier("__key");
-  tree key_type_tree = key_type->get_tree(gogo);
-  if (key_type_tree == error_mark_node)
-    return error_mark_node;
-  tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
-  DECL_CONTEXT(key_field) = struct_type;
-  TYPE_FIELDS(struct_type) = key_field;
-
-  Type* val_type = mt->val_type();
-  id = get_identifier("__val");
-  tree val_type_tree = val_type->get_tree(gogo);
-  if (val_type_tree == error_mark_node)
-    return error_mark_node;
-  tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
-  DECL_CONTEXT(val_field) = struct_type;
-  DECL_CHAIN(key_field) = val_field;
-
-  layout_type(struct_type);
-
-  bool is_constant = true;
-  size_t i = 0;
-  tree valaddr;
-  tree make_tmp;
-
-  if (this->vals_ == NULL || this->vals_->empty())
-    {
-      valaddr = null_pointer_node;
-      make_tmp = NULL_TREE;
-    }
-  else
-    {
-      VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
-                                                 this->vals_->size() / 2);
-
-      for (Expression_list::const_iterator pv = this->vals_->begin();
-          pv != this->vals_->end();
-          ++pv, ++i)
-       {
-         bool one_is_constant = true;
-
-         VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
-
-         constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
-         elt->index = key_field;
-         tree val_tree = (*pv)->get_tree(context);
-         elt->value = Expression::convert_for_assignment(context, key_type,
-                                                         (*pv)->type(),
-                                                         val_tree, loc);
-         if (elt->value == error_mark_node)
-           return error_mark_node;
-         if (!TREE_CONSTANT(elt->value))
-           one_is_constant = false;
-
-         ++pv;
-
-         elt = VEC_quick_push(constructor_elt, one, NULL);
-         elt->index = val_field;
-         val_tree = (*pv)->get_tree(context);
-         elt->value = Expression::convert_for_assignment(context, val_type,
-                                                         (*pv)->type(),
-                                                         val_tree, loc);
-         if (elt->value == error_mark_node)
-           return error_mark_node;
-         if (!TREE_CONSTANT(elt->value))
-           one_is_constant = false;
-
-         elt = VEC_quick_push(constructor_elt, values, NULL);
-         elt->index = size_int(i);
-         elt->value = build_constructor(struct_type, one);
-         if (one_is_constant)
-           TREE_CONSTANT(elt->value) = 1;
-         else
-           is_constant = false;
-       }
-
-      tree index_type = build_index_type(size_int(i - 1));
-      tree array_type = build_array_type(struct_type, index_type);
-      tree init = build_constructor(array_type, values);
-      if (is_constant)
-       TREE_CONSTANT(init) = 1;
-      tree tmp;
-      if (current_function_decl != NULL)
-       {
-         tmp = create_tmp_var(array_type, get_name(array_type));
-         DECL_INITIAL(tmp) = init;
-         make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
-         TREE_ADDRESSABLE(tmp) = 1;
-       }
-      else
-       {
-         tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
-         DECL_EXTERNAL(tmp) = 0;
-         TREE_PUBLIC(tmp) = 0;
-         TREE_STATIC(tmp) = 1;
-         DECL_ARTIFICIAL(tmp) = 1;
-         if (!TREE_CONSTANT(init))
-           make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
-                                      init);
-         else
-           {
-             TREE_READONLY(tmp) = 1;
-             TREE_CONSTANT(tmp) = 1;
-             DECL_INITIAL(tmp) = init;
-             make_tmp = NULL_TREE;
-           }
-         rest_of_decl_compilation(tmp, 1, 0);
-       }
-
-      valaddr = build_fold_addr_expr(tmp);
-    }
-
-  tree descriptor = gogo->map_descriptor(mt);
-
-  tree type_tree = this->type_->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  static tree construct_map_fndecl;
-  tree call = Gogo::call_builtin(&construct_map_fndecl,
-                                loc,
-                                "__go_construct_map",
-                                6,
-                                type_tree,
-                                TREE_TYPE(descriptor),
-                                descriptor,
-                                sizetype,
-                                size_int(i),
-                                sizetype,
-                                TYPE_SIZE_UNIT(struct_type),
-                                sizetype,
-                                byte_position(val_field),
-                                sizetype,
-                                TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
-                                const_ptr_type_node,
-                                fold_convert(const_ptr_type_node, valaddr));
-  if (call == error_mark_node)
-    return error_mark_node;
-
-  tree ret;
-  if (make_tmp == NULL)
-    ret = call;
-  else
-    ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
-  return ret;
-}
-
-// Export an array construction.
-
-void
-Map_construction_expression::do_export(Export* exp) const
-{
-  exp->write_c_string("convert(");
-  exp->write_type(this->type_);
-  for (Expression_list::const_iterator pv = this->vals_->begin();
-       pv != this->vals_->end();
-       ++pv)
-    {
-      exp->write_c_string(", ");
-      (*pv)->export_expression(exp);
-    }
-  exp->write_c_string(")");
-}
-
-// A general composite literal.  This is lowered to a type specific
-// version.
-
-class Composite_literal_expression : public Parser_expression
-{
- public:
-  Composite_literal_expression(Type* type, int depth, bool has_keys,
-                              Expression_list* vals, source_location location)
-    : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
-      type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  Expression*
-  do_lower(Gogo*, Named_object*, int);
-
-  Expression*
-  do_copy()
-  {
-    return new Composite_literal_expression(this->type_, this->depth_,
-                                           this->has_keys_,
-                                           (this->vals_ == NULL
-                                            ? NULL
-                                            : this->vals_->copy()),
-                                           this->location());
-  }
-
- private:
-  Expression*
-  lower_struct(Gogo*, Type*);
-
-  Expression*
-  lower_array(Type*);
-
-  Expression*
-  make_array(Type*, Expression_list*);
-
-  Expression*
-  lower_map(Gogo*, Named_object*, Type*);
-
-  // The type of the composite literal.
-  Type* type_;
-  // The depth within a list of composite literals within a composite
-  // literal, when the type is omitted.
-  int depth_;
-  // The values to put in the composite literal.
-  Expression_list* vals_;
-  // If this is true, then VALS_ is a list of pairs: a key and a
-  // value.  In an array initializer, a missing key will be NULL.
-  bool has_keys_;
-};
-
-// Traversal.
-
-int
-Composite_literal_expression::do_traverse(Traverse* traverse)
-{
-  if (this->vals_ != NULL
-      && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return Type::traverse(this->type_, traverse);
-}
-
-// Lower a generic composite literal into a specific version based on
-// the type.
-
-Expression*
-Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
-{
-  Type* type = this->type_;
-
-  for (int depth = this->depth_; depth > 0; --depth)
-    {
-      if (type->array_type() != NULL)
-       type = type->array_type()->element_type();
-      else if (type->map_type() != NULL)
-       type = type->map_type()->val_type();
-      else
-       {
-         if (!type->is_error_type())
-           error_at(this->location(),
-                    ("may only omit types within composite literals "
-                     "of slice, array, or map type"));
-         return Expression::make_error(this->location());
-       }
-    }
-
-  if (type->is_error_type())
-    return Expression::make_error(this->location());
-  else if (type->struct_type() != NULL)
-    return this->lower_struct(gogo, type);
-  else if (type->array_type() != NULL)
-    return this->lower_array(type);
-  else if (type->map_type() != NULL)
-    return this->lower_map(gogo, function, type);
-  else
-    {
-      error_at(this->location(),
-              ("expected struct, slice, array, or map type "
-               "for composite literal"));
-      return Expression::make_error(this->location());
-    }
-}
-
-// Lower a struct composite literal.
-
-Expression*
-Composite_literal_expression::lower_struct(Gogo* gogo, Type* type)
-{
-  source_location location = this->location();
-  Struct_type* st = type->struct_type();
-  if (this->vals_ == NULL || !this->has_keys_)
-    return new Struct_construction_expression(type, this->vals_, location);
-
-  size_t field_count = st->field_count();
-  std::vector<Expression*> vals(field_count);
-  Expression_list::const_iterator p = this->vals_->begin();
-  while (p != this->vals_->end())
-    {
-      Expression* name_expr = *p;
-
-      ++p;
-      gcc_assert(p != this->vals_->end());
-      Expression* val = *p;
-
-      ++p;
-
-      if (name_expr == NULL)
-       {
-         error_at(val->location(), "mixture of field and value initializers");
-         return Expression::make_error(location);
-       }
-
-      bool bad_key = false;
-      std::string name;
-      const Named_object* no = NULL;
-      switch (name_expr->classification())
-       {
-       case EXPRESSION_UNKNOWN_REFERENCE:
-         name = name_expr->unknown_expression()->name();
-         break;
-
-       case EXPRESSION_CONST_REFERENCE:
-         no = static_cast<Const_expression*>(name_expr)->named_object();
-         break;
-
-       case EXPRESSION_TYPE:
-         {
-           Type* t = name_expr->type();
-           Named_type* nt = t->named_type();
-           if (nt == NULL)
-             bad_key = true;
-           else
-             no = nt->named_object();
-         }
-         break;
-
-       case EXPRESSION_VAR_REFERENCE:
-         no = name_expr->var_expression()->named_object();
-         break;
-
-       case EXPRESSION_FUNC_REFERENCE:
-         no = name_expr->func_expression()->named_object();
-         break;
-
-       case EXPRESSION_UNARY:
-         // If there is a local variable around with the same name as
-         // the field, and this occurs in the closure, then the
-         // parser may turn the field reference into an indirection
-         // through the closure.  FIXME: This is a mess.
-         {
-           bad_key = true;
-           Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
-           if (ue->op() == OPERATOR_MULT)
-             {
-               Field_reference_expression* fre =
-                 ue->operand()->field_reference_expression();
-               if (fre != NULL)
-                 {
-                   Struct_type* st =
-                     fre->expr()->type()->deref()->struct_type();
-                   if (st != NULL)
-                     {
-                       const Struct_field* sf = st->field(fre->field_index());
-                       name = sf->field_name();
-                       char buf[20];
-                       snprintf(buf, sizeof buf, "%u", fre->field_index());
-                       size_t buflen = strlen(buf);
-                       if (name.compare(name.length() - buflen, buflen, buf)
-                           == 0)
-                         {
-                           name = name.substr(0, name.length() - buflen);
-                           bad_key = false;
-                         }
-                     }
-                 }
-             }
-         }
-         break;
-
-       default:
-         bad_key = true;
-         break;
-       }
-      if (bad_key)
-       {
-         error_at(name_expr->location(), "expected struct field name");
-         return Expression::make_error(location);
-       }
-
-      if (no != NULL)
-       {
-         name = no->name();
-
-         // A predefined name won't be packed.  If it starts with a
-         // lower case letter we need to check for that case, because
-         // the field name will be packed.
-         if (!Gogo::is_hidden_name(name)
-             && name[0] >= 'a'
-             && name[0] <= 'z')
-           {
-             Named_object* gno = gogo->lookup_global(name.c_str());
-             if (gno == no)
-               name = gogo->pack_hidden_name(name, false);
-           }
-       }
-
-      unsigned int index;
-      const Struct_field* sf = st->find_local_field(name, &index);
-      if (sf == NULL)
-       {
-         error_at(name_expr->location(), "unknown field %qs in %qs",
-                  Gogo::message_name(name).c_str(),
-                  (type->named_type() != NULL
-                   ? type->named_type()->message_name().c_str()
-                   : "unnamed struct"));
-         return Expression::make_error(location);
-       }
-      if (vals[index] != NULL)
-       {
-         error_at(name_expr->location(),
-                  "duplicate value for field %qs in %qs",
-                  Gogo::message_name(name).c_str(),
-                  (type->named_type() != NULL
-                   ? type->named_type()->message_name().c_str()
-                   : "unnamed struct"));
-         return Expression::make_error(location);
-       }
-
-      vals[index] = val;
-    }
-
-  Expression_list* list = new Expression_list;
-  list->reserve(field_count);
-  for (size_t i = 0; i < field_count; ++i)
-    list->push_back(vals[i]);
-
-  return new Struct_construction_expression(type, list, location);
-}
-
-// Lower an array composite literal.
-
-Expression*
-Composite_literal_expression::lower_array(Type* type)
-{
-  source_location location = this->location();
-  if (this->vals_ == NULL || !this->has_keys_)
-    return this->make_array(type, this->vals_);
-
-  std::vector<Expression*> vals;
-  vals.reserve(this->vals_->size());
-  unsigned long index = 0;
-  Expression_list::const_iterator p = this->vals_->begin();
-  while (p != this->vals_->end())
-    {
-      Expression* index_expr = *p;
-
-      ++p;
-      gcc_assert(p != this->vals_->end());
-      Expression* val = *p;
-
-      ++p;
-
-      if (index_expr != NULL)
-       {
-         mpz_t ival;
-         mpz_init(ival);
-
-         Type* dummy;
-         if (!index_expr->integer_constant_value(true, ival, &dummy))
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(),
-                      "index expression is not integer constant");
-             return Expression::make_error(location);
-           }
-
-         if (mpz_sgn(ival) < 0)
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(), "index expression is negative");
-             return Expression::make_error(location);
-           }
-
-         index = mpz_get_ui(ival);
-         if (mpz_cmp_ui(ival, index) != 0)
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(), "index value overflow");
-             return Expression::make_error(location);
-           }
-
-         Named_type* ntype = Type::lookup_integer_type("int");
-         Integer_type* inttype = ntype->integer_type();
-         mpz_t max;
-         mpz_init_set_ui(max, 1);
-         mpz_mul_2exp(max, max, inttype->bits() - 1);
-         bool ok = mpz_cmp(ival, max) < 0;
-         mpz_clear(max);
-         if (!ok)
-           {
-             mpz_clear(ival);
-             error_at(index_expr->location(), "index value overflow");
-             return Expression::make_error(location);
-           }
-
-         mpz_clear(ival);
-
-         // FIXME: Our representation isn't very good; this avoids
-         // thrashing.
-         if (index > 0x1000000)
-           {
-             error_at(index_expr->location(), "index too large for compiler");
-             return Expression::make_error(location);
-           }
-       }
-
-      if (index == vals.size())
-       vals.push_back(val);
-      else
-       {
-         if (index > vals.size())
-           {
-             vals.reserve(index + 32);
-             vals.resize(index + 1, static_cast<Expression*>(NULL));
-           }
-         if (vals[index] != NULL)
-           {
-             error_at((index_expr != NULL
-                       ? index_expr->location()
-                       : val->location()),
-                      "duplicate value for index %lu",
-                      index);
-             return Expression::make_error(location);
-           }
-         vals[index] = val;
-       }
-
-      ++index;
-    }
-
-  size_t size = vals.size();
-  Expression_list* list = new Expression_list;
-  list->reserve(size);
-  for (size_t i = 0; i < size; ++i)
-    list->push_back(vals[i]);
-
-  return this->make_array(type, list);
-}
-
-// Actually build the array composite literal. This handles
-// [...]{...}.
-
-Expression*
-Composite_literal_expression::make_array(Type* type, Expression_list* vals)
-{
-  source_location location = this->location();
-  Array_type* at = type->array_type();
-  if (at->length() != NULL && at->length()->is_nil_expression())
-    {
-      size_t size = vals == NULL ? 0 : vals->size();
-      mpz_t vlen;
-      mpz_init_set_ui(vlen, size);
-      Expression* elen = Expression::make_integer(&vlen, NULL, location);
-      mpz_clear(vlen);
-      at = Type::make_array_type(at->element_type(), elen);
-      type = at;
-    }
-  if (at->length() != NULL)
-    return new Fixed_array_construction_expression(type, vals, location);
-  else
-    return new Open_array_construction_expression(type, vals, location);
-}
-
-// Lower a map composite literal.
-
-Expression*
-Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
-                                       Type* type)
-{
-  source_location location = this->location();
-  if (this->vals_ != NULL)
-    {
-      if (!this->has_keys_)
-       {
-         error_at(location, "map composite literal must have keys");
-         return Expression::make_error(location);
-       }
-
-      for (Expression_list::iterator p = this->vals_->begin();
-          p != this->vals_->end();
-          p += 2)
-       {
-         if (*p == NULL)
-           {
-             ++p;
-             error_at((*p)->location(),
-                      "map composite literal must have keys for every value");
-             return Expression::make_error(location);
-           }
-         // Make sure we have lowered the key; it may not have been
-         // lowered in order to handle keys for struct composite
-         // literals.  Lower it now to get the right error message.
-         if ((*p)->unknown_expression() != NULL)
-           {
-             (*p)->unknown_expression()->clear_is_composite_literal_key();
-             gogo->lower_expression(function, &*p);
-             gcc_assert((*p)->is_error_expression());
-             return Expression::make_error(location);
-           }
-       }
-    }
-
-  return new Map_construction_expression(type, this->vals_, location);
-}
-
-// Make a composite literal expression.
-
-Expression*
-Expression::make_composite_literal(Type* type, int depth, bool has_keys,
-                                  Expression_list* vals,
-                                  source_location location)
-{
-  return new Composite_literal_expression(type, depth, has_keys, vals,
-                                         location);
-}
-
-// Return whether this expression is a composite literal.
-
-bool
-Expression::is_composite_literal() const
-{
-  switch (this->classification_)
-    {
-    case EXPRESSION_COMPOSITE_LITERAL:
-    case EXPRESSION_STRUCT_CONSTRUCTION:
-    case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
-    case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
-    case EXPRESSION_MAP_CONSTRUCTION:
-      return true;
-    default:
-      return false;
-    }
-}
-
-// Return whether this expression is a composite literal which is not
-// constant.
-
-bool
-Expression::is_nonconstant_composite_literal() const
-{
-  switch (this->classification_)
-    {
-    case EXPRESSION_STRUCT_CONSTRUCTION:
-      {
-       const Struct_construction_expression *psce =
-         static_cast<const Struct_construction_expression*>(this);
-       return !psce->is_constant_struct();
-      }
-    case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
-      {
-       const Fixed_array_construction_expression *pace =
-         static_cast<const Fixed_array_construction_expression*>(this);
-       return !pace->is_constant_array();
-      }
-    case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
-      {
-       const Open_array_construction_expression *pace =
-         static_cast<const Open_array_construction_expression*>(this);
-       return !pace->is_constant_array();
-      }
-    case EXPRESSION_MAP_CONSTRUCTION:
-      return true;
-    default:
-      return false;
-    }
-}
-
-// Return true if this is a reference to a local variable.
-
-bool
-Expression::is_local_variable() const
-{
-  const Var_expression* ve = this->var_expression();
-  if (ve == NULL)
-    return false;
-  const Named_object* no = ve->named_object();
-  return (no->is_result_variable()
-         || (no->is_variable() && !no->var_value()->is_global()));
-}
-
-// Class Type_guard_expression.
-
-// Traversal.
-
-int
-Type_guard_expression::do_traverse(Traverse* traverse)
-{
-  if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
-      || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Check types of a type guard expression.  The expression must have
-// an interface type, but the actual type conversion is checked at run
-// time.
-
-void
-Type_guard_expression::do_check_types(Gogo*)
-{
-  // 6g permits using a type guard with unsafe.pointer; we are
-  // compatible.
-  Type* expr_type = this->expr_->type();
-  if (expr_type->is_unsafe_pointer_type())
-    {
-      if (this->type_->points_to() == NULL
-         && (this->type_->integer_type() == NULL
-             || (this->type_->forwarded()
-                 != Type::lookup_integer_type("uintptr"))))
-       this->report_error(_("invalid unsafe.Pointer conversion"));
-    }
-  else if (this->type_->is_unsafe_pointer_type())
-    {
-      if (expr_type->points_to() == NULL
-         && (expr_type->integer_type() == NULL
-             || (expr_type->forwarded()
-                 != Type::lookup_integer_type("uintptr"))))
-       this->report_error(_("invalid unsafe.Pointer conversion"));
-    }
-  else if (expr_type->interface_type() == NULL)
-    {
-      if (!expr_type->is_error_type() && !this->type_->is_error_type())
-       this->report_error(_("type assertion only valid for interface types"));
-      this->set_is_error();
-    }
-  else if (this->type_->interface_type() == NULL)
-    {
-      std::string reason;
-      if (!expr_type->interface_type()->implements_interface(this->type_,
-                                                            &reason))
-       {
-         if (!this->type_->is_error_type())
-           {
-             if (reason.empty())
-               this->report_error(_("impossible type assertion: "
-                                    "type does not implement interface"));
-             else
-               error_at(this->location(),
-                        ("impossible type assertion: "
-                         "type does not implement interface (%s)"),
-                        reason.c_str());
-           }
-         this->set_is_error();
-       }
-    }
-}
-
-// Return a tree for a type guard expression.
-
-tree
-Type_guard_expression::do_get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  tree expr_tree = this->expr_->get_tree(context);
-  if (expr_tree == error_mark_node)
-    return error_mark_node;
-  Type* expr_type = this->expr_->type();
-  if ((this->type_->is_unsafe_pointer_type()
-       && (expr_type->points_to() != NULL
-          || expr_type->integer_type() != NULL))
-      || (expr_type->is_unsafe_pointer_type()
-         && this->type_->points_to() != NULL))
-    return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
-  else if (expr_type->is_unsafe_pointer_type()
-          && this->type_->integer_type() != NULL)
-    return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
-  else if (this->type_->interface_type() != NULL)
-    return Expression::convert_interface_to_interface(context, this->type_,
-                                                     this->expr_->type(),
-                                                     expr_tree, true,
-                                                     this->location());
-  else
-    return Expression::convert_for_assignment(context, this->type_,
-                                             this->expr_->type(), expr_tree,
-                                             this->location());
-}
-
-// Make a type guard expression.
-
-Expression*
-Expression::make_type_guard(Expression* expr, Type* type,
-                           source_location location)
-{
-  return new Type_guard_expression(expr, type, location);
-}
-
-// Class Heap_composite_expression.
-
-// When you take the address of a composite literal, it is allocated
-// on the heap.  This class implements that.
-
-class Heap_composite_expression : public Expression
-{
- public:
-  Heap_composite_expression(Expression* expr, source_location location)
-    : Expression(EXPRESSION_HEAP_COMPOSITE, location),
-      expr_(expr)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return Expression::traverse(&this->expr_, traverse); }
-
-  Type*
-  do_type()
-  { return Type::make_pointer_type(this->expr_->type()); }
-
-  void
-  do_determine_type(const Type_context*)
-  { this->expr_->determine_type_no_context(); }
-
-  Expression*
-  do_copy()
-  {
-    return Expression::make_heap_composite(this->expr_->copy(),
-                                          this->location());
-  }
-
-  tree
-  do_get_tree(Translate_context*);
-
-  // We only export global objects, and the parser does not generate
-  // this in global scope.
-  void
-  do_export(Export*) const
-  { gcc_unreachable(); }
-
- private:
-  // The composite literal which is being put on the heap.
-  Expression* expr_;
-};
-
-// Return a tree which allocates a composite literal on the heap.
-
-tree
-Heap_composite_expression::do_get_tree(Translate_context* context)
-{
-  tree expr_tree = this->expr_->get_tree(context);
-  if (expr_tree == error_mark_node)
-    return error_mark_node;
-  tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
-  gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
-  tree space = context->gogo()->allocate_memory(this->expr_->type(),
-                                               expr_size, this->location());
-  space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
-  space = save_expr(space);
-  tree ref = build_fold_indirect_ref_loc(this->location(), space);
-  TREE_THIS_NOTRAP(ref) = 1;
-  tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
-                   build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
-                   space);
-  SET_EXPR_LOCATION(ret, this->location());
-  return ret;
-}
-
-// Allocate a composite literal on the heap.
-
-Expression*
-Expression::make_heap_composite(Expression* expr, source_location location)
-{
-  return new Heap_composite_expression(expr, location);
-}
-
-// Class Receive_expression.
-
-// Return the type of a receive expression.
-
-Type*
-Receive_expression::do_type()
-{
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  if (channel_type == NULL)
-    return Type::make_error_type();
-  return channel_type->element_type();
-}
-
-// Check types for a receive expression.
-
-void
-Receive_expression::do_check_types(Gogo*)
-{
-  Type* type = this->channel_->type();
-  if (type->is_error_type())
-    {
-      this->set_is_error();
-      return;
-    }
-  if (type->channel_type() == NULL)
-    {
-      this->report_error(_("expected channel"));
-      return;
-    }
-  if (!type->channel_type()->may_receive())
-    {
-      this->report_error(_("invalid receive on send-only channel"));
-      return;
-    }
-}
-
-// Get a tree for a receive expression.
-
-tree
-Receive_expression::do_get_tree(Translate_context* context)
-{
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  if (channel_type == NULL)
-    {
-      gcc_assert(this->channel_->type()->is_error_type());
-      return error_mark_node;
-    }
-  Type* element_type = channel_type->element_type();
-  tree element_type_tree = element_type->get_tree(context->gogo());
-
-  tree channel = this->channel_->get_tree(context);
-  if (element_type_tree == error_mark_node || channel == error_mark_node)
-    return error_mark_node;
-
-  return Gogo::receive_from_channel(element_type_tree, channel,
-                                   this->for_select_, this->location());
-}
-
-// Make a receive expression.
-
-Receive_expression*
-Expression::make_receive(Expression* channel, source_location location)
-{
-  return new Receive_expression(channel, location);
-}
-
-// An expression which evaluates to a pointer to the type descriptor
-// of a type.
-
-class Type_descriptor_expression : public Expression
-{
- public:
-  Type_descriptor_expression(Type* type, source_location location)
-    : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
-      type_(type)
-  { }
-
- protected:
-  Type*
-  do_type()
-  { return Type::make_type_descriptor_ptr_type(); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context)
-  { return this->type_->type_descriptor_pointer(context->gogo()); }
-
- private:
-  // The type for which this is the descriptor.
-  Type* type_;
-};
-
-// Make a type descriptor expression.
-
-Expression*
-Expression::make_type_descriptor(Type* type, source_location location)
-{
-  return new Type_descriptor_expression(type, location);
-}
-
-// An expression which evaluates to some characteristic of a type.
-// This is only used to initialize fields of a type descriptor.  Using
-// a new expression class is slightly inefficient but gives us a good
-// separation between the frontend and the middle-end with regard to
-// how types are laid out.
-
-class Type_info_expression : public Expression
-{
- public:
-  Type_info_expression(Type* type, Type_info type_info)
-    : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
-      type_(type), type_info_(type_info)
-  { }
-
- protected:
-  Type*
-  do_type();
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context);
-
- private:
-  // The type for which we are getting information.
-  Type* type_;
-  // What information we want.
-  Type_info type_info_;
-};
-
-// The type is chosen to match what the type descriptor struct
-// expects.
-
-Type*
-Type_info_expression::do_type()
-{
-  switch (this->type_info_)
-    {
-    case TYPE_INFO_SIZE:
-      return Type::lookup_integer_type("uintptr");
-    case TYPE_INFO_ALIGNMENT:
-    case TYPE_INFO_FIELD_ALIGNMENT:
-      return Type::lookup_integer_type("uint8");
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return type information in GENERIC.
-
-tree
-Type_info_expression::do_get_tree(Translate_context* context)
-{
-  tree type_tree = this->type_->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree val_type_tree = this->type()->get_tree(context->gogo());
-  gcc_assert(val_type_tree != error_mark_node);
-
-  if (this->type_info_ == TYPE_INFO_SIZE)
-    return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
-                           TYPE_SIZE_UNIT(type_tree));
-  else
-    {
-      unsigned int val;
-      if (this->type_info_ == TYPE_INFO_ALIGNMENT)
-       val = go_type_alignment(type_tree);
-      else
-       val = go_field_alignment(type_tree);
-      return build_int_cstu(val_type_tree, val);
-    }
-}
-
-// Make a type info expression.
-
-Expression*
-Expression::make_type_info(Type* type, Type_info type_info)
-{
-  return new Type_info_expression(type, type_info);
-}
-
-// An expression which evaluates to the offset of a field within a
-// struct.  This, like Type_info_expression, q.v., is only used to
-// initialize fields of a type descriptor.
-
-class Struct_field_offset_expression : public Expression
-{
- public:
-  Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
-    : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
-      type_(type), field_(field)
-  { }
-
- protected:
-  Type*
-  do_type()
-  { return Type::lookup_integer_type("uintptr"); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return this; }
-
-  tree
-  do_get_tree(Translate_context* context);
-
- private:
-  // The type of the struct.
-  Struct_type* type_;
-  // The field.
-  const Struct_field* field_;
-};
-
-// Return a struct field offset in GENERIC.
-
-tree
-Struct_field_offset_expression::do_get_tree(Translate_context* context)
-{
-  tree type_tree = this->type_->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree val_type_tree = this->type()->get_tree(context->gogo());
-  gcc_assert(val_type_tree != error_mark_node);
-
-  const Struct_field_list* fields = this->type_->fields();
-  tree struct_field_tree = TYPE_FIELDS(type_tree);
-  Struct_field_list::const_iterator p;
-  for (p = fields->begin();
-       p != fields->end();
-       ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
-    {
-      gcc_assert(struct_field_tree != NULL_TREE);
-      if (&*p == this->field_)
-       break;
-    }
-  gcc_assert(&*p == this->field_);
-
-  return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
-                         byte_position(struct_field_tree));
-}
-
-// Make an expression for a struct field offset.
-
-Expression*
-Expression::make_struct_field_offset(Struct_type* type,
-                                    const Struct_field* field)
-{
-  return new Struct_field_offset_expression(type, field);
-}
-
-// An expression which evaluates to the address of an unnamed label.
-
-class Label_addr_expression : public Expression
-{
- public:
-  Label_addr_expression(Label* label, source_location location)
-    : Expression(EXPRESSION_LABEL_ADDR, location),
-      label_(label)
-  { }
-
- protected:
-  Type*
-  do_type()
-  { return Type::make_pointer_type(Type::make_void_type()); }
-
-  void
-  do_determine_type(const Type_context*)
-  { }
-
-  Expression*
-  do_copy()
-  { return new Label_addr_expression(this->label_, this->location()); }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->label_->get_addr(this->location()); }
-
- private:
-  // The label whose address we are taking.
-  Label* label_;
-};
-
-// Make an expression for the address of an unnamed label.
-
-Expression*
-Expression::make_label_addr(Label* label, source_location location)
-{
-  return new Label_addr_expression(label, location);
-}
-
-// Import an expression.  This comes at the end in order to see the
-// various class definitions.
-
-Expression*
-Expression::import_expression(Import* imp)
-{
-  int c = imp->peek_char();
-  if (imp->match_c_string("- ")
-      || imp->match_c_string("! ")
-      || imp->match_c_string("^ "))
-    return Unary_expression::do_import(imp);
-  else if (c == '(')
-    return Binary_expression::do_import(imp);
-  else if (imp->match_c_string("true")
-          || imp->match_c_string("false"))
-    return Boolean_expression::do_import(imp);
-  else if (c == '"')
-    return String_expression::do_import(imp);
-  else if (c == '-' || (c >= '0' && c <= '9'))
-    {
-      // This handles integers, floats and complex constants.
-      return Integer_expression::do_import(imp);
-    }
-  else if (imp->match_c_string("nil"))
-    return Nil_expression::do_import(imp);
-  else if (imp->match_c_string("convert"))
-    return Type_conversion_expression::do_import(imp);
-  else
-    {
-      error_at(imp->location(), "import error: expected expression");
-      return Expression::make_error(imp->location());
-    }
-}
-
-// Class Expression_list.
-
-// Traverse the list.
-
-int
-Expression_list::traverse(Traverse* traverse)
-{
-  for (Expression_list::iterator p = this->begin();
-       p != this->end();
-       ++p)
-    {
-      if (*p != NULL)
-       {
-         if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Copy the list.
-
-Expression_list*
-Expression_list::copy()
-{
-  Expression_list* ret = new Expression_list();
-  for (Expression_list::iterator p = this->begin();
-       p != this->end();
-       ++p)
-    {
-      if (*p == NULL)
-       ret->push_back(NULL);
-      else
-       ret->push_back((*p)->copy());
-    }
-  return ret;
-}
-
-// Return whether an expression list has an error expression.
-
-bool
-Expression_list::contains_error() const
-{
-  for (Expression_list::const_iterator p = this->begin();
-       p != this->end();
-       ++p)
-    if (*p != NULL && (*p)->is_error_expression())
-      return true;
-  return false;
-}
diff --git a/gcc/go/gofrontend/go.cc.merge-left.r167407 b/gcc/go/gofrontend/go.cc.merge-left.r167407
deleted file mode 100644 (file)
index c756084..0000000
+++ /dev/null
@@ -1,153 +0,0 @@
-// go.cc -- Go frontend main file for gcc.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "go-c.h"
-
-#include "lex.h"
-#include "parse.h"
-#include "gogo.h"
-
-// The unique prefix to use for exported symbols.  This is set during
-// option processing.
-
-static std::string unique_prefix;
-
-// The data structures we build to represent the file.
-static Gogo* gogo;
-
-// Create the main IR data structure.
-
-GO_EXTERN_C
-void
-go_create_gogo(int int_type_size, int float_type_size, int pointer_size)
-{
-  gcc_assert(::gogo == NULL);
-  ::gogo = new Gogo(int_type_size, float_type_size, pointer_size);
-  if (!unique_prefix.empty())
-    ::gogo->set_unique_prefix(unique_prefix);
-}
-
-// Set the unique prefix we use for exported symbols.
-
-GO_EXTERN_C
-void
-go_set_prefix(const char* arg)
-{
-  unique_prefix = arg;
-  for (size_t i = 0; i < unique_prefix.length(); ++i)
-    {
-      char c = unique_prefix[i];
-      if ((c >= 'a' && c <= 'z')
-         || (c >= 'A' && c <= 'Z')
-         || (c >= '0' && c <= '9')
-         || c == '_')
-       ;
-      else
-       unique_prefix[i] = '_';
-    }
-}
-
-// Parse the input files.
-
-GO_EXTERN_C
-void
-go_parse_input_files(const char** filenames, unsigned int filename_count,
-                    bool only_check_syntax, bool require_return_statement)
-{
-  gcc_assert(filename_count > 0);
-  for (unsigned int i = 0; i < filename_count; ++i)
-    {
-      if (i > 0)
-       ::gogo->clear_file_scope();
-
-      const char* filename = filenames[i];
-      FILE* file;
-      if (strcmp(filename, "-") == 0)
-       file = stdin;
-      else
-       {
-         file = fopen(filename, "r");
-         if (file == NULL)
-           fatal_error("cannot open %s: %m", filename);
-       }
-
-      Lex lexer(filename, file);
-
-      Parse parse(&lexer, ::gogo);
-      parse.program();
-
-      if (strcmp(filename, "-") != 0)
-       fclose(file);
-    }
-
-  ::gogo->clear_file_scope();
-
-  // If the global predeclared names are referenced but not defined,
-  // define them now.
-  ::gogo->define_global_names();
-
-  // Finalize method lists and build stub methods for named types.
-  ::gogo->finalize_methods();
-
-  // Now that we have seen all the names, lower the parse tree into a
-  // form which is easier to use.
-  ::gogo->lower_parse_tree();
-
-  // Now that we have seen all the names, verify that types are
-  // correct.
-  ::gogo->verify_types();
-
-  // Work out types of unspecified constants and variables.
-  ::gogo->determine_types();
-
-  // Check types and issue errors as appropriate.
-  ::gogo->check_types();
-
-  if (only_check_syntax)
-    return;
-
-  // Check that functions have return statements.
-  if (require_return_statement)
-    ::gogo->check_return_statements();
-
-  // Export global identifiers as appropriate.
-  ::gogo->do_exports();
-
-  // Build required interface method tables.
-  ::gogo->build_interface_method_tables();
-
-  // Turn short-cut operators (&&, ||) into explicit if statements.
-  ::gogo->remove_shortcuts();
-
-  // Use temporary variables to force order of evaluation.
-  ::gogo->order_evaluations();
-
-  // Build thunks for functions which call recover.
-  ::gogo->build_recover_thunks();
-
-  // Convert complicated go and defer statements into simpler ones.
-  ::gogo->simplify_thunk_statements();
-}
-
-// Write out globals.
-
-GO_EXTERN_C
-void
-go_write_globals()
-{
-  return ::gogo->write_globals();
-}
-
-// Return the global IR structure.  This is used by some of the
-// langhooks to pass to other code.
-
-Gogo*
-go_get_gogo()
-{
-  return ::gogo;
-}
diff --git a/gcc/go/gofrontend/go.cc.merge-right.r172891 b/gcc/go/gofrontend/go.cc.merge-right.r172891
deleted file mode 100644 (file)
index 3da1404..0000000
+++ /dev/null
@@ -1,151 +0,0 @@
-// go.cc -- Go frontend main file for gcc.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "go-c.h"
-
-#include "lex.h"
-#include "parse.h"
-#include "backend.h"
-#include "gogo.h"
-
-// The unique prefix to use for exported symbols.  This is set during
-// option processing.
-
-static std::string unique_prefix;
-
-// The data structures we build to represent the file.
-static Gogo* gogo;
-
-// Create the main IR data structure.
-
-GO_EXTERN_C
-void
-go_create_gogo(int int_type_size, int pointer_size)
-{
-  go_assert(::gogo == NULL);
-  ::gogo = new Gogo(go_get_backend(), int_type_size, pointer_size);
-  if (!unique_prefix.empty())
-    ::gogo->set_unique_prefix(unique_prefix);
-}
-
-// Set the unique prefix we use for exported symbols.
-
-GO_EXTERN_C
-void
-go_set_prefix(const char* arg)
-{
-  unique_prefix = arg;
-  for (size_t i = 0; i < unique_prefix.length(); ++i)
-    {
-      char c = unique_prefix[i];
-      if ((c >= 'a' && c <= 'z')
-         || (c >= 'A' && c <= 'Z')
-         || (c >= '0' && c <= '9')
-         || c == '_')
-       ;
-      else
-       unique_prefix[i] = '_';
-    }
-}
-
-// Parse the input files.
-
-GO_EXTERN_C
-void
-go_parse_input_files(const char** filenames, unsigned int filename_count,
-                    bool only_check_syntax, bool require_return_statement)
-{
-  go_assert(filename_count > 0);
-  for (unsigned int i = 0; i < filename_count; ++i)
-    {
-      if (i > 0)
-       ::gogo->clear_file_scope();
-
-      const char* filename = filenames[i];
-      FILE* file;
-      if (strcmp(filename, "-") == 0)
-       file = stdin;
-      else
-       {
-         file = fopen(filename, "r");
-         if (file == NULL)
-           fatal_error("cannot open %s: %m", filename);
-       }
-
-      Lex lexer(filename, file);
-
-      Parse parse(&lexer, ::gogo);
-      parse.program();
-
-      if (strcmp(filename, "-") != 0)
-       fclose(file);
-    }
-
-  ::gogo->clear_file_scope();
-
-  // If the global predeclared names are referenced but not defined,
-  // define them now.
-  ::gogo->define_global_names();
-
-  // Finalize method lists and build stub methods for named types.
-  ::gogo->finalize_methods();
-
-  // Now that we have seen all the names, lower the parse tree into a
-  // form which is easier to use.
-  ::gogo->lower_parse_tree();
-
-  // Now that we have seen all the names, verify that types are
-  // correct.
-  ::gogo->verify_types();
-
-  // Work out types of unspecified constants and variables.
-  ::gogo->determine_types();
-
-  // Check types and issue errors as appropriate.
-  ::gogo->check_types();
-
-  if (only_check_syntax)
-    return;
-
-  // Check that functions have return statements.
-  if (require_return_statement)
-    ::gogo->check_return_statements();
-
-  // Export global identifiers as appropriate.
-  ::gogo->do_exports();
-
-  // Turn short-cut operators (&&, ||) into explicit if statements.
-  ::gogo->remove_shortcuts();
-
-  // Use temporary variables to force order of evaluation.
-  ::gogo->order_evaluations();
-
-  // Build thunks for functions which call recover.
-  ::gogo->build_recover_thunks();
-
-  // Convert complicated go and defer statements into simpler ones.
-  ::gogo->simplify_thunk_statements();
-}
-
-// Write out globals.
-
-GO_EXTERN_C
-void
-go_write_globals()
-{
-  return ::gogo->write_globals();
-}
-
-// Return the global IR structure.  This is used by some of the
-// langhooks to pass to other code.
-
-Gogo*
-go_get_gogo()
-{
-  return ::gogo;
-}
diff --git a/gcc/go/gofrontend/go.cc.working b/gcc/go/gofrontend/go.cc.working
deleted file mode 100644 (file)
index 7b1fd7e..0000000
+++ /dev/null
@@ -1,150 +0,0 @@
-// go.cc -- Go frontend main file for gcc.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "go-c.h"
-
-#include "lex.h"
-#include "parse.h"
-#include "gogo.h"
-
-// The unique prefix to use for exported symbols.  This is set during
-// option processing.
-
-static std::string unique_prefix;
-
-// The data structures we build to represent the file.
-static Gogo* gogo;
-
-// Create the main IR data structure.
-
-GO_EXTERN_C
-void
-go_create_gogo(int int_type_size, int pointer_size)
-{
-  gcc_assert(::gogo == NULL);
-  ::gogo = new Gogo(int_type_size, pointer_size);
-  if (!unique_prefix.empty())
-    ::gogo->set_unique_prefix(unique_prefix);
-}
-
-// Set the unique prefix we use for exported symbols.
-
-GO_EXTERN_C
-void
-go_set_prefix(const char* arg)
-{
-  unique_prefix = arg;
-  for (size_t i = 0; i < unique_prefix.length(); ++i)
-    {
-      char c = unique_prefix[i];
-      if ((c >= 'a' && c <= 'z')
-         || (c >= 'A' && c <= 'Z')
-         || (c >= '0' && c <= '9')
-         || c == '_')
-       ;
-      else
-       unique_prefix[i] = '_';
-    }
-}
-
-// Parse the input files.
-
-GO_EXTERN_C
-void
-go_parse_input_files(const char** filenames, unsigned int filename_count,
-                    bool only_check_syntax, bool require_return_statement)
-{
-  gcc_assert(filename_count > 0);
-  for (unsigned int i = 0; i < filename_count; ++i)
-    {
-      if (i > 0)
-       ::gogo->clear_file_scope();
-
-      const char* filename = filenames[i];
-      FILE* file;
-      if (strcmp(filename, "-") == 0)
-       file = stdin;
-      else
-       {
-         file = fopen(filename, "r");
-         if (file == NULL)
-           fatal_error("cannot open %s: %m", filename);
-       }
-
-      Lex lexer(filename, file);
-
-      Parse parse(&lexer, ::gogo);
-      parse.program();
-
-      if (strcmp(filename, "-") != 0)
-       fclose(file);
-    }
-
-  ::gogo->clear_file_scope();
-
-  // If the global predeclared names are referenced but not defined,
-  // define them now.
-  ::gogo->define_global_names();
-
-  // Finalize method lists and build stub methods for named types.
-  ::gogo->finalize_methods();
-
-  // Now that we have seen all the names, lower the parse tree into a
-  // form which is easier to use.
-  ::gogo->lower_parse_tree();
-
-  // Now that we have seen all the names, verify that types are
-  // correct.
-  ::gogo->verify_types();
-
-  // Work out types of unspecified constants and variables.
-  ::gogo->determine_types();
-
-  // Check types and issue errors as appropriate.
-  ::gogo->check_types();
-
-  if (only_check_syntax)
-    return;
-
-  // Check that functions have return statements.
-  if (require_return_statement)
-    ::gogo->check_return_statements();
-
-  // Export global identifiers as appropriate.
-  ::gogo->do_exports();
-
-  // Turn short-cut operators (&&, ||) into explicit if statements.
-  ::gogo->remove_shortcuts();
-
-  // Use temporary variables to force order of evaluation.
-  ::gogo->order_evaluations();
-
-  // Build thunks for functions which call recover.
-  ::gogo->build_recover_thunks();
-
-  // Convert complicated go and defer statements into simpler ones.
-  ::gogo->simplify_thunk_statements();
-}
-
-// Write out globals.
-
-GO_EXTERN_C
-void
-go_write_globals()
-{
-  return ::gogo->write_globals();
-}
-
-// Return the global IR structure.  This is used by some of the
-// langhooks to pass to other code.
-
-Gogo*
-go_get_gogo()
-{
-  return ::gogo;
-}
diff --git a/gcc/go/gofrontend/gogo-tree.cc.merge-left.r167407 b/gcc/go/gofrontend/gogo-tree.cc.merge-left.r167407
deleted file mode 100644 (file)
index 755a0e9..0000000
+++ /dev/null
@@ -1,3105 +0,0 @@
-// gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "tm.h"
-#include "toplev.h"
-#include "tree.h"
-#include "gimple.h"
-#include "tree-iterator.h"
-#include "cgraph.h"
-#include "langhooks.h"
-#include "convert.h"
-#include "output.h"
-#include "diagnostic.h"
-#include "rtl.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "types.h"
-#include "expressions.h"
-#include "statements.h"
-#include "gogo.h"
-
-// Whether we have seen any errors.
-
-bool
-saw_errors()
-{
-  return errorcount != 0 || sorrycount != 0;
-}
-
-// A helper function.
-
-static inline tree
-get_identifier_from_string(const std::string& str)
-{
-  return get_identifier_with_length(str.data(), str.length());
-}
-
-// Builtin functions.
-
-static std::map<std::string, tree> builtin_functions;
-
-// Define a builtin function.  BCODE is the builtin function code
-// defined by builtins.def.  NAME is the name of the builtin function.
-// LIBNAME is the name of the corresponding library function, and is
-// NULL if there isn't one.  FNTYPE is the type of the function.
-// CONST_P is true if the function has the const attribute.
-
-static void
-define_builtin(built_in_function bcode, const char* name, const char* libname,
-              tree fntype, bool const_p)
-{
-  tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
-                                  libname, NULL_TREE);
-  if (const_p)
-    TREE_READONLY(decl) = 1;
-  built_in_decls[bcode] = decl;
-  implicit_built_in_decls[bcode] = decl;
-  builtin_functions[name] = decl;
-  if (libname != NULL)
-    {
-      decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
-                                 NULL, NULL_TREE);
-      if (const_p)
-       TREE_READONLY(decl) = 1;
-      builtin_functions[libname] = decl;
-    }
-}
-
-// Create trees for implicit builtin functions.
-
-void
-Gogo::define_builtin_function_trees()
-{
-  /* We need to define the fetch_and_add functions, since we use them
-     for ++ and --.  */
-  tree t = go_type_for_size(BITS_PER_UNIT, 1);
-  tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin(BUILT_IN_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
-                build_function_type_list(t, p, t, NULL_TREE), false);
-
-  t = go_type_for_size(BITS_PER_UNIT * 2, 1);
-  p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin (BUILT_IN_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
-                 build_function_type_list(t, p, t, NULL_TREE), false);
-
-  t = go_type_for_size(BITS_PER_UNIT * 4, 1);
-  p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin(BUILT_IN_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
-                build_function_type_list(t, p, t, NULL_TREE), false);
-
-  t = go_type_for_size(BITS_PER_UNIT * 8, 1);
-  p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin(BUILT_IN_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
-                build_function_type_list(t, p, t, NULL_TREE), false);
-
-  // We use __builtin_expect for magic import functions.
-  define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
-                build_function_type_list(long_integer_type_node,
-                                         long_integer_type_node,
-                                         long_integer_type_node,
-                                         NULL_TREE),
-                true);
-
-  // We use __builtin_memmove for the predeclared copy function.
-  define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
-                build_function_type_list(ptr_type_node,
-                                         ptr_type_node,
-                                         const_ptr_type_node,
-                                         size_type_node,
-                                         NULL_TREE),
-                false);
-
-  // We provide sqrt for the math library.
-  define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
-                build_function_type_list(double_type_node,
-                                         double_type_node,
-                                         NULL_TREE),
-                true);
-  define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
-                build_function_type_list(long_double_type_node,
-                                         long_double_type_node,
-                                         NULL_TREE),
-                true);
-
-  // We use __builtin_return_address in the thunk we build for
-  // functions which call recover.
-  define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
-                build_function_type_list(ptr_type_node,
-                                         unsigned_type_node,
-                                         NULL_TREE),
-                false);
-
-  // The compiler uses __builtin_trap for some exception handling
-  // cases.
-  define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
-                build_function_type(void_type_node, void_list_node),
-                false);
-}
-
-// Get the name to use for the import control function.  If there is a
-// global function or variable, then we know that that name must be
-// unique in the link, and we use it as the basis for our name.
-
-const std::string&
-Gogo::get_init_fn_name()
-{
-  if (this->init_fn_name_.empty())
-    {
-      gcc_assert(this->package_ != NULL);
-      if (this->package_name() == "main")
-       {
-         // Use a name which the runtime knows.
-         this->init_fn_name_ = "__go_init_main";
-       }
-      else
-       {
-         std::string s = this->unique_prefix();
-         s.append(1, '.');
-         s.append(this->package_name());
-         s.append("..import");
-         this->init_fn_name_ = s;
-       }
-    }
-
-  return this->init_fn_name_;
-}
-
-// Add statements to INIT_STMT_LIST which run the initialization
-// functions for imported packages.  This is only used for the "main"
-// package.
-
-void
-Gogo::init_imports(tree* init_stmt_list)
-{
-  gcc_assert(this->package_name() == "main");
-
-  if (this->imported_init_fns_.empty())
-    return;
-
-  tree fntype = build_function_type(void_type_node, void_list_node);
-
-  // We must call them in increasing priority order.
-  std::vector<Import_init> v;
-  for (std::set<Import_init>::const_iterator p =
-        this->imported_init_fns_.begin();
-       p != this->imported_init_fns_.end();
-       ++p)
-    v.push_back(*p);
-  std::sort(v.begin(), v.end());
-
-  for (std::vector<Import_init>::const_iterator p = v.begin();
-       p != v.end();
-       ++p)
-    {
-      std::string user_name = p->package_name() + ".init";
-      tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
-                            get_identifier_from_string(user_name),
-                            fntype);
-      const std::string& init_name(p->init_name());
-      SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
-      TREE_PUBLIC(decl) = 1;
-      DECL_EXTERNAL(decl) = 1;
-      append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
-    }
-}
-
-// Register global variables with the garbage collector.  We need to
-// register all variables which can hold a pointer value.  They become
-// roots during the mark phase.  We build a struct that is easy to
-// hook into a list of roots.
-
-// struct __go_gc_root_list
-// {
-//   struct __go_gc_root_list* __next;
-//   struct __go_gc_root
-//   {
-//     void* __decl;
-//     size_t __size;
-//   } __roots[];
-// };
-
-// The last entry in the roots array has a NULL decl field.
-
-void
-Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
-                      tree* init_stmt_list)
-{
-  if (var_gc.empty())
-    return;
-
-  size_t count = var_gc.size();
-
-  tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
-                                       "__next",
-                                       ptr_type_node,
-                                       "__size",
-                                       sizetype);
-
-  tree index_type = build_index_type(size_int(count));
-  tree array_type = build_array_type(root_type, index_type);
-
-  tree root_list_type = make_node(RECORD_TYPE);
-  root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
-                                       root_list_type, 2,
-                                       "__next",
-                                       build_pointer_type(root_list_type),
-                                       "__roots",
-                                       array_type);
-
-  // Build an initialier for the __roots array.
-
-  VEC(constructor_elt,gc)* roots_init = VEC_alloc(constructor_elt, gc,
-                                                 count + 1);
-
-  size_t i = 0;
-  for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
-       p != var_gc.end();
-       ++p, ++i)
-    {
-      VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      tree field = TYPE_FIELDS(root_type);
-      elt->index = field;
-      tree decl = (*p)->get_tree(this, NULL);
-      gcc_assert(TREE_CODE(decl) == VAR_DECL);
-      elt->value = build_fold_addr_expr(decl);
-
-      elt = VEC_quick_push(constructor_elt, init, NULL);
-      field = DECL_CHAIN(field);
-      elt->index = field;
-      elt->value = DECL_SIZE_UNIT(decl);
-
-      elt = VEC_quick_push(constructor_elt, roots_init, NULL);
-      elt->index = size_int(i);
-      elt->value = build_constructor(root_type, init);
-    }
-
-  // The list ends with a NULL entry.
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(root_type);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  elt->index = field;
-  elt->value = size_zero_node;
-
-  elt = VEC_quick_push(constructor_elt, roots_init, NULL);
-  elt->index = size_int(i);
-  elt->value = build_constructor(root_type, init);
-
-  // Build a constructor for the struct.
-
-  VEC(constructor_elt,gc*) root_list_init = VEC_alloc(constructor_elt, gc, 2);
-
-  elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
-  field = TYPE_FIELDS(root_list_type);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-
-  elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
-  field = DECL_CHAIN(field);
-  elt->index = field;
-  elt->value = build_constructor(array_type, roots_init);
-
-  // Build a decl to register.
-
-  tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
-                        create_tmp_var_name("gc"), root_list_type);
-  DECL_EXTERNAL(decl) = 0;
-  TREE_PUBLIC(decl) = 0;
-  TREE_STATIC(decl) = 1;
-  DECL_ARTIFICIAL(decl) = 1;
-  DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
-  rest_of_decl_compilation(decl, 1, 0);
-
-  static tree register_gc_fndecl;
-  tree call = Gogo::call_builtin(&register_gc_fndecl, BUILTINS_LOCATION,
-                                "__go_register_gc_roots",
-                                1,
-                                void_type_node,
-                                build_pointer_type(root_list_type),
-                                build_fold_addr_expr(decl));
-  append_to_statement_list(call, init_stmt_list);
-}
-
-// Build the decl for the initialization function.
-
-tree
-Gogo::initialization_function_decl()
-{
-  // The tedious details of building your own function.  There doesn't
-  // seem to be a helper function for this.
-  std::string name = this->package_name() + ".init";
-  tree fndecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL,
-                          get_identifier_from_string(name),
-                          build_function_type(void_type_node,
-                                              void_list_node));
-  const std::string& asm_name(this->get_init_fn_name());
-  SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
-
-  tree resdecl = build_decl(BUILTINS_LOCATION, RESULT_DECL, NULL_TREE,
-                           void_type_node);
-  DECL_ARTIFICIAL(resdecl) = 1;
-  DECL_CONTEXT(resdecl) = fndecl;
-  DECL_RESULT(fndecl) = resdecl;
-
-  TREE_STATIC(fndecl) = 1;
-  TREE_USED(fndecl) = 1;
-  DECL_ARTIFICIAL(fndecl) = 1;
-  TREE_PUBLIC(fndecl) = 1;
-
-  DECL_INITIAL(fndecl) = make_node(BLOCK);
-  TREE_USED(DECL_INITIAL(fndecl)) = 1;
-
-  return fndecl;
-}
-
-// Create the magic initialization function.  INIT_STMT_LIST is the
-// code that it needs to run.
-
-void
-Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
-{
-  // Make sure that we thought we needed an initialization function,
-  // as otherwise we will not have reported it in the export data.
-  gcc_assert(this->package_name() == "main" || this->need_init_fn_);
-
-  if (fndecl == NULL_TREE)
-    fndecl = this->initialization_function_decl();
-
-  DECL_SAVED_TREE(fndecl) = init_stmt_list;
-
-  current_function_decl = fndecl;
-  if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
-    push_struct_function(fndecl);
-  else
-    push_cfun(DECL_STRUCT_FUNCTION(fndecl));
-  cfun->function_end_locus = BUILTINS_LOCATION;
-
-  gimplify_function_tree(fndecl);
-
-  cgraph_add_new_function(fndecl, false);
-  cgraph_mark_needed_node(cgraph_node(fndecl));
-
-  current_function_decl = NULL_TREE;
-  pop_cfun();
-}
-
-// Search for references to VAR in any statements or called functions.
-
-class Find_var : public Traverse
-{
- public:
-  // A hash table we use to avoid looping.  The index is the name of a
-  // named object.  We only look through objects defined in this
-  // package.
-  typedef Unordered_set(std::string) Seen_objects;
-
-  Find_var(Named_object* var, Seen_objects* seen_objects)
-    : Traverse(traverse_expressions),
-      var_(var), seen_objects_(seen_objects), found_(false)
-  { }
-
-  // Whether the variable was found.
-  bool
-  found() const
-  { return this->found_; }
-
-  int
-  expression(Expression**);
-
- private:
-  // The variable we are looking for.
-  Named_object* var_;
-  // Names of objects we have already seen.
-  Seen_objects* seen_objects_;
-  // True if the variable was found.
-  bool found_;
-};
-
-// See if EXPR refers to VAR, looking through function calls and
-// variable initializations.
-
-int
-Find_var::expression(Expression** pexpr)
-{
-  Expression* e = *pexpr;
-
-  Var_expression* ve = e->var_expression();
-  if (ve != NULL)
-    {
-      Named_object* v = ve->named_object();
-      if (v == this->var_)
-       {
-         this->found_ = true;
-         return TRAVERSE_EXIT;
-       }
-
-      if (v->is_variable() && v->package() == NULL)
-       {
-         Expression* init = v->var_value()->init();
-         if (init != NULL)
-           {
-             std::pair<Seen_objects::iterator, bool> ins =
-               this->seen_objects_->insert(v->name());
-             if (ins.second)
-               {
-                 // This is the first time we have seen this name.
-                 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-           }
-       }
-    }
-
-  // We traverse the code of any function we see.  Note that this
-  // means that we will traverse the code of a function whose address
-  // is taken even if it is not called.
-  Func_expression* fe = e->func_expression();
-  if (fe != NULL)
-    {
-      const Named_object* f = fe->named_object();
-      if (f->is_function() && f->package() == NULL)
-       {
-         std::pair<Seen_objects::iterator, bool> ins =
-           this->seen_objects_->insert(f->name());
-         if (ins.second)
-           {
-             // This is the first time we have seen this name.
-             if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-       }
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Return true if EXPR refers to VAR.
-
-static bool
-expression_requires(Expression* expr, Block* preinit, Named_object* var)
-{
-  Find_var::Seen_objects seen_objects;
-  Find_var find_var(var, &seen_objects);
-  if (expr != NULL)
-    Expression::traverse(&expr, &find_var);
-  if (preinit != NULL)
-    preinit->traverse(&find_var);
-  
-  return find_var.found();
-}
-
-// Sort variable initializations.  If the initialization expression
-// for variable A refers directly or indirectly to the initialization
-// expression for variable B, then we must initialize B before A.
-
-class Var_init
-{
- public:
-  Var_init()
-    : var_(NULL), init_(NULL_TREE), waiting_(0)
-  { }
-
-  Var_init(Named_object* var, tree init)
-    : var_(var), init_(init), waiting_(0)
-  { }
-
-  // Return the variable.
-  Named_object*
-  var() const
-  { return this->var_; }
-
-  // Return the initialization expression.
-  tree
-  init() const
-  { return this->init_; }
-
-  // Return the number of variables waiting for this one to be
-  // initialized.
-  size_t
-  waiting() const
-  { return this->waiting_; }
-
-  // Increment the number waiting.
-  void
-  increment_waiting()
-  { ++this->waiting_; }
-
- private:
-  // The variable being initialized.
-  Named_object* var_;
-  // The initialization expression to run.
-  tree init_;
-  // The number of variables which are waiting for this one.
-  size_t waiting_;
-};
-
-typedef std::list<Var_init> Var_inits;
-
-// Sort the variable initializations.  The rule we follow is that we
-// emit them in the order they appear in the array, except that if the
-// initialization expression for a variable V1 depends upon another
-// variable V2 then we initialize V1 after V2.
-
-static void
-sort_var_inits(Var_inits* var_inits)
-{
-  Var_inits ready;
-  while (!var_inits->empty())
-    {
-      Var_inits::iterator p1 = var_inits->begin();
-      Named_object* var = p1->var();
-      Expression* init = var->var_value()->init();
-      Block* preinit = var->var_value()->preinit();
-
-      // Start walking through the list to see which variables VAR
-      // needs to wait for.  We can skip P1->WAITING variables--that
-      // is the number we've already checked.
-      Var_inits::iterator p2 = p1;
-      ++p2;
-      for (size_t i = p1->waiting(); i > 0; --i)
-       ++p2;
-
-      for (; p2 != var_inits->end(); ++p2)
-       {
-         if (expression_requires(init, preinit, p2->var()))
-           {
-             // Check for cycles.
-             if (expression_requires(p2->var()->var_value()->init(),
-                                     p2->var()->var_value()->preinit(),
-                                     var))
-               {
-                 error_at(var->location(),
-                          ("initialization expressions for %qs and "
-                           "%qs depend upon each other"),
-                          var->message_name().c_str(),
-                          p2->var()->message_name().c_str());
-                 inform(p2->var()->location(), "%qs defined here",
-                        p2->var()->message_name().c_str());
-                 p2 = var_inits->end();
-               }
-             else
-               {
-                 // We can't emit P1 until P2 is emitted.  Move P1.
-                 // Note that the WAITING loop always executes at
-                 // least once, which is what we want.
-                 p2->increment_waiting();
-                 Var_inits::iterator p3 = p2;
-                 for (size_t i = p2->waiting(); i > 0; --i)
-                   ++p3;
-                 var_inits->splice(p3, *var_inits, p1);
-               }
-             break;
-           }
-       }
-
-      if (p2 == var_inits->end())
-       {
-         // VAR does not depends upon any other initialization expressions.
-
-         // Check for a loop of VAR on itself.  We only do this if
-         // INIT is not NULL; when INIT is NULL, it means that
-         // PREINIT sets VAR, which we will interpret as a loop.
-         if (init != NULL && expression_requires(init, preinit, var))
-           error_at(var->location(),
-                    "initialization expression for %qs depends upon itself",
-                    var->message_name().c_str());
-         ready.splice(ready.end(), *var_inits, p1);
-       }
-    }
-
-  // Now READY is the list in the desired initialization order.
-  var_inits->swap(ready);
-}
-
-// Write out the global definitions.
-
-void
-Gogo::write_globals()
-{
-  Bindings* bindings = this->current_bindings();
-  size_t count = bindings->size_definitions();
-
-  tree* vec = new tree[count];
-
-  tree init_fndecl = NULL_TREE;
-  tree init_stmt_list = NULL_TREE;
-
-  if (this->package_name() == "main")
-    this->init_imports(&init_stmt_list);
-
-  // A list of variable initializations.
-  Var_inits var_inits;
-
-  // A list of variables which need to be registered with the garbage
-  // collector.
-  std::vector<Named_object*> var_gc;
-  var_gc.reserve(count);
-
-  tree var_init_stmt_list = NULL_TREE;
-  size_t i = 0;
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p, ++i)
-    {
-      Named_object* no = *p;
-
-      gcc_assert(!no->is_type_declaration() && !no->is_function_declaration());
-      // There is nothing to do for a package.
-      if (no->is_package())
-       {
-         --i;
-         --count;
-         continue;
-       }
-
-      // There is nothing to do for an object which was imported from
-      // a different package into the global scope.
-      if (no->package() != NULL)
-       {
-         --i;
-         --count;
-         continue;
-       }
-
-      // There is nothing useful we can output for constants which
-      // have ideal or non-integeral type.
-      if (no->is_const())
-       {
-         Type* type = no->const_value()->type();
-         if (type == NULL)
-           type = no->const_value()->expr()->type();
-         if (type->is_abstract() || type->integer_type() == NULL)
-           {
-             --i;
-             --count;
-             continue;
-           }
-       }
-
-      vec[i] = no->get_tree(this, NULL);
-
-      if (vec[i] == error_mark_node)
-       {
-         gcc_assert(saw_errors());
-         --i;
-         --count;
-         continue;
-       }
-
-      // If a variable is initialized to a non-constant value, do the
-      // initialization in an initialization function.
-      if (TREE_CODE(vec[i]) == VAR_DECL)
-       {
-         gcc_assert(no->is_variable());
-
-         // Check for a sink variable, which may be used to run
-         // an initializer purely for its side effects.
-         bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
-
-         tree var_init_tree = NULL_TREE;
-         if (!no->var_value()->has_pre_init())
-           {
-             tree init = no->var_value()->get_init_tree(this, NULL);
-             if (init == error_mark_node)
-               gcc_assert(saw_errors());
-             else if (init == NULL_TREE)
-               ;
-             else if (TREE_CONSTANT(init))
-               DECL_INITIAL(vec[i]) = init;
-             else if (is_sink)
-               var_init_tree = init;
-             else
-               var_init_tree = fold_build2_loc(no->location(), MODIFY_EXPR,
-                                               void_type_node, vec[i], init);
-           }
-         else
-           {
-             // We are going to create temporary variables which
-             // means that we need an fndecl.
-             if (init_fndecl == NULL_TREE)
-               init_fndecl = this->initialization_function_decl();
-             current_function_decl = init_fndecl;
-             if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
-               push_struct_function(init_fndecl);
-             else
-               push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
-
-             tree var_decl = is_sink ? NULL_TREE : vec[i];
-             var_init_tree = no->var_value()->get_init_block(this, NULL,
-                                                             var_decl);
-
-             current_function_decl = NULL_TREE;
-             pop_cfun();
-           }
-
-         if (var_init_tree != NULL_TREE)
-           {
-             if (no->var_value()->init() == NULL
-                 && !no->var_value()->has_pre_init())
-               append_to_statement_list(var_init_tree, &var_init_stmt_list);
-             else
-               var_inits.push_back(Var_init(no, var_init_tree));
-           }
-
-         if (!is_sink && no->var_value()->type()->has_pointer())
-           var_gc.push_back(no);
-       }
-    }
-
-  // Register global variables with the garbage collector.
-  this->register_gc_vars(var_gc, &init_stmt_list);
-
-  // Simple variable initializations, after all variables are
-  // registered.
-  append_to_statement_list(var_init_stmt_list, &init_stmt_list);
-
-  // Complex variable initializations, first sorting them into a
-  // workable order.
-  if (!var_inits.empty())
-    {
-      sort_var_inits(&var_inits);
-      for (Var_inits::const_iterator p = var_inits.begin();
-          p != var_inits.end();
-          ++p)
-       append_to_statement_list(p->init(), &init_stmt_list);
-    }
-
-  // After all the variables are initialized, call the "init"
-  // functions if there are any.
-  for (std::vector<Named_object*>::const_iterator p =
-        this->init_functions_.begin();
-       p != this->init_functions_.end();
-       ++p)
-    {
-      tree decl = (*p)->get_tree(this, NULL);
-      tree call = build_call_expr(decl, 0);
-      append_to_statement_list(call, &init_stmt_list);
-    }
-
-  // Set up a magic function to do all the initialization actions.
-  // This will be called if this package is imported.
-  if (init_stmt_list != NULL_TREE
-      || this->need_init_fn_
-      || this->package_name() == "main")
-    this->write_initialization_function(init_fndecl, init_stmt_list);
-
-  // Pass everything back to the middle-end.
-
-  if (this->imported_unsafe_)
-    {
-      // Importing the "unsafe" package automatically disables TBAA.
-      flag_strict_aliasing = false;
-
-      // This is a real hack.  init_varasm_once has already grabbed an
-      // alias set, which we don't want when we aren't going strict
-      // aliasing.  We reinitialize to make it do it again.  FIXME.
-      init_varasm_once();
-    }
-
-  wrapup_global_declarations(vec, count);
-
-  cgraph_finalize_compilation_unit();
-
-  check_global_declarations(vec, count);
-  emit_debug_global_declarations(vec, count);
-
-  delete[] vec;
-}
-
-// Get a tree for the identifier for a named object.
-
-tree
-Named_object::get_id(Gogo* gogo)
-{
-  std::string decl_name;
-  if (this->is_function_declaration()
-      && !this->func_declaration_value()->asm_name().empty())
-    decl_name = this->func_declaration_value()->asm_name();
-  else if ((this->is_variable() && !this->var_value()->is_global())
-          || (this->is_type()
-              && this->type_value()->location() == BUILTINS_LOCATION))
-    {
-      // We don't need the package name for local variables or builtin
-      // types.
-      decl_name = Gogo::unpack_hidden_name(this->name_);
-    }
-  else if (this->is_function()
-          && !this->func_value()->is_method()
-          && this->package_ == NULL
-          && Gogo::unpack_hidden_name(this->name_) == "init")
-    {
-      // A single package can have multiple "init" functions, which
-      // means that we need to give them different names.
-      static int init_index;
-      char buf[20];
-      snprintf(buf, sizeof buf, "%d", init_index);
-      ++init_index;
-      decl_name = gogo->package_name() + ".init." + buf;
-    }
-  else
-    {
-      std::string package_name;
-      if (this->package_ == NULL)
-       package_name = gogo->package_name();
-      else
-       package_name = this->package_->name();
-
-      decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
-
-      Function_type* fntype;
-      if (this->is_function())
-       fntype = this->func_value()->type();
-      else if (this->is_function_declaration())
-       fntype = this->func_declaration_value()->type();
-      else
-       fntype = NULL;
-      if (fntype != NULL && fntype->is_method())
-       {
-         decl_name.push_back('.');
-         decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
-       }
-    }
-  if (this->is_type())
-    {
-      const Named_object* in_function = this->type_value()->in_function();
-      if (in_function != NULL)
-       decl_name += '$' + in_function->name();
-    }
-  return get_identifier_from_string(decl_name);
-}
-
-// Get a tree for a named object.
-
-tree
-Named_object::get_tree(Gogo* gogo, Named_object* function)
-{
-  if (this->tree_ != NULL_TREE)
-    {
-      // If this is a variable whose address is taken, we must rebuild
-      // the INDIRECT_REF each time to avoid invalid sharing.
-      tree ret = this->tree_;
-      if (((this->classification_ == NAMED_OBJECT_VAR
-           && this->var_value()->is_in_heap())
-          || (this->classification_ == NAMED_OBJECT_RESULT_VAR
-              && this->result_var_value()->is_in_heap()))
-         && ret != error_mark_node)
-       {
-         gcc_assert(TREE_CODE(ret) == INDIRECT_REF);
-         ret = build_fold_indirect_ref(TREE_OPERAND(ret, 0));
-         TREE_THIS_NOTRAP(ret) = 1;
-       }
-      return ret;
-    }
-
-  tree name;
-  if (this->classification_ == NAMED_OBJECT_TYPE)
-    name = NULL_TREE;
-  else
-    name = this->get_id(gogo);
-  tree decl;
-  switch (this->classification_)
-    {
-    case NAMED_OBJECT_CONST:
-      {
-       Named_constant* named_constant = this->u_.const_value;
-       Translate_context subcontext(gogo, function, NULL, NULL_TREE);
-       tree expr_tree = named_constant->expr()->get_tree(&subcontext);
-       if (expr_tree == error_mark_node)
-         decl = error_mark_node;
-       else
-         {
-           Type* type = named_constant->type();
-           if (type != NULL && !type->is_abstract())
-             expr_tree = fold_convert(type->get_tree(gogo), expr_tree);
-           if (expr_tree == error_mark_node)
-             decl = error_mark_node;
-           else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
-             {
-               decl = build_decl(named_constant->location(), CONST_DECL,
-                                 name, TREE_TYPE(expr_tree));
-               DECL_INITIAL(decl) = expr_tree;
-               TREE_CONSTANT(decl) = 1;
-               TREE_READONLY(decl) = 1;
-             }
-           else
-             {
-               // A CONST_DECL is only for an enum constant, so we
-               // shouldn't use for non-integral types.  Instead we
-               // just return the constant itself, rather than a
-               // decl.
-               decl = expr_tree;
-             }
-         }
-      }
-      break;
-
-    case NAMED_OBJECT_TYPE:
-      {
-       Named_type* named_type = this->u_.type_value;
-       tree type_tree = named_type->get_tree(gogo);
-       if (type_tree == error_mark_node)
-         decl = error_mark_node;
-       else
-         {
-           decl = TYPE_NAME(type_tree);
-           gcc_assert(decl != NULL_TREE);
-
-           // We need to produce a type descriptor for every named
-           // type, and for a pointer to every named type, since
-           // other files or packages might refer to them.  We need
-           // to do this even for hidden types, because they might
-           // still be returned by some function.  Simply calling the
-           // type_descriptor method is enough to create the type
-           // descriptor, even though we don't do anything with it.
-           if (this->package_ == NULL)
-             {
-               named_type->type_descriptor_pointer(gogo);
-               Type* pn = Type::make_pointer_type(named_type);
-               pn->type_descriptor_pointer(gogo);
-             }
-         }
-      }
-      break;
-
-    case NAMED_OBJECT_TYPE_DECLARATION:
-      error("reference to undefined type %qs",
-           this->message_name().c_str());
-      return error_mark_node;
-
-    case NAMED_OBJECT_VAR:
-      {
-       Variable* var = this->u_.var_value;
-       Type* type = var->type();
-       if (type->is_error_type()
-           || (type->is_undefined()
-               && (!var->is_global() || this->package() == NULL)))
-         {
-           // Force the error for an undefined type, just in case.
-           type->base();
-           decl = error_mark_node;
-         }
-       else
-         {
-           tree var_type = type->get_tree(gogo);
-           bool is_parameter = var->is_parameter();
-           if (var->is_receiver() && type->points_to() == NULL)
-             is_parameter = false;
-           if (var->is_in_heap())
-             {
-               is_parameter = false;
-               var_type = build_pointer_type(var_type);
-             }
-           decl = build_decl(var->location(),
-                             is_parameter ? PARM_DECL : VAR_DECL,
-                             name, var_type);
-           if (!var->is_global())
-             {
-               tree fnid = function->get_id(gogo);
-               tree fndecl = function->func_value()->get_or_make_decl(gogo,
-                                                                      function,
-                                                                      fnid);
-               DECL_CONTEXT(decl) = fndecl;
-             }
-           if (is_parameter)
-             DECL_ARG_TYPE(decl) = TREE_TYPE(decl);
-
-           if (var->is_global())
-             {
-               const Package* package = this->package();
-               if (package == NULL)
-                 TREE_STATIC(decl) = 1;
-               else
-                 DECL_EXTERNAL(decl) = 1;
-               if (!Gogo::is_hidden_name(this->name_))
-                 {
-                   TREE_PUBLIC(decl) = 1;
-                   std::string asm_name = (package == NULL
-                                           ? gogo->unique_prefix()
-                                           : package->unique_prefix());
-                   asm_name.append(1, '.');
-                   asm_name.append(IDENTIFIER_POINTER(name),
-                                   IDENTIFIER_LENGTH(name));
-                   tree asm_id = get_identifier_from_string(asm_name);
-                   SET_DECL_ASSEMBLER_NAME(decl, asm_id);
-                 }
-             }
-
-           // FIXME: We should only set this for variables which are
-           // actually used somewhere.
-           TREE_USED(decl) = 1;
-         }
-      }
-      break;
-
-    case NAMED_OBJECT_RESULT_VAR:
-      {
-       Result_variable* result = this->u_.result_var_value;
-       Type* type = result->type();
-       if (type->is_error_type() || type->is_undefined())
-         {
-           // Force the error.
-           type->base();
-           decl = error_mark_node;
-         }
-       else
-         {
-           gcc_assert(result->function() == function->func_value());
-           source_location loc = function->location();
-           tree result_type = type->get_tree(gogo);
-           tree init;
-           if (!result->is_in_heap())
-             init = type->get_init_tree(gogo, false);
-           else
-             {
-               tree space = gogo->allocate_memory(type,
-                                                  TYPE_SIZE_UNIT(result_type),
-                                                  loc);
-               result_type = build_pointer_type(result_type);
-               tree subinit = type->get_init_tree(gogo, true);
-               if (subinit == NULL_TREE)
-                 init = fold_convert_loc(loc, result_type, space);
-               else
-                 {
-                   space = save_expr(space);
-                   space = fold_convert_loc(loc, result_type, space);
-                   tree spaceref = build_fold_indirect_ref_loc(loc, space);
-                   TREE_THIS_NOTRAP(spaceref) = 1;
-                   tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
-                                              spaceref, subinit);
-                   init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
-                                          set, space);
-                 }
-             }
-           decl = build_decl(loc, VAR_DECL, name, result_type);
-           tree fnid = function->get_id(gogo);
-           tree fndecl = function->func_value()->get_or_make_decl(gogo,
-                                                                  function,
-                                                                  fnid);
-           DECL_CONTEXT(decl) = fndecl;
-           DECL_INITIAL(decl) = init;
-           TREE_USED(decl) = 1;
-         }
-      }
-      break;
-
-    case NAMED_OBJECT_SINK:
-      gcc_unreachable();
-
-    case NAMED_OBJECT_FUNC:
-      {
-       Function* func = this->u_.func_value;
-       decl = func->get_or_make_decl(gogo, this, name);
-       if (decl != error_mark_node)
-         {
-           if (func->block() != NULL)
-             {
-               if (DECL_STRUCT_FUNCTION(decl) == NULL)
-                 push_struct_function(decl);
-               else
-                 push_cfun(DECL_STRUCT_FUNCTION(decl));
-
-               cfun->function_end_locus = func->block()->end_location();
-
-               current_function_decl = decl;
-
-               func->build_tree(gogo, this);
-
-               gimplify_function_tree(decl);
-
-               cgraph_finalize_function(decl, true);
-
-               current_function_decl = NULL_TREE;
-               pop_cfun();
-             }
-         }
-      }
-      break;
-
-    default:
-      gcc_unreachable();
-    }
-
-  if (TREE_TYPE(decl) == error_mark_node)
-    decl = error_mark_node;
-
-  tree ret = decl;
-
-  // If this is a local variable whose address is taken, then we
-  // actually store it in the heap.  For uses of the variable we need
-  // to return a reference to that heap location.
-  if (((this->classification_ == NAMED_OBJECT_VAR
-       && this->var_value()->is_in_heap())
-       || (this->classification_ == NAMED_OBJECT_RESULT_VAR
-          && this->result_var_value()->is_in_heap()))
-      && ret != error_mark_node)
-    {
-      gcc_assert(POINTER_TYPE_P(TREE_TYPE(ret)));
-      ret = build_fold_indirect_ref(ret);
-      TREE_THIS_NOTRAP(ret) = 1;
-    }
-
-  this->tree_ = ret;
-
-  if (ret != error_mark_node)
-    go_preserve_from_gc(ret);
-
-  return ret;
-}
-
-// Get the initial value of a variable as a tree.  This does not
-// consider whether the variable is in the heap--it returns the
-// initial value as though it were always stored in the stack.
-
-tree
-Variable::get_init_tree(Gogo* gogo, Named_object* function)
-{
-  gcc_assert(this->preinit_ == NULL);
-  if (this->init_ == NULL)
-    {
-      gcc_assert(!this->is_parameter_);
-      return this->type_->get_init_tree(gogo, this->is_global_);
-    }
-  else
-    {
-      Translate_context context(gogo, function, NULL, NULL_TREE);
-      tree rhs_tree = this->init_->get_tree(&context);
-      return Expression::convert_for_assignment(&context, this->type(),
-                                               this->init_->type(),
-                                               rhs_tree, this->location());
-    }
-}
-
-// Get the initial value of a variable when a block is required.
-// VAR_DECL is the decl to set; it may be NULL for a sink variable.
-
-tree
-Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
-{
-  gcc_assert(this->preinit_ != NULL);
-
-  // We want to add the variable assignment to the end of the preinit
-  // block.  The preinit block may have a TRY_FINALLY_EXPR and a
-  // TRY_CATCH_EXPR; if it does, we want to add to the end of the
-  // regular statements.
-
-  Translate_context context(gogo, function, NULL, NULL_TREE);
-  tree block_tree = this->preinit_->get_tree(&context);
-  gcc_assert(TREE_CODE(block_tree) == BIND_EXPR);
-  tree statements = BIND_EXPR_BODY(block_tree);
-  while (TREE_CODE(statements) == TRY_FINALLY_EXPR
-        || TREE_CODE(statements) == TRY_CATCH_EXPR)
-    statements = TREE_OPERAND(statements, 0);
-
-  // It's possible to have pre-init statements without an initializer
-  // if the pre-init statements set the variable.
-  if (this->init_ != NULL)
-    {
-      tree rhs_tree = this->init_->get_tree(&context);
-      if (var_decl == NULL_TREE)
-       append_to_statement_list(rhs_tree, &statements);
-      else
-       {
-         tree val = Expression::convert_for_assignment(&context, this->type(),
-                                                       this->init_->type(),
-                                                       rhs_tree,
-                                                       this->location());
-         tree set = fold_build2_loc(this->location(), MODIFY_EXPR,
-                                    void_type_node, var_decl, val);
-         append_to_statement_list(set, &statements);
-       }
-    }
-
-  return block_tree;
-}
-
-// Get a tree for a function decl.
-
-tree
-Function::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
-{
-  if (this->fndecl_ == NULL_TREE)
-    {
-      tree functype = this->type_->get_tree(gogo);
-      if (functype == error_mark_node)
-       this->fndecl_ = error_mark_node;
-      else
-       {
-         // The type of a function comes back as a pointer, but we
-         // want the real function type for a function declaration.
-         gcc_assert(POINTER_TYPE_P(functype));
-         functype = TREE_TYPE(functype);
-         tree decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
-
-         this->fndecl_ = decl;
-
-         gcc_assert(no->package() == NULL);
-         if (this->enclosing_ != NULL || Gogo::is_thunk(no))
-           ;
-         else if (Gogo::unpack_hidden_name(no->name()) == "init"
-                  && !this->type_->is_method())
-           ;
-         else if (Gogo::unpack_hidden_name(no->name()) == "main"
-                  && gogo->package_name() == "main")
-           TREE_PUBLIC(decl) = 1;
-         // Methods have to be public even if they are hidden because
-         // they can be pulled into type descriptors when using
-         // anonymous fields.
-         else if (!Gogo::is_hidden_name(no->name())
-                  || this->type_->is_method())
-           {
-             TREE_PUBLIC(decl) = 1;
-             std::string asm_name = gogo->unique_prefix();
-             asm_name.append(1, '.');
-             asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
-             SET_DECL_ASSEMBLER_NAME(decl,
-                                     get_identifier_from_string(asm_name));
-           }
-
-         // Why do we have to do this in the frontend?
-         tree restype = TREE_TYPE(functype);
-         tree resdecl = build_decl(this->location(), RESULT_DECL, NULL_TREE,
-                                   restype);
-         DECL_ARTIFICIAL(resdecl) = 1;
-         DECL_IGNORED_P(resdecl) = 1;
-         DECL_CONTEXT(resdecl) = decl;
-         DECL_RESULT(decl) = resdecl;
-
-         if (this->enclosing_ != NULL)
-           DECL_STATIC_CHAIN(decl) = 1;
-
-         // If a function calls the predeclared recover function, we
-         // can't inline it, because recover behaves differently in a
-         // function passed directly to defer.
-         if (this->calls_recover_ && !this->is_recover_thunk_)
-           DECL_UNINLINABLE(decl) = 1;
-
-         // If this is a thunk created to call a function which calls
-         // the predeclared recover function, we need to disable
-         // stack splitting for the thunk.
-         if (this->is_recover_thunk_)
-           {
-             tree attr = get_identifier("__no_split_stack__");
-             DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
-           }
-
-         go_preserve_from_gc(decl);
-
-         if (this->closure_var_ != NULL)
-           {
-             push_struct_function(decl);
-
-             tree closure_decl = this->closure_var_->get_tree(gogo, no);
-
-             DECL_ARTIFICIAL(closure_decl) = 1;
-             DECL_IGNORED_P(closure_decl) = 1;
-             TREE_USED(closure_decl) = 1;
-             DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl);
-             TREE_READONLY(closure_decl) = 1;
-
-             DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl;
-             pop_cfun();
-           }
-       }
-    }
-  return this->fndecl_;
-}
-
-// Get a tree for a function declaration.
-
-tree
-Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
-{
-  if (this->fndecl_ == NULL_TREE)
-    {
-      // Let Go code use an asm declaration to pick up a builtin
-      // function.
-      if (!this->asm_name_.empty())
-       {
-         std::map<std::string, tree>::const_iterator p =
-           builtin_functions.find(this->asm_name_);
-         if (p != builtin_functions.end())
-           {
-             this->fndecl_ = p->second;
-             return this->fndecl_;
-           }
-       }
-
-      tree functype = this->fntype_->get_tree(gogo);
-      tree decl;
-      if (functype == error_mark_node)
-       decl = error_mark_node;
-      else
-       {
-         // The type of a function comes back as a pointer, but we
-         // want the real function type for a function declaration.
-         gcc_assert(POINTER_TYPE_P(functype));
-         functype = TREE_TYPE(functype);
-         decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
-         TREE_PUBLIC(decl) = 1;
-         DECL_EXTERNAL(decl) = 1;
-
-         if (this->asm_name_.empty())
-           {
-             std::string asm_name = (no->package() == NULL
-                                     ? gogo->unique_prefix()
-                                     : no->package()->unique_prefix());
-             asm_name.append(1, '.');
-             asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
-             SET_DECL_ASSEMBLER_NAME(decl,
-                                     get_identifier_from_string(asm_name));
-           }
-       }
-      this->fndecl_ = decl;
-      go_preserve_from_gc(decl);
-    }
-  return this->fndecl_;
-}
-
-// We always pass the receiver to a method as a pointer.  If the
-// receiver is actually declared as a non-pointer type, then we copy
-// the value into a local variable, so that it has the right type.  In
-// this function we create the real PARM_DECL to use, and set
-// DEC_INITIAL of the var_decl to be the value passed in.
-
-tree
-Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
-{
-  // If the function takes the address of a receiver which is passed
-  // by value, then we will have an INDIRECT_REF here.  We need to get
-  // the real variable.
-  bool is_in_heap = no->var_value()->is_in_heap();
-  tree val_type;
-  if (TREE_CODE(var_decl) != INDIRECT_REF)
-    {
-      gcc_assert(!is_in_heap);
-      val_type = TREE_TYPE(var_decl);
-    }
-  else
-    {
-      gcc_assert(is_in_heap);
-      var_decl = TREE_OPERAND(var_decl, 0);
-      gcc_assert(POINTER_TYPE_P(TREE_TYPE(var_decl)));
-      val_type = TREE_TYPE(TREE_TYPE(var_decl));
-    }
-  gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
-  source_location loc = DECL_SOURCE_LOCATION(var_decl);
-  std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
-  name += ".pointer";
-  tree id = get_identifier_from_string(name);
-  tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
-  DECL_CONTEXT(parm_decl) = current_function_decl;
-  DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
-
-  gcc_assert(DECL_INITIAL(var_decl) == NULL_TREE);
-  // The receiver might be passed as a null pointer.
-  tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node, parm_decl,
-                              fold_convert_loc(loc, TREE_TYPE(parm_decl),
-                                               null_pointer_node));
-  tree ind = build_fold_indirect_ref_loc(loc, parm_decl);
-  TREE_THIS_NOTRAP(ind) = 1;
-  tree zero_init = no->var_value()->type()->get_init_tree(gogo, false);
-  tree init = fold_build3_loc(loc, COND_EXPR, TREE_TYPE(ind),
-                             check, ind, zero_init);
-
-  if (is_in_heap)
-    {
-      tree size = TYPE_SIZE_UNIT(val_type);
-      tree space = gogo->allocate_memory(no->var_value()->type(), size,
-                                        no->location());
-      space = save_expr(space);
-      space = fold_convert(build_pointer_type(val_type), space);
-      tree spaceref = build_fold_indirect_ref_loc(no->location(), space);
-      TREE_THIS_NOTRAP(spaceref) = 1;
-      tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node,
-                                  parm_decl,
-                                  fold_convert_loc(loc, TREE_TYPE(parm_decl),
-                                                   null_pointer_node));
-      tree parmref = build_fold_indirect_ref_loc(no->location(), parm_decl);
-      TREE_THIS_NOTRAP(parmref) = 1;
-      tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
-                                spaceref, parmref);
-      init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
-                            build3(COND_EXPR, void_type_node,
-                                   check, set, NULL_TREE),
-                            space);
-    }
-
-  DECL_INITIAL(var_decl) = init;
-
-  return parm_decl;
-}
-
-// If we take the address of a parameter, then we need to copy it into
-// the heap.  We will access it as a local variable via an
-// indirection.
-
-tree
-Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree ref)
-{
-  gcc_assert(TREE_CODE(ref) == INDIRECT_REF);
-
-  tree var_decl = TREE_OPERAND(ref, 0);
-  gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
-  source_location loc = DECL_SOURCE_LOCATION(var_decl);
-
-  std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
-  name += ".param";
-  tree id = get_identifier_from_string(name);
-
-  tree type = TREE_TYPE(var_decl);
-  gcc_assert(POINTER_TYPE_P(type));
-  type = TREE_TYPE(type);
-
-  tree parm_decl = build_decl(loc, PARM_DECL, id, type);
-  DECL_CONTEXT(parm_decl) = current_function_decl;
-  DECL_ARG_TYPE(parm_decl) = type;
-
-  tree size = TYPE_SIZE_UNIT(type);
-  tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
-  space = save_expr(space);
-  space = fold_convert(TREE_TYPE(var_decl), space);
-  tree spaceref = build_fold_indirect_ref_loc(loc, space);
-  TREE_THIS_NOTRAP(spaceref) = 1;
-  tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
-                    build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
-                    space);
-  DECL_INITIAL(var_decl) = init;
-
-  return parm_decl;
-}
-
-// Get a tree for function code.
-
-void
-Function::build_tree(Gogo* gogo, Named_object* named_function)
-{
-  tree fndecl = this->fndecl_;
-  gcc_assert(fndecl != NULL_TREE);
-
-  tree params = NULL_TREE;
-  tree* pp = &params;
-
-  tree declare_vars = NULL_TREE;
-  for (Bindings::const_definitions_iterator p =
-        this->block_->bindings()->begin_definitions();
-       p != this->block_->bindings()->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
-       {
-         *pp = (*p)->get_tree(gogo, named_function);
-
-         // We always pass the receiver to a method as a pointer.  If
-         // the receiver is declared as a non-pointer type, then we
-         // copy the value into a local variable.
-         if ((*p)->var_value()->is_receiver()
-             && (*p)->var_value()->type()->points_to() == NULL)
-           {
-             tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
-             tree var = *pp;
-             if (TREE_CODE(var) == INDIRECT_REF)
-               var = TREE_OPERAND(var, 0);
-             gcc_assert(TREE_CODE(var) == VAR_DECL);
-             DECL_CHAIN(var) = declare_vars;
-             declare_vars = var;
-             *pp = parm_decl;
-           }
-         else if ((*p)->var_value()->is_in_heap())
-           {
-             // If we take the address of a parameter, then we need
-             // to copy it into the heap.
-             tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
-             gcc_assert(TREE_CODE(*pp) == INDIRECT_REF);
-             tree var_decl = TREE_OPERAND(*pp, 0);
-             gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
-             DECL_CHAIN(var_decl) = declare_vars;
-             declare_vars = var_decl;
-             *pp = parm_decl;
-           }
-
-         if (*pp != error_mark_node)
-           {
-             gcc_assert(TREE_CODE(*pp) == PARM_DECL);
-             pp = &DECL_CHAIN(*pp);
-           }
-       }
-      else if ((*p)->is_result_variable())
-       {
-         tree var_decl = (*p)->get_tree(gogo, named_function);
-         if ((*p)->result_var_value()->is_in_heap())
-           {
-             gcc_assert(TREE_CODE(var_decl) == INDIRECT_REF);
-             var_decl = TREE_OPERAND(var_decl, 0);
-           }
-         gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
-         DECL_CHAIN(var_decl) = declare_vars;
-         declare_vars = var_decl;
-       }
-    }
-  *pp = NULL_TREE;
-
-  DECL_ARGUMENTS(fndecl) = params;
-
-  if (this->block_ != NULL)
-    {
-      gcc_assert(DECL_INITIAL(fndecl) == NULL_TREE);
-
-      // Declare variables if necessary.
-      tree bind = NULL_TREE;
-      if (declare_vars != NULL_TREE)
-       {
-         tree block = make_node(BLOCK);
-         BLOCK_SUPERCONTEXT(block) = fndecl;
-         DECL_INITIAL(fndecl) = block;
-         BLOCK_VARS(block) = declare_vars;
-         TREE_USED(block) = 1;
-         bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
-                       NULL_TREE, block);
-         TREE_SIDE_EFFECTS(bind) = 1;
-       }
-
-      // Build the trees for all the statements in the function.
-      Translate_context context(gogo, named_function, NULL, NULL_TREE);
-      tree code = this->block_->get_tree(&context);
-
-      tree init = NULL_TREE;
-      tree except = NULL_TREE;
-      tree fini = NULL_TREE;
-
-      // Initialize variables if necessary.
-      for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
-       {
-         tree dv = build1(DECL_EXPR, void_type_node, v);
-         SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
-         append_to_statement_list(dv, &init);
-       }
-
-      // If we have a defer stack, initialize it at the start of a
-      // function.
-      if (this->defer_stack_ != NULL_TREE)
-       {
-         tree defer_init = build1(DECL_EXPR, void_type_node,
-                                  this->defer_stack_);
-         SET_EXPR_LOCATION(defer_init, this->block_->start_location());
-         append_to_statement_list(defer_init, &init);
-
-         // Clean up the defer stack when we leave the function.
-         this->build_defer_wrapper(gogo, named_function, &except, &fini);
-       }
-
-      if (code != NULL_TREE && code != error_mark_node)
-       {
-         if (init != NULL_TREE)
-           code = build2(COMPOUND_EXPR, void_type_node, init, code);
-         if (except != NULL_TREE)
-           code = build2(TRY_CATCH_EXPR, void_type_node, code,
-                         build2(CATCH_EXPR, void_type_node, NULL, except));
-         if (fini != NULL_TREE)
-           code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
-       }
-
-      // Stick the code into the block we built for the receiver, if
-      // we built on.
-      if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
-       {
-         BIND_EXPR_BODY(bind) = code;
-         code = bind;
-       }
-
-      DECL_SAVED_TREE(fndecl) = code;
-    }
-}
-
-// Build the wrappers around function code needed if the function has
-// any defer statements.  This sets *EXCEPT to an exception handler
-// and *FINI to a finally handler.
-
-void
-Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
-                             tree *except, tree *fini)
-{
-  source_location end_loc = this->block_->end_location();
-
-  // Add an exception handler.  This is used if a panic occurs.  Its
-  // purpose is to stop the stack unwinding if a deferred function
-  // calls recover.  There are more details in
-  // libgo/runtime/go-unwind.c.
-  tree stmt_list = NULL_TREE;
-  static tree check_fndecl;
-  tree call = Gogo::call_builtin(&check_fndecl,
-                                end_loc,
-                                "__go_check_defer",
-                                1,
-                                void_type_node,
-                                ptr_type_node,
-                                this->defer_stack(end_loc));
-  append_to_statement_list(call, &stmt_list);
-
-  tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
-  tree set;
-  if (retval == NULL_TREE)
-    set = NULL_TREE;
-  else
-    set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
-                         DECL_RESULT(this->fndecl_), retval);
-  tree ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
-  append_to_statement_list(ret_stmt, &stmt_list);
-
-  gcc_assert(*except == NULL_TREE);
-  *except = stmt_list;
-
-  // Add some finally code to run the defer functions.  This is used
-  // both in the normal case, when no panic occurs, and also if a
-  // panic occurs to run any further defer functions.  Of course, it
-  // is possible for a defer function to call panic which should be
-  // caught by another defer function.  To handle that we use a loop.
-  //  finish:
-  //   try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
-  //   if (return values are named) return named_vals;
-
-  stmt_list = NULL;
-
-  tree label = create_artificial_label(end_loc);
-  tree define_label = fold_build1_loc(end_loc, LABEL_EXPR, void_type_node,
-                                     label);
-  append_to_statement_list(define_label, &stmt_list);
-
-  static tree undefer_fndecl;
-  tree undefer = Gogo::call_builtin(&undefer_fndecl,
-                                   end_loc,
-                                   "__go_undefer",
-                                   1,
-                                   void_type_node,
-                                   ptr_type_node,
-                                   this->defer_stack(end_loc));
-  TREE_NOTHROW(undefer_fndecl) = 0;
-
-  tree defer = Gogo::call_builtin(&check_fndecl,
-                                 end_loc,
-                                 "__go_check_defer",
-                                 1,
-                                 void_type_node,
-                                 ptr_type_node,
-                                 this->defer_stack(end_loc));
-  tree jump = fold_build1_loc(end_loc, GOTO_EXPR, void_type_node, label);
-  tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
-  catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
-  tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
-
-  append_to_statement_list(try_catch, &stmt_list);
-
-  if (this->type_->results() != NULL
-      && !this->type_->results()->empty()
-      && !this->type_->results()->front().name().empty())
-    {
-      // If the result variables are named, we need to return them
-      // again, because they might have been changed by a defer
-      // function.
-      retval = this->return_value(gogo, named_function, end_loc,
-                                 &stmt_list);
-      set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
-                           DECL_RESULT(this->fndecl_), retval);
-      ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
-      append_to_statement_list(ret_stmt, &stmt_list);
-    }
-  
-  gcc_assert(*fini == NULL_TREE);
-  *fini = stmt_list;
-}
-
-// Return the value to assign to DECL_RESULT(this->fndecl_).  This may
-// also add statements to STMT_LIST, which need to be executed before
-// the assignment.  This is used for a return statement with no
-// explicit values.
-
-tree
-Function::return_value(Gogo* gogo, Named_object* named_function,
-                      source_location location, tree* stmt_list) const
-{
-  const Typed_identifier_list* results = this->type_->results();
-  if (results == NULL || results->empty())
-    return NULL_TREE;
-
-  // In the case of an exception handler created for functions with
-  // defer statements, the result variables may be unnamed.
-  bool is_named = !results->front().name().empty();
-  if (is_named)
-    gcc_assert(this->named_results_ != NULL
-              && this->named_results_->size() == results->size());
-
-  tree retval;
-  if (results->size() == 1)
-    {
-      if (is_named)
-       return this->named_results_->front()->get_tree(gogo, named_function);
-      else
-       return results->front().type()->get_init_tree(gogo, false);
-    }
-  else
-    {
-      tree rettype = TREE_TYPE(DECL_RESULT(this->fndecl_));
-      retval = create_tmp_var(rettype, "RESULT");
-      tree field = TYPE_FIELDS(rettype);
-      int index = 0;
-      for (Typed_identifier_list::const_iterator pr = results->begin();
-          pr != results->end();
-          ++pr, ++index, field = DECL_CHAIN(field))
-       {
-         gcc_assert(field != NULL);
-         tree val;
-         if (is_named)
-           val = (*this->named_results_)[index]->get_tree(gogo,
-                                                          named_function);
-         else
-           val = pr->type()->get_init_tree(gogo, false);
-         tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
-                                    build3(COMPONENT_REF, TREE_TYPE(field),
-                                           retval, field, NULL_TREE),
-                                    val);
-         append_to_statement_list(set, stmt_list);
-       }
-      return retval;
-    }
-}
-
-// Get the tree for the variable holding the defer stack for this
-// function.  At least at present, the value of this variable is not
-// used.  However, a pointer to this variable is used as a marker for
-// the functions on the defer stack associated with this function.
-// Doing things this way permits inlining a function which uses defer.
-
-tree
-Function::defer_stack(source_location location)
-{
-  if (this->defer_stack_ == NULL_TREE)
-    {
-      tree var = create_tmp_var(ptr_type_node, "DEFER");
-      DECL_INITIAL(var) = null_pointer_node;
-      DECL_SOURCE_LOCATION(var) = location;
-      TREE_ADDRESSABLE(var) = 1;
-      this->defer_stack_ = var;
-    }
-  return fold_convert_loc(location, ptr_type_node,
-                         build_fold_addr_expr_loc(location,
-                                                  this->defer_stack_));
-}
-
-// Get a tree for the statements in a block.
-
-tree
-Block::get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-
-  tree block = make_node(BLOCK);
-
-  // Put the new block into the block tree.
-
-  if (context->block() == NULL)
-    {
-      tree fndecl;
-      if (context->function() != NULL)
-       fndecl = context->function()->func_value()->get_decl();
-      else
-       fndecl = current_function_decl;
-      gcc_assert(fndecl != NULL_TREE);
-
-      // We may have already created a block for the receiver.
-      if (DECL_INITIAL(fndecl) == NULL_TREE)
-       {
-         BLOCK_SUPERCONTEXT(block) = fndecl;
-         DECL_INITIAL(fndecl) = block;
-       }
-      else
-       {
-         tree superblock_tree = DECL_INITIAL(fndecl);
-         BLOCK_SUPERCONTEXT(block) = superblock_tree;
-         gcc_assert(BLOCK_CHAIN(block) == NULL_TREE);
-         BLOCK_CHAIN(block) = block;
-       }
-    }
-  else
-    {
-      tree superblock_tree = context->block_tree();
-      BLOCK_SUPERCONTEXT(block) = superblock_tree;
-      tree* pp;
-      for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
-          *pp != NULL_TREE;
-          pp = &BLOCK_CHAIN(*pp))
-       ;
-      *pp = block;
-    }
-
-  // Expand local variables in the block.
-
-  tree* pp = &BLOCK_VARS(block);
-  for (Bindings::const_definitions_iterator pv =
-        this->bindings_->begin_definitions();
-       pv != this->bindings_->end_definitions();
-       ++pv)
-    {
-      if ((!(*pv)->is_variable() || !(*pv)->var_value()->is_parameter())
-         && !(*pv)->is_result_variable()
-         && !(*pv)->is_const())
-       {
-         tree var = (*pv)->get_tree(gogo, context->function());
-         if (var != error_mark_node && TREE_TYPE(var) != error_mark_node)
-           {
-             if ((*pv)->is_variable() && (*pv)->var_value()->is_in_heap())
-               {
-                 gcc_assert(TREE_CODE(var) == INDIRECT_REF);
-                 var = TREE_OPERAND(var, 0);
-                 gcc_assert(TREE_CODE(var) == VAR_DECL);
-               }
-             *pp = var;
-             pp = &DECL_CHAIN(*pp);
-           }
-       }
-    }
-  *pp = NULL_TREE;
-
-  Translate_context subcontext(context->gogo(), context->function(),
-                              this, block);
-
-  tree statements = NULL_TREE;
-
-  // Expand the statements.
-
-  for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
-       p != this->statements_.end();
-       ++p)
-    {
-      tree statement = (*p)->get_tree(&subcontext);
-      if (statement != error_mark_node)
-       append_to_statement_list(statement, &statements);
-    }
-
-  TREE_USED(block) = 1;
-
-  tree bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block), statements,
-                    block);
-  TREE_SIDE_EFFECTS(bind) = 1;
-
-  return bind;
-}
-
-// Get the LABEL_DECL for a label.
-
-tree
-Label::get_decl()
-{
-  if (this->decl_ == NULL)
-    {
-      tree id = get_identifier_from_string(this->name_);
-      this->decl_ = build_decl(this->location_, LABEL_DECL, id, void_type_node);
-      DECL_CONTEXT(this->decl_) = current_function_decl;
-    }
-  return this->decl_;
-}
-
-// Return an expression for the address of this label.
-
-tree
-Label::get_addr(source_location location)
-{
-  tree decl = this->get_decl();
-  TREE_USED(decl) = 1;
-  TREE_ADDRESSABLE(decl) = 1;
-  return fold_convert_loc(location, ptr_type_node,
-                         build_fold_addr_expr_loc(location, decl));
-}
-
-// Get the LABEL_DECL for an unnamed label.
-
-tree
-Unnamed_label::get_decl()
-{
-  if (this->decl_ == NULL)
-    this->decl_ = create_artificial_label(this->location_);
-  return this->decl_;
-}
-
-// Get the LABEL_EXPR for an unnamed label.
-
-tree
-Unnamed_label::get_definition()
-{
-  tree t = build1(LABEL_EXPR, void_type_node, this->get_decl());
-  SET_EXPR_LOCATION(t, this->location_);
-  return t;
-}
-
-// Return a goto to this label.
-
-tree
-Unnamed_label::get_goto(source_location location)
-{
-  tree t = build1(GOTO_EXPR, void_type_node, this->get_decl());
-  SET_EXPR_LOCATION(t, location);
-  return t;
-}
-
-// Return the integer type to use for a size.
-
-GO_EXTERN_C
-tree
-go_type_for_size(unsigned int bits, int unsignedp)
-{
-  const char* name;
-  switch (bits)
-    {
-    case 8:
-      name = unsignedp ? "uint8" : "int8";
-      break;
-    case 16:
-      name = unsignedp ? "uint16" : "int16";
-      break;
-    case 32:
-      name = unsignedp ? "uint32" : "int32";
-      break;
-    case 64:
-      name = unsignedp ? "uint64" : "int64";
-      break;
-    default:
-      if (bits == POINTER_SIZE && unsignedp)
-       name = "uintptr";
-      else
-       return NULL_TREE;
-    }
-  Type* type = Type::lookup_integer_type(name);
-  return type->get_tree(go_get_gogo());
-}
-
-// Return the type to use for a mode.
-
-GO_EXTERN_C
-tree
-go_type_for_mode(enum machine_mode mode, int unsignedp)
-{
-  // FIXME: This static_cast should be in machmode.h.
-  enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
-  if (mc == MODE_INT)
-    return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
-  else if (mc == MODE_FLOAT)
-    {
-      Type* type;
-      switch (GET_MODE_BITSIZE (mode))
-       {
-       case 32:
-         type = Type::lookup_float_type("float32");
-         break;
-       case 64:
-         type = Type::lookup_float_type("float64");
-         break;
-       default:
-         // We have to check for long double in order to support
-         // i386 excess precision.
-         if (mode == TYPE_MODE(long_double_type_node))
-           return long_double_type_node;
-         return NULL_TREE;
-       }
-      return type->float_type()->type_tree();
-    }
-  else if (mc == MODE_COMPLEX_FLOAT)
-    {
-      Type *type;
-      switch (GET_MODE_BITSIZE (mode))
-       {
-       case 64:
-         type = Type::lookup_complex_type("complex64");
-         break;
-       case 128:
-         type = Type::lookup_complex_type("complex128");
-         break;
-       default:
-         // We have to check for long double in order to support
-         // i386 excess precision.
-         if (mode == TYPE_MODE(complex_long_double_type_node))
-           return complex_long_double_type_node;
-         return NULL_TREE;
-       }
-      return type->complex_type()->type_tree();
-    }
-  else
-    return NULL_TREE;
-}
-
-// Return a tree which allocates SIZE bytes which will holds value of
-// type TYPE.
-
-tree
-Gogo::allocate_memory(Type* type, tree size, source_location location)
-{
-  // If the package imports unsafe, then it may play games with
-  // pointers that look like integers.
-  if (this->imported_unsafe_ || type->has_pointer())
-    {
-      static tree new_fndecl;
-      return Gogo::call_builtin(&new_fndecl,
-                               location,
-                               "__go_new",
-                               1,
-                               ptr_type_node,
-                               sizetype,
-                               size);
-    }
-  else
-    {
-      static tree new_nopointers_fndecl;
-      return Gogo::call_builtin(&new_nopointers_fndecl,
-                               location,
-                               "__go_new_nopointers",
-                               1,
-                               ptr_type_node,
-                               sizetype,
-                               size);
-    }
-}
-
-// Build a builtin struct with a list of fields.  The name is
-// STRUCT_NAME.  STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
-// node; this exists so that the struct can have fields which point to
-// itself.  If PTYPE is not NULL, store the result in *PTYPE.  There
-// are NFIELDS fields.  Each field is a name (a const char*) followed
-// by a type (a tree).
-
-tree
-Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
-                    int nfields, ...)
-{
-  if (ptype != NULL && *ptype != NULL_TREE)
-    return *ptype;
-
-  va_list ap;
-  va_start(ap, nfields);
-
-  tree fields = NULL_TREE;
-  for (int i = 0; i < nfields; ++i)
-    {
-      const char* field_name = va_arg(ap, const char*);
-      tree type = va_arg(ap, tree);
-      if (type == error_mark_node)
-       {
-         if (ptype != NULL)
-           *ptype = error_mark_node;
-         return error_mark_node;
-       }
-      tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
-                             get_identifier(field_name), type);
-      DECL_CHAIN(field) = fields;
-      fields = field;
-    }
-
-  va_end(ap);
-
-  if (struct_type == NULL_TREE)
-    struct_type = make_node(RECORD_TYPE);
-  finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
-
-  if (ptype != NULL)
-    {
-      go_preserve_from_gc(struct_type);
-      *ptype = struct_type;
-    }
-
-  return struct_type;
-}
-
-// Return a type to use for pointer to const char for a string.
-
-tree
-Gogo::const_char_pointer_type_tree()
-{
-  static tree type;
-  if (type == NULL_TREE)
-    {
-      tree const_char_type = build_qualified_type(unsigned_char_type_node,
-                                                 TYPE_QUAL_CONST);
-      type = build_pointer_type(const_char_type);
-      go_preserve_from_gc(type);
-    }
-  return type;
-}
-
-// Return a tree for a string constant.
-
-tree
-Gogo::string_constant_tree(const std::string& val)
-{
-  tree index_type = build_index_type(size_int(val.length()));
-  tree const_char_type = build_qualified_type(unsigned_char_type_node,
-                                             TYPE_QUAL_CONST);
-  tree string_type = build_array_type(const_char_type, index_type);
-  string_type = build_variant_type_copy(string_type);
-  TYPE_STRING_FLAG(string_type) = 1;
-  tree string_val = build_string(val.length(), val.data());
-  TREE_TYPE(string_val) = string_type;
-  return string_val;
-}
-
-// Return a tree for a Go string constant.
-
-tree
-Gogo::go_string_constant_tree(const std::string& val)
-{
-  tree string_type = Type::make_string_type()->get_tree(this);
-
-  VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(string_type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
-  elt->index = field;
-  tree str = Gogo::string_constant_tree(val);
-  elt->value = fold_convert(TREE_TYPE(field),
-                           build_fold_addr_expr(str));
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
-  elt->index = field;
-  elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
-
-  tree constructor = build_constructor(string_type, init);
-  TREE_READONLY(constructor) = 1;
-  TREE_CONSTANT(constructor) = 1;
-
-  return constructor;
-}
-
-// Return a tree for a pointer to a Go string constant.  This is only
-// used for type descriptors, so we return a pointer to a constant
-// decl.
-
-tree
-Gogo::ptr_go_string_constant_tree(const std::string& val)
-{
-  tree pval = this->go_string_constant_tree(val);
-
-  tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
-                        create_tmp_var_name("SP"), TREE_TYPE(pval));
-  DECL_EXTERNAL(decl) = 0;
-  TREE_PUBLIC(decl) = 0;
-  TREE_USED(decl) = 1;
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  TREE_STATIC(decl) = 1;
-  DECL_ARTIFICIAL(decl) = 1;
-  DECL_INITIAL(decl) = pval;
-  rest_of_decl_compilation(decl, 1, 0);
-
-  return build_fold_addr_expr(decl);
-}
-
-// Build the type of the struct that holds a slice for the given
-// element type.
-
-tree
-Gogo::slice_type_tree(tree element_type_tree)
-{
-  // We use int for the count and capacity fields in a slice header.
-  // This matches 6g.  The language definition guarantees that we
-  // can't allocate space of a size which does not fit in int
-  // anyhow. FIXME: integer_type_node is the the C type "int" but is
-  // not necessarily the Go type "int".  They will differ when the C
-  // type "int" has fewer than 32 bits.
-  return Gogo::builtin_struct(NULL, "__go_slice", NULL_TREE, 3,
-                             "__values",
-                             build_pointer_type(element_type_tree),
-                             "__count",
-                             integer_type_node,
-                             "__capacity",
-                             integer_type_node);
-}
-
-// Given the tree for a slice type, return the tree for the type of
-// the elements of the slice.
-
-tree
-Gogo::slice_element_type_tree(tree slice_type_tree)
-{
-  gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE
-            && POINTER_TYPE_P(TREE_TYPE(TYPE_FIELDS(slice_type_tree))));
-  return TREE_TYPE(TREE_TYPE(TYPE_FIELDS(slice_type_tree)));
-}
-
-// Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
-// the slice.  VALUES is the value pointer and COUNT is the number of
-// entries.  If CAPACITY is not NULL, it is the capacity; otherwise
-// the capacity and the count are the same.
-
-tree
-Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
-                       tree capacity)
-{
-  gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-  tree field = TYPE_FIELDS(slice_type_tree);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  elt->index = field;
-  gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
-            == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
-  elt->value = values;
-
-  count = fold_convert(sizetype, count);
-  if (capacity == NULL_TREE)
-    {
-      count = save_expr(count);
-      capacity = count;
-    }
-
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), count);
-
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), capacity);
-
-  return build_constructor(slice_type_tree, init);
-}
-
-// Build a constructor for an empty slice.
-
-tree
-Gogo::empty_slice_constructor(tree slice_type_tree)
-{
-  tree element_field = TYPE_FIELDS(slice_type_tree);
-  tree ret = Gogo::slice_constructor(slice_type_tree,
-                                    fold_convert(TREE_TYPE(element_field),
-                                                 null_pointer_node),
-                                    size_zero_node,
-                                    size_zero_node);
-  TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Build a map descriptor for a map of type MAPTYPE.
-
-tree
-Gogo::map_descriptor(Map_type* maptype)
-{
-  if (this->map_descriptors_ == NULL)
-    this->map_descriptors_ = new Map_descriptors(10);
-
-  std::pair<const Map_type*, tree> val(maptype, NULL);
-  std::pair<Map_descriptors::iterator, bool> ins =
-    this->map_descriptors_->insert(val);
-  Map_descriptors::iterator p = ins.first;
-  if (!ins.second)
-    {
-      gcc_assert(p->second != NULL_TREE && DECL_P(p->second));
-      return build_fold_addr_expr(p->second);
-    }
-
-  Type* keytype = maptype->key_type();
-  Type* valtype = maptype->val_type();
-
-  std::string mangled_name = ("__go_map_" + maptype->mangled_name(this));
-
-  tree id = get_identifier_from_string(mangled_name);
-
-  // Get the type of the map descriptor.  This is __go_map_descriptor
-  // in libgo/map.h.
-
-  tree struct_type = this->map_descriptor_type();
-
-  // The map entry type is a struct with three fields.  This struct is
-  // specific to MAPTYPE.  Build it.
-
-  tree map_entry_type = make_node(RECORD_TYPE);
-
-  map_entry_type = Gogo::builtin_struct(NULL, "__map", map_entry_type, 3,
-                                       "__next",
-                                       build_pointer_type(map_entry_type),
-                                       "__key",
-                                       keytype->get_tree(this),
-                                       "__val",
-                                       valtype->get_tree(this));
-  if (map_entry_type == error_mark_node)
-    return error_mark_node;
-
-  tree map_entry_key_field = DECL_CHAIN(TYPE_FIELDS(map_entry_type));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_key_field)),
-                   "__key") == 0);
-
-  tree map_entry_val_field = DECL_CHAIN(map_entry_key_field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_val_field)),
-                   "__val") == 0);
-
-  // Initialize the entries.
-
-  tree map_descriptor_field = TYPE_FIELDS(struct_type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_descriptor_field)),
-                   "__map_descriptor") == 0);
-  tree entry_size_field = DECL_CHAIN(map_descriptor_field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(entry_size_field)),
-                   "__entry_size") == 0);
-  tree key_offset_field = DECL_CHAIN(entry_size_field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(key_offset_field)),
-                   "__key_offset") == 0);
-  tree val_offset_field = DECL_CHAIN(key_offset_field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(val_offset_field)),
-                   "__val_offset") == 0);
-
-  VEC(constructor_elt, gc)* descriptor = VEC_alloc(constructor_elt, gc, 6);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = map_descriptor_field;
-  elt->value = maptype->type_descriptor_pointer(this);
-
-  elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = entry_size_field;
-  elt->value = TYPE_SIZE_UNIT(map_entry_type);
-
-  elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = key_offset_field;
-  elt->value = byte_position(map_entry_key_field);
-
-  elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = val_offset_field;
-  elt->value = byte_position(map_entry_val_field);
-
-  tree constructor = build_constructor(struct_type, descriptor);
-
-  tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, struct_type);
-  TREE_STATIC(decl) = 1;
-  TREE_USED(decl) = 1;
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  DECL_INITIAL(decl) = constructor;
-  make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
-  resolve_unique_section(decl, 1, 0);
-
-  rest_of_decl_compilation(decl, 1, 0);
-
-  go_preserve_from_gc(decl);
-  p->second = decl;
-
-  return build_fold_addr_expr(decl);
-}
-
-// Return a tree for the type of a map descriptor.  This is struct
-// __go_map_descriptor in libgo/runtime/map.h.  This is the same for
-// all map types.
-
-tree
-Gogo::map_descriptor_type()
-{
-  static tree struct_type;
-  tree dtype = Type::make_type_descriptor_type()->get_tree(this);
-  dtype = build_qualified_type(dtype, TYPE_QUAL_CONST);
-  return Gogo::builtin_struct(&struct_type, "__go_map_descriptor", NULL_TREE,
-                             4,
-                             "__map_descriptor",
-                             build_pointer_type(dtype),
-                             "__entry_size",
-                             sizetype,
-                             "__key_offset",
-                             sizetype,
-                             "__val_offset",
-                             sizetype);
-}
-
-// Return the name to use for a type descriptor decl for TYPE.  This
-// is used when TYPE does not have a name.
-
-std::string
-Gogo::unnamed_type_descriptor_decl_name(const Type* type)
-{
-  return "__go_td_" + type->mangled_name(this);
-}
-
-// Return the name to use for a type descriptor decl for a type named
-// NAME, defined in the function IN_FUNCTION.  IN_FUNCTION will
-// normally be NULL.
-
-std::string
-Gogo::type_descriptor_decl_name(const Named_object* no,
-                               const Named_object* in_function)
-{
-  std::string ret = "__go_tdn_";
-  if (no->type_value()->is_builtin())
-    gcc_assert(in_function == NULL);
-  else
-    {
-      const std::string& unique_prefix(no->package() == NULL
-                                      ? this->unique_prefix()
-                                      : no->package()->unique_prefix());
-      const std::string& package_name(no->package() == NULL
-                                     ? this->package_name()
-                                     : no->package()->name());
-      ret.append(unique_prefix);
-      ret.append(1, '.');
-      ret.append(package_name);
-      ret.append(1, '.');
-      if (in_function != NULL)
-       {
-         ret.append(Gogo::unpack_hidden_name(in_function->name()));
-         ret.append(1, '.');
-       }
-    }
-  ret.append(no->name());
-  return ret;
-}
-
-// Where a type descriptor decl should be defined.
-
-Gogo::Type_descriptor_location
-Gogo::type_descriptor_location(const Type* type)
-{
-  const Named_type* name = type->named_type();
-  if (name != NULL)
-    {
-      if (name->named_object()->package() != NULL)
-       {
-         // This is a named type defined in a different package.  The
-         // descriptor should be defined in that package.
-         return TYPE_DESCRIPTOR_UNDEFINED;
-       }
-      else if (name->is_builtin())
-       {
-         // We create the descriptor for a builtin type whenever we
-         // need it.
-         return TYPE_DESCRIPTOR_COMMON;
-       }
-      else
-       {
-         // This is a named type defined in this package.  The
-         // descriptor should be defined here.
-         return TYPE_DESCRIPTOR_DEFINED;
-       }
-    }
-  else
-    {
-      if (type->points_to() != NULL
-         && type->points_to()->named_type() != NULL
-         && type->points_to()->named_type()->named_object()->package() != NULL)
-       {
-         // This is an unnamed pointer to a named type defined in a
-         // different package.  The descriptor should be defined in
-         // that package.
-         return TYPE_DESCRIPTOR_UNDEFINED;
-       }
-      else
-       {
-         // This is an unnamed type.  The descriptor could be defined
-         // in any package where it is needed, and the linker will
-         // pick one descriptor to keep.
-         return TYPE_DESCRIPTOR_COMMON;
-       }
-    }
-}
-
-// Build a type descriptor decl for TYPE.  INITIALIZER is a struct
-// composite literal which initializers the type descriptor.
-
-void
-Gogo::build_type_descriptor_decl(const Type* type, Expression* initializer,
-                                tree* pdecl)
-{
-  const Named_type* name = type->named_type();
-
-  // We can have multiple instances of unnamed types, but we only want
-  // to emit the type descriptor once.  We use a hash table to handle
-  // this.  This is not necessary for named types, as they are unique,
-  // and we store the type descriptor decl in the type itself.
-  tree* phash = NULL;
-  if (name == NULL)
-    {
-      if (this->type_descriptor_decls_ == NULL)
-       this->type_descriptor_decls_ = new Type_descriptor_decls(10);
-
-      std::pair<Type_descriptor_decls::iterator, bool> ins =
-       this->type_descriptor_decls_->insert(std::make_pair(type, NULL_TREE));
-      if (!ins.second)
-       {
-         // We've already built a type descriptor for this type.
-         *pdecl = ins.first->second;
-         return;
-       }
-      phash = &ins.first->second;
-    }
-
-  std::string decl_name;
-  if (name == NULL)
-    decl_name = this->unnamed_type_descriptor_decl_name(type);
-  else
-    decl_name = this->type_descriptor_decl_name(name->named_object(),
-                                               name->in_function());
-  tree id = get_identifier_from_string(decl_name);
-  tree descriptor_type_tree = initializer->type()->get_tree(this);
-  if (descriptor_type_tree == error_mark_node)
-    {
-      *pdecl = error_mark_node;
-      return;
-    }
-  tree decl = build_decl(name == NULL ? BUILTINS_LOCATION : name->location(),
-                        VAR_DECL, id,
-                        build_qualified_type(descriptor_type_tree,
-                                             TYPE_QUAL_CONST));
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  DECL_ARTIFICIAL(decl) = 1;
-
-  go_preserve_from_gc(decl);
-  if (phash != NULL)
-    *phash = decl;
-
-  // We store the new DECL now because we may need to refer to it when
-  // expanding INITIALIZER.
-  *pdecl = decl;
-
-  // If appropriate, just refer to the exported type identifier.
-  Gogo::Type_descriptor_location type_descriptor_location =
-    this->type_descriptor_location(type);
-  if (type_descriptor_location == TYPE_DESCRIPTOR_UNDEFINED)
-    {
-      TREE_PUBLIC(decl) = 1;
-      DECL_EXTERNAL(decl) = 1;
-      return;
-    }
-
-  TREE_STATIC(decl) = 1;
-  TREE_USED(decl) = 1;
-
-  Translate_context context(this, NULL, NULL, NULL);
-  context.set_is_const();
-  tree constructor = initializer->get_tree(&context);
-
-  if (constructor == error_mark_node)
-    gcc_assert(saw_errors());
-
-  DECL_INITIAL(decl) = constructor;
-
-  if (type_descriptor_location == TYPE_DESCRIPTOR_COMMON)
-    {
-      make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
-      resolve_unique_section(decl, 1, 0);
-    }
-  else
-    {
-#ifdef OBJECT_FORMAT_ELF
-      // Give the decl protected visibility.  This avoids out-of-range
-      // references with shared libraries with the x86_64 small model
-      // when the type descriptor gets a COPY reloc into the main
-      // executable.  There is no need to have unique pointers to type
-      // descriptors, as the runtime code compares reflection strings
-      // if necessary.
-      DECL_VISIBILITY(decl) = VISIBILITY_PROTECTED;
-      DECL_VISIBILITY_SPECIFIED(decl) = 1;
-#endif
-
-      TREE_PUBLIC(decl) = 1;
-    }
-
-  rest_of_decl_compilation(decl, 1, 0);
-}
-
-// Build an interface method table for a type: a list of function
-// pointers, one for each interface method.  This is used for
-// interfaces.
-
-tree
-Gogo::interface_method_table_for_type(const Interface_type* interface,
-                                     Named_type* type,
-                                     bool is_pointer)
-{
-  const Typed_identifier_list* interface_methods = interface->methods();
-  gcc_assert(!interface_methods->empty());
-
-  std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
-                             + interface->mangled_name(this)
-                             + "__"
-                             + type->mangled_name(this));
-
-  tree id = get_identifier_from_string(mangled_name);
-
-  // See whether this interface has any hidden methods.
-  bool has_hidden_methods = false;
-  for (Typed_identifier_list::const_iterator p = interface_methods->begin();
-       p != interface_methods->end();
-       ++p)
-    {
-      if (Gogo::is_hidden_name(p->name()))
-       {
-         has_hidden_methods = true;
-         break;
-       }
-    }
-
-  // We already know that the named type is convertible to the
-  // interface.  If the interface has hidden methods, and the named
-  // type is defined in a different package, then the interface
-  // conversion table will be defined by that other package.
-  if (has_hidden_methods && type->named_object()->package() != NULL)
-    {
-      tree array_type = build_array_type(const_ptr_type_node, NULL);
-      tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
-      TREE_READONLY(decl) = 1;
-      TREE_CONSTANT(decl) = 1;
-      TREE_PUBLIC(decl) = 1;
-      DECL_EXTERNAL(decl) = 1;
-      go_preserve_from_gc(decl);
-      return decl;
-    }
-
-  size_t count = interface_methods->size();
-  VEC(constructor_elt, gc)* pointers = VEC_alloc(constructor_elt, gc,
-                                                count + 1);
-
-  // The first element is the type descriptor.
-  constructor_elt* elt = VEC_quick_push(constructor_elt, pointers, NULL);
-  elt->index = size_zero_node;
-  Type* td_type;
-  if (!is_pointer)
-    td_type = type;
-  else
-    td_type = Type::make_pointer_type(type);
-  elt->value = fold_convert(const_ptr_type_node,
-                           td_type->type_descriptor_pointer(this));
-
-  size_t i = 1;
-  for (Typed_identifier_list::const_iterator p = interface_methods->begin();
-       p != interface_methods->end();
-       ++p, ++i)
-    {
-      bool is_ambiguous;
-      Method* m = type->method_function(p->name(), &is_ambiguous);
-      gcc_assert(m != NULL);
-
-      Named_object* no = m->named_object();
-
-      tree fnid = no->get_id(this);
-
-      tree fndecl;
-      if (no->is_function())
-       fndecl = no->func_value()->get_or_make_decl(this, no, fnid);
-      else if (no->is_function_declaration())
-       fndecl = no->func_declaration_value()->get_or_make_decl(this, no,
-                                                               fnid);
-      else
-       gcc_unreachable();
-      fndecl = build_fold_addr_expr(fndecl);
-
-      elt = VEC_quick_push(constructor_elt, pointers, NULL);
-      elt->index = size_int(i);
-      elt->value = fold_convert(const_ptr_type_node, fndecl);
-    }
-  gcc_assert(i == count + 1);
-
-  tree array_type = build_array_type(const_ptr_type_node,
-                                    build_index_type(size_int(count)));
-  tree constructor = build_constructor(array_type, pointers);
-
-  tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
-  TREE_STATIC(decl) = 1;
-  TREE_USED(decl) = 1;
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  DECL_INITIAL(decl) = constructor;
-
-  // If the interface type has hidden methods, then this is the only
-  // definition of the table.  Otherwise it is a comdat table which
-  // may be defined in multiple packages.
-  if (has_hidden_methods)
-    {
-#ifdef OBJECT_FORMAT_ELF
-      // Give the decl protected visibility.  This avoids out-of-range
-      // references with shared libraries with the x86_64 small model
-      // when the table gets a COPY reloc into the main executable.
-      DECL_VISIBILITY(decl) = VISIBILITY_PROTECTED;
-      DECL_VISIBILITY_SPECIFIED(decl) = 1;
-#endif
-
-      TREE_PUBLIC(decl) = 1;
-    }
-  else
-    {
-      make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
-      resolve_unique_section(decl, 1, 0);
-    }
-
-  rest_of_decl_compilation(decl, 1, 0);
-
-  go_preserve_from_gc(decl);
-
-  return decl;
-}
-
-// Mark a function as a builtin library function.
-
-void
-Gogo::mark_fndecl_as_builtin_library(tree fndecl)
-{
-  DECL_EXTERNAL(fndecl) = 1;
-  TREE_PUBLIC(fndecl) = 1;
-  DECL_ARTIFICIAL(fndecl) = 1;
-  TREE_NOTHROW(fndecl) = 1;
-  DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
-  DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
-}
-
-// Build a call to a builtin function.
-
-tree
-Gogo::call_builtin(tree* pdecl, source_location location, const char* name,
-                  int nargs, tree rettype, ...)
-{
-  if (rettype == error_mark_node)
-    return error_mark_node;
-
-  tree* types = new tree[nargs];
-  tree* args = new tree[nargs];
-
-  va_list ap;
-  va_start(ap, rettype);
-  for (int i = 0; i < nargs; ++i)
-    {
-      types[i] = va_arg(ap, tree);
-      args[i] = va_arg(ap, tree);
-      if (types[i] == error_mark_node || args[i] == error_mark_node)
-       return error_mark_node;
-    }
-  va_end(ap);
-
-  if (*pdecl == NULL_TREE)
-    {
-      tree fnid = get_identifier(name);
-
-      tree argtypes = NULL_TREE;
-      tree* pp = &argtypes;
-      for (int i = 0; i < nargs; ++i)
-       {
-         *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
-         pp = &TREE_CHAIN(*pp);
-       }
-      *pp = void_list_node;
-
-      tree fntype = build_function_type(rettype, argtypes);
-
-      *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
-      Gogo::mark_fndecl_as_builtin_library(*pdecl);
-      go_preserve_from_gc(*pdecl);
-    }
-
-  tree fnptr = build_fold_addr_expr(*pdecl);
-  if (CAN_HAVE_LOCATION_P(fnptr))
-    SET_EXPR_LOCATION(fnptr, location);
-
-  tree ret = build_call_array(rettype, fnptr, nargs, args);
-  SET_EXPR_LOCATION(ret, location);
-
-  delete[] types;
-  delete[] args;
-
-  return ret;
-}
-
-// Build a call to the runtime error function.
-
-tree
-Gogo::runtime_error(int code, source_location location)
-{
-  static tree runtime_error_fndecl;
-  tree ret = Gogo::call_builtin(&runtime_error_fndecl,
-                               location,
-                               "__go_runtime_error",
-                               1,
-                               void_type_node,
-                               integer_type_node,
-                               build_int_cst(integer_type_node, code));
-  // The runtime error function panics and does not return.
-  TREE_NOTHROW(runtime_error_fndecl) = 0;
-  TREE_THIS_VOLATILE(runtime_error_fndecl) = 1;
-  return ret;
-}
-
-// Send VAL on CHANNEL.  If BLOCKING is true, the resulting tree has a
-// void type.  If BLOCKING is false, the resulting tree has a boolean
-// type, and it will evaluate as true if the value was sent.  If
-// FOR_SELECT is true, this is being done because it was chosen in a
-// select statement.
-
-tree
-Gogo::send_on_channel(tree channel, tree val, bool blocking, bool for_select,
-                     source_location location)
-{
-  if (int_size_in_bytes(TREE_TYPE(val)) <= 8
-      && !AGGREGATE_TYPE_P(TREE_TYPE(val))
-      && !FLOAT_TYPE_P(TREE_TYPE(val)))
-    {
-      val = convert_to_integer(uint64_type_node, val);
-      if (blocking)
-       {
-         static tree send_small_fndecl;
-         tree ret = Gogo::call_builtin(&send_small_fndecl,
-                                       location,
-                                       "__go_send_small",
-                                       3,
-                                       void_type_node,
-                                       ptr_type_node,
-                                       channel,
-                                       uint64_type_node,
-                                       val,
-                                       boolean_type_node,
-                                       (for_select
-                                        ? boolean_true_node
-                                        : boolean_false_node));
-         // This can panic if there are too many operations on a
-         // closed channel.
-         TREE_NOTHROW(send_small_fndecl) = 0;
-         return ret;
-       }
-      else
-       {
-         gcc_assert(!for_select);
-         static tree send_nonblocking_small_fndecl;
-         tree ret = Gogo::call_builtin(&send_nonblocking_small_fndecl,
-                                       location,
-                                       "__go_send_nonblocking_small",
-                                       2,
-                                       boolean_type_node,
-                                       ptr_type_node,
-                                       channel,
-                                       uint64_type_node,
-                                       val);
-         // This can panic if there are too many operations on a
-         // closed channel.
-         TREE_NOTHROW(send_nonblocking_small_fndecl) = 0;
-         return ret;
-       }
-    }
-  else
-    {
-      tree make_tmp;
-      if (TREE_ADDRESSABLE(TREE_TYPE(val)) || TREE_CODE(val) == VAR_DECL)
-       {
-         make_tmp = NULL_TREE;
-         val = build_fold_addr_expr(val);
-         if (DECL_P(val))
-           TREE_ADDRESSABLE(val) = 1;
-       }
-      else
-       {
-         tree tmp = create_tmp_var(TREE_TYPE(val), get_name(val));
-         DECL_IGNORED_P(tmp) = 0;
-         DECL_INITIAL(tmp) = val;
-         TREE_ADDRESSABLE(tmp) = 1;
-         make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-         SET_EXPR_LOCATION(make_tmp, location);
-         val = build_fold_addr_expr(tmp);
-       }
-      val = fold_convert(ptr_type_node, val);
-
-      tree call;
-      if (blocking)
-       {
-         static tree send_big_fndecl;
-         call = Gogo::call_builtin(&send_big_fndecl,
-                                   location,
-                                   "__go_send_big",
-                                   3,
-                                   void_type_node,
-                                   ptr_type_node,
-                                   channel,
-                                   ptr_type_node,
-                                   val,
-                                   boolean_type_node,
-                                   (for_select
-                                    ? boolean_true_node
-                                    : boolean_false_node));
-         // This can panic if there are too many operations on a
-         // closed channel.
-         TREE_NOTHROW(send_big_fndecl) = 0;
-       }
-      else
-       {
-         gcc_assert(!for_select);
-         static tree send_nonblocking_big_fndecl;
-         call = Gogo::call_builtin(&send_nonblocking_big_fndecl,
-                                   location,
-                                   "__go_send_nonblocking_big",
-                                   2,
-                                   boolean_type_node,
-                                   ptr_type_node,
-                                   channel,
-                                   ptr_type_node,
-                                   val);
-         // This can panic if there are too many operations on a
-         // closed channel.
-         TREE_NOTHROW(send_nonblocking_big_fndecl) = 0;
-       }
-
-      if (make_tmp == NULL_TREE)
-       return call;
-      else
-       {
-         tree ret = build2(COMPOUND_EXPR, TREE_TYPE(call), make_tmp, call);
-         SET_EXPR_LOCATION(ret, location);
-         return ret;
-       }
-    }
-}
-
-// Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
-// This does a blocking receive and returns the value read from the
-// channel.  If FOR_SELECT is true, this is being done because it was
-// chosen in a select statement.
-
-tree
-Gogo::receive_from_channel(tree type_tree, tree channel, bool for_select,
-                          source_location location)
-{
-  if (int_size_in_bytes(type_tree) <= 8
-      && !AGGREGATE_TYPE_P(type_tree)
-      && !FLOAT_TYPE_P(type_tree))
-    {
-      static tree receive_small_fndecl;
-      tree call = Gogo::call_builtin(&receive_small_fndecl,
-                                    location,
-                                    "__go_receive_small",
-                                    2,
-                                    uint64_type_node,
-                                    ptr_type_node,
-                                    channel,
-                                    boolean_type_node,
-                                    (for_select
-                                     ? boolean_true_node
-                                     : boolean_false_node));
-      // This can panic if there are too many operations on a closed
-      // channel.
-      TREE_NOTHROW(receive_small_fndecl) = 0;
-      int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
-      tree int_type_tree = go_type_for_size(bitsize, 1);
-      return fold_convert_loc(location, type_tree,
-                             fold_convert_loc(location, int_type_tree,
-                                              call));
-    }
-  else
-    {
-      tree tmp = create_tmp_var(type_tree, get_name(type_tree));
-      DECL_IGNORED_P(tmp) = 0;
-      TREE_ADDRESSABLE(tmp) = 1;
-      tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-      SET_EXPR_LOCATION(make_tmp, location);
-      tree tmpaddr = build_fold_addr_expr(tmp);
-      tmpaddr = fold_convert(ptr_type_node, tmpaddr);
-      static tree receive_big_fndecl;
-      tree call = Gogo::call_builtin(&receive_big_fndecl,
-                                    location,
-                                    "__go_receive_big",
-                                    3,
-                                    void_type_node,
-                                    ptr_type_node,
-                                    channel,
-                                    ptr_type_node,
-                                    tmpaddr,
-                                    boolean_type_node,
-                                    (for_select
-                                     ? boolean_true_node
-                                     : boolean_false_node));
-      // This can panic if there are too many operations on a closed
-      // channel.
-      TREE_NOTHROW(receive_big_fndecl) = 0;
-      return build2(COMPOUND_EXPR, type_tree, make_tmp,
-                   build2(COMPOUND_EXPR, type_tree, call, tmp));
-    }
-}
-
-// Return the type of a function trampoline.  This is like
-// get_trampoline_type in tree-nested.c.
-
-tree
-Gogo::trampoline_type_tree()
-{
-  static tree type_tree;
-  if (type_tree == NULL_TREE)
-    {
-      unsigned int align = TRAMPOLINE_ALIGNMENT;
-      unsigned int size = TRAMPOLINE_SIZE;
-      tree t = build_index_type(build_int_cst(integer_type_node, size - 1));
-      t = build_array_type(char_type_node, t);
-
-      type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1,
-                                      "__data", t);
-      t = TYPE_FIELDS(type_tree);
-      DECL_ALIGN(t) = align;
-      DECL_USER_ALIGN(t) = 1;
-
-      go_preserve_from_gc(type_tree);
-    }
-  return type_tree;
-}
-
-// Make a trampoline which calls FNADDR passing CLOSURE.
-
-tree
-Gogo::make_trampoline(tree fnaddr, tree closure, source_location location)
-{
-  tree trampoline_type = Gogo::trampoline_type_tree();
-  tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type);
-
-  closure = save_expr(closure);
-
-  // We allocate the trampoline using a special function which will
-  // mark it as executable.
-  static tree trampoline_fndecl;
-  tree x = Gogo::call_builtin(&trampoline_fndecl,
-                             location,
-                             "__go_allocate_trampoline",
-                             2,
-                             ptr_type_node,
-                             size_type_node,
-                             trampoline_size,
-                             ptr_type_node,
-                             fold_convert_loc(location, ptr_type_node,
-                                              closure));
-
-  x = save_expr(x);
-
-  // Initialize the trampoline.
-  tree ini = build_call_expr(implicit_built_in_decls[BUILT_IN_INIT_TRAMPOLINE],
-                            3, x, fnaddr, closure);
-
-  // On some targets the trampoline address needs to be adjusted.  For
-  // example, when compiling in Thumb mode on the ARM, the address
-  // needs to have the low bit set.
-  x = build_call_expr(implicit_built_in_decls[BUILT_IN_ADJUST_TRAMPOLINE],
-                     1, x);
-  x = fold_convert(TREE_TYPE(fnaddr), x);
-
-  return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x);
-}
diff --git a/gcc/go/gofrontend/gogo-tree.cc.merge-right.r172891 b/gcc/go/gofrontend/gogo-tree.cc.merge-right.r172891
deleted file mode 100644 (file)
index c24ff98..0000000
+++ /dev/null
@@ -1,2697 +0,0 @@
-// gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "toplev.h"
-#include "tree.h"
-#include "gimple.h"
-#include "tree-iterator.h"
-#include "cgraph.h"
-#include "langhooks.h"
-#include "convert.h"
-#include "output.h"
-#include "diagnostic.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "types.h"
-#include "expressions.h"
-#include "statements.h"
-#include "runtime.h"
-#include "backend.h"
-#include "gogo.h"
-
-// Whether we have seen any errors.
-
-bool
-saw_errors()
-{
-  return errorcount != 0 || sorrycount != 0;
-}
-
-// A helper function.
-
-static inline tree
-get_identifier_from_string(const std::string& str)
-{
-  return get_identifier_with_length(str.data(), str.length());
-}
-
-// Builtin functions.
-
-static std::map<std::string, tree> builtin_functions;
-
-// Define a builtin function.  BCODE is the builtin function code
-// defined by builtins.def.  NAME is the name of the builtin function.
-// LIBNAME is the name of the corresponding library function, and is
-// NULL if there isn't one.  FNTYPE is the type of the function.
-// CONST_P is true if the function has the const attribute.
-
-static void
-define_builtin(built_in_function bcode, const char* name, const char* libname,
-              tree fntype, bool const_p)
-{
-  tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
-                                  libname, NULL_TREE);
-  if (const_p)
-    TREE_READONLY(decl) = 1;
-  built_in_decls[bcode] = decl;
-  implicit_built_in_decls[bcode] = decl;
-  builtin_functions[name] = decl;
-  if (libname != NULL)
-    {
-      decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
-                                 NULL, NULL_TREE);
-      if (const_p)
-       TREE_READONLY(decl) = 1;
-      builtin_functions[libname] = decl;
-    }
-}
-
-// Create trees for implicit builtin functions.
-
-void
-Gogo::define_builtin_function_trees()
-{
-  /* We need to define the fetch_and_add functions, since we use them
-     for ++ and --.  */
-  tree t = go_type_for_size(BITS_PER_UNIT, 1);
-  tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin(BUILT_IN_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
-                build_function_type_list(t, p, t, NULL_TREE), false);
-
-  t = go_type_for_size(BITS_PER_UNIT * 2, 1);
-  p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin (BUILT_IN_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
-                 build_function_type_list(t, p, t, NULL_TREE), false);
-
-  t = go_type_for_size(BITS_PER_UNIT * 4, 1);
-  p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin(BUILT_IN_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
-                build_function_type_list(t, p, t, NULL_TREE), false);
-
-  t = go_type_for_size(BITS_PER_UNIT * 8, 1);
-  p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin(BUILT_IN_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
-                build_function_type_list(t, p, t, NULL_TREE), false);
-
-  // We use __builtin_expect for magic import functions.
-  define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
-                build_function_type_list(long_integer_type_node,
-                                         long_integer_type_node,
-                                         long_integer_type_node,
-                                         NULL_TREE),
-                true);
-
-  // We use __builtin_memmove for the predeclared copy function.
-  define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
-                build_function_type_list(ptr_type_node,
-                                         ptr_type_node,
-                                         const_ptr_type_node,
-                                         size_type_node,
-                                         NULL_TREE),
-                false);
-
-  // We provide sqrt for the math library.
-  define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
-                build_function_type_list(double_type_node,
-                                         double_type_node,
-                                         NULL_TREE),
-                true);
-  define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
-                build_function_type_list(long_double_type_node,
-                                         long_double_type_node,
-                                         NULL_TREE),
-                true);
-
-  // We use __builtin_return_address in the thunk we build for
-  // functions which call recover.
-  define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
-                build_function_type_list(ptr_type_node,
-                                         unsigned_type_node,
-                                         NULL_TREE),
-                false);
-
-  // The compiler uses __builtin_trap for some exception handling
-  // cases.
-  define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
-                build_function_type(void_type_node, void_list_node),
-                false);
-}
-
-// Get the name to use for the import control function.  If there is a
-// global function or variable, then we know that that name must be
-// unique in the link, and we use it as the basis for our name.
-
-const std::string&
-Gogo::get_init_fn_name()
-{
-  if (this->init_fn_name_.empty())
-    {
-      go_assert(this->package_ != NULL);
-      if (this->is_main_package())
-       {
-         // Use a name which the runtime knows.
-         this->init_fn_name_ = "__go_init_main";
-       }
-      else
-       {
-         std::string s = this->unique_prefix();
-         s.append(1, '.');
-         s.append(this->package_name());
-         s.append("..import");
-         this->init_fn_name_ = s;
-       }
-    }
-
-  return this->init_fn_name_;
-}
-
-// Add statements to INIT_STMT_LIST which run the initialization
-// functions for imported packages.  This is only used for the "main"
-// package.
-
-void
-Gogo::init_imports(tree* init_stmt_list)
-{
-  go_assert(this->is_main_package());
-
-  if (this->imported_init_fns_.empty())
-    return;
-
-  tree fntype = build_function_type(void_type_node, void_list_node);
-
-  // We must call them in increasing priority order.
-  std::vector<Import_init> v;
-  for (std::set<Import_init>::const_iterator p =
-        this->imported_init_fns_.begin();
-       p != this->imported_init_fns_.end();
-       ++p)
-    v.push_back(*p);
-  std::sort(v.begin(), v.end());
-
-  for (std::vector<Import_init>::const_iterator p = v.begin();
-       p != v.end();
-       ++p)
-    {
-      std::string user_name = p->package_name() + ".init";
-      tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
-                            get_identifier_from_string(user_name),
-                            fntype);
-      const std::string& init_name(p->init_name());
-      SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
-      TREE_PUBLIC(decl) = 1;
-      DECL_EXTERNAL(decl) = 1;
-      append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
-    }
-}
-
-// Register global variables with the garbage collector.  We need to
-// register all variables which can hold a pointer value.  They become
-// roots during the mark phase.  We build a struct that is easy to
-// hook into a list of roots.
-
-// struct __go_gc_root_list
-// {
-//   struct __go_gc_root_list* __next;
-//   struct __go_gc_root
-//   {
-//     void* __decl;
-//     size_t __size;
-//   } __roots[];
-// };
-
-// The last entry in the roots array has a NULL decl field.
-
-void
-Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
-                      tree* init_stmt_list)
-{
-  if (var_gc.empty())
-    return;
-
-  size_t count = var_gc.size();
-
-  tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
-                                       "__next",
-                                       ptr_type_node,
-                                       "__size",
-                                       sizetype);
-
-  tree index_type = build_index_type(size_int(count));
-  tree array_type = build_array_type(root_type, index_type);
-
-  tree root_list_type = make_node(RECORD_TYPE);
-  root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
-                                       root_list_type, 2,
-                                       "__next",
-                                       build_pointer_type(root_list_type),
-                                       "__roots",
-                                       array_type);
-
-  // Build an initialier for the __roots array.
-
-  VEC(constructor_elt,gc)* roots_init = VEC_alloc(constructor_elt, gc,
-                                                 count + 1);
-
-  size_t i = 0;
-  for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
-       p != var_gc.end();
-       ++p, ++i)
-    {
-      VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      tree field = TYPE_FIELDS(root_type);
-      elt->index = field;
-      Bvariable* bvar = (*p)->get_backend_variable(this, NULL);
-      tree decl = var_to_tree(bvar);
-      go_assert(TREE_CODE(decl) == VAR_DECL);
-      elt->value = build_fold_addr_expr(decl);
-
-      elt = VEC_quick_push(constructor_elt, init, NULL);
-      field = DECL_CHAIN(field);
-      elt->index = field;
-      elt->value = DECL_SIZE_UNIT(decl);
-
-      elt = VEC_quick_push(constructor_elt, roots_init, NULL);
-      elt->index = size_int(i);
-      elt->value = build_constructor(root_type, init);
-    }
-
-  // The list ends with a NULL entry.
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(root_type);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  elt->index = field;
-  elt->value = size_zero_node;
-
-  elt = VEC_quick_push(constructor_elt, roots_init, NULL);
-  elt->index = size_int(i);
-  elt->value = build_constructor(root_type, init);
-
-  // Build a constructor for the struct.
-
-  VEC(constructor_elt,gc*) root_list_init = VEC_alloc(constructor_elt, gc, 2);
-
-  elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
-  field = TYPE_FIELDS(root_list_type);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-
-  elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
-  field = DECL_CHAIN(field);
-  elt->index = field;
-  elt->value = build_constructor(array_type, roots_init);
-
-  // Build a decl to register.
-
-  tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
-                        create_tmp_var_name("gc"), root_list_type);
-  DECL_EXTERNAL(decl) = 0;
-  TREE_PUBLIC(decl) = 0;
-  TREE_STATIC(decl) = 1;
-  DECL_ARTIFICIAL(decl) = 1;
-  DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
-  rest_of_decl_compilation(decl, 1, 0);
-
-  static tree register_gc_fndecl;
-  tree call = Gogo::call_builtin(&register_gc_fndecl, BUILTINS_LOCATION,
-                                "__go_register_gc_roots",
-                                1,
-                                void_type_node,
-                                build_pointer_type(root_list_type),
-                                build_fold_addr_expr(decl));
-  if (call != error_mark_node)
-    append_to_statement_list(call, init_stmt_list);
-}
-
-// Build the decl for the initialization function.
-
-tree
-Gogo::initialization_function_decl()
-{
-  // The tedious details of building your own function.  There doesn't
-  // seem to be a helper function for this.
-  std::string name = this->package_name() + ".init";
-  tree fndecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL,
-                          get_identifier_from_string(name),
-                          build_function_type(void_type_node,
-                                              void_list_node));
-  const std::string& asm_name(this->get_init_fn_name());
-  SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
-
-  tree resdecl = build_decl(BUILTINS_LOCATION, RESULT_DECL, NULL_TREE,
-                           void_type_node);
-  DECL_ARTIFICIAL(resdecl) = 1;
-  DECL_CONTEXT(resdecl) = fndecl;
-  DECL_RESULT(fndecl) = resdecl;
-
-  TREE_STATIC(fndecl) = 1;
-  TREE_USED(fndecl) = 1;
-  DECL_ARTIFICIAL(fndecl) = 1;
-  TREE_PUBLIC(fndecl) = 1;
-
-  DECL_INITIAL(fndecl) = make_node(BLOCK);
-  TREE_USED(DECL_INITIAL(fndecl)) = 1;
-
-  return fndecl;
-}
-
-// Create the magic initialization function.  INIT_STMT_LIST is the
-// code that it needs to run.
-
-void
-Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
-{
-  // Make sure that we thought we needed an initialization function,
-  // as otherwise we will not have reported it in the export data.
-  go_assert(this->is_main_package() || this->need_init_fn_);
-
-  if (fndecl == NULL_TREE)
-    fndecl = this->initialization_function_decl();
-
-  DECL_SAVED_TREE(fndecl) = init_stmt_list;
-
-  current_function_decl = fndecl;
-  if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
-    push_struct_function(fndecl);
-  else
-    push_cfun(DECL_STRUCT_FUNCTION(fndecl));
-  cfun->function_end_locus = BUILTINS_LOCATION;
-
-  gimplify_function_tree(fndecl);
-
-  cgraph_add_new_function(fndecl, false);
-  cgraph_mark_needed_node(cgraph_get_node(fndecl));
-
-  current_function_decl = NULL_TREE;
-  pop_cfun();
-}
-
-// Search for references to VAR in any statements or called functions.
-
-class Find_var : public Traverse
-{
- public:
-  // A hash table we use to avoid looping.  The index is the name of a
-  // named object.  We only look through objects defined in this
-  // package.
-  typedef Unordered_set(std::string) Seen_objects;
-
-  Find_var(Named_object* var, Seen_objects* seen_objects)
-    : Traverse(traverse_expressions),
-      var_(var), seen_objects_(seen_objects), found_(false)
-  { }
-
-  // Whether the variable was found.
-  bool
-  found() const
-  { return this->found_; }
-
-  int
-  expression(Expression**);
-
- private:
-  // The variable we are looking for.
-  Named_object* var_;
-  // Names of objects we have already seen.
-  Seen_objects* seen_objects_;
-  // True if the variable was found.
-  bool found_;
-};
-
-// See if EXPR refers to VAR, looking through function calls and
-// variable initializations.
-
-int
-Find_var::expression(Expression** pexpr)
-{
-  Expression* e = *pexpr;
-
-  Var_expression* ve = e->var_expression();
-  if (ve != NULL)
-    {
-      Named_object* v = ve->named_object();
-      if (v == this->var_)
-       {
-         this->found_ = true;
-         return TRAVERSE_EXIT;
-       }
-
-      if (v->is_variable() && v->package() == NULL)
-       {
-         Expression* init = v->var_value()->init();
-         if (init != NULL)
-           {
-             std::pair<Seen_objects::iterator, bool> ins =
-               this->seen_objects_->insert(v->name());
-             if (ins.second)
-               {
-                 // This is the first time we have seen this name.
-                 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-           }
-       }
-    }
-
-  // We traverse the code of any function we see.  Note that this
-  // means that we will traverse the code of a function whose address
-  // is taken even if it is not called.
-  Func_expression* fe = e->func_expression();
-  if (fe != NULL)
-    {
-      const Named_object* f = fe->named_object();
-      if (f->is_function() && f->package() == NULL)
-       {
-         std::pair<Seen_objects::iterator, bool> ins =
-           this->seen_objects_->insert(f->name());
-         if (ins.second)
-           {
-             // This is the first time we have seen this name.
-             if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-       }
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Return true if EXPR refers to VAR.
-
-static bool
-expression_requires(Expression* expr, Block* preinit, Named_object* var)
-{
-  Find_var::Seen_objects seen_objects;
-  Find_var find_var(var, &seen_objects);
-  if (expr != NULL)
-    Expression::traverse(&expr, &find_var);
-  if (preinit != NULL)
-    preinit->traverse(&find_var);
-  
-  return find_var.found();
-}
-
-// Sort variable initializations.  If the initialization expression
-// for variable A refers directly or indirectly to the initialization
-// expression for variable B, then we must initialize B before A.
-
-class Var_init
-{
- public:
-  Var_init()
-    : var_(NULL), init_(NULL_TREE), waiting_(0)
-  { }
-
-  Var_init(Named_object* var, tree init)
-    : var_(var), init_(init), waiting_(0)
-  { }
-
-  // Return the variable.
-  Named_object*
-  var() const
-  { return this->var_; }
-
-  // Return the initialization expression.
-  tree
-  init() const
-  { return this->init_; }
-
-  // Return the number of variables waiting for this one to be
-  // initialized.
-  size_t
-  waiting() const
-  { return this->waiting_; }
-
-  // Increment the number waiting.
-  void
-  increment_waiting()
-  { ++this->waiting_; }
-
- private:
-  // The variable being initialized.
-  Named_object* var_;
-  // The initialization expression to run.
-  tree init_;
-  // The number of variables which are waiting for this one.
-  size_t waiting_;
-};
-
-typedef std::list<Var_init> Var_inits;
-
-// Sort the variable initializations.  The rule we follow is that we
-// emit them in the order they appear in the array, except that if the
-// initialization expression for a variable V1 depends upon another
-// variable V2 then we initialize V1 after V2.
-
-static void
-sort_var_inits(Var_inits* var_inits)
-{
-  Var_inits ready;
-  while (!var_inits->empty())
-    {
-      Var_inits::iterator p1 = var_inits->begin();
-      Named_object* var = p1->var();
-      Expression* init = var->var_value()->init();
-      Block* preinit = var->var_value()->preinit();
-
-      // Start walking through the list to see which variables VAR
-      // needs to wait for.  We can skip P1->WAITING variables--that
-      // is the number we've already checked.
-      Var_inits::iterator p2 = p1;
-      ++p2;
-      for (size_t i = p1->waiting(); i > 0; --i)
-       ++p2;
-
-      for (; p2 != var_inits->end(); ++p2)
-       {
-         if (expression_requires(init, preinit, p2->var()))
-           {
-             // Check for cycles.
-             if (expression_requires(p2->var()->var_value()->init(),
-                                     p2->var()->var_value()->preinit(),
-                                     var))
-               {
-                 error_at(var->location(),
-                          ("initialization expressions for %qs and "
-                           "%qs depend upon each other"),
-                          var->message_name().c_str(),
-                          p2->var()->message_name().c_str());
-                 inform(p2->var()->location(), "%qs defined here",
-                        p2->var()->message_name().c_str());
-                 p2 = var_inits->end();
-               }
-             else
-               {
-                 // We can't emit P1 until P2 is emitted.  Move P1.
-                 // Note that the WAITING loop always executes at
-                 // least once, which is what we want.
-                 p2->increment_waiting();
-                 Var_inits::iterator p3 = p2;
-                 for (size_t i = p2->waiting(); i > 0; --i)
-                   ++p3;
-                 var_inits->splice(p3, *var_inits, p1);
-               }
-             break;
-           }
-       }
-
-      if (p2 == var_inits->end())
-       {
-         // VAR does not depends upon any other initialization expressions.
-
-         // Check for a loop of VAR on itself.  We only do this if
-         // INIT is not NULL; when INIT is NULL, it means that
-         // PREINIT sets VAR, which we will interpret as a loop.
-         if (init != NULL && expression_requires(init, preinit, var))
-           error_at(var->location(),
-                    "initialization expression for %qs depends upon itself",
-                    var->message_name().c_str());
-         ready.splice(ready.end(), *var_inits, p1);
-       }
-    }
-
-  // Now READY is the list in the desired initialization order.
-  var_inits->swap(ready);
-}
-
-// Write out the global definitions.
-
-void
-Gogo::write_globals()
-{
-  this->convert_named_types();
-  this->build_interface_method_tables();
-
-  Bindings* bindings = this->current_bindings();
-  size_t count = bindings->size_definitions();
-
-  tree* vec = new tree[count];
-
-  tree init_fndecl = NULL_TREE;
-  tree init_stmt_list = NULL_TREE;
-
-  if (this->is_main_package())
-    this->init_imports(&init_stmt_list);
-
-  // A list of variable initializations.
-  Var_inits var_inits;
-
-  // A list of variables which need to be registered with the garbage
-  // collector.
-  std::vector<Named_object*> var_gc;
-  var_gc.reserve(count);
-
-  tree var_init_stmt_list = NULL_TREE;
-  size_t i = 0;
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p, ++i)
-    {
-      Named_object* no = *p;
-
-      go_assert(!no->is_type_declaration() && !no->is_function_declaration());
-      // There is nothing to do for a package.
-      if (no->is_package())
-       {
-         --i;
-         --count;
-         continue;
-       }
-
-      // There is nothing to do for an object which was imported from
-      // a different package into the global scope.
-      if (no->package() != NULL)
-       {
-         --i;
-         --count;
-         continue;
-       }
-
-      // There is nothing useful we can output for constants which
-      // have ideal or non-integeral type.
-      if (no->is_const())
-       {
-         Type* type = no->const_value()->type();
-         if (type == NULL)
-           type = no->const_value()->expr()->type();
-         if (type->is_abstract() || type->integer_type() == NULL)
-           {
-             --i;
-             --count;
-             continue;
-           }
-       }
-
-      if (!no->is_variable())
-       {
-         vec[i] = no->get_tree(this, NULL);
-         if (vec[i] == error_mark_node)
-           {
-             go_assert(saw_errors());
-             --i;
-             --count;
-             continue;
-           }
-       }
-      else
-       {
-         Bvariable* var = no->get_backend_variable(this, NULL);
-         vec[i] = var_to_tree(var);
-         if (vec[i] == error_mark_node)
-           {
-             go_assert(saw_errors());
-             --i;
-             --count;
-             continue;
-           }
-
-         // Check for a sink variable, which may be used to run an
-         // initializer purely for its side effects.
-         bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
-
-         tree var_init_tree = NULL_TREE;
-         if (!no->var_value()->has_pre_init())
-           {
-             tree init = no->var_value()->get_init_tree(this, NULL);
-             if (init == error_mark_node)
-               go_assert(saw_errors());
-             else if (init == NULL_TREE)
-               ;
-             else if (TREE_CONSTANT(init))
-               this->backend()->global_variable_set_init(var,
-                                                         tree_to_expr(init));
-             else if (is_sink)
-               var_init_tree = init;
-             else
-               var_init_tree = fold_build2_loc(no->location(), MODIFY_EXPR,
-                                               void_type_node, vec[i], init);
-           }
-         else
-           {
-             // We are going to create temporary variables which
-             // means that we need an fndecl.
-             if (init_fndecl == NULL_TREE)
-               init_fndecl = this->initialization_function_decl();
-             current_function_decl = init_fndecl;
-             if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
-               push_struct_function(init_fndecl);
-             else
-               push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
-
-             tree var_decl = is_sink ? NULL_TREE : vec[i];
-             var_init_tree = no->var_value()->get_init_block(this, NULL,
-                                                             var_decl);
-
-             current_function_decl = NULL_TREE;
-             pop_cfun();
-           }
-
-         if (var_init_tree != NULL_TREE && var_init_tree != error_mark_node)
-           {
-             if (no->var_value()->init() == NULL
-                 && !no->var_value()->has_pre_init())
-               append_to_statement_list(var_init_tree, &var_init_stmt_list);
-             else
-               var_inits.push_back(Var_init(no, var_init_tree));
-           }
-
-         if (!is_sink && no->var_value()->type()->has_pointer())
-           var_gc.push_back(no);
-       }
-    }
-
-  // Register global variables with the garbage collector.
-  this->register_gc_vars(var_gc, &init_stmt_list);
-
-  // Simple variable initializations, after all variables are
-  // registered.
-  append_to_statement_list(var_init_stmt_list, &init_stmt_list);
-
-  // Complex variable initializations, first sorting them into a
-  // workable order.
-  if (!var_inits.empty())
-    {
-      sort_var_inits(&var_inits);
-      for (Var_inits::const_iterator p = var_inits.begin();
-          p != var_inits.end();
-          ++p)
-       append_to_statement_list(p->init(), &init_stmt_list);
-    }
-
-  // After all the variables are initialized, call the "init"
-  // functions if there are any.
-  for (std::vector<Named_object*>::const_iterator p =
-        this->init_functions_.begin();
-       p != this->init_functions_.end();
-       ++p)
-    {
-      tree decl = (*p)->get_tree(this, NULL);
-      tree call = build_call_expr(decl, 0);
-      append_to_statement_list(call, &init_stmt_list);
-    }
-
-  // Set up a magic function to do all the initialization actions.
-  // This will be called if this package is imported.
-  if (init_stmt_list != NULL_TREE
-      || this->need_init_fn_
-      || this->is_main_package())
-    this->write_initialization_function(init_fndecl, init_stmt_list);
-
-  // Pass everything back to the middle-end.
-
-  wrapup_global_declarations(vec, count);
-
-  cgraph_finalize_compilation_unit();
-
-  check_global_declarations(vec, count);
-  emit_debug_global_declarations(vec, count);
-
-  delete[] vec;
-}
-
-// Get a tree for the identifier for a named object.
-
-tree
-Named_object::get_id(Gogo* gogo)
-{
-  go_assert(!this->is_variable() && !this->is_result_variable());
-  std::string decl_name;
-  if (this->is_function_declaration()
-      && !this->func_declaration_value()->asm_name().empty())
-    decl_name = this->func_declaration_value()->asm_name();
-  else if (this->is_type()
-          && this->type_value()->location() == BUILTINS_LOCATION)
-    {
-      // We don't need the package name for builtin types.
-      decl_name = Gogo::unpack_hidden_name(this->name_);
-    }
-  else
-    {
-      std::string package_name;
-      if (this->package_ == NULL)
-       package_name = gogo->package_name();
-      else
-       package_name = this->package_->name();
-
-      decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
-
-      Function_type* fntype;
-      if (this->is_function())
-       fntype = this->func_value()->type();
-      else if (this->is_function_declaration())
-       fntype = this->func_declaration_value()->type();
-      else
-       fntype = NULL;
-      if (fntype != NULL && fntype->is_method())
-       {
-         decl_name.push_back('.');
-         decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
-       }
-    }
-  if (this->is_type())
-    {
-      const Named_object* in_function = this->type_value()->in_function();
-      if (in_function != NULL)
-       decl_name += '$' + in_function->name();
-    }
-  return get_identifier_from_string(decl_name);
-}
-
-// Get a tree for a named object.
-
-tree
-Named_object::get_tree(Gogo* gogo, Named_object* function)
-{
-  if (this->tree_ != NULL_TREE)
-    return this->tree_;
-
-  tree name;
-  if (this->classification_ == NAMED_OBJECT_TYPE)
-    name = NULL_TREE;
-  else
-    name = this->get_id(gogo);
-  tree decl;
-  switch (this->classification_)
-    {
-    case NAMED_OBJECT_CONST:
-      {
-       Named_constant* named_constant = this->u_.const_value;
-       Translate_context subcontext(gogo, function, NULL, NULL);
-       tree expr_tree = named_constant->expr()->get_tree(&subcontext);
-       if (expr_tree == error_mark_node)
-         decl = error_mark_node;
-       else
-         {
-           Type* type = named_constant->type();
-           if (type != NULL && !type->is_abstract())
-             {
-               if (!type->is_error())
-                 expr_tree = fold_convert(type->get_tree(gogo), expr_tree);
-               else
-                 expr_tree = error_mark_node;
-             }
-           if (expr_tree == error_mark_node)
-             decl = error_mark_node;
-           else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
-             {
-               decl = build_decl(named_constant->location(), CONST_DECL,
-                                 name, TREE_TYPE(expr_tree));
-               DECL_INITIAL(decl) = expr_tree;
-               TREE_CONSTANT(decl) = 1;
-               TREE_READONLY(decl) = 1;
-             }
-           else
-             {
-               // A CONST_DECL is only for an enum constant, so we
-               // shouldn't use for non-integral types.  Instead we
-               // just return the constant itself, rather than a
-               // decl.
-               decl = expr_tree;
-             }
-         }
-      }
-      break;
-
-    case NAMED_OBJECT_TYPE:
-      {
-       Named_type* named_type = this->u_.type_value;
-       tree type_tree = named_type->get_tree(gogo);
-       if (type_tree == error_mark_node)
-         decl = error_mark_node;
-       else
-         {
-           decl = TYPE_NAME(type_tree);
-           go_assert(decl != NULL_TREE);
-
-           // We need to produce a type descriptor for every named
-           // type, and for a pointer to every named type, since
-           // other files or packages might refer to them.  We need
-           // to do this even for hidden types, because they might
-           // still be returned by some function.  Simply calling the
-           // type_descriptor method is enough to create the type
-           // descriptor, even though we don't do anything with it.
-           if (this->package_ == NULL)
-             {
-               named_type->type_descriptor_pointer(gogo);
-               Type* pn = Type::make_pointer_type(named_type);
-               pn->type_descriptor_pointer(gogo);
-             }
-         }
-      }
-      break;
-
-    case NAMED_OBJECT_TYPE_DECLARATION:
-      error("reference to undefined type %qs",
-           this->message_name().c_str());
-      return error_mark_node;
-
-    case NAMED_OBJECT_VAR:
-    case NAMED_OBJECT_RESULT_VAR:
-    case NAMED_OBJECT_SINK:
-      go_unreachable();
-
-    case NAMED_OBJECT_FUNC:
-      {
-       Function* func = this->u_.func_value;
-       decl = func->get_or_make_decl(gogo, this, name);
-       if (decl != error_mark_node)
-         {
-           if (func->block() != NULL)
-             {
-               if (DECL_STRUCT_FUNCTION(decl) == NULL)
-                 push_struct_function(decl);
-               else
-                 push_cfun(DECL_STRUCT_FUNCTION(decl));
-
-               cfun->function_end_locus = func->block()->end_location();
-
-               current_function_decl = decl;
-
-               func->build_tree(gogo, this);
-
-               gimplify_function_tree(decl);
-
-               cgraph_finalize_function(decl, true);
-
-               current_function_decl = NULL_TREE;
-               pop_cfun();
-             }
-         }
-      }
-      break;
-
-    default:
-      go_unreachable();
-    }
-
-  if (TREE_TYPE(decl) == error_mark_node)
-    decl = error_mark_node;
-
-  tree ret = decl;
-
-  this->tree_ = ret;
-
-  if (ret != error_mark_node)
-    go_preserve_from_gc(ret);
-
-  return ret;
-}
-
-// Get the initial value of a variable as a tree.  This does not
-// consider whether the variable is in the heap--it returns the
-// initial value as though it were always stored in the stack.
-
-tree
-Variable::get_init_tree(Gogo* gogo, Named_object* function)
-{
-  go_assert(this->preinit_ == NULL);
-  if (this->init_ == NULL)
-    {
-      go_assert(!this->is_parameter_);
-      return this->type_->get_init_tree(gogo,
-                                       (this->is_global_
-                                        || this->is_in_heap()));
-    }
-  else
-    {
-      Translate_context context(gogo, function, NULL, NULL);
-      tree rhs_tree = this->init_->get_tree(&context);
-      return Expression::convert_for_assignment(&context, this->type(),
-                                               this->init_->type(),
-                                               rhs_tree, this->location());
-    }
-}
-
-// Get the initial value of a variable when a block is required.
-// VAR_DECL is the decl to set; it may be NULL for a sink variable.
-
-tree
-Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
-{
-  go_assert(this->preinit_ != NULL);
-
-  // We want to add the variable assignment to the end of the preinit
-  // block.  The preinit block may have a TRY_FINALLY_EXPR and a
-  // TRY_CATCH_EXPR; if it does, we want to add to the end of the
-  // regular statements.
-
-  Translate_context context(gogo, function, NULL, NULL);
-  Bblock* bblock = this->preinit_->get_backend(&context);
-  tree block_tree = block_to_tree(bblock);
-  if (block_tree == error_mark_node)
-    return error_mark_node;
-  go_assert(TREE_CODE(block_tree) == BIND_EXPR);
-  tree statements = BIND_EXPR_BODY(block_tree);
-  while (statements != NULL_TREE
-        && (TREE_CODE(statements) == TRY_FINALLY_EXPR
-            || TREE_CODE(statements) == TRY_CATCH_EXPR))
-    statements = TREE_OPERAND(statements, 0);
-
-  // It's possible to have pre-init statements without an initializer
-  // if the pre-init statements set the variable.
-  if (this->init_ != NULL)
-    {
-      tree rhs_tree = this->init_->get_tree(&context);
-      if (rhs_tree == error_mark_node)
-       return error_mark_node;
-      if (var_decl == NULL_TREE)
-       append_to_statement_list(rhs_tree, &statements);
-      else
-       {
-         tree val = Expression::convert_for_assignment(&context, this->type(),
-                                                       this->init_->type(),
-                                                       rhs_tree,
-                                                       this->location());
-         if (val == error_mark_node)
-           return error_mark_node;
-         tree set = fold_build2_loc(this->location(), MODIFY_EXPR,
-                                    void_type_node, var_decl, val);
-         append_to_statement_list(set, &statements);
-       }
-    }
-
-  return block_tree;
-}
-
-// Get a tree for a function decl.
-
-tree
-Function::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
-{
-  if (this->fndecl_ == NULL_TREE)
-    {
-      tree functype = this->type_->get_tree(gogo);
-      if (functype == error_mark_node)
-       this->fndecl_ = error_mark_node;
-      else
-       {
-         // The type of a function comes back as a pointer, but we
-         // want the real function type for a function declaration.
-         go_assert(POINTER_TYPE_P(functype));
-         functype = TREE_TYPE(functype);
-         tree decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
-
-         this->fndecl_ = decl;
-
-         if (no->package() != NULL)
-           ;
-         else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
-           ;
-         else if (Gogo::unpack_hidden_name(no->name()) == "init"
-                  && !this->type_->is_method())
-           ;
-         else if (Gogo::unpack_hidden_name(no->name()) == "main"
-                  && gogo->is_main_package())
-           TREE_PUBLIC(decl) = 1;
-         // Methods have to be public even if they are hidden because
-         // they can be pulled into type descriptors when using
-         // anonymous fields.
-         else if (!Gogo::is_hidden_name(no->name())
-                  || this->type_->is_method())
-           {
-             TREE_PUBLIC(decl) = 1;
-             std::string asm_name = gogo->unique_prefix();
-             asm_name.append(1, '.');
-             asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
-             SET_DECL_ASSEMBLER_NAME(decl,
-                                     get_identifier_from_string(asm_name));
-           }
-
-         // Why do we have to do this in the frontend?
-         tree restype = TREE_TYPE(functype);
-         tree resdecl = build_decl(this->location(), RESULT_DECL, NULL_TREE,
-                                   restype);
-         DECL_ARTIFICIAL(resdecl) = 1;
-         DECL_IGNORED_P(resdecl) = 1;
-         DECL_CONTEXT(resdecl) = decl;
-         DECL_RESULT(decl) = resdecl;
-
-         if (this->enclosing_ != NULL)
-           DECL_STATIC_CHAIN(decl) = 1;
-
-         // If a function calls the predeclared recover function, we
-         // can't inline it, because recover behaves differently in a
-         // function passed directly to defer.
-         if (this->calls_recover_ && !this->is_recover_thunk_)
-           DECL_UNINLINABLE(decl) = 1;
-
-         // If this is a thunk created to call a function which calls
-         // the predeclared recover function, we need to disable
-         // stack splitting for the thunk.
-         if (this->is_recover_thunk_)
-           {
-             tree attr = get_identifier("__no_split_stack__");
-             DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
-           }
-
-         go_preserve_from_gc(decl);
-
-         if (this->closure_var_ != NULL)
-           {
-             push_struct_function(decl);
-
-             Bvariable* bvar = this->closure_var_->get_backend_variable(gogo,
-                                                                        no);
-             tree closure_decl = var_to_tree(bvar);
-             if (closure_decl == error_mark_node)
-               this->fndecl_ = error_mark_node;
-             else
-               {
-                 DECL_ARTIFICIAL(closure_decl) = 1;
-                 DECL_IGNORED_P(closure_decl) = 1;
-                 TREE_USED(closure_decl) = 1;
-                 DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl);
-                 TREE_READONLY(closure_decl) = 1;
-
-                 DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl;
-               }
-
-             pop_cfun();
-           }
-       }
-    }
-  return this->fndecl_;
-}
-
-// Get a tree for a function declaration.
-
-tree
-Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
-{
-  if (this->fndecl_ == NULL_TREE)
-    {
-      // Let Go code use an asm declaration to pick up a builtin
-      // function.
-      if (!this->asm_name_.empty())
-       {
-         std::map<std::string, tree>::const_iterator p =
-           builtin_functions.find(this->asm_name_);
-         if (p != builtin_functions.end())
-           {
-             this->fndecl_ = p->second;
-             return this->fndecl_;
-           }
-       }
-
-      tree functype = this->fntype_->get_tree(gogo);
-      tree decl;
-      if (functype == error_mark_node)
-       decl = error_mark_node;
-      else
-       {
-         // The type of a function comes back as a pointer, but we
-         // want the real function type for a function declaration.
-         go_assert(POINTER_TYPE_P(functype));
-         functype = TREE_TYPE(functype);
-         decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
-         TREE_PUBLIC(decl) = 1;
-         DECL_EXTERNAL(decl) = 1;
-
-         if (this->asm_name_.empty())
-           {
-             std::string asm_name = (no->package() == NULL
-                                     ? gogo->unique_prefix()
-                                     : no->package()->unique_prefix());
-             asm_name.append(1, '.');
-             asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
-             SET_DECL_ASSEMBLER_NAME(decl,
-                                     get_identifier_from_string(asm_name));
-           }
-       }
-      this->fndecl_ = decl;
-      go_preserve_from_gc(decl);
-    }
-  return this->fndecl_;
-}
-
-// We always pass the receiver to a method as a pointer.  If the
-// receiver is actually declared as a non-pointer type, then we copy
-// the value into a local variable, so that it has the right type.  In
-// this function we create the real PARM_DECL to use, and set
-// DEC_INITIAL of the var_decl to be the value passed in.
-
-tree
-Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
-{
-  if (var_decl == error_mark_node)
-    return error_mark_node;
-  go_assert(TREE_CODE(var_decl) == VAR_DECL);
-  tree val_type = TREE_TYPE(var_decl);
-  bool is_in_heap = no->var_value()->is_in_heap();
-  if (is_in_heap)
-    {
-      go_assert(POINTER_TYPE_P(val_type));
-      val_type = TREE_TYPE(val_type);
-    }
-
-  source_location loc = DECL_SOURCE_LOCATION(var_decl);
-  std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
-  name += ".pointer";
-  tree id = get_identifier_from_string(name);
-  tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
-  DECL_CONTEXT(parm_decl) = current_function_decl;
-  DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
-
-  go_assert(DECL_INITIAL(var_decl) == NULL_TREE);
-  // The receiver might be passed as a null pointer.
-  tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node, parm_decl,
-                              fold_convert_loc(loc, TREE_TYPE(parm_decl),
-                                               null_pointer_node));
-  tree ind = build_fold_indirect_ref_loc(loc, parm_decl);
-  TREE_THIS_NOTRAP(ind) = 1;
-  tree zero_init = no->var_value()->type()->get_init_tree(gogo, false);
-  tree init = fold_build3_loc(loc, COND_EXPR, TREE_TYPE(ind),
-                             check, ind, zero_init);
-
-  if (is_in_heap)
-    {
-      tree size = TYPE_SIZE_UNIT(val_type);
-      tree space = gogo->allocate_memory(no->var_value()->type(), size,
-                                        no->location());
-      space = save_expr(space);
-      space = fold_convert(build_pointer_type(val_type), space);
-      tree spaceref = build_fold_indirect_ref_loc(no->location(), space);
-      TREE_THIS_NOTRAP(spaceref) = 1;
-      tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node,
-                                  parm_decl,
-                                  fold_convert_loc(loc, TREE_TYPE(parm_decl),
-                                                   null_pointer_node));
-      tree parmref = build_fold_indirect_ref_loc(no->location(), parm_decl);
-      TREE_THIS_NOTRAP(parmref) = 1;
-      tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
-                                spaceref, parmref);
-      init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
-                            build3(COND_EXPR, void_type_node,
-                                   check, set, NULL_TREE),
-                            space);
-    }
-
-  DECL_INITIAL(var_decl) = init;
-
-  return parm_decl;
-}
-
-// If we take the address of a parameter, then we need to copy it into
-// the heap.  We will access it as a local variable via an
-// indirection.
-
-tree
-Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree var_decl)
-{
-  if (var_decl == error_mark_node)
-    return error_mark_node;
-  go_assert(TREE_CODE(var_decl) == VAR_DECL);
-  source_location loc = DECL_SOURCE_LOCATION(var_decl);
-
-  std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
-  name += ".param";
-  tree id = get_identifier_from_string(name);
-
-  tree type = TREE_TYPE(var_decl);
-  go_assert(POINTER_TYPE_P(type));
-  type = TREE_TYPE(type);
-
-  tree parm_decl = build_decl(loc, PARM_DECL, id, type);
-  DECL_CONTEXT(parm_decl) = current_function_decl;
-  DECL_ARG_TYPE(parm_decl) = type;
-
-  tree size = TYPE_SIZE_UNIT(type);
-  tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
-  space = save_expr(space);
-  space = fold_convert(TREE_TYPE(var_decl), space);
-  tree spaceref = build_fold_indirect_ref_loc(loc, space);
-  TREE_THIS_NOTRAP(spaceref) = 1;
-  tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
-                    build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
-                    space);
-  DECL_INITIAL(var_decl) = init;
-
-  return parm_decl;
-}
-
-// Get a tree for function code.
-
-void
-Function::build_tree(Gogo* gogo, Named_object* named_function)
-{
-  tree fndecl = this->fndecl_;
-  go_assert(fndecl != NULL_TREE);
-
-  tree params = NULL_TREE;
-  tree* pp = &params;
-
-  tree declare_vars = NULL_TREE;
-  for (Bindings::const_definitions_iterator p =
-        this->block_->bindings()->begin_definitions();
-       p != this->block_->bindings()->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
-       {
-         Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
-         *pp = var_to_tree(bvar);
-
-         // We always pass the receiver to a method as a pointer.  If
-         // the receiver is declared as a non-pointer type, then we
-         // copy the value into a local variable.
-         if ((*p)->var_value()->is_receiver()
-             && (*p)->var_value()->type()->points_to() == NULL)
-           {
-             tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
-             tree var = *pp;
-             if (var != error_mark_node)
-               {
-                 go_assert(TREE_CODE(var) == VAR_DECL);
-                 DECL_CHAIN(var) = declare_vars;
-                 declare_vars = var;
-               }
-             *pp = parm_decl;
-           }
-         else if ((*p)->var_value()->is_in_heap())
-           {
-             // If we take the address of a parameter, then we need
-             // to copy it into the heap.
-             tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
-             tree var = *pp;
-             if (var != error_mark_node)
-               {
-                 go_assert(TREE_CODE(var) == VAR_DECL);
-                 DECL_CHAIN(var) = declare_vars;
-                 declare_vars = var;
-               }
-             *pp = parm_decl;
-           }
-
-         if (*pp != error_mark_node)
-           {
-             go_assert(TREE_CODE(*pp) == PARM_DECL);
-             pp = &DECL_CHAIN(*pp);
-           }
-       }
-      else if ((*p)->is_result_variable())
-       {
-         Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
-         tree var_decl = var_to_tree(bvar);
-
-         Type* type = (*p)->result_var_value()->type();
-         tree init;
-         if (!(*p)->result_var_value()->is_in_heap())
-           init = type->get_init_tree(gogo, false);
-         else
-           {
-             source_location loc = (*p)->location();
-             tree type_tree = type->get_tree(gogo);
-             tree space = gogo->allocate_memory(type,
-                                                TYPE_SIZE_UNIT(type_tree),
-                                                loc);
-             tree ptr_type_tree = build_pointer_type(type_tree);
-             tree subinit = type->get_init_tree(gogo, true);
-             if (subinit == NULL_TREE)
-               init = fold_convert_loc(loc, ptr_type_tree, space);
-             else
-               {
-                 space = save_expr(space);
-                 space = fold_convert_loc(loc, ptr_type_tree, space);
-                 tree spaceref = build_fold_indirect_ref_loc(loc, space);
-                 TREE_THIS_NOTRAP(spaceref) = 1;
-                 tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
-                                            spaceref, subinit);
-                 init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
-                                        set, space);
-               }
-           }
-
-         if (var_decl != error_mark_node)
-           {
-             go_assert(TREE_CODE(var_decl) == VAR_DECL);
-             DECL_INITIAL(var_decl) = init;
-             DECL_CHAIN(var_decl) = declare_vars;
-             declare_vars = var_decl;
-           }
-       }
-    }
-  *pp = NULL_TREE;
-
-  DECL_ARGUMENTS(fndecl) = params;
-
-  if (this->block_ != NULL)
-    {
-      go_assert(DECL_INITIAL(fndecl) == NULL_TREE);
-
-      // Declare variables if necessary.
-      tree bind = NULL_TREE;
-      tree defer_init = NULL_TREE;
-      if (declare_vars != NULL_TREE || this->defer_stack_ != NULL)
-       {
-         tree block = make_node(BLOCK);
-         BLOCK_SUPERCONTEXT(block) = fndecl;
-         DECL_INITIAL(fndecl) = block;
-         BLOCK_VARS(block) = declare_vars;
-         TREE_USED(block) = 1;
-
-         bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
-                       NULL_TREE, block);
-         TREE_SIDE_EFFECTS(bind) = 1;
-
-         if (this->defer_stack_ != NULL)
-           {
-             Translate_context dcontext(gogo, named_function, this->block_,
-                                        tree_to_block(bind));
-             Bstatement* bdi = this->defer_stack_->get_backend(&dcontext);
-             defer_init = stat_to_tree(bdi);
-           }
-       }
-
-      // Build the trees for all the statements in the function.
-      Translate_context context(gogo, named_function, NULL, NULL);
-      Bblock* bblock = this->block_->get_backend(&context);
-      tree code = block_to_tree(bblock);
-
-      tree init = NULL_TREE;
-      tree except = NULL_TREE;
-      tree fini = NULL_TREE;
-
-      // Initialize variables if necessary.
-      for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
-       {
-         tree dv = build1(DECL_EXPR, void_type_node, v);
-         SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
-         append_to_statement_list(dv, &init);
-       }
-
-      // If we have a defer stack, initialize it at the start of a
-      // function.
-      if (defer_init != NULL_TREE && defer_init != error_mark_node)
-       {
-         SET_EXPR_LOCATION(defer_init, this->block_->start_location());
-         append_to_statement_list(defer_init, &init);
-
-         // Clean up the defer stack when we leave the function.
-         this->build_defer_wrapper(gogo, named_function, &except, &fini);
-       }
-
-      if (code != NULL_TREE && code != error_mark_node)
-       {
-         if (init != NULL_TREE)
-           code = build2(COMPOUND_EXPR, void_type_node, init, code);
-         if (except != NULL_TREE)
-           code = build2(TRY_CATCH_EXPR, void_type_node, code,
-                         build2(CATCH_EXPR, void_type_node, NULL, except));
-         if (fini != NULL_TREE)
-           code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
-       }
-
-      // Stick the code into the block we built for the receiver, if
-      // we built on.
-      if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
-       {
-         BIND_EXPR_BODY(bind) = code;
-         code = bind;
-       }
-
-      DECL_SAVED_TREE(fndecl) = code;
-    }
-}
-
-// Build the wrappers around function code needed if the function has
-// any defer statements.  This sets *EXCEPT to an exception handler
-// and *FINI to a finally handler.
-
-void
-Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
-                             tree *except, tree *fini)
-{
-  source_location end_loc = this->block_->end_location();
-
-  // Add an exception handler.  This is used if a panic occurs.  Its
-  // purpose is to stop the stack unwinding if a deferred function
-  // calls recover.  There are more details in
-  // libgo/runtime/go-unwind.c.
-
-  tree stmt_list = NULL_TREE;
-
-  Expression* call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
-                                       this->defer_stack(end_loc));
-  Translate_context context(gogo, named_function, NULL, NULL);
-  tree call_tree = call->get_tree(&context);
-  if (call_tree != error_mark_node)
-    append_to_statement_list(call_tree, &stmt_list);
-
-  tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
-  tree set;
-  if (retval == NULL_TREE)
-    set = NULL_TREE;
-  else
-    set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
-                         DECL_RESULT(this->fndecl_), retval);
-  tree ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
-  append_to_statement_list(ret_stmt, &stmt_list);
-
-  go_assert(*except == NULL_TREE);
-  *except = stmt_list;
-
-  // Add some finally code to run the defer functions.  This is used
-  // both in the normal case, when no panic occurs, and also if a
-  // panic occurs to run any further defer functions.  Of course, it
-  // is possible for a defer function to call panic which should be
-  // caught by another defer function.  To handle that we use a loop.
-  //  finish:
-  //   try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
-  //   if (return values are named) return named_vals;
-
-  stmt_list = NULL;
-
-  tree label = create_artificial_label(end_loc);
-  tree define_label = fold_build1_loc(end_loc, LABEL_EXPR, void_type_node,
-                                     label);
-  append_to_statement_list(define_label, &stmt_list);
-
-  call = Runtime::make_call(Runtime::UNDEFER, end_loc, 1,
-                           this->defer_stack(end_loc));
-  tree undefer = call->get_tree(&context);
-
-  call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
-                           this->defer_stack(end_loc));
-  tree defer = call->get_tree(&context);
-
-  if (undefer == error_mark_node || defer == error_mark_node)
-    return;
-
-  tree jump = fold_build1_loc(end_loc, GOTO_EXPR, void_type_node, label);
-  tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
-  catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
-  tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
-
-  append_to_statement_list(try_catch, &stmt_list);
-
-  if (this->type_->results() != NULL
-      && !this->type_->results()->empty()
-      && !this->type_->results()->front().name().empty())
-    {
-      // If the result variables are named, we need to return them
-      // again, because they might have been changed by a defer
-      // function.
-      retval = this->return_value(gogo, named_function, end_loc,
-                                 &stmt_list);
-      set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
-                           DECL_RESULT(this->fndecl_), retval);
-      ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
-      append_to_statement_list(ret_stmt, &stmt_list);
-    }
-  
-  go_assert(*fini == NULL_TREE);
-  *fini = stmt_list;
-}
-
-// Return the value to assign to DECL_RESULT(this->fndecl_).  This may
-// also add statements to STMT_LIST, which need to be executed before
-// the assignment.  This is used for a return statement with no
-// explicit values.
-
-tree
-Function::return_value(Gogo* gogo, Named_object* named_function,
-                      source_location location, tree* stmt_list) const
-{
-  const Typed_identifier_list* results = this->type_->results();
-  if (results == NULL || results->empty())
-    return NULL_TREE;
-
-  go_assert(this->results_ != NULL);
-  if (this->results_->size() != results->size())
-    {
-      go_assert(saw_errors());
-      return error_mark_node;
-    }
-
-  tree retval;
-  if (results->size() == 1)
-    {
-      Bvariable* bvar =
-       this->results_->front()->get_backend_variable(gogo,
-                                                     named_function);
-      tree ret = var_to_tree(bvar);
-      if (this->results_->front()->result_var_value()->is_in_heap())
-       ret = build_fold_indirect_ref_loc(location, ret);
-      return ret;
-    }
-  else
-    {
-      tree rettype = TREE_TYPE(DECL_RESULT(this->fndecl_));
-      retval = create_tmp_var(rettype, "RESULT");
-      tree field = TYPE_FIELDS(rettype);
-      int index = 0;
-      for (Typed_identifier_list::const_iterator pr = results->begin();
-          pr != results->end();
-          ++pr, ++index, field = DECL_CHAIN(field))
-       {
-         go_assert(field != NULL);
-         Named_object* no = (*this->results_)[index];
-         Bvariable* bvar = no->get_backend_variable(gogo, named_function);
-         tree val = var_to_tree(bvar);
-         if (no->result_var_value()->is_in_heap())
-           val = build_fold_indirect_ref_loc(location, val);
-         tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
-                                    build3(COMPONENT_REF, TREE_TYPE(field),
-                                           retval, field, NULL_TREE),
-                                    val);
-         append_to_statement_list(set, stmt_list);
-       }
-      return retval;
-    }
-}
-
-// Return the integer type to use for a size.
-
-GO_EXTERN_C
-tree
-go_type_for_size(unsigned int bits, int unsignedp)
-{
-  const char* name;
-  switch (bits)
-    {
-    case 8:
-      name = unsignedp ? "uint8" : "int8";
-      break;
-    case 16:
-      name = unsignedp ? "uint16" : "int16";
-      break;
-    case 32:
-      name = unsignedp ? "uint32" : "int32";
-      break;
-    case 64:
-      name = unsignedp ? "uint64" : "int64";
-      break;
-    default:
-      if (bits == POINTER_SIZE && unsignedp)
-       name = "uintptr";
-      else
-       return NULL_TREE;
-    }
-  Type* type = Type::lookup_integer_type(name);
-  return type->get_tree(go_get_gogo());
-}
-
-// Return the type to use for a mode.
-
-GO_EXTERN_C
-tree
-go_type_for_mode(enum machine_mode mode, int unsignedp)
-{
-  // FIXME: This static_cast should be in machmode.h.
-  enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
-  if (mc == MODE_INT)
-    return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
-  else if (mc == MODE_FLOAT)
-    {
-      Type* type;
-      switch (GET_MODE_BITSIZE (mode))
-       {
-       case 32:
-         type = Type::lookup_float_type("float32");
-         break;
-       case 64:
-         type = Type::lookup_float_type("float64");
-         break;
-       default:
-         // We have to check for long double in order to support
-         // i386 excess precision.
-         if (mode == TYPE_MODE(long_double_type_node))
-           return long_double_type_node;
-         return NULL_TREE;
-       }
-      return type->float_type()->type_tree();
-    }
-  else if (mc == MODE_COMPLEX_FLOAT)
-    {
-      Type *type;
-      switch (GET_MODE_BITSIZE (mode))
-       {
-       case 64:
-         type = Type::lookup_complex_type("complex64");
-         break;
-       case 128:
-         type = Type::lookup_complex_type("complex128");
-         break;
-       default:
-         // We have to check for long double in order to support
-         // i386 excess precision.
-         if (mode == TYPE_MODE(complex_long_double_type_node))
-           return complex_long_double_type_node;
-         return NULL_TREE;
-       }
-      return type->complex_type()->type_tree();
-    }
-  else
-    return NULL_TREE;
-}
-
-// Return a tree which allocates SIZE bytes which will holds value of
-// type TYPE.
-
-tree
-Gogo::allocate_memory(Type* type, tree size, source_location location)
-{
-  // If the package imports unsafe, then it may play games with
-  // pointers that look like integers.
-  if (this->imported_unsafe_ || type->has_pointer())
-    {
-      static tree new_fndecl;
-      return Gogo::call_builtin(&new_fndecl,
-                               location,
-                               "__go_new",
-                               1,
-                               ptr_type_node,
-                               sizetype,
-                               size);
-    }
-  else
-    {
-      static tree new_nopointers_fndecl;
-      return Gogo::call_builtin(&new_nopointers_fndecl,
-                               location,
-                               "__go_new_nopointers",
-                               1,
-                               ptr_type_node,
-                               sizetype,
-                               size);
-    }
-}
-
-// Build a builtin struct with a list of fields.  The name is
-// STRUCT_NAME.  STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
-// node; this exists so that the struct can have fields which point to
-// itself.  If PTYPE is not NULL, store the result in *PTYPE.  There
-// are NFIELDS fields.  Each field is a name (a const char*) followed
-// by a type (a tree).
-
-tree
-Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
-                    int nfields, ...)
-{
-  if (ptype != NULL && *ptype != NULL_TREE)
-    return *ptype;
-
-  va_list ap;
-  va_start(ap, nfields);
-
-  tree fields = NULL_TREE;
-  for (int i = 0; i < nfields; ++i)
-    {
-      const char* field_name = va_arg(ap, const char*);
-      tree type = va_arg(ap, tree);
-      if (type == error_mark_node)
-       {
-         if (ptype != NULL)
-           *ptype = error_mark_node;
-         return error_mark_node;
-       }
-      tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
-                             get_identifier(field_name), type);
-      DECL_CHAIN(field) = fields;
-      fields = field;
-    }
-
-  va_end(ap);
-
-  if (struct_type == NULL_TREE)
-    struct_type = make_node(RECORD_TYPE);
-  finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
-
-  if (ptype != NULL)
-    {
-      go_preserve_from_gc(struct_type);
-      *ptype = struct_type;
-    }
-
-  return struct_type;
-}
-
-// Return a type to use for pointer to const char for a string.
-
-tree
-Gogo::const_char_pointer_type_tree()
-{
-  static tree type;
-  if (type == NULL_TREE)
-    {
-      tree const_char_type = build_qualified_type(unsigned_char_type_node,
-                                                 TYPE_QUAL_CONST);
-      type = build_pointer_type(const_char_type);
-      go_preserve_from_gc(type);
-    }
-  return type;
-}
-
-// Return a tree for a string constant.
-
-tree
-Gogo::string_constant_tree(const std::string& val)
-{
-  tree index_type = build_index_type(size_int(val.length()));
-  tree const_char_type = build_qualified_type(unsigned_char_type_node,
-                                             TYPE_QUAL_CONST);
-  tree string_type = build_array_type(const_char_type, index_type);
-  string_type = build_variant_type_copy(string_type);
-  TYPE_STRING_FLAG(string_type) = 1;
-  tree string_val = build_string(val.length(), val.data());
-  TREE_TYPE(string_val) = string_type;
-  return string_val;
-}
-
-// Return a tree for a Go string constant.
-
-tree
-Gogo::go_string_constant_tree(const std::string& val)
-{
-  tree string_type = Type::make_string_type()->get_tree(this);
-
-  VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(string_type);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
-  elt->index = field;
-  tree str = Gogo::string_constant_tree(val);
-  elt->value = fold_convert(TREE_TYPE(field),
-                           build_fold_addr_expr(str));
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
-  elt->index = field;
-  elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
-
-  tree constructor = build_constructor(string_type, init);
-  TREE_READONLY(constructor) = 1;
-  TREE_CONSTANT(constructor) = 1;
-
-  return constructor;
-}
-
-// Return a tree for a pointer to a Go string constant.  This is only
-// used for type descriptors, so we return a pointer to a constant
-// decl.
-
-tree
-Gogo::ptr_go_string_constant_tree(const std::string& val)
-{
-  tree pval = this->go_string_constant_tree(val);
-
-  tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
-                        create_tmp_var_name("SP"), TREE_TYPE(pval));
-  DECL_EXTERNAL(decl) = 0;
-  TREE_PUBLIC(decl) = 0;
-  TREE_USED(decl) = 1;
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  TREE_STATIC(decl) = 1;
-  DECL_ARTIFICIAL(decl) = 1;
-  DECL_INITIAL(decl) = pval;
-  rest_of_decl_compilation(decl, 1, 0);
-
-  return build_fold_addr_expr(decl);
-}
-
-// Build the type of the struct that holds a slice for the given
-// element type.
-
-tree
-Gogo::slice_type_tree(tree element_type_tree)
-{
-  // We use int for the count and capacity fields in a slice header.
-  // This matches 6g.  The language definition guarantees that we
-  // can't allocate space of a size which does not fit in int
-  // anyhow. FIXME: integer_type_node is the the C type "int" but is
-  // not necessarily the Go type "int".  They will differ when the C
-  // type "int" has fewer than 32 bits.
-  return Gogo::builtin_struct(NULL, "__go_slice", NULL_TREE, 3,
-                             "__values",
-                             build_pointer_type(element_type_tree),
-                             "__count",
-                             integer_type_node,
-                             "__capacity",
-                             integer_type_node);
-}
-
-// Given the tree for a slice type, return the tree for the type of
-// the elements of the slice.
-
-tree
-Gogo::slice_element_type_tree(tree slice_type_tree)
-{
-  go_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE
-            && POINTER_TYPE_P(TREE_TYPE(TYPE_FIELDS(slice_type_tree))));
-  return TREE_TYPE(TREE_TYPE(TYPE_FIELDS(slice_type_tree)));
-}
-
-// Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
-// the slice.  VALUES is the value pointer and COUNT is the number of
-// entries.  If CAPACITY is not NULL, it is the capacity; otherwise
-// the capacity and the count are the same.
-
-tree
-Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
-                       tree capacity)
-{
-  go_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-  tree field = TYPE_FIELDS(slice_type_tree);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  elt->index = field;
-  go_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
-            == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
-  elt->value = values;
-
-  count = fold_convert(sizetype, count);
-  if (capacity == NULL_TREE)
-    {
-      count = save_expr(count);
-      capacity = count;
-    }
-
-  field = DECL_CHAIN(field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), count);
-
-  field = DECL_CHAIN(field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), capacity);
-
-  return build_constructor(slice_type_tree, init);
-}
-
-// Build a constructor for an empty slice.
-
-tree
-Gogo::empty_slice_constructor(tree slice_type_tree)
-{
-  tree element_field = TYPE_FIELDS(slice_type_tree);
-  tree ret = Gogo::slice_constructor(slice_type_tree,
-                                    fold_convert(TREE_TYPE(element_field),
-                                                 null_pointer_node),
-                                    size_zero_node,
-                                    size_zero_node);
-  TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Build a map descriptor for a map of type MAPTYPE.
-
-tree
-Gogo::map_descriptor(Map_type* maptype)
-{
-  if (this->map_descriptors_ == NULL)
-    this->map_descriptors_ = new Map_descriptors(10);
-
-  std::pair<const Map_type*, tree> val(maptype, NULL);
-  std::pair<Map_descriptors::iterator, bool> ins =
-    this->map_descriptors_->insert(val);
-  Map_descriptors::iterator p = ins.first;
-  if (!ins.second)
-    {
-      if (p->second == error_mark_node)
-       return error_mark_node;
-      go_assert(p->second != NULL_TREE && DECL_P(p->second));
-      return build_fold_addr_expr(p->second);
-    }
-
-  Type* keytype = maptype->key_type();
-  Type* valtype = maptype->val_type();
-
-  std::string mangled_name = ("__go_map_" + maptype->mangled_name(this));
-
-  tree id = get_identifier_from_string(mangled_name);
-
-  // Get the type of the map descriptor.  This is __go_map_descriptor
-  // in libgo/map.h.
-
-  tree struct_type = this->map_descriptor_type();
-
-  // The map entry type is a struct with three fields.  This struct is
-  // specific to MAPTYPE.  Build it.
-
-  tree map_entry_type = make_node(RECORD_TYPE);
-
-  map_entry_type = Gogo::builtin_struct(NULL, "__map", map_entry_type, 3,
-                                       "__next",
-                                       build_pointer_type(map_entry_type),
-                                       "__key",
-                                       keytype->get_tree(this),
-                                       "__val",
-                                       valtype->get_tree(this));
-  if (map_entry_type == error_mark_node)
-    {
-      p->second = error_mark_node;
-      return error_mark_node;
-    }
-
-  tree map_entry_key_field = DECL_CHAIN(TYPE_FIELDS(map_entry_type));
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_key_field)),
-                   "__key") == 0);
-
-  tree map_entry_val_field = DECL_CHAIN(map_entry_key_field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_val_field)),
-                   "__val") == 0);
-
-  // Initialize the entries.
-
-  tree map_descriptor_field = TYPE_FIELDS(struct_type);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_descriptor_field)),
-                   "__map_descriptor") == 0);
-  tree entry_size_field = DECL_CHAIN(map_descriptor_field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(entry_size_field)),
-                   "__entry_size") == 0);
-  tree key_offset_field = DECL_CHAIN(entry_size_field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(key_offset_field)),
-                   "__key_offset") == 0);
-  tree val_offset_field = DECL_CHAIN(key_offset_field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(val_offset_field)),
-                   "__val_offset") == 0);
-
-  VEC(constructor_elt, gc)* descriptor = VEC_alloc(constructor_elt, gc, 6);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = map_descriptor_field;
-  elt->value = maptype->type_descriptor_pointer(this);
-
-  elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = entry_size_field;
-  elt->value = TYPE_SIZE_UNIT(map_entry_type);
-
-  elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = key_offset_field;
-  elt->value = byte_position(map_entry_key_field);
-
-  elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = val_offset_field;
-  elt->value = byte_position(map_entry_val_field);
-
-  tree constructor = build_constructor(struct_type, descriptor);
-
-  tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, struct_type);
-  TREE_STATIC(decl) = 1;
-  TREE_USED(decl) = 1;
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  DECL_INITIAL(decl) = constructor;
-  make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
-  resolve_unique_section(decl, 1, 0);
-
-  rest_of_decl_compilation(decl, 1, 0);
-
-  go_preserve_from_gc(decl);
-  p->second = decl;
-
-  return build_fold_addr_expr(decl);
-}
-
-// Return a tree for the type of a map descriptor.  This is struct
-// __go_map_descriptor in libgo/runtime/map.h.  This is the same for
-// all map types.
-
-tree
-Gogo::map_descriptor_type()
-{
-  static tree struct_type;
-  tree dtype = Type::make_type_descriptor_type()->get_tree(this);
-  dtype = build_qualified_type(dtype, TYPE_QUAL_CONST);
-  return Gogo::builtin_struct(&struct_type, "__go_map_descriptor", NULL_TREE,
-                             4,
-                             "__map_descriptor",
-                             build_pointer_type(dtype),
-                             "__entry_size",
-                             sizetype,
-                             "__key_offset",
-                             sizetype,
-                             "__val_offset",
-                             sizetype);
-}
-
-// Return the name to use for a type descriptor decl for TYPE.  This
-// is used when TYPE does not have a name.
-
-std::string
-Gogo::unnamed_type_descriptor_decl_name(const Type* type)
-{
-  return "__go_td_" + type->mangled_name(this);
-}
-
-// Return the name to use for a type descriptor decl for a type named
-// NAME, defined in the function IN_FUNCTION.  IN_FUNCTION will
-// normally be NULL.
-
-std::string
-Gogo::type_descriptor_decl_name(const Named_object* no,
-                               const Named_object* in_function)
-{
-  std::string ret = "__go_tdn_";
-  if (no->type_value()->is_builtin())
-    go_assert(in_function == NULL);
-  else
-    {
-      const std::string& unique_prefix(no->package() == NULL
-                                      ? this->unique_prefix()
-                                      : no->package()->unique_prefix());
-      const std::string& package_name(no->package() == NULL
-                                     ? this->package_name()
-                                     : no->package()->name());
-      ret.append(unique_prefix);
-      ret.append(1, '.');
-      ret.append(package_name);
-      ret.append(1, '.');
-      if (in_function != NULL)
-       {
-         ret.append(Gogo::unpack_hidden_name(in_function->name()));
-         ret.append(1, '.');
-       }
-    }
-  ret.append(no->name());
-  return ret;
-}
-
-// Where a type descriptor decl should be defined.
-
-Gogo::Type_descriptor_location
-Gogo::type_descriptor_location(const Type* type)
-{
-  const Named_type* name = type->named_type();
-  if (name != NULL)
-    {
-      if (name->named_object()->package() != NULL)
-       {
-         // This is a named type defined in a different package.  The
-         // descriptor should be defined in that package.
-         return TYPE_DESCRIPTOR_UNDEFINED;
-       }
-      else if (name->is_builtin())
-       {
-         // We create the descriptor for a builtin type whenever we
-         // need it.
-         return TYPE_DESCRIPTOR_COMMON;
-       }
-      else
-       {
-         // This is a named type defined in this package.  The
-         // descriptor should be defined here.
-         return TYPE_DESCRIPTOR_DEFINED;
-       }
-    }
-  else
-    {
-      if (type->points_to() != NULL
-         && type->points_to()->named_type() != NULL
-         && type->points_to()->named_type()->named_object()->package() != NULL)
-       {
-         // This is an unnamed pointer to a named type defined in a
-         // different package.  The descriptor should be defined in
-         // that package.
-         return TYPE_DESCRIPTOR_UNDEFINED;
-       }
-      else
-       {
-         // This is an unnamed type.  The descriptor could be defined
-         // in any package where it is needed, and the linker will
-         // pick one descriptor to keep.
-         return TYPE_DESCRIPTOR_COMMON;
-       }
-    }
-}
-
-// Build a type descriptor decl for TYPE.  INITIALIZER is a struct
-// composite literal which initializers the type descriptor.
-
-void
-Gogo::build_type_descriptor_decl(const Type* type, Expression* initializer,
-                                tree* pdecl)
-{
-  const Named_type* name = type->named_type();
-
-  // We can have multiple instances of unnamed types, but we only want
-  // to emit the type descriptor once.  We use a hash table to handle
-  // this.  This is not necessary for named types, as they are unique,
-  // and we store the type descriptor decl in the type itself.
-  tree* phash = NULL;
-  if (name == NULL)
-    {
-      if (this->type_descriptor_decls_ == NULL)
-       this->type_descriptor_decls_ = new Type_descriptor_decls(10);
-
-      std::pair<Type_descriptor_decls::iterator, bool> ins =
-       this->type_descriptor_decls_->insert(std::make_pair(type, NULL_TREE));
-      if (!ins.second)
-       {
-         // We've already built a type descriptor for this type.
-         *pdecl = ins.first->second;
-         return;
-       }
-      phash = &ins.first->second;
-    }
-
-  std::string decl_name;
-  if (name == NULL)
-    decl_name = this->unnamed_type_descriptor_decl_name(type);
-  else
-    decl_name = this->type_descriptor_decl_name(name->named_object(),
-                                               name->in_function());
-  tree id = get_identifier_from_string(decl_name);
-  tree descriptor_type_tree = initializer->type()->get_tree(this);
-  if (descriptor_type_tree == error_mark_node)
-    {
-      *pdecl = error_mark_node;
-      return;
-    }
-  tree decl = build_decl(name == NULL ? BUILTINS_LOCATION : name->location(),
-                        VAR_DECL, id,
-                        build_qualified_type(descriptor_type_tree,
-                                             TYPE_QUAL_CONST));
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  DECL_ARTIFICIAL(decl) = 1;
-
-  go_preserve_from_gc(decl);
-  if (phash != NULL)
-    *phash = decl;
-
-  // We store the new DECL now because we may need to refer to it when
-  // expanding INITIALIZER.
-  *pdecl = decl;
-
-  // If appropriate, just refer to the exported type identifier.
-  Gogo::Type_descriptor_location type_descriptor_location =
-    this->type_descriptor_location(type);
-  if (type_descriptor_location == TYPE_DESCRIPTOR_UNDEFINED)
-    {
-      TREE_PUBLIC(decl) = 1;
-      DECL_EXTERNAL(decl) = 1;
-      return;
-    }
-
-  TREE_STATIC(decl) = 1;
-  TREE_USED(decl) = 1;
-
-  Translate_context context(this, NULL, NULL, NULL);
-  context.set_is_const();
-  tree constructor = initializer->get_tree(&context);
-
-  if (constructor == error_mark_node)
-    go_assert(saw_errors());
-
-  DECL_INITIAL(decl) = constructor;
-
-  if (type_descriptor_location == TYPE_DESCRIPTOR_DEFINED)
-    TREE_PUBLIC(decl) = 1;
-  else
-    {
-      go_assert(type_descriptor_location == TYPE_DESCRIPTOR_COMMON);
-      make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
-      resolve_unique_section(decl, 1, 0);
-    }
-
-  rest_of_decl_compilation(decl, 1, 0);
-}
-
-// Build an interface method table for a type: a list of function
-// pointers, one for each interface method.  This is used for
-// interfaces.
-
-tree
-Gogo::interface_method_table_for_type(const Interface_type* interface,
-                                     Named_type* type,
-                                     bool is_pointer)
-{
-  const Typed_identifier_list* interface_methods = interface->methods();
-  go_assert(!interface_methods->empty());
-
-  std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
-                             + interface->mangled_name(this)
-                             + "__"
-                             + type->mangled_name(this));
-
-  tree id = get_identifier_from_string(mangled_name);
-
-  // See whether this interface has any hidden methods.
-  bool has_hidden_methods = false;
-  for (Typed_identifier_list::const_iterator p = interface_methods->begin();
-       p != interface_methods->end();
-       ++p)
-    {
-      if (Gogo::is_hidden_name(p->name()))
-       {
-         has_hidden_methods = true;
-         break;
-       }
-    }
-
-  // We already know that the named type is convertible to the
-  // interface.  If the interface has hidden methods, and the named
-  // type is defined in a different package, then the interface
-  // conversion table will be defined by that other package.
-  if (has_hidden_methods && type->named_object()->package() != NULL)
-    {
-      tree array_type = build_array_type(const_ptr_type_node, NULL);
-      tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
-      TREE_READONLY(decl) = 1;
-      TREE_CONSTANT(decl) = 1;
-      TREE_PUBLIC(decl) = 1;
-      DECL_EXTERNAL(decl) = 1;
-      go_preserve_from_gc(decl);
-      return decl;
-    }
-
-  size_t count = interface_methods->size();
-  VEC(constructor_elt, gc)* pointers = VEC_alloc(constructor_elt, gc,
-                                                count + 1);
-
-  // The first element is the type descriptor.
-  constructor_elt* elt = VEC_quick_push(constructor_elt, pointers, NULL);
-  elt->index = size_zero_node;
-  Type* td_type;
-  if (!is_pointer)
-    td_type = type;
-  else
-    td_type = Type::make_pointer_type(type);
-  elt->value = fold_convert(const_ptr_type_node,
-                           td_type->type_descriptor_pointer(this));
-
-  size_t i = 1;
-  for (Typed_identifier_list::const_iterator p = interface_methods->begin();
-       p != interface_methods->end();
-       ++p, ++i)
-    {
-      bool is_ambiguous;
-      Method* m = type->method_function(p->name(), &is_ambiguous);
-      go_assert(m != NULL);
-
-      Named_object* no = m->named_object();
-
-      tree fnid = no->get_id(this);
-
-      tree fndecl;
-      if (no->is_function())
-       fndecl = no->func_value()->get_or_make_decl(this, no, fnid);
-      else if (no->is_function_declaration())
-       fndecl = no->func_declaration_value()->get_or_make_decl(this, no,
-                                                               fnid);
-      else
-       go_unreachable();
-      fndecl = build_fold_addr_expr(fndecl);
-
-      elt = VEC_quick_push(constructor_elt, pointers, NULL);
-      elt->index = size_int(i);
-      elt->value = fold_convert(const_ptr_type_node, fndecl);
-    }
-  go_assert(i == count + 1);
-
-  tree array_type = build_array_type(const_ptr_type_node,
-                                    build_index_type(size_int(count)));
-  tree constructor = build_constructor(array_type, pointers);
-
-  tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
-  TREE_STATIC(decl) = 1;
-  TREE_USED(decl) = 1;
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  DECL_INITIAL(decl) = constructor;
-
-  // If the interface type has hidden methods, then this is the only
-  // definition of the table.  Otherwise it is a comdat table which
-  // may be defined in multiple packages.
-  if (has_hidden_methods)
-    TREE_PUBLIC(decl) = 1;
-  else
-    {
-      make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
-      resolve_unique_section(decl, 1, 0);
-    }
-
-  rest_of_decl_compilation(decl, 1, 0);
-
-  go_preserve_from_gc(decl);
-
-  return decl;
-}
-
-// Mark a function as a builtin library function.
-
-void
-Gogo::mark_fndecl_as_builtin_library(tree fndecl)
-{
-  DECL_EXTERNAL(fndecl) = 1;
-  TREE_PUBLIC(fndecl) = 1;
-  DECL_ARTIFICIAL(fndecl) = 1;
-  TREE_NOTHROW(fndecl) = 1;
-  DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
-  DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
-}
-
-// Build a call to a builtin function.
-
-tree
-Gogo::call_builtin(tree* pdecl, source_location location, const char* name,
-                  int nargs, tree rettype, ...)
-{
-  if (rettype == error_mark_node)
-    return error_mark_node;
-
-  tree* types = new tree[nargs];
-  tree* args = new tree[nargs];
-
-  va_list ap;
-  va_start(ap, rettype);
-  for (int i = 0; i < nargs; ++i)
-    {
-      types[i] = va_arg(ap, tree);
-      args[i] = va_arg(ap, tree);
-      if (types[i] == error_mark_node || args[i] == error_mark_node)
-       {
-         delete[] types;
-         delete[] args;
-         return error_mark_node;
-       }
-    }
-  va_end(ap);
-
-  if (*pdecl == NULL_TREE)
-    {
-      tree fnid = get_identifier(name);
-
-      tree argtypes = NULL_TREE;
-      tree* pp = &argtypes;
-      for (int i = 0; i < nargs; ++i)
-       {
-         *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
-         pp = &TREE_CHAIN(*pp);
-       }
-      *pp = void_list_node;
-
-      tree fntype = build_function_type(rettype, argtypes);
-
-      *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
-      Gogo::mark_fndecl_as_builtin_library(*pdecl);
-      go_preserve_from_gc(*pdecl);
-    }
-
-  tree fnptr = build_fold_addr_expr(*pdecl);
-  if (CAN_HAVE_LOCATION_P(fnptr))
-    SET_EXPR_LOCATION(fnptr, location);
-
-  tree ret = build_call_array(rettype, fnptr, nargs, args);
-  SET_EXPR_LOCATION(ret, location);
-
-  delete[] types;
-  delete[] args;
-
-  return ret;
-}
-
-// Build a call to the runtime error function.
-
-tree
-Gogo::runtime_error(int code, source_location location)
-{
-  static tree runtime_error_fndecl;
-  tree ret = Gogo::call_builtin(&runtime_error_fndecl,
-                               location,
-                               "__go_runtime_error",
-                               1,
-                               void_type_node,
-                               integer_type_node,
-                               build_int_cst(integer_type_node, code));
-  if (ret == error_mark_node)
-    return error_mark_node;
-  // The runtime error function panics and does not return.
-  TREE_NOTHROW(runtime_error_fndecl) = 0;
-  TREE_THIS_VOLATILE(runtime_error_fndecl) = 1;
-  return ret;
-}
-
-// Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
-// This does a blocking receive and returns the value read from the
-// channel.  If FOR_SELECT is true, this is being done because it was
-// chosen in a select statement.
-
-tree
-Gogo::receive_from_channel(tree type_tree, tree channel, bool for_select,
-                          source_location location)
-{
-  if (type_tree == error_mark_node || channel == error_mark_node)
-    return error_mark_node;
-
-  if (int_size_in_bytes(type_tree) <= 8
-      && !AGGREGATE_TYPE_P(type_tree)
-      && !FLOAT_TYPE_P(type_tree))
-    {
-      static tree receive_small_fndecl;
-      tree call = Gogo::call_builtin(&receive_small_fndecl,
-                                    location,
-                                    "__go_receive_small",
-                                    2,
-                                    uint64_type_node,
-                                    ptr_type_node,
-                                    channel,
-                                    boolean_type_node,
-                                    (for_select
-                                     ? boolean_true_node
-                                     : boolean_false_node));
-      if (call == error_mark_node)
-       return error_mark_node;
-      // This can panic if there are too many operations on a closed
-      // channel.
-      TREE_NOTHROW(receive_small_fndecl) = 0;
-      int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
-      tree int_type_tree = go_type_for_size(bitsize, 1);
-      return fold_convert_loc(location, type_tree,
-                             fold_convert_loc(location, int_type_tree,
-                                              call));
-    }
-  else
-    {
-      tree tmp = create_tmp_var(type_tree, get_name(type_tree));
-      DECL_IGNORED_P(tmp) = 0;
-      TREE_ADDRESSABLE(tmp) = 1;
-      tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-      SET_EXPR_LOCATION(make_tmp, location);
-      tree tmpaddr = build_fold_addr_expr(tmp);
-      tmpaddr = fold_convert(ptr_type_node, tmpaddr);
-      static tree receive_big_fndecl;
-      tree call = Gogo::call_builtin(&receive_big_fndecl,
-                                    location,
-                                    "__go_receive_big",
-                                    3,
-                                    boolean_type_node,
-                                    ptr_type_node,
-                                    channel,
-                                    ptr_type_node,
-                                    tmpaddr,
-                                    boolean_type_node,
-                                    (for_select
-                                     ? boolean_true_node
-                                     : boolean_false_node));
-      if (call == error_mark_node)
-       return error_mark_node;
-      // This can panic if there are too many operations on a closed
-      // channel.
-      TREE_NOTHROW(receive_big_fndecl) = 0;
-      return build2(COMPOUND_EXPR, type_tree, make_tmp,
-                   build2(COMPOUND_EXPR, type_tree, call, tmp));
-    }
-}
-
-// Return the type of a function trampoline.  This is like
-// get_trampoline_type in tree-nested.c.
-
-tree
-Gogo::trampoline_type_tree()
-{
-  static tree type_tree;
-  if (type_tree == NULL_TREE)
-    {
-      unsigned int size;
-      unsigned int align;
-      go_trampoline_info(&size, &align);
-      tree t = build_index_type(build_int_cst(integer_type_node, size - 1));
-      t = build_array_type(char_type_node, t);
-
-      type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1,
-                                      "__data", t);
-      t = TYPE_FIELDS(type_tree);
-      DECL_ALIGN(t) = align;
-      DECL_USER_ALIGN(t) = 1;
-
-      go_preserve_from_gc(type_tree);
-    }
-  return type_tree;
-}
-
-// Make a trampoline which calls FNADDR passing CLOSURE.
-
-tree
-Gogo::make_trampoline(tree fnaddr, tree closure, source_location location)
-{
-  tree trampoline_type = Gogo::trampoline_type_tree();
-  tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type);
-
-  closure = save_expr(closure);
-
-  // We allocate the trampoline using a special function which will
-  // mark it as executable.
-  static tree trampoline_fndecl;
-  tree x = Gogo::call_builtin(&trampoline_fndecl,
-                             location,
-                             "__go_allocate_trampoline",
-                             2,
-                             ptr_type_node,
-                             size_type_node,
-                             trampoline_size,
-                             ptr_type_node,
-                             fold_convert_loc(location, ptr_type_node,
-                                              closure));
-  if (x == error_mark_node)
-    return error_mark_node;
-
-  x = save_expr(x);
-
-  // Initialize the trampoline.
-  tree ini = build_call_expr(implicit_built_in_decls[BUILT_IN_INIT_TRAMPOLINE],
-                            3, x, fnaddr, closure);
-
-  // On some targets the trampoline address needs to be adjusted.  For
-  // example, when compiling in Thumb mode on the ARM, the address
-  // needs to have the low bit set.
-  x = build_call_expr(implicit_built_in_decls[BUILT_IN_ADJUST_TRAMPOLINE],
-                     1, x);
-  x = fold_convert(TREE_TYPE(fnaddr), x);
-
-  return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x);
-}
diff --git a/gcc/go/gofrontend/gogo-tree.cc.working b/gcc/go/gofrontend/gogo-tree.cc.working
deleted file mode 100644 (file)
index 238a0d7..0000000
+++ /dev/null
@@ -1,3145 +0,0 @@
-// gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "toplev.h"
-#include "tree.h"
-#include "gimple.h"
-#include "tree-iterator.h"
-#include "cgraph.h"
-#include "langhooks.h"
-#include "convert.h"
-#include "output.h"
-#include "diagnostic.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "types.h"
-#include "expressions.h"
-#include "statements.h"
-#include "gogo.h"
-
-// Whether we have seen any errors.
-
-bool
-saw_errors()
-{
-  return errorcount != 0 || sorrycount != 0;
-}
-
-// A helper function.
-
-static inline tree
-get_identifier_from_string(const std::string& str)
-{
-  return get_identifier_with_length(str.data(), str.length());
-}
-
-// Builtin functions.
-
-static std::map<std::string, tree> builtin_functions;
-
-// Define a builtin function.  BCODE is the builtin function code
-// defined by builtins.def.  NAME is the name of the builtin function.
-// LIBNAME is the name of the corresponding library function, and is
-// NULL if there isn't one.  FNTYPE is the type of the function.
-// CONST_P is true if the function has the const attribute.
-
-static void
-define_builtin(built_in_function bcode, const char* name, const char* libname,
-              tree fntype, bool const_p)
-{
-  tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
-                                  libname, NULL_TREE);
-  if (const_p)
-    TREE_READONLY(decl) = 1;
-  built_in_decls[bcode] = decl;
-  implicit_built_in_decls[bcode] = decl;
-  builtin_functions[name] = decl;
-  if (libname != NULL)
-    {
-      decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
-                                 NULL, NULL_TREE);
-      if (const_p)
-       TREE_READONLY(decl) = 1;
-      builtin_functions[libname] = decl;
-    }
-}
-
-// Create trees for implicit builtin functions.
-
-void
-Gogo::define_builtin_function_trees()
-{
-  /* We need to define the fetch_and_add functions, since we use them
-     for ++ and --.  */
-  tree t = go_type_for_size(BITS_PER_UNIT, 1);
-  tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin(BUILT_IN_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
-                build_function_type_list(t, p, t, NULL_TREE), false);
-
-  t = go_type_for_size(BITS_PER_UNIT * 2, 1);
-  p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin (BUILT_IN_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
-                 build_function_type_list(t, p, t, NULL_TREE), false);
-
-  t = go_type_for_size(BITS_PER_UNIT * 4, 1);
-  p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin(BUILT_IN_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
-                build_function_type_list(t, p, t, NULL_TREE), false);
-
-  t = go_type_for_size(BITS_PER_UNIT * 8, 1);
-  p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
-  define_builtin(BUILT_IN_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
-                build_function_type_list(t, p, t, NULL_TREE), false);
-
-  // We use __builtin_expect for magic import functions.
-  define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
-                build_function_type_list(long_integer_type_node,
-                                         long_integer_type_node,
-                                         long_integer_type_node,
-                                         NULL_TREE),
-                true);
-
-  // We use __builtin_memmove for the predeclared copy function.
-  define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
-                build_function_type_list(ptr_type_node,
-                                         ptr_type_node,
-                                         const_ptr_type_node,
-                                         size_type_node,
-                                         NULL_TREE),
-                false);
-
-  // We provide sqrt for the math library.
-  define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
-                build_function_type_list(double_type_node,
-                                         double_type_node,
-                                         NULL_TREE),
-                true);
-  define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
-                build_function_type_list(long_double_type_node,
-                                         long_double_type_node,
-                                         NULL_TREE),
-                true);
-
-  // We use __builtin_return_address in the thunk we build for
-  // functions which call recover.
-  define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
-                build_function_type_list(ptr_type_node,
-                                         unsigned_type_node,
-                                         NULL_TREE),
-                false);
-
-  // The compiler uses __builtin_trap for some exception handling
-  // cases.
-  define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
-                build_function_type(void_type_node, void_list_node),
-                false);
-}
-
-// Get the name to use for the import control function.  If there is a
-// global function or variable, then we know that that name must be
-// unique in the link, and we use it as the basis for our name.
-
-const std::string&
-Gogo::get_init_fn_name()
-{
-  if (this->init_fn_name_.empty())
-    {
-      gcc_assert(this->package_ != NULL);
-      if (this->is_main_package())
-       {
-         // Use a name which the runtime knows.
-         this->init_fn_name_ = "__go_init_main";
-       }
-      else
-       {
-         std::string s = this->unique_prefix();
-         s.append(1, '.');
-         s.append(this->package_name());
-         s.append("..import");
-         this->init_fn_name_ = s;
-       }
-    }
-
-  return this->init_fn_name_;
-}
-
-// Add statements to INIT_STMT_LIST which run the initialization
-// functions for imported packages.  This is only used for the "main"
-// package.
-
-void
-Gogo::init_imports(tree* init_stmt_list)
-{
-  gcc_assert(this->is_main_package());
-
-  if (this->imported_init_fns_.empty())
-    return;
-
-  tree fntype = build_function_type(void_type_node, void_list_node);
-
-  // We must call them in increasing priority order.
-  std::vector<Import_init> v;
-  for (std::set<Import_init>::const_iterator p =
-        this->imported_init_fns_.begin();
-       p != this->imported_init_fns_.end();
-       ++p)
-    v.push_back(*p);
-  std::sort(v.begin(), v.end());
-
-  for (std::vector<Import_init>::const_iterator p = v.begin();
-       p != v.end();
-       ++p)
-    {
-      std::string user_name = p->package_name() + ".init";
-      tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
-                            get_identifier_from_string(user_name),
-                            fntype);
-      const std::string& init_name(p->init_name());
-      SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
-      TREE_PUBLIC(decl) = 1;
-      DECL_EXTERNAL(decl) = 1;
-      append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
-    }
-}
-
-// Register global variables with the garbage collector.  We need to
-// register all variables which can hold a pointer value.  They become
-// roots during the mark phase.  We build a struct that is easy to
-// hook into a list of roots.
-
-// struct __go_gc_root_list
-// {
-//   struct __go_gc_root_list* __next;
-//   struct __go_gc_root
-//   {
-//     void* __decl;
-//     size_t __size;
-//   } __roots[];
-// };
-
-// The last entry in the roots array has a NULL decl field.
-
-void
-Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
-                      tree* init_stmt_list)
-{
-  if (var_gc.empty())
-    return;
-
-  size_t count = var_gc.size();
-
-  tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
-                                       "__next",
-                                       ptr_type_node,
-                                       "__size",
-                                       sizetype);
-
-  tree index_type = build_index_type(size_int(count));
-  tree array_type = build_array_type(root_type, index_type);
-
-  tree root_list_type = make_node(RECORD_TYPE);
-  root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
-                                       root_list_type, 2,
-                                       "__next",
-                                       build_pointer_type(root_list_type),
-                                       "__roots",
-                                       array_type);
-
-  // Build an initialier for the __roots array.
-
-  VEC(constructor_elt,gc)* roots_init = VEC_alloc(constructor_elt, gc,
-                                                 count + 1);
-
-  size_t i = 0;
-  for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
-       p != var_gc.end();
-       ++p, ++i)
-    {
-      VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      tree field = TYPE_FIELDS(root_type);
-      elt->index = field;
-      tree decl = (*p)->get_tree(this, NULL);
-      gcc_assert(TREE_CODE(decl) == VAR_DECL);
-      elt->value = build_fold_addr_expr(decl);
-
-      elt = VEC_quick_push(constructor_elt, init, NULL);
-      field = DECL_CHAIN(field);
-      elt->index = field;
-      elt->value = DECL_SIZE_UNIT(decl);
-
-      elt = VEC_quick_push(constructor_elt, roots_init, NULL);
-      elt->index = size_int(i);
-      elt->value = build_constructor(root_type, init);
-    }
-
-  // The list ends with a NULL entry.
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(root_type);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  elt->index = field;
-  elt->value = size_zero_node;
-
-  elt = VEC_quick_push(constructor_elt, roots_init, NULL);
-  elt->index = size_int(i);
-  elt->value = build_constructor(root_type, init);
-
-  // Build a constructor for the struct.
-
-  VEC(constructor_elt,gc*) root_list_init = VEC_alloc(constructor_elt, gc, 2);
-
-  elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
-  field = TYPE_FIELDS(root_list_type);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-
-  elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
-  field = DECL_CHAIN(field);
-  elt->index = field;
-  elt->value = build_constructor(array_type, roots_init);
-
-  // Build a decl to register.
-
-  tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
-                        create_tmp_var_name("gc"), root_list_type);
-  DECL_EXTERNAL(decl) = 0;
-  TREE_PUBLIC(decl) = 0;
-  TREE_STATIC(decl) = 1;
-  DECL_ARTIFICIAL(decl) = 1;
-  DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
-  rest_of_decl_compilation(decl, 1, 0);
-
-  static tree register_gc_fndecl;
-  tree call = Gogo::call_builtin(&register_gc_fndecl, BUILTINS_LOCATION,
-                                "__go_register_gc_roots",
-                                1,
-                                void_type_node,
-                                build_pointer_type(root_list_type),
-                                build_fold_addr_expr(decl));
-  if (call != error_mark_node)
-    append_to_statement_list(call, init_stmt_list);
-}
-
-// Build the decl for the initialization function.
-
-tree
-Gogo::initialization_function_decl()
-{
-  // The tedious details of building your own function.  There doesn't
-  // seem to be a helper function for this.
-  std::string name = this->package_name() + ".init";
-  tree fndecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL,
-                          get_identifier_from_string(name),
-                          build_function_type(void_type_node,
-                                              void_list_node));
-  const std::string& asm_name(this->get_init_fn_name());
-  SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
-
-  tree resdecl = build_decl(BUILTINS_LOCATION, RESULT_DECL, NULL_TREE,
-                           void_type_node);
-  DECL_ARTIFICIAL(resdecl) = 1;
-  DECL_CONTEXT(resdecl) = fndecl;
-  DECL_RESULT(fndecl) = resdecl;
-
-  TREE_STATIC(fndecl) = 1;
-  TREE_USED(fndecl) = 1;
-  DECL_ARTIFICIAL(fndecl) = 1;
-  TREE_PUBLIC(fndecl) = 1;
-
-  DECL_INITIAL(fndecl) = make_node(BLOCK);
-  TREE_USED(DECL_INITIAL(fndecl)) = 1;
-
-  return fndecl;
-}
-
-// Create the magic initialization function.  INIT_STMT_LIST is the
-// code that it needs to run.
-
-void
-Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
-{
-  // Make sure that we thought we needed an initialization function,
-  // as otherwise we will not have reported it in the export data.
-  gcc_assert(this->is_main_package() || this->need_init_fn_);
-
-  if (fndecl == NULL_TREE)
-    fndecl = this->initialization_function_decl();
-
-  DECL_SAVED_TREE(fndecl) = init_stmt_list;
-
-  current_function_decl = fndecl;
-  if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
-    push_struct_function(fndecl);
-  else
-    push_cfun(DECL_STRUCT_FUNCTION(fndecl));
-  cfun->function_end_locus = BUILTINS_LOCATION;
-
-  gimplify_function_tree(fndecl);
-
-  cgraph_add_new_function(fndecl, false);
-  cgraph_mark_needed_node(cgraph_node(fndecl));
-
-  current_function_decl = NULL_TREE;
-  pop_cfun();
-}
-
-// Search for references to VAR in any statements or called functions.
-
-class Find_var : public Traverse
-{
- public:
-  // A hash table we use to avoid looping.  The index is the name of a
-  // named object.  We only look through objects defined in this
-  // package.
-  typedef Unordered_set(std::string) Seen_objects;
-
-  Find_var(Named_object* var, Seen_objects* seen_objects)
-    : Traverse(traverse_expressions),
-      var_(var), seen_objects_(seen_objects), found_(false)
-  { }
-
-  // Whether the variable was found.
-  bool
-  found() const
-  { return this->found_; }
-
-  int
-  expression(Expression**);
-
- private:
-  // The variable we are looking for.
-  Named_object* var_;
-  // Names of objects we have already seen.
-  Seen_objects* seen_objects_;
-  // True if the variable was found.
-  bool found_;
-};
-
-// See if EXPR refers to VAR, looking through function calls and
-// variable initializations.
-
-int
-Find_var::expression(Expression** pexpr)
-{
-  Expression* e = *pexpr;
-
-  Var_expression* ve = e->var_expression();
-  if (ve != NULL)
-    {
-      Named_object* v = ve->named_object();
-      if (v == this->var_)
-       {
-         this->found_ = true;
-         return TRAVERSE_EXIT;
-       }
-
-      if (v->is_variable() && v->package() == NULL)
-       {
-         Expression* init = v->var_value()->init();
-         if (init != NULL)
-           {
-             std::pair<Seen_objects::iterator, bool> ins =
-               this->seen_objects_->insert(v->name());
-             if (ins.second)
-               {
-                 // This is the first time we have seen this name.
-                 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-           }
-       }
-    }
-
-  // We traverse the code of any function we see.  Note that this
-  // means that we will traverse the code of a function whose address
-  // is taken even if it is not called.
-  Func_expression* fe = e->func_expression();
-  if (fe != NULL)
-    {
-      const Named_object* f = fe->named_object();
-      if (f->is_function() && f->package() == NULL)
-       {
-         std::pair<Seen_objects::iterator, bool> ins =
-           this->seen_objects_->insert(f->name());
-         if (ins.second)
-           {
-             // This is the first time we have seen this name.
-             if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-       }
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Return true if EXPR refers to VAR.
-
-static bool
-expression_requires(Expression* expr, Block* preinit, Named_object* var)
-{
-  Find_var::Seen_objects seen_objects;
-  Find_var find_var(var, &seen_objects);
-  if (expr != NULL)
-    Expression::traverse(&expr, &find_var);
-  if (preinit != NULL)
-    preinit->traverse(&find_var);
-  
-  return find_var.found();
-}
-
-// Sort variable initializations.  If the initialization expression
-// for variable A refers directly or indirectly to the initialization
-// expression for variable B, then we must initialize B before A.
-
-class Var_init
-{
- public:
-  Var_init()
-    : var_(NULL), init_(NULL_TREE), waiting_(0)
-  { }
-
-  Var_init(Named_object* var, tree init)
-    : var_(var), init_(init), waiting_(0)
-  { }
-
-  // Return the variable.
-  Named_object*
-  var() const
-  { return this->var_; }
-
-  // Return the initialization expression.
-  tree
-  init() const
-  { return this->init_; }
-
-  // Return the number of variables waiting for this one to be
-  // initialized.
-  size_t
-  waiting() const
-  { return this->waiting_; }
-
-  // Increment the number waiting.
-  void
-  increment_waiting()
-  { ++this->waiting_; }
-
- private:
-  // The variable being initialized.
-  Named_object* var_;
-  // The initialization expression to run.
-  tree init_;
-  // The number of variables which are waiting for this one.
-  size_t waiting_;
-};
-
-typedef std::list<Var_init> Var_inits;
-
-// Sort the variable initializations.  The rule we follow is that we
-// emit them in the order they appear in the array, except that if the
-// initialization expression for a variable V1 depends upon another
-// variable V2 then we initialize V1 after V2.
-
-static void
-sort_var_inits(Var_inits* var_inits)
-{
-  Var_inits ready;
-  while (!var_inits->empty())
-    {
-      Var_inits::iterator p1 = var_inits->begin();
-      Named_object* var = p1->var();
-      Expression* init = var->var_value()->init();
-      Block* preinit = var->var_value()->preinit();
-
-      // Start walking through the list to see which variables VAR
-      // needs to wait for.  We can skip P1->WAITING variables--that
-      // is the number we've already checked.
-      Var_inits::iterator p2 = p1;
-      ++p2;
-      for (size_t i = p1->waiting(); i > 0; --i)
-       ++p2;
-
-      for (; p2 != var_inits->end(); ++p2)
-       {
-         if (expression_requires(init, preinit, p2->var()))
-           {
-             // Check for cycles.
-             if (expression_requires(p2->var()->var_value()->init(),
-                                     p2->var()->var_value()->preinit(),
-                                     var))
-               {
-                 error_at(var->location(),
-                          ("initialization expressions for %qs and "
-                           "%qs depend upon each other"),
-                          var->message_name().c_str(),
-                          p2->var()->message_name().c_str());
-                 inform(p2->var()->location(), "%qs defined here",
-                        p2->var()->message_name().c_str());
-                 p2 = var_inits->end();
-               }
-             else
-               {
-                 // We can't emit P1 until P2 is emitted.  Move P1.
-                 // Note that the WAITING loop always executes at
-                 // least once, which is what we want.
-                 p2->increment_waiting();
-                 Var_inits::iterator p3 = p2;
-                 for (size_t i = p2->waiting(); i > 0; --i)
-                   ++p3;
-                 var_inits->splice(p3, *var_inits, p1);
-               }
-             break;
-           }
-       }
-
-      if (p2 == var_inits->end())
-       {
-         // VAR does not depends upon any other initialization expressions.
-
-         // Check for a loop of VAR on itself.  We only do this if
-         // INIT is not NULL; when INIT is NULL, it means that
-         // PREINIT sets VAR, which we will interpret as a loop.
-         if (init != NULL && expression_requires(init, preinit, var))
-           error_at(var->location(),
-                    "initialization expression for %qs depends upon itself",
-                    var->message_name().c_str());
-         ready.splice(ready.end(), *var_inits, p1);
-       }
-    }
-
-  // Now READY is the list in the desired initialization order.
-  var_inits->swap(ready);
-}
-
-// Write out the global definitions.
-
-void
-Gogo::write_globals()
-{
-  this->convert_named_types();
-  this->build_interface_method_tables();
-
-  Bindings* bindings = this->current_bindings();
-  size_t count = bindings->size_definitions();
-
-  tree* vec = new tree[count];
-
-  tree init_fndecl = NULL_TREE;
-  tree init_stmt_list = NULL_TREE;
-
-  if (this->is_main_package())
-    this->init_imports(&init_stmt_list);
-
-  // A list of variable initializations.
-  Var_inits var_inits;
-
-  // A list of variables which need to be registered with the garbage
-  // collector.
-  std::vector<Named_object*> var_gc;
-  var_gc.reserve(count);
-
-  tree var_init_stmt_list = NULL_TREE;
-  size_t i = 0;
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p, ++i)
-    {
-      Named_object* no = *p;
-
-      gcc_assert(!no->is_type_declaration() && !no->is_function_declaration());
-      // There is nothing to do for a package.
-      if (no->is_package())
-       {
-         --i;
-         --count;
-         continue;
-       }
-
-      // There is nothing to do for an object which was imported from
-      // a different package into the global scope.
-      if (no->package() != NULL)
-       {
-         --i;
-         --count;
-         continue;
-       }
-
-      // There is nothing useful we can output for constants which
-      // have ideal or non-integeral type.
-      if (no->is_const())
-       {
-         Type* type = no->const_value()->type();
-         if (type == NULL)
-           type = no->const_value()->expr()->type();
-         if (type->is_abstract() || type->integer_type() == NULL)
-           {
-             --i;
-             --count;
-             continue;
-           }
-       }
-
-      vec[i] = no->get_tree(this, NULL);
-
-      if (vec[i] == error_mark_node)
-       {
-         gcc_assert(saw_errors());
-         --i;
-         --count;
-         continue;
-       }
-
-      // If a variable is initialized to a non-constant value, do the
-      // initialization in an initialization function.
-      if (TREE_CODE(vec[i]) == VAR_DECL)
-       {
-         gcc_assert(no->is_variable());
-
-         // Check for a sink variable, which may be used to run
-         // an initializer purely for its side effects.
-         bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
-
-         tree var_init_tree = NULL_TREE;
-         if (!no->var_value()->has_pre_init())
-           {
-             tree init = no->var_value()->get_init_tree(this, NULL);
-             if (init == error_mark_node)
-               gcc_assert(saw_errors());
-             else if (init == NULL_TREE)
-               ;
-             else if (TREE_CONSTANT(init))
-               DECL_INITIAL(vec[i]) = init;
-             else if (is_sink)
-               var_init_tree = init;
-             else
-               var_init_tree = fold_build2_loc(no->location(), MODIFY_EXPR,
-                                               void_type_node, vec[i], init);
-           }
-         else
-           {
-             // We are going to create temporary variables which
-             // means that we need an fndecl.
-             if (init_fndecl == NULL_TREE)
-               init_fndecl = this->initialization_function_decl();
-             current_function_decl = init_fndecl;
-             if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
-               push_struct_function(init_fndecl);
-             else
-               push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
-
-             tree var_decl = is_sink ? NULL_TREE : vec[i];
-             var_init_tree = no->var_value()->get_init_block(this, NULL,
-                                                             var_decl);
-
-             current_function_decl = NULL_TREE;
-             pop_cfun();
-           }
-
-         if (var_init_tree != NULL_TREE && var_init_tree != error_mark_node)
-           {
-             if (no->var_value()->init() == NULL
-                 && !no->var_value()->has_pre_init())
-               append_to_statement_list(var_init_tree, &var_init_stmt_list);
-             else
-               var_inits.push_back(Var_init(no, var_init_tree));
-           }
-
-         if (!is_sink && no->var_value()->type()->has_pointer())
-           var_gc.push_back(no);
-       }
-    }
-
-  // Register global variables with the garbage collector.
-  this->register_gc_vars(var_gc, &init_stmt_list);
-
-  // Simple variable initializations, after all variables are
-  // registered.
-  append_to_statement_list(var_init_stmt_list, &init_stmt_list);
-
-  // Complex variable initializations, first sorting them into a
-  // workable order.
-  if (!var_inits.empty())
-    {
-      sort_var_inits(&var_inits);
-      for (Var_inits::const_iterator p = var_inits.begin();
-          p != var_inits.end();
-          ++p)
-       append_to_statement_list(p->init(), &init_stmt_list);
-    }
-
-  // After all the variables are initialized, call the "init"
-  // functions if there are any.
-  for (std::vector<Named_object*>::const_iterator p =
-        this->init_functions_.begin();
-       p != this->init_functions_.end();
-       ++p)
-    {
-      tree decl = (*p)->get_tree(this, NULL);
-      tree call = build_call_expr(decl, 0);
-      append_to_statement_list(call, &init_stmt_list);
-    }
-
-  // Set up a magic function to do all the initialization actions.
-  // This will be called if this package is imported.
-  if (init_stmt_list != NULL_TREE
-      || this->need_init_fn_
-      || this->is_main_package())
-    this->write_initialization_function(init_fndecl, init_stmt_list);
-
-  // Pass everything back to the middle-end.
-
-  wrapup_global_declarations(vec, count);
-
-  cgraph_finalize_compilation_unit();
-
-  check_global_declarations(vec, count);
-  emit_debug_global_declarations(vec, count);
-
-  delete[] vec;
-}
-
-// Get a tree for the identifier for a named object.
-
-tree
-Named_object::get_id(Gogo* gogo)
-{
-  std::string decl_name;
-  if (this->is_function_declaration()
-      && !this->func_declaration_value()->asm_name().empty())
-    decl_name = this->func_declaration_value()->asm_name();
-  else if ((this->is_variable() && !this->var_value()->is_global())
-          || (this->is_type()
-              && this->type_value()->location() == BUILTINS_LOCATION))
-    {
-      // We don't need the package name for local variables or builtin
-      // types.
-      decl_name = Gogo::unpack_hidden_name(this->name_);
-    }
-  else
-    {
-      std::string package_name;
-      if (this->package_ == NULL)
-       package_name = gogo->package_name();
-      else
-       package_name = this->package_->name();
-
-      decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
-
-      Function_type* fntype;
-      if (this->is_function())
-       fntype = this->func_value()->type();
-      else if (this->is_function_declaration())
-       fntype = this->func_declaration_value()->type();
-      else
-       fntype = NULL;
-      if (fntype != NULL && fntype->is_method())
-       {
-         decl_name.push_back('.');
-         decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
-       }
-    }
-  if (this->is_type())
-    {
-      const Named_object* in_function = this->type_value()->in_function();
-      if (in_function != NULL)
-       decl_name += '$' + in_function->name();
-    }
-  return get_identifier_from_string(decl_name);
-}
-
-// Get a tree for a named object.
-
-tree
-Named_object::get_tree(Gogo* gogo, Named_object* function)
-{
-  if (this->tree_ != NULL_TREE)
-    {
-      // If this is a variable whose address is taken, we must rebuild
-      // the INDIRECT_REF each time to avoid invalid sharing.
-      tree ret = this->tree_;
-      if (((this->classification_ == NAMED_OBJECT_VAR
-           && this->var_value()->is_in_heap())
-          || (this->classification_ == NAMED_OBJECT_RESULT_VAR
-              && this->result_var_value()->is_in_heap()))
-         && ret != error_mark_node)
-       {
-         gcc_assert(TREE_CODE(ret) == INDIRECT_REF);
-         ret = build_fold_indirect_ref(TREE_OPERAND(ret, 0));
-         TREE_THIS_NOTRAP(ret) = 1;
-       }
-      return ret;
-    }
-
-  tree name;
-  if (this->classification_ == NAMED_OBJECT_TYPE)
-    name = NULL_TREE;
-  else
-    name = this->get_id(gogo);
-  tree decl;
-  switch (this->classification_)
-    {
-    case NAMED_OBJECT_CONST:
-      {
-       Named_constant* named_constant = this->u_.const_value;
-       Translate_context subcontext(gogo, function, NULL, NULL_TREE);
-       tree expr_tree = named_constant->expr()->get_tree(&subcontext);
-       if (expr_tree == error_mark_node)
-         decl = error_mark_node;
-       else
-         {
-           Type* type = named_constant->type();
-           if (type != NULL && !type->is_abstract())
-             {
-               if (!type->is_undefined())
-                 expr_tree = fold_convert(type->get_tree(gogo), expr_tree);
-               else
-                 {
-                   // Make sure we report the error.
-                   type->base();
-                   expr_tree = error_mark_node;
-                 }
-             }
-           if (expr_tree == error_mark_node)
-             decl = error_mark_node;
-           else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
-             {
-               decl = build_decl(named_constant->location(), CONST_DECL,
-                                 name, TREE_TYPE(expr_tree));
-               DECL_INITIAL(decl) = expr_tree;
-               TREE_CONSTANT(decl) = 1;
-               TREE_READONLY(decl) = 1;
-             }
-           else
-             {
-               // A CONST_DECL is only for an enum constant, so we
-               // shouldn't use for non-integral types.  Instead we
-               // just return the constant itself, rather than a
-               // decl.
-               decl = expr_tree;
-             }
-         }
-      }
-      break;
-
-    case NAMED_OBJECT_TYPE:
-      {
-       Named_type* named_type = this->u_.type_value;
-       tree type_tree = named_type->get_tree(gogo);
-       if (type_tree == error_mark_node)
-         decl = error_mark_node;
-       else
-         {
-           decl = TYPE_NAME(type_tree);
-           gcc_assert(decl != NULL_TREE);
-
-           // We need to produce a type descriptor for every named
-           // type, and for a pointer to every named type, since
-           // other files or packages might refer to them.  We need
-           // to do this even for hidden types, because they might
-           // still be returned by some function.  Simply calling the
-           // type_descriptor method is enough to create the type
-           // descriptor, even though we don't do anything with it.
-           if (this->package_ == NULL)
-             {
-               named_type->type_descriptor_pointer(gogo);
-               Type* pn = Type::make_pointer_type(named_type);
-               pn->type_descriptor_pointer(gogo);
-             }
-         }
-      }
-      break;
-
-    case NAMED_OBJECT_TYPE_DECLARATION:
-      error("reference to undefined type %qs",
-           this->message_name().c_str());
-      return error_mark_node;
-
-    case NAMED_OBJECT_VAR:
-      {
-       Variable* var = this->u_.var_value;
-       Type* type = var->type();
-       if (type->is_error_type()
-           || (type->is_undefined()
-               && (!var->is_global() || this->package() == NULL)))
-         {
-           // Force the error for an undefined type, just in case.
-           type->base();
-           decl = error_mark_node;
-         }
-       else
-         {
-           tree var_type = type->get_tree(gogo);
-           bool is_parameter = var->is_parameter();
-           if (var->is_receiver() && type->points_to() == NULL)
-             is_parameter = false;
-           if (var->is_in_heap())
-             {
-               is_parameter = false;
-               var_type = build_pointer_type(var_type);
-             }
-           decl = build_decl(var->location(),
-                             is_parameter ? PARM_DECL : VAR_DECL,
-                             name, var_type);
-           if (!var->is_global())
-             {
-               tree fnid = function->get_id(gogo);
-               tree fndecl = function->func_value()->get_or_make_decl(gogo,
-                                                                      function,
-                                                                      fnid);
-               DECL_CONTEXT(decl) = fndecl;
-             }
-           if (is_parameter)
-             DECL_ARG_TYPE(decl) = TREE_TYPE(decl);
-
-           if (var->is_global())
-             {
-               const Package* package = this->package();
-               if (package == NULL)
-                 TREE_STATIC(decl) = 1;
-               else
-                 DECL_EXTERNAL(decl) = 1;
-               if (!Gogo::is_hidden_name(this->name_))
-                 {
-                   TREE_PUBLIC(decl) = 1;
-                   std::string asm_name = (package == NULL
-                                           ? gogo->unique_prefix()
-                                           : package->unique_prefix());
-                   asm_name.append(1, '.');
-                   asm_name.append(IDENTIFIER_POINTER(name),
-                                   IDENTIFIER_LENGTH(name));
-                   tree asm_id = get_identifier_from_string(asm_name);
-                   SET_DECL_ASSEMBLER_NAME(decl, asm_id);
-                 }
-             }
-
-           // FIXME: We should only set this for variables which are
-           // actually used somewhere.
-           TREE_USED(decl) = 1;
-         }
-      }
-      break;
-
-    case NAMED_OBJECT_RESULT_VAR:
-      {
-       Result_variable* result = this->u_.result_var_value;
-       Type* type = result->type();
-       if (type->is_error_type() || type->is_undefined())
-         {
-           // Force the error.
-           type->base();
-           decl = error_mark_node;
-         }
-       else
-         {
-           gcc_assert(result->function() == function->func_value());
-           source_location loc = function->location();
-           tree result_type = type->get_tree(gogo);
-           tree init;
-           if (!result->is_in_heap())
-             init = type->get_init_tree(gogo, false);
-           else
-             {
-               tree space = gogo->allocate_memory(type,
-                                                  TYPE_SIZE_UNIT(result_type),
-                                                  loc);
-               result_type = build_pointer_type(result_type);
-               tree subinit = type->get_init_tree(gogo, true);
-               if (subinit == NULL_TREE)
-                 init = fold_convert_loc(loc, result_type, space);
-               else
-                 {
-                   space = save_expr(space);
-                   space = fold_convert_loc(loc, result_type, space);
-                   tree spaceref = build_fold_indirect_ref_loc(loc, space);
-                   TREE_THIS_NOTRAP(spaceref) = 1;
-                   tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
-                                              spaceref, subinit);
-                   init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
-                                          set, space);
-                 }
-             }
-           decl = build_decl(loc, VAR_DECL, name, result_type);
-           tree fnid = function->get_id(gogo);
-           tree fndecl = function->func_value()->get_or_make_decl(gogo,
-                                                                  function,
-                                                                  fnid);
-           DECL_CONTEXT(decl) = fndecl;
-           DECL_INITIAL(decl) = init;
-           TREE_USED(decl) = 1;
-         }
-      }
-      break;
-
-    case NAMED_OBJECT_SINK:
-      gcc_unreachable();
-
-    case NAMED_OBJECT_FUNC:
-      {
-       Function* func = this->u_.func_value;
-       decl = func->get_or_make_decl(gogo, this, name);
-       if (decl != error_mark_node)
-         {
-           if (func->block() != NULL)
-             {
-               if (DECL_STRUCT_FUNCTION(decl) == NULL)
-                 push_struct_function(decl);
-               else
-                 push_cfun(DECL_STRUCT_FUNCTION(decl));
-
-               cfun->function_end_locus = func->block()->end_location();
-
-               current_function_decl = decl;
-
-               func->build_tree(gogo, this);
-
-               gimplify_function_tree(decl);
-
-               cgraph_finalize_function(decl, true);
-
-               current_function_decl = NULL_TREE;
-               pop_cfun();
-             }
-         }
-      }
-      break;
-
-    default:
-      gcc_unreachable();
-    }
-
-  if (TREE_TYPE(decl) == error_mark_node)
-    decl = error_mark_node;
-
-  tree ret = decl;
-
-  // If this is a local variable whose address is taken, then we
-  // actually store it in the heap.  For uses of the variable we need
-  // to return a reference to that heap location.
-  if (((this->classification_ == NAMED_OBJECT_VAR
-       && this->var_value()->is_in_heap())
-       || (this->classification_ == NAMED_OBJECT_RESULT_VAR
-          && this->result_var_value()->is_in_heap()))
-      && ret != error_mark_node)
-    {
-      gcc_assert(POINTER_TYPE_P(TREE_TYPE(ret)));
-      ret = build_fold_indirect_ref(ret);
-      TREE_THIS_NOTRAP(ret) = 1;
-    }
-
-  this->tree_ = ret;
-
-  if (ret != error_mark_node)
-    go_preserve_from_gc(ret);
-
-  return ret;
-}
-
-// Get the initial value of a variable as a tree.  This does not
-// consider whether the variable is in the heap--it returns the
-// initial value as though it were always stored in the stack.
-
-tree
-Variable::get_init_tree(Gogo* gogo, Named_object* function)
-{
-  gcc_assert(this->preinit_ == NULL);
-  if (this->init_ == NULL)
-    {
-      gcc_assert(!this->is_parameter_);
-      return this->type_->get_init_tree(gogo, this->is_global_);
-    }
-  else
-    {
-      Translate_context context(gogo, function, NULL, NULL_TREE);
-      tree rhs_tree = this->init_->get_tree(&context);
-      return Expression::convert_for_assignment(&context, this->type(),
-                                               this->init_->type(),
-                                               rhs_tree, this->location());
-    }
-}
-
-// Get the initial value of a variable when a block is required.
-// VAR_DECL is the decl to set; it may be NULL for a sink variable.
-
-tree
-Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
-{
-  gcc_assert(this->preinit_ != NULL);
-
-  // We want to add the variable assignment to the end of the preinit
-  // block.  The preinit block may have a TRY_FINALLY_EXPR and a
-  // TRY_CATCH_EXPR; if it does, we want to add to the end of the
-  // regular statements.
-
-  Translate_context context(gogo, function, NULL, NULL_TREE);
-  tree block_tree = this->preinit_->get_tree(&context);
-  if (block_tree == error_mark_node)
-    return error_mark_node;
-  gcc_assert(TREE_CODE(block_tree) == BIND_EXPR);
-  tree statements = BIND_EXPR_BODY(block_tree);
-  while (statements != NULL_TREE
-        && (TREE_CODE(statements) == TRY_FINALLY_EXPR
-            || TREE_CODE(statements) == TRY_CATCH_EXPR))
-    statements = TREE_OPERAND(statements, 0);
-
-  // It's possible to have pre-init statements without an initializer
-  // if the pre-init statements set the variable.
-  if (this->init_ != NULL)
-    {
-      tree rhs_tree = this->init_->get_tree(&context);
-      if (rhs_tree == error_mark_node)
-       return error_mark_node;
-      if (var_decl == NULL_TREE)
-       append_to_statement_list(rhs_tree, &statements);
-      else
-       {
-         tree val = Expression::convert_for_assignment(&context, this->type(),
-                                                       this->init_->type(),
-                                                       rhs_tree,
-                                                       this->location());
-         if (val == error_mark_node)
-           return error_mark_node;
-         tree set = fold_build2_loc(this->location(), MODIFY_EXPR,
-                                    void_type_node, var_decl, val);
-         append_to_statement_list(set, &statements);
-       }
-    }
-
-  return block_tree;
-}
-
-// Get a tree for a function decl.
-
-tree
-Function::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
-{
-  if (this->fndecl_ == NULL_TREE)
-    {
-      tree functype = this->type_->get_tree(gogo);
-      if (functype == error_mark_node)
-       this->fndecl_ = error_mark_node;
-      else
-       {
-         // The type of a function comes back as a pointer, but we
-         // want the real function type for a function declaration.
-         gcc_assert(POINTER_TYPE_P(functype));
-         functype = TREE_TYPE(functype);
-         tree decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
-
-         this->fndecl_ = decl;
-
-         if (no->package() != NULL)
-           ;
-         else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
-           ;
-         else if (Gogo::unpack_hidden_name(no->name()) == "init"
-                  && !this->type_->is_method())
-           ;
-         else if (Gogo::unpack_hidden_name(no->name()) == "main"
-                  && gogo->is_main_package())
-           TREE_PUBLIC(decl) = 1;
-         // Methods have to be public even if they are hidden because
-         // they can be pulled into type descriptors when using
-         // anonymous fields.
-         else if (!Gogo::is_hidden_name(no->name())
-                  || this->type_->is_method())
-           {
-             TREE_PUBLIC(decl) = 1;
-             std::string asm_name = gogo->unique_prefix();
-             asm_name.append(1, '.');
-             asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
-             SET_DECL_ASSEMBLER_NAME(decl,
-                                     get_identifier_from_string(asm_name));
-           }
-
-         // Why do we have to do this in the frontend?
-         tree restype = TREE_TYPE(functype);
-         tree resdecl = build_decl(this->location(), RESULT_DECL, NULL_TREE,
-                                   restype);
-         DECL_ARTIFICIAL(resdecl) = 1;
-         DECL_IGNORED_P(resdecl) = 1;
-         DECL_CONTEXT(resdecl) = decl;
-         DECL_RESULT(decl) = resdecl;
-
-         if (this->enclosing_ != NULL)
-           DECL_STATIC_CHAIN(decl) = 1;
-
-         // If a function calls the predeclared recover function, we
-         // can't inline it, because recover behaves differently in a
-         // function passed directly to defer.
-         if (this->calls_recover_ && !this->is_recover_thunk_)
-           DECL_UNINLINABLE(decl) = 1;
-
-         // If this is a thunk created to call a function which calls
-         // the predeclared recover function, we need to disable
-         // stack splitting for the thunk.
-         if (this->is_recover_thunk_)
-           {
-             tree attr = get_identifier("__no_split_stack__");
-             DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
-           }
-
-         go_preserve_from_gc(decl);
-
-         if (this->closure_var_ != NULL)
-           {
-             push_struct_function(decl);
-
-             tree closure_decl = this->closure_var_->get_tree(gogo, no);
-             if (closure_decl == error_mark_node)
-               this->fndecl_ = error_mark_node;
-             else
-               {
-                 DECL_ARTIFICIAL(closure_decl) = 1;
-                 DECL_IGNORED_P(closure_decl) = 1;
-                 TREE_USED(closure_decl) = 1;
-                 DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl);
-                 TREE_READONLY(closure_decl) = 1;
-
-                 DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl;
-               }
-
-             pop_cfun();
-           }
-       }
-    }
-  return this->fndecl_;
-}
-
-// Get a tree for a function declaration.
-
-tree
-Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
-{
-  if (this->fndecl_ == NULL_TREE)
-    {
-      // Let Go code use an asm declaration to pick up a builtin
-      // function.
-      if (!this->asm_name_.empty())
-       {
-         std::map<std::string, tree>::const_iterator p =
-           builtin_functions.find(this->asm_name_);
-         if (p != builtin_functions.end())
-           {
-             this->fndecl_ = p->second;
-             return this->fndecl_;
-           }
-       }
-
-      tree functype = this->fntype_->get_tree(gogo);
-      tree decl;
-      if (functype == error_mark_node)
-       decl = error_mark_node;
-      else
-       {
-         // The type of a function comes back as a pointer, but we
-         // want the real function type for a function declaration.
-         gcc_assert(POINTER_TYPE_P(functype));
-         functype = TREE_TYPE(functype);
-         decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
-         TREE_PUBLIC(decl) = 1;
-         DECL_EXTERNAL(decl) = 1;
-
-         if (this->asm_name_.empty())
-           {
-             std::string asm_name = (no->package() == NULL
-                                     ? gogo->unique_prefix()
-                                     : no->package()->unique_prefix());
-             asm_name.append(1, '.');
-             asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
-             SET_DECL_ASSEMBLER_NAME(decl,
-                                     get_identifier_from_string(asm_name));
-           }
-       }
-      this->fndecl_ = decl;
-      go_preserve_from_gc(decl);
-    }
-  return this->fndecl_;
-}
-
-// We always pass the receiver to a method as a pointer.  If the
-// receiver is actually declared as a non-pointer type, then we copy
-// the value into a local variable, so that it has the right type.  In
-// this function we create the real PARM_DECL to use, and set
-// DEC_INITIAL of the var_decl to be the value passed in.
-
-tree
-Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
-{
-  if (var_decl == error_mark_node)
-    return error_mark_node;
-  // If the function takes the address of a receiver which is passed
-  // by value, then we will have an INDIRECT_REF here.  We need to get
-  // the real variable.
-  bool is_in_heap = no->var_value()->is_in_heap();
-  tree val_type;
-  if (TREE_CODE(var_decl) != INDIRECT_REF)
-    {
-      gcc_assert(!is_in_heap);
-      val_type = TREE_TYPE(var_decl);
-    }
-  else
-    {
-      gcc_assert(is_in_heap);
-      var_decl = TREE_OPERAND(var_decl, 0);
-      if (var_decl == error_mark_node)
-       return error_mark_node;
-      gcc_assert(POINTER_TYPE_P(TREE_TYPE(var_decl)));
-      val_type = TREE_TYPE(TREE_TYPE(var_decl));
-    }
-  gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
-  source_location loc = DECL_SOURCE_LOCATION(var_decl);
-  std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
-  name += ".pointer";
-  tree id = get_identifier_from_string(name);
-  tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
-  DECL_CONTEXT(parm_decl) = current_function_decl;
-  DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
-
-  gcc_assert(DECL_INITIAL(var_decl) == NULL_TREE);
-  // The receiver might be passed as a null pointer.
-  tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node, parm_decl,
-                              fold_convert_loc(loc, TREE_TYPE(parm_decl),
-                                               null_pointer_node));
-  tree ind = build_fold_indirect_ref_loc(loc, parm_decl);
-  TREE_THIS_NOTRAP(ind) = 1;
-  tree zero_init = no->var_value()->type()->get_init_tree(gogo, false);
-  tree init = fold_build3_loc(loc, COND_EXPR, TREE_TYPE(ind),
-                             check, ind, zero_init);
-
-  if (is_in_heap)
-    {
-      tree size = TYPE_SIZE_UNIT(val_type);
-      tree space = gogo->allocate_memory(no->var_value()->type(), size,
-                                        no->location());
-      space = save_expr(space);
-      space = fold_convert(build_pointer_type(val_type), space);
-      tree spaceref = build_fold_indirect_ref_loc(no->location(), space);
-      TREE_THIS_NOTRAP(spaceref) = 1;
-      tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node,
-                                  parm_decl,
-                                  fold_convert_loc(loc, TREE_TYPE(parm_decl),
-                                                   null_pointer_node));
-      tree parmref = build_fold_indirect_ref_loc(no->location(), parm_decl);
-      TREE_THIS_NOTRAP(parmref) = 1;
-      tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
-                                spaceref, parmref);
-      init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
-                            build3(COND_EXPR, void_type_node,
-                                   check, set, NULL_TREE),
-                            space);
-    }
-
-  DECL_INITIAL(var_decl) = init;
-
-  return parm_decl;
-}
-
-// If we take the address of a parameter, then we need to copy it into
-// the heap.  We will access it as a local variable via an
-// indirection.
-
-tree
-Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree ref)
-{
-  if (ref == error_mark_node)
-    return error_mark_node;
-
-  gcc_assert(TREE_CODE(ref) == INDIRECT_REF);
-
-  tree var_decl = TREE_OPERAND(ref, 0);
-  if (var_decl == error_mark_node)
-    return error_mark_node;
-  gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
-  source_location loc = DECL_SOURCE_LOCATION(var_decl);
-
-  std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
-  name += ".param";
-  tree id = get_identifier_from_string(name);
-
-  tree type = TREE_TYPE(var_decl);
-  gcc_assert(POINTER_TYPE_P(type));
-  type = TREE_TYPE(type);
-
-  tree parm_decl = build_decl(loc, PARM_DECL, id, type);
-  DECL_CONTEXT(parm_decl) = current_function_decl;
-  DECL_ARG_TYPE(parm_decl) = type;
-
-  tree size = TYPE_SIZE_UNIT(type);
-  tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
-  space = save_expr(space);
-  space = fold_convert(TREE_TYPE(var_decl), space);
-  tree spaceref = build_fold_indirect_ref_loc(loc, space);
-  TREE_THIS_NOTRAP(spaceref) = 1;
-  tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
-                    build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
-                    space);
-  DECL_INITIAL(var_decl) = init;
-
-  return parm_decl;
-}
-
-// Get a tree for function code.
-
-void
-Function::build_tree(Gogo* gogo, Named_object* named_function)
-{
-  tree fndecl = this->fndecl_;
-  gcc_assert(fndecl != NULL_TREE);
-
-  tree params = NULL_TREE;
-  tree* pp = &params;
-
-  tree declare_vars = NULL_TREE;
-  for (Bindings::const_definitions_iterator p =
-        this->block_->bindings()->begin_definitions();
-       p != this->block_->bindings()->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
-       {
-         *pp = (*p)->get_tree(gogo, named_function);
-
-         // We always pass the receiver to a method as a pointer.  If
-         // the receiver is declared as a non-pointer type, then we
-         // copy the value into a local variable.
-         if ((*p)->var_value()->is_receiver()
-             && (*p)->var_value()->type()->points_to() == NULL)
-           {
-             tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
-             tree var = *pp;
-             if (TREE_CODE(var) == INDIRECT_REF)
-               var = TREE_OPERAND(var, 0);
-             if (var != error_mark_node)
-               {
-                 gcc_assert(TREE_CODE(var) == VAR_DECL);
-                 DECL_CHAIN(var) = declare_vars;
-                 declare_vars = var;
-               }
-             *pp = parm_decl;
-           }
-         else if ((*p)->var_value()->is_in_heap())
-           {
-             // If we take the address of a parameter, then we need
-             // to copy it into the heap.
-             tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
-             if (*pp != error_mark_node)
-               {
-                 gcc_assert(TREE_CODE(*pp) == INDIRECT_REF);
-                 tree var_decl = TREE_OPERAND(*pp, 0);
-                 if (var_decl != error_mark_node)
-                   {
-                     gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
-                     DECL_CHAIN(var_decl) = declare_vars;
-                     declare_vars = var_decl;
-                   }
-               }
-             *pp = parm_decl;
-           }
-
-         if (*pp != error_mark_node)
-           {
-             gcc_assert(TREE_CODE(*pp) == PARM_DECL);
-             pp = &DECL_CHAIN(*pp);
-           }
-       }
-      else if ((*p)->is_result_variable())
-       {
-         tree var_decl = (*p)->get_tree(gogo, named_function);
-         if (var_decl != error_mark_node
-             && (*p)->result_var_value()->is_in_heap())
-           {
-             gcc_assert(TREE_CODE(var_decl) == INDIRECT_REF);
-             var_decl = TREE_OPERAND(var_decl, 0);
-           }
-         if (var_decl != error_mark_node)
-           {
-             gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
-             DECL_CHAIN(var_decl) = declare_vars;
-             declare_vars = var_decl;
-           }
-       }
-    }
-  *pp = NULL_TREE;
-
-  DECL_ARGUMENTS(fndecl) = params;
-
-  if (this->block_ != NULL)
-    {
-      gcc_assert(DECL_INITIAL(fndecl) == NULL_TREE);
-
-      // Declare variables if necessary.
-      tree bind = NULL_TREE;
-      if (declare_vars != NULL_TREE)
-       {
-         tree block = make_node(BLOCK);
-         BLOCK_SUPERCONTEXT(block) = fndecl;
-         DECL_INITIAL(fndecl) = block;
-         BLOCK_VARS(block) = declare_vars;
-         TREE_USED(block) = 1;
-         bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
-                       NULL_TREE, block);
-         TREE_SIDE_EFFECTS(bind) = 1;
-       }
-
-      // Build the trees for all the statements in the function.
-      Translate_context context(gogo, named_function, NULL, NULL_TREE);
-      tree code = this->block_->get_tree(&context);
-
-      tree init = NULL_TREE;
-      tree except = NULL_TREE;
-      tree fini = NULL_TREE;
-
-      // Initialize variables if necessary.
-      for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
-       {
-         tree dv = build1(DECL_EXPR, void_type_node, v);
-         SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
-         append_to_statement_list(dv, &init);
-       }
-
-      // If we have a defer stack, initialize it at the start of a
-      // function.
-      if (this->defer_stack_ != NULL_TREE)
-       {
-         tree defer_init = build1(DECL_EXPR, void_type_node,
-                                  this->defer_stack_);
-         SET_EXPR_LOCATION(defer_init, this->block_->start_location());
-         append_to_statement_list(defer_init, &init);
-
-         // Clean up the defer stack when we leave the function.
-         this->build_defer_wrapper(gogo, named_function, &except, &fini);
-       }
-
-      if (code != NULL_TREE && code != error_mark_node)
-       {
-         if (init != NULL_TREE)
-           code = build2(COMPOUND_EXPR, void_type_node, init, code);
-         if (except != NULL_TREE)
-           code = build2(TRY_CATCH_EXPR, void_type_node, code,
-                         build2(CATCH_EXPR, void_type_node, NULL, except));
-         if (fini != NULL_TREE)
-           code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
-       }
-
-      // Stick the code into the block we built for the receiver, if
-      // we built on.
-      if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
-       {
-         BIND_EXPR_BODY(bind) = code;
-         code = bind;
-       }
-
-      DECL_SAVED_TREE(fndecl) = code;
-    }
-}
-
-// Build the wrappers around function code needed if the function has
-// any defer statements.  This sets *EXCEPT to an exception handler
-// and *FINI to a finally handler.
-
-void
-Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
-                             tree *except, tree *fini)
-{
-  source_location end_loc = this->block_->end_location();
-
-  // Add an exception handler.  This is used if a panic occurs.  Its
-  // purpose is to stop the stack unwinding if a deferred function
-  // calls recover.  There are more details in
-  // libgo/runtime/go-unwind.c.
-  tree stmt_list = NULL_TREE;
-  static tree check_fndecl;
-  tree call = Gogo::call_builtin(&check_fndecl,
-                                end_loc,
-                                "__go_check_defer",
-                                1,
-                                void_type_node,
-                                ptr_type_node,
-                                this->defer_stack(end_loc));
-  if (call != error_mark_node)
-    append_to_statement_list(call, &stmt_list);
-
-  tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
-  tree set;
-  if (retval == NULL_TREE)
-    set = NULL_TREE;
-  else
-    set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
-                         DECL_RESULT(this->fndecl_), retval);
-  tree ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
-  append_to_statement_list(ret_stmt, &stmt_list);
-
-  gcc_assert(*except == NULL_TREE);
-  *except = stmt_list;
-
-  // Add some finally code to run the defer functions.  This is used
-  // both in the normal case, when no panic occurs, and also if a
-  // panic occurs to run any further defer functions.  Of course, it
-  // is possible for a defer function to call panic which should be
-  // caught by another defer function.  To handle that we use a loop.
-  //  finish:
-  //   try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
-  //   if (return values are named) return named_vals;
-
-  stmt_list = NULL;
-
-  tree label = create_artificial_label(end_loc);
-  tree define_label = fold_build1_loc(end_loc, LABEL_EXPR, void_type_node,
-                                     label);
-  append_to_statement_list(define_label, &stmt_list);
-
-  static tree undefer_fndecl;
-  tree undefer = Gogo::call_builtin(&undefer_fndecl,
-                                   end_loc,
-                                   "__go_undefer",
-                                   1,
-                                   void_type_node,
-                                   ptr_type_node,
-                                   this->defer_stack(end_loc));
-  if (undefer_fndecl != NULL_TREE)
-    TREE_NOTHROW(undefer_fndecl) = 0;
-
-  tree defer = Gogo::call_builtin(&check_fndecl,
-                                 end_loc,
-                                 "__go_check_defer",
-                                 1,
-                                 void_type_node,
-                                 ptr_type_node,
-                                 this->defer_stack(end_loc));
-  tree jump = fold_build1_loc(end_loc, GOTO_EXPR, void_type_node, label);
-  tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
-  catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
-  tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
-
-  append_to_statement_list(try_catch, &stmt_list);
-
-  if (this->type_->results() != NULL
-      && !this->type_->results()->empty()
-      && !this->type_->results()->front().name().empty())
-    {
-      // If the result variables are named, we need to return them
-      // again, because they might have been changed by a defer
-      // function.
-      retval = this->return_value(gogo, named_function, end_loc,
-                                 &stmt_list);
-      set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
-                           DECL_RESULT(this->fndecl_), retval);
-      ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
-      append_to_statement_list(ret_stmt, &stmt_list);
-    }
-  
-  gcc_assert(*fini == NULL_TREE);
-  *fini = stmt_list;
-}
-
-// Return the value to assign to DECL_RESULT(this->fndecl_).  This may
-// also add statements to STMT_LIST, which need to be executed before
-// the assignment.  This is used for a return statement with no
-// explicit values.
-
-tree
-Function::return_value(Gogo* gogo, Named_object* named_function,
-                      source_location location, tree* stmt_list) const
-{
-  const Typed_identifier_list* results = this->type_->results();
-  if (results == NULL || results->empty())
-    return NULL_TREE;
-
-  // In the case of an exception handler created for functions with
-  // defer statements, the result variables may be unnamed.
-  bool is_named = !results->front().name().empty();
-  if (is_named)
-    {
-      gcc_assert(this->named_results_ != NULL);
-      if (this->named_results_->size() != results->size())
-       {
-         gcc_assert(saw_errors());
-         return error_mark_node;
-       }
-    }
-
-  tree retval;
-  if (results->size() == 1)
-    {
-      if (is_named)
-       return this->named_results_->front()->get_tree(gogo, named_function);
-      else
-       return results->front().type()->get_init_tree(gogo, false);
-    }
-  else
-    {
-      tree rettype = TREE_TYPE(DECL_RESULT(this->fndecl_));
-      retval = create_tmp_var(rettype, "RESULT");
-      tree field = TYPE_FIELDS(rettype);
-      int index = 0;
-      for (Typed_identifier_list::const_iterator pr = results->begin();
-          pr != results->end();
-          ++pr, ++index, field = DECL_CHAIN(field))
-       {
-         gcc_assert(field != NULL);
-         tree val;
-         if (is_named)
-           val = (*this->named_results_)[index]->get_tree(gogo,
-                                                          named_function);
-         else
-           val = pr->type()->get_init_tree(gogo, false);
-         tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
-                                    build3(COMPONENT_REF, TREE_TYPE(field),
-                                           retval, field, NULL_TREE),
-                                    val);
-         append_to_statement_list(set, stmt_list);
-       }
-      return retval;
-    }
-}
-
-// Get the tree for the variable holding the defer stack for this
-// function.  At least at present, the value of this variable is not
-// used.  However, a pointer to this variable is used as a marker for
-// the functions on the defer stack associated with this function.
-// Doing things this way permits inlining a function which uses defer.
-
-tree
-Function::defer_stack(source_location location)
-{
-  if (this->defer_stack_ == NULL_TREE)
-    {
-      tree var = create_tmp_var(ptr_type_node, "DEFER");
-      DECL_INITIAL(var) = null_pointer_node;
-      DECL_SOURCE_LOCATION(var) = location;
-      TREE_ADDRESSABLE(var) = 1;
-      this->defer_stack_ = var;
-    }
-  return fold_convert_loc(location, ptr_type_node,
-                         build_fold_addr_expr_loc(location,
-                                                  this->defer_stack_));
-}
-
-// Get a tree for the statements in a block.
-
-tree
-Block::get_tree(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-
-  tree block = make_node(BLOCK);
-
-  // Put the new block into the block tree.
-
-  if (context->block() == NULL)
-    {
-      tree fndecl;
-      if (context->function() != NULL)
-       fndecl = context->function()->func_value()->get_decl();
-      else
-       fndecl = current_function_decl;
-      gcc_assert(fndecl != NULL_TREE);
-
-      // We may have already created a block for the receiver.
-      if (DECL_INITIAL(fndecl) == NULL_TREE)
-       {
-         BLOCK_SUPERCONTEXT(block) = fndecl;
-         DECL_INITIAL(fndecl) = block;
-       }
-      else
-       {
-         tree superblock_tree = DECL_INITIAL(fndecl);
-         BLOCK_SUPERCONTEXT(block) = superblock_tree;
-         gcc_assert(BLOCK_CHAIN(block) == NULL_TREE);
-         BLOCK_CHAIN(block) = block;
-       }
-    }
-  else
-    {
-      tree superblock_tree = context->block_tree();
-      BLOCK_SUPERCONTEXT(block) = superblock_tree;
-      tree* pp;
-      for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
-          *pp != NULL_TREE;
-          pp = &BLOCK_CHAIN(*pp))
-       ;
-      *pp = block;
-    }
-
-  // Expand local variables in the block.
-
-  tree* pp = &BLOCK_VARS(block);
-  for (Bindings::const_definitions_iterator pv =
-        this->bindings_->begin_definitions();
-       pv != this->bindings_->end_definitions();
-       ++pv)
-    {
-      if ((!(*pv)->is_variable() || !(*pv)->var_value()->is_parameter())
-         && !(*pv)->is_result_variable()
-         && !(*pv)->is_const())
-       {
-         tree var = (*pv)->get_tree(gogo, context->function());
-         if (var != error_mark_node && TREE_TYPE(var) != error_mark_node)
-           {
-             if ((*pv)->is_variable() && (*pv)->var_value()->is_in_heap())
-               {
-                 gcc_assert(TREE_CODE(var) == INDIRECT_REF);
-                 var = TREE_OPERAND(var, 0);
-                 gcc_assert(TREE_CODE(var) == VAR_DECL);
-               }
-             *pp = var;
-             pp = &DECL_CHAIN(*pp);
-           }
-       }
-    }
-  *pp = NULL_TREE;
-
-  Translate_context subcontext(context->gogo(), context->function(),
-                              this, block);
-
-  tree statements = NULL_TREE;
-
-  // Expand the statements.
-
-  for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
-       p != this->statements_.end();
-       ++p)
-    {
-      tree statement = (*p)->get_tree(&subcontext);
-      if (statement != error_mark_node)
-       append_to_statement_list(statement, &statements);
-    }
-
-  TREE_USED(block) = 1;
-
-  tree bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block), statements,
-                    block);
-  TREE_SIDE_EFFECTS(bind) = 1;
-
-  return bind;
-}
-
-// Get the LABEL_DECL for a label.
-
-tree
-Label::get_decl()
-{
-  if (this->decl_ == NULL)
-    {
-      tree id = get_identifier_from_string(this->name_);
-      this->decl_ = build_decl(this->location_, LABEL_DECL, id, void_type_node);
-      DECL_CONTEXT(this->decl_) = current_function_decl;
-    }
-  return this->decl_;
-}
-
-// Return an expression for the address of this label.
-
-tree
-Label::get_addr(source_location location)
-{
-  tree decl = this->get_decl();
-  TREE_USED(decl) = 1;
-  TREE_ADDRESSABLE(decl) = 1;
-  return fold_convert_loc(location, ptr_type_node,
-                         build_fold_addr_expr_loc(location, decl));
-}
-
-// Get the LABEL_DECL for an unnamed label.
-
-tree
-Unnamed_label::get_decl()
-{
-  if (this->decl_ == NULL)
-    this->decl_ = create_artificial_label(this->location_);
-  return this->decl_;
-}
-
-// Get the LABEL_EXPR for an unnamed label.
-
-tree
-Unnamed_label::get_definition()
-{
-  tree t = build1(LABEL_EXPR, void_type_node, this->get_decl());
-  SET_EXPR_LOCATION(t, this->location_);
-  return t;
-}
-
-// Return a goto to this label.
-
-tree
-Unnamed_label::get_goto(source_location location)
-{
-  tree t = build1(GOTO_EXPR, void_type_node, this->get_decl());
-  SET_EXPR_LOCATION(t, location);
-  return t;
-}
-
-// Return the integer type to use for a size.
-
-GO_EXTERN_C
-tree
-go_type_for_size(unsigned int bits, int unsignedp)
-{
-  const char* name;
-  switch (bits)
-    {
-    case 8:
-      name = unsignedp ? "uint8" : "int8";
-      break;
-    case 16:
-      name = unsignedp ? "uint16" : "int16";
-      break;
-    case 32:
-      name = unsignedp ? "uint32" : "int32";
-      break;
-    case 64:
-      name = unsignedp ? "uint64" : "int64";
-      break;
-    default:
-      if (bits == POINTER_SIZE && unsignedp)
-       name = "uintptr";
-      else
-       return NULL_TREE;
-    }
-  Type* type = Type::lookup_integer_type(name);
-  return type->get_tree(go_get_gogo());
-}
-
-// Return the type to use for a mode.
-
-GO_EXTERN_C
-tree
-go_type_for_mode(enum machine_mode mode, int unsignedp)
-{
-  // FIXME: This static_cast should be in machmode.h.
-  enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
-  if (mc == MODE_INT)
-    return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
-  else if (mc == MODE_FLOAT)
-    {
-      Type* type;
-      switch (GET_MODE_BITSIZE (mode))
-       {
-       case 32:
-         type = Type::lookup_float_type("float32");
-         break;
-       case 64:
-         type = Type::lookup_float_type("float64");
-         break;
-       default:
-         // We have to check for long double in order to support
-         // i386 excess precision.
-         if (mode == TYPE_MODE(long_double_type_node))
-           return long_double_type_node;
-         return NULL_TREE;
-       }
-      return type->float_type()->type_tree();
-    }
-  else if (mc == MODE_COMPLEX_FLOAT)
-    {
-      Type *type;
-      switch (GET_MODE_BITSIZE (mode))
-       {
-       case 64:
-         type = Type::lookup_complex_type("complex64");
-         break;
-       case 128:
-         type = Type::lookup_complex_type("complex128");
-         break;
-       default:
-         // We have to check for long double in order to support
-         // i386 excess precision.
-         if (mode == TYPE_MODE(complex_long_double_type_node))
-           return complex_long_double_type_node;
-         return NULL_TREE;
-       }
-      return type->complex_type()->type_tree();
-    }
-  else
-    return NULL_TREE;
-}
-
-// Return a tree which allocates SIZE bytes which will holds value of
-// type TYPE.
-
-tree
-Gogo::allocate_memory(Type* type, tree size, source_location location)
-{
-  // If the package imports unsafe, then it may play games with
-  // pointers that look like integers.
-  if (this->imported_unsafe_ || type->has_pointer())
-    {
-      static tree new_fndecl;
-      return Gogo::call_builtin(&new_fndecl,
-                               location,
-                               "__go_new",
-                               1,
-                               ptr_type_node,
-                               sizetype,
-                               size);
-    }
-  else
-    {
-      static tree new_nopointers_fndecl;
-      return Gogo::call_builtin(&new_nopointers_fndecl,
-                               location,
-                               "__go_new_nopointers",
-                               1,
-                               ptr_type_node,
-                               sizetype,
-                               size);
-    }
-}
-
-// Build a builtin struct with a list of fields.  The name is
-// STRUCT_NAME.  STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
-// node; this exists so that the struct can have fields which point to
-// itself.  If PTYPE is not NULL, store the result in *PTYPE.  There
-// are NFIELDS fields.  Each field is a name (a const char*) followed
-// by a type (a tree).
-
-tree
-Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
-                    int nfields, ...)
-{
-  if (ptype != NULL && *ptype != NULL_TREE)
-    return *ptype;
-
-  va_list ap;
-  va_start(ap, nfields);
-
-  tree fields = NULL_TREE;
-  for (int i = 0; i < nfields; ++i)
-    {
-      const char* field_name = va_arg(ap, const char*);
-      tree type = va_arg(ap, tree);
-      if (type == error_mark_node)
-       {
-         if (ptype != NULL)
-           *ptype = error_mark_node;
-         return error_mark_node;
-       }
-      tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
-                             get_identifier(field_name), type);
-      DECL_CHAIN(field) = fields;
-      fields = field;
-    }
-
-  va_end(ap);
-
-  if (struct_type == NULL_TREE)
-    struct_type = make_node(RECORD_TYPE);
-  finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
-
-  if (ptype != NULL)
-    {
-      go_preserve_from_gc(struct_type);
-      *ptype = struct_type;
-    }
-
-  return struct_type;
-}
-
-// Return a type to use for pointer to const char for a string.
-
-tree
-Gogo::const_char_pointer_type_tree()
-{
-  static tree type;
-  if (type == NULL_TREE)
-    {
-      tree const_char_type = build_qualified_type(unsigned_char_type_node,
-                                                 TYPE_QUAL_CONST);
-      type = build_pointer_type(const_char_type);
-      go_preserve_from_gc(type);
-    }
-  return type;
-}
-
-// Return a tree for a string constant.
-
-tree
-Gogo::string_constant_tree(const std::string& val)
-{
-  tree index_type = build_index_type(size_int(val.length()));
-  tree const_char_type = build_qualified_type(unsigned_char_type_node,
-                                             TYPE_QUAL_CONST);
-  tree string_type = build_array_type(const_char_type, index_type);
-  string_type = build_variant_type_copy(string_type);
-  TYPE_STRING_FLAG(string_type) = 1;
-  tree string_val = build_string(val.length(), val.data());
-  TREE_TYPE(string_val) = string_type;
-  return string_val;
-}
-
-// Return a tree for a Go string constant.
-
-tree
-Gogo::go_string_constant_tree(const std::string& val)
-{
-  tree string_type = Type::make_string_type()->get_tree(this);
-
-  VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  tree field = TYPE_FIELDS(string_type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
-  elt->index = field;
-  tree str = Gogo::string_constant_tree(val);
-  elt->value = fold_convert(TREE_TYPE(field),
-                           build_fold_addr_expr(str));
-
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
-  elt->index = field;
-  elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
-
-  tree constructor = build_constructor(string_type, init);
-  TREE_READONLY(constructor) = 1;
-  TREE_CONSTANT(constructor) = 1;
-
-  return constructor;
-}
-
-// Return a tree for a pointer to a Go string constant.  This is only
-// used for type descriptors, so we return a pointer to a constant
-// decl.
-
-tree
-Gogo::ptr_go_string_constant_tree(const std::string& val)
-{
-  tree pval = this->go_string_constant_tree(val);
-
-  tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
-                        create_tmp_var_name("SP"), TREE_TYPE(pval));
-  DECL_EXTERNAL(decl) = 0;
-  TREE_PUBLIC(decl) = 0;
-  TREE_USED(decl) = 1;
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  TREE_STATIC(decl) = 1;
-  DECL_ARTIFICIAL(decl) = 1;
-  DECL_INITIAL(decl) = pval;
-  rest_of_decl_compilation(decl, 1, 0);
-
-  return build_fold_addr_expr(decl);
-}
-
-// Build the type of the struct that holds a slice for the given
-// element type.
-
-tree
-Gogo::slice_type_tree(tree element_type_tree)
-{
-  // We use int for the count and capacity fields in a slice header.
-  // This matches 6g.  The language definition guarantees that we
-  // can't allocate space of a size which does not fit in int
-  // anyhow. FIXME: integer_type_node is the the C type "int" but is
-  // not necessarily the Go type "int".  They will differ when the C
-  // type "int" has fewer than 32 bits.
-  return Gogo::builtin_struct(NULL, "__go_slice", NULL_TREE, 3,
-                             "__values",
-                             build_pointer_type(element_type_tree),
-                             "__count",
-                             integer_type_node,
-                             "__capacity",
-                             integer_type_node);
-}
-
-// Given the tree for a slice type, return the tree for the type of
-// the elements of the slice.
-
-tree
-Gogo::slice_element_type_tree(tree slice_type_tree)
-{
-  gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE
-            && POINTER_TYPE_P(TREE_TYPE(TYPE_FIELDS(slice_type_tree))));
-  return TREE_TYPE(TREE_TYPE(TYPE_FIELDS(slice_type_tree)));
-}
-
-// Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
-// the slice.  VALUES is the value pointer and COUNT is the number of
-// entries.  If CAPACITY is not NULL, it is the capacity; otherwise
-// the capacity and the count are the same.
-
-tree
-Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
-                       tree capacity)
-{
-  gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-  tree field = TYPE_FIELDS(slice_type_tree);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-  elt->index = field;
-  gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
-            == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
-  elt->value = values;
-
-  count = fold_convert(sizetype, count);
-  if (capacity == NULL_TREE)
-    {
-      count = save_expr(count);
-      capacity = count;
-    }
-
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), count);
-
-  field = DECL_CHAIN(field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
-  elt = VEC_quick_push(constructor_elt, init, NULL);
-  elt->index = field;
-  elt->value = fold_convert(TREE_TYPE(field), capacity);
-
-  return build_constructor(slice_type_tree, init);
-}
-
-// Build a constructor for an empty slice.
-
-tree
-Gogo::empty_slice_constructor(tree slice_type_tree)
-{
-  tree element_field = TYPE_FIELDS(slice_type_tree);
-  tree ret = Gogo::slice_constructor(slice_type_tree,
-                                    fold_convert(TREE_TYPE(element_field),
-                                                 null_pointer_node),
-                                    size_zero_node,
-                                    size_zero_node);
-  TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Build a map descriptor for a map of type MAPTYPE.
-
-tree
-Gogo::map_descriptor(Map_type* maptype)
-{
-  if (this->map_descriptors_ == NULL)
-    this->map_descriptors_ = new Map_descriptors(10);
-
-  std::pair<const Map_type*, tree> val(maptype, NULL);
-  std::pair<Map_descriptors::iterator, bool> ins =
-    this->map_descriptors_->insert(val);
-  Map_descriptors::iterator p = ins.first;
-  if (!ins.second)
-    {
-      if (p->second == error_mark_node)
-       return error_mark_node;
-      gcc_assert(p->second != NULL_TREE && DECL_P(p->second));
-      return build_fold_addr_expr(p->second);
-    }
-
-  Type* keytype = maptype->key_type();
-  Type* valtype = maptype->val_type();
-
-  std::string mangled_name = ("__go_map_" + maptype->mangled_name(this));
-
-  tree id = get_identifier_from_string(mangled_name);
-
-  // Get the type of the map descriptor.  This is __go_map_descriptor
-  // in libgo/map.h.
-
-  tree struct_type = this->map_descriptor_type();
-
-  // The map entry type is a struct with three fields.  This struct is
-  // specific to MAPTYPE.  Build it.
-
-  tree map_entry_type = make_node(RECORD_TYPE);
-
-  map_entry_type = Gogo::builtin_struct(NULL, "__map", map_entry_type, 3,
-                                       "__next",
-                                       build_pointer_type(map_entry_type),
-                                       "__key",
-                                       keytype->get_tree(this),
-                                       "__val",
-                                       valtype->get_tree(this));
-  if (map_entry_type == error_mark_node)
-    {
-      p->second = error_mark_node;
-      return error_mark_node;
-    }
-
-  tree map_entry_key_field = DECL_CHAIN(TYPE_FIELDS(map_entry_type));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_key_field)),
-                   "__key") == 0);
-
-  tree map_entry_val_field = DECL_CHAIN(map_entry_key_field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_val_field)),
-                   "__val") == 0);
-
-  // Initialize the entries.
-
-  tree map_descriptor_field = TYPE_FIELDS(struct_type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_descriptor_field)),
-                   "__map_descriptor") == 0);
-  tree entry_size_field = DECL_CHAIN(map_descriptor_field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(entry_size_field)),
-                   "__entry_size") == 0);
-  tree key_offset_field = DECL_CHAIN(entry_size_field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(key_offset_field)),
-                   "__key_offset") == 0);
-  tree val_offset_field = DECL_CHAIN(key_offset_field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(val_offset_field)),
-                   "__val_offset") == 0);
-
-  VEC(constructor_elt, gc)* descriptor = VEC_alloc(constructor_elt, gc, 6);
-
-  constructor_elt* elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = map_descriptor_field;
-  elt->value = maptype->type_descriptor_pointer(this);
-
-  elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = entry_size_field;
-  elt->value = TYPE_SIZE_UNIT(map_entry_type);
-
-  elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = key_offset_field;
-  elt->value = byte_position(map_entry_key_field);
-
-  elt = VEC_quick_push(constructor_elt, descriptor, NULL);
-  elt->index = val_offset_field;
-  elt->value = byte_position(map_entry_val_field);
-
-  tree constructor = build_constructor(struct_type, descriptor);
-
-  tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, struct_type);
-  TREE_STATIC(decl) = 1;
-  TREE_USED(decl) = 1;
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  DECL_INITIAL(decl) = constructor;
-  make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
-  resolve_unique_section(decl, 1, 0);
-
-  rest_of_decl_compilation(decl, 1, 0);
-
-  go_preserve_from_gc(decl);
-  p->second = decl;
-
-  return build_fold_addr_expr(decl);
-}
-
-// Return a tree for the type of a map descriptor.  This is struct
-// __go_map_descriptor in libgo/runtime/map.h.  This is the same for
-// all map types.
-
-tree
-Gogo::map_descriptor_type()
-{
-  static tree struct_type;
-  tree dtype = Type::make_type_descriptor_type()->get_tree(this);
-  dtype = build_qualified_type(dtype, TYPE_QUAL_CONST);
-  return Gogo::builtin_struct(&struct_type, "__go_map_descriptor", NULL_TREE,
-                             4,
-                             "__map_descriptor",
-                             build_pointer_type(dtype),
-                             "__entry_size",
-                             sizetype,
-                             "__key_offset",
-                             sizetype,
-                             "__val_offset",
-                             sizetype);
-}
-
-// Return the name to use for a type descriptor decl for TYPE.  This
-// is used when TYPE does not have a name.
-
-std::string
-Gogo::unnamed_type_descriptor_decl_name(const Type* type)
-{
-  return "__go_td_" + type->mangled_name(this);
-}
-
-// Return the name to use for a type descriptor decl for a type named
-// NAME, defined in the function IN_FUNCTION.  IN_FUNCTION will
-// normally be NULL.
-
-std::string
-Gogo::type_descriptor_decl_name(const Named_object* no,
-                               const Named_object* in_function)
-{
-  std::string ret = "__go_tdn_";
-  if (no->type_value()->is_builtin())
-    gcc_assert(in_function == NULL);
-  else
-    {
-      const std::string& unique_prefix(no->package() == NULL
-                                      ? this->unique_prefix()
-                                      : no->package()->unique_prefix());
-      const std::string& package_name(no->package() == NULL
-                                     ? this->package_name()
-                                     : no->package()->name());
-      ret.append(unique_prefix);
-      ret.append(1, '.');
-      ret.append(package_name);
-      ret.append(1, '.');
-      if (in_function != NULL)
-       {
-         ret.append(Gogo::unpack_hidden_name(in_function->name()));
-         ret.append(1, '.');
-       }
-    }
-  ret.append(no->name());
-  return ret;
-}
-
-// Where a type descriptor decl should be defined.
-
-Gogo::Type_descriptor_location
-Gogo::type_descriptor_location(const Type* type)
-{
-  const Named_type* name = type->named_type();
-  if (name != NULL)
-    {
-      if (name->named_object()->package() != NULL)
-       {
-         // This is a named type defined in a different package.  The
-         // descriptor should be defined in that package.
-         return TYPE_DESCRIPTOR_UNDEFINED;
-       }
-      else if (name->is_builtin())
-       {
-         // We create the descriptor for a builtin type whenever we
-         // need it.
-         return TYPE_DESCRIPTOR_COMMON;
-       }
-      else
-       {
-         // This is a named type defined in this package.  The
-         // descriptor should be defined here.
-         return TYPE_DESCRIPTOR_DEFINED;
-       }
-    }
-  else
-    {
-      if (type->points_to() != NULL
-         && type->points_to()->named_type() != NULL
-         && type->points_to()->named_type()->named_object()->package() != NULL)
-       {
-         // This is an unnamed pointer to a named type defined in a
-         // different package.  The descriptor should be defined in
-         // that package.
-         return TYPE_DESCRIPTOR_UNDEFINED;
-       }
-      else
-       {
-         // This is an unnamed type.  The descriptor could be defined
-         // in any package where it is needed, and the linker will
-         // pick one descriptor to keep.
-         return TYPE_DESCRIPTOR_COMMON;
-       }
-    }
-}
-
-// Build a type descriptor decl for TYPE.  INITIALIZER is a struct
-// composite literal which initializers the type descriptor.
-
-void
-Gogo::build_type_descriptor_decl(const Type* type, Expression* initializer,
-                                tree* pdecl)
-{
-  const Named_type* name = type->named_type();
-
-  // We can have multiple instances of unnamed types, but we only want
-  // to emit the type descriptor once.  We use a hash table to handle
-  // this.  This is not necessary for named types, as they are unique,
-  // and we store the type descriptor decl in the type itself.
-  tree* phash = NULL;
-  if (name == NULL)
-    {
-      if (this->type_descriptor_decls_ == NULL)
-       this->type_descriptor_decls_ = new Type_descriptor_decls(10);
-
-      std::pair<Type_descriptor_decls::iterator, bool> ins =
-       this->type_descriptor_decls_->insert(std::make_pair(type, NULL_TREE));
-      if (!ins.second)
-       {
-         // We've already built a type descriptor for this type.
-         *pdecl = ins.first->second;
-         return;
-       }
-      phash = &ins.first->second;
-    }
-
-  std::string decl_name;
-  if (name == NULL)
-    decl_name = this->unnamed_type_descriptor_decl_name(type);
-  else
-    decl_name = this->type_descriptor_decl_name(name->named_object(),
-                                               name->in_function());
-  tree id = get_identifier_from_string(decl_name);
-  tree descriptor_type_tree = initializer->type()->get_tree(this);
-  if (descriptor_type_tree == error_mark_node)
-    {
-      *pdecl = error_mark_node;
-      return;
-    }
-  tree decl = build_decl(name == NULL ? BUILTINS_LOCATION : name->location(),
-                        VAR_DECL, id,
-                        build_qualified_type(descriptor_type_tree,
-                                             TYPE_QUAL_CONST));
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  DECL_ARTIFICIAL(decl) = 1;
-
-  go_preserve_from_gc(decl);
-  if (phash != NULL)
-    *phash = decl;
-
-  // We store the new DECL now because we may need to refer to it when
-  // expanding INITIALIZER.
-  *pdecl = decl;
-
-  // If appropriate, just refer to the exported type identifier.
-  Gogo::Type_descriptor_location type_descriptor_location =
-    this->type_descriptor_location(type);
-  if (type_descriptor_location == TYPE_DESCRIPTOR_UNDEFINED)
-    {
-      TREE_PUBLIC(decl) = 1;
-      DECL_EXTERNAL(decl) = 1;
-      return;
-    }
-
-  TREE_STATIC(decl) = 1;
-  TREE_USED(decl) = 1;
-
-  Translate_context context(this, NULL, NULL, NULL);
-  context.set_is_const();
-  tree constructor = initializer->get_tree(&context);
-
-  if (constructor == error_mark_node)
-    gcc_assert(saw_errors());
-
-  DECL_INITIAL(decl) = constructor;
-
-  if (type_descriptor_location == TYPE_DESCRIPTOR_DEFINED)
-    TREE_PUBLIC(decl) = 1;
-  else
-    {
-      gcc_assert(type_descriptor_location == TYPE_DESCRIPTOR_COMMON);
-      make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
-      resolve_unique_section(decl, 1, 0);
-    }
-
-  rest_of_decl_compilation(decl, 1, 0);
-}
-
-// Build an interface method table for a type: a list of function
-// pointers, one for each interface method.  This is used for
-// interfaces.
-
-tree
-Gogo::interface_method_table_for_type(const Interface_type* interface,
-                                     Named_type* type,
-                                     bool is_pointer)
-{
-  const Typed_identifier_list* interface_methods = interface->methods();
-  gcc_assert(!interface_methods->empty());
-
-  std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
-                             + interface->mangled_name(this)
-                             + "__"
-                             + type->mangled_name(this));
-
-  tree id = get_identifier_from_string(mangled_name);
-
-  // See whether this interface has any hidden methods.
-  bool has_hidden_methods = false;
-  for (Typed_identifier_list::const_iterator p = interface_methods->begin();
-       p != interface_methods->end();
-       ++p)
-    {
-      if (Gogo::is_hidden_name(p->name()))
-       {
-         has_hidden_methods = true;
-         break;
-       }
-    }
-
-  // We already know that the named type is convertible to the
-  // interface.  If the interface has hidden methods, and the named
-  // type is defined in a different package, then the interface
-  // conversion table will be defined by that other package.
-  if (has_hidden_methods && type->named_object()->package() != NULL)
-    {
-      tree array_type = build_array_type(const_ptr_type_node, NULL);
-      tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
-      TREE_READONLY(decl) = 1;
-      TREE_CONSTANT(decl) = 1;
-      TREE_PUBLIC(decl) = 1;
-      DECL_EXTERNAL(decl) = 1;
-      go_preserve_from_gc(decl);
-      return decl;
-    }
-
-  size_t count = interface_methods->size();
-  VEC(constructor_elt, gc)* pointers = VEC_alloc(constructor_elt, gc,
-                                                count + 1);
-
-  // The first element is the type descriptor.
-  constructor_elt* elt = VEC_quick_push(constructor_elt, pointers, NULL);
-  elt->index = size_zero_node;
-  Type* td_type;
-  if (!is_pointer)
-    td_type = type;
-  else
-    td_type = Type::make_pointer_type(type);
-  elt->value = fold_convert(const_ptr_type_node,
-                           td_type->type_descriptor_pointer(this));
-
-  size_t i = 1;
-  for (Typed_identifier_list::const_iterator p = interface_methods->begin();
-       p != interface_methods->end();
-       ++p, ++i)
-    {
-      bool is_ambiguous;
-      Method* m = type->method_function(p->name(), &is_ambiguous);
-      gcc_assert(m != NULL);
-
-      Named_object* no = m->named_object();
-
-      tree fnid = no->get_id(this);
-
-      tree fndecl;
-      if (no->is_function())
-       fndecl = no->func_value()->get_or_make_decl(this, no, fnid);
-      else if (no->is_function_declaration())
-       fndecl = no->func_declaration_value()->get_or_make_decl(this, no,
-                                                               fnid);
-      else
-       gcc_unreachable();
-      fndecl = build_fold_addr_expr(fndecl);
-
-      elt = VEC_quick_push(constructor_elt, pointers, NULL);
-      elt->index = size_int(i);
-      elt->value = fold_convert(const_ptr_type_node, fndecl);
-    }
-  gcc_assert(i == count + 1);
-
-  tree array_type = build_array_type(const_ptr_type_node,
-                                    build_index_type(size_int(count)));
-  tree constructor = build_constructor(array_type, pointers);
-
-  tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
-  TREE_STATIC(decl) = 1;
-  TREE_USED(decl) = 1;
-  TREE_READONLY(decl) = 1;
-  TREE_CONSTANT(decl) = 1;
-  DECL_INITIAL(decl) = constructor;
-
-  // If the interface type has hidden methods, then this is the only
-  // definition of the table.  Otherwise it is a comdat table which
-  // may be defined in multiple packages.
-  if (has_hidden_methods)
-    TREE_PUBLIC(decl) = 1;
-  else
-    {
-      make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
-      resolve_unique_section(decl, 1, 0);
-    }
-
-  rest_of_decl_compilation(decl, 1, 0);
-
-  go_preserve_from_gc(decl);
-
-  return decl;
-}
-
-// Mark a function as a builtin library function.
-
-void
-Gogo::mark_fndecl_as_builtin_library(tree fndecl)
-{
-  DECL_EXTERNAL(fndecl) = 1;
-  TREE_PUBLIC(fndecl) = 1;
-  DECL_ARTIFICIAL(fndecl) = 1;
-  TREE_NOTHROW(fndecl) = 1;
-  DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
-  DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
-}
-
-// Build a call to a builtin function.
-
-tree
-Gogo::call_builtin(tree* pdecl, source_location location, const char* name,
-                  int nargs, tree rettype, ...)
-{
-  if (rettype == error_mark_node)
-    return error_mark_node;
-
-  tree* types = new tree[nargs];
-  tree* args = new tree[nargs];
-
-  va_list ap;
-  va_start(ap, rettype);
-  for (int i = 0; i < nargs; ++i)
-    {
-      types[i] = va_arg(ap, tree);
-      args[i] = va_arg(ap, tree);
-      if (types[i] == error_mark_node || args[i] == error_mark_node)
-       {
-         delete[] types;
-         delete[] args;
-         return error_mark_node;
-       }
-    }
-  va_end(ap);
-
-  if (*pdecl == NULL_TREE)
-    {
-      tree fnid = get_identifier(name);
-
-      tree argtypes = NULL_TREE;
-      tree* pp = &argtypes;
-      for (int i = 0; i < nargs; ++i)
-       {
-         *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
-         pp = &TREE_CHAIN(*pp);
-       }
-      *pp = void_list_node;
-
-      tree fntype = build_function_type(rettype, argtypes);
-
-      *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
-      Gogo::mark_fndecl_as_builtin_library(*pdecl);
-      go_preserve_from_gc(*pdecl);
-    }
-
-  tree fnptr = build_fold_addr_expr(*pdecl);
-  if (CAN_HAVE_LOCATION_P(fnptr))
-    SET_EXPR_LOCATION(fnptr, location);
-
-  tree ret = build_call_array(rettype, fnptr, nargs, args);
-  SET_EXPR_LOCATION(ret, location);
-
-  delete[] types;
-  delete[] args;
-
-  return ret;
-}
-
-// Build a call to the runtime error function.
-
-tree
-Gogo::runtime_error(int code, source_location location)
-{
-  static tree runtime_error_fndecl;
-  tree ret = Gogo::call_builtin(&runtime_error_fndecl,
-                               location,
-                               "__go_runtime_error",
-                               1,
-                               void_type_node,
-                               integer_type_node,
-                               build_int_cst(integer_type_node, code));
-  if (ret == error_mark_node)
-    return error_mark_node;
-  // The runtime error function panics and does not return.
-  TREE_NOTHROW(runtime_error_fndecl) = 0;
-  TREE_THIS_VOLATILE(runtime_error_fndecl) = 1;
-  return ret;
-}
-
-// Send VAL on CHANNEL.  If BLOCKING is true, the resulting tree has a
-// void type.  If BLOCKING is false, the resulting tree has a boolean
-// type, and it will evaluate as true if the value was sent.  If
-// FOR_SELECT is true, this is being done because it was chosen in a
-// select statement.
-
-tree
-Gogo::send_on_channel(tree channel, tree val, bool blocking, bool for_select,
-                     source_location location)
-{
-  if (channel == error_mark_node || val == error_mark_node)
-    return error_mark_node;
-
-  if (int_size_in_bytes(TREE_TYPE(val)) <= 8
-      && !AGGREGATE_TYPE_P(TREE_TYPE(val))
-      && !FLOAT_TYPE_P(TREE_TYPE(val)))
-    {
-      val = convert_to_integer(uint64_type_node, val);
-      if (blocking)
-       {
-         static tree send_small_fndecl;
-         tree ret = Gogo::call_builtin(&send_small_fndecl,
-                                       location,
-                                       "__go_send_small",
-                                       3,
-                                       void_type_node,
-                                       ptr_type_node,
-                                       channel,
-                                       uint64_type_node,
-                                       val,
-                                       boolean_type_node,
-                                       (for_select
-                                        ? boolean_true_node
-                                        : boolean_false_node));
-         if (ret == error_mark_node)
-           return error_mark_node;
-         // This can panic if there are too many operations on a
-         // closed channel.
-         TREE_NOTHROW(send_small_fndecl) = 0;
-         return ret;
-       }
-      else
-       {
-         gcc_assert(!for_select);
-         static tree send_nonblocking_small_fndecl;
-         tree ret = Gogo::call_builtin(&send_nonblocking_small_fndecl,
-                                       location,
-                                       "__go_send_nonblocking_small",
-                                       2,
-                                       boolean_type_node,
-                                       ptr_type_node,
-                                       channel,
-                                       uint64_type_node,
-                                       val);
-         if (ret == error_mark_node)
-           return error_mark_node;
-         // This can panic if there are too many operations on a
-         // closed channel.
-         TREE_NOTHROW(send_nonblocking_small_fndecl) = 0;
-         return ret;
-       }
-    }
-  else
-    {
-      tree make_tmp;
-      if (TREE_ADDRESSABLE(TREE_TYPE(val)) || TREE_CODE(val) == VAR_DECL)
-       {
-         make_tmp = NULL_TREE;
-         val = build_fold_addr_expr(val);
-         if (DECL_P(val))
-           TREE_ADDRESSABLE(val) = 1;
-       }
-      else
-       {
-         tree tmp = create_tmp_var(TREE_TYPE(val), get_name(val));
-         DECL_IGNORED_P(tmp) = 0;
-         DECL_INITIAL(tmp) = val;
-         TREE_ADDRESSABLE(tmp) = 1;
-         make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-         SET_EXPR_LOCATION(make_tmp, location);
-         val = build_fold_addr_expr(tmp);
-       }
-      val = fold_convert(ptr_type_node, val);
-
-      tree call;
-      if (blocking)
-       {
-         static tree send_big_fndecl;
-         call = Gogo::call_builtin(&send_big_fndecl,
-                                   location,
-                                   "__go_send_big",
-                                   3,
-                                   void_type_node,
-                                   ptr_type_node,
-                                   channel,
-                                   ptr_type_node,
-                                   val,
-                                   boolean_type_node,
-                                   (for_select
-                                    ? boolean_true_node
-                                    : boolean_false_node));
-         if (call == error_mark_node)
-           return error_mark_node;
-         // This can panic if there are too many operations on a
-         // closed channel.
-         TREE_NOTHROW(send_big_fndecl) = 0;
-       }
-      else
-       {
-         gcc_assert(!for_select);
-         static tree send_nonblocking_big_fndecl;
-         call = Gogo::call_builtin(&send_nonblocking_big_fndecl,
-                                   location,
-                                   "__go_send_nonblocking_big",
-                                   2,
-                                   boolean_type_node,
-                                   ptr_type_node,
-                                   channel,
-                                   ptr_type_node,
-                                   val);
-         if (call == error_mark_node)
-           return error_mark_node;
-         // This can panic if there are too many operations on a
-         // closed channel.
-         TREE_NOTHROW(send_nonblocking_big_fndecl) = 0;
-       }
-
-      if (make_tmp == NULL_TREE)
-       return call;
-      else
-       {
-         tree ret = build2(COMPOUND_EXPR, TREE_TYPE(call), make_tmp, call);
-         SET_EXPR_LOCATION(ret, location);
-         return ret;
-       }
-    }
-}
-
-// Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
-// This does a blocking receive and returns the value read from the
-// channel.  If FOR_SELECT is true, this is being done because it was
-// chosen in a select statement.
-
-tree
-Gogo::receive_from_channel(tree type_tree, tree channel, bool for_select,
-                          source_location location)
-{
-  if (type_tree == error_mark_node || channel == error_mark_node)
-    return error_mark_node;
-
-  if (int_size_in_bytes(type_tree) <= 8
-      && !AGGREGATE_TYPE_P(type_tree)
-      && !FLOAT_TYPE_P(type_tree))
-    {
-      static tree receive_small_fndecl;
-      tree call = Gogo::call_builtin(&receive_small_fndecl,
-                                    location,
-                                    "__go_receive_small",
-                                    2,
-                                    uint64_type_node,
-                                    ptr_type_node,
-                                    channel,
-                                    boolean_type_node,
-                                    (for_select
-                                     ? boolean_true_node
-                                     : boolean_false_node));
-      if (call == error_mark_node)
-       return error_mark_node;
-      // This can panic if there are too many operations on a closed
-      // channel.
-      TREE_NOTHROW(receive_small_fndecl) = 0;
-      int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
-      tree int_type_tree = go_type_for_size(bitsize, 1);
-      return fold_convert_loc(location, type_tree,
-                             fold_convert_loc(location, int_type_tree,
-                                              call));
-    }
-  else
-    {
-      tree tmp = create_tmp_var(type_tree, get_name(type_tree));
-      DECL_IGNORED_P(tmp) = 0;
-      TREE_ADDRESSABLE(tmp) = 1;
-      tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
-      SET_EXPR_LOCATION(make_tmp, location);
-      tree tmpaddr = build_fold_addr_expr(tmp);
-      tmpaddr = fold_convert(ptr_type_node, tmpaddr);
-      static tree receive_big_fndecl;
-      tree call = Gogo::call_builtin(&receive_big_fndecl,
-                                    location,
-                                    "__go_receive_big",
-                                    3,
-                                    boolean_type_node,
-                                    ptr_type_node,
-                                    channel,
-                                    ptr_type_node,
-                                    tmpaddr,
-                                    boolean_type_node,
-                                    (for_select
-                                     ? boolean_true_node
-                                     : boolean_false_node));
-      if (call == error_mark_node)
-       return error_mark_node;
-      // This can panic if there are too many operations on a closed
-      // channel.
-      TREE_NOTHROW(receive_big_fndecl) = 0;
-      return build2(COMPOUND_EXPR, type_tree, make_tmp,
-                   build2(COMPOUND_EXPR, type_tree, call, tmp));
-    }
-}
-
-// Return the type of a function trampoline.  This is like
-// get_trampoline_type in tree-nested.c.
-
-tree
-Gogo::trampoline_type_tree()
-{
-  static tree type_tree;
-  if (type_tree == NULL_TREE)
-    {
-      unsigned int size;
-      unsigned int align;
-      go_trampoline_info(&size, &align);
-      tree t = build_index_type(build_int_cst(integer_type_node, size - 1));
-      t = build_array_type(char_type_node, t);
-
-      type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1,
-                                      "__data", t);
-      t = TYPE_FIELDS(type_tree);
-      DECL_ALIGN(t) = align;
-      DECL_USER_ALIGN(t) = 1;
-
-      go_preserve_from_gc(type_tree);
-    }
-  return type_tree;
-}
-
-// Make a trampoline which calls FNADDR passing CLOSURE.
-
-tree
-Gogo::make_trampoline(tree fnaddr, tree closure, source_location location)
-{
-  tree trampoline_type = Gogo::trampoline_type_tree();
-  tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type);
-
-  closure = save_expr(closure);
-
-  // We allocate the trampoline using a special function which will
-  // mark it as executable.
-  static tree trampoline_fndecl;
-  tree x = Gogo::call_builtin(&trampoline_fndecl,
-                             location,
-                             "__go_allocate_trampoline",
-                             2,
-                             ptr_type_node,
-                             size_type_node,
-                             trampoline_size,
-                             ptr_type_node,
-                             fold_convert_loc(location, ptr_type_node,
-                                              closure));
-  if (x == error_mark_node)
-    return error_mark_node;
-
-  x = save_expr(x);
-
-  // Initialize the trampoline.
-  tree ini = build_call_expr(implicit_built_in_decls[BUILT_IN_INIT_TRAMPOLINE],
-                            3, x, fnaddr, closure);
-
-  // On some targets the trampoline address needs to be adjusted.  For
-  // example, when compiling in Thumb mode on the ARM, the address
-  // needs to have the low bit set.
-  x = build_call_expr(implicit_built_in_decls[BUILT_IN_ADJUST_TRAMPOLINE],
-                     1, x);
-  x = fold_convert(TREE_TYPE(fnaddr), x);
-
-  return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x);
-}
diff --git a/gcc/go/gofrontend/gogo.cc.merge-left.r167407 b/gcc/go/gofrontend/gogo.cc.merge-left.r167407
deleted file mode 100644 (file)
index 0216d6c..0000000
+++ /dev/null
@@ -1,4274 +0,0 @@
-// gogo.cc -- Go frontend parsed representation.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "go-c.h"
-#include "go-dump.h"
-#include "lex.h"
-#include "types.h"
-#include "statements.h"
-#include "expressions.h"
-#include "dataflow.h"
-#include "import.h"
-#include "export.h"
-#include "gogo.h"
-
-// Class Gogo.
-
-Gogo::Gogo(int int_type_size, int float_type_size, int pointer_size)
-  : package_(NULL),
-    functions_(),
-    globals_(new Bindings(NULL)),
-    imports_(),
-    imported_unsafe_(false),
-    packages_(),
-    map_descriptors_(NULL),
-    type_descriptor_decls_(NULL),
-    init_functions_(),
-    need_init_fn_(false),
-    init_fn_name_(),
-    imported_init_fns_(),
-    unique_prefix_(),
-    interface_types_()
-{
-  const source_location loc = BUILTINS_LOCATION;
-
-  Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
-                                                  RUNTIME_TYPE_KIND_UINT8);
-  this->add_named_type(uint8_type);
-  this->add_named_type(Type::make_integer_type("uint16", true,  16,
-                                              RUNTIME_TYPE_KIND_UINT16));
-  this->add_named_type(Type::make_integer_type("uint32", true,  32,
-                                              RUNTIME_TYPE_KIND_UINT32));
-  this->add_named_type(Type::make_integer_type("uint64", true,  64,
-                                              RUNTIME_TYPE_KIND_UINT64));
-
-  this->add_named_type(Type::make_integer_type("int8",  false,   8,
-                                              RUNTIME_TYPE_KIND_INT8));
-  this->add_named_type(Type::make_integer_type("int16", false,  16,
-                                              RUNTIME_TYPE_KIND_INT16));
-  this->add_named_type(Type::make_integer_type("int32", false,  32,
-                                              RUNTIME_TYPE_KIND_INT32));
-  this->add_named_type(Type::make_integer_type("int64", false,  64,
-                                              RUNTIME_TYPE_KIND_INT64));
-
-  this->add_named_type(Type::make_float_type("float32", 32,
-                                            RUNTIME_TYPE_KIND_FLOAT32));
-  this->add_named_type(Type::make_float_type("float64", 64,
-                                            RUNTIME_TYPE_KIND_FLOAT64));
-
-  this->add_named_type(Type::make_complex_type("complex64", 64,
-                                              RUNTIME_TYPE_KIND_COMPLEX64));
-  this->add_named_type(Type::make_complex_type("complex128", 128,
-                                              RUNTIME_TYPE_KIND_COMPLEX128));
-
-  if (int_type_size < 32)
-    int_type_size = 32;
-  this->add_named_type(Type::make_integer_type("uint", true,
-                                              int_type_size,
-                                              RUNTIME_TYPE_KIND_UINT));
-  Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
-                                                RUNTIME_TYPE_KIND_INT);
-  this->add_named_type(int_type);
-
-  // "byte" is an alias for "uint8".  Construct a Named_object which
-  // points to UINT8_TYPE.  Note that this breaks the normal pairing
-  // in which a Named_object points to a Named_type which points back
-  // to the same Named_object.
-  Named_object* byte_type = this->declare_type("byte", loc);
-  byte_type->set_type_value(uint8_type);
-
-  this->add_named_type(Type::make_integer_type("uintptr", true,
-                                              pointer_size,
-                                              RUNTIME_TYPE_KIND_UINTPTR));
-
-  this->add_named_type(Type::make_float_type("float", float_type_size,
-                                            RUNTIME_TYPE_KIND_FLOAT));
-
-  this->add_named_type(Type::make_complex_type("complex", float_type_size * 2,
-                                              RUNTIME_TYPE_KIND_COMPLEX));
-
-  this->add_named_type(Type::make_named_bool_type());
-
-  this->add_named_type(Type::make_named_string_type());
-
-  this->globals_->add_constant(Typed_identifier("true",
-                                               Type::make_boolean_type(),
-                                               loc),
-                              NULL,
-                              Expression::make_boolean(true, loc),
-                              0);
-  this->globals_->add_constant(Typed_identifier("false",
-                                               Type::make_boolean_type(),
-                                               loc),
-                              NULL,
-                              Expression::make_boolean(false, loc),
-                              0);
-
-  this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
-                                               loc),
-                              NULL,
-                              Expression::make_nil(loc),
-                              0);
-
-  Type* abstract_int_type = Type::make_abstract_integer_type();
-  this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
-                                               loc),
-                              NULL,
-                              Expression::make_iota(),
-                              0);
-
-  Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  new_type->set_is_varargs();
-  new_type->set_is_builtin();
-  this->globals_->add_function_declaration("new", NULL, new_type, loc);
-
-  Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  make_type->set_is_varargs();
-  make_type->set_is_builtin();
-  this->globals_->add_function_declaration("make", NULL, make_type, loc);
-
-  Typed_identifier_list* len_result = new Typed_identifier_list();
-  len_result->push_back(Typed_identifier("", int_type, loc));
-  Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
-                                                    loc);
-  len_type->set_is_builtin();
-  this->globals_->add_function_declaration("len", NULL, len_type, loc);
-
-  Typed_identifier_list* cap_result = new Typed_identifier_list();
-  cap_result->push_back(Typed_identifier("", int_type, loc));
-  Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
-                                                    loc);
-  cap_type->set_is_builtin();
-  this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
-
-  Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  print_type->set_is_varargs();
-  print_type->set_is_builtin();
-  this->globals_->add_function_declaration("print", NULL, print_type, loc);
-
-  print_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  print_type->set_is_varargs();
-  print_type->set_is_builtin();
-  this->globals_->add_function_declaration("println", NULL, print_type, loc);
-
-  Type *empty = Type::make_interface_type(NULL, loc);
-  Typed_identifier_list* panic_parms = new Typed_identifier_list();
-  panic_parms->push_back(Typed_identifier("e", empty, loc));
-  Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
-                                                      NULL, loc);
-  panic_type->set_is_builtin();
-  this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
-
-  Typed_identifier_list* recover_result = new Typed_identifier_list();
-  recover_result->push_back(Typed_identifier("", empty, loc));
-  Function_type* recover_type = Type::make_function_type(NULL, NULL,
-                                                        recover_result,
-                                                        loc);
-  recover_type->set_is_builtin();
-  this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
-
-  Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  close_type->set_is_varargs();
-  close_type->set_is_builtin();
-  this->globals_->add_function_declaration("close", NULL, close_type, loc);
-
-  Typed_identifier_list* closed_result = new Typed_identifier_list();
-  closed_result->push_back(Typed_identifier("", Type::lookup_bool_type(),
-                                           loc));
-  Function_type* closed_type = Type::make_function_type(NULL, NULL,
-                                                       closed_result, loc);
-  closed_type->set_is_varargs();
-  closed_type->set_is_builtin();
-  this->globals_->add_function_declaration("closed", NULL, closed_type, loc);
-
-  Typed_identifier_list* copy_result = new Typed_identifier_list();
-  copy_result->push_back(Typed_identifier("", int_type, loc));
-  Function_type* copy_type = Type::make_function_type(NULL, NULL,
-                                                     copy_result, loc);
-  copy_type->set_is_varargs();
-  copy_type->set_is_builtin();
-  this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
-
-  Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  append_type->set_is_varargs();
-  append_type->set_is_builtin();
-  this->globals_->add_function_declaration("append", NULL, append_type, loc);
-
-  Function_type* cmplx_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  cmplx_type->set_is_varargs();
-  cmplx_type->set_is_builtin();
-  this->globals_->add_function_declaration("cmplx", NULL, cmplx_type, loc);
-
-  Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  real_type->set_is_varargs();
-  real_type->set_is_builtin();
-  this->globals_->add_function_declaration("real", NULL, real_type, loc);
-
-  Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  imag_type->set_is_varargs();
-  imag_type->set_is_builtin();
-  this->globals_->add_function_declaration("imag", NULL, cmplx_type, loc);
-
-  this->define_builtin_function_trees();
-
-  // Declare "init", to ensure that it is not defined with parameters
-  // or return values.
-  this->declare_function("init",
-                        Type::make_function_type(NULL, NULL, NULL, loc),
-                        loc);
-}
-
-// Munge name for use in an error message.
-
-std::string
-Gogo::message_name(const std::string& name)
-{
-  return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
-}
-
-// Get the package name.
-
-const std::string&
-Gogo::package_name() const
-{
-  gcc_assert(this->package_ != NULL);
-  return this->package_->name();
-}
-
-// Set the package name.
-
-void
-Gogo::set_package_name(const std::string& package_name,
-                      source_location location)
-{
-  if (this->package_ != NULL && this->package_->name() != package_name)
-    {
-      error_at(location, "expected package %<%s%>",
-              Gogo::message_name(this->package_->name()).c_str());
-      return;
-    }
-
-  // If the user did not specify a unique prefix, we always use "go".
-  // This in effect requires that the package name be unique.
-  if (this->unique_prefix_.empty())
-    this->unique_prefix_ = "go";
-
-  this->package_ = this->register_package(package_name, this->unique_prefix_,
-                                         location);
-
-  // We used to permit people to qualify symbols with the current
-  // package name (e.g., P.x), but we no longer do.
-  // this->globals_->add_package(package_name, this->package_);
-
-  if (package_name == "main")
-    {
-      // Declare "main" as a function which takes no parameters and
-      // returns no value.
-      this->declare_function("main",
-                            Type::make_function_type(NULL, NULL, NULL,
-                                                     BUILTINS_LOCATION),
-                            BUILTINS_LOCATION);
-    }
-}
-
-// Import a package.
-
-void
-Gogo::import_package(const std::string& filename,
-                    const std::string& local_name,
-                    bool is_local_name_exported,
-                    source_location location)
-{
-  if (filename == "unsafe")
-    {
-      this->import_unsafe(local_name, is_local_name_exported, location);
-      return;
-    }
-
-  Imports::const_iterator p = this->imports_.find(filename);
-  if (p != this->imports_.end())
-    {
-      Package* package = p->second;
-      package->set_location(location);
-      package->set_is_imported();
-      std::string ln = local_name;
-      bool is_ln_exported = is_local_name_exported;
-      if (ln.empty())
-       {
-         ln = package->name();
-         is_ln_exported = Lex::is_exported_name(ln);
-       }
-      if (ln != ".")
-       {
-         ln = this->pack_hidden_name(ln, is_ln_exported);
-         this->package_->bindings()->add_package(ln, package);
-       }
-      else
-       {
-         Bindings* bindings = package->bindings();
-         for (Bindings::const_declarations_iterator p =
-                bindings->begin_declarations();
-              p != bindings->end_declarations();
-              ++p)
-           this->add_named_object(p->second);
-       }
-      return;
-    }
-
-  Import::Stream* stream = Import::open_package(filename, location);
-  if (stream == NULL)
-    {
-      error_at(location, "import file %qs not found", filename.c_str());
-      return;
-    }
-
-  Import imp(stream, location);
-  imp.register_builtin_types(this);
-  Package* package = imp.import(this, local_name, is_local_name_exported);
-  this->imports_.insert(std::make_pair(filename, package));
-  package->set_is_imported();
-
-  delete stream;
-}
-
-// Add an import control function for an imported package to the list.
-
-void
-Gogo::add_import_init_fn(const std::string& package_name,
-                        const std::string& init_name, int prio)
-{
-  for (std::set<Import_init>::const_iterator p =
-        this->imported_init_fns_.begin();
-       p != this->imported_init_fns_.end();
-       ++p)
-    {
-      if (p->init_name() == init_name
-         && (p->package_name() != package_name || p->priority() != prio))
-       {
-         error("duplicate package initialization name %qs",
-               Gogo::message_name(init_name).c_str());
-         inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
-                Gogo::message_name(p->package_name()).c_str(),
-                p->priority());
-         inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
-                Gogo::message_name(package_name).c_str(), prio);
-         return;
-       }
-    }
-
-  this->imported_init_fns_.insert(Import_init(package_name, init_name,
-                                             prio));
-}
-
-// Return whether we are at the global binding level.
-
-bool
-Gogo::in_global_scope() const
-{
-  return this->functions_.empty();
-}
-
-// Return the current binding contour.
-
-Bindings*
-Gogo::current_bindings()
-{
-  if (!this->functions_.empty())
-    return this->functions_.back().blocks.back()->bindings();
-  else if (this->package_ != NULL)
-    return this->package_->bindings();
-  else
-    return this->globals_;
-}
-
-const Bindings*
-Gogo::current_bindings() const
-{
-  if (!this->functions_.empty())
-    return this->functions_.back().blocks.back()->bindings();
-  else if (this->package_ != NULL)
-    return this->package_->bindings();
-  else
-    return this->globals_;
-}
-
-// Return the current block.
-
-Block*
-Gogo::current_block()
-{
-  if (this->functions_.empty())
-    return NULL;
-  else
-    return this->functions_.back().blocks.back();
-}
-
-// Look up a name in the current binding contour.  If PFUNCTION is not
-// NULL, set it to the function in which the name is defined, or NULL
-// if the name is defined in global scope.
-
-Named_object*
-Gogo::lookup(const std::string& name, Named_object** pfunction) const
-{
-  if (Gogo::is_sink_name(name))
-    return Named_object::make_sink();
-
-  for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
-       p != this->functions_.rend();
-       ++p)
-    {
-      Named_object* ret = p->blocks.back()->bindings()->lookup(name);
-      if (ret != NULL)
-       {
-         if (pfunction != NULL)
-           *pfunction = p->function;
-         return ret;
-       }
-    }
-
-  if (pfunction != NULL)
-    *pfunction = NULL;
-
-  if (this->package_ != NULL)
-    {
-      Named_object* ret = this->package_->bindings()->lookup(name);
-      if (ret != NULL)
-       {
-         if (ret->package() != NULL)
-           ret->package()->set_used();
-         return ret;
-       }
-    }
-
-  // We do not look in the global namespace.  If we did, the global
-  // namespace would effectively hide names which were defined in
-  // package scope which we have not yet seen.  Instead,
-  // define_global_names is called after parsing is over to connect
-  // undefined names at package scope with names defined at global
-  // scope.
-
-  return NULL;
-}
-
-// Look up a name in the current block, without searching enclosing
-// blocks.
-
-Named_object*
-Gogo::lookup_in_block(const std::string& name) const
-{
-  gcc_assert(!this->functions_.empty());
-  gcc_assert(!this->functions_.back().blocks.empty());
-  return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
-}
-
-// Look up a name in the global namespace.
-
-Named_object*
-Gogo::lookup_global(const char* name) const
-{
-  return this->globals_->lookup(name);
-}
-
-// Add an imported package.
-
-Package*
-Gogo::add_imported_package(const std::string& real_name,
-                          const std::string& alias_arg,
-                          bool is_alias_exported,
-                          const std::string& unique_prefix,
-                          source_location location,
-                          bool* padd_to_globals)
-{
-  // FIXME: Now that we compile packages as a whole, should we permit
-  // importing the current package?
-  if (this->package_name() == real_name
-      && this->unique_prefix() == unique_prefix)
-    {
-      *padd_to_globals = false;
-      if (!alias_arg.empty() && alias_arg != ".")
-       {
-         std::string alias = this->pack_hidden_name(alias_arg,
-                                                    is_alias_exported);
-         this->package_->bindings()->add_package(alias, this->package_);
-       }
-      return this->package_;
-    }
-  else if (alias_arg == ".")
-    {
-      *padd_to_globals = true;
-      return this->register_package(real_name, unique_prefix, location);
-    }
-  else if (alias_arg == "_")
-    {
-      Package* ret = this->register_package(real_name, unique_prefix, location);
-      ret->set_uses_sink_alias();
-      return ret;
-    }
-  else
-    {
-      *padd_to_globals = false;
-      std::string alias = alias_arg;
-      if (alias.empty())
-       {
-         alias = real_name;
-         is_alias_exported = Lex::is_exported_name(alias);
-       }
-      alias = this->pack_hidden_name(alias, is_alias_exported);
-      Named_object* no = this->add_package(real_name, alias, unique_prefix,
-                                          location);
-      if (!no->is_package())
-       return NULL;
-      return no->package_value();
-    }
-}
-
-// Add a package.
-
-Named_object*
-Gogo::add_package(const std::string& real_name, const std::string& alias,
-                 const std::string& unique_prefix, source_location location)
-{
-  gcc_assert(this->in_global_scope());
-
-  // Register the package.  Note that we might have already seen it in
-  // an earlier import.
-  Package* package = this->register_package(real_name, unique_prefix, location);
-
-  return this->package_->bindings()->add_package(alias, package);
-}
-
-// Register a package.  This package may or may not be imported.  This
-// returns the Package structure for the package, creating if it
-// necessary.
-
-Package*
-Gogo::register_package(const std::string& package_name,
-                      const std::string& unique_prefix,
-                      source_location location)
-{
-  gcc_assert(!unique_prefix.empty() && !package_name.empty());
-  std::string name = unique_prefix + '.' + package_name;
-  Package* package = NULL;
-  std::pair<Packages::iterator, bool> ins =
-    this->packages_.insert(std::make_pair(name, package));
-  if (!ins.second)
-    {
-      // We have seen this package name before.
-      package = ins.first->second;
-      gcc_assert(package != NULL);
-      gcc_assert(package->name() == package_name
-                && package->unique_prefix() == unique_prefix);
-      if (package->location() == UNKNOWN_LOCATION)
-       package->set_location(location);
-    }
-  else
-    {
-      // First time we have seen this package name.
-      package = new Package(package_name, unique_prefix, location);
-      gcc_assert(ins.first->second == NULL);
-      ins.first->second = package;
-    }
-
-  return package;
-}
-
-// Start compiling a function.
-
-Named_object*
-Gogo::start_function(const std::string& name, Function_type* type,
-                    bool add_method_to_type, source_location location)
-{
-  bool at_top_level = this->functions_.empty();
-
-  Block* block = new Block(NULL, location);
-
-  Function* enclosing = (at_top_level
-                        ? NULL
-                        : this->functions_.back().function->func_value());
-
-  Function* function = new Function(type, enclosing, block, location);
-
-  if (type->is_method())
-    {
-      const Typed_identifier* receiver = type->receiver();
-      Variable* this_param = new Variable(receiver->type(), NULL, false,
-                                         true, true, location);
-      std::string name = receiver->name();
-      if (name.empty())
-       {
-         // We need to give receivers a name since they wind up in
-         // DECL_ARGUMENTS.  FIXME.
-         static unsigned int count;
-         char buf[50];
-         snprintf(buf, sizeof buf, "r.%u", count);
-         ++count;
-         name = buf;
-       }
-      block->bindings()->add_variable(name, NULL, this_param);
-    }
-
-  const Typed_identifier_list* parameters = type->parameters();
-  bool is_varargs = type->is_varargs();
-  if (parameters != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = parameters->begin();
-          p != parameters->end();
-          ++p)
-       {
-         Variable* param = new Variable(p->type(), NULL, false, true, false,
-                                        location);
-         if (is_varargs && p + 1 == parameters->end())
-           param->set_is_varargs_parameter();
-
-         std::string name = p->name();
-         if (name.empty() || Gogo::is_sink_name(name))
-           {
-             // We need to give parameters a name since they wind up
-             // in DECL_ARGUMENTS.  FIXME.
-             static unsigned int count;
-             char buf[50];
-             snprintf(buf, sizeof buf, "p.%u", count);
-             ++count;
-             name = buf;
-           }
-         block->bindings()->add_variable(name, NULL, param);
-       }
-    }
-
-  function->create_named_result_variables();
-
-  const std::string* pname;
-  std::string nested_name;
-  if (!name.empty())
-    pname = &name;
-  else
-    {
-      // Invent a name for a nested function.
-      static int nested_count;
-      char buf[30];
-      snprintf(buf, sizeof buf, ".$nested%d", nested_count);
-      ++nested_count;
-      nested_name = buf;
-      pname = &nested_name;
-    }
-
-  Named_object* ret;
-  if (Gogo::is_sink_name(*pname))
-    ret = Named_object::make_sink();
-  else if (!type->is_method())
-    {
-      ret = this->package_->bindings()->add_function(*pname, NULL, function);
-      if (!ret->is_function())
-       {
-         // Redefinition error.
-         ret = Named_object::make_function(name, NULL, function);
-       }
-    }
-  else
-    {
-      if (!add_method_to_type)
-       ret = Named_object::make_function(name, NULL, function);
-      else
-       {
-         gcc_assert(at_top_level);
-         Type* rtype = type->receiver()->type();
-
-         // We want to look through the pointer created by the
-         // parser, without getting an error if the type is not yet
-         // defined.
-         if (rtype->classification() == Type::TYPE_POINTER)
-           rtype = rtype->points_to();
-
-         if (rtype->is_error_type())
-           ret = Named_object::make_function(name, NULL, function);
-         else if (rtype->named_type() != NULL)
-           {
-             ret = rtype->named_type()->add_method(name, function);
-             if (!ret->is_function())
-               {
-                 // Redefinition error.
-                 ret = Named_object::make_function(name, NULL, function);
-               }
-           }
-         else if (rtype->forward_declaration_type() != NULL)
-           {
-             Named_object* type_no =
-               rtype->forward_declaration_type()->named_object();
-             if (type_no->is_unknown())
-               {
-                 // If we are seeing methods it really must be a
-                 // type.  Declare it as such.  An alternative would
-                 // be to support lists of methods for unknown
-                 // expressions.  Either way the error messages if
-                 // this is not a type are going to get confusing.
-                 Named_object* declared =
-                   this->declare_package_type(type_no->name(),
-                                              type_no->location());
-                 gcc_assert(declared
-                            == type_no->unknown_value()->real_named_object());
-               }
-             ret = rtype->forward_declaration_type()->add_method(name,
-                                                                 function);
-           }
-         else
-           gcc_unreachable();
-       }
-      this->package_->bindings()->add_method(ret);
-    }
-
-  this->functions_.resize(this->functions_.size() + 1);
-  Open_function& of(this->functions_.back());
-  of.function = ret;
-  of.blocks.push_back(block);
-
-  if (!type->is_method() && Gogo::unpack_hidden_name(name) == "init")
-    {
-      this->init_functions_.push_back(ret);
-      this->need_init_fn_ = true;
-    }
-
-  return ret;
-}
-
-// Finish compiling a function.
-
-void
-Gogo::finish_function(source_location location)
-{
-  this->finish_block(location);
-  gcc_assert(this->functions_.back().blocks.empty());
-  this->functions_.pop_back();
-}
-
-// Return the current function.
-
-Named_object*
-Gogo::current_function() const
-{
-  gcc_assert(!this->functions_.empty());
-  return this->functions_.back().function;
-}
-
-// Start a new block.
-
-void
-Gogo::start_block(source_location location)
-{
-  gcc_assert(!this->functions_.empty());
-  Block* block = new Block(this->current_block(), location);
-  this->functions_.back().blocks.push_back(block);
-}
-
-// Finish a block.
-
-Block*
-Gogo::finish_block(source_location location)
-{
-  gcc_assert(!this->functions_.empty());
-  gcc_assert(!this->functions_.back().blocks.empty());
-  Block* block = this->functions_.back().blocks.back();
-  this->functions_.back().blocks.pop_back();
-  block->set_end_location(location);
-  return block;
-}
-
-// Add an unknown name.
-
-Named_object*
-Gogo::add_unknown_name(const std::string& name, source_location location)
-{
-  return this->package_->bindings()->add_unknown_name(name, location);
-}
-
-// Declare a function.
-
-Named_object*
-Gogo::declare_function(const std::string& name, Function_type* type,
-                      source_location location)
-{
-  if (!type->is_method())
-    return this->current_bindings()->add_function_declaration(name, NULL, type,
-                                                             location);
-  else
-    {
-      // We don't bother to add this to the list of global
-      // declarations.
-      Type* rtype = type->receiver()->type();
-
-      // We want to look through the pointer created by the
-      // parser, without getting an error if the type is not yet
-      // defined.
-      if (rtype->classification() == Type::TYPE_POINTER)
-       rtype = rtype->points_to();
-
-      if (rtype->is_error_type())
-       return NULL;
-      else if (rtype->named_type() != NULL)
-       return rtype->named_type()->add_method_declaration(name, NULL, type,
-                                                          location);
-      else if (rtype->forward_declaration_type() != NULL)
-       {
-         Forward_declaration_type* ftype = rtype->forward_declaration_type();
-         return ftype->add_method_declaration(name, type, location);
-       }
-      else
-       gcc_unreachable();
-    }
-}
-
-// Add a label definition.
-
-Label*
-Gogo::add_label_definition(const std::string& label_name,
-                          source_location location)
-{
-  gcc_assert(!this->functions_.empty());
-  Function* func = this->functions_.back().function->func_value();
-  Label* label = func->add_label_definition(label_name, location);
-  this->add_statement(Statement::make_label_statement(label, location));
-  return label;
-}
-
-// Add a label reference.
-
-Label*
-Gogo::add_label_reference(const std::string& label_name)
-{
-  gcc_assert(!this->functions_.empty());
-  Function* func = this->functions_.back().function->func_value();
-  return func->add_label_reference(label_name);
-}
-
-// Add a statement.
-
-void
-Gogo::add_statement(Statement* statement)
-{
-  gcc_assert(!this->functions_.empty()
-            && !this->functions_.back().blocks.empty());
-  this->functions_.back().blocks.back()->add_statement(statement);
-}
-
-// Add a block.
-
-void
-Gogo::add_block(Block* block, source_location location)
-{
-  gcc_assert(!this->functions_.empty()
-            && !this->functions_.back().blocks.empty());
-  Statement* statement = Statement::make_block_statement(block, location);
-  this->functions_.back().blocks.back()->add_statement(statement);
-}
-
-// Add a constant.
-
-Named_object*
-Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
-                  int iota_value)
-{
-  return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
-}
-
-// Add a type.
-
-void
-Gogo::add_type(const std::string& name, Type* type, source_location location)
-{
-  Named_object* no = this->current_bindings()->add_type(name, NULL, type,
-                                                       location);
-  if (!this->in_global_scope())
-    no->type_value()->set_in_function(this->functions_.back().function);
-}
-
-// Add a named type.
-
-void
-Gogo::add_named_type(Named_type* type)
-{
-  gcc_assert(this->in_global_scope());
-  this->current_bindings()->add_named_type(type);
-}
-
-// Declare a type.
-
-Named_object*
-Gogo::declare_type(const std::string& name, source_location location)
-{
-  Bindings* bindings = this->current_bindings();
-  Named_object* no = bindings->add_type_declaration(name, NULL, location);
-  if (!this->in_global_scope())
-    {
-      Named_object* f = this->functions_.back().function;
-      no->type_declaration_value()->set_in_function(f);
-    }
-  return no;
-}
-
-// Declare a type at the package level.
-
-Named_object*
-Gogo::declare_package_type(const std::string& name, source_location location)
-{
-  return this->package_->bindings()->add_type_declaration(name, NULL, location);
-}
-
-// Define a type which was already declared.
-
-void
-Gogo::define_type(Named_object* no, Named_type* type)
-{
-  this->current_bindings()->define_type(no, type);
-}
-
-// Add a variable.
-
-Named_object*
-Gogo::add_variable(const std::string& name, Variable* variable)
-{
-  Named_object* no = this->current_bindings()->add_variable(name, NULL,
-                                                           variable);
-
-  // In a function the middle-end wants to see a DECL_EXPR node.
-  if (no != NULL
-      && no->is_variable()
-      && !no->var_value()->is_parameter()
-      && !this->functions_.empty())
-    this->add_statement(Statement::make_variable_declaration(no));
-
-  return no;
-}
-
-// Add a sink--a reference to the blank identifier _.
-
-Named_object*
-Gogo::add_sink()
-{
-  return Named_object::make_sink();
-}
-
-// Add a named object.
-
-void
-Gogo::add_named_object(Named_object* no)
-{
-  this->current_bindings()->add_named_object(no);
-}
-
-// Record that we've seen an interface type.
-
-void
-Gogo::record_interface_type(Interface_type* itype)
-{
-  this->interface_types_.push_back(itype);
-}
-
-// Return a name for a thunk object.
-
-std::string
-Gogo::thunk_name()
-{
-  static int thunk_count;
-  char thunk_name[50];
-  snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
-  ++thunk_count;
-  return thunk_name;
-}
-
-// Return whether a function is a thunk.
-
-bool
-Gogo::is_thunk(const Named_object* no)
-{
-  return no->name().compare(0, 6, "$thunk") == 0;
-}
-
-// Define the global names.  We do this only after parsing all the
-// input files, because the program might define the global names
-// itself.
-
-void
-Gogo::define_global_names()
-{
-  for (Bindings::const_declarations_iterator p =
-        this->globals_->begin_declarations();
-       p != this->globals_->end_declarations();
-       ++p)
-    {
-      Named_object* global_no = p->second;
-      std::string name(Gogo::pack_hidden_name(global_no->name(), false));
-      Named_object* no = this->package_->bindings()->lookup(name);
-      if (no == NULL)
-       continue;
-      no = no->resolve();
-      if (no->is_type_declaration())
-       {
-         if (global_no->is_type())
-           {
-             if (no->type_declaration_value()->has_methods())
-               error_at(no->location(),
-                        "may not define methods for global type");
-             no->set_type_value(global_no->type_value());
-           }
-         else
-           {
-             error_at(no->location(), "expected type");
-             Type* errtype = Type::make_error_type();
-             Named_object* err = Named_object::make_type("error", NULL,
-                                                         errtype,
-                                                         BUILTINS_LOCATION);
-             no->set_type_value(err->type_value());
-           }
-       }
-      else if (no->is_unknown())
-       no->unknown_value()->set_real_named_object(global_no);
-    }
-}
-
-// Clear out names in file scope.
-
-void
-Gogo::clear_file_scope()
-{
-  this->package_->bindings()->clear_file_scope();
-
-  // Warn about packages which were imported but not used.
-  for (Packages::iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    {
-      Package* package = p->second;
-      if (package != this->package_
-         && package->is_imported()
-         && !package->used()
-         && !package->uses_sink_alias()
-         && !saw_errors())
-       error_at(package->location(), "imported and not used: %s",
-                Gogo::message_name(package->name()).c_str());
-      package->clear_is_imported();
-      package->clear_uses_sink_alias();
-      package->clear_used();
-    }
-}
-
-// Traverse the tree.
-
-void
-Gogo::traverse(Traverse* traverse)
-{
-  // Traverse the current package first for consistency.  The other
-  // packages will only contain imported types, constants, and
-  // declarations.
-  if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
-    return;
-  for (Packages::const_iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    {
-      if (p->second != this->package_)
-       {
-         if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
-           break;
-       }
-    }
-}
-
-// Traversal class used to verify types.
-
-class Verify_types : public Traverse
-{
- public:
-  Verify_types()
-    : Traverse(traverse_types)
-  { }
-
-  int
-  type(Type*);
-};
-
-// Verify that a type is correct.
-
-int
-Verify_types::type(Type* t)
-{
-  // Don't verify types defined in other packages.
-  Named_type* nt = t->named_type();
-  if (nt != NULL && nt->named_object()->package() != NULL)
-    return TRAVERSE_SKIP_COMPONENTS;
-
-  if (!t->verify())
-    return TRAVERSE_SKIP_COMPONENTS;
-  return TRAVERSE_CONTINUE;
-}
-
-// Verify that all types are correct.
-
-void
-Gogo::verify_types()
-{
-  Verify_types traverse;
-  this->traverse(&traverse);
-}
-
-// Traversal class used to lower parse tree.
-
-class Lower_parse_tree : public Traverse
-{
- public:
-  Lower_parse_tree(Gogo* gogo, Named_object* function)
-    : Traverse(traverse_constants
-              | traverse_functions
-              | traverse_statements
-              | traverse_expressions),
-      gogo_(gogo), function_(function), iota_value_(-1)
-  { }
-
-  int
-  constant(Named_object*, bool);
-
-  int
-  function(Named_object*);
-
-  int
-  statement(Block*, size_t* pindex, Statement*);
-
-  int
-  expression(Expression**);
-
- private:
-  // General IR.
-  Gogo* gogo_;
-  // The function we are traversing.
-  Named_object* function_;
-  // Value to use for the predeclared constant iota.
-  int iota_value_;
-};
-
-// Lower constants.  We handle constants specially so that we can set
-// the right value for the predeclared constant iota.  This works in
-// conjunction with the way we lower Const_expression objects.
-
-int
-Lower_parse_tree::constant(Named_object* no, bool)
-{
-  Named_constant* nc = no->const_value();
-
-  // We can recursively a constant if the initializer expression
-  // manages to refer to itself.
-  if (nc->lowering())
-    return TRAVERSE_CONTINUE;
-  nc->set_lowering();
-
-  gcc_assert(this->iota_value_ == -1);
-  this->iota_value_ = nc->iota_value();
-  nc->traverse_expression(this);
-  this->iota_value_ = -1;
-
-  nc->clear_lowering();
-
-  // We will traverse the expression a second time, but that will be
-  // fast.
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower function closure types.  Record the function while lowering
-// it, so that we can pass it down when lowering an expression.
-
-int
-Lower_parse_tree::function(Named_object* no)
-{
-  no->func_value()->set_closure_type();
-
-  gcc_assert(this->function_ == NULL);
-  this->function_ = no;
-  int t = no->func_value()->traverse(this);
-  this->function_ = NULL;
-
-  if (t == TRAVERSE_EXIT)
-    return t;
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Lower statement parse trees.
-
-int
-Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
-{
-  // Lower the expressions first.
-  int t = sorig->traverse_contents(this);
-  if (t == TRAVERSE_EXIT)
-    return t;
-
-  // Keep lowering until nothing changes.
-  Statement* s = sorig;
-  while (true)
-    {
-      Statement* snew = s->lower(this->gogo_, block);
-      if (snew == s)
-       break;
-      s = snew;
-      t = s->traverse_contents(this);
-      if (t == TRAVERSE_EXIT)
-       return t;
-    }
-
-  if (s != sorig)
-    block->replace_statement(*pindex, s);
-
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Lower expression parse trees.
-
-int
-Lower_parse_tree::expression(Expression** pexpr)
-{
-  // We have to lower all subexpressions first, so that we can get
-  // their type if necessary.  This is awkward, because we don't have
-  // a postorder traversal pass.
-  if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  // Keep lowering until nothing changes.
-  while (true)
-    {
-      Expression* e = *pexpr;
-      Expression* enew = e->lower(this->gogo_, this->function_,
-                                 this->iota_value_);
-      if (enew == e)
-       break;
-      *pexpr = enew;
-    }
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Lower the parse tree.  This is called after the parse is complete,
-// when all names should be resolved.
-
-void
-Gogo::lower_parse_tree()
-{
-  Lower_parse_tree lower_parse_tree(this, NULL);
-  this->traverse(&lower_parse_tree);
-}
-
-// Lower an expression.
-
-void
-Gogo::lower_expression(Named_object* function, Expression** pexpr)
-{
-  Lower_parse_tree lower_parse_tree(this, function);
-  lower_parse_tree.expression(pexpr);
-}
-
-// Lower a constant.  This is called when lowering a reference to a
-// constant.  We have to make sure that the constant has already been
-// lowered.
-
-void
-Gogo::lower_constant(Named_object* no)
-{
-  gcc_assert(no->is_const());
-  Lower_parse_tree lower(this, NULL);
-  lower.constant(no, false);
-}
-
-// Look for interface types to finalize methods of inherited
-// interfaces.
-
-class Finalize_methods : public Traverse
-{
- public:
-  Finalize_methods(Gogo* gogo)
-    : Traverse(traverse_types),
-      gogo_(gogo)
-  { }
-
-  int
-  type(Type*);
-
- private:
-  Gogo* gogo_;
-};
-
-// Finalize the methods of an interface type.
-
-int
-Finalize_methods::type(Type* t)
-{
-  // Check the classification so that we don't finalize the methods
-  // twice for a named interface type.
-  switch (t->classification())
-    {
-    case Type::TYPE_INTERFACE:
-      t->interface_type()->finalize_methods();
-      break;
-
-    case Type::TYPE_NAMED:
-      {
-       // We have to finalize the methods of the real type first.
-       // But if the real type is a struct type, then we only want to
-       // finalize the methods of the field types, not of the struct
-       // type itself.  We don't want to add methods to the struct,
-       // since it has a name.
-       Type* rt = t->named_type()->real_type();
-       if (rt->classification() != Type::TYPE_STRUCT)
-         {
-           if (Type::traverse(rt, this) == TRAVERSE_EXIT)
-             return TRAVERSE_EXIT;
-         }
-       else
-         {
-           if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
-             return TRAVERSE_EXIT;
-         }
-
-       t->named_type()->finalize_methods(this->gogo_);
-
-       return TRAVERSE_SKIP_COMPONENTS;
-      }
-
-    case Type::TYPE_STRUCT:
-      t->struct_type()->finalize_methods(this->gogo_);
-      break;
-
-    default:
-      break;
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Finalize method lists and build stub methods for types.
-
-void
-Gogo::finalize_methods()
-{
-  Finalize_methods finalize(this);
-  this->traverse(&finalize);
-}
-
-// Set types for unspecified variables and constants.
-
-void
-Gogo::determine_types()
-{
-  Bindings* bindings = this->current_bindings();
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_function())
-       (*p)->func_value()->determine_types();
-      else if ((*p)->is_variable())
-       (*p)->var_value()->determine_type();
-      else if ((*p)->is_const())
-       (*p)->const_value()->determine_type();
-
-      // See if a variable requires us to build an initialization
-      // function.  We know that we will see all global variables
-      // here.
-      if (!this->need_init_fn_ && (*p)->is_variable())
-       {
-         Variable* variable = (*p)->var_value();
-
-         // If this is a global variable which requires runtime
-         // initialization, we need an initialization function.
-         if (!variable->is_global() || variable->init() == NULL)
-           ;
-         else if (variable->type()->interface_type() != NULL)
-           this->need_init_fn_ = true;
-         else if (variable->init()->is_constant())
-           ;
-         else if (!variable->init()->is_composite_literal())
-           this->need_init_fn_ = true;
-         else if (variable->init()->is_nonconstant_composite_literal())
-           this->need_init_fn_ = true;
-
-         // If this is a global variable which holds a pointer value,
-         // then we need an initialization function to register it as a
-         // GC root.
-         if (variable->is_global() && variable->type()->has_pointer())
-           this->need_init_fn_ = true;
-       }
-    }
-
-  // Determine the types of constants in packages.
-  for (Packages::const_iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    p->second->determine_types();
-}
-
-// Traversal class used for type checking.
-
-class Check_types_traverse : public Traverse
-{
- public:
-  Check_types_traverse(Gogo* gogo)
-    : Traverse(traverse_variables
-              | traverse_constants
-              | traverse_statements
-              | traverse_expressions),
-      gogo_(gogo)
-  { }
-
-  int
-  variable(Named_object*);
-
-  int
-  constant(Named_object*, bool);
-
-  int
-  statement(Block*, size_t* pindex, Statement*);
-
-  int
-  expression(Expression**);
-
- private:
-  // General IR.
-  Gogo* gogo_;
-};
-
-// Check that a variable initializer has the right type.
-
-int
-Check_types_traverse::variable(Named_object* named_object)
-{
-  if (named_object->is_variable())
-    {
-      Variable* var = named_object->var_value();
-      Expression* init = var->init();
-      std::string reason;
-      if (init != NULL
-         && !Type::are_assignable(var->type(), init->type(), &reason))
-       {
-         if (reason.empty())
-           error_at(var->location(), "incompatible type in initialization");
-         else
-           error_at(var->location(),
-                    "incompatible type in initialization (%s)",
-                    reason.c_str());
-         var->clear_init();
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that a constant initializer has the right type.
-
-int
-Check_types_traverse::constant(Named_object* named_object, bool)
-{
-  Named_constant* constant = named_object->const_value();
-  Type* ctype = constant->type();
-  if (ctype->integer_type() == NULL
-      && ctype->float_type() == NULL
-      && ctype->complex_type() == NULL
-      && !ctype->is_boolean_type()
-      && !ctype->is_string_type())
-    {
-      error_at(constant->location(), "invalid constant type");
-      constant->set_error();
-    }
-  else if (!constant->expr()->is_constant())
-    {
-      error_at(constant->expr()->location(), "expression is not constant");
-      constant->set_error();
-    }
-  else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
-                                NULL))
-    {
-      error_at(constant->location(),
-              "initialization expression has wrong type");
-      constant->set_error();
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that types are valid in a statement.
-
-int
-Check_types_traverse::statement(Block*, size_t*, Statement* s)
-{
-  s->check_types(this->gogo_);
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that types are valid in an expression.
-
-int
-Check_types_traverse::expression(Expression** expr)
-{
-  (*expr)->check_types(this->gogo_);
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that types are valid.
-
-void
-Gogo::check_types()
-{
-  Check_types_traverse traverse(this);
-  this->traverse(&traverse);
-}
-
-// Check the types in a single block.
-
-void
-Gogo::check_types_in_block(Block* block)
-{
-  Check_types_traverse traverse(this);
-  block->traverse(&traverse);
-}
-
-// A traversal class used to find a single shortcut operator within an
-// expression.
-
-class Find_shortcut : public Traverse
-{
- public:
-  Find_shortcut()
-    : Traverse(traverse_blocks
-              | traverse_statements
-              | traverse_expressions),
-      found_(NULL)
-  { }
-
-  // A pointer to the expression which was found, or NULL if none was
-  // found.
-  Expression**
-  found() const
-  { return this->found_; }
-
- protected:
-  int
-  block(Block*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  statement(Block*, size_t*, Statement*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  expression(Expression**);
-
- private:
-  Expression** found_;
-};
-
-// Find a shortcut expression.
-
-int
-Find_shortcut::expression(Expression** pexpr)
-{
-  Expression* expr = *pexpr;
-  Binary_expression* be = expr->binary_expression();
-  if (be == NULL)
-    return TRAVERSE_CONTINUE;
-  Operator op = be->op();
-  if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
-    return TRAVERSE_CONTINUE;
-  gcc_assert(this->found_ == NULL);
-  this->found_ = pexpr;
-  return TRAVERSE_EXIT;
-}
-
-// A traversal class used to turn shortcut operators into explicit if
-// statements.
-
-class Shortcuts : public Traverse
-{
- public:
-  Shortcuts()
-    : Traverse(traverse_variables
-              | traverse_statements)
-  { }
-
- protected:
-  int
-  variable(Named_object*);
-
-  int
-  statement(Block*, size_t*, Statement*);
-
- private:
-  // Convert a shortcut operator.
-  Statement*
-  convert_shortcut(Block* enclosing, Expression** pshortcut);
-};
-
-// Remove shortcut operators in a single statement.
-
-int
-Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
-{
-  // FIXME: This approach doesn't work for switch statements, because
-  // we add the new statements before the whole switch when we need to
-  // instead add them just before the switch expression.  The right
-  // fix is probably to lower switch statements with nonconstant cases
-  // to a series of conditionals.
-  if (s->switch_statement() != NULL)
-    return TRAVERSE_CONTINUE;
-
-  while (true)
-    {
-      Find_shortcut find_shortcut;
-
-      // If S is a variable declaration, then ordinary traversal won't
-      // do anything.  We want to explicitly traverse the
-      // initialization expression if there is one.
-      Variable_declaration_statement* vds = s->variable_declaration_statement();
-      Expression* init = NULL;
-      if (vds == NULL)
-       s->traverse_contents(&find_shortcut);
-      else
-       {
-         init = vds->var()->var_value()->init();
-         if (init == NULL)
-           return TRAVERSE_CONTINUE;
-         init->traverse(&init, &find_shortcut);
-       }
-      Expression** pshortcut = find_shortcut.found();
-      if (pshortcut == NULL)
-       return TRAVERSE_CONTINUE;
-
-      Statement* snew = this->convert_shortcut(block, pshortcut);
-      block->insert_statement_before(*pindex, snew);
-      ++*pindex;
-
-      if (pshortcut == &init)
-       vds->var()->var_value()->set_init(init);
-    }
-}
-
-// Remove shortcut operators in the initializer of a global variable.
-
-int
-Shortcuts::variable(Named_object* no)
-{
-  if (no->is_result_variable())
-    return TRAVERSE_CONTINUE;
-  Variable* var = no->var_value();
-  Expression* init = var->init();
-  if (!var->is_global() || init == NULL)
-    return TRAVERSE_CONTINUE;
-
-  while (true)
-    {
-      Find_shortcut find_shortcut;
-      init->traverse(&init, &find_shortcut);
-      Expression** pshortcut = find_shortcut.found();
-      if (pshortcut == NULL)
-       return TRAVERSE_CONTINUE;
-
-      Statement* snew = this->convert_shortcut(NULL, pshortcut);
-      var->add_preinit_statement(snew);
-      if (pshortcut == &init)
-       var->set_init(init);
-    }
-}
-
-// Given an expression which uses a shortcut operator, return a
-// statement which implements it, and update *PSHORTCUT accordingly.
-
-Statement*
-Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
-{
-  Binary_expression* shortcut = (*pshortcut)->binary_expression();
-  Expression* left = shortcut->left();
-  Expression* right = shortcut->right();
-  source_location loc = shortcut->location();
-
-  Block* retblock = new Block(enclosing, loc);
-  retblock->set_end_location(loc);
-
-  Temporary_statement* ts = Statement::make_temporary(Type::make_boolean_type(),
-                                                     left, loc);
-  retblock->add_statement(ts);
-
-  Block* block = new Block(retblock, loc);
-  block->set_end_location(loc);
-  Expression* tmpref = Expression::make_temporary_reference(ts, loc);
-  Statement* assign = Statement::make_assignment(tmpref, right, loc);
-  block->add_statement(assign);
-
-  Expression* cond = Expression::make_temporary_reference(ts, loc);
-  if (shortcut->binary_expression()->op() == OPERATOR_OROR)
-    cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
-
-  Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
-                                                        loc);
-  retblock->add_statement(if_statement);
-
-  *pshortcut = Expression::make_temporary_reference(ts, loc);
-
-  delete shortcut;
-
-  // Now convert any shortcut operators in LEFT and RIGHT.
-  Shortcuts shortcuts;
-  retblock->traverse(&shortcuts);
-
-  return Statement::make_block_statement(retblock, loc);
-}
-
-// Turn shortcut operators into explicit if statements.  Doing this
-// considerably simplifies the order of evaluation rules.
-
-void
-Gogo::remove_shortcuts()
-{
-  Shortcuts shortcuts;
-  this->traverse(&shortcuts);
-}
-
-// A traversal class which finds all the expressions which must be
-// evaluated in order within a statement or larger expression.  This
-// is used to implement the rules about order of evaluation.
-
-class Find_eval_ordering : public Traverse
-{
- private:
-  typedef std::vector<Expression**> Expression_pointers;
-
- public:
-  Find_eval_ordering()
-    : Traverse(traverse_blocks
-              | traverse_statements
-              | traverse_expressions),
-      exprs_()
-  { }
-
-  size_t
-  size() const
-  { return this->exprs_.size(); }
-
-  typedef Expression_pointers::const_iterator const_iterator;
-
-  const_iterator
-  begin() const
-  { return this->exprs_.begin(); }
-
-  const_iterator
-  end() const
-  { return this->exprs_.end(); }
-
- protected:
-  int
-  block(Block*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  statement(Block*, size_t*, Statement*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  expression(Expression**);
-
- private:
-  // A list of pointers to expressions with side-effects.
-  Expression_pointers exprs_;
-};
-
-// If an expression must be evaluated in order, put it on the list.
-
-int
-Find_eval_ordering::expression(Expression** expression_pointer)
-{
-  // We have to look at subexpressions before this one.
-  if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if ((*expression_pointer)->must_eval_in_order())
-    this->exprs_.push_back(expression_pointer);
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// A traversal class for ordering evaluations.
-
-class Order_eval : public Traverse
-{
- public:
-  Order_eval()
-    : Traverse(traverse_variables
-              | traverse_statements)
-  { }
-
-  int
-  variable(Named_object*);
-
-  int
-  statement(Block*, size_t*, Statement*);
-};
-
-// Implement the order of evaluation rules for a statement.
-
-int
-Order_eval::statement(Block* block, size_t* pindex, Statement* s)
-{
-  // FIXME: This approach doesn't work for switch statements, because
-  // we add the new statements before the whole switch when we need to
-  // instead add them just before the switch expression.  The right
-  // fix is probably to lower switch statements with nonconstant cases
-  // to a series of conditionals.
-  if (s->switch_statement() != NULL)
-    return TRAVERSE_CONTINUE;
-
-  Find_eval_ordering find_eval_ordering;
-
-  // If S is a variable declaration, then ordinary traversal won't do
-  // anything.  We want to explicitly traverse the initialization
-  // expression if there is one.
-  Variable_declaration_statement* vds = s->variable_declaration_statement();
-  Expression* init = NULL;
-  Expression* orig_init = NULL;
-  if (vds == NULL)
-    s->traverse_contents(&find_eval_ordering);
-  else
-    {
-      init = vds->var()->var_value()->init();
-      if (init == NULL)
-       return TRAVERSE_CONTINUE;
-      orig_init = init;
-
-      // It might seem that this could be
-      // init->traverse_subexpressions.  Unfortunately that can fail
-      // in a case like
-      //   var err os.Error
-      //   newvar, err := call(arg())
-      // Here newvar will have an init of call result 0 of
-      // call(arg()).  If we only traverse subexpressions, we will
-      // only find arg(), and we won't bother to move anything out.
-      // Then we get to the assignment to err, we will traverse the
-      // whole statement, and this time we will find both call() and
-      // arg(), and so we will move them out.  This will cause them to
-      // be put into temporary variables before the assignment to err
-      // but after the declaration of newvar.  To avoid that problem,
-      // we traverse the entire expression here.
-      Expression::traverse(&init, &find_eval_ordering);
-    }
-
-  if (find_eval_ordering.size() <= 1)
-    {
-      // If there is only one expression with a side-effect, we can
-      // leave it in place.
-      return TRAVERSE_CONTINUE;
-    }
-
-  bool is_thunk = s->thunk_statement() != NULL;
-  for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
-       p != find_eval_ordering.end();
-       ++p)
-    {
-      Expression** pexpr = *p;
-
-      // If the last expression is a send or receive expression, we
-      // may be ignoring the value; we don't want to evaluate it
-      // early.
-      if (p + 1 == find_eval_ordering.end()
-         && ((*pexpr)->classification() == Expression::EXPRESSION_SEND
-             || (*pexpr)->classification() == Expression::EXPRESSION_RECEIVE))
-       break;
-
-      // The last expression in a thunk will be the call passed to go
-      // or defer, which we must not evaluate early.
-      if (is_thunk && p + 1 == find_eval_ordering.end())
-       break;
-
-      source_location loc = (*pexpr)->location();
-      Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
-      block->insert_statement_before(*pindex, ts);
-      ++*pindex;
-
-      *pexpr = Expression::make_temporary_reference(ts, loc);
-    }
-
-  if (init != orig_init)
-    vds->var()->var_value()->set_init(init);
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Implement the order of evaluation rules for the initializer of a
-// global variable.
-
-int
-Order_eval::variable(Named_object* no)
-{
-  if (no->is_result_variable())
-    return TRAVERSE_CONTINUE;
-  Variable* var = no->var_value();
-  Expression* init = var->init();
-  if (!var->is_global() || init == NULL)
-    return TRAVERSE_CONTINUE;
-
-  Find_eval_ordering find_eval_ordering;
-  init->traverse_subexpressions(&find_eval_ordering);
-
-  if (find_eval_ordering.size() <= 1)
-    {
-      // If there is only one expression with a side-effect, we can
-      // leave it in place.
-      return TRAVERSE_SKIP_COMPONENTS;
-    }
-
-  for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
-       p != find_eval_ordering.end();
-       ++p)
-    {
-      Expression** pexpr = *p;
-      source_location loc = (*pexpr)->location();
-      Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
-      var->add_preinit_statement(ts);
-      *pexpr = Expression::make_temporary_reference(ts, loc);
-    }
-
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Use temporary variables to implement the order of evaluation rules.
-
-void
-Gogo::order_evaluations()
-{
-  Order_eval order_eval;
-  this->traverse(&order_eval);
-}
-
-// Traversal to convert calls to the predeclared recover function to
-// pass in an argument indicating whether it can recover from a panic
-// or not.
-
-class Convert_recover : public Traverse
-{
- public:
-  Convert_recover(Named_object* arg)
-    : Traverse(traverse_expressions),
-      arg_(arg)
-  { }
-
- protected:
-  int
-  expression(Expression**);
-
- private:
-  // The argument to pass to the function.
-  Named_object* arg_;
-};
-
-// Convert calls to recover.
-
-int
-Convert_recover::expression(Expression** pp)
-{
-  Call_expression* ce = (*pp)->call_expression();
-  if (ce != NULL && ce->is_recover_call())
-    ce->set_recover_arg(Expression::make_var_reference(this->arg_,
-                                                      ce->location()));
-  return TRAVERSE_CONTINUE;
-}
-
-// Traversal for build_recover_thunks.
-
-class Build_recover_thunks : public Traverse
-{
- public:
-  Build_recover_thunks(Gogo* gogo)
-    : Traverse(traverse_functions),
-      gogo_(gogo)
-  { }
-
-  int
-  function(Named_object*);
-
- private:
-  Expression*
-  can_recover_arg(source_location);
-
-  // General IR.
-  Gogo* gogo_;
-};
-
-// If this function calls recover, turn it into a thunk.
-
-int
-Build_recover_thunks::function(Named_object* orig_no)
-{
-  Function* orig_func = orig_no->func_value();
-  if (!orig_func->calls_recover()
-      || orig_func->is_recover_thunk()
-      || orig_func->has_recover_thunk())
-    return TRAVERSE_CONTINUE;
-
-  Gogo* gogo = this->gogo_;
-  source_location location = orig_func->location();
-
-  static int count;
-  char buf[50];
-
-  Function_type* orig_fntype = orig_func->type();
-  Typed_identifier_list* new_params = new Typed_identifier_list();
-  std::string receiver_name;
-  if (orig_fntype->is_method())
-    {
-      const Typed_identifier* receiver = orig_fntype->receiver();
-      snprintf(buf, sizeof buf, "rt.%u", count);
-      ++count;
-      receiver_name = buf;
-      new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
-                                            receiver->location()));
-    }
-  const Typed_identifier_list* orig_params = orig_fntype->parameters();
-  if (orig_params != NULL && !orig_params->empty())
-    {
-      for (Typed_identifier_list::const_iterator p = orig_params->begin();
-          p != orig_params->end();
-          ++p)
-       {
-         snprintf(buf, sizeof buf, "pt.%u", count);
-         ++count;
-         new_params->push_back(Typed_identifier(buf, p->type(),
-                                                p->location()));
-       }
-    }
-  snprintf(buf, sizeof buf, "pr.%u", count);
-  ++count;
-  std::string can_recover_name = buf;
-  new_params->push_back(Typed_identifier(can_recover_name,
-                                        Type::make_boolean_type(),
-                                        orig_fntype->location()));
-
-  const Typed_identifier_list* orig_results = orig_fntype->results();
-  Typed_identifier_list* new_results;
-  if (orig_results == NULL || orig_results->empty())
-    new_results = NULL;
-  else
-    {
-      new_results = new Typed_identifier_list();
-      for (Typed_identifier_list::const_iterator p = orig_results->begin();
-          p != orig_results->end();
-          ++p)
-       new_results->push_back(*p);
-    }
-
-  Function_type *new_fntype = Type::make_function_type(NULL, new_params,
-                                                      new_results,
-                                                      orig_fntype->location());
-  if (orig_fntype->is_varargs())
-    new_fntype->set_is_varargs();
-
-  std::string name = orig_no->name() + "$recover";
-  Named_object *new_no = gogo->start_function(name, new_fntype, false,
-                                             location);
-  Function *new_func = new_no->func_value();
-  if (orig_func->enclosing() != NULL)
-    new_func->set_enclosing(orig_func->enclosing());
-
-  // We build the code for the original function attached to the new
-  // function, and then swap the original and new function bodies.
-  // This means that existing references to the original function will
-  // then refer to the new function.  That makes this code a little
-  // confusing, in that the reference to NEW_NO really refers to the
-  // other function, not the one we are building.
-
-  Expression* closure = NULL;
-  if (orig_func->needs_closure())
-    {
-      Named_object* orig_closure_no = orig_func->closure_var();
-      Variable* orig_closure_var = orig_closure_no->var_value();
-      Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
-                                      true, false, location);
-      snprintf(buf, sizeof buf, "closure.%u", count);
-      ++count;
-      Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
-                                                                new_var);
-      new_func->set_closure_var(new_closure_no);
-      closure = Expression::make_var_reference(new_closure_no, location);
-    }
-
-  Expression* fn = Expression::make_func_reference(new_no, closure, location);
-
-  Expression_list* args = new Expression_list();
-  if (orig_fntype->is_method())
-    {
-      Named_object* rec_no = gogo->lookup(receiver_name, NULL);
-      gcc_assert(rec_no != NULL
-                && rec_no->is_variable()
-                && rec_no->var_value()->is_parameter());
-      args->push_back(Expression::make_var_reference(rec_no, location));
-    }
-  if (new_params != NULL)
-    {
-      // Note that we skip the last parameter, which is the boolean
-      // indicating whether recover can succed.
-      for (Typed_identifier_list::const_iterator p = new_params->begin();
-          p + 1 != new_params->end();
-          ++p)
-       {
-         Named_object* p_no = gogo->lookup(p->name(), NULL);
-         gcc_assert(p_no != NULL
-                    && p_no->is_variable()
-                    && p_no->var_value()->is_parameter());
-         args->push_back(Expression::make_var_reference(p_no, location));
-       }
-    }
-  args->push_back(this->can_recover_arg(location));
-
-  Expression* call = Expression::make_call(fn, args, false, location);
-
-  Statement* s;
-  if (orig_fntype->results() == NULL || orig_fntype->results()->empty())
-    s = Statement::make_statement(call);
-  else
-    {
-      Expression_list* vals = new Expression_list();
-      vals->push_back(call);
-      s = Statement::make_return_statement(new_func->type()->results(),
-                                          vals, location);
-    }
-  s->determine_types();
-  gogo->add_statement(s);
-
-  gogo->finish_function(location);
-
-  // Swap the function bodies and types.
-  new_func->swap_for_recover(orig_func);
-  orig_func->set_is_recover_thunk();
-  new_func->set_calls_recover();
-  new_func->set_has_recover_thunk();
-
-  Bindings* orig_bindings = orig_func->block()->bindings();
-  Bindings* new_bindings = new_func->block()->bindings();
-  if (orig_fntype->is_method())
-    {
-      // We changed the receiver to be a regular parameter.  We have
-      // to update the binding accordingly in both functions.
-      Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
-      gcc_assert(orig_rec_no != NULL
-                && orig_rec_no->is_variable()
-                && !orig_rec_no->var_value()->is_receiver());
-      orig_rec_no->var_value()->set_is_receiver();
-
-      Named_object* new_rec_no = new_bindings->lookup_local(receiver_name);
-      gcc_assert(new_rec_no != NULL
-                && new_rec_no->is_variable()
-                && !new_rec_no->var_value()->is_receiver());
-      new_rec_no->var_value()->set_is_not_receiver();
-    }
-
-  // Because we flipped blocks but not types, the can_recover
-  // parameter appears in the (now) old bindings as a parameter.
-  // Change it to a local variable, whereupon it will be discarded.
-  Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
-  gcc_assert(can_recover_no != NULL
-            && can_recover_no->is_variable()
-            && can_recover_no->var_value()->is_parameter());
-  orig_bindings->remove_binding(can_recover_no);
-
-  // Add the can_recover argument to the (now) new bindings, and
-  // attach it to any recover statements.
-  Variable* can_recover_var = new Variable(Type::make_boolean_type(), NULL,
-                                          false, true, false, location);
-  can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
-                                             can_recover_var);
-  Convert_recover convert_recover(can_recover_no);
-  new_func->traverse(&convert_recover);
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Return the expression to pass for the .can_recover parameter to the
-// new function.  This indicates whether a call to recover may return
-// non-nil.  The expression is
-// __go_can_recover(__builtin_return_address()).
-
-Expression*
-Build_recover_thunks::can_recover_arg(source_location location)
-{
-  static Named_object* builtin_return_address;
-  if (builtin_return_address == NULL)
-    {
-      const source_location bloc = BUILTINS_LOCATION;
-
-      Typed_identifier_list* param_types = new Typed_identifier_list();
-      Type* uint_type = Type::lookup_integer_type("uint");
-      param_types->push_back(Typed_identifier("l", uint_type, bloc));
-
-      Typed_identifier_list* return_types = new Typed_identifier_list();
-      Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
-      return_types->push_back(Typed_identifier("", voidptr_type, bloc));
-
-      Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                      return_types, bloc);
-      builtin_return_address =
-       Named_object::make_function_declaration("__builtin_return_address",
-                                               NULL, fntype, bloc);
-      const char* n = "__builtin_return_address";
-      builtin_return_address->func_declaration_value()->set_asm_name(n);
-    }
-
-  static Named_object* can_recover;
-  if (can_recover == NULL)
-    {
-      const source_location bloc = BUILTINS_LOCATION;
-      Typed_identifier_list* param_types = new Typed_identifier_list();
-      Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
-      param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
-      Type* boolean_type = Type::make_boolean_type();
-      Typed_identifier_list* results = new Typed_identifier_list();
-      results->push_back(Typed_identifier("", boolean_type, bloc));
-      Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                      results, bloc);
-      can_recover = Named_object::make_function_declaration("__go_can_recover",
-                                                           NULL, fntype,
-                                                           bloc);
-      can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
-    }
-
-  Expression* fn = Expression::make_func_reference(builtin_return_address,
-                                                  NULL, location);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, location);
-  mpz_clear(zval);
-  Expression_list *args = new Expression_list();
-  args->push_back(zexpr);
-
-  Expression* call = Expression::make_call(fn, args, false, location);
-
-  args = new Expression_list();
-  args->push_back(call);
-
-  fn = Expression::make_func_reference(can_recover, NULL, location);
-  return Expression::make_call(fn, args, false, location);
-}
-
-// Build thunks for functions which call recover.  We build a new
-// function with an extra parameter, which is whether a call to
-// recover can succeed.  We then move the body of this function to
-// that one.  We then turn this function into a thunk which calls the
-// new one, passing the value of
-// __go_can_recover(__builtin_return_address()).  The function will be
-// marked as not splitting the stack.  This will cooperate with the
-// implementation of defer to make recover do the right thing.
-
-void
-Gogo::build_recover_thunks()
-{
-  Build_recover_thunks build_recover_thunks(this);
-  this->traverse(&build_recover_thunks);
-}
-
-// Look for named types to see whether we need to create an interface
-// method table.
-
-class Build_method_tables : public Traverse
-{
- public:
-  Build_method_tables(Gogo* gogo,
-                     const std::vector<Interface_type*>& interfaces)
-    : Traverse(traverse_types),
-      gogo_(gogo), interfaces_(interfaces)
-  { }
-
-  int
-  type(Type*);
-
- private:
-  // The IR.
-  Gogo* gogo_;
-  // A list of locally defined interfaces which have hidden methods.
-  const std::vector<Interface_type*>& interfaces_;
-};
-
-// Build all required interface method tables for types.  We need to
-// ensure that we have an interface method table for every interface
-// which has a hidden method, for every named type which implements
-// that interface.  Normally we can just build interface method tables
-// as we need them.  However, in some cases we can require an
-// interface method table for an interface defined in a different
-// package for a type defined in that package.  If that interface and
-// type both use a hidden method, that is OK.  However, we will not be
-// able to build that interface method table when we need it, because
-// the type's hidden method will be static.  So we have to build it
-// here, and just refer it from other packages as needed.
-
-void
-Gogo::build_interface_method_tables()
-{
-  std::vector<Interface_type*> hidden_interfaces;
-  hidden_interfaces.reserve(this->interface_types_.size());
-  for (std::vector<Interface_type*>::const_iterator pi =
-        this->interface_types_.begin();
-       pi != this->interface_types_.end();
-       ++pi)
-    {
-      const Typed_identifier_list* methods = (*pi)->methods();
-      if (methods == NULL)
-       continue;
-      for (Typed_identifier_list::const_iterator pm = methods->begin();
-          pm != methods->end();
-          ++pm)
-       {
-         if (Gogo::is_hidden_name(pm->name()))
-           {
-             hidden_interfaces.push_back(*pi);
-             break;
-           }
-       }
-    }
-
-  if (!hidden_interfaces.empty())
-    {
-      // Now traverse the tree looking for all named types.
-      Build_method_tables bmt(this, hidden_interfaces);
-      this->traverse(&bmt);
-    }
-
-  // We no longer need the list of interfaces.
-
-  this->interface_types_.clear();
-}
-
-// This is called for each type.  For a named type, for each of the
-// interfaces with hidden methods that it implements, create the
-// method table.
-
-int
-Build_method_tables::type(Type* type)
-{
-  Named_type* nt = type->named_type();
-  if (nt != NULL)
-    {
-      for (std::vector<Interface_type*>::const_iterator p =
-            this->interfaces_.begin();
-          p != this->interfaces_.end();
-          ++p)
-       {
-         // We ask whether a pointer to the named type implements the
-         // interface, because a pointer can implement more methods
-         // than a value.
-         if ((*p)->implements_interface(Type::make_pointer_type(nt), NULL))
-           {
-             nt->interface_method_table(this->gogo_, *p, false);
-             nt->interface_method_table(this->gogo_, *p, true);
-           }
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Traversal class used to check for return statements.
-
-class Check_return_statements_traverse : public Traverse
-{
- public:
-  Check_return_statements_traverse()
-    : Traverse(traverse_functions)
-  { }
-
-  int
-  function(Named_object*);
-};
-
-// Check that a function has a return statement if it needs one.
-
-int
-Check_return_statements_traverse::function(Named_object* no)
-{
-  Function* func = no->func_value();
-  const Function_type* fntype = func->type();
-  const Typed_identifier_list* results = fntype->results();
-
-  // We only need a return statement if there is a return value.
-  if (results == NULL || results->empty())
-    return TRAVERSE_CONTINUE;
-
-  if (func->block()->may_fall_through())
-    error_at(func->location(), "control reaches end of non-void function");
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Check return statements.
-
-void
-Gogo::check_return_statements()
-{
-  Check_return_statements_traverse traverse;
-  this->traverse(&traverse);
-}
-
-// Get the unique prefix to use before all exported symbols.  This
-// must be unique across the entire link.
-
-const std::string&
-Gogo::unique_prefix() const
-{
-  gcc_assert(!this->unique_prefix_.empty());
-  return this->unique_prefix_;
-}
-
-// Set the unique prefix to use before all exported symbols.  This
-// comes from the command line option -fgo-prefix=XXX.
-
-void
-Gogo::set_unique_prefix(const std::string& arg)
-{
-  gcc_assert(this->unique_prefix_.empty());
-  this->unique_prefix_ = arg;
-}
-
-// Work out the package priority.  It is one more than the maximum
-// priority of an imported package.
-
-int
-Gogo::package_priority() const
-{
-  int priority = 0;
-  for (Packages::const_iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    if (p->second->priority() > priority)
-      priority = p->second->priority();
-  return priority + 1;
-}
-
-// Export identifiers as requested.
-
-void
-Gogo::do_exports()
-{
-  // For now we always stream to a section.  Later we may want to
-  // support streaming to a separate file.
-  Stream_to_section stream;
-
-  Export exp(&stream);
-  exp.register_builtin_types(this);
-  exp.export_globals(this->package_name(),
-                    this->unique_prefix(),
-                    this->package_priority(),
-                    (this->need_init_fn_ && this->package_name() != "main"
-                     ? this->get_init_fn_name()
-                     : ""),
-                    this->imported_init_fns_,
-                    this->package_->bindings());
-}
-
-// Class Function.
-
-Function::Function(Function_type* type, Function* enclosing, Block* block,
-                  source_location location)
-  : type_(type), enclosing_(enclosing), named_results_(NULL),
-    closure_var_(NULL), block_(block), location_(location), fndecl_(NULL),
-    defer_stack_(NULL), calls_recover_(false), is_recover_thunk_(false),
-    has_recover_thunk_(false)
-{
-}
-
-// Create the named result variables.
-
-void
-Function::create_named_result_variables()
-{
-  const Typed_identifier_list* results = this->type_->results();
-  if (results == NULL
-      || results->empty()
-      || results->front().name().empty())
-    return;
-
-  this->named_results_ = new Named_results();
-  this->named_results_->reserve(results->size());
-
-  Block* block = this->block_;
-  int index = 0;
-  for (Typed_identifier_list::const_iterator p = results->begin();
-       p != results->end();
-       ++p, ++index)
-    {
-      Result_variable* result = new Result_variable(p->type(), this,
-                                                   index);
-      Named_object* no = block->bindings()->add_result_variable(p->name(),
-                                                               result);
-      this->named_results_->push_back(no);
-    }
-}
-
-// Return the closure variable, creating it if necessary.
-
-Named_object*
-Function::closure_var()
-{
-  if (this->closure_var_ == NULL)
-    {
-      // We don't know the type of the variable yet.  We add fields as
-      // we find them.
-      source_location loc = this->type_->location();
-      Struct_field_list* sfl = new Struct_field_list;
-      Type* struct_type = Type::make_struct_type(sfl, loc);
-      Variable* var = new Variable(Type::make_pointer_type(struct_type),
-                                  NULL, false, true, false, loc);
-      this->closure_var_ = Named_object::make_variable("closure", NULL, var);
-      // Note that the new variable is not in any binding contour.
-    }
-  return this->closure_var_;
-}
-
-// Set the type of the closure variable.
-
-void
-Function::set_closure_type()
-{
-  if (this->closure_var_ == NULL)
-    return;
-  Named_object* closure = this->closure_var_;
-  Struct_type* st = closure->var_value()->type()->deref()->struct_type();
-  unsigned int index = 0;
-  for (Closure_fields::const_iterator p = this->closure_fields_.begin();
-       p != this->closure_fields_.end();
-       ++p, ++index)
-    {
-      Named_object* no = p->first;
-      char buf[20];
-      snprintf(buf, sizeof buf, "%u", index);
-      std::string n = no->name() + buf;
-      Type* var_type;
-      if (no->is_variable())
-       var_type = no->var_value()->type();
-      else
-       var_type = no->result_var_value()->type();
-      Type* field_type = Type::make_pointer_type(var_type);
-      st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
-    }
-}
-
-// Return whether this function is a method.
-
-bool
-Function::is_method() const
-{
-  return this->type_->is_method();
-}
-
-// Add a label definition.
-
-Label*
-Function::add_label_definition(const std::string& label_name,
-                              source_location location)
-{
-  Label* lnull = NULL;
-  std::pair<Labels::iterator, bool> ins =
-    this->labels_.insert(std::make_pair(label_name, lnull));
-  if (ins.second)
-    {
-      // This is a new label.
-      Label* label = new Label(label_name);
-      label->define(location);
-      ins.first->second = label;
-      return label;
-    }
-  else
-    {
-      // The label was already in the hash table.
-      Label* label = ins.first->second;
-      if (!label->is_defined())
-       {
-         label->define(location);
-         return label;
-       }
-      else
-       {
-         error_at(location, "redefinition of label %qs",
-                  Gogo::message_name(label_name).c_str());
-         inform(label->location(), "previous definition of %qs was here",
-                Gogo::message_name(label_name).c_str());
-         return new Label(label_name);
-       }
-    }
-}
-
-// Add a reference to a label.
-
-Label*
-Function::add_label_reference(const std::string& label_name)
-{
-  Label* lnull = NULL;
-  std::pair<Labels::iterator, bool> ins =
-    this->labels_.insert(std::make_pair(label_name, lnull));
-  if (!ins.second)
-    {
-      // The label was already in the hash table.
-      return ins.first->second;
-    }
-  else
-    {
-      gcc_assert(ins.first->second == NULL);
-      Label* label = new Label(label_name);
-      ins.first->second = label;
-      return label;
-    }
-}
-
-// Swap one function with another.  This is used when building the
-// thunk we use to call a function which calls recover.  It may not
-// work for any other case.
-
-void
-Function::swap_for_recover(Function *x)
-{
-  gcc_assert(this->enclosing_ == x->enclosing_);
-  gcc_assert(this->named_results_ == x->named_results_);
-  std::swap(this->closure_var_, x->closure_var_);
-  std::swap(this->block_, x->block_);
-  gcc_assert(this->location_ == x->location_);
-  gcc_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
-  gcc_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
-}
-
-// Traverse the tree.
-
-int
-Function::traverse(Traverse* traverse)
-{
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  // FIXME: We should check traverse_functions here if nested
-  // functions are stored in block bindings.
-  if (this->block_ != NULL
-      && (traverse_mask
-         & (Traverse::traverse_variables
-            | Traverse::traverse_constants
-            | Traverse::traverse_blocks
-            | Traverse::traverse_statements
-            | Traverse::traverse_expressions
-            | Traverse::traverse_types)) != 0)
-    {
-      if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Work out types for unspecified variables and constants.
-
-void
-Function::determine_types()
-{
-  if (this->block_ != NULL)
-    this->block_->determine_types();
-}
-
-// Export the function.
-
-void
-Function::export_func(Export* exp, const std::string& name) const
-{
-  Function::export_func_with_type(exp, name, this->type_);
-}
-
-// Export a function with a type.
-
-void
-Function::export_func_with_type(Export* exp, const std::string& name,
-                               const Function_type* fntype)
-{
-  exp->write_c_string("func ");
-
-  if (fntype->is_method())
-    {
-      exp->write_c_string("(");
-      exp->write_type(fntype->receiver()->type());
-      exp->write_c_string(") ");
-    }
-
-  exp->write_string(name);
-
-  exp->write_c_string(" (");
-  const Typed_identifier_list* parameters = fntype->parameters();
-  if (parameters != NULL)
-    {
-      bool is_varargs = fntype->is_varargs();
-      bool first = true;
-      for (Typed_identifier_list::const_iterator p = parameters->begin();
-          p != parameters->end();
-          ++p)
-       {
-         if (first)
-           first = false;
-         else
-           exp->write_c_string(", ");
-         if (!is_varargs || p + 1 != parameters->end())
-           exp->write_type(p->type());
-         else
-           {
-             exp->write_c_string("...");
-             exp->write_type(p->type()->array_type()->element_type());
-           }
-       }
-    }
-  exp->write_c_string(")");
-
-  const Typed_identifier_list* results = fntype->results();
-  if (results != NULL)
-    {
-      if (results->size() == 1)
-       {
-         exp->write_c_string(" ");
-         exp->write_type(results->begin()->type());
-       }
-      else
-       {
-         exp->write_c_string(" (");
-         bool first = true;
-         for (Typed_identifier_list::const_iterator p = results->begin();
-              p != results->end();
-              ++p)
-           {
-             if (first)
-               first = false;
-             else
-               exp->write_c_string(", ");
-             exp->write_type(p->type());
-           }
-         exp->write_c_string(")");
-       }
-    }
-  exp->write_c_string(";\n");
-}
-
-// Import a function.
-
-void
-Function::import_func(Import* imp, std::string* pname,
-                     Typed_identifier** preceiver,
-                     Typed_identifier_list** pparameters,
-                     Typed_identifier_list** presults,
-                     bool* is_varargs)
-{
-  imp->require_c_string("func ");
-
-  *preceiver = NULL;
-  if (imp->peek_char() == '(')
-    {
-      imp->require_c_string("(");
-      Type* rtype = imp->read_type();
-      *preceiver = new Typed_identifier(Import::import_marker, rtype,
-                                       imp->location());
-      imp->require_c_string(") ");
-    }
-
-  *pname = imp->read_identifier();
-
-  Typed_identifier_list* parameters;
-  *is_varargs = false;
-  imp->require_c_string(" (");
-  if (imp->peek_char() == ')')
-    parameters = NULL;
-  else
-    {
-      parameters = new Typed_identifier_list();
-      while (true)
-       {
-         if (imp->match_c_string("..."))
-           {
-             imp->advance(3);
-             *is_varargs = true;
-           }
-
-         Type* ptype = imp->read_type();
-         if (*is_varargs)
-           ptype = Type::make_array_type(ptype, NULL);
-         parameters->push_back(Typed_identifier(Import::import_marker,
-                                                ptype, imp->location()));
-         if (imp->peek_char() != ',')
-           break;
-         gcc_assert(!*is_varargs);
-         imp->require_c_string(", ");
-       }
-    }
-  imp->require_c_string(")");
-  *pparameters = parameters;
-
-  Typed_identifier_list* results;
-  if (imp->peek_char() != ' ')
-    results = NULL;
-  else
-    {
-      results = new Typed_identifier_list();
-      imp->require_c_string(" ");
-      if (imp->peek_char() != '(')
-       {
-         Type* rtype = imp->read_type();
-         results->push_back(Typed_identifier(Import::import_marker, rtype,
-                                             imp->location()));
-       }
-      else
-       {
-         imp->require_c_string("(");
-         while (true)
-           {
-             Type* rtype = imp->read_type();
-             results->push_back(Typed_identifier(Import::import_marker,
-                                                 rtype, imp->location()));
-             if (imp->peek_char() != ',')
-               break;
-             imp->require_c_string(", ");
-           }
-         imp->require_c_string(")");
-       }
-    }
-  imp->require_c_string(";\n");
-  *presults = results;
-}
-
-// Class Block.
-
-Block::Block(Block* enclosing, source_location location)
-  : enclosing_(enclosing), statements_(),
-    bindings_(new Bindings(enclosing == NULL
-                          ? NULL
-                          : enclosing->bindings())),
-    start_location_(location),
-    end_location_(UNKNOWN_LOCATION)
-{
-}
-
-// Add a statement to a block.
-
-void
-Block::add_statement(Statement* statement)
-{
-  this->statements_.push_back(statement);
-}
-
-// Add a statement to the front of a block.  This is slow but is only
-// used for reference counts of parameters.
-
-void
-Block::add_statement_at_front(Statement* statement)
-{
-  this->statements_.insert(this->statements_.begin(), statement);
-}
-
-// Replace a statement in a block.
-
-void
-Block::replace_statement(size_t index, Statement* s)
-{
-  gcc_assert(index < this->statements_.size());
-  this->statements_[index] = s;
-}
-
-// Add a statement before another statement.
-
-void
-Block::insert_statement_before(size_t index, Statement* s)
-{
-  gcc_assert(index < this->statements_.size());
-  this->statements_.insert(this->statements_.begin() + index, s);
-}
-
-// Add a statement after another statement.
-
-void
-Block::insert_statement_after(size_t index, Statement* s)
-{
-  gcc_assert(index < this->statements_.size());
-  this->statements_.insert(this->statements_.begin() + index + 1, s);
-}
-
-// Traverse the tree.
-
-int
-Block::traverse(Traverse* traverse)
-{
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  if ((traverse_mask & Traverse::traverse_blocks) != 0)
-    {
-      int t = traverse->block(this);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-
-  if ((traverse_mask
-       & (Traverse::traverse_variables
-         | Traverse::traverse_constants
-         | Traverse::traverse_expressions
-         | Traverse::traverse_types)) != 0)
-    {
-      for (Bindings::const_definitions_iterator pb =
-            this->bindings_->begin_definitions();
-          pb != this->bindings_->end_definitions();
-          ++pb)
-       {
-         switch ((*pb)->classification())
-           {
-           case Named_object::NAMED_OBJECT_CONST:
-             if ((traverse_mask & Traverse::traverse_constants) != 0)
-               {
-                 if (traverse->constant(*pb, false) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if ((traverse_mask & Traverse::traverse_types) != 0
-                 || (traverse_mask & Traverse::traverse_expressions) != 0)
-               {
-                 Type* t = (*pb)->const_value()->type();
-                 if (t != NULL
-                     && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if ((traverse_mask & Traverse::traverse_expressions) != 0
-                 || (traverse_mask & Traverse::traverse_types) != 0)
-               {
-                 if ((*pb)->const_value()->traverse_expression(traverse)
-                     == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             break;
-
-           case Named_object::NAMED_OBJECT_VAR:
-           case Named_object::NAMED_OBJECT_RESULT_VAR:
-             if ((traverse_mask & Traverse::traverse_variables) != 0)
-               {
-                 if (traverse->variable(*pb) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if (((traverse_mask & Traverse::traverse_types) != 0
-                  || (traverse_mask & Traverse::traverse_expressions) != 0)
-                 && ((*pb)->is_result_variable()
-                     || (*pb)->var_value()->has_type()))
-               {
-                 Type* t = ((*pb)->is_variable()
-                            ? (*pb)->var_value()->type()
-                            : (*pb)->result_var_value()->type());
-                 if (t != NULL
-                     && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if ((*pb)->is_variable()
-                 && ((traverse_mask & Traverse::traverse_expressions) != 0
-                     || (traverse_mask & Traverse::traverse_types) != 0))
-               {
-                 if ((*pb)->var_value()->traverse_expression(traverse)
-                     == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             break;
-
-           case Named_object::NAMED_OBJECT_FUNC:
-           case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-             // FIXME: Where will nested functions be found?
-             gcc_unreachable();
-
-           case Named_object::NAMED_OBJECT_TYPE:
-             if ((traverse_mask & Traverse::traverse_types) != 0
-                 || (traverse_mask & Traverse::traverse_expressions) != 0)
-               {
-                 if (Type::traverse((*pb)->type_value(), traverse)
-                     == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             break;
-
-           case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-           case Named_object::NAMED_OBJECT_UNKNOWN:
-             break;
-
-           case Named_object::NAMED_OBJECT_PACKAGE:
-           case Named_object::NAMED_OBJECT_SINK:
-             gcc_unreachable();
-
-           default:
-             gcc_unreachable();
-           }
-       }
-    }
-
-  // No point in checking traverse_mask here--if we got here we always
-  // want to walk the statements.  The traversal can insert new
-  // statements before or after the current statement.  Inserting
-  // statements before the current statement requires updating I via
-  // the pointer; those statements will not be traversed.  Any new
-  // statements inserted after the current statement will be traversed
-  // in their turn.
-  for (size_t i = 0; i < this->statements_.size(); ++i)
-    {
-      if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Work out types for unspecified variables and constants.
-
-void
-Block::determine_types()
-{
-  for (Bindings::const_definitions_iterator pb =
-        this->bindings_->begin_definitions();
-       pb != this->bindings_->end_definitions();
-       ++pb)
-    {
-      if ((*pb)->is_variable())
-       (*pb)->var_value()->determine_type();
-      else if ((*pb)->is_const())
-       (*pb)->const_value()->determine_type();
-    }
-
-  for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
-       ps != this->statements_.end();
-       ++ps)
-    (*ps)->determine_types();
-}
-
-// Return true if the statements in this block may fall through.
-
-bool
-Block::may_fall_through() const
-{
-  if (this->statements_.empty())
-    return true;
-  return this->statements_.back()->may_fall_through();
-}
-
-// Class Variable.
-
-Variable::Variable(Type* type, Expression* init, bool is_global,
-                  bool is_parameter, bool is_receiver,
-                  source_location location)
-  : type_(type), init_(init), preinit_(NULL), location_(location),
-    is_global_(is_global), is_parameter_(is_parameter),
-    is_receiver_(is_receiver), is_varargs_parameter_(false),
-    is_address_taken_(false), init_is_lowered_(false),
-    type_from_init_tuple_(false), type_from_range_index_(false),
-    type_from_range_value_(false), type_from_chan_element_(false),
-    is_type_switch_var_(false)
-{
-  gcc_assert(type != NULL || init != NULL);
-  gcc_assert(!is_parameter || init == NULL);
-}
-
-// Traverse the initializer expression.
-
-int
-Variable::traverse_expression(Traverse* traverse)
-{
-  if (this->preinit_ != NULL)
-    {
-      if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->init_ != NULL)
-    {
-      if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower the initialization expression after parsing is complete.
-
-void
-Variable::lower_init_expression(Gogo* gogo, Named_object* function)
-{
-  if (this->init_ != NULL && !this->init_is_lowered_)
-    {
-      gogo->lower_expression(function, &this->init_);
-      this->init_is_lowered_ = true;
-    }
-}
-
-// Get the preinit block.
-
-Block*
-Variable::preinit_block()
-{
-  gcc_assert(this->is_global_);
-  if (this->preinit_ == NULL)
-    this->preinit_ = new Block(NULL, this->location());
-  return this->preinit_;
-}
-
-// Add a statement to be run before the initialization expression.
-
-void
-Variable::add_preinit_statement(Statement* s)
-{
-  Block* b = this->preinit_block();
-  b->add_statement(s);
-  b->set_end_location(s->location());
-}
-
-// In an assignment which sets a variable to a tuple of EXPR, return
-// the type of the first element of the tuple.
-
-Type*
-Variable::type_from_tuple(Expression* expr, bool report_error) const
-{
-  if (expr->map_index_expression() != NULL)
-    return expr->map_index_expression()->get_map_type()->val_type();
-  else if (expr->receive_expression() != NULL)
-    {
-      Expression* channel = expr->receive_expression()->channel();
-      return channel->type()->channel_type()->element_type();
-    }
-  else
-    {
-      if (report_error)
-       error_at(this->location(), "invalid tuple definition");
-      return Type::make_error_type();
-    }
-}
-
-// Given EXPR used in a range clause, return either the index type or
-// the value type of the range, depending upon GET_INDEX_TYPE.
-
-Type*
-Variable::type_from_range(Expression* expr, bool get_index_type,
-                         bool report_error) const
-{
-  Type* t = expr->type();
-  if (t->array_type() != NULL
-      || (t->points_to() != NULL
-         && t->points_to()->array_type() != NULL
-         && !t->points_to()->is_open_array_type()))
-    {
-      if (get_index_type)
-       return Type::lookup_integer_type("int");
-      else
-       return t->deref()->array_type()->element_type();
-    }
-  else if (t->is_string_type())
-    return Type::lookup_integer_type("int");
-  else if (t->map_type() != NULL)
-    {
-      if (get_index_type)
-       return t->map_type()->key_type();
-      else
-       return t->map_type()->val_type();
-    }
-  else if (t->channel_type() != NULL)
-    {
-      if (get_index_type)
-       return t->channel_type()->element_type();
-      else
-       {
-         if (report_error)
-           error_at(this->location(),
-                    "invalid definition of value variable for channel range");
-         return Type::make_error_type();
-       }
-    }
-  else
-    {
-      if (report_error)
-       error_at(this->location(), "invalid type for range clause");
-      return Type::make_error_type();
-    }
-}
-
-// EXPR should be a channel.  Return the channel's element type.
-
-Type*
-Variable::type_from_chan_element(Expression* expr, bool report_error) const
-{
-  Type* t = expr->type();
-  if (t->channel_type() != NULL)
-    return t->channel_type()->element_type();
-  else
-    {
-      if (report_error)
-       error_at(this->location(), "expected channel");
-      return Type::make_error_type();
-    }
-}
-
-// Return the type of the Variable.  This may be called before
-// Variable::determine_type is called, which means that we may need to
-// get the type from the initializer.  FIXME: If we combine lowering
-// with type determination, then this should be unnecessary.
-
-Type*
-Variable::type() const
-{
-  // A variable in a type switch with a nil case will have the wrong
-  // type here.  This gets fixed up in determine_type, below.
-  Type* type = this->type_;
-  Expression* init = this->init_;
-  if (this->is_type_switch_var_
-      && this->type_->is_nil_constant_as_type())
-    {
-      Type_guard_expression* tge = this->init_->type_guard_expression();
-      gcc_assert(tge != NULL);
-      init = tge->expr();
-      type = NULL;
-    }
-
-  if (type != NULL)
-    return type;
-  else if (this->type_from_init_tuple_)
-    return this->type_from_tuple(init, false);
-  else if (this->type_from_range_index_ || this->type_from_range_value_)
-    return this->type_from_range(init, this->type_from_range_index_, false);
-  else if (this->type_from_chan_element_)
-    return this->type_from_chan_element(init, false);
-  else
-    {
-      gcc_assert(init != NULL);
-      type = init->type();
-      gcc_assert(type != NULL);
-
-      // Variables should not have abstract types.
-      if (type->is_abstract())
-       type = type->make_non_abstract_type();
-
-      if (type->is_void_type())
-       type = Type::make_error_type();
-
-      return type;
-    }
-}
-
-// Set the type if necessary.
-
-void
-Variable::determine_type()
-{
-  // A variable in a type switch with a nil case will have the wrong
-  // type here.  It will have an initializer which is a type guard.
-  // We want to initialize it to the value without the type guard, and
-  // use the type of that value as well.
-  if (this->is_type_switch_var_ && this->type_->is_nil_constant_as_type())
-    {
-      Type_guard_expression* tge = this->init_->type_guard_expression();
-      gcc_assert(tge != NULL);
-      this->type_ = NULL;
-      this->init_ = tge->expr();
-    }
-
-  if (this->init_ == NULL)
-    gcc_assert(this->type_ != NULL && !this->type_->is_abstract());
-  else if (this->type_from_init_tuple_)
-    {
-      Expression *init = this->init_;
-      init->determine_type_no_context();
-      this->type_ = this->type_from_tuple(init, true);
-      this->init_ = NULL;
-    }
-  else if (this->type_from_range_index_ || this->type_from_range_value_)
-    {
-      Expression* init = this->init_;
-      init->determine_type_no_context();
-      this->type_ = this->type_from_range(init, this->type_from_range_index_,
-                                         true);
-      this->init_ = NULL;
-    }
-  else
-    {
-      // type_from_chan_element_ should have been cleared during
-      // lowering.
-      gcc_assert(!this->type_from_chan_element_);
-
-      Type_context context(this->type_, false);
-      this->init_->determine_type(&context);
-      if (this->type_ == NULL)
-       {
-         Type* type = this->init_->type();
-         gcc_assert(type != NULL);
-         if (type->is_abstract())
-           type = type->make_non_abstract_type();
-
-         if (type->is_void_type())
-           {
-             error_at(this->location_, "variable has no type");
-             type = Type::make_error_type();
-           }
-         else if (type->is_nil_type())
-           {
-             error_at(this->location_, "variable defined to nil type");
-             type = Type::make_error_type();
-           }
-         else if (type->is_call_multiple_result_type())
-           {
-             error_at(this->location_,
-                      "single variable set to multiple value function call");
-             type = Type::make_error_type();
-           }
-
-         this->type_ = type;
-       }
-    }
-}
-
-// Export the variable
-
-void
-Variable::export_var(Export* exp, const std::string& name) const
-{
-  gcc_assert(this->is_global_);
-  exp->write_c_string("var ");
-  exp->write_string(name);
-  exp->write_c_string(" ");
-  exp->write_type(this->type());
-  exp->write_c_string(";\n");
-}
-
-// Import a variable.
-
-void
-Variable::import_var(Import* imp, std::string* pname, Type** ptype)
-{
-  imp->require_c_string("var ");
-  *pname = imp->read_identifier();
-  imp->require_c_string(" ");
-  *ptype = imp->read_type();
-  imp->require_c_string(";\n");
-}
-
-// Class Named_constant.
-
-// Traverse the initializer expression.
-
-int
-Named_constant::traverse_expression(Traverse* traverse)
-{
-  return Expression::traverse(&this->expr_, traverse);
-}
-
-// Determine the type of the constant.
-
-void
-Named_constant::determine_type()
-{
-  if (this->type_ != NULL)
-    {
-      Type_context context(this->type_, false);
-      this->expr_->determine_type(&context);
-    }
-  else
-    {
-      // A constant may have an abstract type.
-      Type_context context(NULL, true);
-      this->expr_->determine_type(&context);
-      this->type_ = this->expr_->type();
-      gcc_assert(this->type_ != NULL);
-    }
-}
-
-// Indicate that we found and reported an error for this constant.
-
-void
-Named_constant::set_error()
-{
-  this->type_ = Type::make_error_type();
-  this->expr_ = Expression::make_error(this->location_);
-}
-
-// Export a constant.
-
-void
-Named_constant::export_const(Export* exp, const std::string& name) const
-{
-  exp->write_c_string("const ");
-  exp->write_string(name);
-  exp->write_c_string(" ");
-  if (!this->type_->is_abstract())
-    {
-      exp->write_type(this->type_);
-      exp->write_c_string(" ");
-    }
-  exp->write_c_string("= ");
-  this->expr()->export_expression(exp);
-  exp->write_c_string(";\n");
-}
-
-// Import a constant.
-
-void
-Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
-                            Expression** pexpr)
-{
-  imp->require_c_string("const ");
-  *pname = imp->read_identifier();
-  imp->require_c_string(" ");
-  if (imp->peek_char() == '=')
-    *ptype = NULL;
-  else
-    {
-      *ptype = imp->read_type();
-      imp->require_c_string(" ");
-    }
-  imp->require_c_string("= ");
-  *pexpr = Expression::import_expression(imp);
-  imp->require_c_string(";\n");
-}
-
-// Add a method.
-
-Named_object*
-Type_declaration::add_method(const std::string& name, Function* function)
-{
-  Named_object* ret = Named_object::make_function(name, NULL, function);
-  this->methods_.push_back(ret);
-  return ret;
-}
-
-// Add a method declaration.
-
-Named_object*
-Type_declaration::add_method_declaration(const std::string&  name,
-                                        Function_type* type,
-                                        source_location location)
-{
-  Named_object* ret = Named_object::make_function_declaration(name, NULL, type,
-                                                             location);
-  this->methods_.push_back(ret);
-  return ret;
-}
-
-// Return whether any methods ere defined.
-
-bool
-Type_declaration::has_methods() const
-{
-  return !this->methods_.empty();
-}
-
-// Define methods for the real type.
-
-void
-Type_declaration::define_methods(Named_type* nt)
-{
-  for (Methods::const_iterator p = this->methods_.begin();
-       p != this->methods_.end();
-       ++p)
-    nt->add_existing_method(*p);
-}
-
-// We are using the type.  Return true if we should issue a warning.
-
-bool
-Type_declaration::using_type()
-{
-  bool ret = !this->issued_warning_;
-  this->issued_warning_ = true;
-  return ret;
-}
-
-// Class Unknown_name.
-
-// Set the real named object.
-
-void
-Unknown_name::set_real_named_object(Named_object* no)
-{
-  gcc_assert(this->real_named_object_ == NULL);
-  gcc_assert(!no->is_unknown());
-  this->real_named_object_ = no;
-}
-
-// Class Named_object.
-
-Named_object::Named_object(const std::string& name,
-                          const Package* package,
-                          Classification classification)
-  : name_(name), package_(package), classification_(classification),
-    tree_(NULL)
-{
-  if (Gogo::is_sink_name(name))
-    gcc_assert(classification == NAMED_OBJECT_SINK);
-}
-
-// Make an unknown name.  This is used by the parser.  The name must
-// be resolved later.  Unknown names are only added in the current
-// package.
-
-Named_object*
-Named_object::make_unknown_name(const std::string& name,
-                               source_location location)
-{
-  Named_object* named_object = new Named_object(name, NULL,
-                                               NAMED_OBJECT_UNKNOWN);
-  Unknown_name* value = new Unknown_name(location);
-  named_object->u_.unknown_value = value;
-  return named_object;
-}
-
-// Make a constant.
-
-Named_object*
-Named_object::make_constant(const Typed_identifier& tid,
-                           const Package* package, Expression* expr,
-                           int iota_value)
-{
-  Named_object* named_object = new Named_object(tid.name(), package,
-                                               NAMED_OBJECT_CONST);
-  Named_constant* named_constant = new Named_constant(tid.type(), expr,
-                                                     iota_value,
-                                                     tid.location());
-  named_object->u_.const_value = named_constant;
-  return named_object;
-}
-
-// Make a named type.
-
-Named_object*
-Named_object::make_type(const std::string& name, const Package* package,
-                       Type* type, source_location location)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_TYPE);
-  Named_type* named_type = Type::make_named_type(named_object, type, location);
-  named_object->u_.type_value = named_type;
-  return named_object;
-}
-
-// Make a type declaration.
-
-Named_object*
-Named_object::make_type_declaration(const std::string& name,
-                                   const Package* package,
-                                   source_location location)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_TYPE_DECLARATION);
-  Type_declaration* type_declaration = new Type_declaration(location);
-  named_object->u_.type_declaration = type_declaration;
-  return named_object;
-}
-
-// Make a variable.
-
-Named_object*
-Named_object::make_variable(const std::string& name, const Package* package,
-                           Variable* variable)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_VAR);
-  named_object->u_.var_value = variable;
-  return named_object;
-}
-
-// Make a result variable.
-
-Named_object*
-Named_object::make_result_variable(const std::string& name,
-                                  Result_variable* result)
-{
-  Named_object* named_object = new Named_object(name, NULL,
-                                               NAMED_OBJECT_RESULT_VAR);
-  named_object->u_.result_var_value = result;
-  return named_object;
-}
-
-// Make a sink.  This is used for the special blank identifier _.
-
-Named_object*
-Named_object::make_sink()
-{
-  return new Named_object("_", NULL, NAMED_OBJECT_SINK);
-}
-
-// Make a named function.
-
-Named_object*
-Named_object::make_function(const std::string& name, const Package* package,
-                           Function* function)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_FUNC);
-  named_object->u_.func_value = function;
-  return named_object;
-}
-
-// Make a function declaration.
-
-Named_object*
-Named_object::make_function_declaration(const std::string& name,
-                                       const Package* package,
-                                       Function_type* fntype,
-                                       source_location location)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_FUNC_DECLARATION);
-  Function_declaration *func_decl = new Function_declaration(fntype, location);
-  named_object->u_.func_declaration_value = func_decl;
-  return named_object;
-}
-
-// Make a package.
-
-Named_object*
-Named_object::make_package(const std::string& alias, Package* package)
-{
-  Named_object* named_object = new Named_object(alias, NULL,
-                                               NAMED_OBJECT_PACKAGE);
-  named_object->u_.package_value = package;
-  return named_object;
-}
-
-// Return the name to use in an error message.
-
-std::string
-Named_object::message_name() const
-{
-  if (this->package_ == NULL)
-    return Gogo::message_name(this->name_);
-  std::string ret = Gogo::message_name(this->package_->name());
-  ret += '.';
-  ret += Gogo::message_name(this->name_);
-  return ret;
-}
-
-// Set the type when a declaration is defined.
-
-void
-Named_object::set_type_value(Named_type* named_type)
-{
-  gcc_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
-  Type_declaration* td = this->u_.type_declaration;
-  td->define_methods(named_type);
-  Named_object* in_function = td->in_function();
-  if (in_function != NULL)
-    named_type->set_in_function(in_function);
-  delete td;
-  this->classification_ = NAMED_OBJECT_TYPE;
-  this->u_.type_value = named_type;
-}
-
-// Define a function which was previously declared.
-
-void
-Named_object::set_function_value(Function* function)
-{
-  gcc_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
-  this->classification_ = NAMED_OBJECT_FUNC;
-  // FIXME: We should free the old value.
-  this->u_.func_value = function;
-}
-
-// Return the location of a named object.
-
-source_location
-Named_object::location() const
-{
-  switch (this->classification_)
-    {
-    default:
-    case NAMED_OBJECT_UNINITIALIZED:
-      gcc_unreachable();
-
-    case NAMED_OBJECT_UNKNOWN:
-      return this->unknown_value()->location();
-
-    case NAMED_OBJECT_CONST:
-      return this->const_value()->location();
-
-    case NAMED_OBJECT_TYPE:
-      return this->type_value()->location();
-
-    case NAMED_OBJECT_TYPE_DECLARATION:
-      return this->type_declaration_value()->location();
-
-    case NAMED_OBJECT_VAR:
-      return this->var_value()->location();
-
-    case NAMED_OBJECT_RESULT_VAR:
-      return this->result_var_value()->function()->location();
-
-    case NAMED_OBJECT_SINK:
-      gcc_unreachable();
-
-    case NAMED_OBJECT_FUNC:
-      return this->func_value()->location();
-
-    case NAMED_OBJECT_FUNC_DECLARATION:
-      return this->func_declaration_value()->location();
-
-    case NAMED_OBJECT_PACKAGE:
-      return this->package_value()->location();
-    }
-}
-
-// Export a named object.
-
-void
-Named_object::export_named_object(Export* exp) const
-{
-  switch (this->classification_)
-    {
-    default:
-    case NAMED_OBJECT_UNINITIALIZED:
-    case NAMED_OBJECT_UNKNOWN:
-      gcc_unreachable();
-
-    case NAMED_OBJECT_CONST:
-      this->const_value()->export_const(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_TYPE:
-      this->type_value()->export_named_type(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_TYPE_DECLARATION:
-      error_at(this->type_declaration_value()->location(),
-              "attempt to export %<%s%> which was declared but not defined",
-              this->message_name().c_str());
-      break;
-
-    case NAMED_OBJECT_FUNC_DECLARATION:
-      this->func_declaration_value()->export_func(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_VAR:
-      this->var_value()->export_var(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_RESULT_VAR:
-    case NAMED_OBJECT_SINK:
-      gcc_unreachable();
-
-    case NAMED_OBJECT_FUNC:
-      this->func_value()->export_func(exp, this->name_);
-      break;
-    }
-}
-
-// Class Bindings.
-
-Bindings::Bindings(Bindings* enclosing)
-  : enclosing_(enclosing), named_objects_(), bindings_()
-{
-}
-
-// Clear imports.
-
-void
-Bindings::clear_file_scope()
-{
-  Contour::iterator p = this->bindings_.begin();
-  while (p != this->bindings_.end())
-    {
-      bool keep;
-      if (p->second->package() != NULL)
-       keep = false;
-      else if (p->second->is_package())
-       keep = false;
-      else if (p->second->is_function()
-              && !p->second->func_value()->type()->is_method()
-              && Gogo::unpack_hidden_name(p->second->name()) == "init")
-       keep = false;
-      else
-       keep = true;
-
-      if (keep)
-       ++p;
-      else
-       p = this->bindings_.erase(p);
-    }
-}
-
-// Look up a symbol.
-
-Named_object*
-Bindings::lookup(const std::string& name) const
-{
-  Contour::const_iterator p = this->bindings_.find(name);
-  if (p != this->bindings_.end())
-    return p->second->resolve();
-  else if (this->enclosing_ != NULL)
-    return this->enclosing_->lookup(name);
-  else
-    return NULL;
-}
-
-// Look up a symbol locally.
-
-Named_object*
-Bindings::lookup_local(const std::string& name) const
-{
-  Contour::const_iterator p = this->bindings_.find(name);
-  if (p == this->bindings_.end())
-    return NULL;
-  return p->second;
-}
-
-// Remove an object from a set of bindings.  This is used for a
-// special case in thunks for functions which call recover.
-
-void
-Bindings::remove_binding(Named_object* no)
-{
-  Contour::iterator pb = this->bindings_.find(no->name());
-  gcc_assert(pb != this->bindings_.end());
-  this->bindings_.erase(pb);
-  for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
-       pn != this->named_objects_.end();
-       ++pn)
-    {
-      if (*pn == no)
-       {
-         this->named_objects_.erase(pn);
-         return;
-       }
-    }
-  gcc_unreachable();
-}
-
-// Add a method to the list of objects.  This is not added to the
-// lookup table.  This is so that we have a single list of objects
-// declared at the top level, which we walk through when it's time to
-// convert to trees.
-
-void
-Bindings::add_method(Named_object* method)
-{
-  this->named_objects_.push_back(method);
-}
-
-// Add a generic Named_object to a Contour.
-
-Named_object*
-Bindings::add_named_object_to_contour(Contour* contour,
-                                     Named_object* named_object)
-{
-  gcc_assert(named_object == named_object->resolve());
-  const std::string& name(named_object->name());
-  gcc_assert(!Gogo::is_sink_name(name));
-
-  std::pair<Contour::iterator, bool> ins =
-    contour->insert(std::make_pair(name, named_object));
-  if (!ins.second)
-    {
-      // The name was already there.
-      if (named_object->package() != NULL
-         && ins.first->second->package() == named_object->package()
-         && (ins.first->second->classification()
-             == named_object->classification()))
-       {
-         // This is a second import of the same object.
-         return ins.first->second;
-       }
-      ins.first->second = this->new_definition(ins.first->second,
-                                              named_object);
-      return ins.first->second;
-    }
-  else
-    {
-      // Don't push declarations on the list.  We push them on when
-      // and if we find the definitions.  That way we genericize the
-      // functions in order.
-      if (!named_object->is_type_declaration()
-         && !named_object->is_function_declaration()
-         && !named_object->is_unknown())
-       this->named_objects_.push_back(named_object);
-      return named_object;
-    }
-}
-
-// We had an existing named object OLD_OBJECT, and we've seen a new
-// one NEW_OBJECT with the same name.  FIXME: This does not free the
-// new object when we don't need it.
-
-Named_object*
-Bindings::new_definition(Named_object* old_object, Named_object* new_object)
-{
-  std::string reason;
-  switch (old_object->classification())
-    {
-    default:
-    case Named_object::NAMED_OBJECT_UNINITIALIZED:
-      gcc_unreachable();
-
-    case Named_object::NAMED_OBJECT_UNKNOWN:
-      {
-       Named_object* real = old_object->unknown_value()->real_named_object();
-       if (real != NULL)
-         return this->new_definition(real, new_object);
-       gcc_assert(!new_object->is_unknown());
-       old_object->unknown_value()->set_real_named_object(new_object);
-       if (!new_object->is_type_declaration()
-           && !new_object->is_function_declaration())
-         this->named_objects_.push_back(new_object);
-       return new_object;
-      }
-
-    case Named_object::NAMED_OBJECT_CONST:
-      break;
-
-    case Named_object::NAMED_OBJECT_TYPE:
-      if (new_object->is_type_declaration())
-       return old_object;
-      break;
-
-    case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-      if (new_object->is_type_declaration())
-       return old_object;
-      if (new_object->is_type())
-       {
-         old_object->set_type_value(new_object->type_value());
-         new_object->type_value()->set_named_object(old_object);
-         this->named_objects_.push_back(old_object);
-         return old_object;
-       }
-      break;
-
-    case Named_object::NAMED_OBJECT_VAR:
-    case Named_object::NAMED_OBJECT_RESULT_VAR:
-      break;
-
-    case Named_object::NAMED_OBJECT_SINK:
-      gcc_unreachable();
-
-    case Named_object::NAMED_OBJECT_FUNC:
-      if (new_object->is_function_declaration())
-       {
-         if (!new_object->func_declaration_value()->asm_name().empty())
-           sorry("__asm__ for function definitions");
-         Function_type* old_type = old_object->func_value()->type();
-         Function_type* new_type =
-           new_object->func_declaration_value()->type();
-         if (old_type->is_valid_redeclaration(new_type, &reason))
-           return old_object;
-       }
-      break;
-
-    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-      {
-       Function_type* old_type = old_object->func_declaration_value()->type();
-       if (new_object->is_function_declaration())
-         {
-           Function_type* new_type =
-             new_object->func_declaration_value()->type();
-           if (old_type->is_valid_redeclaration(new_type, &reason))
-             return old_object;
-         }
-       if (new_object->is_function())
-         {
-           Function_type* new_type = new_object->func_value()->type();
-           if (old_type->is_valid_redeclaration(new_type, &reason))
-             {
-               if (!old_object->func_declaration_value()->asm_name().empty())
-                 sorry("__asm__ for function definitions");
-               old_object->set_function_value(new_object->func_value());
-               this->named_objects_.push_back(old_object);
-               return old_object;
-             }
-         }
-      }
-      break;
-
-    case Named_object::NAMED_OBJECT_PACKAGE:
-      if (new_object->is_package()
-         && (old_object->package_value()->name()
-             == new_object->package_value()->name()))
-       return old_object;
-
-      break;
-    }
-
-  std::string n = old_object->message_name();
-  if (reason.empty())
-    error_at(new_object->location(), "redefinition of %qs", n.c_str());
-  else
-    error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
-            reason.c_str());
-
-  inform(old_object->location(), "previous definition of %qs was here",
-        n.c_str());
-
-  return old_object;
-}
-
-// Add a named type.
-
-Named_object*
-Bindings::add_named_type(Named_type* named_type)
-{
-  return this->add_named_object(named_type->named_object());
-}
-
-// Add a function.
-
-Named_object*
-Bindings::add_function(const std::string& name, const Package* package,
-                      Function* function)
-{
-  return this->add_named_object(Named_object::make_function(name, package,
-                                                           function));
-}
-
-// Add a function declaration.
-
-Named_object*
-Bindings::add_function_declaration(const std::string& name,
-                                  const Package* package,
-                                  Function_type* type,
-                                  source_location location)
-{
-  Named_object* no = Named_object::make_function_declaration(name, package,
-                                                            type, location);
-  return this->add_named_object(no);
-}
-
-// Define a type which was previously declared.
-
-void
-Bindings::define_type(Named_object* no, Named_type* type)
-{
-  no->set_type_value(type);
-  this->named_objects_.push_back(no);
-}
-
-// Traverse bindings.
-
-int
-Bindings::traverse(Traverse* traverse, bool is_global)
-{
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  // We don't use an iterator because we permit the traversal to add
-  // new global objects.
-  for (size_t i = 0; i < this->named_objects_.size(); ++i)
-    {
-      Named_object* p = this->named_objects_[i];
-      switch (p->classification())
-       {
-       case Named_object::NAMED_OBJECT_CONST:
-         if ((traverse_mask & Traverse::traverse_constants) != 0)
-           {
-             if (traverse->constant(p, is_global) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         if ((traverse_mask & Traverse::traverse_types) != 0
-             || (traverse_mask & Traverse::traverse_expressions) != 0)
-           {
-             Type* t = p->const_value()->type();
-             if (t != NULL
-                 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         if ((traverse_mask & Traverse::traverse_expressions) != 0)
-           {
-             if (p->const_value()->traverse_expression(traverse)
-                 == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_VAR:
-       case Named_object::NAMED_OBJECT_RESULT_VAR:
-         if ((traverse_mask & Traverse::traverse_variables) != 0)
-           {
-             if (traverse->variable(p) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         if (((traverse_mask & Traverse::traverse_types) != 0
-              || (traverse_mask & Traverse::traverse_expressions) != 0)
-             && (p->is_result_variable()
-                 || p->var_value()->has_type()))
-           {
-             Type* t = (p->is_variable()
-                        ? p->var_value()->type()
-                        : p->result_var_value()->type());
-             if (t != NULL
-                 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         if (p->is_variable()
-             && (traverse_mask & Traverse::traverse_expressions) != 0)
-           {
-             if (p->var_value()->traverse_expression(traverse)
-                 == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_FUNC:
-         if ((traverse_mask & Traverse::traverse_functions) != 0)
-           {
-             int t = traverse->function(p);
-             if (t == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-             else if (t == TRAVERSE_SKIP_COMPONENTS)
-               break;
-           }
-
-         if ((traverse_mask
-              & (Traverse::traverse_variables
-                 | Traverse::traverse_constants
-                 | Traverse::traverse_functions
-                 | Traverse::traverse_blocks
-                 | Traverse::traverse_statements
-                 | Traverse::traverse_expressions
-                 | Traverse::traverse_types)) != 0)
-           {
-             if (p->func_value()->traverse(traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_PACKAGE:
-         // These are traversed in Gogo::traverse.
-         gcc_assert(is_global);
-         break;
-
-       case Named_object::NAMED_OBJECT_TYPE:
-         if ((traverse_mask & Traverse::traverse_types) != 0
-             || (traverse_mask & Traverse::traverse_expressions) != 0)
-           {
-             if (Type::traverse(p->type_value(), traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-       case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-       case Named_object::NAMED_OBJECT_UNKNOWN:
-         break;
-
-       case Named_object::NAMED_OBJECT_SINK:
-       default:
-         gcc_unreachable();
-       }
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Class Package.
-
-Package::Package(const std::string& name, const std::string& unique_prefix,
-                source_location location)
-  : name_(name), unique_prefix_(unique_prefix), bindings_(new Bindings(NULL)),
-    priority_(0), location_(location), used_(false), is_imported_(false),
-    uses_sink_alias_(false)
-{
-  gcc_assert(!name.empty() && !unique_prefix.empty());
-}
-
-// Set the priority.  We may see multiple priorities for an imported
-// package; we want to use the largest one.
-
-void
-Package::set_priority(int priority)
-{
-  if (priority > this->priority_)
-    this->priority_ = priority;
-}
-
-// Determine types of constants.  Everything else in a package
-// (variables, function declarations) should already have a fixed
-// type.  Constants may have abstract types.
-
-void
-Package::determine_types()
-{
-  Bindings* bindings = this->bindings_;
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_const())
-       (*p)->const_value()->determine_type();
-    }
-}
-
-// Class Traverse.
-
-// Destructor.
-
-Traverse::~Traverse()
-{
-  if (this->types_seen_ != NULL)
-    delete this->types_seen_;
-  if (this->expressions_seen_ != NULL)
-    delete this->expressions_seen_;
-}
-
-// Record that we are looking at a type, and return true if we have
-// already seen it.
-
-bool
-Traverse::remember_type(const Type* type)
-{
-  gcc_assert((this->traverse_mask() & traverse_types) != 0
-            || (this->traverse_mask() & traverse_expressions) != 0);
-  // We only have to remember named types, as they are the only ones
-  // we can see multiple times in a traversal.
-  if (type->classification() != Type::TYPE_NAMED)
-    return false;
-  if (this->types_seen_ == NULL)
-    this->types_seen_ = new Types_seen();
-  std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
-  return !ins.second;
-}
-
-// Record that we are looking at an expression, and return true if we
-// have already seen it.
-
-bool
-Traverse::remember_expression(const Expression* expression)
-{
-  gcc_assert((this->traverse_mask() & traverse_types) != 0
-            || (this->traverse_mask() & traverse_expressions) != 0);
-  if (this->expressions_seen_ == NULL)
-    this->expressions_seen_ = new Expressions_seen();
-  std::pair<Expressions_seen::iterator, bool> ins =
-    this->expressions_seen_->insert(expression);
-  return !ins.second;
-}
-
-// The default versions of these functions should never be called: the
-// traversal mask indicates which functions may be called.
-
-int
-Traverse::variable(Named_object*)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::constant(Named_object*, bool)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::function(Named_object*)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::block(Block*)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::statement(Block*, size_t*, Statement*)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::expression(Expression**)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::type(Type*)
-{
-  gcc_unreachable();
-}
diff --git a/gcc/go/gofrontend/gogo.cc.merge-right.r172891 b/gcc/go/gofrontend/gogo.cc.merge-right.r172891
deleted file mode 100644 (file)
index d9f604a..0000000
+++ /dev/null
@@ -1,4796 +0,0 @@
-// gogo.cc -- Go frontend parsed representation.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "go-c.h"
-#include "go-dump.h"
-#include "lex.h"
-#include "types.h"
-#include "statements.h"
-#include "expressions.h"
-#include "dataflow.h"
-#include "runtime.h"
-#include "import.h"
-#include "export.h"
-#include "backend.h"
-#include "gogo.h"
-
-// Class Gogo.
-
-Gogo::Gogo(Backend* backend, int int_type_size, int pointer_size)
-  : backend_(backend),
-    package_(NULL),
-    functions_(),
-    globals_(new Bindings(NULL)),
-    imports_(),
-    imported_unsafe_(false),
-    packages_(),
-    map_descriptors_(NULL),
-    type_descriptor_decls_(NULL),
-    init_functions_(),
-    need_init_fn_(false),
-    init_fn_name_(),
-    imported_init_fns_(),
-    unique_prefix_(),
-    unique_prefix_specified_(false),
-    interface_types_(),
-    named_types_are_converted_(false)
-{
-  const source_location loc = BUILTINS_LOCATION;
-
-  Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
-                                                  RUNTIME_TYPE_KIND_UINT8);
-  this->add_named_type(uint8_type);
-  this->add_named_type(Type::make_integer_type("uint16", true,  16,
-                                              RUNTIME_TYPE_KIND_UINT16));
-  this->add_named_type(Type::make_integer_type("uint32", true,  32,
-                                              RUNTIME_TYPE_KIND_UINT32));
-  this->add_named_type(Type::make_integer_type("uint64", true,  64,
-                                              RUNTIME_TYPE_KIND_UINT64));
-
-  this->add_named_type(Type::make_integer_type("int8",  false,   8,
-                                              RUNTIME_TYPE_KIND_INT8));
-  this->add_named_type(Type::make_integer_type("int16", false,  16,
-                                              RUNTIME_TYPE_KIND_INT16));
-  this->add_named_type(Type::make_integer_type("int32", false,  32,
-                                              RUNTIME_TYPE_KIND_INT32));
-  this->add_named_type(Type::make_integer_type("int64", false,  64,
-                                              RUNTIME_TYPE_KIND_INT64));
-
-  this->add_named_type(Type::make_float_type("float32", 32,
-                                            RUNTIME_TYPE_KIND_FLOAT32));
-  this->add_named_type(Type::make_float_type("float64", 64,
-                                            RUNTIME_TYPE_KIND_FLOAT64));
-
-  this->add_named_type(Type::make_complex_type("complex64", 64,
-                                              RUNTIME_TYPE_KIND_COMPLEX64));
-  this->add_named_type(Type::make_complex_type("complex128", 128,
-                                              RUNTIME_TYPE_KIND_COMPLEX128));
-
-  if (int_type_size < 32)
-    int_type_size = 32;
-  this->add_named_type(Type::make_integer_type("uint", true,
-                                              int_type_size,
-                                              RUNTIME_TYPE_KIND_UINT));
-  Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
-                                                RUNTIME_TYPE_KIND_INT);
-  this->add_named_type(int_type);
-
-  // "byte" is an alias for "uint8".  Construct a Named_object which
-  // points to UINT8_TYPE.  Note that this breaks the normal pairing
-  // in which a Named_object points to a Named_type which points back
-  // to the same Named_object.
-  Named_object* byte_type = this->declare_type("byte", loc);
-  byte_type->set_type_value(uint8_type);
-
-  this->add_named_type(Type::make_integer_type("uintptr", true,
-                                              pointer_size,
-                                              RUNTIME_TYPE_KIND_UINTPTR));
-
-  this->add_named_type(Type::make_named_bool_type());
-
-  this->add_named_type(Type::make_named_string_type());
-
-  this->globals_->add_constant(Typed_identifier("true",
-                                               Type::make_boolean_type(),
-                                               loc),
-                              NULL,
-                              Expression::make_boolean(true, loc),
-                              0);
-  this->globals_->add_constant(Typed_identifier("false",
-                                               Type::make_boolean_type(),
-                                               loc),
-                              NULL,
-                              Expression::make_boolean(false, loc),
-                              0);
-
-  this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
-                                               loc),
-                              NULL,
-                              Expression::make_nil(loc),
-                              0);
-
-  Type* abstract_int_type = Type::make_abstract_integer_type();
-  this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
-                                               loc),
-                              NULL,
-                              Expression::make_iota(),
-                              0);
-
-  Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  new_type->set_is_varargs();
-  new_type->set_is_builtin();
-  this->globals_->add_function_declaration("new", NULL, new_type, loc);
-
-  Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  make_type->set_is_varargs();
-  make_type->set_is_builtin();
-  this->globals_->add_function_declaration("make", NULL, make_type, loc);
-
-  Typed_identifier_list* len_result = new Typed_identifier_list();
-  len_result->push_back(Typed_identifier("", int_type, loc));
-  Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
-                                                    loc);
-  len_type->set_is_builtin();
-  this->globals_->add_function_declaration("len", NULL, len_type, loc);
-
-  Typed_identifier_list* cap_result = new Typed_identifier_list();
-  cap_result->push_back(Typed_identifier("", int_type, loc));
-  Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
-                                                    loc);
-  cap_type->set_is_builtin();
-  this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
-
-  Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  print_type->set_is_varargs();
-  print_type->set_is_builtin();
-  this->globals_->add_function_declaration("print", NULL, print_type, loc);
-
-  print_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  print_type->set_is_varargs();
-  print_type->set_is_builtin();
-  this->globals_->add_function_declaration("println", NULL, print_type, loc);
-
-  Type *empty = Type::make_interface_type(NULL, loc);
-  Typed_identifier_list* panic_parms = new Typed_identifier_list();
-  panic_parms->push_back(Typed_identifier("e", empty, loc));
-  Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
-                                                      NULL, loc);
-  panic_type->set_is_builtin();
-  this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
-
-  Typed_identifier_list* recover_result = new Typed_identifier_list();
-  recover_result->push_back(Typed_identifier("", empty, loc));
-  Function_type* recover_type = Type::make_function_type(NULL, NULL,
-                                                        recover_result,
-                                                        loc);
-  recover_type->set_is_builtin();
-  this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
-
-  Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  close_type->set_is_varargs();
-  close_type->set_is_builtin();
-  this->globals_->add_function_declaration("close", NULL, close_type, loc);
-
-  Typed_identifier_list* copy_result = new Typed_identifier_list();
-  copy_result->push_back(Typed_identifier("", int_type, loc));
-  Function_type* copy_type = Type::make_function_type(NULL, NULL,
-                                                     copy_result, loc);
-  copy_type->set_is_varargs();
-  copy_type->set_is_builtin();
-  this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
-
-  Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  append_type->set_is_varargs();
-  append_type->set_is_builtin();
-  this->globals_->add_function_declaration("append", NULL, append_type, loc);
-
-  Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  complex_type->set_is_varargs();
-  complex_type->set_is_builtin();
-  this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
-
-  Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  real_type->set_is_varargs();
-  real_type->set_is_builtin();
-  this->globals_->add_function_declaration("real", NULL, real_type, loc);
-
-  Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  imag_type->set_is_varargs();
-  imag_type->set_is_builtin();
-  this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
-
-  this->define_builtin_function_trees();
-}
-
-// Munge name for use in an error message.
-
-std::string
-Gogo::message_name(const std::string& name)
-{
-  return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
-}
-
-// Get the package name.
-
-const std::string&
-Gogo::package_name() const
-{
-  go_assert(this->package_ != NULL);
-  return this->package_->name();
-}
-
-// Set the package name.
-
-void
-Gogo::set_package_name(const std::string& package_name,
-                      source_location location)
-{
-  if (this->package_ != NULL && this->package_->name() != package_name)
-    {
-      error_at(location, "expected package %<%s%>",
-              Gogo::message_name(this->package_->name()).c_str());
-      return;
-    }
-
-  // If the user did not specify a unique prefix, we always use "go".
-  // This in effect requires that the package name be unique.
-  if (this->unique_prefix_.empty())
-    this->unique_prefix_ = "go";
-
-  this->package_ = this->register_package(package_name, this->unique_prefix_,
-                                         location);
-
-  // We used to permit people to qualify symbols with the current
-  // package name (e.g., P.x), but we no longer do.
-  // this->globals_->add_package(package_name, this->package_);
-
-  if (this->is_main_package())
-    {
-      // Declare "main" as a function which takes no parameters and
-      // returns no value.
-      this->declare_function("main",
-                            Type::make_function_type(NULL, NULL, NULL,
-                                                     BUILTINS_LOCATION),
-                            BUILTINS_LOCATION);
-    }
-}
-
-// Return whether this is the "main" package.  This is not true if
-// -fgo-prefix was used.
-
-bool
-Gogo::is_main_package() const
-{
-  return this->package_name() == "main" && !this->unique_prefix_specified_;
-}
-
-// Import a package.
-
-void
-Gogo::import_package(const std::string& filename,
-                    const std::string& local_name,
-                    bool is_local_name_exported,
-                    source_location location)
-{
-  if (filename == "unsafe")
-    {
-      this->import_unsafe(local_name, is_local_name_exported, location);
-      return;
-    }
-
-  Imports::const_iterator p = this->imports_.find(filename);
-  if (p != this->imports_.end())
-    {
-      Package* package = p->second;
-      package->set_location(location);
-      package->set_is_imported();
-      std::string ln = local_name;
-      bool is_ln_exported = is_local_name_exported;
-      if (ln.empty())
-       {
-         ln = package->name();
-         is_ln_exported = Lex::is_exported_name(ln);
-       }
-      if (ln == ".")
-       {
-         Bindings* bindings = package->bindings();
-         for (Bindings::const_declarations_iterator p =
-                bindings->begin_declarations();
-              p != bindings->end_declarations();
-              ++p)
-           this->add_named_object(p->second);
-       }
-      else if (ln == "_")
-       package->set_uses_sink_alias();
-      else
-       {
-         ln = this->pack_hidden_name(ln, is_ln_exported);
-         this->package_->bindings()->add_package(ln, package);
-       }
-      return;
-    }
-
-  Import::Stream* stream = Import::open_package(filename, location);
-  if (stream == NULL)
-    {
-      error_at(location, "import file %qs not found", filename.c_str());
-      return;
-    }
-
-  Import imp(stream, location);
-  imp.register_builtin_types(this);
-  Package* package = imp.import(this, local_name, is_local_name_exported);
-  if (package != NULL)
-    {
-      if (package->name() == this->package_name()
-         && package->unique_prefix() == this->unique_prefix())
-       error_at(location,
-                ("imported package uses same package name and prefix "
-                 "as package being compiled (see -fgo-prefix option)"));
-
-      this->imports_.insert(std::make_pair(filename, package));
-      package->set_is_imported();
-    }
-
-  delete stream;
-}
-
-// Add an import control function for an imported package to the list.
-
-void
-Gogo::add_import_init_fn(const std::string& package_name,
-                        const std::string& init_name, int prio)
-{
-  for (std::set<Import_init>::const_iterator p =
-        this->imported_init_fns_.begin();
-       p != this->imported_init_fns_.end();
-       ++p)
-    {
-      if (p->init_name() == init_name
-         && (p->package_name() != package_name || p->priority() != prio))
-       {
-         error("duplicate package initialization name %qs",
-               Gogo::message_name(init_name).c_str());
-         inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
-                Gogo::message_name(p->package_name()).c_str(),
-                p->priority());
-         inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
-                Gogo::message_name(package_name).c_str(), prio);
-         return;
-       }
-    }
-
-  this->imported_init_fns_.insert(Import_init(package_name, init_name,
-                                             prio));
-}
-
-// Return whether we are at the global binding level.
-
-bool
-Gogo::in_global_scope() const
-{
-  return this->functions_.empty();
-}
-
-// Return the current binding contour.
-
-Bindings*
-Gogo::current_bindings()
-{
-  if (!this->functions_.empty())
-    return this->functions_.back().blocks.back()->bindings();
-  else if (this->package_ != NULL)
-    return this->package_->bindings();
-  else
-    return this->globals_;
-}
-
-const Bindings*
-Gogo::current_bindings() const
-{
-  if (!this->functions_.empty())
-    return this->functions_.back().blocks.back()->bindings();
-  else if (this->package_ != NULL)
-    return this->package_->bindings();
-  else
-    return this->globals_;
-}
-
-// Return the current block.
-
-Block*
-Gogo::current_block()
-{
-  if (this->functions_.empty())
-    return NULL;
-  else
-    return this->functions_.back().blocks.back();
-}
-
-// Look up a name in the current binding contour.  If PFUNCTION is not
-// NULL, set it to the function in which the name is defined, or NULL
-// if the name is defined in global scope.
-
-Named_object*
-Gogo::lookup(const std::string& name, Named_object** pfunction) const
-{
-  if (pfunction != NULL)
-    *pfunction = NULL;
-
-  if (Gogo::is_sink_name(name))
-    return Named_object::make_sink();
-
-  for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
-       p != this->functions_.rend();
-       ++p)
-    {
-      Named_object* ret = p->blocks.back()->bindings()->lookup(name);
-      if (ret != NULL)
-       {
-         if (pfunction != NULL)
-           *pfunction = p->function;
-         return ret;
-       }
-    }
-
-  if (this->package_ != NULL)
-    {
-      Named_object* ret = this->package_->bindings()->lookup(name);
-      if (ret != NULL)
-       {
-         if (ret->package() != NULL)
-           ret->package()->set_used();
-         return ret;
-       }
-    }
-
-  // We do not look in the global namespace.  If we did, the global
-  // namespace would effectively hide names which were defined in
-  // package scope which we have not yet seen.  Instead,
-  // define_global_names is called after parsing is over to connect
-  // undefined names at package scope with names defined at global
-  // scope.
-
-  return NULL;
-}
-
-// Look up a name in the current block, without searching enclosing
-// blocks.
-
-Named_object*
-Gogo::lookup_in_block(const std::string& name) const
-{
-  go_assert(!this->functions_.empty());
-  go_assert(!this->functions_.back().blocks.empty());
-  return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
-}
-
-// Look up a name in the global namespace.
-
-Named_object*
-Gogo::lookup_global(const char* name) const
-{
-  return this->globals_->lookup(name);
-}
-
-// Add an imported package.
-
-Package*
-Gogo::add_imported_package(const std::string& real_name,
-                          const std::string& alias_arg,
-                          bool is_alias_exported,
-                          const std::string& unique_prefix,
-                          source_location location,
-                          bool* padd_to_globals)
-{
-  // FIXME: Now that we compile packages as a whole, should we permit
-  // importing the current package?
-  if (this->package_name() == real_name
-      && this->unique_prefix() == unique_prefix)
-    {
-      *padd_to_globals = false;
-      if (!alias_arg.empty() && alias_arg != ".")
-       {
-         std::string alias = this->pack_hidden_name(alias_arg,
-                                                    is_alias_exported);
-         this->package_->bindings()->add_package(alias, this->package_);
-       }
-      return this->package_;
-    }
-  else if (alias_arg == ".")
-    {
-      *padd_to_globals = true;
-      return this->register_package(real_name, unique_prefix, location);
-    }
-  else if (alias_arg == "_")
-    {
-      Package* ret = this->register_package(real_name, unique_prefix, location);
-      ret->set_uses_sink_alias();
-      return ret;
-    }
-  else
-    {
-      *padd_to_globals = false;
-      std::string alias = alias_arg;
-      if (alias.empty())
-       {
-         alias = real_name;
-         is_alias_exported = Lex::is_exported_name(alias);
-       }
-      alias = this->pack_hidden_name(alias, is_alias_exported);
-      Named_object* no = this->add_package(real_name, alias, unique_prefix,
-                                          location);
-      if (!no->is_package())
-       return NULL;
-      return no->package_value();
-    }
-}
-
-// Add a package.
-
-Named_object*
-Gogo::add_package(const std::string& real_name, const std::string& alias,
-                 const std::string& unique_prefix, source_location location)
-{
-  go_assert(this->in_global_scope());
-
-  // Register the package.  Note that we might have already seen it in
-  // an earlier import.
-  Package* package = this->register_package(real_name, unique_prefix, location);
-
-  return this->package_->bindings()->add_package(alias, package);
-}
-
-// Register a package.  This package may or may not be imported.  This
-// returns the Package structure for the package, creating if it
-// necessary.
-
-Package*
-Gogo::register_package(const std::string& package_name,
-                      const std::string& unique_prefix,
-                      source_location location)
-{
-  go_assert(!unique_prefix.empty() && !package_name.empty());
-  std::string name = unique_prefix + '.' + package_name;
-  Package* package = NULL;
-  std::pair<Packages::iterator, bool> ins =
-    this->packages_.insert(std::make_pair(name, package));
-  if (!ins.second)
-    {
-      // We have seen this package name before.
-      package = ins.first->second;
-      go_assert(package != NULL);
-      go_assert(package->name() == package_name
-                && package->unique_prefix() == unique_prefix);
-      if (package->location() == UNKNOWN_LOCATION)
-       package->set_location(location);
-    }
-  else
-    {
-      // First time we have seen this package name.
-      package = new Package(package_name, unique_prefix, location);
-      go_assert(ins.first->second == NULL);
-      ins.first->second = package;
-    }
-
-  return package;
-}
-
-// Start compiling a function.
-
-Named_object*
-Gogo::start_function(const std::string& name, Function_type* type,
-                    bool add_method_to_type, source_location location)
-{
-  bool at_top_level = this->functions_.empty();
-
-  Block* block = new Block(NULL, location);
-
-  Function* enclosing = (at_top_level
-                        ? NULL
-                        : this->functions_.back().function->func_value());
-
-  Function* function = new Function(type, enclosing, block, location);
-
-  if (type->is_method())
-    {
-      const Typed_identifier* receiver = type->receiver();
-      Variable* this_param = new Variable(receiver->type(), NULL, false,
-                                         true, true, location);
-      std::string name = receiver->name();
-      if (name.empty())
-       {
-         // We need to give receivers a name since they wind up in
-         // DECL_ARGUMENTS.  FIXME.
-         static unsigned int count;
-         char buf[50];
-         snprintf(buf, sizeof buf, "r.%u", count);
-         ++count;
-         name = buf;
-       }
-      block->bindings()->add_variable(name, NULL, this_param);
-    }
-
-  const Typed_identifier_list* parameters = type->parameters();
-  bool is_varargs = type->is_varargs();
-  if (parameters != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = parameters->begin();
-          p != parameters->end();
-          ++p)
-       {
-         Variable* param = new Variable(p->type(), NULL, false, true, false,
-                                        location);
-         if (is_varargs && p + 1 == parameters->end())
-           param->set_is_varargs_parameter();
-
-         std::string name = p->name();
-         if (name.empty() || Gogo::is_sink_name(name))
-           {
-             // We need to give parameters a name since they wind up
-             // in DECL_ARGUMENTS.  FIXME.
-             static unsigned int count;
-             char buf[50];
-             snprintf(buf, sizeof buf, "p.%u", count);
-             ++count;
-             name = buf;
-           }
-         block->bindings()->add_variable(name, NULL, param);
-       }
-    }
-
-  function->create_result_variables(this);
-
-  const std::string* pname;
-  std::string nested_name;
-  bool is_init = false;
-  if (Gogo::unpack_hidden_name(name) == "init" && !type->is_method())
-    {
-      if ((type->parameters() != NULL && !type->parameters()->empty())
-         || (type->results() != NULL && !type->results()->empty()))
-       error_at(location,
-                "func init must have no arguments and no return values");
-      // There can be multiple "init" functions, so give them each a
-      // different name.
-      static int init_count;
-      char buf[30];
-      snprintf(buf, sizeof buf, ".$init%d", init_count);
-      ++init_count;
-      nested_name = buf;
-      pname = &nested_name;
-      is_init = true;
-    }
-  else if (!name.empty())
-    pname = &name;
-  else
-    {
-      // Invent a name for a nested function.
-      static int nested_count;
-      char buf[30];
-      snprintf(buf, sizeof buf, ".$nested%d", nested_count);
-      ++nested_count;
-      nested_name = buf;
-      pname = &nested_name;
-    }
-
-  Named_object* ret;
-  if (Gogo::is_sink_name(*pname))
-    {
-      static int sink_count;
-      char buf[30];
-      snprintf(buf, sizeof buf, ".$sink%d", sink_count);
-      ++sink_count;
-      ret = Named_object::make_function(buf, NULL, function);
-    }
-  else if (!type->is_method())
-    {
-      ret = this->package_->bindings()->add_function(*pname, NULL, function);
-      if (!ret->is_function() || ret->func_value() != function)
-       {
-         // Redefinition error.  Invent a name to avoid knockon
-         // errors.
-         static int redefinition_count;
-         char buf[30];
-         snprintf(buf, sizeof buf, ".$redefined%d", redefinition_count);
-         ++redefinition_count;
-         ret = this->package_->bindings()->add_function(buf, NULL, function);
-       }
-    }
-  else
-    {
-      if (!add_method_to_type)
-       ret = Named_object::make_function(name, NULL, function);
-      else
-       {
-         go_assert(at_top_level);
-         Type* rtype = type->receiver()->type();
-
-         // We want to look through the pointer created by the
-         // parser, without getting an error if the type is not yet
-         // defined.
-         if (rtype->classification() == Type::TYPE_POINTER)
-           rtype = rtype->points_to();
-
-         if (rtype->is_error_type())
-           ret = Named_object::make_function(name, NULL, function);
-         else if (rtype->named_type() != NULL)
-           {
-             ret = rtype->named_type()->add_method(name, function);
-             if (!ret->is_function())
-               {
-                 // Redefinition error.
-                 ret = Named_object::make_function(name, NULL, function);
-               }
-           }
-         else if (rtype->forward_declaration_type() != NULL)
-           {
-             Named_object* type_no =
-               rtype->forward_declaration_type()->named_object();
-             if (type_no->is_unknown())
-               {
-                 // If we are seeing methods it really must be a
-                 // type.  Declare it as such.  An alternative would
-                 // be to support lists of methods for unknown
-                 // expressions.  Either way the error messages if
-                 // this is not a type are going to get confusing.
-                 Named_object* declared =
-                   this->declare_package_type(type_no->name(),
-                                              type_no->location());
-                 go_assert(declared
-                            == type_no->unknown_value()->real_named_object());
-               }
-             ret = rtype->forward_declaration_type()->add_method(name,
-                                                                 function);
-           }
-         else
-           go_unreachable();
-       }
-      this->package_->bindings()->add_method(ret);
-    }
-
-  this->functions_.resize(this->functions_.size() + 1);
-  Open_function& of(this->functions_.back());
-  of.function = ret;
-  of.blocks.push_back(block);
-
-  if (is_init)
-    {
-      this->init_functions_.push_back(ret);
-      this->need_init_fn_ = true;
-    }
-
-  return ret;
-}
-
-// Finish compiling a function.
-
-void
-Gogo::finish_function(source_location location)
-{
-  this->finish_block(location);
-  go_assert(this->functions_.back().blocks.empty());
-  this->functions_.pop_back();
-}
-
-// Return the current function.
-
-Named_object*
-Gogo::current_function() const
-{
-  go_assert(!this->functions_.empty());
-  return this->functions_.back().function;
-}
-
-// Start a new block.
-
-void
-Gogo::start_block(source_location location)
-{
-  go_assert(!this->functions_.empty());
-  Block* block = new Block(this->current_block(), location);
-  this->functions_.back().blocks.push_back(block);
-}
-
-// Finish a block.
-
-Block*
-Gogo::finish_block(source_location location)
-{
-  go_assert(!this->functions_.empty());
-  go_assert(!this->functions_.back().blocks.empty());
-  Block* block = this->functions_.back().blocks.back();
-  this->functions_.back().blocks.pop_back();
-  block->set_end_location(location);
-  return block;
-}
-
-// Add an unknown name.
-
-Named_object*
-Gogo::add_unknown_name(const std::string& name, source_location location)
-{
-  return this->package_->bindings()->add_unknown_name(name, location);
-}
-
-// Declare a function.
-
-Named_object*
-Gogo::declare_function(const std::string& name, Function_type* type,
-                      source_location location)
-{
-  if (!type->is_method())
-    return this->current_bindings()->add_function_declaration(name, NULL, type,
-                                                             location);
-  else
-    {
-      // We don't bother to add this to the list of global
-      // declarations.
-      Type* rtype = type->receiver()->type();
-
-      // We want to look through the pointer created by the
-      // parser, without getting an error if the type is not yet
-      // defined.
-      if (rtype->classification() == Type::TYPE_POINTER)
-       rtype = rtype->points_to();
-
-      if (rtype->is_error_type())
-       return NULL;
-      else if (rtype->named_type() != NULL)
-       return rtype->named_type()->add_method_declaration(name, NULL, type,
-                                                          location);
-      else if (rtype->forward_declaration_type() != NULL)
-       {
-         Forward_declaration_type* ftype = rtype->forward_declaration_type();
-         return ftype->add_method_declaration(name, type, location);
-       }
-      else
-       go_unreachable();
-    }
-}
-
-// Add a label definition.
-
-Label*
-Gogo::add_label_definition(const std::string& label_name,
-                          source_location location)
-{
-  go_assert(!this->functions_.empty());
-  Function* func = this->functions_.back().function->func_value();
-  Label* label = func->add_label_definition(label_name, location);
-  this->add_statement(Statement::make_label_statement(label, location));
-  return label;
-}
-
-// Add a label reference.
-
-Label*
-Gogo::add_label_reference(const std::string& label_name)
-{
-  go_assert(!this->functions_.empty());
-  Function* func = this->functions_.back().function->func_value();
-  return func->add_label_reference(label_name);
-}
-
-// Add a statement.
-
-void
-Gogo::add_statement(Statement* statement)
-{
-  go_assert(!this->functions_.empty()
-            && !this->functions_.back().blocks.empty());
-  this->functions_.back().blocks.back()->add_statement(statement);
-}
-
-// Add a block.
-
-void
-Gogo::add_block(Block* block, source_location location)
-{
-  go_assert(!this->functions_.empty()
-            && !this->functions_.back().blocks.empty());
-  Statement* statement = Statement::make_block_statement(block, location);
-  this->functions_.back().blocks.back()->add_statement(statement);
-}
-
-// Add a constant.
-
-Named_object*
-Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
-                  int iota_value)
-{
-  return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
-}
-
-// Add a type.
-
-void
-Gogo::add_type(const std::string& name, Type* type, source_location location)
-{
-  Named_object* no = this->current_bindings()->add_type(name, NULL, type,
-                                                       location);
-  if (!this->in_global_scope() && no->is_type())
-    no->type_value()->set_in_function(this->functions_.back().function);
-}
-
-// Add a named type.
-
-void
-Gogo::add_named_type(Named_type* type)
-{
-  go_assert(this->in_global_scope());
-  this->current_bindings()->add_named_type(type);
-}
-
-// Declare a type.
-
-Named_object*
-Gogo::declare_type(const std::string& name, source_location location)
-{
-  Bindings* bindings = this->current_bindings();
-  Named_object* no = bindings->add_type_declaration(name, NULL, location);
-  if (!this->in_global_scope() && no->is_type_declaration())
-    {
-      Named_object* f = this->functions_.back().function;
-      no->type_declaration_value()->set_in_function(f);
-    }
-  return no;
-}
-
-// Declare a type at the package level.
-
-Named_object*
-Gogo::declare_package_type(const std::string& name, source_location location)
-{
-  return this->package_->bindings()->add_type_declaration(name, NULL, location);
-}
-
-// Define a type which was already declared.
-
-void
-Gogo::define_type(Named_object* no, Named_type* type)
-{
-  this->current_bindings()->define_type(no, type);
-}
-
-// Add a variable.
-
-Named_object*
-Gogo::add_variable(const std::string& name, Variable* variable)
-{
-  Named_object* no = this->current_bindings()->add_variable(name, NULL,
-                                                           variable);
-
-  // In a function the middle-end wants to see a DECL_EXPR node.
-  if (no != NULL
-      && no->is_variable()
-      && !no->var_value()->is_parameter()
-      && !this->functions_.empty())
-    this->add_statement(Statement::make_variable_declaration(no));
-
-  return no;
-}
-
-// Add a sink--a reference to the blank identifier _.
-
-Named_object*
-Gogo::add_sink()
-{
-  return Named_object::make_sink();
-}
-
-// Add a named object.
-
-void
-Gogo::add_named_object(Named_object* no)
-{
-  this->current_bindings()->add_named_object(no);
-}
-
-// Record that we've seen an interface type.
-
-void
-Gogo::record_interface_type(Interface_type* itype)
-{
-  this->interface_types_.push_back(itype);
-}
-
-// Return a name for a thunk object.
-
-std::string
-Gogo::thunk_name()
-{
-  static int thunk_count;
-  char thunk_name[50];
-  snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
-  ++thunk_count;
-  return thunk_name;
-}
-
-// Return whether a function is a thunk.
-
-bool
-Gogo::is_thunk(const Named_object* no)
-{
-  return no->name().compare(0, 6, "$thunk") == 0;
-}
-
-// Define the global names.  We do this only after parsing all the
-// input files, because the program might define the global names
-// itself.
-
-void
-Gogo::define_global_names()
-{
-  for (Bindings::const_declarations_iterator p =
-        this->globals_->begin_declarations();
-       p != this->globals_->end_declarations();
-       ++p)
-    {
-      Named_object* global_no = p->second;
-      std::string name(Gogo::pack_hidden_name(global_no->name(), false));
-      Named_object* no = this->package_->bindings()->lookup(name);
-      if (no == NULL)
-       continue;
-      no = no->resolve();
-      if (no->is_type_declaration())
-       {
-         if (global_no->is_type())
-           {
-             if (no->type_declaration_value()->has_methods())
-               error_at(no->location(),
-                        "may not define methods for global type");
-             no->set_type_value(global_no->type_value());
-           }
-         else
-           {
-             error_at(no->location(), "expected type");
-             Type* errtype = Type::make_error_type();
-             Named_object* err = Named_object::make_type("error", NULL,
-                                                         errtype,
-                                                         BUILTINS_LOCATION);
-             no->set_type_value(err->type_value());
-           }
-       }
-      else if (no->is_unknown())
-       no->unknown_value()->set_real_named_object(global_no);
-    }
-}
-
-// Clear out names in file scope.
-
-void
-Gogo::clear_file_scope()
-{
-  this->package_->bindings()->clear_file_scope();
-
-  // Warn about packages which were imported but not used.
-  for (Packages::iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    {
-      Package* package = p->second;
-      if (package != this->package_
-         && package->is_imported()
-         && !package->used()
-         && !package->uses_sink_alias()
-         && !saw_errors())
-       error_at(package->location(), "imported and not used: %s",
-                Gogo::message_name(package->name()).c_str());
-      package->clear_is_imported();
-      package->clear_uses_sink_alias();
-      package->clear_used();
-    }
-}
-
-// Traverse the tree.
-
-void
-Gogo::traverse(Traverse* traverse)
-{
-  // Traverse the current package first for consistency.  The other
-  // packages will only contain imported types, constants, and
-  // declarations.
-  if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
-    return;
-  for (Packages::const_iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    {
-      if (p->second != this->package_)
-       {
-         if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
-           break;
-       }
-    }
-}
-
-// Traversal class used to verify types.
-
-class Verify_types : public Traverse
-{
- public:
-  Verify_types()
-    : Traverse(traverse_types)
-  { }
-
-  int
-  type(Type*);
-};
-
-// Verify that a type is correct.
-
-int
-Verify_types::type(Type* t)
-{
-  if (!t->verify())
-    return TRAVERSE_SKIP_COMPONENTS;
-  return TRAVERSE_CONTINUE;
-}
-
-// Verify that all types are correct.
-
-void
-Gogo::verify_types()
-{
-  Verify_types traverse;
-  this->traverse(&traverse);
-}
-
-// Traversal class used to lower parse tree.
-
-class Lower_parse_tree : public Traverse
-{
- public:
-  Lower_parse_tree(Gogo* gogo, Named_object* function)
-    : Traverse(traverse_variables
-              | traverse_constants
-              | traverse_functions
-              | traverse_statements
-              | traverse_expressions),
-      gogo_(gogo), function_(function), iota_value_(-1)
-  { }
-
-  int
-  variable(Named_object*);
-
-  int
-  constant(Named_object*, bool);
-
-  int
-  function(Named_object*);
-
-  int
-  statement(Block*, size_t* pindex, Statement*);
-
-  int
-  expression(Expression**);
-
- private:
-  // General IR.
-  Gogo* gogo_;
-  // The function we are traversing.
-  Named_object* function_;
-  // Value to use for the predeclared constant iota.
-  int iota_value_;
-};
-
-// Lower variables.  We handle variables specially to break loops in
-// which a variable initialization expression refers to itself.  The
-// loop breaking is in lower_init_expression.
-
-int
-Lower_parse_tree::variable(Named_object* no)
-{
-  if (no->is_variable())
-    no->var_value()->lower_init_expression(this->gogo_, this->function_);
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower constants.  We handle constants specially so that we can set
-// the right value for the predeclared constant iota.  This works in
-// conjunction with the way we lower Const_expression objects.
-
-int
-Lower_parse_tree::constant(Named_object* no, bool)
-{
-  Named_constant* nc = no->const_value();
-
-  // Don't get into trouble if the constant's initializer expression
-  // refers to the constant itself.
-  if (nc->lowering())
-    return TRAVERSE_CONTINUE;
-  nc->set_lowering();
-
-  go_assert(this->iota_value_ == -1);
-  this->iota_value_ = nc->iota_value();
-  nc->traverse_expression(this);
-  this->iota_value_ = -1;
-
-  nc->clear_lowering();
-
-  // We will traverse the expression a second time, but that will be
-  // fast.
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower function closure types.  Record the function while lowering
-// it, so that we can pass it down when lowering an expression.
-
-int
-Lower_parse_tree::function(Named_object* no)
-{
-  no->func_value()->set_closure_type();
-
-  go_assert(this->function_ == NULL);
-  this->function_ = no;
-  int t = no->func_value()->traverse(this);
-  this->function_ = NULL;
-
-  if (t == TRAVERSE_EXIT)
-    return t;
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Lower statement parse trees.
-
-int
-Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
-{
-  // Lower the expressions first.
-  int t = sorig->traverse_contents(this);
-  if (t == TRAVERSE_EXIT)
-    return t;
-
-  // Keep lowering until nothing changes.
-  Statement* s = sorig;
-  while (true)
-    {
-      Statement* snew = s->lower(this->gogo_, this->function_, block);
-      if (snew == s)
-       break;
-      s = snew;
-      t = s->traverse_contents(this);
-      if (t == TRAVERSE_EXIT)
-       return t;
-    }
-
-  if (s != sorig)
-    block->replace_statement(*pindex, s);
-
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Lower expression parse trees.
-
-int
-Lower_parse_tree::expression(Expression** pexpr)
-{
-  // We have to lower all subexpressions first, so that we can get
-  // their type if necessary.  This is awkward, because we don't have
-  // a postorder traversal pass.
-  if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  // Keep lowering until nothing changes.
-  while (true)
-    {
-      Expression* e = *pexpr;
-      Expression* enew = e->lower(this->gogo_, this->function_,
-                                 this->iota_value_);
-      if (enew == e)
-       break;
-      *pexpr = enew;
-    }
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Lower the parse tree.  This is called after the parse is complete,
-// when all names should be resolved.
-
-void
-Gogo::lower_parse_tree()
-{
-  Lower_parse_tree lower_parse_tree(this, NULL);
-  this->traverse(&lower_parse_tree);
-}
-
-// Lower a block.
-
-void
-Gogo::lower_block(Named_object* function, Block* block)
-{
-  Lower_parse_tree lower_parse_tree(this, function);
-  block->traverse(&lower_parse_tree);
-}
-
-// Lower an expression.
-
-void
-Gogo::lower_expression(Named_object* function, Expression** pexpr)
-{
-  Lower_parse_tree lower_parse_tree(this, function);
-  lower_parse_tree.expression(pexpr);
-}
-
-// Lower a constant.  This is called when lowering a reference to a
-// constant.  We have to make sure that the constant has already been
-// lowered.
-
-void
-Gogo::lower_constant(Named_object* no)
-{
-  go_assert(no->is_const());
-  Lower_parse_tree lower(this, NULL);
-  lower.constant(no, false);
-}
-
-// Look for interface types to finalize methods of inherited
-// interfaces.
-
-class Finalize_methods : public Traverse
-{
- public:
-  Finalize_methods(Gogo* gogo)
-    : Traverse(traverse_types),
-      gogo_(gogo)
-  { }
-
-  int
-  type(Type*);
-
- private:
-  Gogo* gogo_;
-};
-
-// Finalize the methods of an interface type.
-
-int
-Finalize_methods::type(Type* t)
-{
-  // Check the classification so that we don't finalize the methods
-  // twice for a named interface type.
-  switch (t->classification())
-    {
-    case Type::TYPE_INTERFACE:
-      t->interface_type()->finalize_methods();
-      break;
-
-    case Type::TYPE_NAMED:
-      {
-       // We have to finalize the methods of the real type first.
-       // But if the real type is a struct type, then we only want to
-       // finalize the methods of the field types, not of the struct
-       // type itself.  We don't want to add methods to the struct,
-       // since it has a name.
-       Type* rt = t->named_type()->real_type();
-       if (rt->classification() != Type::TYPE_STRUCT)
-         {
-           if (Type::traverse(rt, this) == TRAVERSE_EXIT)
-             return TRAVERSE_EXIT;
-         }
-       else
-         {
-           if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
-             return TRAVERSE_EXIT;
-         }
-
-       t->named_type()->finalize_methods(this->gogo_);
-
-       return TRAVERSE_SKIP_COMPONENTS;
-      }
-
-    case Type::TYPE_STRUCT:
-      t->struct_type()->finalize_methods(this->gogo_);
-      break;
-
-    default:
-      break;
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Finalize method lists and build stub methods for types.
-
-void
-Gogo::finalize_methods()
-{
-  Finalize_methods finalize(this);
-  this->traverse(&finalize);
-}
-
-// Set types for unspecified variables and constants.
-
-void
-Gogo::determine_types()
-{
-  Bindings* bindings = this->current_bindings();
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_function())
-       (*p)->func_value()->determine_types();
-      else if ((*p)->is_variable())
-       (*p)->var_value()->determine_type();
-      else if ((*p)->is_const())
-       (*p)->const_value()->determine_type();
-
-      // See if a variable requires us to build an initialization
-      // function.  We know that we will see all global variables
-      // here.
-      if (!this->need_init_fn_ && (*p)->is_variable())
-       {
-         Variable* variable = (*p)->var_value();
-
-         // If this is a global variable which requires runtime
-         // initialization, we need an initialization function.
-         if (!variable->is_global())
-           ;
-         else if (variable->init() == NULL)
-           ;
-         else if (variable->type()->interface_type() != NULL)
-           this->need_init_fn_ = true;
-         else if (variable->init()->is_constant())
-           ;
-         else if (!variable->init()->is_composite_literal())
-           this->need_init_fn_ = true;
-         else if (variable->init()->is_nonconstant_composite_literal())
-           this->need_init_fn_ = true;
-
-         // If this is a global variable which holds a pointer value,
-         // then we need an initialization function to register it as a
-         // GC root.
-         if (variable->is_global() && variable->type()->has_pointer())
-           this->need_init_fn_ = true;
-       }
-    }
-
-  // Determine the types of constants in packages.
-  for (Packages::const_iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    p->second->determine_types();
-}
-
-// Traversal class used for type checking.
-
-class Check_types_traverse : public Traverse
-{
- public:
-  Check_types_traverse(Gogo* gogo)
-    : Traverse(traverse_variables
-              | traverse_constants
-              | traverse_functions
-              | traverse_statements
-              | traverse_expressions),
-      gogo_(gogo)
-  { }
-
-  int
-  variable(Named_object*);
-
-  int
-  constant(Named_object*, bool);
-
-  int
-  function(Named_object*);
-
-  int
-  statement(Block*, size_t* pindex, Statement*);
-
-  int
-  expression(Expression**);
-
- private:
-  // General IR.
-  Gogo* gogo_;
-};
-
-// Check that a variable initializer has the right type.
-
-int
-Check_types_traverse::variable(Named_object* named_object)
-{
-  if (named_object->is_variable())
-    {
-      Variable* var = named_object->var_value();
-      Expression* init = var->init();
-      std::string reason;
-      if (init != NULL
-         && !Type::are_assignable(var->type(), init->type(), &reason))
-       {
-         if (reason.empty())
-           error_at(var->location(), "incompatible type in initialization");
-         else
-           error_at(var->location(),
-                    "incompatible type in initialization (%s)",
-                    reason.c_str());
-         var->clear_init();
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that a constant initializer has the right type.
-
-int
-Check_types_traverse::constant(Named_object* named_object, bool)
-{
-  Named_constant* constant = named_object->const_value();
-  Type* ctype = constant->type();
-  if (ctype->integer_type() == NULL
-      && ctype->float_type() == NULL
-      && ctype->complex_type() == NULL
-      && !ctype->is_boolean_type()
-      && !ctype->is_string_type())
-    {
-      if (ctype->is_nil_type())
-       error_at(constant->location(), "const initializer cannot be nil");
-      else if (!ctype->is_error())
-       error_at(constant->location(), "invalid constant type");
-      constant->set_error();
-    }
-  else if (!constant->expr()->is_constant())
-    {
-      error_at(constant->expr()->location(), "expression is not constant");
-      constant->set_error();
-    }
-  else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
-                                NULL))
-    {
-      error_at(constant->location(),
-              "initialization expression has wrong type");
-      constant->set_error();
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// There are no types to check in a function, but this is where we
-// issue warnings about labels which are defined but not referenced.
-
-int
-Check_types_traverse::function(Named_object* no)
-{
-  no->func_value()->check_labels();
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that types are valid in a statement.
-
-int
-Check_types_traverse::statement(Block*, size_t*, Statement* s)
-{
-  s->check_types(this->gogo_);
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that types are valid in an expression.
-
-int
-Check_types_traverse::expression(Expression** expr)
-{
-  (*expr)->check_types(this->gogo_);
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that types are valid.
-
-void
-Gogo::check_types()
-{
-  Check_types_traverse traverse(this);
-  this->traverse(&traverse);
-}
-
-// Check the types in a single block.
-
-void
-Gogo::check_types_in_block(Block* block)
-{
-  Check_types_traverse traverse(this);
-  block->traverse(&traverse);
-}
-
-// A traversal class used to find a single shortcut operator within an
-// expression.
-
-class Find_shortcut : public Traverse
-{
- public:
-  Find_shortcut()
-    : Traverse(traverse_blocks
-              | traverse_statements
-              | traverse_expressions),
-      found_(NULL)
-  { }
-
-  // A pointer to the expression which was found, or NULL if none was
-  // found.
-  Expression**
-  found() const
-  { return this->found_; }
-
- protected:
-  int
-  block(Block*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  statement(Block*, size_t*, Statement*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  expression(Expression**);
-
- private:
-  Expression** found_;
-};
-
-// Find a shortcut expression.
-
-int
-Find_shortcut::expression(Expression** pexpr)
-{
-  Expression* expr = *pexpr;
-  Binary_expression* be = expr->binary_expression();
-  if (be == NULL)
-    return TRAVERSE_CONTINUE;
-  Operator op = be->op();
-  if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
-    return TRAVERSE_CONTINUE;
-  go_assert(this->found_ == NULL);
-  this->found_ = pexpr;
-  return TRAVERSE_EXIT;
-}
-
-// A traversal class used to turn shortcut operators into explicit if
-// statements.
-
-class Shortcuts : public Traverse
-{
- public:
-  Shortcuts(Gogo* gogo)
-    : Traverse(traverse_variables
-              | traverse_statements),
-      gogo_(gogo)
-  { }
-
- protected:
-  int
-  variable(Named_object*);
-
-  int
-  statement(Block*, size_t*, Statement*);
-
- private:
-  // Convert a shortcut operator.
-  Statement*
-  convert_shortcut(Block* enclosing, Expression** pshortcut);
-
-  // The IR.
-  Gogo* gogo_;
-};
-
-// Remove shortcut operators in a single statement.
-
-int
-Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
-{
-  // FIXME: This approach doesn't work for switch statements, because
-  // we add the new statements before the whole switch when we need to
-  // instead add them just before the switch expression.  The right
-  // fix is probably to lower switch statements with nonconstant cases
-  // to a series of conditionals.
-  if (s->switch_statement() != NULL)
-    return TRAVERSE_CONTINUE;
-
-  while (true)
-    {
-      Find_shortcut find_shortcut;
-
-      // If S is a variable declaration, then ordinary traversal won't
-      // do anything.  We want to explicitly traverse the
-      // initialization expression if there is one.
-      Variable_declaration_statement* vds = s->variable_declaration_statement();
-      Expression* init = NULL;
-      if (vds == NULL)
-       s->traverse_contents(&find_shortcut);
-      else
-       {
-         init = vds->var()->var_value()->init();
-         if (init == NULL)
-           return TRAVERSE_CONTINUE;
-         init->traverse(&init, &find_shortcut);
-       }
-      Expression** pshortcut = find_shortcut.found();
-      if (pshortcut == NULL)
-       return TRAVERSE_CONTINUE;
-
-      Statement* snew = this->convert_shortcut(block, pshortcut);
-      block->insert_statement_before(*pindex, snew);
-      ++*pindex;
-
-      if (pshortcut == &init)
-       vds->var()->var_value()->set_init(init);
-    }
-}
-
-// Remove shortcut operators in the initializer of a global variable.
-
-int
-Shortcuts::variable(Named_object* no)
-{
-  if (no->is_result_variable())
-    return TRAVERSE_CONTINUE;
-  Variable* var = no->var_value();
-  Expression* init = var->init();
-  if (!var->is_global() || init == NULL)
-    return TRAVERSE_CONTINUE;
-
-  while (true)
-    {
-      Find_shortcut find_shortcut;
-      init->traverse(&init, &find_shortcut);
-      Expression** pshortcut = find_shortcut.found();
-      if (pshortcut == NULL)
-       return TRAVERSE_CONTINUE;
-
-      Statement* snew = this->convert_shortcut(NULL, pshortcut);
-      var->add_preinit_statement(this->gogo_, snew);
-      if (pshortcut == &init)
-       var->set_init(init);
-    }
-}
-
-// Given an expression which uses a shortcut operator, return a
-// statement which implements it, and update *PSHORTCUT accordingly.
-
-Statement*
-Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
-{
-  Binary_expression* shortcut = (*pshortcut)->binary_expression();
-  Expression* left = shortcut->left();
-  Expression* right = shortcut->right();
-  source_location loc = shortcut->location();
-
-  Block* retblock = new Block(enclosing, loc);
-  retblock->set_end_location(loc);
-
-  Temporary_statement* ts = Statement::make_temporary(Type::lookup_bool_type(),
-                                                     left, loc);
-  retblock->add_statement(ts);
-
-  Block* block = new Block(retblock, loc);
-  block->set_end_location(loc);
-  Expression* tmpref = Expression::make_temporary_reference(ts, loc);
-  Statement* assign = Statement::make_assignment(tmpref, right, loc);
-  block->add_statement(assign);
-
-  Expression* cond = Expression::make_temporary_reference(ts, loc);
-  if (shortcut->binary_expression()->op() == OPERATOR_OROR)
-    cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
-
-  Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
-                                                        loc);
-  retblock->add_statement(if_statement);
-
-  *pshortcut = Expression::make_temporary_reference(ts, loc);
-
-  delete shortcut;
-
-  // Now convert any shortcut operators in LEFT and RIGHT.
-  Shortcuts shortcuts(this->gogo_);
-  retblock->traverse(&shortcuts);
-
-  return Statement::make_block_statement(retblock, loc);
-}
-
-// Turn shortcut operators into explicit if statements.  Doing this
-// considerably simplifies the order of evaluation rules.
-
-void
-Gogo::remove_shortcuts()
-{
-  Shortcuts shortcuts(this);
-  this->traverse(&shortcuts);
-}
-
-// A traversal class which finds all the expressions which must be
-// evaluated in order within a statement or larger expression.  This
-// is used to implement the rules about order of evaluation.
-
-class Find_eval_ordering : public Traverse
-{
- private:
-  typedef std::vector<Expression**> Expression_pointers;
-
- public:
-  Find_eval_ordering()
-    : Traverse(traverse_blocks
-              | traverse_statements
-              | traverse_expressions),
-      exprs_()
-  { }
-
-  size_t
-  size() const
-  { return this->exprs_.size(); }
-
-  typedef Expression_pointers::const_iterator const_iterator;
-
-  const_iterator
-  begin() const
-  { return this->exprs_.begin(); }
-
-  const_iterator
-  end() const
-  { return this->exprs_.end(); }
-
- protected:
-  int
-  block(Block*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  statement(Block*, size_t*, Statement*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  expression(Expression**);
-
- private:
-  // A list of pointers to expressions with side-effects.
-  Expression_pointers exprs_;
-};
-
-// If an expression must be evaluated in order, put it on the list.
-
-int
-Find_eval_ordering::expression(Expression** expression_pointer)
-{
-  // We have to look at subexpressions before this one.
-  if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if ((*expression_pointer)->must_eval_in_order())
-    this->exprs_.push_back(expression_pointer);
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// A traversal class for ordering evaluations.
-
-class Order_eval : public Traverse
-{
- public:
-  Order_eval(Gogo* gogo)
-    : Traverse(traverse_variables
-              | traverse_statements),
-      gogo_(gogo)
-  { }
-
-  int
-  variable(Named_object*);
-
-  int
-  statement(Block*, size_t*, Statement*);
-
- private:
-  // The IR.
-  Gogo* gogo_;
-};
-
-// Implement the order of evaluation rules for a statement.
-
-int
-Order_eval::statement(Block* block, size_t* pindex, Statement* s)
-{
-  // FIXME: This approach doesn't work for switch statements, because
-  // we add the new statements before the whole switch when we need to
-  // instead add them just before the switch expression.  The right
-  // fix is probably to lower switch statements with nonconstant cases
-  // to a series of conditionals.
-  if (s->switch_statement() != NULL)
-    return TRAVERSE_CONTINUE;
-
-  Find_eval_ordering find_eval_ordering;
-
-  // If S is a variable declaration, then ordinary traversal won't do
-  // anything.  We want to explicitly traverse the initialization
-  // expression if there is one.
-  Variable_declaration_statement* vds = s->variable_declaration_statement();
-  Expression* init = NULL;
-  Expression* orig_init = NULL;
-  if (vds == NULL)
-    s->traverse_contents(&find_eval_ordering);
-  else
-    {
-      init = vds->var()->var_value()->init();
-      if (init == NULL)
-       return TRAVERSE_CONTINUE;
-      orig_init = init;
-
-      // It might seem that this could be
-      // init->traverse_subexpressions.  Unfortunately that can fail
-      // in a case like
-      //   var err os.Error
-      //   newvar, err := call(arg())
-      // Here newvar will have an init of call result 0 of
-      // call(arg()).  If we only traverse subexpressions, we will
-      // only find arg(), and we won't bother to move anything out.
-      // Then we get to the assignment to err, we will traverse the
-      // whole statement, and this time we will find both call() and
-      // arg(), and so we will move them out.  This will cause them to
-      // be put into temporary variables before the assignment to err
-      // but after the declaration of newvar.  To avoid that problem,
-      // we traverse the entire expression here.
-      Expression::traverse(&init, &find_eval_ordering);
-    }
-
-  if (find_eval_ordering.size() <= 1)
-    {
-      // If there is only one expression with a side-effect, we can
-      // leave it in place.
-      return TRAVERSE_CONTINUE;
-    }
-
-  bool is_thunk = s->thunk_statement() != NULL;
-  for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
-       p != find_eval_ordering.end();
-       ++p)
-    {
-      Expression** pexpr = *p;
-
-      // The last expression in a thunk will be the call passed to go
-      // or defer, which we must not evaluate early.
-      if (is_thunk && p + 1 == find_eval_ordering.end())
-       break;
-
-      source_location loc = (*pexpr)->location();
-      Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
-      block->insert_statement_before(*pindex, ts);
-      ++*pindex;
-
-      *pexpr = Expression::make_temporary_reference(ts, loc);
-    }
-
-  if (init != orig_init)
-    vds->var()->var_value()->set_init(init);
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Implement the order of evaluation rules for the initializer of a
-// global variable.
-
-int
-Order_eval::variable(Named_object* no)
-{
-  if (no->is_result_variable())
-    return TRAVERSE_CONTINUE;
-  Variable* var = no->var_value();
-  Expression* init = var->init();
-  if (!var->is_global() || init == NULL)
-    return TRAVERSE_CONTINUE;
-
-  Find_eval_ordering find_eval_ordering;
-  init->traverse_subexpressions(&find_eval_ordering);
-
-  if (find_eval_ordering.size() <= 1)
-    {
-      // If there is only one expression with a side-effect, we can
-      // leave it in place.
-      return TRAVERSE_SKIP_COMPONENTS;
-    }
-
-  for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
-       p != find_eval_ordering.end();
-       ++p)
-    {
-      Expression** pexpr = *p;
-      source_location loc = (*pexpr)->location();
-      Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
-      var->add_preinit_statement(this->gogo_, ts);
-      *pexpr = Expression::make_temporary_reference(ts, loc);
-    }
-
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Use temporary variables to implement the order of evaluation rules.
-
-void
-Gogo::order_evaluations()
-{
-  Order_eval order_eval(this);
-  this->traverse(&order_eval);
-}
-
-// Traversal to convert calls to the predeclared recover function to
-// pass in an argument indicating whether it can recover from a panic
-// or not.
-
-class Convert_recover : public Traverse
-{
- public:
-  Convert_recover(Named_object* arg)
-    : Traverse(traverse_expressions),
-      arg_(arg)
-  { }
-
- protected:
-  int
-  expression(Expression**);
-
- private:
-  // The argument to pass to the function.
-  Named_object* arg_;
-};
-
-// Convert calls to recover.
-
-int
-Convert_recover::expression(Expression** pp)
-{
-  Call_expression* ce = (*pp)->call_expression();
-  if (ce != NULL && ce->is_recover_call())
-    ce->set_recover_arg(Expression::make_var_reference(this->arg_,
-                                                      ce->location()));
-  return TRAVERSE_CONTINUE;
-}
-
-// Traversal for build_recover_thunks.
-
-class Build_recover_thunks : public Traverse
-{
- public:
-  Build_recover_thunks(Gogo* gogo)
-    : Traverse(traverse_functions),
-      gogo_(gogo)
-  { }
-
-  int
-  function(Named_object*);
-
- private:
-  Expression*
-  can_recover_arg(source_location);
-
-  // General IR.
-  Gogo* gogo_;
-};
-
-// If this function calls recover, turn it into a thunk.
-
-int
-Build_recover_thunks::function(Named_object* orig_no)
-{
-  Function* orig_func = orig_no->func_value();
-  if (!orig_func->calls_recover()
-      || orig_func->is_recover_thunk()
-      || orig_func->has_recover_thunk())
-    return TRAVERSE_CONTINUE;
-
-  Gogo* gogo = this->gogo_;
-  source_location location = orig_func->location();
-
-  static int count;
-  char buf[50];
-
-  Function_type* orig_fntype = orig_func->type();
-  Typed_identifier_list* new_params = new Typed_identifier_list();
-  std::string receiver_name;
-  if (orig_fntype->is_method())
-    {
-      const Typed_identifier* receiver = orig_fntype->receiver();
-      snprintf(buf, sizeof buf, "rt.%u", count);
-      ++count;
-      receiver_name = buf;
-      new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
-                                            receiver->location()));
-    }
-  const Typed_identifier_list* orig_params = orig_fntype->parameters();
-  if (orig_params != NULL && !orig_params->empty())
-    {
-      for (Typed_identifier_list::const_iterator p = orig_params->begin();
-          p != orig_params->end();
-          ++p)
-       {
-         snprintf(buf, sizeof buf, "pt.%u", count);
-         ++count;
-         new_params->push_back(Typed_identifier(buf, p->type(),
-                                                p->location()));
-       }
-    }
-  snprintf(buf, sizeof buf, "pr.%u", count);
-  ++count;
-  std::string can_recover_name = buf;
-  new_params->push_back(Typed_identifier(can_recover_name,
-                                        Type::lookup_bool_type(),
-                                        orig_fntype->location()));
-
-  const Typed_identifier_list* orig_results = orig_fntype->results();
-  Typed_identifier_list* new_results;
-  if (orig_results == NULL || orig_results->empty())
-    new_results = NULL;
-  else
-    {
-      new_results = new Typed_identifier_list();
-      for (Typed_identifier_list::const_iterator p = orig_results->begin();
-          p != orig_results->end();
-          ++p)
-       new_results->push_back(Typed_identifier("", p->type(), p->location()));
-    }
-
-  Function_type *new_fntype = Type::make_function_type(NULL, new_params,
-                                                      new_results,
-                                                      orig_fntype->location());
-  if (orig_fntype->is_varargs())
-    new_fntype->set_is_varargs();
-
-  std::string name = orig_no->name() + "$recover";
-  Named_object *new_no = gogo->start_function(name, new_fntype, false,
-                                             location);
-  Function *new_func = new_no->func_value();
-  if (orig_func->enclosing() != NULL)
-    new_func->set_enclosing(orig_func->enclosing());
-
-  // We build the code for the original function attached to the new
-  // function, and then swap the original and new function bodies.
-  // This means that existing references to the original function will
-  // then refer to the new function.  That makes this code a little
-  // confusing, in that the reference to NEW_NO really refers to the
-  // other function, not the one we are building.
-
-  Expression* closure = NULL;
-  if (orig_func->needs_closure())
-    {
-      Named_object* orig_closure_no = orig_func->closure_var();
-      Variable* orig_closure_var = orig_closure_no->var_value();
-      Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
-                                      true, false, location);
-      snprintf(buf, sizeof buf, "closure.%u", count);
-      ++count;
-      Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
-                                                                new_var);
-      new_func->set_closure_var(new_closure_no);
-      closure = Expression::make_var_reference(new_closure_no, location);
-    }
-
-  Expression* fn = Expression::make_func_reference(new_no, closure, location);
-
-  Expression_list* args = new Expression_list();
-  if (new_params != NULL)
-    {
-      // Note that we skip the last parameter, which is the boolean
-      // indicating whether recover can succed.
-      for (Typed_identifier_list::const_iterator p = new_params->begin();
-          p + 1 != new_params->end();
-          ++p)
-       {
-         Named_object* p_no = gogo->lookup(p->name(), NULL);
-         go_assert(p_no != NULL
-                    && p_no->is_variable()
-                    && p_no->var_value()->is_parameter());
-         args->push_back(Expression::make_var_reference(p_no, location));
-       }
-    }
-  args->push_back(this->can_recover_arg(location));
-
-  Call_expression* call = Expression::make_call(fn, args, false, location);
-
-  Statement* s;
-  if (orig_fntype->results() == NULL || orig_fntype->results()->empty())
-    s = Statement::make_statement(call);
-  else
-    {
-      Expression_list* vals = new Expression_list();
-      size_t rc = orig_fntype->results()->size();
-      if (rc == 1)
-       vals->push_back(call);
-      else
-       {
-         for (size_t i = 0; i < rc; ++i)
-           vals->push_back(Expression::make_call_result(call, i));
-       }
-      s = Statement::make_return_statement(vals, location);
-    }
-  s->determine_types();
-  gogo->add_statement(s);
-
-  gogo->finish_function(location);
-
-  // Swap the function bodies and types.
-  new_func->swap_for_recover(orig_func);
-  orig_func->set_is_recover_thunk();
-  new_func->set_calls_recover();
-  new_func->set_has_recover_thunk();
-
-  Bindings* orig_bindings = orig_func->block()->bindings();
-  Bindings* new_bindings = new_func->block()->bindings();
-  if (orig_fntype->is_method())
-    {
-      // We changed the receiver to be a regular parameter.  We have
-      // to update the binding accordingly in both functions.
-      Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
-      go_assert(orig_rec_no != NULL
-                && orig_rec_no->is_variable()
-                && !orig_rec_no->var_value()->is_receiver());
-      orig_rec_no->var_value()->set_is_receiver();
-
-      const std::string& new_receiver_name(orig_fntype->receiver()->name());
-      Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
-      if (new_rec_no == NULL)
-       go_assert(saw_errors());
-      else
-       {
-         go_assert(new_rec_no->is_variable()
-                    && new_rec_no->var_value()->is_receiver());
-         new_rec_no->var_value()->set_is_not_receiver();
-       }
-    }
-
-  // Because we flipped blocks but not types, the can_recover
-  // parameter appears in the (now) old bindings as a parameter.
-  // Change it to a local variable, whereupon it will be discarded.
-  Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
-  go_assert(can_recover_no != NULL
-            && can_recover_no->is_variable()
-            && can_recover_no->var_value()->is_parameter());
-  orig_bindings->remove_binding(can_recover_no);
-
-  // Add the can_recover argument to the (now) new bindings, and
-  // attach it to any recover statements.
-  Variable* can_recover_var = new Variable(Type::lookup_bool_type(), NULL,
-                                          false, true, false, location);
-  can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
-                                             can_recover_var);
-  Convert_recover convert_recover(can_recover_no);
-  new_func->traverse(&convert_recover);
-
-  // Update the function pointers in any named results.
-  new_func->update_result_variables();
-  orig_func->update_result_variables();
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Return the expression to pass for the .can_recover parameter to the
-// new function.  This indicates whether a call to recover may return
-// non-nil.  The expression is
-// __go_can_recover(__builtin_return_address()).
-
-Expression*
-Build_recover_thunks::can_recover_arg(source_location location)
-{
-  static Named_object* builtin_return_address;
-  if (builtin_return_address == NULL)
-    {
-      const source_location bloc = BUILTINS_LOCATION;
-
-      Typed_identifier_list* param_types = new Typed_identifier_list();
-      Type* uint_type = Type::lookup_integer_type("uint");
-      param_types->push_back(Typed_identifier("l", uint_type, bloc));
-
-      Typed_identifier_list* return_types = new Typed_identifier_list();
-      Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
-      return_types->push_back(Typed_identifier("", voidptr_type, bloc));
-
-      Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                      return_types, bloc);
-      builtin_return_address =
-       Named_object::make_function_declaration("__builtin_return_address",
-                                               NULL, fntype, bloc);
-      const char* n = "__builtin_return_address";
-      builtin_return_address->func_declaration_value()->set_asm_name(n);
-    }
-
-  static Named_object* can_recover;
-  if (can_recover == NULL)
-    {
-      const source_location bloc = BUILTINS_LOCATION;
-      Typed_identifier_list* param_types = new Typed_identifier_list();
-      Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
-      param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
-      Type* boolean_type = Type::lookup_bool_type();
-      Typed_identifier_list* results = new Typed_identifier_list();
-      results->push_back(Typed_identifier("", boolean_type, bloc));
-      Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                      results, bloc);
-      can_recover = Named_object::make_function_declaration("__go_can_recover",
-                                                           NULL, fntype,
-                                                           bloc);
-      can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
-    }
-
-  Expression* fn = Expression::make_func_reference(builtin_return_address,
-                                                  NULL, location);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, location);
-  mpz_clear(zval);
-  Expression_list *args = new Expression_list();
-  args->push_back(zexpr);
-
-  Expression* call = Expression::make_call(fn, args, false, location);
-
-  args = new Expression_list();
-  args->push_back(call);
-
-  fn = Expression::make_func_reference(can_recover, NULL, location);
-  return Expression::make_call(fn, args, false, location);
-}
-
-// Build thunks for functions which call recover.  We build a new
-// function with an extra parameter, which is whether a call to
-// recover can succeed.  We then move the body of this function to
-// that one.  We then turn this function into a thunk which calls the
-// new one, passing the value of
-// __go_can_recover(__builtin_return_address()).  The function will be
-// marked as not splitting the stack.  This will cooperate with the
-// implementation of defer to make recover do the right thing.
-
-void
-Gogo::build_recover_thunks()
-{
-  Build_recover_thunks build_recover_thunks(this);
-  this->traverse(&build_recover_thunks);
-}
-
-// Look for named types to see whether we need to create an interface
-// method table.
-
-class Build_method_tables : public Traverse
-{
- public:
-  Build_method_tables(Gogo* gogo,
-                     const std::vector<Interface_type*>& interfaces)
-    : Traverse(traverse_types),
-      gogo_(gogo), interfaces_(interfaces)
-  { }
-
-  int
-  type(Type*);
-
- private:
-  // The IR.
-  Gogo* gogo_;
-  // A list of locally defined interfaces which have hidden methods.
-  const std::vector<Interface_type*>& interfaces_;
-};
-
-// Build all required interface method tables for types.  We need to
-// ensure that we have an interface method table for every interface
-// which has a hidden method, for every named type which implements
-// that interface.  Normally we can just build interface method tables
-// as we need them.  However, in some cases we can require an
-// interface method table for an interface defined in a different
-// package for a type defined in that package.  If that interface and
-// type both use a hidden method, that is OK.  However, we will not be
-// able to build that interface method table when we need it, because
-// the type's hidden method will be static.  So we have to build it
-// here, and just refer it from other packages as needed.
-
-void
-Gogo::build_interface_method_tables()
-{
-  std::vector<Interface_type*> hidden_interfaces;
-  hidden_interfaces.reserve(this->interface_types_.size());
-  for (std::vector<Interface_type*>::const_iterator pi =
-        this->interface_types_.begin();
-       pi != this->interface_types_.end();
-       ++pi)
-    {
-      const Typed_identifier_list* methods = (*pi)->methods();
-      if (methods == NULL)
-       continue;
-      for (Typed_identifier_list::const_iterator pm = methods->begin();
-          pm != methods->end();
-          ++pm)
-       {
-         if (Gogo::is_hidden_name(pm->name()))
-           {
-             hidden_interfaces.push_back(*pi);
-             break;
-           }
-       }
-    }
-
-  if (!hidden_interfaces.empty())
-    {
-      // Now traverse the tree looking for all named types.
-      Build_method_tables bmt(this, hidden_interfaces);
-      this->traverse(&bmt);
-    }
-
-  // We no longer need the list of interfaces.
-
-  this->interface_types_.clear();
-}
-
-// This is called for each type.  For a named type, for each of the
-// interfaces with hidden methods that it implements, create the
-// method table.
-
-int
-Build_method_tables::type(Type* type)
-{
-  Named_type* nt = type->named_type();
-  if (nt != NULL)
-    {
-      for (std::vector<Interface_type*>::const_iterator p =
-            this->interfaces_.begin();
-          p != this->interfaces_.end();
-          ++p)
-       {
-         // We ask whether a pointer to the named type implements the
-         // interface, because a pointer can implement more methods
-         // than a value.
-         if ((*p)->implements_interface(Type::make_pointer_type(nt), NULL))
-           {
-             nt->interface_method_table(this->gogo_, *p, false);
-             nt->interface_method_table(this->gogo_, *p, true);
-           }
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Traversal class used to check for return statements.
-
-class Check_return_statements_traverse : public Traverse
-{
- public:
-  Check_return_statements_traverse()
-    : Traverse(traverse_functions)
-  { }
-
-  int
-  function(Named_object*);
-};
-
-// Check that a function has a return statement if it needs one.
-
-int
-Check_return_statements_traverse::function(Named_object* no)
-{
-  Function* func = no->func_value();
-  const Function_type* fntype = func->type();
-  const Typed_identifier_list* results = fntype->results();
-
-  // We only need a return statement if there is a return value.
-  if (results == NULL || results->empty())
-    return TRAVERSE_CONTINUE;
-
-  if (func->block()->may_fall_through())
-    error_at(func->location(), "control reaches end of non-void function");
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Check return statements.
-
-void
-Gogo::check_return_statements()
-{
-  Check_return_statements_traverse traverse;
-  this->traverse(&traverse);
-}
-
-// Get the unique prefix to use before all exported symbols.  This
-// must be unique across the entire link.
-
-const std::string&
-Gogo::unique_prefix() const
-{
-  go_assert(!this->unique_prefix_.empty());
-  return this->unique_prefix_;
-}
-
-// Set the unique prefix to use before all exported symbols.  This
-// comes from the command line option -fgo-prefix=XXX.
-
-void
-Gogo::set_unique_prefix(const std::string& arg)
-{
-  go_assert(this->unique_prefix_.empty());
-  this->unique_prefix_ = arg;
-  this->unique_prefix_specified_ = true;
-}
-
-// Work out the package priority.  It is one more than the maximum
-// priority of an imported package.
-
-int
-Gogo::package_priority() const
-{
-  int priority = 0;
-  for (Packages::const_iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    if (p->second->priority() > priority)
-      priority = p->second->priority();
-  return priority + 1;
-}
-
-// Export identifiers as requested.
-
-void
-Gogo::do_exports()
-{
-  // For now we always stream to a section.  Later we may want to
-  // support streaming to a separate file.
-  Stream_to_section stream;
-
-  Export exp(&stream);
-  exp.register_builtin_types(this);
-  exp.export_globals(this->package_name(),
-                    this->unique_prefix(),
-                    this->package_priority(),
-                    (this->need_init_fn_ && !this->is_main_package()
-                     ? this->get_init_fn_name()
-                     : ""),
-                    this->imported_init_fns_,
-                    this->package_->bindings());
-}
-
-// Find the blocks in order to convert named types defined in blocks.
-
-class Convert_named_types : public Traverse
-{
- public:
-  Convert_named_types(Gogo* gogo)
-    : Traverse(traverse_blocks),
-      gogo_(gogo)
-  { }
-
- protected:
-  int
-  block(Block* block);
-
- private:
-  Gogo* gogo_;
-};
-
-int
-Convert_named_types::block(Block* block)
-{
-  this->gogo_->convert_named_types_in_bindings(block->bindings());
-  return TRAVERSE_CONTINUE;
-}
-
-// Convert all named types to the backend representation.  Since named
-// types can refer to other types, this needs to be done in the right
-// sequence, which is handled by Named_type::convert.  Here we arrange
-// to call that for each named type.
-
-void
-Gogo::convert_named_types()
-{
-  this->convert_named_types_in_bindings(this->globals_);
-  for (Packages::iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    {
-      Package* package = p->second;
-      this->convert_named_types_in_bindings(package->bindings());
-    }
-
-  Convert_named_types cnt(this);
-  this->traverse(&cnt);
-
-  // Make all the builtin named types used for type descriptors, and
-  // then convert them.  They will only be written out if they are
-  // needed.
-  Type::make_type_descriptor_type();
-  Type::make_type_descriptor_ptr_type();
-  Function_type::make_function_type_descriptor_type();
-  Pointer_type::make_pointer_type_descriptor_type();
-  Struct_type::make_struct_type_descriptor_type();
-  Array_type::make_array_type_descriptor_type();
-  Array_type::make_slice_type_descriptor_type();
-  Map_type::make_map_type_descriptor_type();
-  Channel_type::make_chan_type_descriptor_type();
-  Interface_type::make_interface_type_descriptor_type();
-  Type::convert_builtin_named_types(this);
-
-  Runtime::convert_types(this);
-
-  this->named_types_are_converted_ = true;
-}
-
-// Convert all names types in a set of bindings.
-
-void
-Gogo::convert_named_types_in_bindings(Bindings* bindings)
-{
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_type())
-       (*p)->type_value()->convert(this);
-    }
-}
-
-// Class Function.
-
-Function::Function(Function_type* type, Function* enclosing, Block* block,
-                  source_location location)
-  : type_(type), enclosing_(enclosing), results_(NULL),
-    closure_var_(NULL), block_(block), location_(location), fndecl_(NULL),
-    defer_stack_(NULL), results_are_named_(false), calls_recover_(false),
-    is_recover_thunk_(false), has_recover_thunk_(false)
-{
-}
-
-// Create the named result variables.
-
-void
-Function::create_result_variables(Gogo* gogo)
-{
-  const Typed_identifier_list* results = this->type_->results();
-  if (results == NULL || results->empty())
-    return;
-
-  if (!results->front().name().empty())
-    this->results_are_named_ = true;
-
-  this->results_ = new Results();
-  this->results_->reserve(results->size());
-
-  Block* block = this->block_;
-  int index = 0;
-  for (Typed_identifier_list::const_iterator p = results->begin();
-       p != results->end();
-       ++p, ++index)
-    {
-      std::string name = p->name();
-      if (name.empty() || Gogo::is_sink_name(name))
-       {
-         static int result_counter;
-         char buf[100];
-         snprintf(buf, sizeof buf, "$ret%d", result_counter);
-         ++result_counter;
-         name = gogo->pack_hidden_name(buf, false);
-       }
-      Result_variable* result = new Result_variable(p->type(), this, index,
-                                                   p->location());
-      Named_object* no = block->bindings()->add_result_variable(name, result);
-      if (no->is_result_variable())
-       this->results_->push_back(no);
-      else
-       {
-         static int dummy_result_count;
-         char buf[100];
-         snprintf(buf, sizeof buf, "$dret%d", dummy_result_count);
-         ++dummy_result_count;
-         name = gogo->pack_hidden_name(buf, false);
-         no = block->bindings()->add_result_variable(name, result);
-         go_assert(no->is_result_variable());
-         this->results_->push_back(no);
-       }
-    }
-}
-
-// Update the named result variables when cloning a function which
-// calls recover.
-
-void
-Function::update_result_variables()
-{
-  if (this->results_ == NULL)
-    return;
-
-  for (Results::iterator p = this->results_->begin();
-       p != this->results_->end();
-       ++p)
-    (*p)->result_var_value()->set_function(this);
-}
-
-// Return the closure variable, creating it if necessary.
-
-Named_object*
-Function::closure_var()
-{
-  if (this->closure_var_ == NULL)
-    {
-      // We don't know the type of the variable yet.  We add fields as
-      // we find them.
-      source_location loc = this->type_->location();
-      Struct_field_list* sfl = new Struct_field_list;
-      Type* struct_type = Type::make_struct_type(sfl, loc);
-      Variable* var = new Variable(Type::make_pointer_type(struct_type),
-                                  NULL, false, true, false, loc);
-      this->closure_var_ = Named_object::make_variable("closure", NULL, var);
-      // Note that the new variable is not in any binding contour.
-    }
-  return this->closure_var_;
-}
-
-// Set the type of the closure variable.
-
-void
-Function::set_closure_type()
-{
-  if (this->closure_var_ == NULL)
-    return;
-  Named_object* closure = this->closure_var_;
-  Struct_type* st = closure->var_value()->type()->deref()->struct_type();
-  unsigned int index = 0;
-  for (Closure_fields::const_iterator p = this->closure_fields_.begin();
-       p != this->closure_fields_.end();
-       ++p, ++index)
-    {
-      Named_object* no = p->first;
-      char buf[20];
-      snprintf(buf, sizeof buf, "%u", index);
-      std::string n = no->name() + buf;
-      Type* var_type;
-      if (no->is_variable())
-       var_type = no->var_value()->type();
-      else
-       var_type = no->result_var_value()->type();
-      Type* field_type = Type::make_pointer_type(var_type);
-      st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
-    }
-}
-
-// Return whether this function is a method.
-
-bool
-Function::is_method() const
-{
-  return this->type_->is_method();
-}
-
-// Add a label definition.
-
-Label*
-Function::add_label_definition(const std::string& label_name,
-                              source_location location)
-{
-  Label* lnull = NULL;
-  std::pair<Labels::iterator, bool> ins =
-    this->labels_.insert(std::make_pair(label_name, lnull));
-  if (ins.second)
-    {
-      // This is a new label.
-      Label* label = new Label(label_name);
-      label->define(location);
-      ins.first->second = label;
-      return label;
-    }
-  else
-    {
-      // The label was already in the hash table.
-      Label* label = ins.first->second;
-      if (!label->is_defined())
-       {
-         label->define(location);
-         return label;
-       }
-      else
-       {
-         error_at(location, "label %qs already defined",
-                  Gogo::message_name(label_name).c_str());
-         inform(label->location(), "previous definition of %qs was here",
-                Gogo::message_name(label_name).c_str());
-         return new Label(label_name);
-       }
-    }
-}
-
-// Add a reference to a label.
-
-Label*
-Function::add_label_reference(const std::string& label_name)
-{
-  Label* lnull = NULL;
-  std::pair<Labels::iterator, bool> ins =
-    this->labels_.insert(std::make_pair(label_name, lnull));
-  if (!ins.second)
-    {
-      // The label was already in the hash table.
-      Label* label = ins.first->second;
-      label->set_is_used();
-      return label;
-    }
-  else
-    {
-      go_assert(ins.first->second == NULL);
-      Label* label = new Label(label_name);
-      ins.first->second = label;
-      label->set_is_used();
-      return label;
-    }
-}
-
-// Warn about labels that are defined but not used.
-
-void
-Function::check_labels() const
-{
-  for (Labels::const_iterator p = this->labels_.begin();
-       p != this->labels_.end();
-       p++)
-    {
-      Label* label = p->second;
-      if (!label->is_used())
-       error_at(label->location(), "label %qs defined and not used",
-                Gogo::message_name(label->name()).c_str());
-    }
-}
-
-// Swap one function with another.  This is used when building the
-// thunk we use to call a function which calls recover.  It may not
-// work for any other case.
-
-void
-Function::swap_for_recover(Function *x)
-{
-  go_assert(this->enclosing_ == x->enclosing_);
-  std::swap(this->results_, x->results_);
-  std::swap(this->closure_var_, x->closure_var_);
-  std::swap(this->block_, x->block_);
-  go_assert(this->location_ == x->location_);
-  go_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
-  go_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
-}
-
-// Traverse the tree.
-
-int
-Function::traverse(Traverse* traverse)
-{
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  if ((traverse_mask
-       & (Traverse::traverse_types | Traverse::traverse_expressions))
-      != 0)
-    {
-      if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-
-  // FIXME: We should check traverse_functions here if nested
-  // functions are stored in block bindings.
-  if (this->block_ != NULL
-      && (traverse_mask
-         & (Traverse::traverse_variables
-            | Traverse::traverse_constants
-            | Traverse::traverse_blocks
-            | Traverse::traverse_statements
-            | Traverse::traverse_expressions
-            | Traverse::traverse_types)) != 0)
-    {
-      if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Work out types for unspecified variables and constants.
-
-void
-Function::determine_types()
-{
-  if (this->block_ != NULL)
-    this->block_->determine_types();
-}
-
-// Get a pointer to the variable holding the defer stack for this
-// function, making it if necessary.  At least at present, the value
-// of this variable is not used.  However, a pointer to this variable
-// is used as a marker for the functions on the defer stack associated
-// with this function.  Doing things this way permits inlining a
-// function which uses defer.
-
-Expression*
-Function::defer_stack(source_location location)
-{
-  Type* t = Type::make_pointer_type(Type::make_void_type());
-  if (this->defer_stack_ == NULL)
-    {
-      Expression* n = Expression::make_nil(location);
-      this->defer_stack_ = Statement::make_temporary(t, n, location);
-      this->defer_stack_->set_is_address_taken();
-    }
-  Expression* ref = Expression::make_temporary_reference(this->defer_stack_,
-                                                        location);
-  Expression* addr = Expression::make_unary(OPERATOR_AND, ref, location);
-  return Expression::make_unsafe_cast(t, addr, location);
-}
-
-// Export the function.
-
-void
-Function::export_func(Export* exp, const std::string& name) const
-{
-  Function::export_func_with_type(exp, name, this->type_);
-}
-
-// Export a function with a type.
-
-void
-Function::export_func_with_type(Export* exp, const std::string& name,
-                               const Function_type* fntype)
-{
-  exp->write_c_string("func ");
-
-  if (fntype->is_method())
-    {
-      exp->write_c_string("(");
-      exp->write_type(fntype->receiver()->type());
-      exp->write_c_string(") ");
-    }
-
-  exp->write_string(name);
-
-  exp->write_c_string(" (");
-  const Typed_identifier_list* parameters = fntype->parameters();
-  if (parameters != NULL)
-    {
-      bool is_varargs = fntype->is_varargs();
-      bool first = true;
-      for (Typed_identifier_list::const_iterator p = parameters->begin();
-          p != parameters->end();
-          ++p)
-       {
-         if (first)
-           first = false;
-         else
-           exp->write_c_string(", ");
-         if (!is_varargs || p + 1 != parameters->end())
-           exp->write_type(p->type());
-         else
-           {
-             exp->write_c_string("...");
-             exp->write_type(p->type()->array_type()->element_type());
-           }
-       }
-    }
-  exp->write_c_string(")");
-
-  const Typed_identifier_list* results = fntype->results();
-  if (results != NULL)
-    {
-      if (results->size() == 1)
-       {
-         exp->write_c_string(" ");
-         exp->write_type(results->begin()->type());
-       }
-      else
-       {
-         exp->write_c_string(" (");
-         bool first = true;
-         for (Typed_identifier_list::const_iterator p = results->begin();
-              p != results->end();
-              ++p)
-           {
-             if (first)
-               first = false;
-             else
-               exp->write_c_string(", ");
-             exp->write_type(p->type());
-           }
-         exp->write_c_string(")");
-       }
-    }
-  exp->write_c_string(";\n");
-}
-
-// Import a function.
-
-void
-Function::import_func(Import* imp, std::string* pname,
-                     Typed_identifier** preceiver,
-                     Typed_identifier_list** pparameters,
-                     Typed_identifier_list** presults,
-                     bool* is_varargs)
-{
-  imp->require_c_string("func ");
-
-  *preceiver = NULL;
-  if (imp->peek_char() == '(')
-    {
-      imp->require_c_string("(");
-      Type* rtype = imp->read_type();
-      *preceiver = new Typed_identifier(Import::import_marker, rtype,
-                                       imp->location());
-      imp->require_c_string(") ");
-    }
-
-  *pname = imp->read_identifier();
-
-  Typed_identifier_list* parameters;
-  *is_varargs = false;
-  imp->require_c_string(" (");
-  if (imp->peek_char() == ')')
-    parameters = NULL;
-  else
-    {
-      parameters = new Typed_identifier_list();
-      while (true)
-       {
-         if (imp->match_c_string("..."))
-           {
-             imp->advance(3);
-             *is_varargs = true;
-           }
-
-         Type* ptype = imp->read_type();
-         if (*is_varargs)
-           ptype = Type::make_array_type(ptype, NULL);
-         parameters->push_back(Typed_identifier(Import::import_marker,
-                                                ptype, imp->location()));
-         if (imp->peek_char() != ',')
-           break;
-         go_assert(!*is_varargs);
-         imp->require_c_string(", ");
-       }
-    }
-  imp->require_c_string(")");
-  *pparameters = parameters;
-
-  Typed_identifier_list* results;
-  if (imp->peek_char() != ' ')
-    results = NULL;
-  else
-    {
-      results = new Typed_identifier_list();
-      imp->require_c_string(" ");
-      if (imp->peek_char() != '(')
-       {
-         Type* rtype = imp->read_type();
-         results->push_back(Typed_identifier(Import::import_marker, rtype,
-                                             imp->location()));
-       }
-      else
-       {
-         imp->require_c_string("(");
-         while (true)
-           {
-             Type* rtype = imp->read_type();
-             results->push_back(Typed_identifier(Import::import_marker,
-                                                 rtype, imp->location()));
-             if (imp->peek_char() != ',')
-               break;
-             imp->require_c_string(", ");
-           }
-         imp->require_c_string(")");
-       }
-    }
-  imp->require_c_string(";\n");
-  *presults = results;
-}
-
-// Class Block.
-
-Block::Block(Block* enclosing, source_location location)
-  : enclosing_(enclosing), statements_(),
-    bindings_(new Bindings(enclosing == NULL
-                          ? NULL
-                          : enclosing->bindings())),
-    start_location_(location),
-    end_location_(UNKNOWN_LOCATION)
-{
-}
-
-// Add a statement to a block.
-
-void
-Block::add_statement(Statement* statement)
-{
-  this->statements_.push_back(statement);
-}
-
-// Add a statement to the front of a block.  This is slow but is only
-// used for reference counts of parameters.
-
-void
-Block::add_statement_at_front(Statement* statement)
-{
-  this->statements_.insert(this->statements_.begin(), statement);
-}
-
-// Replace a statement in a block.
-
-void
-Block::replace_statement(size_t index, Statement* s)
-{
-  go_assert(index < this->statements_.size());
-  this->statements_[index] = s;
-}
-
-// Add a statement before another statement.
-
-void
-Block::insert_statement_before(size_t index, Statement* s)
-{
-  go_assert(index < this->statements_.size());
-  this->statements_.insert(this->statements_.begin() + index, s);
-}
-
-// Add a statement after another statement.
-
-void
-Block::insert_statement_after(size_t index, Statement* s)
-{
-  go_assert(index < this->statements_.size());
-  this->statements_.insert(this->statements_.begin() + index + 1, s);
-}
-
-// Traverse the tree.
-
-int
-Block::traverse(Traverse* traverse)
-{
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  if ((traverse_mask & Traverse::traverse_blocks) != 0)
-    {
-      int t = traverse->block(this);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-
-  if ((traverse_mask
-       & (Traverse::traverse_variables
-         | Traverse::traverse_constants
-         | Traverse::traverse_expressions
-         | Traverse::traverse_types)) != 0)
-    {
-      for (Bindings::const_definitions_iterator pb =
-            this->bindings_->begin_definitions();
-          pb != this->bindings_->end_definitions();
-          ++pb)
-       {
-         switch ((*pb)->classification())
-           {
-           case Named_object::NAMED_OBJECT_CONST:
-             if ((traverse_mask & Traverse::traverse_constants) != 0)
-               {
-                 if (traverse->constant(*pb, false) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if ((traverse_mask & Traverse::traverse_types) != 0
-                 || (traverse_mask & Traverse::traverse_expressions) != 0)
-               {
-                 Type* t = (*pb)->const_value()->type();
-                 if (t != NULL
-                     && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if ((traverse_mask & Traverse::traverse_expressions) != 0
-                 || (traverse_mask & Traverse::traverse_types) != 0)
-               {
-                 if ((*pb)->const_value()->traverse_expression(traverse)
-                     == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             break;
-
-           case Named_object::NAMED_OBJECT_VAR:
-           case Named_object::NAMED_OBJECT_RESULT_VAR:
-             if ((traverse_mask & Traverse::traverse_variables) != 0)
-               {
-                 if (traverse->variable(*pb) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if (((traverse_mask & Traverse::traverse_types) != 0
-                  || (traverse_mask & Traverse::traverse_expressions) != 0)
-                 && ((*pb)->is_result_variable()
-                     || (*pb)->var_value()->has_type()))
-               {
-                 Type* t = ((*pb)->is_variable()
-                            ? (*pb)->var_value()->type()
-                            : (*pb)->result_var_value()->type());
-                 if (t != NULL
-                     && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if ((*pb)->is_variable()
-                 && ((traverse_mask & Traverse::traverse_expressions) != 0
-                     || (traverse_mask & Traverse::traverse_types) != 0))
-               {
-                 if ((*pb)->var_value()->traverse_expression(traverse)
-                     == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             break;
-
-           case Named_object::NAMED_OBJECT_FUNC:
-           case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-             // FIXME: Where will nested functions be found?
-             go_unreachable();
-
-           case Named_object::NAMED_OBJECT_TYPE:
-             if ((traverse_mask & Traverse::traverse_types) != 0
-                 || (traverse_mask & Traverse::traverse_expressions) != 0)
-               {
-                 if (Type::traverse((*pb)->type_value(), traverse)
-                     == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             break;
-
-           case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-           case Named_object::NAMED_OBJECT_UNKNOWN:
-             break;
-
-           case Named_object::NAMED_OBJECT_PACKAGE:
-           case Named_object::NAMED_OBJECT_SINK:
-             go_unreachable();
-
-           default:
-             go_unreachable();
-           }
-       }
-    }
-
-  // No point in checking traverse_mask here--if we got here we always
-  // want to walk the statements.  The traversal can insert new
-  // statements before or after the current statement.  Inserting
-  // statements before the current statement requires updating I via
-  // the pointer; those statements will not be traversed.  Any new
-  // statements inserted after the current statement will be traversed
-  // in their turn.
-  for (size_t i = 0; i < this->statements_.size(); ++i)
-    {
-      if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Work out types for unspecified variables and constants.
-
-void
-Block::determine_types()
-{
-  for (Bindings::const_definitions_iterator pb =
-        this->bindings_->begin_definitions();
-       pb != this->bindings_->end_definitions();
-       ++pb)
-    {
-      if ((*pb)->is_variable())
-       (*pb)->var_value()->determine_type();
-      else if ((*pb)->is_const())
-       (*pb)->const_value()->determine_type();
-    }
-
-  for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
-       ps != this->statements_.end();
-       ++ps)
-    (*ps)->determine_types();
-}
-
-// Return true if the statements in this block may fall through.
-
-bool
-Block::may_fall_through() const
-{
-  if (this->statements_.empty())
-    return true;
-  return this->statements_.back()->may_fall_through();
-}
-
-// Convert a block to the backend representation.
-
-Bblock*
-Block::get_backend(Translate_context* context)
-{
-  Gogo* gogo = context->gogo();
-  Named_object* function = context->function();
-  std::vector<Bvariable*> vars;
-  vars.reserve(this->bindings_->size_definitions());
-  for (Bindings::const_definitions_iterator pv =
-        this->bindings_->begin_definitions();
-       pv != this->bindings_->end_definitions();
-       ++pv)
-    {
-      if ((*pv)->is_variable() && !(*pv)->var_value()->is_parameter())
-       vars.push_back((*pv)->get_backend_variable(gogo, function));
-    }
-
-  // FIXME: Permitting FUNCTION to be NULL here is a temporary measure
-  // until we have a proper representation of the init function.
-  Bfunction* bfunction;
-  if (function == NULL)
-    bfunction = NULL;
-  else
-    bfunction = tree_to_function(function->func_value()->get_decl());
-  Bblock* ret = context->backend()->block(bfunction, context->bblock(),
-                                         vars, this->start_location_,
-                                         this->end_location_);
-
-  Translate_context subcontext(gogo, function, this, ret);
-  std::vector<Bstatement*> bstatements;
-  bstatements.reserve(this->statements_.size());
-  for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
-       p != this->statements_.end();
-       ++p)
-    bstatements.push_back((*p)->get_backend(&subcontext));
-
-  context->backend()->block_add_statements(ret, bstatements);
-
-  return ret;
-}
-
-// Class Variable.
-
-Variable::Variable(Type* type, Expression* init, bool is_global,
-                  bool is_parameter, bool is_receiver,
-                  source_location location)
-  : type_(type), init_(init), preinit_(NULL), location_(location),
-    backend_(NULL), is_global_(is_global), is_parameter_(is_parameter),
-    is_receiver_(is_receiver), is_varargs_parameter_(false),
-    is_address_taken_(false), seen_(false), init_is_lowered_(false),
-    type_from_init_tuple_(false), type_from_range_index_(false),
-    type_from_range_value_(false), type_from_chan_element_(false),
-    is_type_switch_var_(false), determined_type_(false)
-{
-  go_assert(type != NULL || init != NULL);
-  go_assert(!is_parameter || init == NULL);
-}
-
-// Traverse the initializer expression.
-
-int
-Variable::traverse_expression(Traverse* traverse)
-{
-  if (this->preinit_ != NULL)
-    {
-      if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->init_ != NULL)
-    {
-      if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower the initialization expression after parsing is complete.
-
-void
-Variable::lower_init_expression(Gogo* gogo, Named_object* function)
-{
-  if (this->init_ != NULL && !this->init_is_lowered_)
-    {
-      if (this->seen_)
-       {
-         // We will give an error elsewhere, this is just to prevent
-         // an infinite loop.
-         return;
-       }
-      this->seen_ = true;
-
-      gogo->lower_expression(function, &this->init_);
-
-      this->seen_ = false;
-
-      this->init_is_lowered_ = true;
-    }
-}
-
-// Get the preinit block.
-
-Block*
-Variable::preinit_block(Gogo* gogo)
-{
-  go_assert(this->is_global_);
-  if (this->preinit_ == NULL)
-    this->preinit_ = new Block(NULL, this->location());
-
-  // If a global variable has a preinitialization statement, then we
-  // need to have an initialization function.
-  gogo->set_need_init_fn();
-
-  return this->preinit_;
-}
-
-// Add a statement to be run before the initialization expression.
-
-void
-Variable::add_preinit_statement(Gogo* gogo, Statement* s)
-{
-  Block* b = this->preinit_block(gogo);
-  b->add_statement(s);
-  b->set_end_location(s->location());
-}
-
-// In an assignment which sets a variable to a tuple of EXPR, return
-// the type of the first element of the tuple.
-
-Type*
-Variable::type_from_tuple(Expression* expr, bool report_error) const
-{
-  if (expr->map_index_expression() != NULL)
-    {
-      Map_type* mt = expr->map_index_expression()->get_map_type();
-      if (mt == NULL)
-       return Type::make_error_type();
-      return mt->val_type();
-    }
-  else if (expr->receive_expression() != NULL)
-    {
-      Expression* channel = expr->receive_expression()->channel();
-      Type* channel_type = channel->type();
-      if (channel_type->channel_type() == NULL)
-       return Type::make_error_type();
-      return channel_type->channel_type()->element_type();
-    }
-  else
-    {
-      if (report_error)
-       error_at(this->location(), "invalid tuple definition");
-      return Type::make_error_type();
-    }
-}
-
-// Given EXPR used in a range clause, return either the index type or
-// the value type of the range, depending upon GET_INDEX_TYPE.
-
-Type*
-Variable::type_from_range(Expression* expr, bool get_index_type,
-                         bool report_error) const
-{
-  Type* t = expr->type();
-  if (t->array_type() != NULL
-      || (t->points_to() != NULL
-         && t->points_to()->array_type() != NULL
-         && !t->points_to()->is_open_array_type()))
-    {
-      if (get_index_type)
-       return Type::lookup_integer_type("int");
-      else
-       return t->deref()->array_type()->element_type();
-    }
-  else if (t->is_string_type())
-    return Type::lookup_integer_type("int");
-  else if (t->map_type() != NULL)
-    {
-      if (get_index_type)
-       return t->map_type()->key_type();
-      else
-       return t->map_type()->val_type();
-    }
-  else if (t->channel_type() != NULL)
-    {
-      if (get_index_type)
-       return t->channel_type()->element_type();
-      else
-       {
-         if (report_error)
-           error_at(this->location(),
-                    "invalid definition of value variable for channel range");
-         return Type::make_error_type();
-       }
-    }
-  else
-    {
-      if (report_error)
-       error_at(this->location(), "invalid type for range clause");
-      return Type::make_error_type();
-    }
-}
-
-// EXPR should be a channel.  Return the channel's element type.
-
-Type*
-Variable::type_from_chan_element(Expression* expr, bool report_error) const
-{
-  Type* t = expr->type();
-  if (t->channel_type() != NULL)
-    return t->channel_type()->element_type();
-  else
-    {
-      if (report_error)
-       error_at(this->location(), "expected channel");
-      return Type::make_error_type();
-    }
-}
-
-// Return the type of the Variable.  This may be called before
-// Variable::determine_type is called, which means that we may need to
-// get the type from the initializer.  FIXME: If we combine lowering
-// with type determination, then this should be unnecessary.
-
-Type*
-Variable::type()
-{
-  // A variable in a type switch with a nil case will have the wrong
-  // type here.  This gets fixed up in determine_type, below.
-  Type* type = this->type_;
-  Expression* init = this->init_;
-  if (this->is_type_switch_var_
-      && this->type_->is_nil_constant_as_type())
-    {
-      Type_guard_expression* tge = this->init_->type_guard_expression();
-      go_assert(tge != NULL);
-      init = tge->expr();
-      type = NULL;
-    }
-
-  if (this->seen_)
-    {
-      if (this->type_ == NULL || !this->type_->is_error_type())
-       {
-         error_at(this->location_, "variable initializer refers to itself");
-         this->type_ = Type::make_error_type();
-       }
-      return this->type_;
-    }
-
-  this->seen_ = true;
-
-  if (type != NULL)
-    ;
-  else if (this->type_from_init_tuple_)
-    type = this->type_from_tuple(init, false);
-  else if (this->type_from_range_index_ || this->type_from_range_value_)
-    type = this->type_from_range(init, this->type_from_range_index_, false);
-  else if (this->type_from_chan_element_)
-    type = this->type_from_chan_element(init, false);
-  else
-    {
-      go_assert(init != NULL);
-      type = init->type();
-      go_assert(type != NULL);
-
-      // Variables should not have abstract types.
-      if (type->is_abstract())
-       type = type->make_non_abstract_type();
-
-      if (type->is_void_type())
-       type = Type::make_error_type();
-    }
-
-  this->seen_ = false;
-
-  return type;
-}
-
-// Fetch the type from a const pointer, in which case it should have
-// been set already.
-
-Type*
-Variable::type() const
-{
-  go_assert(this->type_ != NULL);
-  return this->type_;
-}
-
-// Set the type if necessary.
-
-void
-Variable::determine_type()
-{
-  if (this->determined_type_)
-    return;
-  this->determined_type_ = true;
-
-  if (this->preinit_ != NULL)
-    this->preinit_->determine_types();
-
-  // A variable in a type switch with a nil case will have the wrong
-  // type here.  It will have an initializer which is a type guard.
-  // We want to initialize it to the value without the type guard, and
-  // use the type of that value as well.
-  if (this->is_type_switch_var_ && this->type_->is_nil_constant_as_type())
-    {
-      Type_guard_expression* tge = this->init_->type_guard_expression();
-      go_assert(tge != NULL);
-      this->type_ = NULL;
-      this->init_ = tge->expr();
-    }
-
-  if (this->init_ == NULL)
-    go_assert(this->type_ != NULL && !this->type_->is_abstract());
-  else if (this->type_from_init_tuple_)
-    {
-      Expression *init = this->init_;
-      init->determine_type_no_context();
-      this->type_ = this->type_from_tuple(init, true);
-      this->init_ = NULL;
-    }
-  else if (this->type_from_range_index_ || this->type_from_range_value_)
-    {
-      Expression* init = this->init_;
-      init->determine_type_no_context();
-      this->type_ = this->type_from_range(init, this->type_from_range_index_,
-                                         true);
-      this->init_ = NULL;
-    }
-  else if (this->type_from_chan_element_)
-    {
-      Expression* init = this->init_;
-      init->determine_type_no_context();
-      this->type_ = this->type_from_chan_element(init, true);
-      this->init_ = NULL;
-    }
-  else
-    {
-      Type_context context(this->type_, false);
-      this->init_->determine_type(&context);
-      if (this->type_ == NULL)
-       {
-         Type* type = this->init_->type();
-         go_assert(type != NULL);
-         if (type->is_abstract())
-           type = type->make_non_abstract_type();
-
-         if (type->is_void_type())
-           {
-             error_at(this->location_, "variable has no type");
-             type = Type::make_error_type();
-           }
-         else if (type->is_nil_type())
-           {
-             error_at(this->location_, "variable defined to nil type");
-             type = Type::make_error_type();
-           }
-         else if (type->is_call_multiple_result_type())
-           {
-             error_at(this->location_,
-                      "single variable set to multiple value function call");
-             type = Type::make_error_type();
-           }
-
-         this->type_ = type;
-       }
-    }
-}
-
-// Export the variable
-
-void
-Variable::export_var(Export* exp, const std::string& name) const
-{
-  go_assert(this->is_global_);
-  exp->write_c_string("var ");
-  exp->write_string(name);
-  exp->write_c_string(" ");
-  exp->write_type(this->type());
-  exp->write_c_string(";\n");
-}
-
-// Import a variable.
-
-void
-Variable::import_var(Import* imp, std::string* pname, Type** ptype)
-{
-  imp->require_c_string("var ");
-  *pname = imp->read_identifier();
-  imp->require_c_string(" ");
-  *ptype = imp->read_type();
-  imp->require_c_string(";\n");
-}
-
-// Convert a variable to the backend representation.
-
-Bvariable*
-Variable::get_backend_variable(Gogo* gogo, Named_object* function,
-                              const Package* package, const std::string& name)
-{
-  if (this->backend_ == NULL)
-    {
-      Backend* backend = gogo->backend();
-      Type* type = this->type_;
-      if (type->is_error_type()
-         || (type->is_undefined()
-             && (!this->is_global_ || package == NULL)))
-       this->backend_ = backend->error_variable();
-      else
-       {
-         bool is_parameter = this->is_parameter_;
-         if (this->is_receiver_ && type->points_to() == NULL)
-           is_parameter = false;
-         if (this->is_in_heap())
-           {
-             is_parameter = false;
-             type = Type::make_pointer_type(type);
-           }
-
-         std::string n = Gogo::unpack_hidden_name(name);
-         Btype* btype = tree_to_type(type->get_tree(gogo));
-
-         Bvariable* bvar;
-         if (this->is_global_)
-           bvar = backend->global_variable((package == NULL
-                                            ? gogo->package_name()
-                                            : package->name()),
-                                           (package == NULL
-                                            ? gogo->unique_prefix()
-                                            : package->unique_prefix()),
-                                           n,
-                                           btype,
-                                           package != NULL,
-                                           Gogo::is_hidden_name(name),
-                                           this->location_);
-         else
-           {
-             tree fndecl = function->func_value()->get_decl();
-             Bfunction* bfunction = tree_to_function(fndecl);
-             if (is_parameter)
-               bvar = backend->parameter_variable(bfunction, n, btype,
-                                                  this->location_);
-             else
-               bvar = backend->local_variable(bfunction, n, btype,
-                                              this->location_);
-           }
-         this->backend_ = bvar;
-       }
-    }
-  return this->backend_;
-}
-
-// Class Result_variable.
-
-// Convert a result variable to the backend representation.
-
-Bvariable*
-Result_variable::get_backend_variable(Gogo* gogo, Named_object* function,
-                                     const std::string& name)
-{
-  if (this->backend_ == NULL)
-    {
-      Backend* backend = gogo->backend();
-      Type* type = this->type_;
-      if (type->is_error())
-       this->backend_ = backend->error_variable();
-      else
-       {
-         if (this->is_in_heap())
-           type = Type::make_pointer_type(type);
-         Btype* btype = tree_to_type(type->get_tree(gogo));
-         tree fndecl = function->func_value()->get_decl();
-         Bfunction* bfunction = tree_to_function(fndecl);
-         std::string n = Gogo::unpack_hidden_name(name);
-         this->backend_ = backend->local_variable(bfunction, n, btype,
-                                                  this->location_);
-       }
-    }
-  return this->backend_;
-}
-
-// Class Named_constant.
-
-// Traverse the initializer expression.
-
-int
-Named_constant::traverse_expression(Traverse* traverse)
-{
-  return Expression::traverse(&this->expr_, traverse);
-}
-
-// Determine the type of the constant.
-
-void
-Named_constant::determine_type()
-{
-  if (this->type_ != NULL)
-    {
-      Type_context context(this->type_, false);
-      this->expr_->determine_type(&context);
-    }
-  else
-    {
-      // A constant may have an abstract type.
-      Type_context context(NULL, true);
-      this->expr_->determine_type(&context);
-      this->type_ = this->expr_->type();
-      go_assert(this->type_ != NULL);
-    }
-}
-
-// Indicate that we found and reported an error for this constant.
-
-void
-Named_constant::set_error()
-{
-  this->type_ = Type::make_error_type();
-  this->expr_ = Expression::make_error(this->location_);
-}
-
-// Export a constant.
-
-void
-Named_constant::export_const(Export* exp, const std::string& name) const
-{
-  exp->write_c_string("const ");
-  exp->write_string(name);
-  exp->write_c_string(" ");
-  if (!this->type_->is_abstract())
-    {
-      exp->write_type(this->type_);
-      exp->write_c_string(" ");
-    }
-  exp->write_c_string("= ");
-  this->expr()->export_expression(exp);
-  exp->write_c_string(";\n");
-}
-
-// Import a constant.
-
-void
-Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
-                            Expression** pexpr)
-{
-  imp->require_c_string("const ");
-  *pname = imp->read_identifier();
-  imp->require_c_string(" ");
-  if (imp->peek_char() == '=')
-    *ptype = NULL;
-  else
-    {
-      *ptype = imp->read_type();
-      imp->require_c_string(" ");
-    }
-  imp->require_c_string("= ");
-  *pexpr = Expression::import_expression(imp);
-  imp->require_c_string(";\n");
-}
-
-// Add a method.
-
-Named_object*
-Type_declaration::add_method(const std::string& name, Function* function)
-{
-  Named_object* ret = Named_object::make_function(name, NULL, function);
-  this->methods_.push_back(ret);
-  return ret;
-}
-
-// Add a method declaration.
-
-Named_object*
-Type_declaration::add_method_declaration(const std::string&  name,
-                                        Function_type* type,
-                                        source_location location)
-{
-  Named_object* ret = Named_object::make_function_declaration(name, NULL, type,
-                                                             location);
-  this->methods_.push_back(ret);
-  return ret;
-}
-
-// Return whether any methods ere defined.
-
-bool
-Type_declaration::has_methods() const
-{
-  return !this->methods_.empty();
-}
-
-// Define methods for the real type.
-
-void
-Type_declaration::define_methods(Named_type* nt)
-{
-  for (Methods::const_iterator p = this->methods_.begin();
-       p != this->methods_.end();
-       ++p)
-    nt->add_existing_method(*p);
-}
-
-// We are using the type.  Return true if we should issue a warning.
-
-bool
-Type_declaration::using_type()
-{
-  bool ret = !this->issued_warning_;
-  this->issued_warning_ = true;
-  return ret;
-}
-
-// Class Unknown_name.
-
-// Set the real named object.
-
-void
-Unknown_name::set_real_named_object(Named_object* no)
-{
-  go_assert(this->real_named_object_ == NULL);
-  go_assert(!no->is_unknown());
-  this->real_named_object_ = no;
-}
-
-// Class Named_object.
-
-Named_object::Named_object(const std::string& name,
-                          const Package* package,
-                          Classification classification)
-  : name_(name), package_(package), classification_(classification),
-    tree_(NULL)
-{
-  if (Gogo::is_sink_name(name))
-    go_assert(classification == NAMED_OBJECT_SINK);
-}
-
-// Make an unknown name.  This is used by the parser.  The name must
-// be resolved later.  Unknown names are only added in the current
-// package.
-
-Named_object*
-Named_object::make_unknown_name(const std::string& name,
-                               source_location location)
-{
-  Named_object* named_object = new Named_object(name, NULL,
-                                               NAMED_OBJECT_UNKNOWN);
-  Unknown_name* value = new Unknown_name(location);
-  named_object->u_.unknown_value = value;
-  return named_object;
-}
-
-// Make a constant.
-
-Named_object*
-Named_object::make_constant(const Typed_identifier& tid,
-                           const Package* package, Expression* expr,
-                           int iota_value)
-{
-  Named_object* named_object = new Named_object(tid.name(), package,
-                                               NAMED_OBJECT_CONST);
-  Named_constant* named_constant = new Named_constant(tid.type(), expr,
-                                                     iota_value,
-                                                     tid.location());
-  named_object->u_.const_value = named_constant;
-  return named_object;
-}
-
-// Make a named type.
-
-Named_object*
-Named_object::make_type(const std::string& name, const Package* package,
-                       Type* type, source_location location)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_TYPE);
-  Named_type* named_type = Type::make_named_type(named_object, type, location);
-  named_object->u_.type_value = named_type;
-  return named_object;
-}
-
-// Make a type declaration.
-
-Named_object*
-Named_object::make_type_declaration(const std::string& name,
-                                   const Package* package,
-                                   source_location location)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_TYPE_DECLARATION);
-  Type_declaration* type_declaration = new Type_declaration(location);
-  named_object->u_.type_declaration = type_declaration;
-  return named_object;
-}
-
-// Make a variable.
-
-Named_object*
-Named_object::make_variable(const std::string& name, const Package* package,
-                           Variable* variable)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_VAR);
-  named_object->u_.var_value = variable;
-  return named_object;
-}
-
-// Make a result variable.
-
-Named_object*
-Named_object::make_result_variable(const std::string& name,
-                                  Result_variable* result)
-{
-  Named_object* named_object = new Named_object(name, NULL,
-                                               NAMED_OBJECT_RESULT_VAR);
-  named_object->u_.result_var_value = result;
-  return named_object;
-}
-
-// Make a sink.  This is used for the special blank identifier _.
-
-Named_object*
-Named_object::make_sink()
-{
-  return new Named_object("_", NULL, NAMED_OBJECT_SINK);
-}
-
-// Make a named function.
-
-Named_object*
-Named_object::make_function(const std::string& name, const Package* package,
-                           Function* function)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_FUNC);
-  named_object->u_.func_value = function;
-  return named_object;
-}
-
-// Make a function declaration.
-
-Named_object*
-Named_object::make_function_declaration(const std::string& name,
-                                       const Package* package,
-                                       Function_type* fntype,
-                                       source_location location)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_FUNC_DECLARATION);
-  Function_declaration *func_decl = new Function_declaration(fntype, location);
-  named_object->u_.func_declaration_value = func_decl;
-  return named_object;
-}
-
-// Make a package.
-
-Named_object*
-Named_object::make_package(const std::string& alias, Package* package)
-{
-  Named_object* named_object = new Named_object(alias, NULL,
-                                               NAMED_OBJECT_PACKAGE);
-  named_object->u_.package_value = package;
-  return named_object;
-}
-
-// Return the name to use in an error message.
-
-std::string
-Named_object::message_name() const
-{
-  if (this->package_ == NULL)
-    return Gogo::message_name(this->name_);
-  std::string ret = Gogo::message_name(this->package_->name());
-  ret += '.';
-  ret += Gogo::message_name(this->name_);
-  return ret;
-}
-
-// Set the type when a declaration is defined.
-
-void
-Named_object::set_type_value(Named_type* named_type)
-{
-  go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
-  Type_declaration* td = this->u_.type_declaration;
-  td->define_methods(named_type);
-  Named_object* in_function = td->in_function();
-  if (in_function != NULL)
-    named_type->set_in_function(in_function);
-  delete td;
-  this->classification_ = NAMED_OBJECT_TYPE;
-  this->u_.type_value = named_type;
-}
-
-// Define a function which was previously declared.
-
-void
-Named_object::set_function_value(Function* function)
-{
-  go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
-  this->classification_ = NAMED_OBJECT_FUNC;
-  // FIXME: We should free the old value.
-  this->u_.func_value = function;
-}
-
-// Declare an unknown object as a type declaration.
-
-void
-Named_object::declare_as_type()
-{
-  go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
-  Unknown_name* unk = this->u_.unknown_value;
-  this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
-  this->u_.type_declaration = new Type_declaration(unk->location());
-  delete unk;
-}
-
-// Return the location of a named object.
-
-source_location
-Named_object::location() const
-{
-  switch (this->classification_)
-    {
-    default:
-    case NAMED_OBJECT_UNINITIALIZED:
-      go_unreachable();
-
-    case NAMED_OBJECT_UNKNOWN:
-      return this->unknown_value()->location();
-
-    case NAMED_OBJECT_CONST:
-      return this->const_value()->location();
-
-    case NAMED_OBJECT_TYPE:
-      return this->type_value()->location();
-
-    case NAMED_OBJECT_TYPE_DECLARATION:
-      return this->type_declaration_value()->location();
-
-    case NAMED_OBJECT_VAR:
-      return this->var_value()->location();
-
-    case NAMED_OBJECT_RESULT_VAR:
-      return this->result_var_value()->location();
-
-    case NAMED_OBJECT_SINK:
-      go_unreachable();
-
-    case NAMED_OBJECT_FUNC:
-      return this->func_value()->location();
-
-    case NAMED_OBJECT_FUNC_DECLARATION:
-      return this->func_declaration_value()->location();
-
-    case NAMED_OBJECT_PACKAGE:
-      return this->package_value()->location();
-    }
-}
-
-// Export a named object.
-
-void
-Named_object::export_named_object(Export* exp) const
-{
-  switch (this->classification_)
-    {
-    default:
-    case NAMED_OBJECT_UNINITIALIZED:
-    case NAMED_OBJECT_UNKNOWN:
-      go_unreachable();
-
-    case NAMED_OBJECT_CONST:
-      this->const_value()->export_const(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_TYPE:
-      this->type_value()->export_named_type(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_TYPE_DECLARATION:
-      error_at(this->type_declaration_value()->location(),
-              "attempt to export %<%s%> which was declared but not defined",
-              this->message_name().c_str());
-      break;
-
-    case NAMED_OBJECT_FUNC_DECLARATION:
-      this->func_declaration_value()->export_func(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_VAR:
-      this->var_value()->export_var(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_RESULT_VAR:
-    case NAMED_OBJECT_SINK:
-      go_unreachable();
-
-    case NAMED_OBJECT_FUNC:
-      this->func_value()->export_func(exp, this->name_);
-      break;
-    }
-}
-
-// Convert a variable to the backend representation.
-
-Bvariable*
-Named_object::get_backend_variable(Gogo* gogo, Named_object* function)
-{
-  if (this->classification_ == NAMED_OBJECT_VAR)
-    return this->var_value()->get_backend_variable(gogo, function,
-                                                  this->package_, this->name_);
-  else if (this->classification_ == NAMED_OBJECT_RESULT_VAR)
-    return this->result_var_value()->get_backend_variable(gogo, function,
-                                                         this->name_);
-  else
-    go_unreachable();
-}
-
-// Class Bindings.
-
-Bindings::Bindings(Bindings* enclosing)
-  : enclosing_(enclosing), named_objects_(), bindings_()
-{
-}
-
-// Clear imports.
-
-void
-Bindings::clear_file_scope()
-{
-  Contour::iterator p = this->bindings_.begin();
-  while (p != this->bindings_.end())
-    {
-      bool keep;
-      if (p->second->package() != NULL)
-       keep = false;
-      else if (p->second->is_package())
-       keep = false;
-      else if (p->second->is_function()
-              && !p->second->func_value()->type()->is_method()
-              && Gogo::unpack_hidden_name(p->second->name()) == "init")
-       keep = false;
-      else
-       keep = true;
-
-      if (keep)
-       ++p;
-      else
-       p = this->bindings_.erase(p);
-    }
-}
-
-// Look up a symbol.
-
-Named_object*
-Bindings::lookup(const std::string& name) const
-{
-  Contour::const_iterator p = this->bindings_.find(name);
-  if (p != this->bindings_.end())
-    return p->second->resolve();
-  else if (this->enclosing_ != NULL)
-    return this->enclosing_->lookup(name);
-  else
-    return NULL;
-}
-
-// Look up a symbol locally.
-
-Named_object*
-Bindings::lookup_local(const std::string& name) const
-{
-  Contour::const_iterator p = this->bindings_.find(name);
-  if (p == this->bindings_.end())
-    return NULL;
-  return p->second;
-}
-
-// Remove an object from a set of bindings.  This is used for a
-// special case in thunks for functions which call recover.
-
-void
-Bindings::remove_binding(Named_object* no)
-{
-  Contour::iterator pb = this->bindings_.find(no->name());
-  go_assert(pb != this->bindings_.end());
-  this->bindings_.erase(pb);
-  for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
-       pn != this->named_objects_.end();
-       ++pn)
-    {
-      if (*pn == no)
-       {
-         this->named_objects_.erase(pn);
-         return;
-       }
-    }
-  go_unreachable();
-}
-
-// Add a method to the list of objects.  This is not added to the
-// lookup table.  This is so that we have a single list of objects
-// declared at the top level, which we walk through when it's time to
-// convert to trees.
-
-void
-Bindings::add_method(Named_object* method)
-{
-  this->named_objects_.push_back(method);
-}
-
-// Add a generic Named_object to a Contour.
-
-Named_object*
-Bindings::add_named_object_to_contour(Contour* contour,
-                                     Named_object* named_object)
-{
-  go_assert(named_object == named_object->resolve());
-  const std::string& name(named_object->name());
-  go_assert(!Gogo::is_sink_name(name));
-
-  std::pair<Contour::iterator, bool> ins =
-    contour->insert(std::make_pair(name, named_object));
-  if (!ins.second)
-    {
-      // The name was already there.
-      if (named_object->package() != NULL
-         && ins.first->second->package() == named_object->package()
-         && (ins.first->second->classification()
-             == named_object->classification()))
-       {
-         // This is a second import of the same object.
-         return ins.first->second;
-       }
-      ins.first->second = this->new_definition(ins.first->second,
-                                              named_object);
-      return ins.first->second;
-    }
-  else
-    {
-      // Don't push declarations on the list.  We push them on when
-      // and if we find the definitions.  That way we genericize the
-      // functions in order.
-      if (!named_object->is_type_declaration()
-         && !named_object->is_function_declaration()
-         && !named_object->is_unknown())
-       this->named_objects_.push_back(named_object);
-      return named_object;
-    }
-}
-
-// We had an existing named object OLD_OBJECT, and we've seen a new
-// one NEW_OBJECT with the same name.  FIXME: This does not free the
-// new object when we don't need it.
-
-Named_object*
-Bindings::new_definition(Named_object* old_object, Named_object* new_object)
-{
-  std::string reason;
-  switch (old_object->classification())
-    {
-    default:
-    case Named_object::NAMED_OBJECT_UNINITIALIZED:
-      go_unreachable();
-
-    case Named_object::NAMED_OBJECT_UNKNOWN:
-      {
-       Named_object* real = old_object->unknown_value()->real_named_object();
-       if (real != NULL)
-         return this->new_definition(real, new_object);
-       go_assert(!new_object->is_unknown());
-       old_object->unknown_value()->set_real_named_object(new_object);
-       if (!new_object->is_type_declaration()
-           && !new_object->is_function_declaration())
-         this->named_objects_.push_back(new_object);
-       return new_object;
-      }
-
-    case Named_object::NAMED_OBJECT_CONST:
-      break;
-
-    case Named_object::NAMED_OBJECT_TYPE:
-      if (new_object->is_type_declaration())
-       return old_object;
-      break;
-
-    case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-      if (new_object->is_type_declaration())
-       return old_object;
-      if (new_object->is_type())
-       {
-         old_object->set_type_value(new_object->type_value());
-         new_object->type_value()->set_named_object(old_object);
-         this->named_objects_.push_back(old_object);
-         return old_object;
-       }
-      break;
-
-    case Named_object::NAMED_OBJECT_VAR:
-    case Named_object::NAMED_OBJECT_RESULT_VAR:
-      break;
-
-    case Named_object::NAMED_OBJECT_SINK:
-      go_unreachable();
-
-    case Named_object::NAMED_OBJECT_FUNC:
-      if (new_object->is_function_declaration())
-       {
-         if (!new_object->func_declaration_value()->asm_name().empty())
-           sorry("__asm__ for function definitions");
-         Function_type* old_type = old_object->func_value()->type();
-         Function_type* new_type =
-           new_object->func_declaration_value()->type();
-         if (old_type->is_valid_redeclaration(new_type, &reason))
-           return old_object;
-       }
-      break;
-
-    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-      {
-       Function_type* old_type = old_object->func_declaration_value()->type();
-       if (new_object->is_function_declaration())
-         {
-           Function_type* new_type =
-             new_object->func_declaration_value()->type();
-           if (old_type->is_valid_redeclaration(new_type, &reason))
-             return old_object;
-         }
-       if (new_object->is_function())
-         {
-           Function_type* new_type = new_object->func_value()->type();
-           if (old_type->is_valid_redeclaration(new_type, &reason))
-             {
-               if (!old_object->func_declaration_value()->asm_name().empty())
-                 sorry("__asm__ for function definitions");
-               old_object->set_function_value(new_object->func_value());
-               this->named_objects_.push_back(old_object);
-               return old_object;
-             }
-         }
-      }
-      break;
-
-    case Named_object::NAMED_OBJECT_PACKAGE:
-      if (new_object->is_package()
-         && (old_object->package_value()->name()
-             == new_object->package_value()->name()))
-       return old_object;
-
-      break;
-    }
-
-  std::string n = old_object->message_name();
-  if (reason.empty())
-    error_at(new_object->location(), "redefinition of %qs", n.c_str());
-  else
-    error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
-            reason.c_str());
-
-  inform(old_object->location(), "previous definition of %qs was here",
-        n.c_str());
-
-  return old_object;
-}
-
-// Add a named type.
-
-Named_object*
-Bindings::add_named_type(Named_type* named_type)
-{
-  return this->add_named_object(named_type->named_object());
-}
-
-// Add a function.
-
-Named_object*
-Bindings::add_function(const std::string& name, const Package* package,
-                      Function* function)
-{
-  return this->add_named_object(Named_object::make_function(name, package,
-                                                           function));
-}
-
-// Add a function declaration.
-
-Named_object*
-Bindings::add_function_declaration(const std::string& name,
-                                  const Package* package,
-                                  Function_type* type,
-                                  source_location location)
-{
-  Named_object* no = Named_object::make_function_declaration(name, package,
-                                                            type, location);
-  return this->add_named_object(no);
-}
-
-// Define a type which was previously declared.
-
-void
-Bindings::define_type(Named_object* no, Named_type* type)
-{
-  no->set_type_value(type);
-  this->named_objects_.push_back(no);
-}
-
-// Traverse bindings.
-
-int
-Bindings::traverse(Traverse* traverse, bool is_global)
-{
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  // We don't use an iterator because we permit the traversal to add
-  // new global objects.
-  for (size_t i = 0; i < this->named_objects_.size(); ++i)
-    {
-      Named_object* p = this->named_objects_[i];
-      switch (p->classification())
-       {
-       case Named_object::NAMED_OBJECT_CONST:
-         if ((traverse_mask & Traverse::traverse_constants) != 0)
-           {
-             if (traverse->constant(p, is_global) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         if ((traverse_mask & Traverse::traverse_types) != 0
-             || (traverse_mask & Traverse::traverse_expressions) != 0)
-           {
-             Type* t = p->const_value()->type();
-             if (t != NULL
-                 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-             if (p->const_value()->traverse_expression(traverse)
-                 == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_VAR:
-       case Named_object::NAMED_OBJECT_RESULT_VAR:
-         if ((traverse_mask & Traverse::traverse_variables) != 0)
-           {
-             if (traverse->variable(p) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         if (((traverse_mask & Traverse::traverse_types) != 0
-              || (traverse_mask & Traverse::traverse_expressions) != 0)
-             && (p->is_result_variable()
-                 || p->var_value()->has_type()))
-           {
-             Type* t = (p->is_variable()
-                        ? p->var_value()->type()
-                        : p->result_var_value()->type());
-             if (t != NULL
-                 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         if (p->is_variable()
-             && ((traverse_mask & Traverse::traverse_types) != 0
-                 || (traverse_mask & Traverse::traverse_expressions) != 0))
-           {
-             if (p->var_value()->traverse_expression(traverse)
-                 == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_FUNC:
-         if ((traverse_mask & Traverse::traverse_functions) != 0)
-           {
-             int t = traverse->function(p);
-             if (t == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-             else if (t == TRAVERSE_SKIP_COMPONENTS)
-               break;
-           }
-
-         if ((traverse_mask
-              & (Traverse::traverse_variables
-                 | Traverse::traverse_constants
-                 | Traverse::traverse_functions
-                 | Traverse::traverse_blocks
-                 | Traverse::traverse_statements
-                 | Traverse::traverse_expressions
-                 | Traverse::traverse_types)) != 0)
-           {
-             if (p->func_value()->traverse(traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_PACKAGE:
-         // These are traversed in Gogo::traverse.
-         go_assert(is_global);
-         break;
-
-       case Named_object::NAMED_OBJECT_TYPE:
-         if ((traverse_mask & Traverse::traverse_types) != 0
-             || (traverse_mask & Traverse::traverse_expressions) != 0)
-           {
-             if (Type::traverse(p->type_value(), traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-       case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-       case Named_object::NAMED_OBJECT_UNKNOWN:
-         break;
-
-       case Named_object::NAMED_OBJECT_SINK:
-       default:
-         go_unreachable();
-       }
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Class Label.
-
-// Get the backend representation for a label.
-
-Blabel*
-Label::get_backend_label(Translate_context* context)
-{
-  if (this->blabel_ == NULL)
-    {
-      Function* function = context->function()->func_value();
-      tree fndecl = function->get_decl();
-      Bfunction* bfunction = tree_to_function(fndecl);
-      this->blabel_ = context->backend()->label(bfunction, this->name_,
-                                               this->location_);
-    }
-  return this->blabel_;
-}
-
-// Return an expression for the address of this label.
-
-Bexpression*
-Label::get_addr(Translate_context* context, source_location location)
-{
-  Blabel* label = this->get_backend_label(context);
-  return context->backend()->label_address(label, location);
-}
-
-// Class Unnamed_label.
-
-// Get the backend representation for an unnamed label.
-
-Blabel*
-Unnamed_label::get_blabel(Translate_context* context)
-{
-  if (this->blabel_ == NULL)
-    {
-      Function* function = context->function()->func_value();
-      tree fndecl = function->get_decl();
-      Bfunction* bfunction = tree_to_function(fndecl);
-      this->blabel_ = context->backend()->label(bfunction, "",
-                                               this->location_);
-    }
-  return this->blabel_;
-}
-
-// Return a statement which defines this unnamed label.
-
-Bstatement*
-Unnamed_label::get_definition(Translate_context* context)
-{
-  Blabel* blabel = this->get_blabel(context);
-  return context->backend()->label_definition_statement(blabel);
-}
-
-// Return a goto statement to this unnamed label.
-
-Bstatement*
-Unnamed_label::get_goto(Translate_context* context, source_location location)
-{
-  Blabel* blabel = this->get_blabel(context);
-  return context->backend()->goto_statement(blabel, location);
-}
-
-// Class Package.
-
-Package::Package(const std::string& name, const std::string& unique_prefix,
-                source_location location)
-  : name_(name), unique_prefix_(unique_prefix), bindings_(new Bindings(NULL)),
-    priority_(0), location_(location), used_(false), is_imported_(false),
-    uses_sink_alias_(false)
-{
-  go_assert(!name.empty() && !unique_prefix.empty());
-}
-
-// Set the priority.  We may see multiple priorities for an imported
-// package; we want to use the largest one.
-
-void
-Package::set_priority(int priority)
-{
-  if (priority > this->priority_)
-    this->priority_ = priority;
-}
-
-// Determine types of constants.  Everything else in a package
-// (variables, function declarations) should already have a fixed
-// type.  Constants may have abstract types.
-
-void
-Package::determine_types()
-{
-  Bindings* bindings = this->bindings_;
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_const())
-       (*p)->const_value()->determine_type();
-    }
-}
-
-// Class Traverse.
-
-// Destructor.
-
-Traverse::~Traverse()
-{
-  if (this->types_seen_ != NULL)
-    delete this->types_seen_;
-  if (this->expressions_seen_ != NULL)
-    delete this->expressions_seen_;
-}
-
-// Record that we are looking at a type, and return true if we have
-// already seen it.
-
-bool
-Traverse::remember_type(const Type* type)
-{
-  if (type->is_error_type())
-    return true;
-  go_assert((this->traverse_mask() & traverse_types) != 0
-            || (this->traverse_mask() & traverse_expressions) != 0);
-  // We only have to remember named types, as they are the only ones
-  // we can see multiple times in a traversal.
-  if (type->classification() != Type::TYPE_NAMED)
-    return false;
-  if (this->types_seen_ == NULL)
-    this->types_seen_ = new Types_seen();
-  std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
-  return !ins.second;
-}
-
-// Record that we are looking at an expression, and return true if we
-// have already seen it.
-
-bool
-Traverse::remember_expression(const Expression* expression)
-{
-  go_assert((this->traverse_mask() & traverse_types) != 0
-            || (this->traverse_mask() & traverse_expressions) != 0);
-  if (this->expressions_seen_ == NULL)
-    this->expressions_seen_ = new Expressions_seen();
-  std::pair<Expressions_seen::iterator, bool> ins =
-    this->expressions_seen_->insert(expression);
-  return !ins.second;
-}
-
-// The default versions of these functions should never be called: the
-// traversal mask indicates which functions may be called.
-
-int
-Traverse::variable(Named_object*)
-{
-  go_unreachable();
-}
-
-int
-Traverse::constant(Named_object*, bool)
-{
-  go_unreachable();
-}
-
-int
-Traverse::function(Named_object*)
-{
-  go_unreachable();
-}
-
-int
-Traverse::block(Block*)
-{
-  go_unreachable();
-}
-
-int
-Traverse::statement(Block*, size_t*, Statement*)
-{
-  go_unreachable();
-}
-
-int
-Traverse::expression(Expression**)
-{
-  go_unreachable();
-}
-
-int
-Traverse::type(Type*)
-{
-  go_unreachable();
-}
diff --git a/gcc/go/gofrontend/gogo.cc.working b/gcc/go/gofrontend/gogo.cc.working
deleted file mode 100644 (file)
index a6411d3..0000000
+++ /dev/null
@@ -1,4514 +0,0 @@
-// gogo.cc -- Go frontend parsed representation.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "go-c.h"
-#include "go-dump.h"
-#include "lex.h"
-#include "types.h"
-#include "statements.h"
-#include "expressions.h"
-#include "dataflow.h"
-#include "import.h"
-#include "export.h"
-#include "gogo.h"
-
-// Class Gogo.
-
-Gogo::Gogo(int int_type_size, int pointer_size)
-  : package_(NULL),
-    functions_(),
-    globals_(new Bindings(NULL)),
-    imports_(),
-    imported_unsafe_(false),
-    packages_(),
-    map_descriptors_(NULL),
-    type_descriptor_decls_(NULL),
-    init_functions_(),
-    need_init_fn_(false),
-    init_fn_name_(),
-    imported_init_fns_(),
-    unique_prefix_(),
-    unique_prefix_specified_(false),
-    interface_types_(),
-    named_types_are_converted_(false)
-{
-  const source_location loc = BUILTINS_LOCATION;
-
-  Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
-                                                  RUNTIME_TYPE_KIND_UINT8);
-  this->add_named_type(uint8_type);
-  this->add_named_type(Type::make_integer_type("uint16", true,  16,
-                                              RUNTIME_TYPE_KIND_UINT16));
-  this->add_named_type(Type::make_integer_type("uint32", true,  32,
-                                              RUNTIME_TYPE_KIND_UINT32));
-  this->add_named_type(Type::make_integer_type("uint64", true,  64,
-                                              RUNTIME_TYPE_KIND_UINT64));
-
-  this->add_named_type(Type::make_integer_type("int8",  false,   8,
-                                              RUNTIME_TYPE_KIND_INT8));
-  this->add_named_type(Type::make_integer_type("int16", false,  16,
-                                              RUNTIME_TYPE_KIND_INT16));
-  this->add_named_type(Type::make_integer_type("int32", false,  32,
-                                              RUNTIME_TYPE_KIND_INT32));
-  this->add_named_type(Type::make_integer_type("int64", false,  64,
-                                              RUNTIME_TYPE_KIND_INT64));
-
-  this->add_named_type(Type::make_float_type("float32", 32,
-                                            RUNTIME_TYPE_KIND_FLOAT32));
-  this->add_named_type(Type::make_float_type("float64", 64,
-                                            RUNTIME_TYPE_KIND_FLOAT64));
-
-  this->add_named_type(Type::make_complex_type("complex64", 64,
-                                              RUNTIME_TYPE_KIND_COMPLEX64));
-  this->add_named_type(Type::make_complex_type("complex128", 128,
-                                              RUNTIME_TYPE_KIND_COMPLEX128));
-
-  if (int_type_size < 32)
-    int_type_size = 32;
-  this->add_named_type(Type::make_integer_type("uint", true,
-                                              int_type_size,
-                                              RUNTIME_TYPE_KIND_UINT));
-  Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
-                                                RUNTIME_TYPE_KIND_INT);
-  this->add_named_type(int_type);
-
-  // "byte" is an alias for "uint8".  Construct a Named_object which
-  // points to UINT8_TYPE.  Note that this breaks the normal pairing
-  // in which a Named_object points to a Named_type which points back
-  // to the same Named_object.
-  Named_object* byte_type = this->declare_type("byte", loc);
-  byte_type->set_type_value(uint8_type);
-
-  this->add_named_type(Type::make_integer_type("uintptr", true,
-                                              pointer_size,
-                                              RUNTIME_TYPE_KIND_UINTPTR));
-
-  this->add_named_type(Type::make_named_bool_type());
-
-  this->add_named_type(Type::make_named_string_type());
-
-  this->globals_->add_constant(Typed_identifier("true",
-                                               Type::make_boolean_type(),
-                                               loc),
-                              NULL,
-                              Expression::make_boolean(true, loc),
-                              0);
-  this->globals_->add_constant(Typed_identifier("false",
-                                               Type::make_boolean_type(),
-                                               loc),
-                              NULL,
-                              Expression::make_boolean(false, loc),
-                              0);
-
-  this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
-                                               loc),
-                              NULL,
-                              Expression::make_nil(loc),
-                              0);
-
-  Type* abstract_int_type = Type::make_abstract_integer_type();
-  this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
-                                               loc),
-                              NULL,
-                              Expression::make_iota(),
-                              0);
-
-  Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  new_type->set_is_varargs();
-  new_type->set_is_builtin();
-  this->globals_->add_function_declaration("new", NULL, new_type, loc);
-
-  Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  make_type->set_is_varargs();
-  make_type->set_is_builtin();
-  this->globals_->add_function_declaration("make", NULL, make_type, loc);
-
-  Typed_identifier_list* len_result = new Typed_identifier_list();
-  len_result->push_back(Typed_identifier("", int_type, loc));
-  Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
-                                                    loc);
-  len_type->set_is_builtin();
-  this->globals_->add_function_declaration("len", NULL, len_type, loc);
-
-  Typed_identifier_list* cap_result = new Typed_identifier_list();
-  cap_result->push_back(Typed_identifier("", int_type, loc));
-  Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
-                                                    loc);
-  cap_type->set_is_builtin();
-  this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
-
-  Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  print_type->set_is_varargs();
-  print_type->set_is_builtin();
-  this->globals_->add_function_declaration("print", NULL, print_type, loc);
-
-  print_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  print_type->set_is_varargs();
-  print_type->set_is_builtin();
-  this->globals_->add_function_declaration("println", NULL, print_type, loc);
-
-  Type *empty = Type::make_interface_type(NULL, loc);
-  Typed_identifier_list* panic_parms = new Typed_identifier_list();
-  panic_parms->push_back(Typed_identifier("e", empty, loc));
-  Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
-                                                      NULL, loc);
-  panic_type->set_is_builtin();
-  this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
-
-  Typed_identifier_list* recover_result = new Typed_identifier_list();
-  recover_result->push_back(Typed_identifier("", empty, loc));
-  Function_type* recover_type = Type::make_function_type(NULL, NULL,
-                                                        recover_result,
-                                                        loc);
-  recover_type->set_is_builtin();
-  this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
-
-  Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  close_type->set_is_varargs();
-  close_type->set_is_builtin();
-  this->globals_->add_function_declaration("close", NULL, close_type, loc);
-
-  Typed_identifier_list* copy_result = new Typed_identifier_list();
-  copy_result->push_back(Typed_identifier("", int_type, loc));
-  Function_type* copy_type = Type::make_function_type(NULL, NULL,
-                                                     copy_result, loc);
-  copy_type->set_is_varargs();
-  copy_type->set_is_builtin();
-  this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
-
-  Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  append_type->set_is_varargs();
-  append_type->set_is_builtin();
-  this->globals_->add_function_declaration("append", NULL, append_type, loc);
-
-  Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  complex_type->set_is_varargs();
-  complex_type->set_is_builtin();
-  this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
-
-  Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  real_type->set_is_varargs();
-  real_type->set_is_builtin();
-  this->globals_->add_function_declaration("real", NULL, real_type, loc);
-
-  Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
-  imag_type->set_is_varargs();
-  imag_type->set_is_builtin();
-  this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
-
-  this->define_builtin_function_trees();
-}
-
-// Munge name for use in an error message.
-
-std::string
-Gogo::message_name(const std::string& name)
-{
-  return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
-}
-
-// Get the package name.
-
-const std::string&
-Gogo::package_name() const
-{
-  gcc_assert(this->package_ != NULL);
-  return this->package_->name();
-}
-
-// Set the package name.
-
-void
-Gogo::set_package_name(const std::string& package_name,
-                      source_location location)
-{
-  if (this->package_ != NULL && this->package_->name() != package_name)
-    {
-      error_at(location, "expected package %<%s%>",
-              Gogo::message_name(this->package_->name()).c_str());
-      return;
-    }
-
-  // If the user did not specify a unique prefix, we always use "go".
-  // This in effect requires that the package name be unique.
-  if (this->unique_prefix_.empty())
-    this->unique_prefix_ = "go";
-
-  this->package_ = this->register_package(package_name, this->unique_prefix_,
-                                         location);
-
-  // We used to permit people to qualify symbols with the current
-  // package name (e.g., P.x), but we no longer do.
-  // this->globals_->add_package(package_name, this->package_);
-
-  if (this->is_main_package())
-    {
-      // Declare "main" as a function which takes no parameters and
-      // returns no value.
-      this->declare_function("main",
-                            Type::make_function_type(NULL, NULL, NULL,
-                                                     BUILTINS_LOCATION),
-                            BUILTINS_LOCATION);
-    }
-}
-
-// Return whether this is the "main" package.  This is not true if
-// -fgo-prefix was used.
-
-bool
-Gogo::is_main_package() const
-{
-  return this->package_name() == "main" && !this->unique_prefix_specified_;
-}
-
-// Import a package.
-
-void
-Gogo::import_package(const std::string& filename,
-                    const std::string& local_name,
-                    bool is_local_name_exported,
-                    source_location location)
-{
-  if (filename == "unsafe")
-    {
-      this->import_unsafe(local_name, is_local_name_exported, location);
-      return;
-    }
-
-  Imports::const_iterator p = this->imports_.find(filename);
-  if (p != this->imports_.end())
-    {
-      Package* package = p->second;
-      package->set_location(location);
-      package->set_is_imported();
-      std::string ln = local_name;
-      bool is_ln_exported = is_local_name_exported;
-      if (ln.empty())
-       {
-         ln = package->name();
-         is_ln_exported = Lex::is_exported_name(ln);
-       }
-      if (ln == ".")
-       {
-         Bindings* bindings = package->bindings();
-         for (Bindings::const_declarations_iterator p =
-                bindings->begin_declarations();
-              p != bindings->end_declarations();
-              ++p)
-           this->add_named_object(p->second);
-       }
-      else if (ln == "_")
-       package->set_uses_sink_alias();
-      else
-       {
-         ln = this->pack_hidden_name(ln, is_ln_exported);
-         this->package_->bindings()->add_package(ln, package);
-       }
-      return;
-    }
-
-  Import::Stream* stream = Import::open_package(filename, location);
-  if (stream == NULL)
-    {
-      error_at(location, "import file %qs not found", filename.c_str());
-      return;
-    }
-
-  Import imp(stream, location);
-  imp.register_builtin_types(this);
-  Package* package = imp.import(this, local_name, is_local_name_exported);
-  if (package != NULL)
-    {
-      if (package->name() == this->package_name()
-         && package->unique_prefix() == this->unique_prefix())
-       error_at(location,
-                ("imported package uses same package name and prefix "
-                 "as package being compiled (see -fgo-prefix option)"));
-
-      this->imports_.insert(std::make_pair(filename, package));
-      package->set_is_imported();
-    }
-
-  delete stream;
-}
-
-// Add an import control function for an imported package to the list.
-
-void
-Gogo::add_import_init_fn(const std::string& package_name,
-                        const std::string& init_name, int prio)
-{
-  for (std::set<Import_init>::const_iterator p =
-        this->imported_init_fns_.begin();
-       p != this->imported_init_fns_.end();
-       ++p)
-    {
-      if (p->init_name() == init_name
-         && (p->package_name() != package_name || p->priority() != prio))
-       {
-         error("duplicate package initialization name %qs",
-               Gogo::message_name(init_name).c_str());
-         inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
-                Gogo::message_name(p->package_name()).c_str(),
-                p->priority());
-         inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
-                Gogo::message_name(package_name).c_str(), prio);
-         return;
-       }
-    }
-
-  this->imported_init_fns_.insert(Import_init(package_name, init_name,
-                                             prio));
-}
-
-// Return whether we are at the global binding level.
-
-bool
-Gogo::in_global_scope() const
-{
-  return this->functions_.empty();
-}
-
-// Return the current binding contour.
-
-Bindings*
-Gogo::current_bindings()
-{
-  if (!this->functions_.empty())
-    return this->functions_.back().blocks.back()->bindings();
-  else if (this->package_ != NULL)
-    return this->package_->bindings();
-  else
-    return this->globals_;
-}
-
-const Bindings*
-Gogo::current_bindings() const
-{
-  if (!this->functions_.empty())
-    return this->functions_.back().blocks.back()->bindings();
-  else if (this->package_ != NULL)
-    return this->package_->bindings();
-  else
-    return this->globals_;
-}
-
-// Return the current block.
-
-Block*
-Gogo::current_block()
-{
-  if (this->functions_.empty())
-    return NULL;
-  else
-    return this->functions_.back().blocks.back();
-}
-
-// Look up a name in the current binding contour.  If PFUNCTION is not
-// NULL, set it to the function in which the name is defined, or NULL
-// if the name is defined in global scope.
-
-Named_object*
-Gogo::lookup(const std::string& name, Named_object** pfunction) const
-{
-  if (pfunction != NULL)
-    *pfunction = NULL;
-
-  if (Gogo::is_sink_name(name))
-    return Named_object::make_sink();
-
-  for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
-       p != this->functions_.rend();
-       ++p)
-    {
-      Named_object* ret = p->blocks.back()->bindings()->lookup(name);
-      if (ret != NULL)
-       {
-         if (pfunction != NULL)
-           *pfunction = p->function;
-         return ret;
-       }
-    }
-
-  if (this->package_ != NULL)
-    {
-      Named_object* ret = this->package_->bindings()->lookup(name);
-      if (ret != NULL)
-       {
-         if (ret->package() != NULL)
-           ret->package()->set_used();
-         return ret;
-       }
-    }
-
-  // We do not look in the global namespace.  If we did, the global
-  // namespace would effectively hide names which were defined in
-  // package scope which we have not yet seen.  Instead,
-  // define_global_names is called after parsing is over to connect
-  // undefined names at package scope with names defined at global
-  // scope.
-
-  return NULL;
-}
-
-// Look up a name in the current block, without searching enclosing
-// blocks.
-
-Named_object*
-Gogo::lookup_in_block(const std::string& name) const
-{
-  gcc_assert(!this->functions_.empty());
-  gcc_assert(!this->functions_.back().blocks.empty());
-  return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
-}
-
-// Look up a name in the global namespace.
-
-Named_object*
-Gogo::lookup_global(const char* name) const
-{
-  return this->globals_->lookup(name);
-}
-
-// Add an imported package.
-
-Package*
-Gogo::add_imported_package(const std::string& real_name,
-                          const std::string& alias_arg,
-                          bool is_alias_exported,
-                          const std::string& unique_prefix,
-                          source_location location,
-                          bool* padd_to_globals)
-{
-  // FIXME: Now that we compile packages as a whole, should we permit
-  // importing the current package?
-  if (this->package_name() == real_name
-      && this->unique_prefix() == unique_prefix)
-    {
-      *padd_to_globals = false;
-      if (!alias_arg.empty() && alias_arg != ".")
-       {
-         std::string alias = this->pack_hidden_name(alias_arg,
-                                                    is_alias_exported);
-         this->package_->bindings()->add_package(alias, this->package_);
-       }
-      return this->package_;
-    }
-  else if (alias_arg == ".")
-    {
-      *padd_to_globals = true;
-      return this->register_package(real_name, unique_prefix, location);
-    }
-  else if (alias_arg == "_")
-    {
-      Package* ret = this->register_package(real_name, unique_prefix, location);
-      ret->set_uses_sink_alias();
-      return ret;
-    }
-  else
-    {
-      *padd_to_globals = false;
-      std::string alias = alias_arg;
-      if (alias.empty())
-       {
-         alias = real_name;
-         is_alias_exported = Lex::is_exported_name(alias);
-       }
-      alias = this->pack_hidden_name(alias, is_alias_exported);
-      Named_object* no = this->add_package(real_name, alias, unique_prefix,
-                                          location);
-      if (!no->is_package())
-       return NULL;
-      return no->package_value();
-    }
-}
-
-// Add a package.
-
-Named_object*
-Gogo::add_package(const std::string& real_name, const std::string& alias,
-                 const std::string& unique_prefix, source_location location)
-{
-  gcc_assert(this->in_global_scope());
-
-  // Register the package.  Note that we might have already seen it in
-  // an earlier import.
-  Package* package = this->register_package(real_name, unique_prefix, location);
-
-  return this->package_->bindings()->add_package(alias, package);
-}
-
-// Register a package.  This package may or may not be imported.  This
-// returns the Package structure for the package, creating if it
-// necessary.
-
-Package*
-Gogo::register_package(const std::string& package_name,
-                      const std::string& unique_prefix,
-                      source_location location)
-{
-  gcc_assert(!unique_prefix.empty() && !package_name.empty());
-  std::string name = unique_prefix + '.' + package_name;
-  Package* package = NULL;
-  std::pair<Packages::iterator, bool> ins =
-    this->packages_.insert(std::make_pair(name, package));
-  if (!ins.second)
-    {
-      // We have seen this package name before.
-      package = ins.first->second;
-      gcc_assert(package != NULL);
-      gcc_assert(package->name() == package_name
-                && package->unique_prefix() == unique_prefix);
-      if (package->location() == UNKNOWN_LOCATION)
-       package->set_location(location);
-    }
-  else
-    {
-      // First time we have seen this package name.
-      package = new Package(package_name, unique_prefix, location);
-      gcc_assert(ins.first->second == NULL);
-      ins.first->second = package;
-    }
-
-  return package;
-}
-
-// Start compiling a function.
-
-Named_object*
-Gogo::start_function(const std::string& name, Function_type* type,
-                    bool add_method_to_type, source_location location)
-{
-  bool at_top_level = this->functions_.empty();
-
-  Block* block = new Block(NULL, location);
-
-  Function* enclosing = (at_top_level
-                        ? NULL
-                        : this->functions_.back().function->func_value());
-
-  Function* function = new Function(type, enclosing, block, location);
-
-  if (type->is_method())
-    {
-      const Typed_identifier* receiver = type->receiver();
-      Variable* this_param = new Variable(receiver->type(), NULL, false,
-                                         true, true, location);
-      std::string name = receiver->name();
-      if (name.empty())
-       {
-         // We need to give receivers a name since they wind up in
-         // DECL_ARGUMENTS.  FIXME.
-         static unsigned int count;
-         char buf[50];
-         snprintf(buf, sizeof buf, "r.%u", count);
-         ++count;
-         name = buf;
-       }
-      block->bindings()->add_variable(name, NULL, this_param);
-    }
-
-  const Typed_identifier_list* parameters = type->parameters();
-  bool is_varargs = type->is_varargs();
-  if (parameters != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = parameters->begin();
-          p != parameters->end();
-          ++p)
-       {
-         Variable* param = new Variable(p->type(), NULL, false, true, false,
-                                        location);
-         if (is_varargs && p + 1 == parameters->end())
-           param->set_is_varargs_parameter();
-
-         std::string name = p->name();
-         if (name.empty() || Gogo::is_sink_name(name))
-           {
-             // We need to give parameters a name since they wind up
-             // in DECL_ARGUMENTS.  FIXME.
-             static unsigned int count;
-             char buf[50];
-             snprintf(buf, sizeof buf, "p.%u", count);
-             ++count;
-             name = buf;
-           }
-         block->bindings()->add_variable(name, NULL, param);
-       }
-    }
-
-  function->create_named_result_variables(this);
-
-  const std::string* pname;
-  std::string nested_name;
-  bool is_init = false;
-  if (Gogo::unpack_hidden_name(name) == "init" && !type->is_method())
-    {
-      if ((type->parameters() != NULL && !type->parameters()->empty())
-         || (type->results() != NULL && !type->results()->empty()))
-       error_at(location,
-                "func init must have no arguments and no return values");
-      // There can be multiple "init" functions, so give them each a
-      // different name.
-      static int init_count;
-      char buf[30];
-      snprintf(buf, sizeof buf, ".$init%d", init_count);
-      ++init_count;
-      nested_name = buf;
-      pname = &nested_name;
-      is_init = true;
-    }
-  else if (!name.empty())
-    pname = &name;
-  else
-    {
-      // Invent a name for a nested function.
-      static int nested_count;
-      char buf[30];
-      snprintf(buf, sizeof buf, ".$nested%d", nested_count);
-      ++nested_count;
-      nested_name = buf;
-      pname = &nested_name;
-    }
-
-  Named_object* ret;
-  if (Gogo::is_sink_name(*pname))
-    {
-      static int sink_count;
-      char buf[30];
-      snprintf(buf, sizeof buf, ".$sink%d", sink_count);
-      ++sink_count;
-      ret = Named_object::make_function(buf, NULL, function);
-    }
-  else if (!type->is_method())
-    {
-      ret = this->package_->bindings()->add_function(*pname, NULL, function);
-      if (!ret->is_function() || ret->func_value() != function)
-       {
-         // Redefinition error.  Invent a name to avoid knockon
-         // errors.
-         static int redefinition_count;
-         char buf[30];
-         snprintf(buf, sizeof buf, ".$redefined%d", redefinition_count);
-         ++redefinition_count;
-         ret = this->package_->bindings()->add_function(buf, NULL, function);
-       }
-    }
-  else
-    {
-      if (!add_method_to_type)
-       ret = Named_object::make_function(name, NULL, function);
-      else
-       {
-         gcc_assert(at_top_level);
-         Type* rtype = type->receiver()->type();
-
-         // We want to look through the pointer created by the
-         // parser, without getting an error if the type is not yet
-         // defined.
-         if (rtype->classification() == Type::TYPE_POINTER)
-           rtype = rtype->points_to();
-
-         if (rtype->is_error_type())
-           ret = Named_object::make_function(name, NULL, function);
-         else if (rtype->named_type() != NULL)
-           {
-             ret = rtype->named_type()->add_method(name, function);
-             if (!ret->is_function())
-               {
-                 // Redefinition error.
-                 ret = Named_object::make_function(name, NULL, function);
-               }
-           }
-         else if (rtype->forward_declaration_type() != NULL)
-           {
-             Named_object* type_no =
-               rtype->forward_declaration_type()->named_object();
-             if (type_no->is_unknown())
-               {
-                 // If we are seeing methods it really must be a
-                 // type.  Declare it as such.  An alternative would
-                 // be to support lists of methods for unknown
-                 // expressions.  Either way the error messages if
-                 // this is not a type are going to get confusing.
-                 Named_object* declared =
-                   this->declare_package_type(type_no->name(),
-                                              type_no->location());
-                 gcc_assert(declared
-                            == type_no->unknown_value()->real_named_object());
-               }
-             ret = rtype->forward_declaration_type()->add_method(name,
-                                                                 function);
-           }
-         else
-           gcc_unreachable();
-       }
-      this->package_->bindings()->add_method(ret);
-    }
-
-  this->functions_.resize(this->functions_.size() + 1);
-  Open_function& of(this->functions_.back());
-  of.function = ret;
-  of.blocks.push_back(block);
-
-  if (is_init)
-    {
-      this->init_functions_.push_back(ret);
-      this->need_init_fn_ = true;
-    }
-
-  return ret;
-}
-
-// Finish compiling a function.
-
-void
-Gogo::finish_function(source_location location)
-{
-  this->finish_block(location);
-  gcc_assert(this->functions_.back().blocks.empty());
-  this->functions_.pop_back();
-}
-
-// Return the current function.
-
-Named_object*
-Gogo::current_function() const
-{
-  gcc_assert(!this->functions_.empty());
-  return this->functions_.back().function;
-}
-
-// Start a new block.
-
-void
-Gogo::start_block(source_location location)
-{
-  gcc_assert(!this->functions_.empty());
-  Block* block = new Block(this->current_block(), location);
-  this->functions_.back().blocks.push_back(block);
-}
-
-// Finish a block.
-
-Block*
-Gogo::finish_block(source_location location)
-{
-  gcc_assert(!this->functions_.empty());
-  gcc_assert(!this->functions_.back().blocks.empty());
-  Block* block = this->functions_.back().blocks.back();
-  this->functions_.back().blocks.pop_back();
-  block->set_end_location(location);
-  return block;
-}
-
-// Add an unknown name.
-
-Named_object*
-Gogo::add_unknown_name(const std::string& name, source_location location)
-{
-  return this->package_->bindings()->add_unknown_name(name, location);
-}
-
-// Declare a function.
-
-Named_object*
-Gogo::declare_function(const std::string& name, Function_type* type,
-                      source_location location)
-{
-  if (!type->is_method())
-    return this->current_bindings()->add_function_declaration(name, NULL, type,
-                                                             location);
-  else
-    {
-      // We don't bother to add this to the list of global
-      // declarations.
-      Type* rtype = type->receiver()->type();
-
-      // We want to look through the pointer created by the
-      // parser, without getting an error if the type is not yet
-      // defined.
-      if (rtype->classification() == Type::TYPE_POINTER)
-       rtype = rtype->points_to();
-
-      if (rtype->is_error_type())
-       return NULL;
-      else if (rtype->named_type() != NULL)
-       return rtype->named_type()->add_method_declaration(name, NULL, type,
-                                                          location);
-      else if (rtype->forward_declaration_type() != NULL)
-       {
-         Forward_declaration_type* ftype = rtype->forward_declaration_type();
-         return ftype->add_method_declaration(name, type, location);
-       }
-      else
-       gcc_unreachable();
-    }
-}
-
-// Add a label definition.
-
-Label*
-Gogo::add_label_definition(const std::string& label_name,
-                          source_location location)
-{
-  gcc_assert(!this->functions_.empty());
-  Function* func = this->functions_.back().function->func_value();
-  Label* label = func->add_label_definition(label_name, location);
-  this->add_statement(Statement::make_label_statement(label, location));
-  return label;
-}
-
-// Add a label reference.
-
-Label*
-Gogo::add_label_reference(const std::string& label_name)
-{
-  gcc_assert(!this->functions_.empty());
-  Function* func = this->functions_.back().function->func_value();
-  return func->add_label_reference(label_name);
-}
-
-// Add a statement.
-
-void
-Gogo::add_statement(Statement* statement)
-{
-  gcc_assert(!this->functions_.empty()
-            && !this->functions_.back().blocks.empty());
-  this->functions_.back().blocks.back()->add_statement(statement);
-}
-
-// Add a block.
-
-void
-Gogo::add_block(Block* block, source_location location)
-{
-  gcc_assert(!this->functions_.empty()
-            && !this->functions_.back().blocks.empty());
-  Statement* statement = Statement::make_block_statement(block, location);
-  this->functions_.back().blocks.back()->add_statement(statement);
-}
-
-// Add a constant.
-
-Named_object*
-Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
-                  int iota_value)
-{
-  return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
-}
-
-// Add a type.
-
-void
-Gogo::add_type(const std::string& name, Type* type, source_location location)
-{
-  Named_object* no = this->current_bindings()->add_type(name, NULL, type,
-                                                       location);
-  if (!this->in_global_scope() && no->is_type())
-    no->type_value()->set_in_function(this->functions_.back().function);
-}
-
-// Add a named type.
-
-void
-Gogo::add_named_type(Named_type* type)
-{
-  gcc_assert(this->in_global_scope());
-  this->current_bindings()->add_named_type(type);
-}
-
-// Declare a type.
-
-Named_object*
-Gogo::declare_type(const std::string& name, source_location location)
-{
-  Bindings* bindings = this->current_bindings();
-  Named_object* no = bindings->add_type_declaration(name, NULL, location);
-  if (!this->in_global_scope() && no->is_type_declaration())
-    {
-      Named_object* f = this->functions_.back().function;
-      no->type_declaration_value()->set_in_function(f);
-    }
-  return no;
-}
-
-// Declare a type at the package level.
-
-Named_object*
-Gogo::declare_package_type(const std::string& name, source_location location)
-{
-  return this->package_->bindings()->add_type_declaration(name, NULL, location);
-}
-
-// Define a type which was already declared.
-
-void
-Gogo::define_type(Named_object* no, Named_type* type)
-{
-  this->current_bindings()->define_type(no, type);
-}
-
-// Add a variable.
-
-Named_object*
-Gogo::add_variable(const std::string& name, Variable* variable)
-{
-  Named_object* no = this->current_bindings()->add_variable(name, NULL,
-                                                           variable);
-
-  // In a function the middle-end wants to see a DECL_EXPR node.
-  if (no != NULL
-      && no->is_variable()
-      && !no->var_value()->is_parameter()
-      && !this->functions_.empty())
-    this->add_statement(Statement::make_variable_declaration(no));
-
-  return no;
-}
-
-// Add a sink--a reference to the blank identifier _.
-
-Named_object*
-Gogo::add_sink()
-{
-  return Named_object::make_sink();
-}
-
-// Add a named object.
-
-void
-Gogo::add_named_object(Named_object* no)
-{
-  this->current_bindings()->add_named_object(no);
-}
-
-// Record that we've seen an interface type.
-
-void
-Gogo::record_interface_type(Interface_type* itype)
-{
-  this->interface_types_.push_back(itype);
-}
-
-// Return a name for a thunk object.
-
-std::string
-Gogo::thunk_name()
-{
-  static int thunk_count;
-  char thunk_name[50];
-  snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
-  ++thunk_count;
-  return thunk_name;
-}
-
-// Return whether a function is a thunk.
-
-bool
-Gogo::is_thunk(const Named_object* no)
-{
-  return no->name().compare(0, 6, "$thunk") == 0;
-}
-
-// Define the global names.  We do this only after parsing all the
-// input files, because the program might define the global names
-// itself.
-
-void
-Gogo::define_global_names()
-{
-  for (Bindings::const_declarations_iterator p =
-        this->globals_->begin_declarations();
-       p != this->globals_->end_declarations();
-       ++p)
-    {
-      Named_object* global_no = p->second;
-      std::string name(Gogo::pack_hidden_name(global_no->name(), false));
-      Named_object* no = this->package_->bindings()->lookup(name);
-      if (no == NULL)
-       continue;
-      no = no->resolve();
-      if (no->is_type_declaration())
-       {
-         if (global_no->is_type())
-           {
-             if (no->type_declaration_value()->has_methods())
-               error_at(no->location(),
-                        "may not define methods for global type");
-             no->set_type_value(global_no->type_value());
-           }
-         else
-           {
-             error_at(no->location(), "expected type");
-             Type* errtype = Type::make_error_type();
-             Named_object* err = Named_object::make_type("error", NULL,
-                                                         errtype,
-                                                         BUILTINS_LOCATION);
-             no->set_type_value(err->type_value());
-           }
-       }
-      else if (no->is_unknown())
-       no->unknown_value()->set_real_named_object(global_no);
-    }
-}
-
-// Clear out names in file scope.
-
-void
-Gogo::clear_file_scope()
-{
-  this->package_->bindings()->clear_file_scope();
-
-  // Warn about packages which were imported but not used.
-  for (Packages::iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    {
-      Package* package = p->second;
-      if (package != this->package_
-         && package->is_imported()
-         && !package->used()
-         && !package->uses_sink_alias()
-         && !saw_errors())
-       error_at(package->location(), "imported and not used: %s",
-                Gogo::message_name(package->name()).c_str());
-      package->clear_is_imported();
-      package->clear_uses_sink_alias();
-      package->clear_used();
-    }
-}
-
-// Traverse the tree.
-
-void
-Gogo::traverse(Traverse* traverse)
-{
-  // Traverse the current package first for consistency.  The other
-  // packages will only contain imported types, constants, and
-  // declarations.
-  if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
-    return;
-  for (Packages::const_iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    {
-      if (p->second != this->package_)
-       {
-         if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
-           break;
-       }
-    }
-}
-
-// Traversal class used to verify types.
-
-class Verify_types : public Traverse
-{
- public:
-  Verify_types()
-    : Traverse(traverse_types)
-  { }
-
-  int
-  type(Type*);
-};
-
-// Verify that a type is correct.
-
-int
-Verify_types::type(Type* t)
-{
-  if (!t->verify())
-    return TRAVERSE_SKIP_COMPONENTS;
-  return TRAVERSE_CONTINUE;
-}
-
-// Verify that all types are correct.
-
-void
-Gogo::verify_types()
-{
-  Verify_types traverse;
-  this->traverse(&traverse);
-}
-
-// Traversal class used to lower parse tree.
-
-class Lower_parse_tree : public Traverse
-{
- public:
-  Lower_parse_tree(Gogo* gogo, Named_object* function)
-    : Traverse(traverse_variables
-              | traverse_constants
-              | traverse_functions
-              | traverse_statements
-              | traverse_expressions),
-      gogo_(gogo), function_(function), iota_value_(-1)
-  { }
-
-  int
-  variable(Named_object*);
-
-  int
-  constant(Named_object*, bool);
-
-  int
-  function(Named_object*);
-
-  int
-  statement(Block*, size_t* pindex, Statement*);
-
-  int
-  expression(Expression**);
-
- private:
-  // General IR.
-  Gogo* gogo_;
-  // The function we are traversing.
-  Named_object* function_;
-  // Value to use for the predeclared constant iota.
-  int iota_value_;
-};
-
-// Lower variables.  We handle variables specially to break loops in
-// which a variable initialization expression refers to itself.  The
-// loop breaking is in lower_init_expression.
-
-int
-Lower_parse_tree::variable(Named_object* no)
-{
-  if (no->is_variable())
-    no->var_value()->lower_init_expression(this->gogo_, this->function_);
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower constants.  We handle constants specially so that we can set
-// the right value for the predeclared constant iota.  This works in
-// conjunction with the way we lower Const_expression objects.
-
-int
-Lower_parse_tree::constant(Named_object* no, bool)
-{
-  Named_constant* nc = no->const_value();
-
-  // Don't get into trouble if the constant's initializer expression
-  // refers to the constant itself.
-  if (nc->lowering())
-    return TRAVERSE_CONTINUE;
-  nc->set_lowering();
-
-  gcc_assert(this->iota_value_ == -1);
-  this->iota_value_ = nc->iota_value();
-  nc->traverse_expression(this);
-  this->iota_value_ = -1;
-
-  nc->clear_lowering();
-
-  // We will traverse the expression a second time, but that will be
-  // fast.
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower function closure types.  Record the function while lowering
-// it, so that we can pass it down when lowering an expression.
-
-int
-Lower_parse_tree::function(Named_object* no)
-{
-  no->func_value()->set_closure_type();
-
-  gcc_assert(this->function_ == NULL);
-  this->function_ = no;
-  int t = no->func_value()->traverse(this);
-  this->function_ = NULL;
-
-  if (t == TRAVERSE_EXIT)
-    return t;
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Lower statement parse trees.
-
-int
-Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
-{
-  // Lower the expressions first.
-  int t = sorig->traverse_contents(this);
-  if (t == TRAVERSE_EXIT)
-    return t;
-
-  // Keep lowering until nothing changes.
-  Statement* s = sorig;
-  while (true)
-    {
-      Statement* snew = s->lower(this->gogo_, this->function_, block);
-      if (snew == s)
-       break;
-      s = snew;
-      t = s->traverse_contents(this);
-      if (t == TRAVERSE_EXIT)
-       return t;
-    }
-
-  if (s != sorig)
-    block->replace_statement(*pindex, s);
-
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Lower expression parse trees.
-
-int
-Lower_parse_tree::expression(Expression** pexpr)
-{
-  // We have to lower all subexpressions first, so that we can get
-  // their type if necessary.  This is awkward, because we don't have
-  // a postorder traversal pass.
-  if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  // Keep lowering until nothing changes.
-  while (true)
-    {
-      Expression* e = *pexpr;
-      Expression* enew = e->lower(this->gogo_, this->function_,
-                                 this->iota_value_);
-      if (enew == e)
-       break;
-      *pexpr = enew;
-    }
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Lower the parse tree.  This is called after the parse is complete,
-// when all names should be resolved.
-
-void
-Gogo::lower_parse_tree()
-{
-  Lower_parse_tree lower_parse_tree(this, NULL);
-  this->traverse(&lower_parse_tree);
-}
-
-// Lower a block.
-
-void
-Gogo::lower_block(Named_object* function, Block* block)
-{
-  Lower_parse_tree lower_parse_tree(this, function);
-  block->traverse(&lower_parse_tree);
-}
-
-// Lower an expression.
-
-void
-Gogo::lower_expression(Named_object* function, Expression** pexpr)
-{
-  Lower_parse_tree lower_parse_tree(this, function);
-  lower_parse_tree.expression(pexpr);
-}
-
-// Lower a constant.  This is called when lowering a reference to a
-// constant.  We have to make sure that the constant has already been
-// lowered.
-
-void
-Gogo::lower_constant(Named_object* no)
-{
-  gcc_assert(no->is_const());
-  Lower_parse_tree lower(this, NULL);
-  lower.constant(no, false);
-}
-
-// Look for interface types to finalize methods of inherited
-// interfaces.
-
-class Finalize_methods : public Traverse
-{
- public:
-  Finalize_methods(Gogo* gogo)
-    : Traverse(traverse_types),
-      gogo_(gogo)
-  { }
-
-  int
-  type(Type*);
-
- private:
-  Gogo* gogo_;
-};
-
-// Finalize the methods of an interface type.
-
-int
-Finalize_methods::type(Type* t)
-{
-  // Check the classification so that we don't finalize the methods
-  // twice for a named interface type.
-  switch (t->classification())
-    {
-    case Type::TYPE_INTERFACE:
-      t->interface_type()->finalize_methods();
-      break;
-
-    case Type::TYPE_NAMED:
-      {
-       // We have to finalize the methods of the real type first.
-       // But if the real type is a struct type, then we only want to
-       // finalize the methods of the field types, not of the struct
-       // type itself.  We don't want to add methods to the struct,
-       // since it has a name.
-       Type* rt = t->named_type()->real_type();
-       if (rt->classification() != Type::TYPE_STRUCT)
-         {
-           if (Type::traverse(rt, this) == TRAVERSE_EXIT)
-             return TRAVERSE_EXIT;
-         }
-       else
-         {
-           if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
-             return TRAVERSE_EXIT;
-         }
-
-       t->named_type()->finalize_methods(this->gogo_);
-
-       return TRAVERSE_SKIP_COMPONENTS;
-      }
-
-    case Type::TYPE_STRUCT:
-      t->struct_type()->finalize_methods(this->gogo_);
-      break;
-
-    default:
-      break;
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Finalize method lists and build stub methods for types.
-
-void
-Gogo::finalize_methods()
-{
-  Finalize_methods finalize(this);
-  this->traverse(&finalize);
-}
-
-// Set types for unspecified variables and constants.
-
-void
-Gogo::determine_types()
-{
-  Bindings* bindings = this->current_bindings();
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_function())
-       (*p)->func_value()->determine_types();
-      else if ((*p)->is_variable())
-       (*p)->var_value()->determine_type();
-      else if ((*p)->is_const())
-       (*p)->const_value()->determine_type();
-
-      // See if a variable requires us to build an initialization
-      // function.  We know that we will see all global variables
-      // here.
-      if (!this->need_init_fn_ && (*p)->is_variable())
-       {
-         Variable* variable = (*p)->var_value();
-
-         // If this is a global variable which requires runtime
-         // initialization, we need an initialization function.
-         if (!variable->is_global())
-           ;
-         else if (variable->init() == NULL)
-           ;
-         else if (variable->type()->interface_type() != NULL)
-           this->need_init_fn_ = true;
-         else if (variable->init()->is_constant())
-           ;
-         else if (!variable->init()->is_composite_literal())
-           this->need_init_fn_ = true;
-         else if (variable->init()->is_nonconstant_composite_literal())
-           this->need_init_fn_ = true;
-
-         // If this is a global variable which holds a pointer value,
-         // then we need an initialization function to register it as a
-         // GC root.
-         if (variable->is_global() && variable->type()->has_pointer())
-           this->need_init_fn_ = true;
-       }
-    }
-
-  // Determine the types of constants in packages.
-  for (Packages::const_iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    p->second->determine_types();
-}
-
-// Traversal class used for type checking.
-
-class Check_types_traverse : public Traverse
-{
- public:
-  Check_types_traverse(Gogo* gogo)
-    : Traverse(traverse_variables
-              | traverse_constants
-              | traverse_statements
-              | traverse_expressions),
-      gogo_(gogo)
-  { }
-
-  int
-  variable(Named_object*);
-
-  int
-  constant(Named_object*, bool);
-
-  int
-  statement(Block*, size_t* pindex, Statement*);
-
-  int
-  expression(Expression**);
-
- private:
-  // General IR.
-  Gogo* gogo_;
-};
-
-// Check that a variable initializer has the right type.
-
-int
-Check_types_traverse::variable(Named_object* named_object)
-{
-  if (named_object->is_variable())
-    {
-      Variable* var = named_object->var_value();
-      Expression* init = var->init();
-      std::string reason;
-      if (init != NULL
-         && !Type::are_assignable(var->type(), init->type(), &reason))
-       {
-         if (reason.empty())
-           error_at(var->location(), "incompatible type in initialization");
-         else
-           error_at(var->location(),
-                    "incompatible type in initialization (%s)",
-                    reason.c_str());
-         var->clear_init();
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that a constant initializer has the right type.
-
-int
-Check_types_traverse::constant(Named_object* named_object, bool)
-{
-  Named_constant* constant = named_object->const_value();
-  Type* ctype = constant->type();
-  if (ctype->integer_type() == NULL
-      && ctype->float_type() == NULL
-      && ctype->complex_type() == NULL
-      && !ctype->is_boolean_type()
-      && !ctype->is_string_type())
-    {
-      if (!ctype->is_error_type())
-       error_at(constant->location(), "invalid constant type");
-      constant->set_error();
-    }
-  else if (!constant->expr()->is_constant())
-    {
-      error_at(constant->expr()->location(), "expression is not constant");
-      constant->set_error();
-    }
-  else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
-                                NULL))
-    {
-      error_at(constant->location(),
-              "initialization expression has wrong type");
-      constant->set_error();
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that types are valid in a statement.
-
-int
-Check_types_traverse::statement(Block*, size_t*, Statement* s)
-{
-  s->check_types(this->gogo_);
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that types are valid in an expression.
-
-int
-Check_types_traverse::expression(Expression** expr)
-{
-  (*expr)->check_types(this->gogo_);
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that types are valid.
-
-void
-Gogo::check_types()
-{
-  Check_types_traverse traverse(this);
-  this->traverse(&traverse);
-}
-
-// Check the types in a single block.
-
-void
-Gogo::check_types_in_block(Block* block)
-{
-  Check_types_traverse traverse(this);
-  block->traverse(&traverse);
-}
-
-// A traversal class used to find a single shortcut operator within an
-// expression.
-
-class Find_shortcut : public Traverse
-{
- public:
-  Find_shortcut()
-    : Traverse(traverse_blocks
-              | traverse_statements
-              | traverse_expressions),
-      found_(NULL)
-  { }
-
-  // A pointer to the expression which was found, or NULL if none was
-  // found.
-  Expression**
-  found() const
-  { return this->found_; }
-
- protected:
-  int
-  block(Block*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  statement(Block*, size_t*, Statement*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  expression(Expression**);
-
- private:
-  Expression** found_;
-};
-
-// Find a shortcut expression.
-
-int
-Find_shortcut::expression(Expression** pexpr)
-{
-  Expression* expr = *pexpr;
-  Binary_expression* be = expr->binary_expression();
-  if (be == NULL)
-    return TRAVERSE_CONTINUE;
-  Operator op = be->op();
-  if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
-    return TRAVERSE_CONTINUE;
-  gcc_assert(this->found_ == NULL);
-  this->found_ = pexpr;
-  return TRAVERSE_EXIT;
-}
-
-// A traversal class used to turn shortcut operators into explicit if
-// statements.
-
-class Shortcuts : public Traverse
-{
- public:
-  Shortcuts(Gogo* gogo)
-    : Traverse(traverse_variables
-              | traverse_statements),
-      gogo_(gogo)
-  { }
-
- protected:
-  int
-  variable(Named_object*);
-
-  int
-  statement(Block*, size_t*, Statement*);
-
- private:
-  // Convert a shortcut operator.
-  Statement*
-  convert_shortcut(Block* enclosing, Expression** pshortcut);
-
-  // The IR.
-  Gogo* gogo_;
-};
-
-// Remove shortcut operators in a single statement.
-
-int
-Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
-{
-  // FIXME: This approach doesn't work for switch statements, because
-  // we add the new statements before the whole switch when we need to
-  // instead add them just before the switch expression.  The right
-  // fix is probably to lower switch statements with nonconstant cases
-  // to a series of conditionals.
-  if (s->switch_statement() != NULL)
-    return TRAVERSE_CONTINUE;
-
-  while (true)
-    {
-      Find_shortcut find_shortcut;
-
-      // If S is a variable declaration, then ordinary traversal won't
-      // do anything.  We want to explicitly traverse the
-      // initialization expression if there is one.
-      Variable_declaration_statement* vds = s->variable_declaration_statement();
-      Expression* init = NULL;
-      if (vds == NULL)
-       s->traverse_contents(&find_shortcut);
-      else
-       {
-         init = vds->var()->var_value()->init();
-         if (init == NULL)
-           return TRAVERSE_CONTINUE;
-         init->traverse(&init, &find_shortcut);
-       }
-      Expression** pshortcut = find_shortcut.found();
-      if (pshortcut == NULL)
-       return TRAVERSE_CONTINUE;
-
-      Statement* snew = this->convert_shortcut(block, pshortcut);
-      block->insert_statement_before(*pindex, snew);
-      ++*pindex;
-
-      if (pshortcut == &init)
-       vds->var()->var_value()->set_init(init);
-    }
-}
-
-// Remove shortcut operators in the initializer of a global variable.
-
-int
-Shortcuts::variable(Named_object* no)
-{
-  if (no->is_result_variable())
-    return TRAVERSE_CONTINUE;
-  Variable* var = no->var_value();
-  Expression* init = var->init();
-  if (!var->is_global() || init == NULL)
-    return TRAVERSE_CONTINUE;
-
-  while (true)
-    {
-      Find_shortcut find_shortcut;
-      init->traverse(&init, &find_shortcut);
-      Expression** pshortcut = find_shortcut.found();
-      if (pshortcut == NULL)
-       return TRAVERSE_CONTINUE;
-
-      Statement* snew = this->convert_shortcut(NULL, pshortcut);
-      var->add_preinit_statement(this->gogo_, snew);
-      if (pshortcut == &init)
-       var->set_init(init);
-    }
-}
-
-// Given an expression which uses a shortcut operator, return a
-// statement which implements it, and update *PSHORTCUT accordingly.
-
-Statement*
-Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
-{
-  Binary_expression* shortcut = (*pshortcut)->binary_expression();
-  Expression* left = shortcut->left();
-  Expression* right = shortcut->right();
-  source_location loc = shortcut->location();
-
-  Block* retblock = new Block(enclosing, loc);
-  retblock->set_end_location(loc);
-
-  Temporary_statement* ts = Statement::make_temporary(Type::lookup_bool_type(),
-                                                     left, loc);
-  retblock->add_statement(ts);
-
-  Block* block = new Block(retblock, loc);
-  block->set_end_location(loc);
-  Expression* tmpref = Expression::make_temporary_reference(ts, loc);
-  Statement* assign = Statement::make_assignment(tmpref, right, loc);
-  block->add_statement(assign);
-
-  Expression* cond = Expression::make_temporary_reference(ts, loc);
-  if (shortcut->binary_expression()->op() == OPERATOR_OROR)
-    cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
-
-  Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
-                                                        loc);
-  retblock->add_statement(if_statement);
-
-  *pshortcut = Expression::make_temporary_reference(ts, loc);
-
-  delete shortcut;
-
-  // Now convert any shortcut operators in LEFT and RIGHT.
-  Shortcuts shortcuts(this->gogo_);
-  retblock->traverse(&shortcuts);
-
-  return Statement::make_block_statement(retblock, loc);
-}
-
-// Turn shortcut operators into explicit if statements.  Doing this
-// considerably simplifies the order of evaluation rules.
-
-void
-Gogo::remove_shortcuts()
-{
-  Shortcuts shortcuts(this);
-  this->traverse(&shortcuts);
-}
-
-// A traversal class which finds all the expressions which must be
-// evaluated in order within a statement or larger expression.  This
-// is used to implement the rules about order of evaluation.
-
-class Find_eval_ordering : public Traverse
-{
- private:
-  typedef std::vector<Expression**> Expression_pointers;
-
- public:
-  Find_eval_ordering()
-    : Traverse(traverse_blocks
-              | traverse_statements
-              | traverse_expressions),
-      exprs_()
-  { }
-
-  size_t
-  size() const
-  { return this->exprs_.size(); }
-
-  typedef Expression_pointers::const_iterator const_iterator;
-
-  const_iterator
-  begin() const
-  { return this->exprs_.begin(); }
-
-  const_iterator
-  end() const
-  { return this->exprs_.end(); }
-
- protected:
-  int
-  block(Block*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  statement(Block*, size_t*, Statement*)
-  { return TRAVERSE_SKIP_COMPONENTS; }
-
-  int
-  expression(Expression**);
-
- private:
-  // A list of pointers to expressions with side-effects.
-  Expression_pointers exprs_;
-};
-
-// If an expression must be evaluated in order, put it on the list.
-
-int
-Find_eval_ordering::expression(Expression** expression_pointer)
-{
-  // We have to look at subexpressions before this one.
-  if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if ((*expression_pointer)->must_eval_in_order())
-    this->exprs_.push_back(expression_pointer);
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// A traversal class for ordering evaluations.
-
-class Order_eval : public Traverse
-{
- public:
-  Order_eval(Gogo* gogo)
-    : Traverse(traverse_variables
-              | traverse_statements),
-      gogo_(gogo)
-  { }
-
-  int
-  variable(Named_object*);
-
-  int
-  statement(Block*, size_t*, Statement*);
-
- private:
-  // The IR.
-  Gogo* gogo_;
-};
-
-// Implement the order of evaluation rules for a statement.
-
-int
-Order_eval::statement(Block* block, size_t* pindex, Statement* s)
-{
-  // FIXME: This approach doesn't work for switch statements, because
-  // we add the new statements before the whole switch when we need to
-  // instead add them just before the switch expression.  The right
-  // fix is probably to lower switch statements with nonconstant cases
-  // to a series of conditionals.
-  if (s->switch_statement() != NULL)
-    return TRAVERSE_CONTINUE;
-
-  Find_eval_ordering find_eval_ordering;
-
-  // If S is a variable declaration, then ordinary traversal won't do
-  // anything.  We want to explicitly traverse the initialization
-  // expression if there is one.
-  Variable_declaration_statement* vds = s->variable_declaration_statement();
-  Expression* init = NULL;
-  Expression* orig_init = NULL;
-  if (vds == NULL)
-    s->traverse_contents(&find_eval_ordering);
-  else
-    {
-      init = vds->var()->var_value()->init();
-      if (init == NULL)
-       return TRAVERSE_CONTINUE;
-      orig_init = init;
-
-      // It might seem that this could be
-      // init->traverse_subexpressions.  Unfortunately that can fail
-      // in a case like
-      //   var err os.Error
-      //   newvar, err := call(arg())
-      // Here newvar will have an init of call result 0 of
-      // call(arg()).  If we only traverse subexpressions, we will
-      // only find arg(), and we won't bother to move anything out.
-      // Then we get to the assignment to err, we will traverse the
-      // whole statement, and this time we will find both call() and
-      // arg(), and so we will move them out.  This will cause them to
-      // be put into temporary variables before the assignment to err
-      // but after the declaration of newvar.  To avoid that problem,
-      // we traverse the entire expression here.
-      Expression::traverse(&init, &find_eval_ordering);
-    }
-
-  if (find_eval_ordering.size() <= 1)
-    {
-      // If there is only one expression with a side-effect, we can
-      // leave it in place.
-      return TRAVERSE_CONTINUE;
-    }
-
-  bool is_thunk = s->thunk_statement() != NULL;
-  for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
-       p != find_eval_ordering.end();
-       ++p)
-    {
-      Expression** pexpr = *p;
-
-      // The last expression in a thunk will be the call passed to go
-      // or defer, which we must not evaluate early.
-      if (is_thunk && p + 1 == find_eval_ordering.end())
-       break;
-
-      source_location loc = (*pexpr)->location();
-      Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
-      block->insert_statement_before(*pindex, ts);
-      ++*pindex;
-
-      *pexpr = Expression::make_temporary_reference(ts, loc);
-    }
-
-  if (init != orig_init)
-    vds->var()->var_value()->set_init(init);
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Implement the order of evaluation rules for the initializer of a
-// global variable.
-
-int
-Order_eval::variable(Named_object* no)
-{
-  if (no->is_result_variable())
-    return TRAVERSE_CONTINUE;
-  Variable* var = no->var_value();
-  Expression* init = var->init();
-  if (!var->is_global() || init == NULL)
-    return TRAVERSE_CONTINUE;
-
-  Find_eval_ordering find_eval_ordering;
-  init->traverse_subexpressions(&find_eval_ordering);
-
-  if (find_eval_ordering.size() <= 1)
-    {
-      // If there is only one expression with a side-effect, we can
-      // leave it in place.
-      return TRAVERSE_SKIP_COMPONENTS;
-    }
-
-  for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
-       p != find_eval_ordering.end();
-       ++p)
-    {
-      Expression** pexpr = *p;
-      source_location loc = (*pexpr)->location();
-      Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
-      var->add_preinit_statement(this->gogo_, ts);
-      *pexpr = Expression::make_temporary_reference(ts, loc);
-    }
-
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Use temporary variables to implement the order of evaluation rules.
-
-void
-Gogo::order_evaluations()
-{
-  Order_eval order_eval(this);
-  this->traverse(&order_eval);
-}
-
-// Traversal to convert calls to the predeclared recover function to
-// pass in an argument indicating whether it can recover from a panic
-// or not.
-
-class Convert_recover : public Traverse
-{
- public:
-  Convert_recover(Named_object* arg)
-    : Traverse(traverse_expressions),
-      arg_(arg)
-  { }
-
- protected:
-  int
-  expression(Expression**);
-
- private:
-  // The argument to pass to the function.
-  Named_object* arg_;
-};
-
-// Convert calls to recover.
-
-int
-Convert_recover::expression(Expression** pp)
-{
-  Call_expression* ce = (*pp)->call_expression();
-  if (ce != NULL && ce->is_recover_call())
-    ce->set_recover_arg(Expression::make_var_reference(this->arg_,
-                                                      ce->location()));
-  return TRAVERSE_CONTINUE;
-}
-
-// Traversal for build_recover_thunks.
-
-class Build_recover_thunks : public Traverse
-{
- public:
-  Build_recover_thunks(Gogo* gogo)
-    : Traverse(traverse_functions),
-      gogo_(gogo)
-  { }
-
-  int
-  function(Named_object*);
-
- private:
-  Expression*
-  can_recover_arg(source_location);
-
-  // General IR.
-  Gogo* gogo_;
-};
-
-// If this function calls recover, turn it into a thunk.
-
-int
-Build_recover_thunks::function(Named_object* orig_no)
-{
-  Function* orig_func = orig_no->func_value();
-  if (!orig_func->calls_recover()
-      || orig_func->is_recover_thunk()
-      || orig_func->has_recover_thunk())
-    return TRAVERSE_CONTINUE;
-
-  Gogo* gogo = this->gogo_;
-  source_location location = orig_func->location();
-
-  static int count;
-  char buf[50];
-
-  Function_type* orig_fntype = orig_func->type();
-  Typed_identifier_list* new_params = new Typed_identifier_list();
-  std::string receiver_name;
-  if (orig_fntype->is_method())
-    {
-      const Typed_identifier* receiver = orig_fntype->receiver();
-      snprintf(buf, sizeof buf, "rt.%u", count);
-      ++count;
-      receiver_name = buf;
-      new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
-                                            receiver->location()));
-    }
-  const Typed_identifier_list* orig_params = orig_fntype->parameters();
-  if (orig_params != NULL && !orig_params->empty())
-    {
-      for (Typed_identifier_list::const_iterator p = orig_params->begin();
-          p != orig_params->end();
-          ++p)
-       {
-         snprintf(buf, sizeof buf, "pt.%u", count);
-         ++count;
-         new_params->push_back(Typed_identifier(buf, p->type(),
-                                                p->location()));
-       }
-    }
-  snprintf(buf, sizeof buf, "pr.%u", count);
-  ++count;
-  std::string can_recover_name = buf;
-  new_params->push_back(Typed_identifier(can_recover_name,
-                                        Type::lookup_bool_type(),
-                                        orig_fntype->location()));
-
-  const Typed_identifier_list* orig_results = orig_fntype->results();
-  Typed_identifier_list* new_results;
-  if (orig_results == NULL || orig_results->empty())
-    new_results = NULL;
-  else
-    {
-      new_results = new Typed_identifier_list();
-      for (Typed_identifier_list::const_iterator p = orig_results->begin();
-          p != orig_results->end();
-          ++p)
-       new_results->push_back(Typed_identifier("", p->type(), p->location()));
-    }
-
-  Function_type *new_fntype = Type::make_function_type(NULL, new_params,
-                                                      new_results,
-                                                      orig_fntype->location());
-  if (orig_fntype->is_varargs())
-    new_fntype->set_is_varargs();
-
-  std::string name = orig_no->name() + "$recover";
-  Named_object *new_no = gogo->start_function(name, new_fntype, false,
-                                             location);
-  Function *new_func = new_no->func_value();
-  if (orig_func->enclosing() != NULL)
-    new_func->set_enclosing(orig_func->enclosing());
-
-  // We build the code for the original function attached to the new
-  // function, and then swap the original and new function bodies.
-  // This means that existing references to the original function will
-  // then refer to the new function.  That makes this code a little
-  // confusing, in that the reference to NEW_NO really refers to the
-  // other function, not the one we are building.
-
-  Expression* closure = NULL;
-  if (orig_func->needs_closure())
-    {
-      Named_object* orig_closure_no = orig_func->closure_var();
-      Variable* orig_closure_var = orig_closure_no->var_value();
-      Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
-                                      true, false, location);
-      snprintf(buf, sizeof buf, "closure.%u", count);
-      ++count;
-      Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
-                                                                new_var);
-      new_func->set_closure_var(new_closure_no);
-      closure = Expression::make_var_reference(new_closure_no, location);
-    }
-
-  Expression* fn = Expression::make_func_reference(new_no, closure, location);
-
-  Expression_list* args = new Expression_list();
-  if (new_params != NULL)
-    {
-      // Note that we skip the last parameter, which is the boolean
-      // indicating whether recover can succed.
-      for (Typed_identifier_list::const_iterator p = new_params->begin();
-          p + 1 != new_params->end();
-          ++p)
-       {
-         Named_object* p_no = gogo->lookup(p->name(), NULL);
-         gcc_assert(p_no != NULL
-                    && p_no->is_variable()
-                    && p_no->var_value()->is_parameter());
-         args->push_back(Expression::make_var_reference(p_no, location));
-       }
-    }
-  args->push_back(this->can_recover_arg(location));
-
-  Call_expression* call = Expression::make_call(fn, args, false, location);
-
-  Statement* s;
-  if (orig_fntype->results() == NULL || orig_fntype->results()->empty())
-    s = Statement::make_statement(call);
-  else
-    {
-      Expression_list* vals = new Expression_list();
-      size_t rc = orig_fntype->results()->size();
-      if (rc == 1)
-       vals->push_back(call);
-      else
-       {
-         for (size_t i = 0; i < rc; ++i)
-           vals->push_back(Expression::make_call_result(call, i));
-       }
-      s = Statement::make_return_statement(new_func->type()->results(),
-                                          vals, location);
-    }
-  s->determine_types();
-  gogo->add_statement(s);
-
-  gogo->finish_function(location);
-
-  // Swap the function bodies and types.
-  new_func->swap_for_recover(orig_func);
-  orig_func->set_is_recover_thunk();
-  new_func->set_calls_recover();
-  new_func->set_has_recover_thunk();
-
-  Bindings* orig_bindings = orig_func->block()->bindings();
-  Bindings* new_bindings = new_func->block()->bindings();
-  if (orig_fntype->is_method())
-    {
-      // We changed the receiver to be a regular parameter.  We have
-      // to update the binding accordingly in both functions.
-      Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
-      gcc_assert(orig_rec_no != NULL
-                && orig_rec_no->is_variable()
-                && !orig_rec_no->var_value()->is_receiver());
-      orig_rec_no->var_value()->set_is_receiver();
-
-      const std::string& new_receiver_name(orig_fntype->receiver()->name());
-      Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
-      if (new_rec_no == NULL)
-       gcc_assert(saw_errors());
-      else
-       {
-         gcc_assert(new_rec_no->is_variable()
-                    && new_rec_no->var_value()->is_receiver());
-         new_rec_no->var_value()->set_is_not_receiver();
-       }
-    }
-
-  // Because we flipped blocks but not types, the can_recover
-  // parameter appears in the (now) old bindings as a parameter.
-  // Change it to a local variable, whereupon it will be discarded.
-  Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
-  gcc_assert(can_recover_no != NULL
-            && can_recover_no->is_variable()
-            && can_recover_no->var_value()->is_parameter());
-  orig_bindings->remove_binding(can_recover_no);
-
-  // Add the can_recover argument to the (now) new bindings, and
-  // attach it to any recover statements.
-  Variable* can_recover_var = new Variable(Type::lookup_bool_type(), NULL,
-                                          false, true, false, location);
-  can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
-                                             can_recover_var);
-  Convert_recover convert_recover(can_recover_no);
-  new_func->traverse(&convert_recover);
-
-  // Update the function pointers in any named results.
-  new_func->update_named_result_variables();
-  orig_func->update_named_result_variables();
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Return the expression to pass for the .can_recover parameter to the
-// new function.  This indicates whether a call to recover may return
-// non-nil.  The expression is
-// __go_can_recover(__builtin_return_address()).
-
-Expression*
-Build_recover_thunks::can_recover_arg(source_location location)
-{
-  static Named_object* builtin_return_address;
-  if (builtin_return_address == NULL)
-    {
-      const source_location bloc = BUILTINS_LOCATION;
-
-      Typed_identifier_list* param_types = new Typed_identifier_list();
-      Type* uint_type = Type::lookup_integer_type("uint");
-      param_types->push_back(Typed_identifier("l", uint_type, bloc));
-
-      Typed_identifier_list* return_types = new Typed_identifier_list();
-      Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
-      return_types->push_back(Typed_identifier("", voidptr_type, bloc));
-
-      Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                      return_types, bloc);
-      builtin_return_address =
-       Named_object::make_function_declaration("__builtin_return_address",
-                                               NULL, fntype, bloc);
-      const char* n = "__builtin_return_address";
-      builtin_return_address->func_declaration_value()->set_asm_name(n);
-    }
-
-  static Named_object* can_recover;
-  if (can_recover == NULL)
-    {
-      const source_location bloc = BUILTINS_LOCATION;
-      Typed_identifier_list* param_types = new Typed_identifier_list();
-      Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
-      param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
-      Type* boolean_type = Type::lookup_bool_type();
-      Typed_identifier_list* results = new Typed_identifier_list();
-      results->push_back(Typed_identifier("", boolean_type, bloc));
-      Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                      results, bloc);
-      can_recover = Named_object::make_function_declaration("__go_can_recover",
-                                                           NULL, fntype,
-                                                           bloc);
-      can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
-    }
-
-  Expression* fn = Expression::make_func_reference(builtin_return_address,
-                                                  NULL, location);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, location);
-  mpz_clear(zval);
-  Expression_list *args = new Expression_list();
-  args->push_back(zexpr);
-
-  Expression* call = Expression::make_call(fn, args, false, location);
-
-  args = new Expression_list();
-  args->push_back(call);
-
-  fn = Expression::make_func_reference(can_recover, NULL, location);
-  return Expression::make_call(fn, args, false, location);
-}
-
-// Build thunks for functions which call recover.  We build a new
-// function with an extra parameter, which is whether a call to
-// recover can succeed.  We then move the body of this function to
-// that one.  We then turn this function into a thunk which calls the
-// new one, passing the value of
-// __go_can_recover(__builtin_return_address()).  The function will be
-// marked as not splitting the stack.  This will cooperate with the
-// implementation of defer to make recover do the right thing.
-
-void
-Gogo::build_recover_thunks()
-{
-  Build_recover_thunks build_recover_thunks(this);
-  this->traverse(&build_recover_thunks);
-}
-
-// Look for named types to see whether we need to create an interface
-// method table.
-
-class Build_method_tables : public Traverse
-{
- public:
-  Build_method_tables(Gogo* gogo,
-                     const std::vector<Interface_type*>& interfaces)
-    : Traverse(traverse_types),
-      gogo_(gogo), interfaces_(interfaces)
-  { }
-
-  int
-  type(Type*);
-
- private:
-  // The IR.
-  Gogo* gogo_;
-  // A list of locally defined interfaces which have hidden methods.
-  const std::vector<Interface_type*>& interfaces_;
-};
-
-// Build all required interface method tables for types.  We need to
-// ensure that we have an interface method table for every interface
-// which has a hidden method, for every named type which implements
-// that interface.  Normally we can just build interface method tables
-// as we need them.  However, in some cases we can require an
-// interface method table for an interface defined in a different
-// package for a type defined in that package.  If that interface and
-// type both use a hidden method, that is OK.  However, we will not be
-// able to build that interface method table when we need it, because
-// the type's hidden method will be static.  So we have to build it
-// here, and just refer it from other packages as needed.
-
-void
-Gogo::build_interface_method_tables()
-{
-  std::vector<Interface_type*> hidden_interfaces;
-  hidden_interfaces.reserve(this->interface_types_.size());
-  for (std::vector<Interface_type*>::const_iterator pi =
-        this->interface_types_.begin();
-       pi != this->interface_types_.end();
-       ++pi)
-    {
-      const Typed_identifier_list* methods = (*pi)->methods();
-      if (methods == NULL)
-       continue;
-      for (Typed_identifier_list::const_iterator pm = methods->begin();
-          pm != methods->end();
-          ++pm)
-       {
-         if (Gogo::is_hidden_name(pm->name()))
-           {
-             hidden_interfaces.push_back(*pi);
-             break;
-           }
-       }
-    }
-
-  if (!hidden_interfaces.empty())
-    {
-      // Now traverse the tree looking for all named types.
-      Build_method_tables bmt(this, hidden_interfaces);
-      this->traverse(&bmt);
-    }
-
-  // We no longer need the list of interfaces.
-
-  this->interface_types_.clear();
-}
-
-// This is called for each type.  For a named type, for each of the
-// interfaces with hidden methods that it implements, create the
-// method table.
-
-int
-Build_method_tables::type(Type* type)
-{
-  Named_type* nt = type->named_type();
-  if (nt != NULL)
-    {
-      for (std::vector<Interface_type*>::const_iterator p =
-            this->interfaces_.begin();
-          p != this->interfaces_.end();
-          ++p)
-       {
-         // We ask whether a pointer to the named type implements the
-         // interface, because a pointer can implement more methods
-         // than a value.
-         if ((*p)->implements_interface(Type::make_pointer_type(nt), NULL))
-           {
-             nt->interface_method_table(this->gogo_, *p, false);
-             nt->interface_method_table(this->gogo_, *p, true);
-           }
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Traversal class used to check for return statements.
-
-class Check_return_statements_traverse : public Traverse
-{
- public:
-  Check_return_statements_traverse()
-    : Traverse(traverse_functions)
-  { }
-
-  int
-  function(Named_object*);
-};
-
-// Check that a function has a return statement if it needs one.
-
-int
-Check_return_statements_traverse::function(Named_object* no)
-{
-  Function* func = no->func_value();
-  const Function_type* fntype = func->type();
-  const Typed_identifier_list* results = fntype->results();
-
-  // We only need a return statement if there is a return value.
-  if (results == NULL || results->empty())
-    return TRAVERSE_CONTINUE;
-
-  if (func->block()->may_fall_through())
-    error_at(func->location(), "control reaches end of non-void function");
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Check return statements.
-
-void
-Gogo::check_return_statements()
-{
-  Check_return_statements_traverse traverse;
-  this->traverse(&traverse);
-}
-
-// Get the unique prefix to use before all exported symbols.  This
-// must be unique across the entire link.
-
-const std::string&
-Gogo::unique_prefix() const
-{
-  gcc_assert(!this->unique_prefix_.empty());
-  return this->unique_prefix_;
-}
-
-// Set the unique prefix to use before all exported symbols.  This
-// comes from the command line option -fgo-prefix=XXX.
-
-void
-Gogo::set_unique_prefix(const std::string& arg)
-{
-  gcc_assert(this->unique_prefix_.empty());
-  this->unique_prefix_ = arg;
-  this->unique_prefix_specified_ = true;
-}
-
-// Work out the package priority.  It is one more than the maximum
-// priority of an imported package.
-
-int
-Gogo::package_priority() const
-{
-  int priority = 0;
-  for (Packages::const_iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    if (p->second->priority() > priority)
-      priority = p->second->priority();
-  return priority + 1;
-}
-
-// Export identifiers as requested.
-
-void
-Gogo::do_exports()
-{
-  // For now we always stream to a section.  Later we may want to
-  // support streaming to a separate file.
-  Stream_to_section stream;
-
-  Export exp(&stream);
-  exp.register_builtin_types(this);
-  exp.export_globals(this->package_name(),
-                    this->unique_prefix(),
-                    this->package_priority(),
-                    (this->need_init_fn_ && !this->is_main_package()
-                     ? this->get_init_fn_name()
-                     : ""),
-                    this->imported_init_fns_,
-                    this->package_->bindings());
-}
-
-// Find the blocks in order to convert named types defined in blocks.
-
-class Convert_named_types : public Traverse
-{
- public:
-  Convert_named_types(Gogo* gogo)
-    : Traverse(traverse_blocks),
-      gogo_(gogo)
-  { }
-
- protected:
-  int
-  block(Block* block);
-
- private:
-  Gogo* gogo_;
-};
-
-int
-Convert_named_types::block(Block* block)
-{
-  this->gogo_->convert_named_types_in_bindings(block->bindings());
-  return TRAVERSE_CONTINUE;
-}
-
-// Convert all named types to the backend representation.  Since named
-// types can refer to other types, this needs to be done in the right
-// sequence, which is handled by Named_type::convert.  Here we arrange
-// to call that for each named type.
-
-void
-Gogo::convert_named_types()
-{
-  this->convert_named_types_in_bindings(this->globals_);
-  for (Packages::iterator p = this->packages_.begin();
-       p != this->packages_.end();
-       ++p)
-    {
-      Package* package = p->second;
-      this->convert_named_types_in_bindings(package->bindings());
-    }
-
-  Convert_named_types cnt(this);
-  this->traverse(&cnt);
-
-  // Make all the builtin named types used for type descriptors, and
-  // then convert them.  They will only be written out if they are
-  // needed.
-  Type::make_type_descriptor_type();
-  Type::make_type_descriptor_ptr_type();
-  Function_type::make_function_type_descriptor_type();
-  Pointer_type::make_pointer_type_descriptor_type();
-  Struct_type::make_struct_type_descriptor_type();
-  Array_type::make_array_type_descriptor_type();
-  Array_type::make_slice_type_descriptor_type();
-  Map_type::make_map_type_descriptor_type();
-  Channel_type::make_chan_type_descriptor_type();
-  Interface_type::make_interface_type_descriptor_type();
-  Type::convert_builtin_named_types(this);
-
-  this->named_types_are_converted_ = true;
-}
-
-// Convert all names types in a set of bindings.
-
-void
-Gogo::convert_named_types_in_bindings(Bindings* bindings)
-{
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_type())
-       (*p)->type_value()->convert(this);
-    }
-}
-
-// Class Function.
-
-Function::Function(Function_type* type, Function* enclosing, Block* block,
-                  source_location location)
-  : type_(type), enclosing_(enclosing), named_results_(NULL),
-    closure_var_(NULL), block_(block), location_(location), fndecl_(NULL),
-    defer_stack_(NULL), calls_recover_(false), is_recover_thunk_(false),
-    has_recover_thunk_(false)
-{
-}
-
-// Create the named result variables.
-
-void
-Function::create_named_result_variables(Gogo* gogo)
-{
-  const Typed_identifier_list* results = this->type_->results();
-  if (results == NULL
-      || results->empty()
-      || results->front().name().empty())
-    return;
-
-  this->named_results_ = new Named_results();
-  this->named_results_->reserve(results->size());
-
-  Block* block = this->block_;
-  int index = 0;
-  for (Typed_identifier_list::const_iterator p = results->begin();
-       p != results->end();
-       ++p, ++index)
-    {
-      std::string name = p->name();
-      if (Gogo::is_sink_name(name))
-       {
-         static int unnamed_result_counter;
-         char buf[100];
-         snprintf(buf, sizeof buf, "_$%d", unnamed_result_counter);
-         ++unnamed_result_counter;
-         name = gogo->pack_hidden_name(buf, false);
-       }
-      Result_variable* result = new Result_variable(p->type(), this, index);
-      Named_object* no = block->bindings()->add_result_variable(name, result);
-      if (no->is_result_variable())
-       this->named_results_->push_back(no);
-    }
-}
-
-// Update the named result variables when cloning a function which
-// calls recover.
-
-void
-Function::update_named_result_variables()
-{
-  if (this->named_results_ == NULL)
-    return;
-
-  for (Named_results::iterator p = this->named_results_->begin();
-       p != this->named_results_->end();
-       ++p)
-    (*p)->result_var_value()->set_function(this);
-}
-
-// Return the closure variable, creating it if necessary.
-
-Named_object*
-Function::closure_var()
-{
-  if (this->closure_var_ == NULL)
-    {
-      // We don't know the type of the variable yet.  We add fields as
-      // we find them.
-      source_location loc = this->type_->location();
-      Struct_field_list* sfl = new Struct_field_list;
-      Type* struct_type = Type::make_struct_type(sfl, loc);
-      Variable* var = new Variable(Type::make_pointer_type(struct_type),
-                                  NULL, false, true, false, loc);
-      this->closure_var_ = Named_object::make_variable("closure", NULL, var);
-      // Note that the new variable is not in any binding contour.
-    }
-  return this->closure_var_;
-}
-
-// Set the type of the closure variable.
-
-void
-Function::set_closure_type()
-{
-  if (this->closure_var_ == NULL)
-    return;
-  Named_object* closure = this->closure_var_;
-  Struct_type* st = closure->var_value()->type()->deref()->struct_type();
-  unsigned int index = 0;
-  for (Closure_fields::const_iterator p = this->closure_fields_.begin();
-       p != this->closure_fields_.end();
-       ++p, ++index)
-    {
-      Named_object* no = p->first;
-      char buf[20];
-      snprintf(buf, sizeof buf, "%u", index);
-      std::string n = no->name() + buf;
-      Type* var_type;
-      if (no->is_variable())
-       var_type = no->var_value()->type();
-      else
-       var_type = no->result_var_value()->type();
-      Type* field_type = Type::make_pointer_type(var_type);
-      st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
-    }
-}
-
-// Return whether this function is a method.
-
-bool
-Function::is_method() const
-{
-  return this->type_->is_method();
-}
-
-// Add a label definition.
-
-Label*
-Function::add_label_definition(const std::string& label_name,
-                              source_location location)
-{
-  Label* lnull = NULL;
-  std::pair<Labels::iterator, bool> ins =
-    this->labels_.insert(std::make_pair(label_name, lnull));
-  if (ins.second)
-    {
-      // This is a new label.
-      Label* label = new Label(label_name);
-      label->define(location);
-      ins.first->second = label;
-      return label;
-    }
-  else
-    {
-      // The label was already in the hash table.
-      Label* label = ins.first->second;
-      if (!label->is_defined())
-       {
-         label->define(location);
-         return label;
-       }
-      else
-       {
-         error_at(location, "redefinition of label %qs",
-                  Gogo::message_name(label_name).c_str());
-         inform(label->location(), "previous definition of %qs was here",
-                Gogo::message_name(label_name).c_str());
-         return new Label(label_name);
-       }
-    }
-}
-
-// Add a reference to a label.
-
-Label*
-Function::add_label_reference(const std::string& label_name)
-{
-  Label* lnull = NULL;
-  std::pair<Labels::iterator, bool> ins =
-    this->labels_.insert(std::make_pair(label_name, lnull));
-  if (!ins.second)
-    {
-      // The label was already in the hash table.
-      return ins.first->second;
-    }
-  else
-    {
-      gcc_assert(ins.first->second == NULL);
-      Label* label = new Label(label_name);
-      ins.first->second = label;
-      return label;
-    }
-}
-
-// Swap one function with another.  This is used when building the
-// thunk we use to call a function which calls recover.  It may not
-// work for any other case.
-
-void
-Function::swap_for_recover(Function *x)
-{
-  gcc_assert(this->enclosing_ == x->enclosing_);
-  std::swap(this->named_results_, x->named_results_);
-  std::swap(this->closure_var_, x->closure_var_);
-  std::swap(this->block_, x->block_);
-  gcc_assert(this->location_ == x->location_);
-  gcc_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
-  gcc_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
-}
-
-// Traverse the tree.
-
-int
-Function::traverse(Traverse* traverse)
-{
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  if ((traverse_mask
-       & (Traverse::traverse_types | Traverse::traverse_expressions))
-      != 0)
-    {
-      if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-
-  // FIXME: We should check traverse_functions here if nested
-  // functions are stored in block bindings.
-  if (this->block_ != NULL
-      && (traverse_mask
-         & (Traverse::traverse_variables
-            | Traverse::traverse_constants
-            | Traverse::traverse_blocks
-            | Traverse::traverse_statements
-            | Traverse::traverse_expressions
-            | Traverse::traverse_types)) != 0)
-    {
-      if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Work out types for unspecified variables and constants.
-
-void
-Function::determine_types()
-{
-  if (this->block_ != NULL)
-    this->block_->determine_types();
-}
-
-// Export the function.
-
-void
-Function::export_func(Export* exp, const std::string& name) const
-{
-  Function::export_func_with_type(exp, name, this->type_);
-}
-
-// Export a function with a type.
-
-void
-Function::export_func_with_type(Export* exp, const std::string& name,
-                               const Function_type* fntype)
-{
-  exp->write_c_string("func ");
-
-  if (fntype->is_method())
-    {
-      exp->write_c_string("(");
-      exp->write_type(fntype->receiver()->type());
-      exp->write_c_string(") ");
-    }
-
-  exp->write_string(name);
-
-  exp->write_c_string(" (");
-  const Typed_identifier_list* parameters = fntype->parameters();
-  if (parameters != NULL)
-    {
-      bool is_varargs = fntype->is_varargs();
-      bool first = true;
-      for (Typed_identifier_list::const_iterator p = parameters->begin();
-          p != parameters->end();
-          ++p)
-       {
-         if (first)
-           first = false;
-         else
-           exp->write_c_string(", ");
-         if (!is_varargs || p + 1 != parameters->end())
-           exp->write_type(p->type());
-         else
-           {
-             exp->write_c_string("...");
-             exp->write_type(p->type()->array_type()->element_type());
-           }
-       }
-    }
-  exp->write_c_string(")");
-
-  const Typed_identifier_list* results = fntype->results();
-  if (results != NULL)
-    {
-      if (results->size() == 1)
-       {
-         exp->write_c_string(" ");
-         exp->write_type(results->begin()->type());
-       }
-      else
-       {
-         exp->write_c_string(" (");
-         bool first = true;
-         for (Typed_identifier_list::const_iterator p = results->begin();
-              p != results->end();
-              ++p)
-           {
-             if (first)
-               first = false;
-             else
-               exp->write_c_string(", ");
-             exp->write_type(p->type());
-           }
-         exp->write_c_string(")");
-       }
-    }
-  exp->write_c_string(";\n");
-}
-
-// Import a function.
-
-void
-Function::import_func(Import* imp, std::string* pname,
-                     Typed_identifier** preceiver,
-                     Typed_identifier_list** pparameters,
-                     Typed_identifier_list** presults,
-                     bool* is_varargs)
-{
-  imp->require_c_string("func ");
-
-  *preceiver = NULL;
-  if (imp->peek_char() == '(')
-    {
-      imp->require_c_string("(");
-      Type* rtype = imp->read_type();
-      *preceiver = new Typed_identifier(Import::import_marker, rtype,
-                                       imp->location());
-      imp->require_c_string(") ");
-    }
-
-  *pname = imp->read_identifier();
-
-  Typed_identifier_list* parameters;
-  *is_varargs = false;
-  imp->require_c_string(" (");
-  if (imp->peek_char() == ')')
-    parameters = NULL;
-  else
-    {
-      parameters = new Typed_identifier_list();
-      while (true)
-       {
-         if (imp->match_c_string("..."))
-           {
-             imp->advance(3);
-             *is_varargs = true;
-           }
-
-         Type* ptype = imp->read_type();
-         if (*is_varargs)
-           ptype = Type::make_array_type(ptype, NULL);
-         parameters->push_back(Typed_identifier(Import::import_marker,
-                                                ptype, imp->location()));
-         if (imp->peek_char() != ',')
-           break;
-         gcc_assert(!*is_varargs);
-         imp->require_c_string(", ");
-       }
-    }
-  imp->require_c_string(")");
-  *pparameters = parameters;
-
-  Typed_identifier_list* results;
-  if (imp->peek_char() != ' ')
-    results = NULL;
-  else
-    {
-      results = new Typed_identifier_list();
-      imp->require_c_string(" ");
-      if (imp->peek_char() != '(')
-       {
-         Type* rtype = imp->read_type();
-         results->push_back(Typed_identifier(Import::import_marker, rtype,
-                                             imp->location()));
-       }
-      else
-       {
-         imp->require_c_string("(");
-         while (true)
-           {
-             Type* rtype = imp->read_type();
-             results->push_back(Typed_identifier(Import::import_marker,
-                                                 rtype, imp->location()));
-             if (imp->peek_char() != ',')
-               break;
-             imp->require_c_string(", ");
-           }
-         imp->require_c_string(")");
-       }
-    }
-  imp->require_c_string(";\n");
-  *presults = results;
-}
-
-// Class Block.
-
-Block::Block(Block* enclosing, source_location location)
-  : enclosing_(enclosing), statements_(),
-    bindings_(new Bindings(enclosing == NULL
-                          ? NULL
-                          : enclosing->bindings())),
-    start_location_(location),
-    end_location_(UNKNOWN_LOCATION)
-{
-}
-
-// Add a statement to a block.
-
-void
-Block::add_statement(Statement* statement)
-{
-  this->statements_.push_back(statement);
-}
-
-// Add a statement to the front of a block.  This is slow but is only
-// used for reference counts of parameters.
-
-void
-Block::add_statement_at_front(Statement* statement)
-{
-  this->statements_.insert(this->statements_.begin(), statement);
-}
-
-// Replace a statement in a block.
-
-void
-Block::replace_statement(size_t index, Statement* s)
-{
-  gcc_assert(index < this->statements_.size());
-  this->statements_[index] = s;
-}
-
-// Add a statement before another statement.
-
-void
-Block::insert_statement_before(size_t index, Statement* s)
-{
-  gcc_assert(index < this->statements_.size());
-  this->statements_.insert(this->statements_.begin() + index, s);
-}
-
-// Add a statement after another statement.
-
-void
-Block::insert_statement_after(size_t index, Statement* s)
-{
-  gcc_assert(index < this->statements_.size());
-  this->statements_.insert(this->statements_.begin() + index + 1, s);
-}
-
-// Traverse the tree.
-
-int
-Block::traverse(Traverse* traverse)
-{
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  if ((traverse_mask & Traverse::traverse_blocks) != 0)
-    {
-      int t = traverse->block(this);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-
-  if ((traverse_mask
-       & (Traverse::traverse_variables
-         | Traverse::traverse_constants
-         | Traverse::traverse_expressions
-         | Traverse::traverse_types)) != 0)
-    {
-      for (Bindings::const_definitions_iterator pb =
-            this->bindings_->begin_definitions();
-          pb != this->bindings_->end_definitions();
-          ++pb)
-       {
-         switch ((*pb)->classification())
-           {
-           case Named_object::NAMED_OBJECT_CONST:
-             if ((traverse_mask & Traverse::traverse_constants) != 0)
-               {
-                 if (traverse->constant(*pb, false) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if ((traverse_mask & Traverse::traverse_types) != 0
-                 || (traverse_mask & Traverse::traverse_expressions) != 0)
-               {
-                 Type* t = (*pb)->const_value()->type();
-                 if (t != NULL
-                     && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if ((traverse_mask & Traverse::traverse_expressions) != 0
-                 || (traverse_mask & Traverse::traverse_types) != 0)
-               {
-                 if ((*pb)->const_value()->traverse_expression(traverse)
-                     == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             break;
-
-           case Named_object::NAMED_OBJECT_VAR:
-           case Named_object::NAMED_OBJECT_RESULT_VAR:
-             if ((traverse_mask & Traverse::traverse_variables) != 0)
-               {
-                 if (traverse->variable(*pb) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if (((traverse_mask & Traverse::traverse_types) != 0
-                  || (traverse_mask & Traverse::traverse_expressions) != 0)
-                 && ((*pb)->is_result_variable()
-                     || (*pb)->var_value()->has_type()))
-               {
-                 Type* t = ((*pb)->is_variable()
-                            ? (*pb)->var_value()->type()
-                            : (*pb)->result_var_value()->type());
-                 if (t != NULL
-                     && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             if ((*pb)->is_variable()
-                 && ((traverse_mask & Traverse::traverse_expressions) != 0
-                     || (traverse_mask & Traverse::traverse_types) != 0))
-               {
-                 if ((*pb)->var_value()->traverse_expression(traverse)
-                     == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             break;
-
-           case Named_object::NAMED_OBJECT_FUNC:
-           case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-             // FIXME: Where will nested functions be found?
-             gcc_unreachable();
-
-           case Named_object::NAMED_OBJECT_TYPE:
-             if ((traverse_mask & Traverse::traverse_types) != 0
-                 || (traverse_mask & Traverse::traverse_expressions) != 0)
-               {
-                 if (Type::traverse((*pb)->type_value(), traverse)
-                     == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-             break;
-
-           case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-           case Named_object::NAMED_OBJECT_UNKNOWN:
-             break;
-
-           case Named_object::NAMED_OBJECT_PACKAGE:
-           case Named_object::NAMED_OBJECT_SINK:
-             gcc_unreachable();
-
-           default:
-             gcc_unreachable();
-           }
-       }
-    }
-
-  // No point in checking traverse_mask here--if we got here we always
-  // want to walk the statements.  The traversal can insert new
-  // statements before or after the current statement.  Inserting
-  // statements before the current statement requires updating I via
-  // the pointer; those statements will not be traversed.  Any new
-  // statements inserted after the current statement will be traversed
-  // in their turn.
-  for (size_t i = 0; i < this->statements_.size(); ++i)
-    {
-      if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Work out types for unspecified variables and constants.
-
-void
-Block::determine_types()
-{
-  for (Bindings::const_definitions_iterator pb =
-        this->bindings_->begin_definitions();
-       pb != this->bindings_->end_definitions();
-       ++pb)
-    {
-      if ((*pb)->is_variable())
-       (*pb)->var_value()->determine_type();
-      else if ((*pb)->is_const())
-       (*pb)->const_value()->determine_type();
-    }
-
-  for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
-       ps != this->statements_.end();
-       ++ps)
-    (*ps)->determine_types();
-}
-
-// Return true if the statements in this block may fall through.
-
-bool
-Block::may_fall_through() const
-{
-  if (this->statements_.empty())
-    return true;
-  return this->statements_.back()->may_fall_through();
-}
-
-// Class Variable.
-
-Variable::Variable(Type* type, Expression* init, bool is_global,
-                  bool is_parameter, bool is_receiver,
-                  source_location location)
-  : type_(type), init_(init), preinit_(NULL), location_(location),
-    is_global_(is_global), is_parameter_(is_parameter),
-    is_receiver_(is_receiver), is_varargs_parameter_(false),
-    is_address_taken_(false), seen_(false), init_is_lowered_(false),
-    type_from_init_tuple_(false), type_from_range_index_(false),
-    type_from_range_value_(false), type_from_chan_element_(false),
-    is_type_switch_var_(false), determined_type_(false)
-{
-  gcc_assert(type != NULL || init != NULL);
-  gcc_assert(!is_parameter || init == NULL);
-}
-
-// Traverse the initializer expression.
-
-int
-Variable::traverse_expression(Traverse* traverse)
-{
-  if (this->preinit_ != NULL)
-    {
-      if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->init_ != NULL)
-    {
-      if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower the initialization expression after parsing is complete.
-
-void
-Variable::lower_init_expression(Gogo* gogo, Named_object* function)
-{
-  if (this->init_ != NULL && !this->init_is_lowered_)
-    {
-      if (this->seen_)
-       {
-         // We will give an error elsewhere, this is just to prevent
-         // an infinite loop.
-         return;
-       }
-      this->seen_ = true;
-
-      gogo->lower_expression(function, &this->init_);
-
-      this->seen_ = false;
-
-      this->init_is_lowered_ = true;
-    }
-}
-
-// Get the preinit block.
-
-Block*
-Variable::preinit_block(Gogo* gogo)
-{
-  gcc_assert(this->is_global_);
-  if (this->preinit_ == NULL)
-    this->preinit_ = new Block(NULL, this->location());
-
-  // If a global variable has a preinitialization statement, then we
-  // need to have an initialization function.
-  gogo->set_need_init_fn();
-
-  return this->preinit_;
-}
-
-// Add a statement to be run before the initialization expression.
-
-void
-Variable::add_preinit_statement(Gogo* gogo, Statement* s)
-{
-  Block* b = this->preinit_block(gogo);
-  b->add_statement(s);
-  b->set_end_location(s->location());
-}
-
-// In an assignment which sets a variable to a tuple of EXPR, return
-// the type of the first element of the tuple.
-
-Type*
-Variable::type_from_tuple(Expression* expr, bool report_error) const
-{
-  if (expr->map_index_expression() != NULL)
-    {
-      Map_type* mt = expr->map_index_expression()->get_map_type();
-      if (mt == NULL)
-       return Type::make_error_type();
-      return mt->val_type();
-    }
-  else if (expr->receive_expression() != NULL)
-    {
-      Expression* channel = expr->receive_expression()->channel();
-      Type* channel_type = channel->type();
-      if (channel_type->channel_type() == NULL)
-       return Type::make_error_type();
-      return channel_type->channel_type()->element_type();
-    }
-  else
-    {
-      if (report_error)
-       error_at(this->location(), "invalid tuple definition");
-      return Type::make_error_type();
-    }
-}
-
-// Given EXPR used in a range clause, return either the index type or
-// the value type of the range, depending upon GET_INDEX_TYPE.
-
-Type*
-Variable::type_from_range(Expression* expr, bool get_index_type,
-                         bool report_error) const
-{
-  Type* t = expr->type();
-  if (t->array_type() != NULL
-      || (t->points_to() != NULL
-         && t->points_to()->array_type() != NULL
-         && !t->points_to()->is_open_array_type()))
-    {
-      if (get_index_type)
-       return Type::lookup_integer_type("int");
-      else
-       return t->deref()->array_type()->element_type();
-    }
-  else if (t->is_string_type())
-    return Type::lookup_integer_type("int");
-  else if (t->map_type() != NULL)
-    {
-      if (get_index_type)
-       return t->map_type()->key_type();
-      else
-       return t->map_type()->val_type();
-    }
-  else if (t->channel_type() != NULL)
-    {
-      if (get_index_type)
-       return t->channel_type()->element_type();
-      else
-       {
-         if (report_error)
-           error_at(this->location(),
-                    "invalid definition of value variable for channel range");
-         return Type::make_error_type();
-       }
-    }
-  else
-    {
-      if (report_error)
-       error_at(this->location(), "invalid type for range clause");
-      return Type::make_error_type();
-    }
-}
-
-// EXPR should be a channel.  Return the channel's element type.
-
-Type*
-Variable::type_from_chan_element(Expression* expr, bool report_error) const
-{
-  Type* t = expr->type();
-  if (t->channel_type() != NULL)
-    return t->channel_type()->element_type();
-  else
-    {
-      if (report_error)
-       error_at(this->location(), "expected channel");
-      return Type::make_error_type();
-    }
-}
-
-// Return the type of the Variable.  This may be called before
-// Variable::determine_type is called, which means that we may need to
-// get the type from the initializer.  FIXME: If we combine lowering
-// with type determination, then this should be unnecessary.
-
-Type*
-Variable::type()
-{
-  // A variable in a type switch with a nil case will have the wrong
-  // type here.  This gets fixed up in determine_type, below.
-  Type* type = this->type_;
-  Expression* init = this->init_;
-  if (this->is_type_switch_var_
-      && this->type_->is_nil_constant_as_type())
-    {
-      Type_guard_expression* tge = this->init_->type_guard_expression();
-      gcc_assert(tge != NULL);
-      init = tge->expr();
-      type = NULL;
-    }
-
-  if (this->seen_)
-    {
-      if (this->type_ == NULL || !this->type_->is_error_type())
-       {
-         error_at(this->location_, "variable initializer refers to itself");
-         this->type_ = Type::make_error_type();
-       }
-      return this->type_;
-    }
-
-  this->seen_ = true;
-
-  if (type != NULL)
-    ;
-  else if (this->type_from_init_tuple_)
-    type = this->type_from_tuple(init, false);
-  else if (this->type_from_range_index_ || this->type_from_range_value_)
-    type = this->type_from_range(init, this->type_from_range_index_, false);
-  else if (this->type_from_chan_element_)
-    type = this->type_from_chan_element(init, false);
-  else
-    {
-      gcc_assert(init != NULL);
-      type = init->type();
-      gcc_assert(type != NULL);
-
-      // Variables should not have abstract types.
-      if (type->is_abstract())
-       type = type->make_non_abstract_type();
-
-      if (type->is_void_type())
-       type = Type::make_error_type();
-    }
-
-  this->seen_ = false;
-
-  return type;
-}
-
-// Fetch the type from a const pointer, in which case it should have
-// been set already.
-
-Type*
-Variable::type() const
-{
-  gcc_assert(this->type_ != NULL);
-  return this->type_;
-}
-
-// Set the type if necessary.
-
-void
-Variable::determine_type()
-{
-  if (this->determined_type_)
-    return;
-  this->determined_type_ = true;
-
-  if (this->preinit_ != NULL)
-    this->preinit_->determine_types();
-
-  // A variable in a type switch with a nil case will have the wrong
-  // type here.  It will have an initializer which is a type guard.
-  // We want to initialize it to the value without the type guard, and
-  // use the type of that value as well.
-  if (this->is_type_switch_var_ && this->type_->is_nil_constant_as_type())
-    {
-      Type_guard_expression* tge = this->init_->type_guard_expression();
-      gcc_assert(tge != NULL);
-      this->type_ = NULL;
-      this->init_ = tge->expr();
-    }
-
-  if (this->init_ == NULL)
-    gcc_assert(this->type_ != NULL && !this->type_->is_abstract());
-  else if (this->type_from_init_tuple_)
-    {
-      Expression *init = this->init_;
-      init->determine_type_no_context();
-      this->type_ = this->type_from_tuple(init, true);
-      this->init_ = NULL;
-    }
-  else if (this->type_from_range_index_ || this->type_from_range_value_)
-    {
-      Expression* init = this->init_;
-      init->determine_type_no_context();
-      this->type_ = this->type_from_range(init, this->type_from_range_index_,
-                                         true);
-      this->init_ = NULL;
-    }
-  else if (this->type_from_chan_element_)
-    {
-      Expression* init = this->init_;
-      init->determine_type_no_context();
-      this->type_ = this->type_from_chan_element(init, true);
-      this->init_ = NULL;
-    }
-  else
-    {
-      Type_context context(this->type_, false);
-      this->init_->determine_type(&context);
-      if (this->type_ == NULL)
-       {
-         Type* type = this->init_->type();
-         gcc_assert(type != NULL);
-         if (type->is_abstract())
-           type = type->make_non_abstract_type();
-
-         if (type->is_void_type())
-           {
-             error_at(this->location_, "variable has no type");
-             type = Type::make_error_type();
-           }
-         else if (type->is_nil_type())
-           {
-             error_at(this->location_, "variable defined to nil type");
-             type = Type::make_error_type();
-           }
-         else if (type->is_call_multiple_result_type())
-           {
-             error_at(this->location_,
-                      "single variable set to multiple value function call");
-             type = Type::make_error_type();
-           }
-
-         this->type_ = type;
-       }
-    }
-}
-
-// Export the variable
-
-void
-Variable::export_var(Export* exp, const std::string& name) const
-{
-  gcc_assert(this->is_global_);
-  exp->write_c_string("var ");
-  exp->write_string(name);
-  exp->write_c_string(" ");
-  exp->write_type(this->type());
-  exp->write_c_string(";\n");
-}
-
-// Import a variable.
-
-void
-Variable::import_var(Import* imp, std::string* pname, Type** ptype)
-{
-  imp->require_c_string("var ");
-  *pname = imp->read_identifier();
-  imp->require_c_string(" ");
-  *ptype = imp->read_type();
-  imp->require_c_string(";\n");
-}
-
-// Class Named_constant.
-
-// Traverse the initializer expression.
-
-int
-Named_constant::traverse_expression(Traverse* traverse)
-{
-  return Expression::traverse(&this->expr_, traverse);
-}
-
-// Determine the type of the constant.
-
-void
-Named_constant::determine_type()
-{
-  if (this->type_ != NULL)
-    {
-      Type_context context(this->type_, false);
-      this->expr_->determine_type(&context);
-    }
-  else
-    {
-      // A constant may have an abstract type.
-      Type_context context(NULL, true);
-      this->expr_->determine_type(&context);
-      this->type_ = this->expr_->type();
-      gcc_assert(this->type_ != NULL);
-    }
-}
-
-// Indicate that we found and reported an error for this constant.
-
-void
-Named_constant::set_error()
-{
-  this->type_ = Type::make_error_type();
-  this->expr_ = Expression::make_error(this->location_);
-}
-
-// Export a constant.
-
-void
-Named_constant::export_const(Export* exp, const std::string& name) const
-{
-  exp->write_c_string("const ");
-  exp->write_string(name);
-  exp->write_c_string(" ");
-  if (!this->type_->is_abstract())
-    {
-      exp->write_type(this->type_);
-      exp->write_c_string(" ");
-    }
-  exp->write_c_string("= ");
-  this->expr()->export_expression(exp);
-  exp->write_c_string(";\n");
-}
-
-// Import a constant.
-
-void
-Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
-                            Expression** pexpr)
-{
-  imp->require_c_string("const ");
-  *pname = imp->read_identifier();
-  imp->require_c_string(" ");
-  if (imp->peek_char() == '=')
-    *ptype = NULL;
-  else
-    {
-      *ptype = imp->read_type();
-      imp->require_c_string(" ");
-    }
-  imp->require_c_string("= ");
-  *pexpr = Expression::import_expression(imp);
-  imp->require_c_string(";\n");
-}
-
-// Add a method.
-
-Named_object*
-Type_declaration::add_method(const std::string& name, Function* function)
-{
-  Named_object* ret = Named_object::make_function(name, NULL, function);
-  this->methods_.push_back(ret);
-  return ret;
-}
-
-// Add a method declaration.
-
-Named_object*
-Type_declaration::add_method_declaration(const std::string&  name,
-                                        Function_type* type,
-                                        source_location location)
-{
-  Named_object* ret = Named_object::make_function_declaration(name, NULL, type,
-                                                             location);
-  this->methods_.push_back(ret);
-  return ret;
-}
-
-// Return whether any methods ere defined.
-
-bool
-Type_declaration::has_methods() const
-{
-  return !this->methods_.empty();
-}
-
-// Define methods for the real type.
-
-void
-Type_declaration::define_methods(Named_type* nt)
-{
-  for (Methods::const_iterator p = this->methods_.begin();
-       p != this->methods_.end();
-       ++p)
-    nt->add_existing_method(*p);
-}
-
-// We are using the type.  Return true if we should issue a warning.
-
-bool
-Type_declaration::using_type()
-{
-  bool ret = !this->issued_warning_;
-  this->issued_warning_ = true;
-  return ret;
-}
-
-// Class Unknown_name.
-
-// Set the real named object.
-
-void
-Unknown_name::set_real_named_object(Named_object* no)
-{
-  gcc_assert(this->real_named_object_ == NULL);
-  gcc_assert(!no->is_unknown());
-  this->real_named_object_ = no;
-}
-
-// Class Named_object.
-
-Named_object::Named_object(const std::string& name,
-                          const Package* package,
-                          Classification classification)
-  : name_(name), package_(package), classification_(classification),
-    tree_(NULL)
-{
-  if (Gogo::is_sink_name(name))
-    gcc_assert(classification == NAMED_OBJECT_SINK);
-}
-
-// Make an unknown name.  This is used by the parser.  The name must
-// be resolved later.  Unknown names are only added in the current
-// package.
-
-Named_object*
-Named_object::make_unknown_name(const std::string& name,
-                               source_location location)
-{
-  Named_object* named_object = new Named_object(name, NULL,
-                                               NAMED_OBJECT_UNKNOWN);
-  Unknown_name* value = new Unknown_name(location);
-  named_object->u_.unknown_value = value;
-  return named_object;
-}
-
-// Make a constant.
-
-Named_object*
-Named_object::make_constant(const Typed_identifier& tid,
-                           const Package* package, Expression* expr,
-                           int iota_value)
-{
-  Named_object* named_object = new Named_object(tid.name(), package,
-                                               NAMED_OBJECT_CONST);
-  Named_constant* named_constant = new Named_constant(tid.type(), expr,
-                                                     iota_value,
-                                                     tid.location());
-  named_object->u_.const_value = named_constant;
-  return named_object;
-}
-
-// Make a named type.
-
-Named_object*
-Named_object::make_type(const std::string& name, const Package* package,
-                       Type* type, source_location location)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_TYPE);
-  Named_type* named_type = Type::make_named_type(named_object, type, location);
-  named_object->u_.type_value = named_type;
-  return named_object;
-}
-
-// Make a type declaration.
-
-Named_object*
-Named_object::make_type_declaration(const std::string& name,
-                                   const Package* package,
-                                   source_location location)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_TYPE_DECLARATION);
-  Type_declaration* type_declaration = new Type_declaration(location);
-  named_object->u_.type_declaration = type_declaration;
-  return named_object;
-}
-
-// Make a variable.
-
-Named_object*
-Named_object::make_variable(const std::string& name, const Package* package,
-                           Variable* variable)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_VAR);
-  named_object->u_.var_value = variable;
-  return named_object;
-}
-
-// Make a result variable.
-
-Named_object*
-Named_object::make_result_variable(const std::string& name,
-                                  Result_variable* result)
-{
-  Named_object* named_object = new Named_object(name, NULL,
-                                               NAMED_OBJECT_RESULT_VAR);
-  named_object->u_.result_var_value = result;
-  return named_object;
-}
-
-// Make a sink.  This is used for the special blank identifier _.
-
-Named_object*
-Named_object::make_sink()
-{
-  return new Named_object("_", NULL, NAMED_OBJECT_SINK);
-}
-
-// Make a named function.
-
-Named_object*
-Named_object::make_function(const std::string& name, const Package* package,
-                           Function* function)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_FUNC);
-  named_object->u_.func_value = function;
-  return named_object;
-}
-
-// Make a function declaration.
-
-Named_object*
-Named_object::make_function_declaration(const std::string& name,
-                                       const Package* package,
-                                       Function_type* fntype,
-                                       source_location location)
-{
-  Named_object* named_object = new Named_object(name, package,
-                                               NAMED_OBJECT_FUNC_DECLARATION);
-  Function_declaration *func_decl = new Function_declaration(fntype, location);
-  named_object->u_.func_declaration_value = func_decl;
-  return named_object;
-}
-
-// Make a package.
-
-Named_object*
-Named_object::make_package(const std::string& alias, Package* package)
-{
-  Named_object* named_object = new Named_object(alias, NULL,
-                                               NAMED_OBJECT_PACKAGE);
-  named_object->u_.package_value = package;
-  return named_object;
-}
-
-// Return the name to use in an error message.
-
-std::string
-Named_object::message_name() const
-{
-  if (this->package_ == NULL)
-    return Gogo::message_name(this->name_);
-  std::string ret = Gogo::message_name(this->package_->name());
-  ret += '.';
-  ret += Gogo::message_name(this->name_);
-  return ret;
-}
-
-// Set the type when a declaration is defined.
-
-void
-Named_object::set_type_value(Named_type* named_type)
-{
-  gcc_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
-  Type_declaration* td = this->u_.type_declaration;
-  td->define_methods(named_type);
-  Named_object* in_function = td->in_function();
-  if (in_function != NULL)
-    named_type->set_in_function(in_function);
-  delete td;
-  this->classification_ = NAMED_OBJECT_TYPE;
-  this->u_.type_value = named_type;
-}
-
-// Define a function which was previously declared.
-
-void
-Named_object::set_function_value(Function* function)
-{
-  gcc_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
-  this->classification_ = NAMED_OBJECT_FUNC;
-  // FIXME: We should free the old value.
-  this->u_.func_value = function;
-}
-
-// Declare an unknown object as a type declaration.
-
-void
-Named_object::declare_as_type()
-{
-  gcc_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
-  Unknown_name* unk = this->u_.unknown_value;
-  this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
-  this->u_.type_declaration = new Type_declaration(unk->location());
-  delete unk;
-}
-
-// Return the location of a named object.
-
-source_location
-Named_object::location() const
-{
-  switch (this->classification_)
-    {
-    default:
-    case NAMED_OBJECT_UNINITIALIZED:
-      gcc_unreachable();
-
-    case NAMED_OBJECT_UNKNOWN:
-      return this->unknown_value()->location();
-
-    case NAMED_OBJECT_CONST:
-      return this->const_value()->location();
-
-    case NAMED_OBJECT_TYPE:
-      return this->type_value()->location();
-
-    case NAMED_OBJECT_TYPE_DECLARATION:
-      return this->type_declaration_value()->location();
-
-    case NAMED_OBJECT_VAR:
-      return this->var_value()->location();
-
-    case NAMED_OBJECT_RESULT_VAR:
-      return this->result_var_value()->function()->location();
-
-    case NAMED_OBJECT_SINK:
-      gcc_unreachable();
-
-    case NAMED_OBJECT_FUNC:
-      return this->func_value()->location();
-
-    case NAMED_OBJECT_FUNC_DECLARATION:
-      return this->func_declaration_value()->location();
-
-    case NAMED_OBJECT_PACKAGE:
-      return this->package_value()->location();
-    }
-}
-
-// Export a named object.
-
-void
-Named_object::export_named_object(Export* exp) const
-{
-  switch (this->classification_)
-    {
-    default:
-    case NAMED_OBJECT_UNINITIALIZED:
-    case NAMED_OBJECT_UNKNOWN:
-      gcc_unreachable();
-
-    case NAMED_OBJECT_CONST:
-      this->const_value()->export_const(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_TYPE:
-      this->type_value()->export_named_type(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_TYPE_DECLARATION:
-      error_at(this->type_declaration_value()->location(),
-              "attempt to export %<%s%> which was declared but not defined",
-              this->message_name().c_str());
-      break;
-
-    case NAMED_OBJECT_FUNC_DECLARATION:
-      this->func_declaration_value()->export_func(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_VAR:
-      this->var_value()->export_var(exp, this->name_);
-      break;
-
-    case NAMED_OBJECT_RESULT_VAR:
-    case NAMED_OBJECT_SINK:
-      gcc_unreachable();
-
-    case NAMED_OBJECT_FUNC:
-      this->func_value()->export_func(exp, this->name_);
-      break;
-    }
-}
-
-// Class Bindings.
-
-Bindings::Bindings(Bindings* enclosing)
-  : enclosing_(enclosing), named_objects_(), bindings_()
-{
-}
-
-// Clear imports.
-
-void
-Bindings::clear_file_scope()
-{
-  Contour::iterator p = this->bindings_.begin();
-  while (p != this->bindings_.end())
-    {
-      bool keep;
-      if (p->second->package() != NULL)
-       keep = false;
-      else if (p->second->is_package())
-       keep = false;
-      else if (p->second->is_function()
-              && !p->second->func_value()->type()->is_method()
-              && Gogo::unpack_hidden_name(p->second->name()) == "init")
-       keep = false;
-      else
-       keep = true;
-
-      if (keep)
-       ++p;
-      else
-       p = this->bindings_.erase(p);
-    }
-}
-
-// Look up a symbol.
-
-Named_object*
-Bindings::lookup(const std::string& name) const
-{
-  Contour::const_iterator p = this->bindings_.find(name);
-  if (p != this->bindings_.end())
-    return p->second->resolve();
-  else if (this->enclosing_ != NULL)
-    return this->enclosing_->lookup(name);
-  else
-    return NULL;
-}
-
-// Look up a symbol locally.
-
-Named_object*
-Bindings::lookup_local(const std::string& name) const
-{
-  Contour::const_iterator p = this->bindings_.find(name);
-  if (p == this->bindings_.end())
-    return NULL;
-  return p->second;
-}
-
-// Remove an object from a set of bindings.  This is used for a
-// special case in thunks for functions which call recover.
-
-void
-Bindings::remove_binding(Named_object* no)
-{
-  Contour::iterator pb = this->bindings_.find(no->name());
-  gcc_assert(pb != this->bindings_.end());
-  this->bindings_.erase(pb);
-  for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
-       pn != this->named_objects_.end();
-       ++pn)
-    {
-      if (*pn == no)
-       {
-         this->named_objects_.erase(pn);
-         return;
-       }
-    }
-  gcc_unreachable();
-}
-
-// Add a method to the list of objects.  This is not added to the
-// lookup table.  This is so that we have a single list of objects
-// declared at the top level, which we walk through when it's time to
-// convert to trees.
-
-void
-Bindings::add_method(Named_object* method)
-{
-  this->named_objects_.push_back(method);
-}
-
-// Add a generic Named_object to a Contour.
-
-Named_object*
-Bindings::add_named_object_to_contour(Contour* contour,
-                                     Named_object* named_object)
-{
-  gcc_assert(named_object == named_object->resolve());
-  const std::string& name(named_object->name());
-  gcc_assert(!Gogo::is_sink_name(name));
-
-  std::pair<Contour::iterator, bool> ins =
-    contour->insert(std::make_pair(name, named_object));
-  if (!ins.second)
-    {
-      // The name was already there.
-      if (named_object->package() != NULL
-         && ins.first->second->package() == named_object->package()
-         && (ins.first->second->classification()
-             == named_object->classification()))
-       {
-         // This is a second import of the same object.
-         return ins.first->second;
-       }
-      ins.first->second = this->new_definition(ins.first->second,
-                                              named_object);
-      return ins.first->second;
-    }
-  else
-    {
-      // Don't push declarations on the list.  We push them on when
-      // and if we find the definitions.  That way we genericize the
-      // functions in order.
-      if (!named_object->is_type_declaration()
-         && !named_object->is_function_declaration()
-         && !named_object->is_unknown())
-       this->named_objects_.push_back(named_object);
-      return named_object;
-    }
-}
-
-// We had an existing named object OLD_OBJECT, and we've seen a new
-// one NEW_OBJECT with the same name.  FIXME: This does not free the
-// new object when we don't need it.
-
-Named_object*
-Bindings::new_definition(Named_object* old_object, Named_object* new_object)
-{
-  std::string reason;
-  switch (old_object->classification())
-    {
-    default:
-    case Named_object::NAMED_OBJECT_UNINITIALIZED:
-      gcc_unreachable();
-
-    case Named_object::NAMED_OBJECT_UNKNOWN:
-      {
-       Named_object* real = old_object->unknown_value()->real_named_object();
-       if (real != NULL)
-         return this->new_definition(real, new_object);
-       gcc_assert(!new_object->is_unknown());
-       old_object->unknown_value()->set_real_named_object(new_object);
-       if (!new_object->is_type_declaration()
-           && !new_object->is_function_declaration())
-         this->named_objects_.push_back(new_object);
-       return new_object;
-      }
-
-    case Named_object::NAMED_OBJECT_CONST:
-      break;
-
-    case Named_object::NAMED_OBJECT_TYPE:
-      if (new_object->is_type_declaration())
-       return old_object;
-      break;
-
-    case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-      if (new_object->is_type_declaration())
-       return old_object;
-      if (new_object->is_type())
-       {
-         old_object->set_type_value(new_object->type_value());
-         new_object->type_value()->set_named_object(old_object);
-         this->named_objects_.push_back(old_object);
-         return old_object;
-       }
-      break;
-
-    case Named_object::NAMED_OBJECT_VAR:
-    case Named_object::NAMED_OBJECT_RESULT_VAR:
-      break;
-
-    case Named_object::NAMED_OBJECT_SINK:
-      gcc_unreachable();
-
-    case Named_object::NAMED_OBJECT_FUNC:
-      if (new_object->is_function_declaration())
-       {
-         if (!new_object->func_declaration_value()->asm_name().empty())
-           sorry("__asm__ for function definitions");
-         Function_type* old_type = old_object->func_value()->type();
-         Function_type* new_type =
-           new_object->func_declaration_value()->type();
-         if (old_type->is_valid_redeclaration(new_type, &reason))
-           return old_object;
-       }
-      break;
-
-    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-      {
-       Function_type* old_type = old_object->func_declaration_value()->type();
-       if (new_object->is_function_declaration())
-         {
-           Function_type* new_type =
-             new_object->func_declaration_value()->type();
-           if (old_type->is_valid_redeclaration(new_type, &reason))
-             return old_object;
-         }
-       if (new_object->is_function())
-         {
-           Function_type* new_type = new_object->func_value()->type();
-           if (old_type->is_valid_redeclaration(new_type, &reason))
-             {
-               if (!old_object->func_declaration_value()->asm_name().empty())
-                 sorry("__asm__ for function definitions");
-               old_object->set_function_value(new_object->func_value());
-               this->named_objects_.push_back(old_object);
-               return old_object;
-             }
-         }
-      }
-      break;
-
-    case Named_object::NAMED_OBJECT_PACKAGE:
-      if (new_object->is_package()
-         && (old_object->package_value()->name()
-             == new_object->package_value()->name()))
-       return old_object;
-
-      break;
-    }
-
-  std::string n = old_object->message_name();
-  if (reason.empty())
-    error_at(new_object->location(), "redefinition of %qs", n.c_str());
-  else
-    error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
-            reason.c_str());
-
-  inform(old_object->location(), "previous definition of %qs was here",
-        n.c_str());
-
-  return old_object;
-}
-
-// Add a named type.
-
-Named_object*
-Bindings::add_named_type(Named_type* named_type)
-{
-  return this->add_named_object(named_type->named_object());
-}
-
-// Add a function.
-
-Named_object*
-Bindings::add_function(const std::string& name, const Package* package,
-                      Function* function)
-{
-  return this->add_named_object(Named_object::make_function(name, package,
-                                                           function));
-}
-
-// Add a function declaration.
-
-Named_object*
-Bindings::add_function_declaration(const std::string& name,
-                                  const Package* package,
-                                  Function_type* type,
-                                  source_location location)
-{
-  Named_object* no = Named_object::make_function_declaration(name, package,
-                                                            type, location);
-  return this->add_named_object(no);
-}
-
-// Define a type which was previously declared.
-
-void
-Bindings::define_type(Named_object* no, Named_type* type)
-{
-  no->set_type_value(type);
-  this->named_objects_.push_back(no);
-}
-
-// Traverse bindings.
-
-int
-Bindings::traverse(Traverse* traverse, bool is_global)
-{
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  // We don't use an iterator because we permit the traversal to add
-  // new global objects.
-  for (size_t i = 0; i < this->named_objects_.size(); ++i)
-    {
-      Named_object* p = this->named_objects_[i];
-      switch (p->classification())
-       {
-       case Named_object::NAMED_OBJECT_CONST:
-         if ((traverse_mask & Traverse::traverse_constants) != 0)
-           {
-             if (traverse->constant(p, is_global) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         if ((traverse_mask & Traverse::traverse_types) != 0
-             || (traverse_mask & Traverse::traverse_expressions) != 0)
-           {
-             Type* t = p->const_value()->type();
-             if (t != NULL
-                 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-             if (p->const_value()->traverse_expression(traverse)
-                 == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_VAR:
-       case Named_object::NAMED_OBJECT_RESULT_VAR:
-         if ((traverse_mask & Traverse::traverse_variables) != 0)
-           {
-             if (traverse->variable(p) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         if (((traverse_mask & Traverse::traverse_types) != 0
-              || (traverse_mask & Traverse::traverse_expressions) != 0)
-             && (p->is_result_variable()
-                 || p->var_value()->has_type()))
-           {
-             Type* t = (p->is_variable()
-                        ? p->var_value()->type()
-                        : p->result_var_value()->type());
-             if (t != NULL
-                 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         if (p->is_variable()
-             && ((traverse_mask & Traverse::traverse_types) != 0
-                 || (traverse_mask & Traverse::traverse_expressions) != 0))
-           {
-             if (p->var_value()->traverse_expression(traverse)
-                 == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_FUNC:
-         if ((traverse_mask & Traverse::traverse_functions) != 0)
-           {
-             int t = traverse->function(p);
-             if (t == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-             else if (t == TRAVERSE_SKIP_COMPONENTS)
-               break;
-           }
-
-         if ((traverse_mask
-              & (Traverse::traverse_variables
-                 | Traverse::traverse_constants
-                 | Traverse::traverse_functions
-                 | Traverse::traverse_blocks
-                 | Traverse::traverse_statements
-                 | Traverse::traverse_expressions
-                 | Traverse::traverse_types)) != 0)
-           {
-             if (p->func_value()->traverse(traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_PACKAGE:
-         // These are traversed in Gogo::traverse.
-         gcc_assert(is_global);
-         break;
-
-       case Named_object::NAMED_OBJECT_TYPE:
-         if ((traverse_mask & Traverse::traverse_types) != 0
-             || (traverse_mask & Traverse::traverse_expressions) != 0)
-           {
-             if (Type::traverse(p->type_value(), traverse) == TRAVERSE_EXIT)
-               return TRAVERSE_EXIT;
-           }
-         break;
-
-       case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-       case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-       case Named_object::NAMED_OBJECT_UNKNOWN:
-         break;
-
-       case Named_object::NAMED_OBJECT_SINK:
-       default:
-         gcc_unreachable();
-       }
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Class Package.
-
-Package::Package(const std::string& name, const std::string& unique_prefix,
-                source_location location)
-  : name_(name), unique_prefix_(unique_prefix), bindings_(new Bindings(NULL)),
-    priority_(0), location_(location), used_(false), is_imported_(false),
-    uses_sink_alias_(false)
-{
-  gcc_assert(!name.empty() && !unique_prefix.empty());
-}
-
-// Set the priority.  We may see multiple priorities for an imported
-// package; we want to use the largest one.
-
-void
-Package::set_priority(int priority)
-{
-  if (priority > this->priority_)
-    this->priority_ = priority;
-}
-
-// Determine types of constants.  Everything else in a package
-// (variables, function declarations) should already have a fixed
-// type.  Constants may have abstract types.
-
-void
-Package::determine_types()
-{
-  Bindings* bindings = this->bindings_;
-  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
-       p != bindings->end_definitions();
-       ++p)
-    {
-      if ((*p)->is_const())
-       (*p)->const_value()->determine_type();
-    }
-}
-
-// Class Traverse.
-
-// Destructor.
-
-Traverse::~Traverse()
-{
-  if (this->types_seen_ != NULL)
-    delete this->types_seen_;
-  if (this->expressions_seen_ != NULL)
-    delete this->expressions_seen_;
-}
-
-// Record that we are looking at a type, and return true if we have
-// already seen it.
-
-bool
-Traverse::remember_type(const Type* type)
-{
-  if (type->is_error_type())
-    return true;
-  gcc_assert((this->traverse_mask() & traverse_types) != 0
-            || (this->traverse_mask() & traverse_expressions) != 0);
-  // We only have to remember named types, as they are the only ones
-  // we can see multiple times in a traversal.
-  if (type->classification() != Type::TYPE_NAMED)
-    return false;
-  if (this->types_seen_ == NULL)
-    this->types_seen_ = new Types_seen();
-  std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
-  return !ins.second;
-}
-
-// Record that we are looking at an expression, and return true if we
-// have already seen it.
-
-bool
-Traverse::remember_expression(const Expression* expression)
-{
-  gcc_assert((this->traverse_mask() & traverse_types) != 0
-            || (this->traverse_mask() & traverse_expressions) != 0);
-  if (this->expressions_seen_ == NULL)
-    this->expressions_seen_ = new Expressions_seen();
-  std::pair<Expressions_seen::iterator, bool> ins =
-    this->expressions_seen_->insert(expression);
-  return !ins.second;
-}
-
-// The default versions of these functions should never be called: the
-// traversal mask indicates which functions may be called.
-
-int
-Traverse::variable(Named_object*)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::constant(Named_object*, bool)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::function(Named_object*)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::block(Block*)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::statement(Block*, size_t*, Statement*)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::expression(Expression**)
-{
-  gcc_unreachable();
-}
-
-int
-Traverse::type(Type*)
-{
-  gcc_unreachable();
-}
diff --git a/gcc/go/gofrontend/gogo.h.merge-left.r167407 b/gcc/go/gofrontend/gogo.h.merge-left.r167407
deleted file mode 100644 (file)
index d0cfa1e..0000000
+++ /dev/null
@@ -1,2484 +0,0 @@
-// gogo.h -- Go frontend parsed representation.     -*- C++ -*-
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#ifndef GO_GOGO_H
-#define GO_GOGO_H
-
-class Traverse;
-class Type;
-class Type_hash_identical;
-class Type_equal;
-class Type_identical;
-class Typed_identifier;
-class Typed_identifier_list;
-class Function_type;
-class Expression;
-class Statement;
-class Block;
-class Function;
-class Bindings;
-class Package;
-class Variable;
-class Pointer_type;
-class Struct_type;
-class Struct_field;
-class Struct_field_list;
-class Array_type;
-class Map_type;
-class Channel_type;
-class Interface_type;
-class Named_type;
-class Forward_declaration_type;
-class Method;
-class Methods;
-class Named_object;
-class Label;
-class Translate_context;
-class Export;
-class Import;
-
-// This file declares the basic classes used to hold the internal
-// representation of Go which is built by the parser.
-
-// An initialization function for an imported package.  This is a
-// magic function which initializes variables and runs the "init"
-// function.
-
-class Import_init
-{
- public:
-  Import_init(const std::string& package_name, const std::string& init_name,
-             int priority)
-    : package_name_(package_name), init_name_(init_name), priority_(priority)
-  { }
-
-  // The name of the package being imported.
-  const std::string&
-  package_name() const
-  { return this->package_name_; }
-
-  // The name of the package's init function.
-  const std::string&
-  init_name() const
-  { return this->init_name_; }
-
-  // The priority of the initialization function.  Functions with a
-  // lower priority number must be run first.
-  int
-  priority() const
-  { return this->priority_; }
-
- private:
-  // The name of the package being imported.
-  std::string package_name_;
-  // The name of the package's init function.
-  std::string init_name_;
-  // The priority.
-  int priority_;
-};
-
-// For sorting purposes.
-
-inline bool
-operator<(const Import_init& i1, const Import_init& i2)
-{
-  if (i1.priority() < i2.priority())
-    return true;
-  if (i1.priority() > i2.priority())
-    return false;
-  if (i1.package_name() != i2.package_name())
-    return i1.package_name() < i2.package_name();
-  return i1.init_name() < i2.init_name();
-}
-
-// The holder for the internal representation of the entire
-// compilation unit.
-
-class Gogo
-{
- public:
-  // Create the IR, passing in the sizes of the types "int", "float",
-  // and "uintptr" in bits.
-  Gogo(int int_type_size, int float_type_size, int pointer_size);
-
-  // Get the package name.
-  const std::string&
-  package_name() const;
-
-  // Set the package name.
-  void
-  set_package_name(const std::string&, source_location);
-
-  // If necessary, adjust the name to use for a hidden symbol.  We add
-  // a prefix of the package name, so that hidden symbols in different
-  // packages do not collide.
-  std::string
-  pack_hidden_name(const std::string& name, bool is_exported) const
-  {
-    return (is_exported
-           ? name
-           : ('.' + this->unique_prefix()
-              + '.' + this->package_name()
-              + '.' + name));
-  }
-
-  // Unpack a name which may have been hidden.  Returns the
-  // user-visible name of the object.
-  static std::string
-  unpack_hidden_name(const std::string& name)
-  { return name[0] != '.' ? name : name.substr(name.rfind('.') + 1); }
-
-  // Return whether a possibly packed name is hidden.
-  static bool
-  is_hidden_name(const std::string& name)
-  { return name[0] == '.'; }
-
-  // Return the package prefix of a hidden name.
-  static std::string
-  hidden_name_prefix(const std::string& name)
-  {
-    gcc_assert(Gogo::is_hidden_name(name));
-    return name.substr(1, name.rfind('.') - 1);
-  }
-
-  // Given a name which may or may not have been hidden, return the
-  // name to use in an error message.
-  static std::string
-  message_name(const std::string& name);
-
-  // Return whether a name is the blank identifier _.
-  static bool
-  is_sink_name(const std::string& name)
-  {
-    return (name[0] == '.'
-           && name[name.length() - 1] == '_'
-           && name[name.length() - 2] == '.');
-  }
-
-  // Return the unique prefix to use for all exported symbols.
-  const std::string&
-  unique_prefix() const;
-
-  // Set the unique prefix.
-  void
-  set_unique_prefix(const std::string&);
-
-  // Return the priority to use for the package we are compiling.
-  // This is two more than the largest priority of any package we
-  // import.
-  int
-  package_priority() const;
-
-  // Import a package.  FILENAME is the file name argument, LOCAL_NAME
-  // is the local name to give to the package.  If LOCAL_NAME is empty
-  // the declarations are added to the global scope.
-  void
-  import_package(const std::string& filename, const std::string& local_name,
-                bool is_local_name_exported, source_location);
-
-  // Whether we are the global binding level.
-  bool
-  in_global_scope() const;
-
-  // Look up a name in the current binding contours.
-  Named_object*
-  lookup(const std::string&, Named_object** pfunction) const;
-
-  // Look up a name in the current block.
-  Named_object*
-  lookup_in_block(const std::string&) const;
-
-  // Look up a name in the global namespace--the universal scope.
-  Named_object*
-  lookup_global(const char*) const;
-
-  // Add a new imported package.  REAL_NAME is the real name of the
-  // package.  ALIAS is the alias of the package; this may be the same
-  // as REAL_NAME.  This sets *PADD_TO_GLOBALS if symbols added to
-  // this package should be added to the global namespace; this is
-  // true if the alias is ".".  LOCATION is the location of the import
-  // statement.  This returns the new package, or NULL on error.
-  Package*
-  add_imported_package(const std::string& real_name, const std::string& alias,
-                      bool is_alias_exported,
-                      const std::string& unique_prefix,
-                      source_location location,
-                      bool* padd_to_globals);
-
-  // Register a package.  This package may or may not be imported.
-  // This returns the Package structure for the package, creating if
-  // it necessary.
-  Package*
-  register_package(const std::string& name, const std::string& unique_prefix,
-                  source_location);
-
-  // Start compiling a function.  ADD_METHOD_TO_TYPE is true if a
-  // method function should be added to the type of its receiver.
-  Named_object*
-  start_function(const std::string& name, Function_type* type,
-                bool add_method_to_type, source_location);
-
-  // Finish compiling a function.
-  void
-  finish_function(source_location);
-
-  // Return the current function.
-  Named_object*
-  current_function() const;
-
-  // Start a new block.  This is not initially associated with a
-  // function.
-  void
-  start_block(source_location);
-
-  // Finish the current block and return it.
-  Block*
-  finish_block(source_location);
-
-  // Declare an unknown name.  This is used while parsing.  The name
-  // must be resolved by the end of the parse.  Unknown names are
-  // always added at the package level.
-  Named_object*
-  add_unknown_name(const std::string& name, source_location);
-
-  // Declare a function.
-  Named_object*
-  declare_function(const std::string&, Function_type*, source_location);
-
-  // Add a label.
-  Label*
-  add_label_definition(const std::string&, source_location);
-
-  // Add a label reference.
-  Label*
-  add_label_reference(const std::string&);
-
-  // Add a statement to the current block.
-  void
-  add_statement(Statement*);
-
-  // Add a block to the current block.
-  void
-  add_block(Block*, source_location);
-
-  // Add a constant.
-  Named_object*
-  add_constant(const Typed_identifier&, Expression*, int iota_value);
-
-  // Add a type.
-  void
-  add_type(const std::string&, Type*, source_location);
-
-  // Add a named type.  This is used for builtin types, and to add an
-  // imported type to the global scope.
-  void
-  add_named_type(Named_type*);
-
-  // Declare a type.
-  Named_object*
-  declare_type(const std::string&, source_location);
-
-  // Declare a type at the package level.  This is used when the
-  // parser sees an unknown name where a type name is required.
-  Named_object*
-  declare_package_type(const std::string&, source_location);
-
-  // Define a type which was already declared.
-  void
-  define_type(Named_object*, Named_type*);
-
-  // Add a variable.
-  Named_object*
-  add_variable(const std::string&, Variable*);
-
-  // Add a sink--a reference to the blank identifier _.
-  Named_object*
-  add_sink();
-
-  // Add a named object to the current namespace.  This is used for
-  // import . "package".
-  void
-  add_named_object(Named_object*);
-
-  // Return a name to use for a thunk function.  A thunk function is
-  // one we create during the compilation, for a go statement or a
-  // defer statement or a method expression.
-  static std::string
-  thunk_name();
-
-  // Return whether an object is a thunk.
-  static bool
-  is_thunk(const Named_object*);
-
-  // Note that we've seen an interface type.  This is used to build
-  // all required interface method tables.
-  void
-  record_interface_type(Interface_type*);
-
-  // Clear out all names in file scope.  This is called when we start
-  // parsing a new file.
-  void
-  clear_file_scope();
-
-  // Traverse the tree.  See the Traverse class.
-  void
-  traverse(Traverse*);
-
-  // Define the predeclared global names.
-  void
-  define_global_names();
-
-  // Verify and complete all types.
-  void
-  verify_types();
-
-  // Lower the parse tree.
-  void
-  lower_parse_tree();
-
-  // Lower an expression.
-  void
-  lower_expression(Named_object* function, Expression**);
-
-  // Lower a constant.
-  void
-  lower_constant(Named_object*);
-
-  // Finalize the method lists and build stub methods for named types.
-  void
-  finalize_methods();
-
-  // Work out the types to use for unspecified variables and
-  // constants.
-  void
-  determine_types();
-
-  // Type check the program.
-  void
-  check_types();
-
-  // Check the types in a single block.  This is used for complicated
-  // go statements.
-  void
-  check_types_in_block(Block*);
-
-  // Check for return statements.
-  void
-  check_return_statements();
-
-  // Do all exports.
-  void
-  do_exports();
-
-  // Add an import control function for an imported package to the
-  // list.
-  void
-  add_import_init_fn(const std::string& package_name,
-                    const std::string& init_name, int prio);
-
-  // Turn short-cut operators (&&, ||) into explicit if statements.
-  void
-  remove_shortcuts();
-
-  // Use temporary variables to force order of evaluation.
-  void
-  order_evaluations();
-
-  // Build thunks for functions which call recover.
-  void
-  build_recover_thunks();
-
-  // Simplify statements which might use thunks: go and defer
-  // statements.
-  void
-  simplify_thunk_statements();
-
-  // Write out the global values.
-  void
-  write_globals();
-
-  // Build a call to a builtin function.  PDECL should point to a NULL
-  // initialized static pointer which will hold the fndecl.  NAME is
-  // the name of the function.  NARGS is the number of arguments.
-  // RETTYPE is the return type.  It is followed by NARGS pairs of
-  // type and argument (both trees).
-  static tree
-  call_builtin(tree* pdecl, source_location, const char* name, int nargs,
-              tree rettype, ...);
-
-  // Build a call to the runtime error function.
-  static tree
-  runtime_error(int code, source_location);
-
-  // Build a builtin struct with a list of fields.
-  static tree
-  builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
-                int nfields, ...);
-
-  // Mark a function declaration as a builtin library function.
-  static void
-  mark_fndecl_as_builtin_library(tree fndecl);
-
-  // Build the type of the struct that holds a slice for the given
-  // element type.
-  tree
-  slice_type_tree(tree element_type_tree);
-
-  // Given a tree for a slice type, return the tree for the element
-  // type.
-  static tree
-  slice_element_type_tree(tree slice_type_tree);
-
-  // Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
-  // the slice.  VALUES points to the values.  COUNT is the size,
-  // CAPACITY is the capacity.  If CAPACITY is NULL, it is set to
-  // COUNT.
-  static tree
-  slice_constructor(tree slice_type_tree, tree values, tree count,
-                   tree capacity);
-
-  // Build a constructor for an empty slice.  SLICE_TYPE_TREE is the
-  // type of the slice.
-  static tree
-  empty_slice_constructor(tree slice_type_tree);
-
-  // Build a map descriptor.
-  tree
-  map_descriptor(Map_type*);
-
-  // Return a tree for the type of a map descriptor.  This is struct
-  // __go_map_descriptor in libgo/runtime/map.h.  This is the same for
-  // all map types.
-  tree
-  map_descriptor_type();
-
-  // Build a type descriptor for TYPE using INITIALIZER as the type
-  // descriptor.  This builds a new decl stored in *PDECL.
-  void
-  build_type_descriptor_decl(const Type*, Expression* initializer,
-                            tree* pdecl);
-
-  // Build required interface method tables.
-  void
-  build_interface_method_tables();
-
-  // Build an interface method table for a type: a list of function
-  // pointers, one for each interface method.  This returns a decl.
-  tree
-  interface_method_table_for_type(const Interface_type*, Named_type*,
-                                 bool is_pointer);
-
-  // Return a tree which allocate SIZE bytes to hold values of type
-  // TYPE.
-  tree
-  allocate_memory(Type *type, tree size, source_location);
-
-  // Return a type to use for pointer to const char.
-  static tree
-  const_char_pointer_type_tree();
-
-  // Build a string constant with the right type.
-  static tree
-  string_constant_tree(const std::string&);
-
-  // Build a Go string constant.  This returns a pointer to the
-  // constant.
-  tree
-  go_string_constant_tree(const std::string&);
-
-  // Send a value on a channel.
-  static tree
-  send_on_channel(tree channel, tree val, bool blocking, bool for_select,
-                 source_location);
-
-  // Receive a value from a channel.
-  static tree
-  receive_from_channel(tree type_tree, tree channel, bool for_select,
-                      source_location);
-
-  // Return a tree for receiving an integer on a channel.
-  static tree
-  receive_as_64bit_integer(tree type, tree channel, bool blocking,
-                          bool for_select);
-
-
-  // Make a trampoline which calls FNADDR passing CLOSURE.
-  tree
-  make_trampoline(tree fnaddr, tree closure, source_location);
-
- private:
-  // During parsing, we keep a stack of functions.  Each function on
-  // the stack is one that we are currently parsing.  For each
-  // function, we keep track of the current stack of blocks.
-  struct Open_function
-  {
-    // The function.
-    Named_object* function;
-    // The stack of active blocks in the function.
-    std::vector<Block*> blocks;
-  };
-
-  // The stack of functions.
-  typedef std::vector<Open_function> Open_functions;
-
-  // Create trees for implicit builtin functions.
-  void
-  define_builtin_function_trees();
-
-  // Set up the built-in unsafe package.
-  void
-  import_unsafe(const std::string&, bool is_exported, source_location);
-
-  // Add a new imported package.
-  Named_object*
-  add_package(const std::string& real_name, const std::string& alias,
-             const std::string& unique_prefix, source_location location);
-
-  // Return the current binding contour.
-  Bindings*
-  current_bindings();
-
-  const Bindings*
-  current_bindings() const;
-
-  // Return the current block.
-  Block*
-  current_block();
-
-  // Get the name of the magic initialization function.
-  const std::string&
-  get_init_fn_name();
-
-  // Get the decl for the magic initialization function.
-  tree
-  initialization_function_decl();
-
-  // Write the magic initialization function.
-  void
-  write_initialization_function(tree fndecl, tree init_stmt_list);
-
-  // Initialize imported packages.
-  void
-  init_imports(tree*);
-
-  // Register variables with the garbage collector.
-  void
-  register_gc_vars(const std::vector<Named_object*>&, tree*);
-
-  // Build a pointer to a Go string constant.  This returns a pointer
-  // to the pointer.
-  tree
-  ptr_go_string_constant_tree(const std::string&);
-
-  // Return the name to use for a type descriptor decl for an unnamed
-  // type.
-  std::string
-  unnamed_type_descriptor_decl_name(const Type* type);
-
-  // Return the name to use for a type descriptor decl for a type
-  // named NO, defined in IN_FUNCTION.
-  std::string
-  type_descriptor_decl_name(const Named_object* no,
-                           const Named_object* in_function);
-
-  // Where a type descriptor should be defined.
-  enum Type_descriptor_location
-    {
-      // Defined in this file.
-      TYPE_DESCRIPTOR_DEFINED,
-      // Defined in some other file.
-      TYPE_DESCRIPTOR_UNDEFINED,
-      // Common definition which may occur in multiple files.
-      TYPE_DESCRIPTOR_COMMON
-    };
-
-  // Return where the decl for TYPE should be defined.
-  Type_descriptor_location
-  type_descriptor_location(const Type* type);
-
-  // Return the type of a trampoline.
-  static tree
-  trampoline_type_tree();
-
-  // Type used to map import names to packages.
-  typedef std::map<std::string, Package*> Imports;
-
-  // Type used to map package names to packages.
-  typedef std::map<std::string, Package*> Packages;
-
-  // Type used to map special names in the sys package.
-  typedef std::map<std::string, std::string> Sys_names;
-
-  // Hash table mapping map types to map descriptor decls.
-  typedef Unordered_map_hash(const Map_type*, tree, Type_hash_identical,
-                            Type_identical) Map_descriptors;
-
-  // Map unnamed types to type descriptor decls.
-  typedef Unordered_map_hash(const Type*, tree, Type_hash_identical,
-                            Type_identical) Type_descriptor_decls;
-
-  // The package we are compiling.
-  Package* package_;
-  // The list of currently open functions during parsing.
-  Open_functions functions_;
-  // The global binding contour.  This includes the builtin functions
-  // and the package we are compiling.
-  Bindings* globals_;
-  // Mapping from import file names to packages.
-  Imports imports_;
-  // Whether the magic unsafe package was imported.
-  bool imported_unsafe_;
-  // Mapping from package names we have seen to packages.  This does
-  // not include the package we are compiling.
-  Packages packages_;
-  // Mapping from map types to map descriptors.
-  Map_descriptors* map_descriptors_;
-  // Mapping from unnamed types to type descriptor decls.
-  Type_descriptor_decls* type_descriptor_decls_;
-  // The functions named "init", if there are any.
-  std::vector<Named_object*> init_functions_;
-  // Whether we need a magic initialization function.
-  bool need_init_fn_;
-  // The name of the magic initialization function.
-  std::string init_fn_name_;
-  // A list of import control variables for packages that we import.
-  std::set<Import_init> imported_init_fns_;
-  // The unique prefix used for all global symbols.
-  std::string unique_prefix_;
-  // A list of interface types defined while parsing.
-  std::vector<Interface_type*> interface_types_;
-};
-
-// A block of statements.
-
-class Block
-{
- public:
-  Block(Block* enclosing, source_location);
-
-  // Return the enclosing block.
-  const Block*
-  enclosing() const
-  { return this->enclosing_; }
-
-  // Return the bindings of the block.
-  Bindings*
-  bindings()
-  { return this->bindings_; }
-
-  const Bindings*
-  bindings() const
-  { return this->bindings_; }
-
-  // Look at the block's statements.
-  const std::vector<Statement*>*
-  statements() const
-  { return &this->statements_; }
-
-  // Return the start location.  This is normally the location of the
-  // left curly brace which starts the block.
-  source_location
-  start_location() const
-  { return this->start_location_; }
-
-  // Return the end location.  This is normally the location of the
-  // right curly brace which ends the block.
-  source_location
-  end_location() const
-  { return this->end_location_; }
-
-  // Add a statement to the block.
-  void
-  add_statement(Statement*);
-
-  // Add a statement to the front of the block.
-  void
-  add_statement_at_front(Statement*);
-
-  // Replace a statement in a block.
-  void
-  replace_statement(size_t index, Statement*);
-
-  // Add a Statement before statement number INDEX.
-  void
-  insert_statement_before(size_t index, Statement*);
-
-  // Add a Statement after statement number INDEX.
-  void
-  insert_statement_after(size_t index, Statement*);
-
-  // Set the end location of the block.
-  void
-  set_end_location(source_location location)
-  { this->end_location_ = location; }
-
-  // Traverse the tree.
-  int
-  traverse(Traverse*);
-
-  // Set final types for unspecified variables and constants.
-  void
-  determine_types();
-
-  // Return true if execution of this block may fall through to the
-  // next block.
-  bool
-  may_fall_through() const;
-
-  // Return a tree of the code in this block.
-  tree
-  get_tree(Translate_context*);
-
-  // Iterate over statements.
-
-  typedef std::vector<Statement*>::iterator iterator;
-
-  iterator
-  begin()
-  { return this->statements_.begin(); }
-
-  iterator
-  end()
-  { return this->statements_.end(); }
-
- private:
-  // Enclosing block.
-  Block* enclosing_;
-  // Statements in the block.
-  std::vector<Statement*> statements_;
-  // Binding contour.
-  Bindings* bindings_;
-  // Location of start of block.
-  source_location start_location_;
-  // Location of end of block.
-  source_location end_location_;
-};
-
-// A function.
-
-class Function
-{
- public:
-  Function(Function_type* type, Function*, Block*, source_location);
-
-  // Return the function's type.
-  Function_type*
-  type() const
-  { return this->type_; }
-
-  // Return the enclosing function if there is one.
-  Function*
-  enclosing()
-  { return this->enclosing_; }
-
-  // Set the enclosing function.  This is used when building thunks
-  // for functions which call recover.
-  void
-  set_enclosing(Function* enclosing)
-  {
-    gcc_assert(this->enclosing_ == NULL);
-    this->enclosing_ = enclosing;
-  }
-
-  // Create the named result variables in the outer block.
-  void
-  create_named_result_variables();
-
-  // Add a new field to the closure variable.
-  void
-  add_closure_field(Named_object* var, source_location loc)
-  { this->closure_fields_.push_back(std::make_pair(var, loc)); }
-
-  // Whether this function needs a closure.
-  bool
-  needs_closure() const
-  { return !this->closure_fields_.empty(); }
-
-  // Return the closure variable, creating it if necessary.  This is
-  // passed to the function as a static chain parameter.
-  Named_object*
-  closure_var();
-
-  // Set the closure variable.  This is used when building thunks for
-  // functions which call recover.
-  void
-  set_closure_var(Named_object* v)
-  {
-    gcc_assert(this->closure_var_ == NULL);
-    this->closure_var_ = v;
-  }
-
-  // Return the variable for a reference to field INDEX in the closure
-  // variable.
-  Named_object*
-  enclosing_var(unsigned int index)
-  {
-    gcc_assert(index < this->closure_fields_.size());
-    return closure_fields_[index].first;
-  }
-
-  // Set the type of the closure variable if there is one.
-  void
-  set_closure_type();
-
-  // Get the block of statements associated with the function.
-  Block*
-  block() const
-  { return this->block_; }
-
-  // Get the location of the start of the function.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Return whether this function is actually a method.
-  bool
-  is_method() const;
-
-  // Add a label definition to the function.
-  Label*
-  add_label_definition(const std::string& label_name, source_location);
-
-  // Add a label reference to a function.
-  Label*
-  add_label_reference(const std::string& label_name);
-
-  // Whether this function calls the predeclared recover function.
-  bool
-  calls_recover() const
-  { return this->calls_recover_; }
-
-  // Record that this function calls the predeclared recover function.
-  // This is set during the lowering pass.
-  void
-  set_calls_recover()
-  { this->calls_recover_ = true; }
-
-  // Whether this is a recover thunk function.
-  bool
-  is_recover_thunk() const
-  { return this->is_recover_thunk_; }
-
-  // Record that this is a thunk built for a function which calls
-  // recover.
-  void
-  set_is_recover_thunk()
-  { this->is_recover_thunk_ = true; }
-
-  // Whether this function already has a recover thunk.
-  bool
-  has_recover_thunk() const
-  { return this->has_recover_thunk_; }
-
-  // Record that this function already has a recover thunk.
-  void
-  set_has_recover_thunk()
-  { this->has_recover_thunk_ = true; }
-
-  // Swap with another function.  Used only for the thunk which calls
-  // recover.
-  void
-  swap_for_recover(Function *);
-
-  // Traverse the tree.
-  int
-  traverse(Traverse*);
-
-  // Determine types in the function.
-  void
-  determine_types();
-
-  // Return the function's decl given an identifier.
-  tree
-  get_or_make_decl(Gogo*, Named_object*, tree id);
-
-  // Return the function's decl after it has been built.
-  tree
-  get_decl() const
-  {
-    gcc_assert(this->fndecl_ != NULL);
-    return this->fndecl_;
-  }
-
-  // Set the function decl to hold a tree of the function code.
-  void
-  build_tree(Gogo*, Named_object*);
-
-  // Get the value to return when not explicitly specified.  May also
-  // add statements to execute first to STMT_LIST.
-  tree
-  return_value(Gogo*, Named_object*, source_location, tree* stmt_list) const;
-
-  // Get a tree for the variable holding the defer stack.
-  tree
-  defer_stack(source_location);
-
-  // Export the function.
-  void
-  export_func(Export*, const std::string& name) const;
-
-  // Export a function with a type.
-  static void
-  export_func_with_type(Export*, const std::string& name,
-                       const Function_type*);
-
-  // Import a function.
-  static void
-  import_func(Import*, std::string* pname, Typed_identifier** receiver,
-             Typed_identifier_list** pparameters,
-             Typed_identifier_list** presults, bool* is_varargs);
-
- private:
-  // Type for mapping from label names to Label objects.
-  typedef Unordered_map(std::string, Label*) Labels;
-
-  tree
-  make_receiver_parm_decl(Gogo*, Named_object*, tree);
-
-  tree
-  copy_parm_to_heap(Gogo*, Named_object*, tree);
-
-  void
-  build_defer_wrapper(Gogo*, Named_object*, tree*, tree*);
-
-  typedef std::vector<Named_object*> Named_results;
-
-  typedef std::vector<std::pair<Named_object*,
-                               source_location> > Closure_fields;
-
-  // The function's type.
-  Function_type* type_;
-  // The enclosing function.  This is NULL when there isn't one, which
-  // is the normal case.
-  Function* enclosing_;
-  // The named result variables, if any.
-  Named_results* named_results_;
-  // If there is a closure, this is the list of variables which appear
-  // in the closure.  This is created by the parser, and then resolved
-  // to a real type when we lower parse trees.
-  Closure_fields closure_fields_;
-  // The closure variable, passed as a parameter using the static
-  // chain parameter.  Normally NULL.
-  Named_object* closure_var_;
-  // The outer block of statements in the function.
-  Block* block_;
-  // The source location of the start of the function.
-  source_location location_;
-  // Labels defined or referenced in the function.
-  Labels labels_;
-  // The function decl.
-  tree fndecl_;
-  // A variable holding the defer stack variable.  This is NULL unless
-  // we actually need a defer stack.
-  tree defer_stack_;
-  // True if this function calls the predeclared recover function.
-  bool calls_recover_;
-  // True if this a thunk built for a function which calls recover.
-  bool is_recover_thunk_;
-  // True if this function already has a recover thunk.
-  bool has_recover_thunk_;
-};
-
-// A function declaration.
-
-class Function_declaration
-{
- public:
-  Function_declaration(Function_type* fntype, source_location location)
-    : fntype_(fntype), location_(location), asm_name_(), fndecl_(NULL)
-  { }
-
-  Function_type*
-  type() const
-  { return this->fntype_; }
-
-  source_location
-  location() const
-  { return this->location_; }
-
-  const std::string&
-  asm_name() const
-  { return this->asm_name_; }
-
-  // Set the assembler name.
-  void
-  set_asm_name(const std::string& asm_name)
-  { this->asm_name_ = asm_name; }
-
-  // Return a decl for the function given an identifier.
-  tree
-  get_or_make_decl(Gogo*, Named_object*, tree id);
-
-  // Export a function declaration.
-  void
-  export_func(Export* exp, const std::string& name) const
-  { Function::export_func_with_type(exp, name, this->fntype_); }
-
- private:
-  // The type of the function.
-  Function_type* fntype_;
-  // The location of the declaration.
-  source_location location_;
-  // The assembler name: this is the name to use in references to the
-  // function.  This is normally empty.
-  std::string asm_name_;
-  // The function decl if needed.
-  tree fndecl_;
-};
-
-// A variable.
-
-class Variable
-{
- public:
-  Variable(Type*, Expression*, bool is_global, bool is_parameter,
-          bool is_receiver, source_location);
-
-  // Get the type of the variable.
-  Type*
-  type() const;
-
-  // Return whether the type is defined yet.
-  bool
-  has_type() const
-  { return this->type_ != NULL; }
-
-  // Get the initial value.
-  Expression*
-  init() const
-  { return this->init_; }
-
-  // Return whether there are any preinit statements.
-  bool
-  has_pre_init() const
-  { return this->preinit_ != NULL; }
-
-  // Return the preinit statements if any.
-  Block*
-  preinit() const
-  { return this->preinit_; }
-
-  // Return whether this is a global variable.
-  bool
-  is_global() const
-  { return this->is_global_; }
-
-  // Return whether this is a function parameter.
-  bool
-  is_parameter() const
-  { return this->is_parameter_; }
-
-  // Return whether this is the receiver parameter of a method.
-  bool
-  is_receiver() const
-  { return this->is_receiver_; }
-
-  // Change this parameter to be a receiver.  This is used when
-  // creating the thunks created for functions which call recover.
-  void
-  set_is_receiver()
-  {
-    gcc_assert(this->is_parameter_);
-    this->is_receiver_ = true;
-  }
-
-  // Change this parameter to not be a receiver.  This is used when
-  // creating the thunks created for functions which call recover.
-  void
-  set_is_not_receiver()
-  {
-    gcc_assert(this->is_parameter_);
-    this->is_receiver_ = false;
-  }
-
-  // Return whether this is the varargs parameter of a function.
-  bool
-  is_varargs_parameter() const
-  { return this->is_varargs_parameter_; }
-
-  // Whether this variable's address is taken.
-  bool
-  is_address_taken() const
-  { return this->is_address_taken_; }
-
-  // Whether this variable should live in the heap.
-  bool
-  is_in_heap() const
-  { return this->is_address_taken_ && !this->is_global_; }
-
-  // Get the source location of the variable's declaration.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Record that this is the varargs parameter of a function.
-  void
-  set_is_varargs_parameter()
-  {
-    gcc_assert(this->is_parameter_);
-    this->is_varargs_parameter_ = true;
-  }
-
-  // Clear the initial value; used for error handling.
-  void
-  clear_init()
-  { this->init_ = NULL; }
-
-  // Set the initial value; used for converting shortcuts.
-  void
-  set_init(Expression* init)
-  { this->init_ = init; }
-
-  // Get the preinit block, a block of statements to be run before the
-  // initialization expression.
-  Block*
-  preinit_block();
-
-  // Add a statement to be run before the initialization expression.
-  // This is only used for global variables.
-  void
-  add_preinit_statement(Statement*);
-
-  // Lower the initialization expression after parsing is complete.
-  void
-  lower_init_expression(Gogo*, Named_object*);
-
-  // A special case: the init value is used only to determine the
-  // type.  This is used if the variable is defined using := with the
-  // comma-ok form of a map index or a receive expression.  The init
-  // value is actually the map index expression or receive expression.
-  // We use this because we may not know the right type at parse time.
-  void
-  set_type_from_init_tuple()
-  { this->type_from_init_tuple_ = true; }
-
-  // Another special case: the init value is used only to determine
-  // the type.  This is used if the variable is defined using := with
-  // a range clause.  The init value is the range expression.  The
-  // type of the variable is the index type of the range expression
-  // (i.e., the first value returned by a range).
-  void
-  set_type_from_range_index()
-  { this->type_from_range_index_ = true; }
-
-  // Another special case: like set_type_from_range_index, but the
-  // type is the value type of the range expression (i.e., the second
-  // value returned by a range).
-  void
-  set_type_from_range_value()
-  { this->type_from_range_value_ = true; }
-
-  // Another special case: the init value is used only to determine
-  // the type.  This is used if the variable is defined using := with
-  // a case in a select statement.  The init value is the channel.
-  // The type of the variable is the channel's element type.
-  void
-  set_type_from_chan_element()
-  { this->type_from_chan_element_ = true; }
-
-  // After we lower the select statement, we once again set the type
-  // from the initialization expression.
-  void
-  clear_type_from_chan_element()
-  {
-    gcc_assert(this->type_from_chan_element_);
-    this->type_from_chan_element_ = false;
-  }
-
-  // Note that this variable was created for a type switch clause.
-  void
-  set_is_type_switch_var()
-  { this->is_type_switch_var_ = true; }
-
-  // Traverse the initializer expression.
-  int
-  traverse_expression(Traverse*);
-
-  // Determine the type of the variable if necessary.
-  void
-  determine_type();
-
-  // Note that something takes the address of this variable.
-  void
-  set_address_taken()
-  { this->is_address_taken_ = true; }
-
-  // Get the initial value of the variable as a tree.  This may only
-  // be called if has_pre_init() returns false.
-  tree
-  get_init_tree(Gogo*, Named_object* function);
-
-  // Return a series of statements which sets the value of the
-  // variable in DECL.  This should only be called is has_pre_init()
-  // returns true.  DECL may be NULL for a sink variable.
-  tree
-  get_init_block(Gogo*, Named_object* function, tree decl);
-
-  // Export the variable.
-  void
-  export_var(Export*, const std::string& name) const;
-
-  // Import a variable.
-  static void
-  import_var(Import*, std::string* pname, Type** ptype);
-
- private:
-  // The type of a tuple.
-  Type*
-  type_from_tuple(Expression*, bool) const;
-
-  // The type of a range.
-  Type*
-  type_from_range(Expression*, bool, bool) const;
-
-  // The element type of a channel.
-  Type*
-  type_from_chan_element(Expression*, bool) const;
-
-  // The variable's type.  This may be NULL if the type is set from
-  // the expression.
-  Type* type_;
-  // The initial value.  This may be NULL if the variable should be
-  // initialized to the default value for the type.
-  Expression* init_;
-  // Statements to run before the init statement.
-  Block* preinit_;
-  // Location of variable definition.
-  source_location location_;
-  // Whether this is a global variable.
-  bool is_global_ : 1;
-  // Whether this is a function parameter.
-  bool is_parameter_ : 1;
-  // Whether this is the receiver parameter of a method.
-  bool is_receiver_ : 1;
-  // Whether this is the varargs parameter of a function.
-  bool is_varargs_parameter_ : 1;
-  // Whether something takes the address of this variable.
-  bool is_address_taken_ : 1;
-  // True if we have lowered the initialization expression.
-  bool init_is_lowered_ : 1;
-  // True if init is a tuple used to set the type.
-  bool type_from_init_tuple_ : 1;
-  // True if init is a range clause and the type is the index type.
-  bool type_from_range_index_ : 1;
-  // True if init is a range clause and the type is the value type.
-  bool type_from_range_value_ : 1;
-  // True if init is a channel and the type is the channel's element type.
-  bool type_from_chan_element_ : 1;
-  // True if this is a variable created for a type switch case.
-  bool is_type_switch_var_ : 1;
-};
-
-// A variable which is really the name for a function return value, or
-// part of one.
-
-class Result_variable
-{
- public:
-  Result_variable(Type* type, Function* function, int index)
-    : type_(type), function_(function), index_(index),
-      is_address_taken_(false)
-  { }
-
-  // Get the type of the result variable.
-  Type*
-  type() const
-  { return this->type_; }
-
-  // Get the function that this is associated with.
-  Function*
-  function() const
-  { return this->function_; }
-
-  // Index in the list of function results.
-  int
-  index() const
-  { return this->index_; }
-
-  // Whether this variable's address is taken.
-  bool
-  is_address_taken() const
-  { return this->is_address_taken_; }
-
-  // Note that something takes the address of this variable.
-  void
-  set_address_taken()
-  { this->is_address_taken_ = true; }
-
-  // Whether this variable should live in the heap.
-  bool
-  is_in_heap() const
-  { return this->is_address_taken_; }
-
- private:
-  // Type of result variable.
-  Type* type_;
-  // Function with which this is associated.
-  Function* function_;
-  // Index in list of results.
-  int index_;
-  // Whether something takes the address of this variable.
-  bool is_address_taken_;
-};
-
-// The value we keep for a named constant.  This lets us hold a type
-// and an expression.
-
-class Named_constant
-{
- public:
-  Named_constant(Type* type, Expression* expr, int iota_value,
-                source_location location)
-    : type_(type), expr_(expr), iota_value_(iota_value), location_(location),
-      lowering_(false)
-  { }
-
-  Type*
-  type() const
-  { return this->type_; }
-
-  Expression*
-  expr() const
-  { return this->expr_; }
-
-  int
-  iota_value() const
-  { return this->iota_value_; }
-
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Whether we are lowering.
-  bool
-  lowering() const
-  { return this->lowering_; }
-
-  // Set that we are lowering.
-  void
-  set_lowering()
-  { this->lowering_ = true; }
-
-  // We are no longer lowering.
-  void
-  clear_lowering()
-  { this->lowering_ = false; }
-
-  // Traverse the expression.
-  int
-  traverse_expression(Traverse*);
-
-  // Determine the type of the constant if necessary.
-  void
-  determine_type();
-
-  // Indicate that we found and reported an error for this constant.
-  void
-  set_error();
-
-  // Export the constant.
-  void
-  export_const(Export*, const std::string& name) const;
-
-  // Import a constant.
-  static void
-  import_const(Import*, std::string*, Type**, Expression**);
-
- private:
-  // The type of the constant.
-  Type* type_;
-  // The expression for the constant.
-  Expression* expr_;
-  // If the predeclared constant iota is used in EXPR_, this is the
-  // value it will have.  We do this because at parse time we don't
-  // know whether the name "iota" will refer to the predeclared
-  // constant or to something else.  We put in the right value in when
-  // we lower.
-  int iota_value_;
-  // The location of the definition.
-  source_location location_;
-  // Whether we are currently lowering this constant.
-  bool lowering_;
-};
-
-// A type declaration.
-
-class Type_declaration
-{
- public:
-  Type_declaration(source_location location)
-    : location_(location), in_function_(NULL), methods_(),
-      issued_warning_(false)
-  { }
-
-  // Return the location.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Return the function in which this type is declared.  This will
-  // return NULL for a type declared in global scope.
-  Named_object*
-  in_function()
-  { return this->in_function_; }
-
-  // Set the function in which this type is declared.
-  void
-  set_in_function(Named_object* f)
-  { this->in_function_ = f; }
-
-  // Add a method to this type.  This is used when methods are defined
-  // before the type.
-  Named_object*
-  add_method(const std::string& name, Function* function);
-
-  // Add a method declaration to this type.
-  Named_object*
-  add_method_declaration(const std::string& name, Function_type* type,
-                        source_location location);
-
-  // Return whether any methods were defined.
-  bool
-  has_methods() const;
-
-  // Define methods when the real type is known.
-  void
-  define_methods(Named_type*);
-
-  // This is called if we are trying to use this type.  It returns
-  // true if we should issue a warning.
-  bool
-  using_type();
-
- private:
-  typedef std::vector<Named_object*> Methods;
-
-  // The location of the type declaration.
-  source_location location_;
-  // If this type is declared in a function, a pointer back to the
-  // function in which it is defined.
-  Named_object* in_function_;
-  // Methods defined before the type is defined.
-  Methods methods_;
-  // True if we have issued a warning about a use of this type
-  // declaration when it is undefined.
-  bool issued_warning_;
-};
-
-// An unknown object.  These are created by the parser for forward
-// references to names which have not been seen before.  In a correct
-// program, these will always point to a real definition by the end of
-// the parse.  Because they point to another Named_object, these may
-// only be referenced by Unknown_expression objects.
-
-class Unknown_name
-{
- public:
-  Unknown_name(source_location location)
-    : location_(location), real_named_object_(NULL)
-  { }
-
-  // Return the location where this name was first seen.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Return the real named object that this points to, or NULL if it
-  // was never resolved.
-  Named_object*
-  real_named_object() const
-  { return this->real_named_object_; }
-
-  // Set the real named object that this points to.
-  void
-  set_real_named_object(Named_object* no);
-
- private:
-  // The location where this name was first seen.
-  source_location location_;
-  // The real named object when it is known.
-  Named_object*
-  real_named_object_;
-};
-
-// A named object named.  This is the result of a declaration.  We
-// don't use a superclass because they all have to be handled
-// differently.
-
-class Named_object
-{
- public:
-  enum Classification
-  {
-    // An uninitialized Named_object.  We should never see this.
-    NAMED_OBJECT_UNINITIALIZED,
-    // An unknown name.  This is used for forward references.  In a
-    // correct program, these will all be resolved by the end of the
-    // parse.
-    NAMED_OBJECT_UNKNOWN,
-    // A const.
-    NAMED_OBJECT_CONST,
-    // A type.
-    NAMED_OBJECT_TYPE,
-    // A forward type declaration.
-    NAMED_OBJECT_TYPE_DECLARATION,
-    // A var.
-    NAMED_OBJECT_VAR,
-    // A result variable in a function.
-    NAMED_OBJECT_RESULT_VAR,
-    // The blank identifier--the special variable named _.
-    NAMED_OBJECT_SINK,
-    // A func.
-    NAMED_OBJECT_FUNC,
-    // A forward func declaration.
-    NAMED_OBJECT_FUNC_DECLARATION,
-    // A package.
-    NAMED_OBJECT_PACKAGE
-  };
-
-  // Return the classification.
-  Classification
-  classification() const
-  { return this->classification_; }
-
-  // Classifiers.
-
-  bool
-  is_unknown() const
-  { return this->classification_ == NAMED_OBJECT_UNKNOWN; }
-
-  bool
-  is_const() const
-  { return this->classification_ == NAMED_OBJECT_CONST; }
-
-  bool
-  is_type() const
-  { return this->classification_ == NAMED_OBJECT_TYPE; }
-
-  bool
-  is_type_declaration() const
-  { return this->classification_ == NAMED_OBJECT_TYPE_DECLARATION; }
-
-  bool
-  is_variable() const
-  { return this->classification_ == NAMED_OBJECT_VAR; }
-
-  bool
-  is_result_variable() const
-  { return this->classification_ == NAMED_OBJECT_RESULT_VAR; }
-
-  bool
-  is_sink() const
-  { return this->classification_ == NAMED_OBJECT_SINK; }
-
-  bool
-  is_function() const
-  { return this->classification_ == NAMED_OBJECT_FUNC; }
-
-  bool
-  is_function_declaration() const
-  { return this->classification_ == NAMED_OBJECT_FUNC_DECLARATION; }
-
-  bool
-  is_package() const
-  { return this->classification_ == NAMED_OBJECT_PACKAGE; }
-
-  // Creators.
-
-  static Named_object*
-  make_unknown_name(const std::string& name, source_location);
-
-  static Named_object*
-  make_constant(const Typed_identifier&, const Package*, Expression*,
-               int iota_value);
-
-  static Named_object*
-  make_type(const std::string&, const Package*, Type*, source_location);
-
-  static Named_object*
-  make_type_declaration(const std::string&, const Package*, source_location);
-
-  static Named_object*
-  make_variable(const std::string&, const Package*, Variable*);
-
-  static Named_object*
-  make_result_variable(const std::string&, Result_variable*);
-
-  static Named_object*
-  make_sink();
-
-  static Named_object*
-  make_function(const std::string&, const Package*, Function*);
-
-  static Named_object*
-  make_function_declaration(const std::string&, const Package*, Function_type*,
-                           source_location);
-
-  static Named_object*
-  make_package(const std::string& alias, Package* package);
-
-  // Getters.
-
-  Unknown_name*
-  unknown_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
-    return this->u_.unknown_value;
-  }
-
-  const Unknown_name*
-  unknown_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
-    return this->u_.unknown_value;
-  }
-
-  Named_constant*
-  const_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_CONST);
-    return this->u_.const_value;
-  }
-
-  const Named_constant*
-  const_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_CONST);
-    return this->u_.const_value;
-  }
-
-  Named_type*
-  type_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_TYPE);
-    return this->u_.type_value;
-  }
-
-  const Named_type*
-  type_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_TYPE);
-    return this->u_.type_value;
-  }
-
-  Type_declaration*
-  type_declaration_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
-    return this->u_.type_declaration;
-  }
-
-  const Type_declaration*
-  type_declaration_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
-    return this->u_.type_declaration;
-  }
-
-  Variable*
-  var_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_VAR);
-    return this->u_.var_value;
-  }
-
-  const Variable*
-  var_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_VAR);
-    return this->u_.var_value;
-  }
-
-  Result_variable*
-  result_var_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_RESULT_VAR);
-    return this->u_.result_var_value;
-  }
-
-  const Result_variable*
-  result_var_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_RESULT_VAR);
-    return this->u_.result_var_value;
-  }
-
-  Function*
-  func_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_FUNC);
-    return this->u_.func_value;
-  }
-
-  const Function*
-  func_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_FUNC);
-    return this->u_.func_value;
-  }
-
-  Function_declaration*
-  func_declaration_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
-    return this->u_.func_declaration_value;
-  }
-
-  const Function_declaration*
-  func_declaration_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
-    return this->u_.func_declaration_value;
-  }
-
-  Package*
-  package_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_PACKAGE);
-    return this->u_.package_value;
-  }
-
-  const Package*
-  package_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_PACKAGE);
-    return this->u_.package_value;
-  }
-
-  const std::string&
-  name() const
-  { return this->name_; }
-
-  // Return the name to use in an error message.  The difference is
-  // that if this Named_object is defined in a different package, this
-  // will return PACKAGE.NAME.
-  std::string
-  message_name() const;
-
-  const Package*
-  package() const
-  { return this->package_; }
-
-  // Resolve an unknown value if possible.  This returns the same
-  // Named_object or a new one.
-  Named_object*
-  resolve()
-  {
-    Named_object* ret = this;
-    if (this->is_unknown())
-      {
-       Named_object* r = this->unknown_value()->real_named_object();
-       if (r != NULL)
-         ret = r;
-      }
-    return ret;
-  }
-
-  const Named_object*
-  resolve() const
-  {
-    const Named_object* ret = this;
-    if (this->is_unknown())
-      {
-       const Named_object* r = this->unknown_value()->real_named_object();
-       if (r != NULL)
-         ret = r;
-      }
-    return ret;
-  }
-
-  // The location where this object was defined or referenced.
-  source_location
-  location() const;
-
-  // Return a tree for the external identifier for this object.
-  tree
-  get_id(Gogo*);
-
-  // Return a tree representing this object.
-  tree
-  get_tree(Gogo*, Named_object* function);
-
-  // Define a type declaration.
-  void
-  set_type_value(Named_type*);
-
-  // Define a function declaration.
-  void
-  set_function_value(Function*);
-
-  // Export this object.
-  void
-  export_named_object(Export*) const;
-
- private:
-  Named_object(const std::string&, const Package*, Classification);
-
-  // The name of the object.
-  std::string name_;
-  // The package that this object is in.  This is NULL if it is in the
-  // file we are compiling.
-  const Package* package_;
-  // The type of object this is.
-  Classification classification_;
-  // The real data.
-  union
-  {
-    Unknown_name* unknown_value;
-    Named_constant* const_value;
-    Named_type* type_value;
-    Type_declaration* type_declaration;
-    Variable* var_value;
-    Result_variable* result_var_value;
-    Function* func_value;
-    Function_declaration* func_declaration_value;
-    Package* package_value;
-  } u_;
-  // The DECL tree for this object if we have already converted it.
-  tree tree_;
-};
-
-// A binding contour.  This binds names to objects.
-
-class Bindings
-{
- public:
-  // Type for mapping from names to objects.
-  typedef Unordered_map(std::string, Named_object*) Contour;
-
-  Bindings(Bindings* enclosing);
-
-  // Add an unknown name.
-  Named_object*
-  add_unknown_name(const std::string& name, source_location location)
-  {
-    return this->add_named_object(Named_object::make_unknown_name(name,
-                                                                 location));
-  }
-
-  // Add a constant.
-  Named_object*
-  add_constant(const Typed_identifier& tid, const Package* package,
-              Expression* expr, int iota_value)
-  {
-    return this->add_named_object(Named_object::make_constant(tid, package,
-                                                             expr,
-                                                             iota_value));
-  }
-
-  // Add a type.
-  Named_object*
-  add_type(const std::string& name, const Package* package, Type* type,
-          source_location location)
-  {
-    return this->add_named_object(Named_object::make_type(name, package, type,
-                                                         location));
-  }
-
-  // Add a named type.  This is used for builtin types, and to add an
-  // imported type to the global scope.
-  Named_object*
-  add_named_type(Named_type* named_type);
-
-  // Add a type declaration.
-  Named_object*
-  add_type_declaration(const std::string& name, const Package* package,
-                      source_location location)
-  {
-    Named_object* no = Named_object::make_type_declaration(name, package,
-                                                          location);
-    return this->add_named_object(no);
-  }
-
-  // Add a variable.
-  Named_object*
-  add_variable(const std::string& name, const Package* package,
-              Variable* variable)
-  {
-    return this->add_named_object(Named_object::make_variable(name, package,
-                                                             variable));
-  }
-
-  // Add a result variable.
-  Named_object*
-  add_result_variable(const std::string& name, Result_variable* result)
-  {
-    return this->add_named_object(Named_object::make_result_variable(name,
-                                                                    result));
-  }
-
-  // Add a function.
-  Named_object*
-  add_function(const std::string& name, const Package*, Function* function);
-
-  // Add a function declaration.
-  Named_object*
-  add_function_declaration(const std::string& name, const Package* package,
-                          Function_type* type, source_location location);
-
-  // Add a package.  The location is the location of the import
-  // statement.
-  Named_object*
-  add_package(const std::string& alias, Package* package)
-  {
-    Named_object* no = Named_object::make_package(alias, package);
-    return this->add_named_object(no);
-  }
-
-  // Define a type which was already declared.
-  void
-  define_type(Named_object*, Named_type*);
-
-  // Add a method to the list of objects.  This is not added to the
-  // lookup table.
-  void
-  add_method(Named_object*);
-
-  // Add a named object to this binding.
-  Named_object*
-  add_named_object(Named_object* no)
-  { return this->add_named_object_to_contour(&this->bindings_, no); }
-
-  // Clear all names in file scope from the bindings.
-  void
-  clear_file_scope();
-
-  // Look up a name in this binding contour and in any enclosing
-  // binding contours.  This returns NULL if the name is not found.
-  Named_object*
-  lookup(const std::string&) const;
-
-  // Look up a name in this binding contour without looking in any
-  // enclosing binding contours.  Returns NULL if the name is not found.
-  Named_object*
-  lookup_local(const std::string&) const;
-
-  // Remove a name.
-  void
-  remove_binding(Named_object*);
-
-  // Traverse the tree.  See the Traverse class.
-  int
-  traverse(Traverse*, bool is_global);
-
-  // Iterate over definitions.  This does not include things which
-  // were only declared.
-
-  typedef std::vector<Named_object*>::const_iterator
-    const_definitions_iterator;
-
-  const_definitions_iterator
-  begin_definitions() const
-  { return this->named_objects_.begin(); }
-
-  const_definitions_iterator
-  end_definitions() const
-  { return this->named_objects_.end(); }
-
-  // Return the number of definitions.
-  size_t
-  size_definitions() const
-  { return this->named_objects_.size(); }
-
-  // Return whether there are no definitions.
-  bool
-  empty_definitions() const
-  { return this->named_objects_.empty(); }
-
-  // Iterate over declarations.  This is everything that has been
-  // declared, which includes everything which has been defined.
-
-  typedef Contour::const_iterator const_declarations_iterator;
-
-  const_declarations_iterator
-  begin_declarations() const
-  { return this->bindings_.begin(); }
-
-  const_declarations_iterator
-  end_declarations() const
-  { return this->bindings_.end(); }
-
-  // Return the number of declarations.
-  size_t
-  size_declarations() const
-  { return this->bindings_.size(); }
-
-  // Return whether there are no declarations.
-  bool
-  empty_declarations() const
-  { return this->bindings_.empty(); }
-
-  // Return the first declaration.
-  Named_object*
-  first_declaration()
-  { return this->bindings_.empty() ? NULL : this->bindings_.begin()->second; }
-
- private:
-  Named_object*
-  add_named_object_to_contour(Contour*, Named_object*);
-
-  Named_object*
-  new_definition(Named_object*, Named_object*);
-
-  // Enclosing bindings.
-  Bindings* enclosing_;
-  // The list of objects.
-  std::vector<Named_object*> named_objects_;
-  // The mapping from names to objects.
-  Contour bindings_;
-};
-
-// A label.
-
-class Label
-{
- public:
-  Label(const std::string& name)
-    : name_(name), location_(0), decl_(NULL)
-  { }
-
-  // Return the label's name.
-  const std::string&
-  name() const
-  { return this->name_; }
-
-  // Return whether the label has been defined.
-  bool
-  is_defined() const
-  { return this->location_ != 0; }
-
-  // Return the location of the definition.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Define the label at LOCATION.
-  void
-  define(source_location location)
-  {
-    gcc_assert(this->location_ == 0);
-    this->location_ = location;
-  }
-
-  // Return the LABEL_DECL for this decl.
-  tree
-  get_decl();
-
-  // Return an expression for the address of this label.
-  tree
-  get_addr(source_location location);
-
- private:
-  // The name of the label.
-  std::string name_;
-  // The location of the definition.  This is 0 if the label has not
-  // yet been defined.
-  source_location location_;
-  // The LABEL_DECL.
-  tree decl_;
-};
-
-// An unnamed label.  These are used when lowering loops.
-
-class Unnamed_label
-{
- public:
-  Unnamed_label(source_location location)
-    : location_(location), decl_(NULL)
-  { }
-
-  // Get the location where the label is defined.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Set the location where the label is defined.
-  void
-  set_location(source_location location)
-  { this->location_ = location; }
-
-  // Return a statement which defines this label.
-  tree
-  get_definition();
-
-  // Return a goto to this label from LOCATION.
-  tree
-  get_goto(source_location location);
-
- private:
-  // Return the LABEL_DECL to use with GOTO_EXPR.
-  tree
-  get_decl();
-
-  // The location where the label is defined.
-  source_location location_;
-  // The LABEL_DECL.
-  tree decl_;
-};
-
-// An imported package.
-
-class Package
-{
- public:
-  Package(const std::string& name, const std::string& unique_prefix,
-         source_location location);
-
-  // The real name of this package.  This may be different from the
-  // name in the associated Named_object if the import statement used
-  // an alias.
-  const std::string&
-  name() const
-  { return this->name_; }
-
-  // Return the location of the import statement.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Get the unique prefix used for all symbols exported from this
-  // package.
-  const std::string&
-  unique_prefix() const
-  {
-    gcc_assert(!this->unique_prefix_.empty());
-    return this->unique_prefix_;
-  }
-
-  // The priority of this package.  The init function of packages with
-  // lower priority must be run before the init function of packages
-  // with higher priority.
-  int
-  priority() const
-  { return this->priority_; }
-
-  // Set the priority.
-  void
-  set_priority(int priority);
-
-  // Return the bindings.
-  Bindings*
-  bindings()
-  { return this->bindings_; }
-
-  // Whether some symbol from the package was used.
-  bool
-  used() const
-  { return this->used_; }
-
-  // Note that some symbol from this package was used.
-  void
-  set_used() const
-  { this->used_ = true; }
-
-  // Clear the used field for the next file.
-  void
-  clear_used()
-  { this->used_ = false; }
-
-  // Whether this package was imported in the current file.
-  bool
-  is_imported() const
-  { return this->is_imported_; }
-
-  // Note that this package was imported in the current file.
-  void
-  set_is_imported()
-  { this->is_imported_ = true; }
-
-  // Clear the imported field for the next file.
-  void
-  clear_is_imported()
-  { this->is_imported_ = false; }
-
-  // Whether this package was imported with a name of "_".
-  bool
-  uses_sink_alias() const
-  { return this->uses_sink_alias_; }
-
-  // Note that this package was imported with a name of "_".
-  void
-  set_uses_sink_alias()
-  { this->uses_sink_alias_ = true; }
-
-  // Clear the sink alias field for the next file.
-  void
-  clear_uses_sink_alias()
-  { this->uses_sink_alias_ = false; }
-
-  // Look up a name in the package.  Returns NULL if the name is not
-  // found.
-  Named_object*
-  lookup(const std::string& name) const
-  { return this->bindings_->lookup(name); }
-
-  // Set the location of the package.  This is used if it is seen in a
-  // different import before it is really imported.
-  void
-  set_location(source_location location)
-  { this->location_ = location; }
-
-  // Add a constant to the package.
-  Named_object*
-  add_constant(const Typed_identifier& tid, Expression* expr)
-  { return this->bindings_->add_constant(tid, this, expr, 0); }
-
-  // Add a type to the package.
-  Named_object*
-  add_type(const std::string& name, Type* type, source_location location)
-  { return this->bindings_->add_type(name, this, type, location); }
-
-  // Add a type declaration to the package.
-  Named_object*
-  add_type_declaration(const std::string& name, source_location location)
-  { return this->bindings_->add_type_declaration(name, this, location); }
-
-  // Add a variable to the package.
-  Named_object*
-  add_variable(const std::string& name, Variable* variable)
-  { return this->bindings_->add_variable(name, this, variable); }
-
-  // Add a function declaration to the package.
-  Named_object*
-  add_function_declaration(const std::string& name, Function_type* type,
-                          source_location loc)
-  { return this->bindings_->add_function_declaration(name, this, type, loc); }
-
-  // Determine types of constants.
-  void
-  determine_types();
-
- private:
-  // The real name of this package.
-  std::string name_;
-  // The unique prefix for all exported global symbols.
-  std::string unique_prefix_;
-  // The names in this package.
-  Bindings* bindings_;
-  // The priority of this package.  A package has a priority higher
-  // than the priority of all of the packages that it imports.  This
-  // is used to run init functions in the right order.
-  int priority_;
-  // The location of the import statement.
-  source_location location_;
-  // True if some name from this package was used.  This is mutable
-  // because we can use a package even if we have a const pointer to
-  // it.
-  mutable bool used_;
-  // True if this package was imported in the current file.
-  bool is_imported_;
-  // True if this package was imported with a name of "_".
-  bool uses_sink_alias_;
-};
-
-// Return codes for the traversal functions.  This is not an enum
-// because we want to be able to declare traversal functions in other
-// header files without including this one.
-
-// Continue traversal as usual.
-const int TRAVERSE_CONTINUE = -1;
-
-// Exit traversal.
-const int TRAVERSE_EXIT = 0;
-
-// Continue traversal, but skip components of the current object.
-// E.g., if this is returned by Traverse::statement, we do not
-// traverse the expressions in the statement even if
-// traverse_expressions is set in the traverse_mask.
-const int TRAVERSE_SKIP_COMPONENTS = 1;
-
-// This class is used when traversing the parse tree.  The caller uses
-// a subclass which overrides functions as desired.
-
-class Traverse
-{
- public:
-  // These bitmasks say what to traverse.
-  static const unsigned int traverse_variables =    0x1;
-  static const unsigned int traverse_constants =    0x2;
-  static const unsigned int traverse_functions =    0x4;
-  static const unsigned int traverse_blocks =       0x8;
-  static const unsigned int traverse_statements =  0x10;
-  static const unsigned int traverse_expressions = 0x20;
-  static const unsigned int traverse_types =       0x40;
-
-  Traverse(unsigned int traverse_mask)
-    : traverse_mask_(traverse_mask), types_seen_(NULL), expressions_seen_(NULL)
-  { }
-
-  virtual ~Traverse();
-
-  // The bitmask of what to traverse.
-  unsigned int
-  traverse_mask() const
-  { return this->traverse_mask_; }
-
-  // Record that we are going to traverse a type.  This returns true
-  // if the type has already been seen in this traversal.  This is
-  // required because types, unlike expressions, can form a circular
-  // graph.
-  bool
-  remember_type(const Type*);
-
-  // Record that we are going to see an expression.  This returns true
-  // if the expression has already been seen in this traversal.  This
-  // is only needed for cases where multiple expressions can point to
-  // a single one.
-  bool
-  remember_expression(const Expression*);
-
-  // These functions return one of the TRAVERSE codes defined above.
-
-  // If traverse_variables is set in the mask, this is called for
-  // every variable in the tree.
-  virtual int
-  variable(Named_object*);
-
-  // If traverse_constants is set in the mask, this is called for
-  // every named constant in the tree.  The bool parameter is true for
-  // a global constant.
-  virtual int
-  constant(Named_object*, bool);
-
-  // If traverse_functions is set in the mask, this is called for
-  // every function in the tree.
-  virtual int
-  function(Named_object*);
-
-  // If traverse_blocks is set in the mask, this is called for every
-  // block in the tree.
-  virtual int
-  block(Block*);
-
-  // If traverse_statements is set in the mask, this is called for
-  // every statement in the tree.
-  virtual int
-  statement(Block*, size_t* index, Statement*);
-
-  // If traverse_expressions is set in the mask, this is called for
-  // every expression in the tree.
-  virtual int
-  expression(Expression**);
-
-  // If traverse_types is set in the mask, this is called for every
-  // type in the tree.
-  virtual int
-  type(Type*);
-
- private:
-  typedef Unordered_set_hash(const Type*, Type_hash_identical,
-                            Type_identical) Types_seen;
-
-  typedef Unordered_set(const Expression*) Expressions_seen;
-
-  // Bitmask of what sort of objects to traverse.
-  unsigned int traverse_mask_;
-  // Types which have been seen in this traversal.
-  Types_seen* types_seen_;
-  // Expressions which have been seen in this traversal.
-  Expressions_seen* expressions_seen_;
-};
-
-// When translating the gogo IR into trees, this is the context we
-// pass down the blocks and statements.
-
-class Translate_context
-{
- public:
-  Translate_context(Gogo* gogo, Named_object* function, Block* block,
-                   tree block_tree)
-    : gogo_(gogo), function_(function), block_(block), block_tree_(block_tree),
-      is_const_(false)
-  { }
-
-  // Accessors.
-
-  Gogo*
-  gogo()
-  { return this->gogo_; }
-
-  Named_object*
-  function()
-  { return this->function_; }
-
-  Block*
-  block()
-  { return this->block_; }
-
-  tree
-  block_tree()
-  { return this->block_tree_; }
-
-  bool
-  is_const()
-  { return this->is_const_; }
-
-  // Make a constant context.
-  void
-  set_is_const()
-  { this->is_const_ = true; }
-
- private:
-  // The IR for the entire compilation unit.
-  Gogo* gogo_;
-  // The function we are currently translating.
-  Named_object* function_;
-  // The block we are currently translating.
-  Block *block_;
-  // The BLOCK node for the current block.
-  tree block_tree_;
-  // Whether this is being evaluated in a constant context.  This is
-  // used for type descriptor initializers.
-  bool is_const_;
-};
-
-// Runtime error codes.  These must match the values in
-// libgo/runtime/go-runtime-error.c.
-
-// Slice index out of bounds: negative or larger than the length of
-// the slice.
-static const int RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS = 0;
-
-// Array index out of bounds.
-static const int RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS = 1;
-
-// String index out of bounds.
-static const int RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS = 2;
-
-// Slice slice out of bounds: negative or larger than the length of
-// the slice or high bound less than low bound.
-static const int RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS = 3;
-
-// Array slice out of bounds.
-static const int RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS = 4;
-
-// String slice out of bounds.
-static const int RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS = 5;
-
-// Dereference of nil pointer.  This is used when there is a
-// dereference of a pointer to a very large struct or array, to ensure
-// that a gigantic array is not used a proxy to access random memory
-// locations.
-static const int RUNTIME_ERROR_NIL_DEREFERENCE = 6;
-
-// Slice length or capacity out of bounds in make: negative or
-// overflow or length greater than capacity.
-static const int RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS = 7;
-
-// Map capacity out of bounds in make: negative or overflow.
-static const int RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS = 8;
-
-// Channel capacity out of bounds in make: negative or overflow.
-static const int RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS = 9;
-
-// This is used by some of the langhooks.
-extern Gogo* go_get_gogo();
-
-// Whether we have seen any errors.  FIXME: Replace with a backend
-// interface.
-extern bool saw_errors();
-
-#endif // !defined(GO_GOGO_H)
diff --git a/gcc/go/gofrontend/gogo.h.merge-right.r172891 b/gcc/go/gofrontend/gogo.h.merge-right.r172891
deleted file mode 100644 (file)
index 788c80a..0000000
+++ /dev/null
@@ -1,2612 +0,0 @@
-// gogo.h -- Go frontend parsed representation.     -*- C++ -*-
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#ifndef GO_GOGO_H
-#define GO_GOGO_H
-
-class Traverse;
-class Type;
-class Type_hash_identical;
-class Type_equal;
-class Type_identical;
-class Typed_identifier;
-class Typed_identifier_list;
-class Function_type;
-class Expression;
-class Statement;
-class Temporary_statement;
-class Block;
-class Function;
-class Bindings;
-class Package;
-class Variable;
-class Pointer_type;
-class Struct_type;
-class Struct_field;
-class Struct_field_list;
-class Array_type;
-class Map_type;
-class Channel_type;
-class Interface_type;
-class Named_type;
-class Forward_declaration_type;
-class Method;
-class Methods;
-class Named_object;
-class Label;
-class Translate_context;
-class Backend;
-class Export;
-class Import;
-class Bexpression;
-class Bstatement;
-class Bblock;
-class Bvariable;
-class Blabel;
-
-// This file declares the basic classes used to hold the internal
-// representation of Go which is built by the parser.
-
-// An initialization function for an imported package.  This is a
-// magic function which initializes variables and runs the "init"
-// function.
-
-class Import_init
-{
- public:
-  Import_init(const std::string& package_name, const std::string& init_name,
-             int priority)
-    : package_name_(package_name), init_name_(init_name), priority_(priority)
-  { }
-
-  // The name of the package being imported.
-  const std::string&
-  package_name() const
-  { return this->package_name_; }
-
-  // The name of the package's init function.
-  const std::string&
-  init_name() const
-  { return this->init_name_; }
-
-  // The priority of the initialization function.  Functions with a
-  // lower priority number must be run first.
-  int
-  priority() const
-  { return this->priority_; }
-
- private:
-  // The name of the package being imported.
-  std::string package_name_;
-  // The name of the package's init function.
-  std::string init_name_;
-  // The priority.
-  int priority_;
-};
-
-// For sorting purposes.
-
-inline bool
-operator<(const Import_init& i1, const Import_init& i2)
-{
-  if (i1.priority() < i2.priority())
-    return true;
-  if (i1.priority() > i2.priority())
-    return false;
-  if (i1.package_name() != i2.package_name())
-    return i1.package_name() < i2.package_name();
-  return i1.init_name() < i2.init_name();
-}
-
-// The holder for the internal representation of the entire
-// compilation unit.
-
-class Gogo
-{
- public:
-  // Create the IR, passing in the sizes of the types "int" and
-  // "uintptr" in bits.
-  Gogo(Backend* backend, int int_type_size, int pointer_size);
-
-  // Get the backend generator.
-  Backend*
-  backend()
-  { return this->backend_; }
-
-  // Get the package name.
-  const std::string&
-  package_name() const;
-
-  // Set the package name.
-  void
-  set_package_name(const std::string&, source_location);
-
-  // Return whether this is the "main" package.
-  bool
-  is_main_package() const;
-
-  // If necessary, adjust the name to use for a hidden symbol.  We add
-  // a prefix of the package name, so that hidden symbols in different
-  // packages do not collide.
-  std::string
-  pack_hidden_name(const std::string& name, bool is_exported) const
-  {
-    return (is_exported
-           ? name
-           : ('.' + this->unique_prefix()
-              + '.' + this->package_name()
-              + '.' + name));
-  }
-
-  // Unpack a name which may have been hidden.  Returns the
-  // user-visible name of the object.
-  static std::string
-  unpack_hidden_name(const std::string& name)
-  { return name[0] != '.' ? name : name.substr(name.rfind('.') + 1); }
-
-  // Return whether a possibly packed name is hidden.
-  static bool
-  is_hidden_name(const std::string& name)
-  { return name[0] == '.'; }
-
-  // Return the package prefix of a hidden name.
-  static std::string
-  hidden_name_prefix(const std::string& name)
-  {
-    go_assert(Gogo::is_hidden_name(name));
-    return name.substr(1, name.rfind('.') - 1);
-  }
-
-  // Given a name which may or may not have been hidden, return the
-  // name to use in an error message.
-  static std::string
-  message_name(const std::string& name);
-
-  // Return whether a name is the blank identifier _.
-  static bool
-  is_sink_name(const std::string& name)
-  {
-    return (name[0] == '.'
-           && name[name.length() - 1] == '_'
-           && name[name.length() - 2] == '.');
-  }
-
-  // Return the unique prefix to use for all exported symbols.
-  const std::string&
-  unique_prefix() const;
-
-  // Set the unique prefix.
-  void
-  set_unique_prefix(const std::string&);
-
-  // Return the priority to use for the package we are compiling.
-  // This is two more than the largest priority of any package we
-  // import.
-  int
-  package_priority() const;
-
-  // Import a package.  FILENAME is the file name argument, LOCAL_NAME
-  // is the local name to give to the package.  If LOCAL_NAME is empty
-  // the declarations are added to the global scope.
-  void
-  import_package(const std::string& filename, const std::string& local_name,
-                bool is_local_name_exported, source_location);
-
-  // Whether we are the global binding level.
-  bool
-  in_global_scope() const;
-
-  // Look up a name in the current binding contours.
-  Named_object*
-  lookup(const std::string&, Named_object** pfunction) const;
-
-  // Look up a name in the current block.
-  Named_object*
-  lookup_in_block(const std::string&) const;
-
-  // Look up a name in the global namespace--the universal scope.
-  Named_object*
-  lookup_global(const char*) const;
-
-  // Add a new imported package.  REAL_NAME is the real name of the
-  // package.  ALIAS is the alias of the package; this may be the same
-  // as REAL_NAME.  This sets *PADD_TO_GLOBALS if symbols added to
-  // this package should be added to the global namespace; this is
-  // true if the alias is ".".  LOCATION is the location of the import
-  // statement.  This returns the new package, or NULL on error.
-  Package*
-  add_imported_package(const std::string& real_name, const std::string& alias,
-                      bool is_alias_exported,
-                      const std::string& unique_prefix,
-                      source_location location,
-                      bool* padd_to_globals);
-
-  // Register a package.  This package may or may not be imported.
-  // This returns the Package structure for the package, creating if
-  // it necessary.
-  Package*
-  register_package(const std::string& name, const std::string& unique_prefix,
-                  source_location);
-
-  // Start compiling a function.  ADD_METHOD_TO_TYPE is true if a
-  // method function should be added to the type of its receiver.
-  Named_object*
-  start_function(const std::string& name, Function_type* type,
-                bool add_method_to_type, source_location);
-
-  // Finish compiling a function.
-  void
-  finish_function(source_location);
-
-  // Return the current function.
-  Named_object*
-  current_function() const;
-
-  // Start a new block.  This is not initially associated with a
-  // function.
-  void
-  start_block(source_location);
-
-  // Finish the current block and return it.
-  Block*
-  finish_block(source_location);
-
-  // Declare an unknown name.  This is used while parsing.  The name
-  // must be resolved by the end of the parse.  Unknown names are
-  // always added at the package level.
-  Named_object*
-  add_unknown_name(const std::string& name, source_location);
-
-  // Declare a function.
-  Named_object*
-  declare_function(const std::string&, Function_type*, source_location);
-
-  // Add a label.
-  Label*
-  add_label_definition(const std::string&, source_location);
-
-  // Add a label reference.
-  Label*
-  add_label_reference(const std::string&);
-
-  // Add a statement to the current block.
-  void
-  add_statement(Statement*);
-
-  // Add a block to the current block.
-  void
-  add_block(Block*, source_location);
-
-  // Add a constant.
-  Named_object*
-  add_constant(const Typed_identifier&, Expression*, int iota_value);
-
-  // Add a type.
-  void
-  add_type(const std::string&, Type*, source_location);
-
-  // Add a named type.  This is used for builtin types, and to add an
-  // imported type to the global scope.
-  void
-  add_named_type(Named_type*);
-
-  // Declare a type.
-  Named_object*
-  declare_type(const std::string&, source_location);
-
-  // Declare a type at the package level.  This is used when the
-  // parser sees an unknown name where a type name is required.
-  Named_object*
-  declare_package_type(const std::string&, source_location);
-
-  // Define a type which was already declared.
-  void
-  define_type(Named_object*, Named_type*);
-
-  // Add a variable.
-  Named_object*
-  add_variable(const std::string&, Variable*);
-
-  // Add a sink--a reference to the blank identifier _.
-  Named_object*
-  add_sink();
-
-  // Add a named object to the current namespace.  This is used for
-  // import . "package".
-  void
-  add_named_object(Named_object*);
-
-  // Return a name to use for a thunk function.  A thunk function is
-  // one we create during the compilation, for a go statement or a
-  // defer statement or a method expression.
-  static std::string
-  thunk_name();
-
-  // Return whether an object is a thunk.
-  static bool
-  is_thunk(const Named_object*);
-
-  // Note that we've seen an interface type.  This is used to build
-  // all required interface method tables.
-  void
-  record_interface_type(Interface_type*);
-
-  // Note that we need an initialization function.
-  void
-  set_need_init_fn()
-  { this->need_init_fn_ = true; }
-
-  // Clear out all names in file scope.  This is called when we start
-  // parsing a new file.
-  void
-  clear_file_scope();
-
-  // Traverse the tree.  See the Traverse class.
-  void
-  traverse(Traverse*);
-
-  // Define the predeclared global names.
-  void
-  define_global_names();
-
-  // Verify and complete all types.
-  void
-  verify_types();
-
-  // Lower the parse tree.
-  void
-  lower_parse_tree();
-
-  // Lower all the statements in a block.
-  void
-  lower_block(Named_object* function, Block*);
-
-  // Lower an expression.
-  void
-  lower_expression(Named_object* function, Expression**);
-
-  // Lower a constant.
-  void
-  lower_constant(Named_object*);
-
-  // Finalize the method lists and build stub methods for named types.
-  void
-  finalize_methods();
-
-  // Work out the types to use for unspecified variables and
-  // constants.
-  void
-  determine_types();
-
-  // Type check the program.
-  void
-  check_types();
-
-  // Check the types in a single block.  This is used for complicated
-  // go statements.
-  void
-  check_types_in_block(Block*);
-
-  // Check for return statements.
-  void
-  check_return_statements();
-
-  // Do all exports.
-  void
-  do_exports();
-
-  // Add an import control function for an imported package to the
-  // list.
-  void
-  add_import_init_fn(const std::string& package_name,
-                    const std::string& init_name, int prio);
-
-  // Turn short-cut operators (&&, ||) into explicit if statements.
-  void
-  remove_shortcuts();
-
-  // Use temporary variables to force order of evaluation.
-  void
-  order_evaluations();
-
-  // Build thunks for functions which call recover.
-  void
-  build_recover_thunks();
-
-  // Simplify statements which might use thunks: go and defer
-  // statements.
-  void
-  simplify_thunk_statements();
-
-  // Convert named types to the backend representation.
-  void
-  convert_named_types();
-
-  // Convert named types in a list of bindings.
-  void
-  convert_named_types_in_bindings(Bindings*);
-
-  // True if named types have been converted to the backend
-  // representation.
-  bool
-  named_types_are_converted() const
-  { return this->named_types_are_converted_; }
-
-  // Write out the global values.
-  void
-  write_globals();
-
-  // Build a call to a builtin function.  PDECL should point to a NULL
-  // initialized static pointer which will hold the fndecl.  NAME is
-  // the name of the function.  NARGS is the number of arguments.
-  // RETTYPE is the return type.  It is followed by NARGS pairs of
-  // type and argument (both trees).
-  static tree
-  call_builtin(tree* pdecl, source_location, const char* name, int nargs,
-              tree rettype, ...);
-
-  // Build a call to the runtime error function.
-  static tree
-  runtime_error(int code, source_location);
-
-  // Build a builtin struct with a list of fields.
-  static tree
-  builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
-                int nfields, ...);
-
-  // Mark a function declaration as a builtin library function.
-  static void
-  mark_fndecl_as_builtin_library(tree fndecl);
-
-  // Build the type of the struct that holds a slice for the given
-  // element type.
-  tree
-  slice_type_tree(tree element_type_tree);
-
-  // Given a tree for a slice type, return the tree for the element
-  // type.
-  static tree
-  slice_element_type_tree(tree slice_type_tree);
-
-  // Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
-  // the slice.  VALUES points to the values.  COUNT is the size,
-  // CAPACITY is the capacity.  If CAPACITY is NULL, it is set to
-  // COUNT.
-  static tree
-  slice_constructor(tree slice_type_tree, tree values, tree count,
-                   tree capacity);
-
-  // Build a constructor for an empty slice.  SLICE_TYPE_TREE is the
-  // type of the slice.
-  static tree
-  empty_slice_constructor(tree slice_type_tree);
-
-  // Build a map descriptor.
-  tree
-  map_descriptor(Map_type*);
-
-  // Return a tree for the type of a map descriptor.  This is struct
-  // __go_map_descriptor in libgo/runtime/map.h.  This is the same for
-  // all map types.
-  tree
-  map_descriptor_type();
-
-  // Build a type descriptor for TYPE using INITIALIZER as the type
-  // descriptor.  This builds a new decl stored in *PDECL.
-  void
-  build_type_descriptor_decl(const Type*, Expression* initializer,
-                            tree* pdecl);
-
-  // Build required interface method tables.
-  void
-  build_interface_method_tables();
-
-  // Build an interface method table for a type: a list of function
-  // pointers, one for each interface method.  This returns a decl.
-  tree
-  interface_method_table_for_type(const Interface_type*, Named_type*,
-                                 bool is_pointer);
-
-  // Return a tree which allocate SIZE bytes to hold values of type
-  // TYPE.
-  tree
-  allocate_memory(Type *type, tree size, source_location);
-
-  // Return a type to use for pointer to const char.
-  static tree
-  const_char_pointer_type_tree();
-
-  // Build a string constant with the right type.
-  static tree
-  string_constant_tree(const std::string&);
-
-  // Build a Go string constant.  This returns a pointer to the
-  // constant.
-  tree
-  go_string_constant_tree(const std::string&);
-
-  // Receive a value from a channel.
-  static tree
-  receive_from_channel(tree type_tree, tree channel, bool for_select,
-                      source_location);
-
-  // Return a tree for receiving an integer on a channel.
-  static tree
-  receive_as_64bit_integer(tree type, tree channel, bool blocking,
-                          bool for_select);
-
-
-  // Make a trampoline which calls FNADDR passing CLOSURE.
-  tree
-  make_trampoline(tree fnaddr, tree closure, source_location);
-
- private:
-  // During parsing, we keep a stack of functions.  Each function on
-  // the stack is one that we are currently parsing.  For each
-  // function, we keep track of the current stack of blocks.
-  struct Open_function
-  {
-    // The function.
-    Named_object* function;
-    // The stack of active blocks in the function.
-    std::vector<Block*> blocks;
-  };
-
-  // The stack of functions.
-  typedef std::vector<Open_function> Open_functions;
-
-  // Create trees for implicit builtin functions.
-  void
-  define_builtin_function_trees();
-
-  // Set up the built-in unsafe package.
-  void
-  import_unsafe(const std::string&, bool is_exported, source_location);
-
-  // Add a new imported package.
-  Named_object*
-  add_package(const std::string& real_name, const std::string& alias,
-             const std::string& unique_prefix, source_location location);
-
-  // Return the current binding contour.
-  Bindings*
-  current_bindings();
-
-  const Bindings*
-  current_bindings() const;
-
-  // Return the current block.
-  Block*
-  current_block();
-
-  // Get the name of the magic initialization function.
-  const std::string&
-  get_init_fn_name();
-
-  // Get the decl for the magic initialization function.
-  tree
-  initialization_function_decl();
-
-  // Write the magic initialization function.
-  void
-  write_initialization_function(tree fndecl, tree init_stmt_list);
-
-  // Initialize imported packages.
-  void
-  init_imports(tree*);
-
-  // Register variables with the garbage collector.
-  void
-  register_gc_vars(const std::vector<Named_object*>&, tree*);
-
-  // Build a pointer to a Go string constant.  This returns a pointer
-  // to the pointer.
-  tree
-  ptr_go_string_constant_tree(const std::string&);
-
-  // Return the name to use for a type descriptor decl for an unnamed
-  // type.
-  std::string
-  unnamed_type_descriptor_decl_name(const Type* type);
-
-  // Return the name to use for a type descriptor decl for a type
-  // named NO, defined in IN_FUNCTION.
-  std::string
-  type_descriptor_decl_name(const Named_object* no,
-                           const Named_object* in_function);
-
-  // Where a type descriptor should be defined.
-  enum Type_descriptor_location
-    {
-      // Defined in this file.
-      TYPE_DESCRIPTOR_DEFINED,
-      // Defined in some other file.
-      TYPE_DESCRIPTOR_UNDEFINED,
-      // Common definition which may occur in multiple files.
-      TYPE_DESCRIPTOR_COMMON
-    };
-
-  // Return where the decl for TYPE should be defined.
-  Type_descriptor_location
-  type_descriptor_location(const Type* type);
-
-  // Return the type of a trampoline.
-  static tree
-  trampoline_type_tree();
-
-  // Type used to map import names to packages.
-  typedef std::map<std::string, Package*> Imports;
-
-  // Type used to map package names to packages.
-  typedef std::map<std::string, Package*> Packages;
-
-  // Type used to map special names in the sys package.
-  typedef std::map<std::string, std::string> Sys_names;
-
-  // Hash table mapping map types to map descriptor decls.
-  typedef Unordered_map_hash(const Map_type*, tree, Type_hash_identical,
-                            Type_identical) Map_descriptors;
-
-  // Map unnamed types to type descriptor decls.
-  typedef Unordered_map_hash(const Type*, tree, Type_hash_identical,
-                            Type_identical) Type_descriptor_decls;
-
-  // The backend generator.
-  Backend* backend_;
-  // The package we are compiling.
-  Package* package_;
-  // The list of currently open functions during parsing.
-  Open_functions functions_;
-  // The global binding contour.  This includes the builtin functions
-  // and the package we are compiling.
-  Bindings* globals_;
-  // Mapping from import file names to packages.
-  Imports imports_;
-  // Whether the magic unsafe package was imported.
-  bool imported_unsafe_;
-  // Mapping from package names we have seen to packages.  This does
-  // not include the package we are compiling.
-  Packages packages_;
-  // Mapping from map types to map descriptors.
-  Map_descriptors* map_descriptors_;
-  // Mapping from unnamed types to type descriptor decls.
-  Type_descriptor_decls* type_descriptor_decls_;
-  // The functions named "init", if there are any.
-  std::vector<Named_object*> init_functions_;
-  // Whether we need a magic initialization function.
-  bool need_init_fn_;
-  // The name of the magic initialization function.
-  std::string init_fn_name_;
-  // A list of import control variables for packages that we import.
-  std::set<Import_init> imported_init_fns_;
-  // The unique prefix used for all global symbols.
-  std::string unique_prefix_;
-  // Whether an explicit unique prefix was set by -fgo-prefix.
-  bool unique_prefix_specified_;
-  // A list of interface types defined while parsing.
-  std::vector<Interface_type*> interface_types_;
-  // Whether named types have been converted.
-  bool named_types_are_converted_;
-};
-
-// A block of statements.
-
-class Block
-{
- public:
-  Block(Block* enclosing, source_location);
-
-  // Return the enclosing block.
-  const Block*
-  enclosing() const
-  { return this->enclosing_; }
-
-  // Return the bindings of the block.
-  Bindings*
-  bindings()
-  { return this->bindings_; }
-
-  const Bindings*
-  bindings() const
-  { return this->bindings_; }
-
-  // Look at the block's statements.
-  const std::vector<Statement*>*
-  statements() const
-  { return &this->statements_; }
-
-  // Return the start location.  This is normally the location of the
-  // left curly brace which starts the block.
-  source_location
-  start_location() const
-  { return this->start_location_; }
-
-  // Return the end location.  This is normally the location of the
-  // right curly brace which ends the block.
-  source_location
-  end_location() const
-  { return this->end_location_; }
-
-  // Add a statement to the block.
-  void
-  add_statement(Statement*);
-
-  // Add a statement to the front of the block.
-  void
-  add_statement_at_front(Statement*);
-
-  // Replace a statement in a block.
-  void
-  replace_statement(size_t index, Statement*);
-
-  // Add a Statement before statement number INDEX.
-  void
-  insert_statement_before(size_t index, Statement*);
-
-  // Add a Statement after statement number INDEX.
-  void
-  insert_statement_after(size_t index, Statement*);
-
-  // Set the end location of the block.
-  void
-  set_end_location(source_location location)
-  { this->end_location_ = location; }
-
-  // Traverse the tree.
-  int
-  traverse(Traverse*);
-
-  // Set final types for unspecified variables and constants.
-  void
-  determine_types();
-
-  // Return true if execution of this block may fall through to the
-  // next block.
-  bool
-  may_fall_through() const;
-
-  // Convert the block to the backend representation.
-  Bblock*
-  get_backend(Translate_context*);
-
-  // Iterate over statements.
-
-  typedef std::vector<Statement*>::iterator iterator;
-
-  iterator
-  begin()
-  { return this->statements_.begin(); }
-
-  iterator
-  end()
-  { return this->statements_.end(); }
-
- private:
-  // Enclosing block.
-  Block* enclosing_;
-  // Statements in the block.
-  std::vector<Statement*> statements_;
-  // Binding contour.
-  Bindings* bindings_;
-  // Location of start of block.
-  source_location start_location_;
-  // Location of end of block.
-  source_location end_location_;
-};
-
-// A function.
-
-class Function
-{
- public:
-  Function(Function_type* type, Function*, Block*, source_location);
-
-  // Return the function's type.
-  Function_type*
-  type() const
-  { return this->type_; }
-
-  // Return the enclosing function if there is one.
-  Function*
-  enclosing()
-  { return this->enclosing_; }
-
-  // Set the enclosing function.  This is used when building thunks
-  // for functions which call recover.
-  void
-  set_enclosing(Function* enclosing)
-  {
-    go_assert(this->enclosing_ == NULL);
-    this->enclosing_ = enclosing;
-  }
-
-  // The result variables.
-  typedef std::vector<Named_object*> Results;
-
-  // Create the result variables in the outer block.
-  void
-  create_result_variables(Gogo*);
-
-  // Update the named result variables when cloning a function which
-  // calls recover.
-  void
-  update_result_variables();
-
-  // Return the result variables.
-  Results*
-  result_variables()
-  { return this->results_; }
-
-  // Whether the result variables have names.
-  bool
-  results_are_named() const
-  { return this->results_are_named_; }
-
-  // Add a new field to the closure variable.
-  void
-  add_closure_field(Named_object* var, source_location loc)
-  { this->closure_fields_.push_back(std::make_pair(var, loc)); }
-
-  // Whether this function needs a closure.
-  bool
-  needs_closure() const
-  { return !this->closure_fields_.empty(); }
-
-  // Return the closure variable, creating it if necessary.  This is
-  // passed to the function as a static chain parameter.
-  Named_object*
-  closure_var();
-
-  // Set the closure variable.  This is used when building thunks for
-  // functions which call recover.
-  void
-  set_closure_var(Named_object* v)
-  {
-    go_assert(this->closure_var_ == NULL);
-    this->closure_var_ = v;
-  }
-
-  // Return the variable for a reference to field INDEX in the closure
-  // variable.
-  Named_object*
-  enclosing_var(unsigned int index)
-  {
-    go_assert(index < this->closure_fields_.size());
-    return closure_fields_[index].first;
-  }
-
-  // Set the type of the closure variable if there is one.
-  void
-  set_closure_type();
-
-  // Get the block of statements associated with the function.
-  Block*
-  block() const
-  { return this->block_; }
-
-  // Get the location of the start of the function.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Return whether this function is actually a method.
-  bool
-  is_method() const;
-
-  // Add a label definition to the function.
-  Label*
-  add_label_definition(const std::string& label_name, source_location);
-
-  // Add a label reference to a function.
-  Label*
-  add_label_reference(const std::string& label_name);
-
-  // Warn about labels that are defined but not used.
-  void
-  check_labels() const;
-
-  // Whether this function calls the predeclared recover function.
-  bool
-  calls_recover() const
-  { return this->calls_recover_; }
-
-  // Record that this function calls the predeclared recover function.
-  // This is set during the lowering pass.
-  void
-  set_calls_recover()
-  { this->calls_recover_ = true; }
-
-  // Whether this is a recover thunk function.
-  bool
-  is_recover_thunk() const
-  { return this->is_recover_thunk_; }
-
-  // Record that this is a thunk built for a function which calls
-  // recover.
-  void
-  set_is_recover_thunk()
-  { this->is_recover_thunk_ = true; }
-
-  // Whether this function already has a recover thunk.
-  bool
-  has_recover_thunk() const
-  { return this->has_recover_thunk_; }
-
-  // Record that this function already has a recover thunk.
-  void
-  set_has_recover_thunk()
-  { this->has_recover_thunk_ = true; }
-
-  // Swap with another function.  Used only for the thunk which calls
-  // recover.
-  void
-  swap_for_recover(Function *);
-
-  // Traverse the tree.
-  int
-  traverse(Traverse*);
-
-  // Determine types in the function.
-  void
-  determine_types();
-
-  // Return the function's decl given an identifier.
-  tree
-  get_or_make_decl(Gogo*, Named_object*, tree id);
-
-  // Return the function's decl after it has been built.
-  tree
-  get_decl() const
-  {
-    go_assert(this->fndecl_ != NULL);
-    return this->fndecl_;
-  }
-
-  // Set the function decl to hold a tree of the function code.
-  void
-  build_tree(Gogo*, Named_object*);
-
-  // Get the value to return when not explicitly specified.  May also
-  // add statements to execute first to STMT_LIST.
-  tree
-  return_value(Gogo*, Named_object*, source_location, tree* stmt_list) const;
-
-  // Get a tree for the variable holding the defer stack.
-  Expression*
-  defer_stack(source_location);
-
-  // Export the function.
-  void
-  export_func(Export*, const std::string& name) const;
-
-  // Export a function with a type.
-  static void
-  export_func_with_type(Export*, const std::string& name,
-                       const Function_type*);
-
-  // Import a function.
-  static void
-  import_func(Import*, std::string* pname, Typed_identifier** receiver,
-             Typed_identifier_list** pparameters,
-             Typed_identifier_list** presults, bool* is_varargs);
-
- private:
-  // Type for mapping from label names to Label objects.
-  typedef Unordered_map(std::string, Label*) Labels;
-
-  tree
-  make_receiver_parm_decl(Gogo*, Named_object*, tree);
-
-  tree
-  copy_parm_to_heap(Gogo*, Named_object*, tree);
-
-  void
-  build_defer_wrapper(Gogo*, Named_object*, tree*, tree*);
-
-  typedef std::vector<std::pair<Named_object*,
-                               source_location> > Closure_fields;
-
-  // The function's type.
-  Function_type* type_;
-  // The enclosing function.  This is NULL when there isn't one, which
-  // is the normal case.
-  Function* enclosing_;
-  // The result variables, if any.
-  Results* results_;
-  // If there is a closure, this is the list of variables which appear
-  // in the closure.  This is created by the parser, and then resolved
-  // to a real type when we lower parse trees.
-  Closure_fields closure_fields_;
-  // The closure variable, passed as a parameter using the static
-  // chain parameter.  Normally NULL.
-  Named_object* closure_var_;
-  // The outer block of statements in the function.
-  Block* block_;
-  // The source location of the start of the function.
-  source_location location_;
-  // Labels defined or referenced in the function.
-  Labels labels_;
-  // The function decl.
-  tree fndecl_;
-  // The defer stack variable.  A pointer to this variable is used to
-  // distinguish the defer stack for one function from another.  This
-  // is NULL unless we actually need a defer stack.
-  Temporary_statement* defer_stack_;
-  // True if the result variables are named.
-  bool results_are_named_;
-  // True if this function calls the predeclared recover function.
-  bool calls_recover_;
-  // True if this a thunk built for a function which calls recover.
-  bool is_recover_thunk_;
-  // True if this function already has a recover thunk.
-  bool has_recover_thunk_;
-};
-
-// A function declaration.
-
-class Function_declaration
-{
- public:
-  Function_declaration(Function_type* fntype, source_location location)
-    : fntype_(fntype), location_(location), asm_name_(), fndecl_(NULL)
-  { }
-
-  Function_type*
-  type() const
-  { return this->fntype_; }
-
-  source_location
-  location() const
-  { return this->location_; }
-
-  const std::string&
-  asm_name() const
-  { return this->asm_name_; }
-
-  // Set the assembler name.
-  void
-  set_asm_name(const std::string& asm_name)
-  { this->asm_name_ = asm_name; }
-
-  // Return a decl for the function given an identifier.
-  tree
-  get_or_make_decl(Gogo*, Named_object*, tree id);
-
-  // Export a function declaration.
-  void
-  export_func(Export* exp, const std::string& name) const
-  { Function::export_func_with_type(exp, name, this->fntype_); }
-
- private:
-  // The type of the function.
-  Function_type* fntype_;
-  // The location of the declaration.
-  source_location location_;
-  // The assembler name: this is the name to use in references to the
-  // function.  This is normally empty.
-  std::string asm_name_;
-  // The function decl if needed.
-  tree fndecl_;
-};
-
-// A variable.
-
-class Variable
-{
- public:
-  Variable(Type*, Expression*, bool is_global, bool is_parameter,
-          bool is_receiver, source_location);
-
-  // Get the type of the variable.
-  Type*
-  type();
-
-  Type*
-  type() const;
-
-  // Return whether the type is defined yet.
-  bool
-  has_type() const
-  { return this->type_ != NULL; }
-
-  // Get the initial value.
-  Expression*
-  init() const
-  { return this->init_; }
-
-  // Return whether there are any preinit statements.
-  bool
-  has_pre_init() const
-  { return this->preinit_ != NULL; }
-
-  // Return the preinit statements if any.
-  Block*
-  preinit() const
-  { return this->preinit_; }
-
-  // Return whether this is a global variable.
-  bool
-  is_global() const
-  { return this->is_global_; }
-
-  // Return whether this is a function parameter.
-  bool
-  is_parameter() const
-  { return this->is_parameter_; }
-
-  // Return whether this is the receiver parameter of a method.
-  bool
-  is_receiver() const
-  { return this->is_receiver_; }
-
-  // Change this parameter to be a receiver.  This is used when
-  // creating the thunks created for functions which call recover.
-  void
-  set_is_receiver()
-  {
-    go_assert(this->is_parameter_);
-    this->is_receiver_ = true;
-  }
-
-  // Change this parameter to not be a receiver.  This is used when
-  // creating the thunks created for functions which call recover.
-  void
-  set_is_not_receiver()
-  {
-    go_assert(this->is_parameter_);
-    this->is_receiver_ = false;
-  }
-
-  // Return whether this is the varargs parameter of a function.
-  bool
-  is_varargs_parameter() const
-  { return this->is_varargs_parameter_; }
-
-  // Whether this variable's address is taken.
-  bool
-  is_address_taken() const
-  { return this->is_address_taken_; }
-
-  // Whether this variable should live in the heap.
-  bool
-  is_in_heap() const
-  { return this->is_address_taken_ && !this->is_global_; }
-
-  // Get the source location of the variable's declaration.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Record that this is the varargs parameter of a function.
-  void
-  set_is_varargs_parameter()
-  {
-    go_assert(this->is_parameter_);
-    this->is_varargs_parameter_ = true;
-  }
-
-  // Clear the initial value; used for error handling.
-  void
-  clear_init()
-  { this->init_ = NULL; }
-
-  // Set the initial value; used for converting shortcuts.
-  void
-  set_init(Expression* init)
-  { this->init_ = init; }
-
-  // Get the preinit block, a block of statements to be run before the
-  // initialization expression.
-  Block*
-  preinit_block(Gogo*);
-
-  // Add a statement to be run before the initialization expression.
-  // This is only used for global variables.
-  void
-  add_preinit_statement(Gogo*, Statement*);
-
-  // Lower the initialization expression after parsing is complete.
-  void
-  lower_init_expression(Gogo*, Named_object*);
-
-  // A special case: the init value is used only to determine the
-  // type.  This is used if the variable is defined using := with the
-  // comma-ok form of a map index or a receive expression.  The init
-  // value is actually the map index expression or receive expression.
-  // We use this because we may not know the right type at parse time.
-  void
-  set_type_from_init_tuple()
-  { this->type_from_init_tuple_ = true; }
-
-  // Another special case: the init value is used only to determine
-  // the type.  This is used if the variable is defined using := with
-  // a range clause.  The init value is the range expression.  The
-  // type of the variable is the index type of the range expression
-  // (i.e., the first value returned by a range).
-  void
-  set_type_from_range_index()
-  { this->type_from_range_index_ = true; }
-
-  // Another special case: like set_type_from_range_index, but the
-  // type is the value type of the range expression (i.e., the second
-  // value returned by a range).
-  void
-  set_type_from_range_value()
-  { this->type_from_range_value_ = true; }
-
-  // Another special case: the init value is used only to determine
-  // the type.  This is used if the variable is defined using := with
-  // a case in a select statement.  The init value is the channel.
-  // The type of the variable is the channel's element type.
-  void
-  set_type_from_chan_element()
-  { this->type_from_chan_element_ = true; }
-
-  // After we lower the select statement, we once again set the type
-  // from the initialization expression.
-  void
-  clear_type_from_chan_element()
-  {
-    go_assert(this->type_from_chan_element_);
-    this->type_from_chan_element_ = false;
-  }
-
-  // Note that this variable was created for a type switch clause.
-  void
-  set_is_type_switch_var()
-  { this->is_type_switch_var_ = true; }
-
-  // Traverse the initializer expression.
-  int
-  traverse_expression(Traverse*);
-
-  // Determine the type of the variable if necessary.
-  void
-  determine_type();
-
-  // Note that something takes the address of this variable.
-  void
-  set_address_taken()
-  { this->is_address_taken_ = true; }
-
-  // Get the backend representation of the variable.
-  Bvariable*
-  get_backend_variable(Gogo*, Named_object*, const Package*,
-                      const std::string&);
-
-  // Get the initial value of the variable as a tree.  This may only
-  // be called if has_pre_init() returns false.
-  tree
-  get_init_tree(Gogo*, Named_object* function);
-
-  // Return a series of statements which sets the value of the
-  // variable in DECL.  This should only be called is has_pre_init()
-  // returns true.  DECL may be NULL for a sink variable.
-  tree
-  get_init_block(Gogo*, Named_object* function, tree decl);
-
-  // Export the variable.
-  void
-  export_var(Export*, const std::string& name) const;
-
-  // Import a variable.
-  static void
-  import_var(Import*, std::string* pname, Type** ptype);
-
- private:
-  // The type of a tuple.
-  Type*
-  type_from_tuple(Expression*, bool) const;
-
-  // The type of a range.
-  Type*
-  type_from_range(Expression*, bool, bool) const;
-
-  // The element type of a channel.
-  Type*
-  type_from_chan_element(Expression*, bool) const;
-
-  // The variable's type.  This may be NULL if the type is set from
-  // the expression.
-  Type* type_;
-  // The initial value.  This may be NULL if the variable should be
-  // initialized to the default value for the type.
-  Expression* init_;
-  // Statements to run before the init statement.
-  Block* preinit_;
-  // Location of variable definition.
-  source_location location_;
-  // Backend representation.
-  Bvariable* backend_;
-  // Whether this is a global variable.
-  bool is_global_ : 1;
-  // Whether this is a function parameter.
-  bool is_parameter_ : 1;
-  // Whether this is the receiver parameter of a method.
-  bool is_receiver_ : 1;
-  // Whether this is the varargs parameter of a function.
-  bool is_varargs_parameter_ : 1;
-  // Whether something takes the address of this variable.
-  bool is_address_taken_ : 1;
-  // True if we have seen this variable in a traversal.
-  bool seen_ : 1;
-  // True if we have lowered the initialization expression.
-  bool init_is_lowered_ : 1;
-  // True if init is a tuple used to set the type.
-  bool type_from_init_tuple_ : 1;
-  // True if init is a range clause and the type is the index type.
-  bool type_from_range_index_ : 1;
-  // True if init is a range clause and the type is the value type.
-  bool type_from_range_value_ : 1;
-  // True if init is a channel and the type is the channel's element type.
-  bool type_from_chan_element_ : 1;
-  // True if this is a variable created for a type switch case.
-  bool is_type_switch_var_ : 1;
-  // True if we have determined types.
-  bool determined_type_ : 1;
-};
-
-// A variable which is really the name for a function return value, or
-// part of one.
-
-class Result_variable
-{
- public:
-  Result_variable(Type* type, Function* function, int index,
-                 source_location location)
-    : type_(type), function_(function), index_(index), location_(location),
-      backend_(NULL), is_address_taken_(false)
-  { }
-
-  // Get the type of the result variable.
-  Type*
-  type() const
-  { return this->type_; }
-
-  // Get the function that this is associated with.
-  Function*
-  function() const
-  { return this->function_; }
-
-  // Index in the list of function results.
-  int
-  index() const
-  { return this->index_; }
-
-  // The location of the variable definition.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Whether this variable's address is taken.
-  bool
-  is_address_taken() const
-  { return this->is_address_taken_; }
-
-  // Note that something takes the address of this variable.
-  void
-  set_address_taken()
-  { this->is_address_taken_ = true; }
-
-  // Whether this variable should live in the heap.
-  bool
-  is_in_heap() const
-  { return this->is_address_taken_; }
-
-  // Set the function.  This is used when cloning functions which call
-  // recover.
-  void
-  set_function(Function* function)
-  { this->function_ = function; }
-
-  // Get the backend representation of the variable.
-  Bvariable*
-  get_backend_variable(Gogo*, Named_object*, const std::string&);
-
- private:
-  // Type of result variable.
-  Type* type_;
-  // Function with which this is associated.
-  Function* function_;
-  // Index in list of results.
-  int index_;
-  // Where the result variable is defined.
-  source_location location_;
-  // Backend representation.
-  Bvariable* backend_;
-  // Whether something takes the address of this variable.
-  bool is_address_taken_;
-};
-
-// The value we keep for a named constant.  This lets us hold a type
-// and an expression.
-
-class Named_constant
-{
- public:
-  Named_constant(Type* type, Expression* expr, int iota_value,
-                source_location location)
-    : type_(type), expr_(expr), iota_value_(iota_value), location_(location),
-      lowering_(false)
-  { }
-
-  Type*
-  type() const
-  { return this->type_; }
-
-  Expression*
-  expr() const
-  { return this->expr_; }
-
-  int
-  iota_value() const
-  { return this->iota_value_; }
-
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Whether we are lowering.
-  bool
-  lowering() const
-  { return this->lowering_; }
-
-  // Set that we are lowering.
-  void
-  set_lowering()
-  { this->lowering_ = true; }
-
-  // We are no longer lowering.
-  void
-  clear_lowering()
-  { this->lowering_ = false; }
-
-  // Traverse the expression.
-  int
-  traverse_expression(Traverse*);
-
-  // Determine the type of the constant if necessary.
-  void
-  determine_type();
-
-  // Indicate that we found and reported an error for this constant.
-  void
-  set_error();
-
-  // Export the constant.
-  void
-  export_const(Export*, const std::string& name) const;
-
-  // Import a constant.
-  static void
-  import_const(Import*, std::string*, Type**, Expression**);
-
- private:
-  // The type of the constant.
-  Type* type_;
-  // The expression for the constant.
-  Expression* expr_;
-  // If the predeclared constant iota is used in EXPR_, this is the
-  // value it will have.  We do this because at parse time we don't
-  // know whether the name "iota" will refer to the predeclared
-  // constant or to something else.  We put in the right value in when
-  // we lower.
-  int iota_value_;
-  // The location of the definition.
-  source_location location_;
-  // Whether we are currently lowering this constant.
-  bool lowering_;
-};
-
-// A type declaration.
-
-class Type_declaration
-{
- public:
-  Type_declaration(source_location location)
-    : location_(location), in_function_(NULL), methods_(),
-      issued_warning_(false)
-  { }
-
-  // Return the location.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Return the function in which this type is declared.  This will
-  // return NULL for a type declared in global scope.
-  Named_object*
-  in_function()
-  { return this->in_function_; }
-
-  // Set the function in which this type is declared.
-  void
-  set_in_function(Named_object* f)
-  { this->in_function_ = f; }
-
-  // Add a method to this type.  This is used when methods are defined
-  // before the type.
-  Named_object*
-  add_method(const std::string& name, Function* function);
-
-  // Add a method declaration to this type.
-  Named_object*
-  add_method_declaration(const std::string& name, Function_type* type,
-                        source_location location);
-
-  // Return whether any methods were defined.
-  bool
-  has_methods() const;
-
-  // Define methods when the real type is known.
-  void
-  define_methods(Named_type*);
-
-  // This is called if we are trying to use this type.  It returns
-  // true if we should issue a warning.
-  bool
-  using_type();
-
- private:
-  typedef std::vector<Named_object*> Methods;
-
-  // The location of the type declaration.
-  source_location location_;
-  // If this type is declared in a function, a pointer back to the
-  // function in which it is defined.
-  Named_object* in_function_;
-  // Methods defined before the type is defined.
-  Methods methods_;
-  // True if we have issued a warning about a use of this type
-  // declaration when it is undefined.
-  bool issued_warning_;
-};
-
-// An unknown object.  These are created by the parser for forward
-// references to names which have not been seen before.  In a correct
-// program, these will always point to a real definition by the end of
-// the parse.  Because they point to another Named_object, these may
-// only be referenced by Unknown_expression objects.
-
-class Unknown_name
-{
- public:
-  Unknown_name(source_location location)
-    : location_(location), real_named_object_(NULL)
-  { }
-
-  // Return the location where this name was first seen.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Return the real named object that this points to, or NULL if it
-  // was never resolved.
-  Named_object*
-  real_named_object() const
-  { return this->real_named_object_; }
-
-  // Set the real named object that this points to.
-  void
-  set_real_named_object(Named_object* no);
-
- private:
-  // The location where this name was first seen.
-  source_location location_;
-  // The real named object when it is known.
-  Named_object*
-  real_named_object_;
-};
-
-// A named object named.  This is the result of a declaration.  We
-// don't use a superclass because they all have to be handled
-// differently.
-
-class Named_object
-{
- public:
-  enum Classification
-  {
-    // An uninitialized Named_object.  We should never see this.
-    NAMED_OBJECT_UNINITIALIZED,
-    // An unknown name.  This is used for forward references.  In a
-    // correct program, these will all be resolved by the end of the
-    // parse.
-    NAMED_OBJECT_UNKNOWN,
-    // A const.
-    NAMED_OBJECT_CONST,
-    // A type.
-    NAMED_OBJECT_TYPE,
-    // A forward type declaration.
-    NAMED_OBJECT_TYPE_DECLARATION,
-    // A var.
-    NAMED_OBJECT_VAR,
-    // A result variable in a function.
-    NAMED_OBJECT_RESULT_VAR,
-    // The blank identifier--the special variable named _.
-    NAMED_OBJECT_SINK,
-    // A func.
-    NAMED_OBJECT_FUNC,
-    // A forward func declaration.
-    NAMED_OBJECT_FUNC_DECLARATION,
-    // A package.
-    NAMED_OBJECT_PACKAGE
-  };
-
-  // Return the classification.
-  Classification
-  classification() const
-  { return this->classification_; }
-
-  // Classifiers.
-
-  bool
-  is_unknown() const
-  { return this->classification_ == NAMED_OBJECT_UNKNOWN; }
-
-  bool
-  is_const() const
-  { return this->classification_ == NAMED_OBJECT_CONST; }
-
-  bool
-  is_type() const
-  { return this->classification_ == NAMED_OBJECT_TYPE; }
-
-  bool
-  is_type_declaration() const
-  { return this->classification_ == NAMED_OBJECT_TYPE_DECLARATION; }
-
-  bool
-  is_variable() const
-  { return this->classification_ == NAMED_OBJECT_VAR; }
-
-  bool
-  is_result_variable() const
-  { return this->classification_ == NAMED_OBJECT_RESULT_VAR; }
-
-  bool
-  is_sink() const
-  { return this->classification_ == NAMED_OBJECT_SINK; }
-
-  bool
-  is_function() const
-  { return this->classification_ == NAMED_OBJECT_FUNC; }
-
-  bool
-  is_function_declaration() const
-  { return this->classification_ == NAMED_OBJECT_FUNC_DECLARATION; }
-
-  bool
-  is_package() const
-  { return this->classification_ == NAMED_OBJECT_PACKAGE; }
-
-  // Creators.
-
-  static Named_object*
-  make_unknown_name(const std::string& name, source_location);
-
-  static Named_object*
-  make_constant(const Typed_identifier&, const Package*, Expression*,
-               int iota_value);
-
-  static Named_object*
-  make_type(const std::string&, const Package*, Type*, source_location);
-
-  static Named_object*
-  make_type_declaration(const std::string&, const Package*, source_location);
-
-  static Named_object*
-  make_variable(const std::string&, const Package*, Variable*);
-
-  static Named_object*
-  make_result_variable(const std::string&, Result_variable*);
-
-  static Named_object*
-  make_sink();
-
-  static Named_object*
-  make_function(const std::string&, const Package*, Function*);
-
-  static Named_object*
-  make_function_declaration(const std::string&, const Package*, Function_type*,
-                           source_location);
-
-  static Named_object*
-  make_package(const std::string& alias, Package* package);
-
-  // Getters.
-
-  Unknown_name*
-  unknown_value()
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
-    return this->u_.unknown_value;
-  }
-
-  const Unknown_name*
-  unknown_value() const
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
-    return this->u_.unknown_value;
-  }
-
-  Named_constant*
-  const_value()
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_CONST);
-    return this->u_.const_value;
-  }
-
-  const Named_constant*
-  const_value() const
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_CONST);
-    return this->u_.const_value;
-  }
-
-  Named_type*
-  type_value()
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_TYPE);
-    return this->u_.type_value;
-  }
-
-  const Named_type*
-  type_value() const
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_TYPE);
-    return this->u_.type_value;
-  }
-
-  Type_declaration*
-  type_declaration_value()
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
-    return this->u_.type_declaration;
-  }
-
-  const Type_declaration*
-  type_declaration_value() const
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
-    return this->u_.type_declaration;
-  }
-
-  Variable*
-  var_value()
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_VAR);
-    return this->u_.var_value;
-  }
-
-  const Variable*
-  var_value() const
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_VAR);
-    return this->u_.var_value;
-  }
-
-  Result_variable*
-  result_var_value()
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_RESULT_VAR);
-    return this->u_.result_var_value;
-  }
-
-  const Result_variable*
-  result_var_value() const
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_RESULT_VAR);
-    return this->u_.result_var_value;
-  }
-
-  Function*
-  func_value()
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_FUNC);
-    return this->u_.func_value;
-  }
-
-  const Function*
-  func_value() const
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_FUNC);
-    return this->u_.func_value;
-  }
-
-  Function_declaration*
-  func_declaration_value()
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
-    return this->u_.func_declaration_value;
-  }
-
-  const Function_declaration*
-  func_declaration_value() const
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
-    return this->u_.func_declaration_value;
-  }
-
-  Package*
-  package_value()
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_PACKAGE);
-    return this->u_.package_value;
-  }
-
-  const Package*
-  package_value() const
-  {
-    go_assert(this->classification_ == NAMED_OBJECT_PACKAGE);
-    return this->u_.package_value;
-  }
-
-  const std::string&
-  name() const
-  { return this->name_; }
-
-  // Return the name to use in an error message.  The difference is
-  // that if this Named_object is defined in a different package, this
-  // will return PACKAGE.NAME.
-  std::string
-  message_name() const;
-
-  const Package*
-  package() const
-  { return this->package_; }
-
-  // Resolve an unknown value if possible.  This returns the same
-  // Named_object or a new one.
-  Named_object*
-  resolve()
-  {
-    Named_object* ret = this;
-    if (this->is_unknown())
-      {
-       Named_object* r = this->unknown_value()->real_named_object();
-       if (r != NULL)
-         ret = r;
-      }
-    return ret;
-  }
-
-  const Named_object*
-  resolve() const
-  {
-    const Named_object* ret = this;
-    if (this->is_unknown())
-      {
-       const Named_object* r = this->unknown_value()->real_named_object();
-       if (r != NULL)
-         ret = r;
-      }
-    return ret;
-  }
-
-  // The location where this object was defined or referenced.
-  source_location
-  location() const;
-
-  // Convert a variable to the backend representation.
-  Bvariable*
-  get_backend_variable(Gogo*, Named_object* function);
-
-  // Return a tree for the external identifier for this object.
-  tree
-  get_id(Gogo*);
-
-  // Return a tree representing this object.
-  tree
-  get_tree(Gogo*, Named_object* function);
-
-  // Define a type declaration.
-  void
-  set_type_value(Named_type*);
-
-  // Define a function declaration.
-  void
-  set_function_value(Function*);
-
-  // Declare an unknown name as a type declaration.
-  void
-  declare_as_type();
-
-  // Export this object.
-  void
-  export_named_object(Export*) const;
-
- private:
-  Named_object(const std::string&, const Package*, Classification);
-
-  // The name of the object.
-  std::string name_;
-  // The package that this object is in.  This is NULL if it is in the
-  // file we are compiling.
-  const Package* package_;
-  // The type of object this is.
-  Classification classification_;
-  // The real data.
-  union
-  {
-    Unknown_name* unknown_value;
-    Named_constant* const_value;
-    Named_type* type_value;
-    Type_declaration* type_declaration;
-    Variable* var_value;
-    Result_variable* result_var_value;
-    Function* func_value;
-    Function_declaration* func_declaration_value;
-    Package* package_value;
-  } u_;
-  // The DECL tree for this object if we have already converted it.
-  tree tree_;
-};
-
-// A binding contour.  This binds names to objects.
-
-class Bindings
-{
- public:
-  // Type for mapping from names to objects.
-  typedef Unordered_map(std::string, Named_object*) Contour;
-
-  Bindings(Bindings* enclosing);
-
-  // Add an unknown name.
-  Named_object*
-  add_unknown_name(const std::string& name, source_location location)
-  {
-    return this->add_named_object(Named_object::make_unknown_name(name,
-                                                                 location));
-  }
-
-  // Add a constant.
-  Named_object*
-  add_constant(const Typed_identifier& tid, const Package* package,
-              Expression* expr, int iota_value)
-  {
-    return this->add_named_object(Named_object::make_constant(tid, package,
-                                                             expr,
-                                                             iota_value));
-  }
-
-  // Add a type.
-  Named_object*
-  add_type(const std::string& name, const Package* package, Type* type,
-          source_location location)
-  {
-    return this->add_named_object(Named_object::make_type(name, package, type,
-                                                         location));
-  }
-
-  // Add a named type.  This is used for builtin types, and to add an
-  // imported type to the global scope.
-  Named_object*
-  add_named_type(Named_type* named_type);
-
-  // Add a type declaration.
-  Named_object*
-  add_type_declaration(const std::string& name, const Package* package,
-                      source_location location)
-  {
-    Named_object* no = Named_object::make_type_declaration(name, package,
-                                                          location);
-    return this->add_named_object(no);
-  }
-
-  // Add a variable.
-  Named_object*
-  add_variable(const std::string& name, const Package* package,
-              Variable* variable)
-  {
-    return this->add_named_object(Named_object::make_variable(name, package,
-                                                             variable));
-  }
-
-  // Add a result variable.
-  Named_object*
-  add_result_variable(const std::string& name, Result_variable* result)
-  {
-    return this->add_named_object(Named_object::make_result_variable(name,
-                                                                    result));
-  }
-
-  // Add a function.
-  Named_object*
-  add_function(const std::string& name, const Package*, Function* function);
-
-  // Add a function declaration.
-  Named_object*
-  add_function_declaration(const std::string& name, const Package* package,
-                          Function_type* type, source_location location);
-
-  // Add a package.  The location is the location of the import
-  // statement.
-  Named_object*
-  add_package(const std::string& alias, Package* package)
-  {
-    Named_object* no = Named_object::make_package(alias, package);
-    return this->add_named_object(no);
-  }
-
-  // Define a type which was already declared.
-  void
-  define_type(Named_object*, Named_type*);
-
-  // Add a method to the list of objects.  This is not added to the
-  // lookup table.
-  void
-  add_method(Named_object*);
-
-  // Add a named object to this binding.
-  Named_object*
-  add_named_object(Named_object* no)
-  { return this->add_named_object_to_contour(&this->bindings_, no); }
-
-  // Clear all names in file scope from the bindings.
-  void
-  clear_file_scope();
-
-  // Look up a name in this binding contour and in any enclosing
-  // binding contours.  This returns NULL if the name is not found.
-  Named_object*
-  lookup(const std::string&) const;
-
-  // Look up a name in this binding contour without looking in any
-  // enclosing binding contours.  Returns NULL if the name is not found.
-  Named_object*
-  lookup_local(const std::string&) const;
-
-  // Remove a name.
-  void
-  remove_binding(Named_object*);
-
-  // Traverse the tree.  See the Traverse class.
-  int
-  traverse(Traverse*, bool is_global);
-
-  // Iterate over definitions.  This does not include things which
-  // were only declared.
-
-  typedef std::vector<Named_object*>::const_iterator
-    const_definitions_iterator;
-
-  const_definitions_iterator
-  begin_definitions() const
-  { return this->named_objects_.begin(); }
-
-  const_definitions_iterator
-  end_definitions() const
-  { return this->named_objects_.end(); }
-
-  // Return the number of definitions.
-  size_t
-  size_definitions() const
-  { return this->named_objects_.size(); }
-
-  // Return whether there are no definitions.
-  bool
-  empty_definitions() const
-  { return this->named_objects_.empty(); }
-
-  // Iterate over declarations.  This is everything that has been
-  // declared, which includes everything which has been defined.
-
-  typedef Contour::const_iterator const_declarations_iterator;
-
-  const_declarations_iterator
-  begin_declarations() const
-  { return this->bindings_.begin(); }
-
-  const_declarations_iterator
-  end_declarations() const
-  { return this->bindings_.end(); }
-
-  // Return the number of declarations.
-  size_t
-  size_declarations() const
-  { return this->bindings_.size(); }
-
-  // Return whether there are no declarations.
-  bool
-  empty_declarations() const
-  { return this->bindings_.empty(); }
-
-  // Return the first declaration.
-  Named_object*
-  first_declaration()
-  { return this->bindings_.empty() ? NULL : this->bindings_.begin()->second; }
-
- private:
-  Named_object*
-  add_named_object_to_contour(Contour*, Named_object*);
-
-  Named_object*
-  new_definition(Named_object*, Named_object*);
-
-  // Enclosing bindings.
-  Bindings* enclosing_;
-  // The list of objects.
-  std::vector<Named_object*> named_objects_;
-  // The mapping from names to objects.
-  Contour bindings_;
-};
-
-// A label.
-
-class Label
-{
- public:
-  Label(const std::string& name)
-    : name_(name), location_(0), is_used_(false), blabel_(NULL)
-  { }
-
-  // Return the label's name.
-  const std::string&
-  name() const
-  { return this->name_; }
-
-  // Return whether the label has been defined.
-  bool
-  is_defined() const
-  { return this->location_ != 0; }
-
-  // Return whether the label has been used.
-  bool
-  is_used() const
-  { return this->is_used_; }
-
-  // Record that the label is used.
-  void
-  set_is_used()
-  { this->is_used_ = true; }
-
-  // Return the location of the definition.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Define the label at LOCATION.
-  void
-  define(source_location location)
-  {
-    go_assert(this->location_ == 0);
-    this->location_ = location;
-  }
-
-  // Return the backend representation for this label.
-  Blabel*
-  get_backend_label(Translate_context*);
-
-  // Return an expression for the address of this label.  This is used
-  // to get the return address of a deferred function to see whether
-  // the function may call recover.
-  Bexpression*
-  get_addr(Translate_context*, source_location location);
-
- private:
-  // The name of the label.
-  std::string name_;
-  // The location of the definition.  This is 0 if the label has not
-  // yet been defined.
-  source_location location_;
-  // Whether the label has been used.
-  bool is_used_;
-  // The backend representation.
-  Blabel* blabel_;
-};
-
-// An unnamed label.  These are used when lowering loops.
-
-class Unnamed_label
-{
- public:
-  Unnamed_label(source_location location)
-    : location_(location), blabel_(NULL)
-  { }
-
-  // Get the location where the label is defined.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Set the location where the label is defined.
-  void
-  set_location(source_location location)
-  { this->location_ = location; }
-
-  // Return a statement which defines this label.
-  Bstatement*
-  get_definition(Translate_context*);
-
-  // Return a goto to this label from LOCATION.
-  Bstatement*
-  get_goto(Translate_context*, source_location location);
-
- private:
-  // Return the backend representation.
-  Blabel*
-  get_blabel(Translate_context*);
-
-  // The location where the label is defined.
-  source_location location_;
-  // The backend representation of this label.
-  Blabel* blabel_;
-};
-
-// An imported package.
-
-class Package
-{
- public:
-  Package(const std::string& name, const std::string& unique_prefix,
-         source_location location);
-
-  // The real name of this package.  This may be different from the
-  // name in the associated Named_object if the import statement used
-  // an alias.
-  const std::string&
-  name() const
-  { return this->name_; }
-
-  // Return the location of the import statement.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Get the unique prefix used for all symbols exported from this
-  // package.
-  const std::string&
-  unique_prefix() const
-  {
-    go_assert(!this->unique_prefix_.empty());
-    return this->unique_prefix_;
-  }
-
-  // The priority of this package.  The init function of packages with
-  // lower priority must be run before the init function of packages
-  // with higher priority.
-  int
-  priority() const
-  { return this->priority_; }
-
-  // Set the priority.
-  void
-  set_priority(int priority);
-
-  // Return the bindings.
-  Bindings*
-  bindings()
-  { return this->bindings_; }
-
-  // Whether some symbol from the package was used.
-  bool
-  used() const
-  { return this->used_; }
-
-  // Note that some symbol from this package was used.
-  void
-  set_used() const
-  { this->used_ = true; }
-
-  // Clear the used field for the next file.
-  void
-  clear_used()
-  { this->used_ = false; }
-
-  // Whether this package was imported in the current file.
-  bool
-  is_imported() const
-  { return this->is_imported_; }
-
-  // Note that this package was imported in the current file.
-  void
-  set_is_imported()
-  { this->is_imported_ = true; }
-
-  // Clear the imported field for the next file.
-  void
-  clear_is_imported()
-  { this->is_imported_ = false; }
-
-  // Whether this package was imported with a name of "_".
-  bool
-  uses_sink_alias() const
-  { return this->uses_sink_alias_; }
-
-  // Note that this package was imported with a name of "_".
-  void
-  set_uses_sink_alias()
-  { this->uses_sink_alias_ = true; }
-
-  // Clear the sink alias field for the next file.
-  void
-  clear_uses_sink_alias()
-  { this->uses_sink_alias_ = false; }
-
-  // Look up a name in the package.  Returns NULL if the name is not
-  // found.
-  Named_object*
-  lookup(const std::string& name) const
-  { return this->bindings_->lookup(name); }
-
-  // Set the location of the package.  This is used if it is seen in a
-  // different import before it is really imported.
-  void
-  set_location(source_location location)
-  { this->location_ = location; }
-
-  // Add a constant to the package.
-  Named_object*
-  add_constant(const Typed_identifier& tid, Expression* expr)
-  { return this->bindings_->add_constant(tid, this, expr, 0); }
-
-  // Add a type to the package.
-  Named_object*
-  add_type(const std::string& name, Type* type, source_location location)
-  { return this->bindings_->add_type(name, this, type, location); }
-
-  // Add a type declaration to the package.
-  Named_object*
-  add_type_declaration(const std::string& name, source_location location)
-  { return this->bindings_->add_type_declaration(name, this, location); }
-
-  // Add a variable to the package.
-  Named_object*
-  add_variable(const std::string& name, Variable* variable)
-  { return this->bindings_->add_variable(name, this, variable); }
-
-  // Add a function declaration to the package.
-  Named_object*
-  add_function_declaration(const std::string& name, Function_type* type,
-                          source_location loc)
-  { return this->bindings_->add_function_declaration(name, this, type, loc); }
-
-  // Determine types of constants.
-  void
-  determine_types();
-
- private:
-  // The real name of this package.
-  std::string name_;
-  // The unique prefix for all exported global symbols.
-  std::string unique_prefix_;
-  // The names in this package.
-  Bindings* bindings_;
-  // The priority of this package.  A package has a priority higher
-  // than the priority of all of the packages that it imports.  This
-  // is used to run init functions in the right order.
-  int priority_;
-  // The location of the import statement.
-  source_location location_;
-  // True if some name from this package was used.  This is mutable
-  // because we can use a package even if we have a const pointer to
-  // it.
-  mutable bool used_;
-  // True if this package was imported in the current file.
-  bool is_imported_;
-  // True if this package was imported with a name of "_".
-  bool uses_sink_alias_;
-};
-
-// Return codes for the traversal functions.  This is not an enum
-// because we want to be able to declare traversal functions in other
-// header files without including this one.
-
-// Continue traversal as usual.
-const int TRAVERSE_CONTINUE = -1;
-
-// Exit traversal.
-const int TRAVERSE_EXIT = 0;
-
-// Continue traversal, but skip components of the current object.
-// E.g., if this is returned by Traverse::statement, we do not
-// traverse the expressions in the statement even if
-// traverse_expressions is set in the traverse_mask.
-const int TRAVERSE_SKIP_COMPONENTS = 1;
-
-// This class is used when traversing the parse tree.  The caller uses
-// a subclass which overrides functions as desired.
-
-class Traverse
-{
- public:
-  // These bitmasks say what to traverse.
-  static const unsigned int traverse_variables =    0x1;
-  static const unsigned int traverse_constants =    0x2;
-  static const unsigned int traverse_functions =    0x4;
-  static const unsigned int traverse_blocks =       0x8;
-  static const unsigned int traverse_statements =  0x10;
-  static const unsigned int traverse_expressions = 0x20;
-  static const unsigned int traverse_types =       0x40;
-
-  Traverse(unsigned int traverse_mask)
-    : traverse_mask_(traverse_mask), types_seen_(NULL), expressions_seen_(NULL)
-  { }
-
-  virtual ~Traverse();
-
-  // The bitmask of what to traverse.
-  unsigned int
-  traverse_mask() const
-  { return this->traverse_mask_; }
-
-  // Record that we are going to traverse a type.  This returns true
-  // if the type has already been seen in this traversal.  This is
-  // required because types, unlike expressions, can form a circular
-  // graph.
-  bool
-  remember_type(const Type*);
-
-  // Record that we are going to see an expression.  This returns true
-  // if the expression has already been seen in this traversal.  This
-  // is only needed for cases where multiple expressions can point to
-  // a single one.
-  bool
-  remember_expression(const Expression*);
-
-  // These functions return one of the TRAVERSE codes defined above.
-
-  // If traverse_variables is set in the mask, this is called for
-  // every variable in the tree.
-  virtual int
-  variable(Named_object*);
-
-  // If traverse_constants is set in the mask, this is called for
-  // every named constant in the tree.  The bool parameter is true for
-  // a global constant.
-  virtual int
-  constant(Named_object*, bool);
-
-  // If traverse_functions is set in the mask, this is called for
-  // every function in the tree.
-  virtual int
-  function(Named_object*);
-
-  // If traverse_blocks is set in the mask, this is called for every
-  // block in the tree.
-  virtual int
-  block(Block*);
-
-  // If traverse_statements is set in the mask, this is called for
-  // every statement in the tree.
-  virtual int
-  statement(Block*, size_t* index, Statement*);
-
-  // If traverse_expressions is set in the mask, this is called for
-  // every expression in the tree.
-  virtual int
-  expression(Expression**);
-
-  // If traverse_types is set in the mask, this is called for every
-  // type in the tree.
-  virtual int
-  type(Type*);
-
- private:
-  typedef Unordered_set_hash(const Type*, Type_hash_identical,
-                            Type_identical) Types_seen;
-
-  typedef Unordered_set(const Expression*) Expressions_seen;
-
-  // Bitmask of what sort of objects to traverse.
-  unsigned int traverse_mask_;
-  // Types which have been seen in this traversal.
-  Types_seen* types_seen_;
-  // Expressions which have been seen in this traversal.
-  Expressions_seen* expressions_seen_;
-};
-
-// When translating the gogo IR into the backend data structure, this
-// is the context we pass down the blocks and statements.
-
-class Translate_context
-{
- public:
-  Translate_context(Gogo* gogo, Named_object* function, Block* block,
-                   Bblock* bblock)
-    : gogo_(gogo), backend_(gogo->backend()), function_(function),
-      block_(block), bblock_(bblock), is_const_(false)
-  { }
-
-  // Accessors.
-
-  Gogo*
-  gogo()
-  { return this->gogo_; }
-
-  Backend*
-  backend()
-  { return this->backend_; }
-
-  Named_object*
-  function()
-  { return this->function_; }
-
-  Block*
-  block()
-  { return this->block_; }
-
-  Bblock*
-  bblock()
-  { return this->bblock_; }
-
-  bool
-  is_const()
-  { return this->is_const_; }
-
-  // Make a constant context.
-  void
-  set_is_const()
-  { this->is_const_ = true; }
-
- private:
-  // The IR for the entire compilation unit.
-  Gogo* gogo_;
-  // The generator for the backend data structures.
-  Backend* backend_;
-  // The function we are currently translating.  NULL if not in a
-  // function, e.g., the initializer of a global variable.
-  Named_object* function_;
-  // The block we are currently translating.  NULL if not in a
-  // function.
-  Block *block_;
-  // The backend representation of the current block.  NULL if block_
-  // is NULL.
-  Bblock* bblock_;
-  // Whether this is being evaluated in a constant context.  This is
-  // used for type descriptor initializers.
-  bool is_const_;
-};
-
-// Runtime error codes.  These must match the values in
-// libgo/runtime/go-runtime-error.c.
-
-// Slice index out of bounds: negative or larger than the length of
-// the slice.
-static const int RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS = 0;
-
-// Array index out of bounds.
-static const int RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS = 1;
-
-// String index out of bounds.
-static const int RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS = 2;
-
-// Slice slice out of bounds: negative or larger than the length of
-// the slice or high bound less than low bound.
-static const int RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS = 3;
-
-// Array slice out of bounds.
-static const int RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS = 4;
-
-// String slice out of bounds.
-static const int RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS = 5;
-
-// Dereference of nil pointer.  This is used when there is a
-// dereference of a pointer to a very large struct or array, to ensure
-// that a gigantic array is not used a proxy to access random memory
-// locations.
-static const int RUNTIME_ERROR_NIL_DEREFERENCE = 6;
-
-// Slice length or capacity out of bounds in make: negative or
-// overflow or length greater than capacity.
-static const int RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS = 7;
-
-// Map capacity out of bounds in make: negative or overflow.
-static const int RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS = 8;
-
-// Channel capacity out of bounds in make: negative or overflow.
-static const int RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS = 9;
-
-// This is used by some of the langhooks.
-extern Gogo* go_get_gogo();
-
-// Whether we have seen any errors.  FIXME: Replace with a backend
-// interface.
-extern bool saw_errors();
-
-#endif // !defined(GO_GOGO_H)
diff --git a/gcc/go/gofrontend/gogo.h.working b/gcc/go/gofrontend/gogo.h.working
deleted file mode 100644 (file)
index 7a887a5..0000000
+++ /dev/null
@@ -1,2537 +0,0 @@
-// gogo.h -- Go frontend parsed representation.     -*- C++ -*-
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#ifndef GO_GOGO_H
-#define GO_GOGO_H
-
-class Traverse;
-class Type;
-class Type_hash_identical;
-class Type_equal;
-class Type_identical;
-class Typed_identifier;
-class Typed_identifier_list;
-class Function_type;
-class Expression;
-class Statement;
-class Block;
-class Function;
-class Bindings;
-class Package;
-class Variable;
-class Pointer_type;
-class Struct_type;
-class Struct_field;
-class Struct_field_list;
-class Array_type;
-class Map_type;
-class Channel_type;
-class Interface_type;
-class Named_type;
-class Forward_declaration_type;
-class Method;
-class Methods;
-class Named_object;
-class Label;
-class Translate_context;
-class Export;
-class Import;
-
-// This file declares the basic classes used to hold the internal
-// representation of Go which is built by the parser.
-
-// An initialization function for an imported package.  This is a
-// magic function which initializes variables and runs the "init"
-// function.
-
-class Import_init
-{
- public:
-  Import_init(const std::string& package_name, const std::string& init_name,
-             int priority)
-    : package_name_(package_name), init_name_(init_name), priority_(priority)
-  { }
-
-  // The name of the package being imported.
-  const std::string&
-  package_name() const
-  { return this->package_name_; }
-
-  // The name of the package's init function.
-  const std::string&
-  init_name() const
-  { return this->init_name_; }
-
-  // The priority of the initialization function.  Functions with a
-  // lower priority number must be run first.
-  int
-  priority() const
-  { return this->priority_; }
-
- private:
-  // The name of the package being imported.
-  std::string package_name_;
-  // The name of the package's init function.
-  std::string init_name_;
-  // The priority.
-  int priority_;
-};
-
-// For sorting purposes.
-
-inline bool
-operator<(const Import_init& i1, const Import_init& i2)
-{
-  if (i1.priority() < i2.priority())
-    return true;
-  if (i1.priority() > i2.priority())
-    return false;
-  if (i1.package_name() != i2.package_name())
-    return i1.package_name() < i2.package_name();
-  return i1.init_name() < i2.init_name();
-}
-
-// The holder for the internal representation of the entire
-// compilation unit.
-
-class Gogo
-{
- public:
-  // Create the IR, passing in the sizes of the types "int" and
-  // "uintptr" in bits.
-  Gogo(int int_type_size, int pointer_size);
-
-  // Get the package name.
-  const std::string&
-  package_name() const;
-
-  // Set the package name.
-  void
-  set_package_name(const std::string&, source_location);
-
-  // Return whether this is the "main" package.
-  bool
-  is_main_package() const;
-
-  // If necessary, adjust the name to use for a hidden symbol.  We add
-  // a prefix of the package name, so that hidden symbols in different
-  // packages do not collide.
-  std::string
-  pack_hidden_name(const std::string& name, bool is_exported) const
-  {
-    return (is_exported
-           ? name
-           : ('.' + this->unique_prefix()
-              + '.' + this->package_name()
-              + '.' + name));
-  }
-
-  // Unpack a name which may have been hidden.  Returns the
-  // user-visible name of the object.
-  static std::string
-  unpack_hidden_name(const std::string& name)
-  { return name[0] != '.' ? name : name.substr(name.rfind('.') + 1); }
-
-  // Return whether a possibly packed name is hidden.
-  static bool
-  is_hidden_name(const std::string& name)
-  { return name[0] == '.'; }
-
-  // Return the package prefix of a hidden name.
-  static std::string
-  hidden_name_prefix(const std::string& name)
-  {
-    gcc_assert(Gogo::is_hidden_name(name));
-    return name.substr(1, name.rfind('.') - 1);
-  }
-
-  // Given a name which may or may not have been hidden, return the
-  // name to use in an error message.
-  static std::string
-  message_name(const std::string& name);
-
-  // Return whether a name is the blank identifier _.
-  static bool
-  is_sink_name(const std::string& name)
-  {
-    return (name[0] == '.'
-           && name[name.length() - 1] == '_'
-           && name[name.length() - 2] == '.');
-  }
-
-  // Return the unique prefix to use for all exported symbols.
-  const std::string&
-  unique_prefix() const;
-
-  // Set the unique prefix.
-  void
-  set_unique_prefix(const std::string&);
-
-  // Return the priority to use for the package we are compiling.
-  // This is two more than the largest priority of any package we
-  // import.
-  int
-  package_priority() const;
-
-  // Import a package.  FILENAME is the file name argument, LOCAL_NAME
-  // is the local name to give to the package.  If LOCAL_NAME is empty
-  // the declarations are added to the global scope.
-  void
-  import_package(const std::string& filename, const std::string& local_name,
-                bool is_local_name_exported, source_location);
-
-  // Whether we are the global binding level.
-  bool
-  in_global_scope() const;
-
-  // Look up a name in the current binding contours.
-  Named_object*
-  lookup(const std::string&, Named_object** pfunction) const;
-
-  // Look up a name in the current block.
-  Named_object*
-  lookup_in_block(const std::string&) const;
-
-  // Look up a name in the global namespace--the universal scope.
-  Named_object*
-  lookup_global(const char*) const;
-
-  // Add a new imported package.  REAL_NAME is the real name of the
-  // package.  ALIAS is the alias of the package; this may be the same
-  // as REAL_NAME.  This sets *PADD_TO_GLOBALS if symbols added to
-  // this package should be added to the global namespace; this is
-  // true if the alias is ".".  LOCATION is the location of the import
-  // statement.  This returns the new package, or NULL on error.
-  Package*
-  add_imported_package(const std::string& real_name, const std::string& alias,
-                      bool is_alias_exported,
-                      const std::string& unique_prefix,
-                      source_location location,
-                      bool* padd_to_globals);
-
-  // Register a package.  This package may or may not be imported.
-  // This returns the Package structure for the package, creating if
-  // it necessary.
-  Package*
-  register_package(const std::string& name, const std::string& unique_prefix,
-                  source_location);
-
-  // Start compiling a function.  ADD_METHOD_TO_TYPE is true if a
-  // method function should be added to the type of its receiver.
-  Named_object*
-  start_function(const std::string& name, Function_type* type,
-                bool add_method_to_type, source_location);
-
-  // Finish compiling a function.
-  void
-  finish_function(source_location);
-
-  // Return the current function.
-  Named_object*
-  current_function() const;
-
-  // Start a new block.  This is not initially associated with a
-  // function.
-  void
-  start_block(source_location);
-
-  // Finish the current block and return it.
-  Block*
-  finish_block(source_location);
-
-  // Declare an unknown name.  This is used while parsing.  The name
-  // must be resolved by the end of the parse.  Unknown names are
-  // always added at the package level.
-  Named_object*
-  add_unknown_name(const std::string& name, source_location);
-
-  // Declare a function.
-  Named_object*
-  declare_function(const std::string&, Function_type*, source_location);
-
-  // Add a label.
-  Label*
-  add_label_definition(const std::string&, source_location);
-
-  // Add a label reference.
-  Label*
-  add_label_reference(const std::string&);
-
-  // Add a statement to the current block.
-  void
-  add_statement(Statement*);
-
-  // Add a block to the current block.
-  void
-  add_block(Block*, source_location);
-
-  // Add a constant.
-  Named_object*
-  add_constant(const Typed_identifier&, Expression*, int iota_value);
-
-  // Add a type.
-  void
-  add_type(const std::string&, Type*, source_location);
-
-  // Add a named type.  This is used for builtin types, and to add an
-  // imported type to the global scope.
-  void
-  add_named_type(Named_type*);
-
-  // Declare a type.
-  Named_object*
-  declare_type(const std::string&, source_location);
-
-  // Declare a type at the package level.  This is used when the
-  // parser sees an unknown name where a type name is required.
-  Named_object*
-  declare_package_type(const std::string&, source_location);
-
-  // Define a type which was already declared.
-  void
-  define_type(Named_object*, Named_type*);
-
-  // Add a variable.
-  Named_object*
-  add_variable(const std::string&, Variable*);
-
-  // Add a sink--a reference to the blank identifier _.
-  Named_object*
-  add_sink();
-
-  // Add a named object to the current namespace.  This is used for
-  // import . "package".
-  void
-  add_named_object(Named_object*);
-
-  // Return a name to use for a thunk function.  A thunk function is
-  // one we create during the compilation, for a go statement or a
-  // defer statement or a method expression.
-  static std::string
-  thunk_name();
-
-  // Return whether an object is a thunk.
-  static bool
-  is_thunk(const Named_object*);
-
-  // Note that we've seen an interface type.  This is used to build
-  // all required interface method tables.
-  void
-  record_interface_type(Interface_type*);
-
-  // Note that we need an initialization function.
-  void
-  set_need_init_fn()
-  { this->need_init_fn_ = true; }
-
-  // Clear out all names in file scope.  This is called when we start
-  // parsing a new file.
-  void
-  clear_file_scope();
-
-  // Traverse the tree.  See the Traverse class.
-  void
-  traverse(Traverse*);
-
-  // Define the predeclared global names.
-  void
-  define_global_names();
-
-  // Verify and complete all types.
-  void
-  verify_types();
-
-  // Lower the parse tree.
-  void
-  lower_parse_tree();
-
-  // Lower all the statements in a block.
-  void
-  lower_block(Named_object* function, Block*);
-
-  // Lower an expression.
-  void
-  lower_expression(Named_object* function, Expression**);
-
-  // Lower a constant.
-  void
-  lower_constant(Named_object*);
-
-  // Finalize the method lists and build stub methods for named types.
-  void
-  finalize_methods();
-
-  // Work out the types to use for unspecified variables and
-  // constants.
-  void
-  determine_types();
-
-  // Type check the program.
-  void
-  check_types();
-
-  // Check the types in a single block.  This is used for complicated
-  // go statements.
-  void
-  check_types_in_block(Block*);
-
-  // Check for return statements.
-  void
-  check_return_statements();
-
-  // Do all exports.
-  void
-  do_exports();
-
-  // Add an import control function for an imported package to the
-  // list.
-  void
-  add_import_init_fn(const std::string& package_name,
-                    const std::string& init_name, int prio);
-
-  // Turn short-cut operators (&&, ||) into explicit if statements.
-  void
-  remove_shortcuts();
-
-  // Use temporary variables to force order of evaluation.
-  void
-  order_evaluations();
-
-  // Build thunks for functions which call recover.
-  void
-  build_recover_thunks();
-
-  // Simplify statements which might use thunks: go and defer
-  // statements.
-  void
-  simplify_thunk_statements();
-
-  // Convert named types to the backend representation.
-  void
-  convert_named_types();
-
-  // Convert named types in a list of bindings.
-  void
-  convert_named_types_in_bindings(Bindings*);
-
-  // True if named types have been converted to the backend
-  // representation.
-  bool
-  named_types_are_converted() const
-  { return this->named_types_are_converted_; }
-
-  // Write out the global values.
-  void
-  write_globals();
-
-  // Build a call to a builtin function.  PDECL should point to a NULL
-  // initialized static pointer which will hold the fndecl.  NAME is
-  // the name of the function.  NARGS is the number of arguments.
-  // RETTYPE is the return type.  It is followed by NARGS pairs of
-  // type and argument (both trees).
-  static tree
-  call_builtin(tree* pdecl, source_location, const char* name, int nargs,
-              tree rettype, ...);
-
-  // Build a call to the runtime error function.
-  static tree
-  runtime_error(int code, source_location);
-
-  // Build a builtin struct with a list of fields.
-  static tree
-  builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
-                int nfields, ...);
-
-  // Mark a function declaration as a builtin library function.
-  static void
-  mark_fndecl_as_builtin_library(tree fndecl);
-
-  // Build the type of the struct that holds a slice for the given
-  // element type.
-  tree
-  slice_type_tree(tree element_type_tree);
-
-  // Given a tree for a slice type, return the tree for the element
-  // type.
-  static tree
-  slice_element_type_tree(tree slice_type_tree);
-
-  // Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
-  // the slice.  VALUES points to the values.  COUNT is the size,
-  // CAPACITY is the capacity.  If CAPACITY is NULL, it is set to
-  // COUNT.
-  static tree
-  slice_constructor(tree slice_type_tree, tree values, tree count,
-                   tree capacity);
-
-  // Build a constructor for an empty slice.  SLICE_TYPE_TREE is the
-  // type of the slice.
-  static tree
-  empty_slice_constructor(tree slice_type_tree);
-
-  // Build a map descriptor.
-  tree
-  map_descriptor(Map_type*);
-
-  // Return a tree for the type of a map descriptor.  This is struct
-  // __go_map_descriptor in libgo/runtime/map.h.  This is the same for
-  // all map types.
-  tree
-  map_descriptor_type();
-
-  // Build a type descriptor for TYPE using INITIALIZER as the type
-  // descriptor.  This builds a new decl stored in *PDECL.
-  void
-  build_type_descriptor_decl(const Type*, Expression* initializer,
-                            tree* pdecl);
-
-  // Build required interface method tables.
-  void
-  build_interface_method_tables();
-
-  // Build an interface method table for a type: a list of function
-  // pointers, one for each interface method.  This returns a decl.
-  tree
-  interface_method_table_for_type(const Interface_type*, Named_type*,
-                                 bool is_pointer);
-
-  // Return a tree which allocate SIZE bytes to hold values of type
-  // TYPE.
-  tree
-  allocate_memory(Type *type, tree size, source_location);
-
-  // Return a type to use for pointer to const char.
-  static tree
-  const_char_pointer_type_tree();
-
-  // Build a string constant with the right type.
-  static tree
-  string_constant_tree(const std::string&);
-
-  // Build a Go string constant.  This returns a pointer to the
-  // constant.
-  tree
-  go_string_constant_tree(const std::string&);
-
-  // Send a value on a channel.
-  static tree
-  send_on_channel(tree channel, tree val, bool blocking, bool for_select,
-                 source_location);
-
-  // Receive a value from a channel.
-  static tree
-  receive_from_channel(tree type_tree, tree channel, bool for_select,
-                      source_location);
-
-  // Return a tree for receiving an integer on a channel.
-  static tree
-  receive_as_64bit_integer(tree type, tree channel, bool blocking,
-                          bool for_select);
-
-
-  // Make a trampoline which calls FNADDR passing CLOSURE.
-  tree
-  make_trampoline(tree fnaddr, tree closure, source_location);
-
- private:
-  // During parsing, we keep a stack of functions.  Each function on
-  // the stack is one that we are currently parsing.  For each
-  // function, we keep track of the current stack of blocks.
-  struct Open_function
-  {
-    // The function.
-    Named_object* function;
-    // The stack of active blocks in the function.
-    std::vector<Block*> blocks;
-  };
-
-  // The stack of functions.
-  typedef std::vector<Open_function> Open_functions;
-
-  // Create trees for implicit builtin functions.
-  void
-  define_builtin_function_trees();
-
-  // Set up the built-in unsafe package.
-  void
-  import_unsafe(const std::string&, bool is_exported, source_location);
-
-  // Add a new imported package.
-  Named_object*
-  add_package(const std::string& real_name, const std::string& alias,
-             const std::string& unique_prefix, source_location location);
-
-  // Return the current binding contour.
-  Bindings*
-  current_bindings();
-
-  const Bindings*
-  current_bindings() const;
-
-  // Return the current block.
-  Block*
-  current_block();
-
-  // Get the name of the magic initialization function.
-  const std::string&
-  get_init_fn_name();
-
-  // Get the decl for the magic initialization function.
-  tree
-  initialization_function_decl();
-
-  // Write the magic initialization function.
-  void
-  write_initialization_function(tree fndecl, tree init_stmt_list);
-
-  // Initialize imported packages.
-  void
-  init_imports(tree*);
-
-  // Register variables with the garbage collector.
-  void
-  register_gc_vars(const std::vector<Named_object*>&, tree*);
-
-  // Build a pointer to a Go string constant.  This returns a pointer
-  // to the pointer.
-  tree
-  ptr_go_string_constant_tree(const std::string&);
-
-  // Return the name to use for a type descriptor decl for an unnamed
-  // type.
-  std::string
-  unnamed_type_descriptor_decl_name(const Type* type);
-
-  // Return the name to use for a type descriptor decl for a type
-  // named NO, defined in IN_FUNCTION.
-  std::string
-  type_descriptor_decl_name(const Named_object* no,
-                           const Named_object* in_function);
-
-  // Where a type descriptor should be defined.
-  enum Type_descriptor_location
-    {
-      // Defined in this file.
-      TYPE_DESCRIPTOR_DEFINED,
-      // Defined in some other file.
-      TYPE_DESCRIPTOR_UNDEFINED,
-      // Common definition which may occur in multiple files.
-      TYPE_DESCRIPTOR_COMMON
-    };
-
-  // Return where the decl for TYPE should be defined.
-  Type_descriptor_location
-  type_descriptor_location(const Type* type);
-
-  // Return the type of a trampoline.
-  static tree
-  trampoline_type_tree();
-
-  // Type used to map import names to packages.
-  typedef std::map<std::string, Package*> Imports;
-
-  // Type used to map package names to packages.
-  typedef std::map<std::string, Package*> Packages;
-
-  // Type used to map special names in the sys package.
-  typedef std::map<std::string, std::string> Sys_names;
-
-  // Hash table mapping map types to map descriptor decls.
-  typedef Unordered_map_hash(const Map_type*, tree, Type_hash_identical,
-                            Type_identical) Map_descriptors;
-
-  // Map unnamed types to type descriptor decls.
-  typedef Unordered_map_hash(const Type*, tree, Type_hash_identical,
-                            Type_identical) Type_descriptor_decls;
-
-  // The package we are compiling.
-  Package* package_;
-  // The list of currently open functions during parsing.
-  Open_functions functions_;
-  // The global binding contour.  This includes the builtin functions
-  // and the package we are compiling.
-  Bindings* globals_;
-  // Mapping from import file names to packages.
-  Imports imports_;
-  // Whether the magic unsafe package was imported.
-  bool imported_unsafe_;
-  // Mapping from package names we have seen to packages.  This does
-  // not include the package we are compiling.
-  Packages packages_;
-  // Mapping from map types to map descriptors.
-  Map_descriptors* map_descriptors_;
-  // Mapping from unnamed types to type descriptor decls.
-  Type_descriptor_decls* type_descriptor_decls_;
-  // The functions named "init", if there are any.
-  std::vector<Named_object*> init_functions_;
-  // Whether we need a magic initialization function.
-  bool need_init_fn_;
-  // The name of the magic initialization function.
-  std::string init_fn_name_;
-  // A list of import control variables for packages that we import.
-  std::set<Import_init> imported_init_fns_;
-  // The unique prefix used for all global symbols.
-  std::string unique_prefix_;
-  // Whether an explicit unique prefix was set by -fgo-prefix.
-  bool unique_prefix_specified_;
-  // A list of interface types defined while parsing.
-  std::vector<Interface_type*> interface_types_;
-  // Whether named types have been converted.
-  bool named_types_are_converted_;
-};
-
-// A block of statements.
-
-class Block
-{
- public:
-  Block(Block* enclosing, source_location);
-
-  // Return the enclosing block.
-  const Block*
-  enclosing() const
-  { return this->enclosing_; }
-
-  // Return the bindings of the block.
-  Bindings*
-  bindings()
-  { return this->bindings_; }
-
-  const Bindings*
-  bindings() const
-  { return this->bindings_; }
-
-  // Look at the block's statements.
-  const std::vector<Statement*>*
-  statements() const
-  { return &this->statements_; }
-
-  // Return the start location.  This is normally the location of the
-  // left curly brace which starts the block.
-  source_location
-  start_location() const
-  { return this->start_location_; }
-
-  // Return the end location.  This is normally the location of the
-  // right curly brace which ends the block.
-  source_location
-  end_location() const
-  { return this->end_location_; }
-
-  // Add a statement to the block.
-  void
-  add_statement(Statement*);
-
-  // Add a statement to the front of the block.
-  void
-  add_statement_at_front(Statement*);
-
-  // Replace a statement in a block.
-  void
-  replace_statement(size_t index, Statement*);
-
-  // Add a Statement before statement number INDEX.
-  void
-  insert_statement_before(size_t index, Statement*);
-
-  // Add a Statement after statement number INDEX.
-  void
-  insert_statement_after(size_t index, Statement*);
-
-  // Set the end location of the block.
-  void
-  set_end_location(source_location location)
-  { this->end_location_ = location; }
-
-  // Traverse the tree.
-  int
-  traverse(Traverse*);
-
-  // Set final types for unspecified variables and constants.
-  void
-  determine_types();
-
-  // Return true if execution of this block may fall through to the
-  // next block.
-  bool
-  may_fall_through() const;
-
-  // Return a tree of the code in this block.
-  tree
-  get_tree(Translate_context*);
-
-  // Iterate over statements.
-
-  typedef std::vector<Statement*>::iterator iterator;
-
-  iterator
-  begin()
-  { return this->statements_.begin(); }
-
-  iterator
-  end()
-  { return this->statements_.end(); }
-
- private:
-  // Enclosing block.
-  Block* enclosing_;
-  // Statements in the block.
-  std::vector<Statement*> statements_;
-  // Binding contour.
-  Bindings* bindings_;
-  // Location of start of block.
-  source_location start_location_;
-  // Location of end of block.
-  source_location end_location_;
-};
-
-// A function.
-
-class Function
-{
- public:
-  Function(Function_type* type, Function*, Block*, source_location);
-
-  // Return the function's type.
-  Function_type*
-  type() const
-  { return this->type_; }
-
-  // Return the enclosing function if there is one.
-  Function*
-  enclosing()
-  { return this->enclosing_; }
-
-  // Set the enclosing function.  This is used when building thunks
-  // for functions which call recover.
-  void
-  set_enclosing(Function* enclosing)
-  {
-    gcc_assert(this->enclosing_ == NULL);
-    this->enclosing_ = enclosing;
-  }
-
-  // Create the named result variables in the outer block.
-  void
-  create_named_result_variables(Gogo*);
-
-  // Update the named result variables when cloning a function which
-  // calls recover.
-  void
-  update_named_result_variables();
-
-  // Add a new field to the closure variable.
-  void
-  add_closure_field(Named_object* var, source_location loc)
-  { this->closure_fields_.push_back(std::make_pair(var, loc)); }
-
-  // Whether this function needs a closure.
-  bool
-  needs_closure() const
-  { return !this->closure_fields_.empty(); }
-
-  // Return the closure variable, creating it if necessary.  This is
-  // passed to the function as a static chain parameter.
-  Named_object*
-  closure_var();
-
-  // Set the closure variable.  This is used when building thunks for
-  // functions which call recover.
-  void
-  set_closure_var(Named_object* v)
-  {
-    gcc_assert(this->closure_var_ == NULL);
-    this->closure_var_ = v;
-  }
-
-  // Return the variable for a reference to field INDEX in the closure
-  // variable.
-  Named_object*
-  enclosing_var(unsigned int index)
-  {
-    gcc_assert(index < this->closure_fields_.size());
-    return closure_fields_[index].first;
-  }
-
-  // Set the type of the closure variable if there is one.
-  void
-  set_closure_type();
-
-  // Get the block of statements associated with the function.
-  Block*
-  block() const
-  { return this->block_; }
-
-  // Get the location of the start of the function.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Return whether this function is actually a method.
-  bool
-  is_method() const;
-
-  // Add a label definition to the function.
-  Label*
-  add_label_definition(const std::string& label_name, source_location);
-
-  // Add a label reference to a function.
-  Label*
-  add_label_reference(const std::string& label_name);
-
-  // Whether this function calls the predeclared recover function.
-  bool
-  calls_recover() const
-  { return this->calls_recover_; }
-
-  // Record that this function calls the predeclared recover function.
-  // This is set during the lowering pass.
-  void
-  set_calls_recover()
-  { this->calls_recover_ = true; }
-
-  // Whether this is a recover thunk function.
-  bool
-  is_recover_thunk() const
-  { return this->is_recover_thunk_; }
-
-  // Record that this is a thunk built for a function which calls
-  // recover.
-  void
-  set_is_recover_thunk()
-  { this->is_recover_thunk_ = true; }
-
-  // Whether this function already has a recover thunk.
-  bool
-  has_recover_thunk() const
-  { return this->has_recover_thunk_; }
-
-  // Record that this function already has a recover thunk.
-  void
-  set_has_recover_thunk()
-  { this->has_recover_thunk_ = true; }
-
-  // Swap with another function.  Used only for the thunk which calls
-  // recover.
-  void
-  swap_for_recover(Function *);
-
-  // Traverse the tree.
-  int
-  traverse(Traverse*);
-
-  // Determine types in the function.
-  void
-  determine_types();
-
-  // Return the function's decl given an identifier.
-  tree
-  get_or_make_decl(Gogo*, Named_object*, tree id);
-
-  // Return the function's decl after it has been built.
-  tree
-  get_decl() const
-  {
-    gcc_assert(this->fndecl_ != NULL);
-    return this->fndecl_;
-  }
-
-  // Set the function decl to hold a tree of the function code.
-  void
-  build_tree(Gogo*, Named_object*);
-
-  // Get the value to return when not explicitly specified.  May also
-  // add statements to execute first to STMT_LIST.
-  tree
-  return_value(Gogo*, Named_object*, source_location, tree* stmt_list) const;
-
-  // Get a tree for the variable holding the defer stack.
-  tree
-  defer_stack(source_location);
-
-  // Export the function.
-  void
-  export_func(Export*, const std::string& name) const;
-
-  // Export a function with a type.
-  static void
-  export_func_with_type(Export*, const std::string& name,
-                       const Function_type*);
-
-  // Import a function.
-  static void
-  import_func(Import*, std::string* pname, Typed_identifier** receiver,
-             Typed_identifier_list** pparameters,
-             Typed_identifier_list** presults, bool* is_varargs);
-
- private:
-  // Type for mapping from label names to Label objects.
-  typedef Unordered_map(std::string, Label*) Labels;
-
-  tree
-  make_receiver_parm_decl(Gogo*, Named_object*, tree);
-
-  tree
-  copy_parm_to_heap(Gogo*, Named_object*, tree);
-
-  void
-  build_defer_wrapper(Gogo*, Named_object*, tree*, tree*);
-
-  typedef std::vector<Named_object*> Named_results;
-
-  typedef std::vector<std::pair<Named_object*,
-                               source_location> > Closure_fields;
-
-  // The function's type.
-  Function_type* type_;
-  // The enclosing function.  This is NULL when there isn't one, which
-  // is the normal case.
-  Function* enclosing_;
-  // The named result variables, if any.
-  Named_results* named_results_;
-  // If there is a closure, this is the list of variables which appear
-  // in the closure.  This is created by the parser, and then resolved
-  // to a real type when we lower parse trees.
-  Closure_fields closure_fields_;
-  // The closure variable, passed as a parameter using the static
-  // chain parameter.  Normally NULL.
-  Named_object* closure_var_;
-  // The outer block of statements in the function.
-  Block* block_;
-  // The source location of the start of the function.
-  source_location location_;
-  // Labels defined or referenced in the function.
-  Labels labels_;
-  // The function decl.
-  tree fndecl_;
-  // A variable holding the defer stack variable.  This is NULL unless
-  // we actually need a defer stack.
-  tree defer_stack_;
-  // True if this function calls the predeclared recover function.
-  bool calls_recover_;
-  // True if this a thunk built for a function which calls recover.
-  bool is_recover_thunk_;
-  // True if this function already has a recover thunk.
-  bool has_recover_thunk_;
-};
-
-// A function declaration.
-
-class Function_declaration
-{
- public:
-  Function_declaration(Function_type* fntype, source_location location)
-    : fntype_(fntype), location_(location), asm_name_(), fndecl_(NULL)
-  { }
-
-  Function_type*
-  type() const
-  { return this->fntype_; }
-
-  source_location
-  location() const
-  { return this->location_; }
-
-  const std::string&
-  asm_name() const
-  { return this->asm_name_; }
-
-  // Set the assembler name.
-  void
-  set_asm_name(const std::string& asm_name)
-  { this->asm_name_ = asm_name; }
-
-  // Return a decl for the function given an identifier.
-  tree
-  get_or_make_decl(Gogo*, Named_object*, tree id);
-
-  // Export a function declaration.
-  void
-  export_func(Export* exp, const std::string& name) const
-  { Function::export_func_with_type(exp, name, this->fntype_); }
-
- private:
-  // The type of the function.
-  Function_type* fntype_;
-  // The location of the declaration.
-  source_location location_;
-  // The assembler name: this is the name to use in references to the
-  // function.  This is normally empty.
-  std::string asm_name_;
-  // The function decl if needed.
-  tree fndecl_;
-};
-
-// A variable.
-
-class Variable
-{
- public:
-  Variable(Type*, Expression*, bool is_global, bool is_parameter,
-          bool is_receiver, source_location);
-
-  // Get the type of the variable.
-  Type*
-  type();
-
-  Type*
-  type() const;
-
-  // Return whether the type is defined yet.
-  bool
-  has_type() const
-  { return this->type_ != NULL; }
-
-  // Get the initial value.
-  Expression*
-  init() const
-  { return this->init_; }
-
-  // Return whether there are any preinit statements.
-  bool
-  has_pre_init() const
-  { return this->preinit_ != NULL; }
-
-  // Return the preinit statements if any.
-  Block*
-  preinit() const
-  { return this->preinit_; }
-
-  // Return whether this is a global variable.
-  bool
-  is_global() const
-  { return this->is_global_; }
-
-  // Return whether this is a function parameter.
-  bool
-  is_parameter() const
-  { return this->is_parameter_; }
-
-  // Return whether this is the receiver parameter of a method.
-  bool
-  is_receiver() const
-  { return this->is_receiver_; }
-
-  // Change this parameter to be a receiver.  This is used when
-  // creating the thunks created for functions which call recover.
-  void
-  set_is_receiver()
-  {
-    gcc_assert(this->is_parameter_);
-    this->is_receiver_ = true;
-  }
-
-  // Change this parameter to not be a receiver.  This is used when
-  // creating the thunks created for functions which call recover.
-  void
-  set_is_not_receiver()
-  {
-    gcc_assert(this->is_parameter_);
-    this->is_receiver_ = false;
-  }
-
-  // Return whether this is the varargs parameter of a function.
-  bool
-  is_varargs_parameter() const
-  { return this->is_varargs_parameter_; }
-
-  // Whether this variable's address is taken.
-  bool
-  is_address_taken() const
-  { return this->is_address_taken_; }
-
-  // Whether this variable should live in the heap.
-  bool
-  is_in_heap() const
-  { return this->is_address_taken_ && !this->is_global_; }
-
-  // Get the source location of the variable's declaration.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Record that this is the varargs parameter of a function.
-  void
-  set_is_varargs_parameter()
-  {
-    gcc_assert(this->is_parameter_);
-    this->is_varargs_parameter_ = true;
-  }
-
-  // Clear the initial value; used for error handling.
-  void
-  clear_init()
-  { this->init_ = NULL; }
-
-  // Set the initial value; used for converting shortcuts.
-  void
-  set_init(Expression* init)
-  { this->init_ = init; }
-
-  // Get the preinit block, a block of statements to be run before the
-  // initialization expression.
-  Block*
-  preinit_block(Gogo*);
-
-  // Add a statement to be run before the initialization expression.
-  // This is only used for global variables.
-  void
-  add_preinit_statement(Gogo*, Statement*);
-
-  // Lower the initialization expression after parsing is complete.
-  void
-  lower_init_expression(Gogo*, Named_object*);
-
-  // A special case: the init value is used only to determine the
-  // type.  This is used if the variable is defined using := with the
-  // comma-ok form of a map index or a receive expression.  The init
-  // value is actually the map index expression or receive expression.
-  // We use this because we may not know the right type at parse time.
-  void
-  set_type_from_init_tuple()
-  { this->type_from_init_tuple_ = true; }
-
-  // Another special case: the init value is used only to determine
-  // the type.  This is used if the variable is defined using := with
-  // a range clause.  The init value is the range expression.  The
-  // type of the variable is the index type of the range expression
-  // (i.e., the first value returned by a range).
-  void
-  set_type_from_range_index()
-  { this->type_from_range_index_ = true; }
-
-  // Another special case: like set_type_from_range_index, but the
-  // type is the value type of the range expression (i.e., the second
-  // value returned by a range).
-  void
-  set_type_from_range_value()
-  { this->type_from_range_value_ = true; }
-
-  // Another special case: the init value is used only to determine
-  // the type.  This is used if the variable is defined using := with
-  // a case in a select statement.  The init value is the channel.
-  // The type of the variable is the channel's element type.
-  void
-  set_type_from_chan_element()
-  { this->type_from_chan_element_ = true; }
-
-  // After we lower the select statement, we once again set the type
-  // from the initialization expression.
-  void
-  clear_type_from_chan_element()
-  {
-    gcc_assert(this->type_from_chan_element_);
-    this->type_from_chan_element_ = false;
-  }
-
-  // Note that this variable was created for a type switch clause.
-  void
-  set_is_type_switch_var()
-  { this->is_type_switch_var_ = true; }
-
-  // Traverse the initializer expression.
-  int
-  traverse_expression(Traverse*);
-
-  // Determine the type of the variable if necessary.
-  void
-  determine_type();
-
-  // Note that something takes the address of this variable.
-  void
-  set_address_taken()
-  { this->is_address_taken_ = true; }
-
-  // Get the initial value of the variable as a tree.  This may only
-  // be called if has_pre_init() returns false.
-  tree
-  get_init_tree(Gogo*, Named_object* function);
-
-  // Return a series of statements which sets the value of the
-  // variable in DECL.  This should only be called is has_pre_init()
-  // returns true.  DECL may be NULL for a sink variable.
-  tree
-  get_init_block(Gogo*, Named_object* function, tree decl);
-
-  // Export the variable.
-  void
-  export_var(Export*, const std::string& name) const;
-
-  // Import a variable.
-  static void
-  import_var(Import*, std::string* pname, Type** ptype);
-
- private:
-  // The type of a tuple.
-  Type*
-  type_from_tuple(Expression*, bool) const;
-
-  // The type of a range.
-  Type*
-  type_from_range(Expression*, bool, bool) const;
-
-  // The element type of a channel.
-  Type*
-  type_from_chan_element(Expression*, bool) const;
-
-  // The variable's type.  This may be NULL if the type is set from
-  // the expression.
-  Type* type_;
-  // The initial value.  This may be NULL if the variable should be
-  // initialized to the default value for the type.
-  Expression* init_;
-  // Statements to run before the init statement.
-  Block* preinit_;
-  // Location of variable definition.
-  source_location location_;
-  // Whether this is a global variable.
-  bool is_global_ : 1;
-  // Whether this is a function parameter.
-  bool is_parameter_ : 1;
-  // Whether this is the receiver parameter of a method.
-  bool is_receiver_ : 1;
-  // Whether this is the varargs parameter of a function.
-  bool is_varargs_parameter_ : 1;
-  // Whether something takes the address of this variable.
-  bool is_address_taken_ : 1;
-  // True if we have seen this variable in a traversal.
-  bool seen_ : 1;
-  // True if we have lowered the initialization expression.
-  bool init_is_lowered_ : 1;
-  // True if init is a tuple used to set the type.
-  bool type_from_init_tuple_ : 1;
-  // True if init is a range clause and the type is the index type.
-  bool type_from_range_index_ : 1;
-  // True if init is a range clause and the type is the value type.
-  bool type_from_range_value_ : 1;
-  // True if init is a channel and the type is the channel's element type.
-  bool type_from_chan_element_ : 1;
-  // True if this is a variable created for a type switch case.
-  bool is_type_switch_var_ : 1;
-  // True if we have determined types.
-  bool determined_type_ : 1;
-};
-
-// A variable which is really the name for a function return value, or
-// part of one.
-
-class Result_variable
-{
- public:
-  Result_variable(Type* type, Function* function, int index)
-    : type_(type), function_(function), index_(index),
-      is_address_taken_(false)
-  { }
-
-  // Get the type of the result variable.
-  Type*
-  type() const
-  { return this->type_; }
-
-  // Get the function that this is associated with.
-  Function*
-  function() const
-  { return this->function_; }
-
-  // Index in the list of function results.
-  int
-  index() const
-  { return this->index_; }
-
-  // Whether this variable's address is taken.
-  bool
-  is_address_taken() const
-  { return this->is_address_taken_; }
-
-  // Note that something takes the address of this variable.
-  void
-  set_address_taken()
-  { this->is_address_taken_ = true; }
-
-  // Whether this variable should live in the heap.
-  bool
-  is_in_heap() const
-  { return this->is_address_taken_; }
-
-  // Set the function.  This is used when cloning functions which call
-  // recover.
-  void
-  set_function(Function* function)
-  { this->function_ = function; }
-
- private:
-  // Type of result variable.
-  Type* type_;
-  // Function with which this is associated.
-  Function* function_;
-  // Index in list of results.
-  int index_;
-  // Whether something takes the address of this variable.
-  bool is_address_taken_;
-};
-
-// The value we keep for a named constant.  This lets us hold a type
-// and an expression.
-
-class Named_constant
-{
- public:
-  Named_constant(Type* type, Expression* expr, int iota_value,
-                source_location location)
-    : type_(type), expr_(expr), iota_value_(iota_value), location_(location),
-      lowering_(false)
-  { }
-
-  Type*
-  type() const
-  { return this->type_; }
-
-  Expression*
-  expr() const
-  { return this->expr_; }
-
-  int
-  iota_value() const
-  { return this->iota_value_; }
-
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Whether we are lowering.
-  bool
-  lowering() const
-  { return this->lowering_; }
-
-  // Set that we are lowering.
-  void
-  set_lowering()
-  { this->lowering_ = true; }
-
-  // We are no longer lowering.
-  void
-  clear_lowering()
-  { this->lowering_ = false; }
-
-  // Traverse the expression.
-  int
-  traverse_expression(Traverse*);
-
-  // Determine the type of the constant if necessary.
-  void
-  determine_type();
-
-  // Indicate that we found and reported an error for this constant.
-  void
-  set_error();
-
-  // Export the constant.
-  void
-  export_const(Export*, const std::string& name) const;
-
-  // Import a constant.
-  static void
-  import_const(Import*, std::string*, Type**, Expression**);
-
- private:
-  // The type of the constant.
-  Type* type_;
-  // The expression for the constant.
-  Expression* expr_;
-  // If the predeclared constant iota is used in EXPR_, this is the
-  // value it will have.  We do this because at parse time we don't
-  // know whether the name "iota" will refer to the predeclared
-  // constant or to something else.  We put in the right value in when
-  // we lower.
-  int iota_value_;
-  // The location of the definition.
-  source_location location_;
-  // Whether we are currently lowering this constant.
-  bool lowering_;
-};
-
-// A type declaration.
-
-class Type_declaration
-{
- public:
-  Type_declaration(source_location location)
-    : location_(location), in_function_(NULL), methods_(),
-      issued_warning_(false)
-  { }
-
-  // Return the location.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Return the function in which this type is declared.  This will
-  // return NULL for a type declared in global scope.
-  Named_object*
-  in_function()
-  { return this->in_function_; }
-
-  // Set the function in which this type is declared.
-  void
-  set_in_function(Named_object* f)
-  { this->in_function_ = f; }
-
-  // Add a method to this type.  This is used when methods are defined
-  // before the type.
-  Named_object*
-  add_method(const std::string& name, Function* function);
-
-  // Add a method declaration to this type.
-  Named_object*
-  add_method_declaration(const std::string& name, Function_type* type,
-                        source_location location);
-
-  // Return whether any methods were defined.
-  bool
-  has_methods() const;
-
-  // Define methods when the real type is known.
-  void
-  define_methods(Named_type*);
-
-  // This is called if we are trying to use this type.  It returns
-  // true if we should issue a warning.
-  bool
-  using_type();
-
- private:
-  typedef std::vector<Named_object*> Methods;
-
-  // The location of the type declaration.
-  source_location location_;
-  // If this type is declared in a function, a pointer back to the
-  // function in which it is defined.
-  Named_object* in_function_;
-  // Methods defined before the type is defined.
-  Methods methods_;
-  // True if we have issued a warning about a use of this type
-  // declaration when it is undefined.
-  bool issued_warning_;
-};
-
-// An unknown object.  These are created by the parser for forward
-// references to names which have not been seen before.  In a correct
-// program, these will always point to a real definition by the end of
-// the parse.  Because they point to another Named_object, these may
-// only be referenced by Unknown_expression objects.
-
-class Unknown_name
-{
- public:
-  Unknown_name(source_location location)
-    : location_(location), real_named_object_(NULL)
-  { }
-
-  // Return the location where this name was first seen.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Return the real named object that this points to, or NULL if it
-  // was never resolved.
-  Named_object*
-  real_named_object() const
-  { return this->real_named_object_; }
-
-  // Set the real named object that this points to.
-  void
-  set_real_named_object(Named_object* no);
-
- private:
-  // The location where this name was first seen.
-  source_location location_;
-  // The real named object when it is known.
-  Named_object*
-  real_named_object_;
-};
-
-// A named object named.  This is the result of a declaration.  We
-// don't use a superclass because they all have to be handled
-// differently.
-
-class Named_object
-{
- public:
-  enum Classification
-  {
-    // An uninitialized Named_object.  We should never see this.
-    NAMED_OBJECT_UNINITIALIZED,
-    // An unknown name.  This is used for forward references.  In a
-    // correct program, these will all be resolved by the end of the
-    // parse.
-    NAMED_OBJECT_UNKNOWN,
-    // A const.
-    NAMED_OBJECT_CONST,
-    // A type.
-    NAMED_OBJECT_TYPE,
-    // A forward type declaration.
-    NAMED_OBJECT_TYPE_DECLARATION,
-    // A var.
-    NAMED_OBJECT_VAR,
-    // A result variable in a function.
-    NAMED_OBJECT_RESULT_VAR,
-    // The blank identifier--the special variable named _.
-    NAMED_OBJECT_SINK,
-    // A func.
-    NAMED_OBJECT_FUNC,
-    // A forward func declaration.
-    NAMED_OBJECT_FUNC_DECLARATION,
-    // A package.
-    NAMED_OBJECT_PACKAGE
-  };
-
-  // Return the classification.
-  Classification
-  classification() const
-  { return this->classification_; }
-
-  // Classifiers.
-
-  bool
-  is_unknown() const
-  { return this->classification_ == NAMED_OBJECT_UNKNOWN; }
-
-  bool
-  is_const() const
-  { return this->classification_ == NAMED_OBJECT_CONST; }
-
-  bool
-  is_type() const
-  { return this->classification_ == NAMED_OBJECT_TYPE; }
-
-  bool
-  is_type_declaration() const
-  { return this->classification_ == NAMED_OBJECT_TYPE_DECLARATION; }
-
-  bool
-  is_variable() const
-  { return this->classification_ == NAMED_OBJECT_VAR; }
-
-  bool
-  is_result_variable() const
-  { return this->classification_ == NAMED_OBJECT_RESULT_VAR; }
-
-  bool
-  is_sink() const
-  { return this->classification_ == NAMED_OBJECT_SINK; }
-
-  bool
-  is_function() const
-  { return this->classification_ == NAMED_OBJECT_FUNC; }
-
-  bool
-  is_function_declaration() const
-  { return this->classification_ == NAMED_OBJECT_FUNC_DECLARATION; }
-
-  bool
-  is_package() const
-  { return this->classification_ == NAMED_OBJECT_PACKAGE; }
-
-  // Creators.
-
-  static Named_object*
-  make_unknown_name(const std::string& name, source_location);
-
-  static Named_object*
-  make_constant(const Typed_identifier&, const Package*, Expression*,
-               int iota_value);
-
-  static Named_object*
-  make_type(const std::string&, const Package*, Type*, source_location);
-
-  static Named_object*
-  make_type_declaration(const std::string&, const Package*, source_location);
-
-  static Named_object*
-  make_variable(const std::string&, const Package*, Variable*);
-
-  static Named_object*
-  make_result_variable(const std::string&, Result_variable*);
-
-  static Named_object*
-  make_sink();
-
-  static Named_object*
-  make_function(const std::string&, const Package*, Function*);
-
-  static Named_object*
-  make_function_declaration(const std::string&, const Package*, Function_type*,
-                           source_location);
-
-  static Named_object*
-  make_package(const std::string& alias, Package* package);
-
-  // Getters.
-
-  Unknown_name*
-  unknown_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
-    return this->u_.unknown_value;
-  }
-
-  const Unknown_name*
-  unknown_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
-    return this->u_.unknown_value;
-  }
-
-  Named_constant*
-  const_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_CONST);
-    return this->u_.const_value;
-  }
-
-  const Named_constant*
-  const_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_CONST);
-    return this->u_.const_value;
-  }
-
-  Named_type*
-  type_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_TYPE);
-    return this->u_.type_value;
-  }
-
-  const Named_type*
-  type_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_TYPE);
-    return this->u_.type_value;
-  }
-
-  Type_declaration*
-  type_declaration_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
-    return this->u_.type_declaration;
-  }
-
-  const Type_declaration*
-  type_declaration_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
-    return this->u_.type_declaration;
-  }
-
-  Variable*
-  var_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_VAR);
-    return this->u_.var_value;
-  }
-
-  const Variable*
-  var_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_VAR);
-    return this->u_.var_value;
-  }
-
-  Result_variable*
-  result_var_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_RESULT_VAR);
-    return this->u_.result_var_value;
-  }
-
-  const Result_variable*
-  result_var_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_RESULT_VAR);
-    return this->u_.result_var_value;
-  }
-
-  Function*
-  func_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_FUNC);
-    return this->u_.func_value;
-  }
-
-  const Function*
-  func_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_FUNC);
-    return this->u_.func_value;
-  }
-
-  Function_declaration*
-  func_declaration_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
-    return this->u_.func_declaration_value;
-  }
-
-  const Function_declaration*
-  func_declaration_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
-    return this->u_.func_declaration_value;
-  }
-
-  Package*
-  package_value()
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_PACKAGE);
-    return this->u_.package_value;
-  }
-
-  const Package*
-  package_value() const
-  {
-    gcc_assert(this->classification_ == NAMED_OBJECT_PACKAGE);
-    return this->u_.package_value;
-  }
-
-  const std::string&
-  name() const
-  { return this->name_; }
-
-  // Return the name to use in an error message.  The difference is
-  // that if this Named_object is defined in a different package, this
-  // will return PACKAGE.NAME.
-  std::string
-  message_name() const;
-
-  const Package*
-  package() const
-  { return this->package_; }
-
-  // Resolve an unknown value if possible.  This returns the same
-  // Named_object or a new one.
-  Named_object*
-  resolve()
-  {
-    Named_object* ret = this;
-    if (this->is_unknown())
-      {
-       Named_object* r = this->unknown_value()->real_named_object();
-       if (r != NULL)
-         ret = r;
-      }
-    return ret;
-  }
-
-  const Named_object*
-  resolve() const
-  {
-    const Named_object* ret = this;
-    if (this->is_unknown())
-      {
-       const Named_object* r = this->unknown_value()->real_named_object();
-       if (r != NULL)
-         ret = r;
-      }
-    return ret;
-  }
-
-  // The location where this object was defined or referenced.
-  source_location
-  location() const;
-
-  // Return a tree for the external identifier for this object.
-  tree
-  get_id(Gogo*);
-
-  // Return a tree representing this object.
-  tree
-  get_tree(Gogo*, Named_object* function);
-
-  // Define a type declaration.
-  void
-  set_type_value(Named_type*);
-
-  // Define a function declaration.
-  void
-  set_function_value(Function*);
-
-  // Declare an unknown name as a type declaration.
-  void
-  declare_as_type();
-
-  // Export this object.
-  void
-  export_named_object(Export*) const;
-
- private:
-  Named_object(const std::string&, const Package*, Classification);
-
-  // The name of the object.
-  std::string name_;
-  // The package that this object is in.  This is NULL if it is in the
-  // file we are compiling.
-  const Package* package_;
-  // The type of object this is.
-  Classification classification_;
-  // The real data.
-  union
-  {
-    Unknown_name* unknown_value;
-    Named_constant* const_value;
-    Named_type* type_value;
-    Type_declaration* type_declaration;
-    Variable* var_value;
-    Result_variable* result_var_value;
-    Function* func_value;
-    Function_declaration* func_declaration_value;
-    Package* package_value;
-  } u_;
-  // The DECL tree for this object if we have already converted it.
-  tree tree_;
-};
-
-// A binding contour.  This binds names to objects.
-
-class Bindings
-{
- public:
-  // Type for mapping from names to objects.
-  typedef Unordered_map(std::string, Named_object*) Contour;
-
-  Bindings(Bindings* enclosing);
-
-  // Add an unknown name.
-  Named_object*
-  add_unknown_name(const std::string& name, source_location location)
-  {
-    return this->add_named_object(Named_object::make_unknown_name(name,
-                                                                 location));
-  }
-
-  // Add a constant.
-  Named_object*
-  add_constant(const Typed_identifier& tid, const Package* package,
-              Expression* expr, int iota_value)
-  {
-    return this->add_named_object(Named_object::make_constant(tid, package,
-                                                             expr,
-                                                             iota_value));
-  }
-
-  // Add a type.
-  Named_object*
-  add_type(const std::string& name, const Package* package, Type* type,
-          source_location location)
-  {
-    return this->add_named_object(Named_object::make_type(name, package, type,
-                                                         location));
-  }
-
-  // Add a named type.  This is used for builtin types, and to add an
-  // imported type to the global scope.
-  Named_object*
-  add_named_type(Named_type* named_type);
-
-  // Add a type declaration.
-  Named_object*
-  add_type_declaration(const std::string& name, const Package* package,
-                      source_location location)
-  {
-    Named_object* no = Named_object::make_type_declaration(name, package,
-                                                          location);
-    return this->add_named_object(no);
-  }
-
-  // Add a variable.
-  Named_object*
-  add_variable(const std::string& name, const Package* package,
-              Variable* variable)
-  {
-    return this->add_named_object(Named_object::make_variable(name, package,
-                                                             variable));
-  }
-
-  // Add a result variable.
-  Named_object*
-  add_result_variable(const std::string& name, Result_variable* result)
-  {
-    return this->add_named_object(Named_object::make_result_variable(name,
-                                                                    result));
-  }
-
-  // Add a function.
-  Named_object*
-  add_function(const std::string& name, const Package*, Function* function);
-
-  // Add a function declaration.
-  Named_object*
-  add_function_declaration(const std::string& name, const Package* package,
-                          Function_type* type, source_location location);
-
-  // Add a package.  The location is the location of the import
-  // statement.
-  Named_object*
-  add_package(const std::string& alias, Package* package)
-  {
-    Named_object* no = Named_object::make_package(alias, package);
-    return this->add_named_object(no);
-  }
-
-  // Define a type which was already declared.
-  void
-  define_type(Named_object*, Named_type*);
-
-  // Add a method to the list of objects.  This is not added to the
-  // lookup table.
-  void
-  add_method(Named_object*);
-
-  // Add a named object to this binding.
-  Named_object*
-  add_named_object(Named_object* no)
-  { return this->add_named_object_to_contour(&this->bindings_, no); }
-
-  // Clear all names in file scope from the bindings.
-  void
-  clear_file_scope();
-
-  // Look up a name in this binding contour and in any enclosing
-  // binding contours.  This returns NULL if the name is not found.
-  Named_object*
-  lookup(const std::string&) const;
-
-  // Look up a name in this binding contour without looking in any
-  // enclosing binding contours.  Returns NULL if the name is not found.
-  Named_object*
-  lookup_local(const std::string&) const;
-
-  // Remove a name.
-  void
-  remove_binding(Named_object*);
-
-  // Traverse the tree.  See the Traverse class.
-  int
-  traverse(Traverse*, bool is_global);
-
-  // Iterate over definitions.  This does not include things which
-  // were only declared.
-
-  typedef std::vector<Named_object*>::const_iterator
-    const_definitions_iterator;
-
-  const_definitions_iterator
-  begin_definitions() const
-  { return this->named_objects_.begin(); }
-
-  const_definitions_iterator
-  end_definitions() const
-  { return this->named_objects_.end(); }
-
-  // Return the number of definitions.
-  size_t
-  size_definitions() const
-  { return this->named_objects_.size(); }
-
-  // Return whether there are no definitions.
-  bool
-  empty_definitions() const
-  { return this->named_objects_.empty(); }
-
-  // Iterate over declarations.  This is everything that has been
-  // declared, which includes everything which has been defined.
-
-  typedef Contour::const_iterator const_declarations_iterator;
-
-  const_declarations_iterator
-  begin_declarations() const
-  { return this->bindings_.begin(); }
-
-  const_declarations_iterator
-  end_declarations() const
-  { return this->bindings_.end(); }
-
-  // Return the number of declarations.
-  size_t
-  size_declarations() const
-  { return this->bindings_.size(); }
-
-  // Return whether there are no declarations.
-  bool
-  empty_declarations() const
-  { return this->bindings_.empty(); }
-
-  // Return the first declaration.
-  Named_object*
-  first_declaration()
-  { return this->bindings_.empty() ? NULL : this->bindings_.begin()->second; }
-
- private:
-  Named_object*
-  add_named_object_to_contour(Contour*, Named_object*);
-
-  Named_object*
-  new_definition(Named_object*, Named_object*);
-
-  // Enclosing bindings.
-  Bindings* enclosing_;
-  // The list of objects.
-  std::vector<Named_object*> named_objects_;
-  // The mapping from names to objects.
-  Contour bindings_;
-};
-
-// A label.
-
-class Label
-{
- public:
-  Label(const std::string& name)
-    : name_(name), location_(0), decl_(NULL)
-  { }
-
-  // Return the label's name.
-  const std::string&
-  name() const
-  { return this->name_; }
-
-  // Return whether the label has been defined.
-  bool
-  is_defined() const
-  { return this->location_ != 0; }
-
-  // Return the location of the definition.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Define the label at LOCATION.
-  void
-  define(source_location location)
-  {
-    gcc_assert(this->location_ == 0);
-    this->location_ = location;
-  }
-
-  // Return the LABEL_DECL for this decl.
-  tree
-  get_decl();
-
-  // Return an expression for the address of this label.
-  tree
-  get_addr(source_location location);
-
- private:
-  // The name of the label.
-  std::string name_;
-  // The location of the definition.  This is 0 if the label has not
-  // yet been defined.
-  source_location location_;
-  // The LABEL_DECL.
-  tree decl_;
-};
-
-// An unnamed label.  These are used when lowering loops.
-
-class Unnamed_label
-{
- public:
-  Unnamed_label(source_location location)
-    : location_(location), decl_(NULL)
-  { }
-
-  // Get the location where the label is defined.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Set the location where the label is defined.
-  void
-  set_location(source_location location)
-  { this->location_ = location; }
-
-  // Return a statement which defines this label.
-  tree
-  get_definition();
-
-  // Return a goto to this label from LOCATION.
-  tree
-  get_goto(source_location location);
-
- private:
-  // Return the LABEL_DECL to use with GOTO_EXPR.
-  tree
-  get_decl();
-
-  // The location where the label is defined.
-  source_location location_;
-  // The LABEL_DECL.
-  tree decl_;
-};
-
-// An imported package.
-
-class Package
-{
- public:
-  Package(const std::string& name, const std::string& unique_prefix,
-         source_location location);
-
-  // The real name of this package.  This may be different from the
-  // name in the associated Named_object if the import statement used
-  // an alias.
-  const std::string&
-  name() const
-  { return this->name_; }
-
-  // Return the location of the import statement.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Get the unique prefix used for all symbols exported from this
-  // package.
-  const std::string&
-  unique_prefix() const
-  {
-    gcc_assert(!this->unique_prefix_.empty());
-    return this->unique_prefix_;
-  }
-
-  // The priority of this package.  The init function of packages with
-  // lower priority must be run before the init function of packages
-  // with higher priority.
-  int
-  priority() const
-  { return this->priority_; }
-
-  // Set the priority.
-  void
-  set_priority(int priority);
-
-  // Return the bindings.
-  Bindings*
-  bindings()
-  { return this->bindings_; }
-
-  // Whether some symbol from the package was used.
-  bool
-  used() const
-  { return this->used_; }
-
-  // Note that some symbol from this package was used.
-  void
-  set_used() const
-  { this->used_ = true; }
-
-  // Clear the used field for the next file.
-  void
-  clear_used()
-  { this->used_ = false; }
-
-  // Whether this package was imported in the current file.
-  bool
-  is_imported() const
-  { return this->is_imported_; }
-
-  // Note that this package was imported in the current file.
-  void
-  set_is_imported()
-  { this->is_imported_ = true; }
-
-  // Clear the imported field for the next file.
-  void
-  clear_is_imported()
-  { this->is_imported_ = false; }
-
-  // Whether this package was imported with a name of "_".
-  bool
-  uses_sink_alias() const
-  { return this->uses_sink_alias_; }
-
-  // Note that this package was imported with a name of "_".
-  void
-  set_uses_sink_alias()
-  { this->uses_sink_alias_ = true; }
-
-  // Clear the sink alias field for the next file.
-  void
-  clear_uses_sink_alias()
-  { this->uses_sink_alias_ = false; }
-
-  // Look up a name in the package.  Returns NULL if the name is not
-  // found.
-  Named_object*
-  lookup(const std::string& name) const
-  { return this->bindings_->lookup(name); }
-
-  // Set the location of the package.  This is used if it is seen in a
-  // different import before it is really imported.
-  void
-  set_location(source_location location)
-  { this->location_ = location; }
-
-  // Add a constant to the package.
-  Named_object*
-  add_constant(const Typed_identifier& tid, Expression* expr)
-  { return this->bindings_->add_constant(tid, this, expr, 0); }
-
-  // Add a type to the package.
-  Named_object*
-  add_type(const std::string& name, Type* type, source_location location)
-  { return this->bindings_->add_type(name, this, type, location); }
-
-  // Add a type declaration to the package.
-  Named_object*
-  add_type_declaration(const std::string& name, source_location location)
-  { return this->bindings_->add_type_declaration(name, this, location); }
-
-  // Add a variable to the package.
-  Named_object*
-  add_variable(const std::string& name, Variable* variable)
-  { return this->bindings_->add_variable(name, this, variable); }
-
-  // Add a function declaration to the package.
-  Named_object*
-  add_function_declaration(const std::string& name, Function_type* type,
-                          source_location loc)
-  { return this->bindings_->add_function_declaration(name, this, type, loc); }
-
-  // Determine types of constants.
-  void
-  determine_types();
-
- private:
-  // The real name of this package.
-  std::string name_;
-  // The unique prefix for all exported global symbols.
-  std::string unique_prefix_;
-  // The names in this package.
-  Bindings* bindings_;
-  // The priority of this package.  A package has a priority higher
-  // than the priority of all of the packages that it imports.  This
-  // is used to run init functions in the right order.
-  int priority_;
-  // The location of the import statement.
-  source_location location_;
-  // True if some name from this package was used.  This is mutable
-  // because we can use a package even if we have a const pointer to
-  // it.
-  mutable bool used_;
-  // True if this package was imported in the current file.
-  bool is_imported_;
-  // True if this package was imported with a name of "_".
-  bool uses_sink_alias_;
-};
-
-// Return codes for the traversal functions.  This is not an enum
-// because we want to be able to declare traversal functions in other
-// header files without including this one.
-
-// Continue traversal as usual.
-const int TRAVERSE_CONTINUE = -1;
-
-// Exit traversal.
-const int TRAVERSE_EXIT = 0;
-
-// Continue traversal, but skip components of the current object.
-// E.g., if this is returned by Traverse::statement, we do not
-// traverse the expressions in the statement even if
-// traverse_expressions is set in the traverse_mask.
-const int TRAVERSE_SKIP_COMPONENTS = 1;
-
-// This class is used when traversing the parse tree.  The caller uses
-// a subclass which overrides functions as desired.
-
-class Traverse
-{
- public:
-  // These bitmasks say what to traverse.
-  static const unsigned int traverse_variables =    0x1;
-  static const unsigned int traverse_constants =    0x2;
-  static const unsigned int traverse_functions =    0x4;
-  static const unsigned int traverse_blocks =       0x8;
-  static const unsigned int traverse_statements =  0x10;
-  static const unsigned int traverse_expressions = 0x20;
-  static const unsigned int traverse_types =       0x40;
-
-  Traverse(unsigned int traverse_mask)
-    : traverse_mask_(traverse_mask), types_seen_(NULL), expressions_seen_(NULL)
-  { }
-
-  virtual ~Traverse();
-
-  // The bitmask of what to traverse.
-  unsigned int
-  traverse_mask() const
-  { return this->traverse_mask_; }
-
-  // Record that we are going to traverse a type.  This returns true
-  // if the type has already been seen in this traversal.  This is
-  // required because types, unlike expressions, can form a circular
-  // graph.
-  bool
-  remember_type(const Type*);
-
-  // Record that we are going to see an expression.  This returns true
-  // if the expression has already been seen in this traversal.  This
-  // is only needed for cases where multiple expressions can point to
-  // a single one.
-  bool
-  remember_expression(const Expression*);
-
-  // These functions return one of the TRAVERSE codes defined above.
-
-  // If traverse_variables is set in the mask, this is called for
-  // every variable in the tree.
-  virtual int
-  variable(Named_object*);
-
-  // If traverse_constants is set in the mask, this is called for
-  // every named constant in the tree.  The bool parameter is true for
-  // a global constant.
-  virtual int
-  constant(Named_object*, bool);
-
-  // If traverse_functions is set in the mask, this is called for
-  // every function in the tree.
-  virtual int
-  function(Named_object*);
-
-  // If traverse_blocks is set in the mask, this is called for every
-  // block in the tree.
-  virtual int
-  block(Block*);
-
-  // If traverse_statements is set in the mask, this is called for
-  // every statement in the tree.
-  virtual int
-  statement(Block*, size_t* index, Statement*);
-
-  // If traverse_expressions is set in the mask, this is called for
-  // every expression in the tree.
-  virtual int
-  expression(Expression**);
-
-  // If traverse_types is set in the mask, this is called for every
-  // type in the tree.
-  virtual int
-  type(Type*);
-
- private:
-  typedef Unordered_set_hash(const Type*, Type_hash_identical,
-                            Type_identical) Types_seen;
-
-  typedef Unordered_set(const Expression*) Expressions_seen;
-
-  // Bitmask of what sort of objects to traverse.
-  unsigned int traverse_mask_;
-  // Types which have been seen in this traversal.
-  Types_seen* types_seen_;
-  // Expressions which have been seen in this traversal.
-  Expressions_seen* expressions_seen_;
-};
-
-// When translating the gogo IR into trees, this is the context we
-// pass down the blocks and statements.
-
-class Translate_context
-{
- public:
-  Translate_context(Gogo* gogo, Named_object* function, Block* block,
-                   tree block_tree)
-    : gogo_(gogo), function_(function), block_(block), block_tree_(block_tree),
-      is_const_(false)
-  { }
-
-  // Accessors.
-
-  Gogo*
-  gogo()
-  { return this->gogo_; }
-
-  Named_object*
-  function()
-  { return this->function_; }
-
-  Block*
-  block()
-  { return this->block_; }
-
-  tree
-  block_tree()
-  { return this->block_tree_; }
-
-  bool
-  is_const()
-  { return this->is_const_; }
-
-  // Make a constant context.
-  void
-  set_is_const()
-  { this->is_const_ = true; }
-
- private:
-  // The IR for the entire compilation unit.
-  Gogo* gogo_;
-  // The function we are currently translating.
-  Named_object* function_;
-  // The block we are currently translating.
-  Block *block_;
-  // The BLOCK node for the current block.
-  tree block_tree_;
-  // Whether this is being evaluated in a constant context.  This is
-  // used for type descriptor initializers.
-  bool is_const_;
-};
-
-// Runtime error codes.  These must match the values in
-// libgo/runtime/go-runtime-error.c.
-
-// Slice index out of bounds: negative or larger than the length of
-// the slice.
-static const int RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS = 0;
-
-// Array index out of bounds.
-static const int RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS = 1;
-
-// String index out of bounds.
-static const int RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS = 2;
-
-// Slice slice out of bounds: negative or larger than the length of
-// the slice or high bound less than low bound.
-static const int RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS = 3;
-
-// Array slice out of bounds.
-static const int RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS = 4;
-
-// String slice out of bounds.
-static const int RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS = 5;
-
-// Dereference of nil pointer.  This is used when there is a
-// dereference of a pointer to a very large struct or array, to ensure
-// that a gigantic array is not used a proxy to access random memory
-// locations.
-static const int RUNTIME_ERROR_NIL_DEREFERENCE = 6;
-
-// Slice length or capacity out of bounds in make: negative or
-// overflow or length greater than capacity.
-static const int RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS = 7;
-
-// Map capacity out of bounds in make: negative or overflow.
-static const int RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS = 8;
-
-// Channel capacity out of bounds in make: negative or overflow.
-static const int RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS = 9;
-
-// This is used by some of the langhooks.
-extern Gogo* go_get_gogo();
-
-// Whether we have seen any errors.  FIXME: Replace with a backend
-// interface.
-extern bool saw_errors();
-
-#endif // !defined(GO_GOGO_H)
diff --git a/gcc/go/gofrontend/parse.cc.merge-left.r167407 b/gcc/go/gofrontend/parse.cc.merge-left.r167407
deleted file mode 100644 (file)
index c8b55c5..0000000
+++ /dev/null
@@ -1,4730 +0,0 @@
-// parse.cc -- Go frontend parser.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "lex.h"
-#include "gogo.h"
-#include "types.h"
-#include "statements.h"
-#include "expressions.h"
-#include "parse.h"
-
-// Struct Parse::Enclosing_var_comparison.
-
-// Return true if v1 should be considered to be less than v2.
-
-bool
-Parse::Enclosing_var_comparison::operator()(const Enclosing_var& v1,
-                                           const Enclosing_var& v2)
-{
-  if (v1.var() == v2.var())
-    return false;
-
-  const std::string& n1(v1.var()->name());
-  const std::string& n2(v2.var()->name());
-  int i = n1.compare(n2);
-  if (i < 0)
-    return true;
-  else if (i > 0)
-    return false;
-
-  // If we get here it means that a single nested function refers to
-  // two different variables defined in enclosing functions, and both
-  // variables have the same name.  I think this is impossible.
-  gcc_unreachable();
-}
-
-// Class Parse.
-
-Parse::Parse(Lex* lex, Gogo* gogo)
-  : lex_(lex),
-    token_(Token::make_invalid_token(0)),
-    unget_token_(Token::make_invalid_token(0)),
-    unget_token_valid_(false),
-    gogo_(gogo),
-    break_stack_(),
-    continue_stack_(),
-    iota_(0),
-    enclosing_vars_()
-{
-}
-
-// Return the current token.
-
-const Token*
-Parse::peek_token()
-{
-  if (this->unget_token_valid_)
-    return &this->unget_token_;
-  if (this->token_.is_invalid())
-    this->token_ = this->lex_->next_token();
-  return &this->token_;
-}
-
-// Advance to the next token and return it.
-
-const Token*
-Parse::advance_token()
-{
-  if (this->unget_token_valid_)
-    {
-      this->unget_token_valid_ = false;
-      if (!this->token_.is_invalid())
-       return &this->token_;
-    }
-  this->token_ = this->lex_->next_token();
-  return &this->token_;
-}
-
-// Push a token back on the input stream.
-
-void
-Parse::unget_token(const Token& token)
-{
-  gcc_assert(!this->unget_token_valid_);
-  this->unget_token_ = token;
-  this->unget_token_valid_ = true;
-}
-
-// The location of the current token.
-
-source_location
-Parse::location()
-{
-  return this->peek_token()->location();
-}
-
-// IdentifierList = identifier { "," identifier } .
-
-void
-Parse::identifier_list(Typed_identifier_list* til)
-{
-  const Token* token = this->peek_token();
-  while (true)
-    {
-      if (!token->is_identifier())
-       {
-         error_at(this->location(), "expected identifier");
-         return;
-       }
-      std::string name =
-       this->gogo_->pack_hidden_name(token->identifier(),
-                                     token->is_identifier_exported());
-      til->push_back(Typed_identifier(name, NULL, token->location()));
-      token = this->advance_token();
-      if (!token->is_op(OPERATOR_COMMA))
-       return;
-      token = this->advance_token();
-    }
-}
-
-// ExpressionList = Expression { "," Expression } .
-
-// If MAY_BE_SINK is true, the expressions in the list may be "_".
-
-Expression_list*
-Parse::expression_list(Expression* first, bool may_be_sink)
-{
-  Expression_list* ret = new Expression_list();
-  if (first != NULL)
-    ret->push_back(first);
-  while (true)
-    {
-      ret->push_back(this->expression(PRECEDENCE_NORMAL, may_be_sink, true,
-                                     NULL));
-
-      const Token* token = this->peek_token();
-      if (!token->is_op(OPERATOR_COMMA))
-       return ret;
-
-      // Most expression lists permit a trailing comma.
-      source_location location = token->location();
-      this->advance_token();
-      if (!this->expression_may_start_here())
-       {
-         this->unget_token(Token::make_operator_token(OPERATOR_COMMA,
-                                                      location));
-         return ret;
-       }
-    }
-}
-
-// QualifiedIdent = [ PackageName "." ] identifier .
-// PackageName = identifier .
-
-// This sets *PNAME to the identifier and sets *PPACKAGE to the
-// package or NULL if there isn't one.  This returns true on success,
-// false on failure in which case it will have emitted an error
-// message.
-
-bool
-Parse::qualified_ident(std::string* pname, Named_object** ppackage)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return false;
-    }
-
-  std::string name = token->identifier();
-  bool is_exported = token->is_identifier_exported();
-  name = this->gogo_->pack_hidden_name(name, is_exported);
-
-  token = this->advance_token();
-  if (!token->is_op(OPERATOR_DOT))
-    {
-      *pname = name;
-      *ppackage = NULL;
-      return true;
-    }
-
-  Named_object* package = this->gogo_->lookup(name, NULL);
-  if (package == NULL || !package->is_package())
-    {
-      error_at(this->location(), "expected package");
-      // We expect . IDENTIFIER; skip both.
-      if (this->advance_token()->is_identifier())
-       this->advance_token();
-      return false;
-    }
-
-  package->package_value()->set_used();
-
-  token = this->advance_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return false;
-    }
-
-  name = token->identifier();
-
-  if (name == "_")
-    {
-      error_at(this->location(), "invalid use of %<_%>");
-      name = "blank";
-    }
-
-  if (package->name() == this->gogo_->package_name())
-    name = this->gogo_->pack_hidden_name(name,
-                                        token->is_identifier_exported());
-
-  *pname = name;
-  *ppackage = package;
-
-  this->advance_token();
-
-  return true;
-}
-
-// Type = TypeName | TypeLit | "(" Type ")" .
-// TypeLit =
-//     ArrayType | StructType | PointerType | FunctionType | InterfaceType |
-//     SliceType | MapType | ChannelType .
-
-Type*
-Parse::type()
-{
-  const Token* token = this->peek_token();
-  if (token->is_identifier())
-    return this->type_name(true);
-  else if (token->is_op(OPERATOR_LSQUARE))
-    return this->array_type(false);
-  else if (token->is_keyword(KEYWORD_CHAN)
-          || token->is_op(OPERATOR_CHANOP))
-    return this->channel_type();
-  else if (token->is_keyword(KEYWORD_INTERFACE))
-    return this->interface_type();
-  else if (token->is_keyword(KEYWORD_FUNC))
-    {
-      source_location location = token->location();
-      this->advance_token();
-      return this->signature(NULL, location);
-    }
-  else if (token->is_keyword(KEYWORD_MAP))
-    return this->map_type();
-  else if (token->is_keyword(KEYWORD_STRUCT))
-    return this->struct_type();
-  else if (token->is_op(OPERATOR_MULT))
-    return this->pointer_type();
-  else if (token->is_op(OPERATOR_LPAREN))
-    {
-      this->advance_token();
-      Type* ret = this->type();
-      if (this->peek_token()->is_op(OPERATOR_RPAREN))
-       this->advance_token();
-      else
-       {
-         if (!ret->is_error_type())
-           error_at(this->location(), "expected %<)%>");
-       }
-      return ret;
-    }
-  else
-    {
-      error_at(token->location(), "expected type");
-      return Type::make_error_type();
-    }
-}
-
-bool
-Parse::type_may_start_here()
-{
-  const Token* token = this->peek_token();
-  return (token->is_identifier()
-         || token->is_op(OPERATOR_LSQUARE)
-         || token->is_op(OPERATOR_CHANOP)
-         || token->is_keyword(KEYWORD_CHAN)
-         || token->is_keyword(KEYWORD_INTERFACE)
-         || token->is_keyword(KEYWORD_FUNC)
-         || token->is_keyword(KEYWORD_MAP)
-         || token->is_keyword(KEYWORD_STRUCT)
-         || token->is_op(OPERATOR_MULT)
-         || token->is_op(OPERATOR_LPAREN));
-}
-
-// TypeName = QualifiedIdent .
-
-// If MAY_BE_NIL is true, then an identifier with the value of the
-// predefined constant nil is accepted, returning the nil type.
-
-Type*
-Parse::type_name(bool issue_error)
-{
-  source_location location = this->location();
-
-  std::string name;
-  Named_object* package;
-  if (!this->qualified_ident(&name, &package))
-    return Type::make_error_type();
-
-  Named_object* named_object;
-  if (package == NULL)
-    named_object = this->gogo_->lookup(name, NULL);
-  else
-    {
-      named_object = package->package_value()->lookup(name);
-      if (named_object == NULL
-         && issue_error
-         && package->name() != this->gogo_->package_name())
-       {
-         // Check whether the name is there but hidden.
-         std::string s = ('.' + package->package_value()->unique_prefix()
-                          + '.' + package->package_value()->name()
-                          + '.' + name);
-         named_object = package->package_value()->lookup(s);
-         if (named_object != NULL)
-           {
-             const std::string& packname(package->package_value()->name());
-             error_at(location, "invalid reference to hidden type %<%s.%s%>",
-                      Gogo::message_name(packname).c_str(),
-                      Gogo::message_name(name).c_str());
-             issue_error = false;
-           }
-       }
-    }
-
-  bool ok = true;
-  if (named_object == NULL)
-    {
-      if (package != NULL)
-       ok = false;
-      else
-       named_object = this->gogo_->add_unknown_name(name, location);
-    }
-  else if (named_object->is_type())
-    {
-      if (!named_object->type_value()->is_visible())
-       ok = false;
-    }
-  else if (named_object->is_unknown() || named_object->is_type_declaration())
-    ;
-  else
-    ok = false;
-
-  if (!ok)
-    {
-      if (issue_error)
-       error_at(location, "expected type");
-      return Type::make_error_type();
-    }
-
-  if (named_object->is_type())
-    return named_object->type_value();
-  else if (named_object->is_unknown() || named_object->is_type_declaration())
-    return Type::make_forward_declaration(named_object);
-  else
-    gcc_unreachable();
-}
-
-// ArrayType = "[" [ ArrayLength ] "]" ElementType .
-// ArrayLength = Expression .
-// ElementType = CompleteType .
-
-Type*
-Parse::array_type(bool may_use_ellipsis)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_LSQUARE));
-  const Token* token = this->advance_token();
-
-  Expression* length = NULL;
-  if (token->is_op(OPERATOR_RSQUARE))
-    this->advance_token();
-  else
-    {
-      if (!token->is_op(OPERATOR_ELLIPSIS))
-       length = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      else if (may_use_ellipsis)
-       {
-         // An ellipsis is used in composite literals to represent a
-         // fixed array of the size of the number of elements.  We
-         // use a length of nil to represent this, and change the
-         // length when parsing the composite literal.
-         length = Expression::make_nil(this->location());
-         this->advance_token();
-       }
-      else
-       {
-         error_at(this->location(),
-                  "use of %<[...]%> outside of array literal");
-         length = Expression::make_error(this->location());
-         this->advance_token();
-       }
-      if (!this->peek_token()->is_op(OPERATOR_RSQUARE))
-       {
-         error_at(this->location(), "expected %<]%>");
-         return Type::make_error_type();
-       }
-      this->advance_token();
-    }
-
-  Type* element_type = this->type();
-
-  return Type::make_array_type(element_type, length);
-}
-
-// MapType = "map" "[" KeyType "]" ValueType .
-// KeyType = CompleteType .
-// ValueType = CompleteType .
-
-Type*
-Parse::map_type()
-{
-  source_location location = this->location();
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_MAP));
-  if (!this->advance_token()->is_op(OPERATOR_LSQUARE))
-    {
-      error_at(this->location(), "expected %<[%>");
-      return Type::make_error_type();
-    }
-  this->advance_token();
-
-  Type* key_type = this->type();
-
-  if (!this->peek_token()->is_op(OPERATOR_RSQUARE))
-    {
-      error_at(this->location(), "expected %<]%>");
-      return Type::make_error_type();
-    }
-  this->advance_token();
-
-  Type* value_type = this->type();
-
-  if (key_type->is_error_type() || value_type->is_error_type())
-    return Type::make_error_type();
-
-  return Type::make_map_type(key_type, value_type, location);
-}
-
-// StructType     = "struct" "{" { FieldDecl ";" } "}" .
-
-Type*
-Parse::struct_type()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_STRUCT));
-  source_location location = this->location();
-  if (!this->advance_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return Type::make_error_type();
-       }
-    }
-  this->advance_token();
-
-  Struct_field_list* sfl = new Struct_field_list;
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      this->field_decl(sfl);
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      else if (!this->peek_token()->is_op(OPERATOR_RCURLY))
-       {
-         error_at(this->location(), "expected %<;%> or %<}%> or newline");
-         if (!this->skip_past_error(OPERATOR_RCURLY))
-           return Type::make_error_type();
-       }
-    }
-  this->advance_token();
-
-  for (Struct_field_list::const_iterator pi = sfl->begin();
-       pi != sfl->end();
-       ++pi)
-    {
-      if (pi->type()->is_error_type())
-       return pi->type();
-      for (Struct_field_list::const_iterator pj = pi + 1;
-          pj != sfl->end();
-          ++pj)
-       {
-         if (pi->field_name() == pj->field_name()
-             && !Gogo::is_sink_name(pi->field_name()))
-           error_at(pi->location(), "duplicate field name %<%s%>",
-                    Gogo::message_name(pi->field_name()).c_str());
-       }
-    }
-
-  return Type::make_struct_type(sfl, location);
-}
-
-// FieldDecl = (IdentifierList CompleteType | TypeName) [ Tag ] .
-// Tag = string_lit .
-
-void
-Parse::field_decl(Struct_field_list* sfl)
-{
-  const Token* token = this->peek_token();
-  source_location location = token->location();
-  bool is_anonymous;
-  bool is_anonymous_pointer;
-  if (token->is_op(OPERATOR_MULT))
-    {
-      is_anonymous = true;
-      is_anonymous_pointer = true;
-    }
-  else if (token->is_identifier())
-    {
-      std::string id = token->identifier();
-      bool is_id_exported = token->is_identifier_exported();
-      source_location id_location = token->location();
-      token = this->advance_token();
-      is_anonymous = (token->is_op(OPERATOR_SEMICOLON)
-                     || token->is_op(OPERATOR_RCURLY)
-                     || token->is_op(OPERATOR_DOT)
-                     || token->is_string());
-      is_anonymous_pointer = false;
-      this->unget_token(Token::make_identifier_token(id, is_id_exported,
-                                                    id_location));
-    }
-  else
-    {
-      error_at(this->location(), "expected field name");
-      while (!token->is_op(OPERATOR_SEMICOLON)
-            && !token->is_op(OPERATOR_RCURLY)
-            && !token->is_eof())
-       token = this->advance_token();
-      return;
-    }
-
-  if (is_anonymous)
-    {
-      if (is_anonymous_pointer)
-       {
-         this->advance_token();
-         if (!this->peek_token()->is_identifier())
-           {
-             error_at(this->location(), "expected field name");
-             while (!token->is_op(OPERATOR_SEMICOLON)
-                    && !token->is_op(OPERATOR_RCURLY)
-                    && !token->is_eof())
-               token = this->advance_token();
-             return;
-           }
-       }
-      Type* type = this->type_name(true);
-
-      std::string tag;
-      if (this->peek_token()->is_string())
-       {
-         tag = this->peek_token()->string_value();
-         this->advance_token();
-       }
-
-      if (!type->is_error_type())
-       {
-         if (is_anonymous_pointer)
-           type = Type::make_pointer_type(type);
-         sfl->push_back(Struct_field(Typed_identifier("", type, location)));
-         if (!tag.empty())
-           sfl->back().set_tag(tag);
-       }
-    }
-  else
-    {
-      Typed_identifier_list til;
-      while (true)
-       {
-         token = this->peek_token();
-         if (!token->is_identifier())
-           {
-             error_at(this->location(), "expected identifier");
-             return;
-           }
-         std::string name =
-           this->gogo_->pack_hidden_name(token->identifier(),
-                                         token->is_identifier_exported());
-         til.push_back(Typed_identifier(name, NULL, token->location()));
-         if (!this->advance_token()->is_op(OPERATOR_COMMA))
-           break;
-         this->advance_token();
-       }
-
-      Type* type = this->type();
-
-      std::string tag;
-      if (this->peek_token()->is_string())
-       {
-         tag = this->peek_token()->string_value();
-         this->advance_token();
-       }
-
-      for (Typed_identifier_list::iterator p = til.begin();
-          p != til.end();
-          ++p)
-       {
-         p->set_type(type);
-         sfl->push_back(Struct_field(*p));
-         if (!tag.empty())
-           sfl->back().set_tag(tag);
-       }
-    }
-}
-
-// PointerType = "*" Type .
-
-Type*
-Parse::pointer_type()
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_MULT));
-  this->advance_token();
-  Type* type = this->type();
-  if (type->is_error_type())
-    return type;
-  return Type::make_pointer_type(type);
-}
-
-// ChannelType   = Channel | SendChannel | RecvChannel .
-// Channel       = "chan" ElementType .
-// SendChannel   = "chan" "<-" ElementType .
-// RecvChannel   = "<-" "chan" ElementType .
-
-Type*
-Parse::channel_type()
-{
-  const Token* token = this->peek_token();
-  bool send = true;
-  bool receive = true;
-  if (token->is_op(OPERATOR_CHANOP))
-    {
-      if (!this->advance_token()->is_keyword(KEYWORD_CHAN))
-       {
-         error_at(this->location(), "expected %<chan%>");
-         return Type::make_error_type();
-       }
-      send = false;
-      this->advance_token();
-    }
-  else
-    {
-      gcc_assert(token->is_keyword(KEYWORD_CHAN));
-      if (this->advance_token()->is_op(OPERATOR_CHANOP))
-       {
-         receive = false;
-         this->advance_token();
-       }
-    }
-  Type* element_type = this->type();
-  return Type::make_channel_type(send, receive, element_type);
-}
-
-// Signature      = Parameters [ Result ] .
-
-// RECEIVER is the receiver if there is one, or NULL.  LOCATION is the
-// location of the start of the type.
-
-Function_type*
-Parse::signature(Typed_identifier* receiver, source_location location)
-{
-  bool is_varargs = false;
-  Typed_identifier_list* params = this->parameters(&is_varargs);
-
-  Typed_identifier_list* result = NULL;
-  if (this->peek_token()->is_op(OPERATOR_LPAREN)
-      || this->type_may_start_here())
-    result = this->result();
-
-  Function_type* ret = Type::make_function_type(receiver, params, result,
-                                               location);
-  if (is_varargs)
-    ret->set_is_varargs();
-  return ret;
-}
-
-// Parameters     = "(" [ ParameterList [ "," ] ] ")" .
-
-Typed_identifier_list*
-Parse::parameters(bool* is_varargs)
-{
-  if (!this->peek_token()->is_op(OPERATOR_LPAREN))
-    {
-      error_at(this->location(), "expected %<(%>");
-      return NULL;
-    }
-
-  Typed_identifier_list* params = NULL;
-
-  const Token* token = this->advance_token();
-  if (!token->is_op(OPERATOR_RPAREN))
-    {
-      params = this->parameter_list(is_varargs);
-      token = this->peek_token();
-    }
-
-  // The optional trailing comma is picked up in parameter_list.
-
-  if (!token->is_op(OPERATOR_RPAREN))
-    error_at(this->location(), "expected %<)%>");
-  else
-    this->advance_token();
-
-  return params;
-}
-
-// ParameterList  = ParameterDecl { "," ParameterDecl } .
-
-// This sets *IS_VARARGS if the list ends with an ellipsis.
-// IS_VARARGS will be NULL if varargs are not permitted.
-
-// We pick up an optional trailing comma.
-
-Typed_identifier_list*
-Parse::parameter_list(bool* is_varargs)
-{
-  source_location location = this->location();
-  Typed_identifier_list* ret = new Typed_identifier_list();
-
-  // If we see an identifier and then a comma, then we don't know
-  // whether we are looking at a list of identifiers followed by a
-  // type, or a list of types given by name.  We have to do an
-  // arbitrary lookahead to figure it out.
-
-  bool parameters_have_names;
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      // This must be a type which starts with something like '*'.
-      parameters_have_names = false;
-    }
-  else
-    {
-      std::string name = token->identifier();
-      bool is_exported = token->is_identifier_exported();
-      source_location location = token->location();
-      token = this->advance_token();
-      if (!token->is_op(OPERATOR_COMMA))
-       {
-         if (token->is_op(OPERATOR_DOT))
-           {
-             // This is a qualified identifier, which must turn out
-             // to be a type.
-             parameters_have_names = false;
-           }
-         else if (token->is_op(OPERATOR_RPAREN))
-           {
-             // A single identifier followed by a parenthesis must be
-             // a type name.
-             parameters_have_names = false;
-           }
-         else
-           {
-             // An identifier followed by something other than a
-             // comma or a dot or a right parenthesis must be a
-             // parameter name followed by a type.
-             parameters_have_names = true;
-           }
-
-         this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                        location));
-       }
-      else
-       {
-         // An identifier followed by a comma may be the first in a
-         // list of parameter names followed by a type, or it may be
-         // the first in a list of types without parameter names.  To
-         // find out we gather as many identifiers separated by
-         // commas as we can.
-         std::string id_name = this->gogo_->pack_hidden_name(name,
-                                                             is_exported);
-         ret->push_back(Typed_identifier(id_name, NULL, location));
-         bool just_saw_comma = true;
-         while (this->advance_token()->is_identifier())
-           {
-             name = this->peek_token()->identifier();
-             is_exported = this->peek_token()->is_identifier_exported();
-             location = this->peek_token()->location();
-             id_name = this->gogo_->pack_hidden_name(name, is_exported);
-             ret->push_back(Typed_identifier(id_name, NULL, location));
-             if (!this->advance_token()->is_op(OPERATOR_COMMA))
-               {
-                 just_saw_comma = false;
-                 break;
-               }
-           }
-
-         if (just_saw_comma)
-           {
-             // We saw ID1 "," ID2 "," followed by something which
-             // was not an identifier.  We must be seeing the start
-             // of a type, and ID1 and ID2 must be types, and the
-             // parameters don't have names.
-             parameters_have_names = false;
-           }
-         else if (this->peek_token()->is_op(OPERATOR_RPAREN))
-           {
-             // We saw ID1 "," ID2 ")".  ID1 and ID2 must be types,
-             // and the parameters don't have names.
-             parameters_have_names = false;
-           }
-         else if (this->peek_token()->is_op(OPERATOR_DOT))
-           {
-             // We saw ID1 "," ID2 ".".  ID2 must be a package name,
-             // ID1 must be a type, and the parameters don't have
-             // names.
-             parameters_have_names = false;
-             this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                            location));
-             ret->pop_back();
-             just_saw_comma = true;
-           }
-         else
-           {
-             // We saw ID1 "," ID2 followed by something other than
-             // ",", ".", or ")".  We must be looking at the start of
-             // a type, and ID1 and ID2 must be parameter names.
-             parameters_have_names = true;
-           }
-
-         if (parameters_have_names)
-           {
-             gcc_assert(!just_saw_comma);
-             // We have just seen ID1, ID2 xxx.
-             Type* type;
-             if (!this->peek_token()->is_op(OPERATOR_ELLIPSIS))
-               type = this->type();
-             else
-               {
-                 error_at(this->location(), "%<...%> only permits one name");
-                 this->advance_token();
-                 type = this->type();
-               }
-             for (size_t i = 0; i < ret->size(); ++i)
-               ret->set_type(i, type);
-             if (!this->peek_token()->is_op(OPERATOR_COMMA))
-               return ret;
-             if (this->advance_token()->is_op(OPERATOR_RPAREN))
-               return ret;
-           }
-         else
-           {
-             Typed_identifier_list* tret = new Typed_identifier_list();
-             for (Typed_identifier_list::const_iterator p = ret->begin();
-                  p != ret->end();
-                  ++p)
-               {
-                 Named_object* no = this->gogo_->lookup(p->name(), NULL);
-                 Type* type;
-                 if (no == NULL)
-                   no = this->gogo_->add_unknown_name(p->name(),
-                                                      p->location());
-
-                 if (no->is_type())
-                   type = no->type_value();
-                 else if (no->is_unknown() || no->is_type_declaration())
-                   type = Type::make_forward_declaration(no);
-                 else
-                   {
-                     error_at(p->location(), "expected %<%s%> to be a type",
-                              Gogo::message_name(p->name()).c_str());
-                     type = Type::make_error_type();
-                   }
-                 tret->push_back(Typed_identifier("", type, p->location()));
-               }
-             delete ret;
-             ret = tret;
-             if (!just_saw_comma
-                 || this->peek_token()->is_op(OPERATOR_RPAREN))
-               return ret;
-           }
-       }
-    }
-
-  bool mix_error = false;
-  this->parameter_decl(parameters_have_names, ret, is_varargs, &mix_error);
-  while (this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      if (is_varargs != NULL && *is_varargs)
-       error_at(this->location(), "%<...%> must be last parameter");
-      if (this->advance_token()->is_op(OPERATOR_RPAREN))
-       break;
-      this->parameter_decl(parameters_have_names, ret, is_varargs, &mix_error);
-    }
-  if (mix_error)
-    error_at(location, "invalid named/anonymous mix");
-  return ret;
-}
-
-// ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
-
-void
-Parse::parameter_decl(bool parameters_have_names,
-                     Typed_identifier_list* til,
-                     bool* is_varargs,
-                     bool* mix_error)
-{
-  if (!parameters_have_names)
-    {
-      Type* type;
-      source_location location = this->location();
-      if (!this->peek_token()->is_identifier())
-       {
-         if (!this->peek_token()->is_op(OPERATOR_ELLIPSIS))
-           type = this->type();
-         else
-           {
-             if (is_varargs == NULL)
-               error_at(this->location(), "invalid use of %<...%>");
-             else
-               *is_varargs = true;
-             this->advance_token();
-             if (is_varargs == NULL
-                 && this->peek_token()->is_op(OPERATOR_RPAREN))
-               type = Type::make_error_type();
-             else
-               {
-                 Type* element_type = this->type();
-                 type = Type::make_array_type(element_type, NULL);
-               }
-           }
-       }
-      else
-       {
-         type = this->type_name(false);
-         if (type->is_error_type()
-             || (!this->peek_token()->is_op(OPERATOR_COMMA)
-                 && !this->peek_token()->is_op(OPERATOR_RPAREN)))
-           {
-             *mix_error = true;
-             while (!this->peek_token()->is_op(OPERATOR_COMMA)
-                    && !this->peek_token()->is_op(OPERATOR_RPAREN))
-               this->advance_token();
-           }
-       }
-      if (!type->is_error_type())
-       til->push_back(Typed_identifier("", type, location));
-    }
-  else
-    {
-      size_t orig_count = til->size();
-      if (this->peek_token()->is_identifier())
-       this->identifier_list(til);
-      else
-       *mix_error = true;
-      size_t new_count = til->size();
-
-      Type* type;
-      if (!this->peek_token()->is_op(OPERATOR_ELLIPSIS))
-       type = this->type();
-      else
-       {
-         if (is_varargs == NULL)
-           error_at(this->location(), "invalid use of %<...%>");
-         else if (new_count > orig_count + 1)
-           error_at(this->location(), "%<...%> only permits one name");
-         else
-           *is_varargs = true;
-         this->advance_token();
-         Type* element_type = this->type();
-         type = Type::make_array_type(element_type, NULL);
-       }
-      for (size_t i = orig_count; i < new_count; ++i)
-       til->set_type(i, type);
-    }
-}
-
-// Result         = Parameters | Type .
-
-Typed_identifier_list*
-Parse::result()
-{
-  if (this->peek_token()->is_op(OPERATOR_LPAREN))
-    return this->parameters(NULL);
-  else
-    {
-      source_location location = this->location();
-      Typed_identifier_list* til = new Typed_identifier_list();
-      Type* type = this->type();
-      til->push_back(Typed_identifier("", type, location));
-      return til;
-    }
-}
-
-// Block = "{" [ StatementList ] "}" .
-
-// Returns the location of the closing brace.
-
-source_location
-Parse::block()
-{
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return UNKNOWN_LOCATION;
-       }
-    }
-
-  const Token* token = this->advance_token();
-
-  if (!token->is_op(OPERATOR_RCURLY))
-    {
-      this->statement_list();
-      token = this->peek_token();
-      if (!token->is_op(OPERATOR_RCURLY))
-       {
-         if (!token->is_eof() || !saw_errors())
-           error_at(this->location(), "expected %<}%>");
-
-         // Skip ahead to the end of the block, in hopes of avoiding
-         // lots of meaningless errors.
-         source_location ret = token->location();
-         int nest = 0;
-         while (!token->is_eof())
-           {
-             if (token->is_op(OPERATOR_LCURLY))
-               ++nest;
-             else if (token->is_op(OPERATOR_RCURLY))
-               {
-                 --nest;
-                 if (nest < 0)
-                   {
-                     this->advance_token();
-                     break;
-                   }
-               }
-             token = this->advance_token();
-             ret = token->location();
-           }
-         return ret;
-       }
-    }
-
-  source_location ret = token->location();
-  this->advance_token();
-  return ret;
-}
-
-// InterfaceType      = "interface" "{" [ MethodSpecList ] "}" .
-// MethodSpecList     = MethodSpec { ";" MethodSpec } [ ";" ] .
-
-Type*
-Parse::interface_type()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_INTERFACE));
-  source_location location = this->location();
-
-  if (!this->advance_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return Type::make_error_type();
-       }
-    }
-  this->advance_token();
-
-  Typed_identifier_list* methods = new Typed_identifier_list();
-  if (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      this->method_spec(methods);
-      while (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       {
-         if (this->advance_token()->is_op(OPERATOR_RCURLY))
-           break;
-         this->method_spec(methods);
-       }
-      if (!this->peek_token()->is_op(OPERATOR_RCURLY))
-       {
-         error_at(this->location(), "expected %<}%>");
-         while (!this->advance_token()->is_op(OPERATOR_RCURLY))
-           {
-             if (this->peek_token()->is_eof())
-               return Type::make_error_type();
-           }
-       }
-    }
-  this->advance_token();
-
-  if (methods->empty())
-    {
-      delete methods;
-      methods = NULL;
-    }
-
-  Interface_type* ret = Type::make_interface_type(methods, location);
-  this->gogo_->record_interface_type(ret);
-  return ret;
-}
-
-// MethodSpec         = MethodName Signature | InterfaceTypeName .
-// MethodName         = identifier .
-// InterfaceTypeName  = TypeName .
-
-bool
-Parse::method_spec(Typed_identifier_list* methods)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return false;
-    }
-
-  std::string name = token->identifier();
-  bool is_exported = token->is_identifier_exported();
-  source_location location = token->location();
-
-  if (this->advance_token()->is_op(OPERATOR_LPAREN))
-    {
-      // This is a MethodName.
-      name = this->gogo_->pack_hidden_name(name, is_exported);
-      Function_type* type = this->signature(NULL, location);
-      methods->push_back(Typed_identifier(name, type, location));
-    }
-  else
-    {
-      this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                    location));
-      Type* type = this->type_name(false);
-      if (type->is_error_type()
-         || (!this->peek_token()->is_op(OPERATOR_SEMICOLON)
-             && !this->peek_token()->is_op(OPERATOR_RCURLY)))
-       {
-         if (this->peek_token()->is_op(OPERATOR_COMMA))
-           error_at(this->location(),
-                    "name list not allowed in interface type");
-         else
-           error_at(location, "expected signature or type name");
-         token = this->peek_token();
-         while (!token->is_eof()
-                && !token->is_op(OPERATOR_SEMICOLON)
-                && !token->is_op(OPERATOR_RCURLY))
-           token = this->advance_token();
-         return false;
-       }
-      // This must be an interface type, but we can't check that now.
-      // We check it and pull out the methods in
-      // Interface_type::do_verify.
-      methods->push_back(Typed_identifier("", type, location));
-    }
-
-  return false;
-}
-
-// Declaration = ConstDecl | TypeDecl | VarDecl | FunctionDecl | MethodDecl .
-
-void
-Parse::declaration()
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_CONST))
-    this->const_decl();
-  else if (token->is_keyword(KEYWORD_TYPE))
-    this->type_decl();
-  else if (token->is_keyword(KEYWORD_VAR))
-    this->var_decl();
-  else if (token->is_keyword(KEYWORD_FUNC))
-    this->function_decl();
-  else
-    {
-      error_at(this->location(), "expected declaration");
-      this->advance_token();
-    }
-}
-
-bool
-Parse::declaration_may_start_here()
-{
-  const Token* token = this->peek_token();
-  return (token->is_keyword(KEYWORD_CONST)
-         || token->is_keyword(KEYWORD_TYPE)
-         || token->is_keyword(KEYWORD_VAR)
-         || token->is_keyword(KEYWORD_FUNC));
-}
-
-// Decl<P> = P | "(" [ List<P> ] ")" .
-
-void
-Parse::decl(void (Parse::*pfn)(void*), void* varg)
-{
-  if (!this->peek_token()->is_op(OPERATOR_LPAREN))
-    (this->*pfn)(varg);
-  else
-    {
-      if (!this->advance_token()->is_op(OPERATOR_RPAREN))
-       {
-         this->list(pfn, varg, true);
-         if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           {
-             error_at(this->location(), "missing %<)%>");
-             while (!this->advance_token()->is_op(OPERATOR_RPAREN))
-               {
-                 if (this->peek_token()->is_eof())
-                   return;
-               }
-           }
-       }
-      this->advance_token();
-    }
-}
-
-// List<P> = P { ";" P } [ ";" ] .
-
-// In order to pick up the trailing semicolon we need to know what
-// might follow.  This is either a '}' or a ')'.
-
-void
-Parse::list(void (Parse::*pfn)(void*), void* varg, bool follow_is_paren)
-{
-  (this->*pfn)(varg);
-  Operator follow = follow_is_paren ? OPERATOR_RPAREN : OPERATOR_RCURLY;
-  while (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-        || this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      if (this->peek_token()->is_op(OPERATOR_COMMA))
-       error_at(this->location(), "unexpected comma");
-      if (this->advance_token()->is_op(follow))
-       break;
-      (this->*pfn)(varg);
-    }
-}
-
-// ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
-
-void
-Parse::const_decl()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_CONST));
-  this->advance_token();
-  this->reset_iota();
-
-  Type* last_type = NULL;
-  Expression_list* last_expr_list = NULL;
-
-  if (!this->peek_token()->is_op(OPERATOR_LPAREN))
-    this->const_spec(&last_type, &last_expr_list);
-  else
-    {
-      this->advance_token();
-      while (!this->peek_token()->is_op(OPERATOR_RPAREN))
-       {
-         this->const_spec(&last_type, &last_expr_list);
-         if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-           this->advance_token();
-         else if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           {
-             error_at(this->location(), "expected %<;%> or %<)%> or newline");
-             if (!this->skip_past_error(OPERATOR_RPAREN))
-               return;
-           }
-       }
-      this->advance_token();
-    }
-
-  if (last_expr_list != NULL)
-    delete last_expr_list;
-}
-
-// ConstSpec = IdentifierList [ [ CompleteType ] "=" ExpressionList ] .
-
-void
-Parse::const_spec(Type** last_type, Expression_list** last_expr_list)
-{
-  Typed_identifier_list til;
-  this->identifier_list(&til);
-
-  Type* type = NULL;
-  if (this->type_may_start_here())
-    {
-      type = this->type();
-      *last_type = NULL;
-      *last_expr_list = NULL;
-    }
-
-  Expression_list *expr_list;
-  if (!this->peek_token()->is_op(OPERATOR_EQ))
-    {
-      if (*last_expr_list == NULL)
-       {
-         error_at(this->location(), "expected %<=%>");
-         return;
-       }
-      type = *last_type;
-      expr_list = new Expression_list;
-      for (Expression_list::const_iterator p = (*last_expr_list)->begin();
-          p != (*last_expr_list)->end();
-          ++p)
-       expr_list->push_back((*p)->copy());
-    }
-  else
-    {
-      this->advance_token();
-      expr_list = this->expression_list(NULL, false);
-      *last_type = type;
-      if (*last_expr_list != NULL)
-       delete *last_expr_list;
-      *last_expr_list = expr_list;
-    }
-
-  Expression_list::const_iterator pe = expr_list->begin();
-  for (Typed_identifier_list::iterator pi = til.begin();
-       pi != til.end();
-       ++pi, ++pe)
-    {
-      if (pe == expr_list->end())
-       {
-         error_at(this->location(), "not enough initializers");
-         return;
-       }
-      if (type != NULL)
-       pi->set_type(type);
-
-      if (!Gogo::is_sink_name(pi->name()))
-       this->gogo_->add_constant(*pi, *pe, this->iota_value());
-    }
-  if (pe != expr_list->end())
-    error_at(this->location(), "too many initializers");
-
-  this->increment_iota();
-
-  return;
-}
-
-// TypeDecl = "type" Decl<TypeSpec> .
-
-void
-Parse::type_decl()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_TYPE));
-  this->advance_token();
-  this->decl(&Parse::type_spec, NULL);
-}
-
-// TypeSpec = identifier Type .
-
-void
-Parse::type_spec(void*)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return;
-    }
-  std::string name = token->identifier();
-  bool is_exported = token->is_identifier_exported();
-  source_location location = token->location();
-  token = this->advance_token();
-
-  // The scope of the type name starts at the point where the
-  // identifier appears in the source code.  We implement this by
-  // declaring the type before we read the type definition.
-  Named_object* named_type = NULL;
-  if (name != "_")
-    {
-      name = this->gogo_->pack_hidden_name(name, is_exported);
-      named_type = this->gogo_->declare_type(name, location);
-    }
-
-  Type* type;
-  if (!this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    type = this->type();
-  else
-    {
-      error_at(this->location(),
-              "unexpected semicolon or newline in type declaration");
-      type = Type::make_error_type();
-      this->advance_token();
-    }
-
-  if (type->is_error_type())
-    {
-      while (!this->peek_token()->is_op(OPERATOR_SEMICOLON)
-            && !this->peek_token()->is_eof())
-       this->advance_token();
-    }
-
-  if (name != "_")
-    {
-      if (named_type->is_type_declaration())
-       {
-         Type* ftype = type->forwarded();
-         if (ftype->forward_declaration_type() != NULL
-             && (ftype->forward_declaration_type()->named_object()
-                 == named_type))
-           {
-             error_at(location, "invalid recursive type");
-             type = Type::make_error_type();
-           }
-
-         this->gogo_->define_type(named_type,
-                                  Type::make_named_type(named_type, type,
-                                                        location));
-         gcc_assert(named_type->package() == NULL);
-       }
-      else
-       {
-         // This will probably give a redefinition error.
-         this->gogo_->add_type(name, type, location);
-       }
-    }
-}
-
-// VarDecl = "var" Decl<VarSpec> .
-
-void
-Parse::var_decl()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_VAR));
-  this->advance_token();
-  this->decl(&Parse::var_spec, NULL);
-}
-
-// VarSpec = IdentifierList
-//             ( CompleteType [ "=" ExpressionList ] | "=" ExpressionList ) .
-
-void
-Parse::var_spec(void*)
-{
-  // Get the variable names.
-  Typed_identifier_list til;
-  this->identifier_list(&til);
-
-  source_location location = this->location();
-
-  Type* type = NULL;
-  Expression_list* init = NULL;
-  if (!this->peek_token()->is_op(OPERATOR_EQ))
-    {
-      type = this->type();
-      if (type->is_error_type())
-       {
-         while (!this->peek_token()->is_op(OPERATOR_EQ)
-                && !this->peek_token()->is_op(OPERATOR_SEMICOLON)
-                && !this->peek_token()->is_eof())
-           this->advance_token();
-       }
-      if (this->peek_token()->is_op(OPERATOR_EQ))
-       {
-         this->advance_token();
-         init = this->expression_list(NULL, false);
-       }
-    }
-  else
-    {
-      this->advance_token();
-      init = this->expression_list(NULL, false);
-    }
-
-  this->init_vars(&til, type, init, false, location);
-
-  if (init != NULL)
-    delete init;
-}
-
-// Create variables.  TIL is a list of variable names.  If TYPE is not
-// NULL, it is the type of all the variables.  If INIT is not NULL, it
-// is an initializer list for the variables.
-
-void
-Parse::init_vars(const Typed_identifier_list* til, Type* type,
-                Expression_list* init, bool is_coloneq,
-                source_location location)
-{
-  // Check for an initialization which can yield multiple values.
-  if (init != NULL && init->size() == 1 && til->size() > 1)
-    {
-      if (this->init_vars_from_call(til, type, *init->begin(), is_coloneq,
-                                   location))
-       return;
-      if (this->init_vars_from_map(til, type, *init->begin(), is_coloneq,
-                                  location))
-       return;
-      if (this->init_vars_from_receive(til, type, *init->begin(), is_coloneq,
-                                      location))
-       return;
-      if (this->init_vars_from_type_guard(til, type, *init->begin(),
-                                         is_coloneq, location))
-       return;
-    }
-
-  if (init != NULL && init->size() != til->size())
-    {
-      if (init->empty() || !init->front()->is_error_expression())
-       error_at(location, "wrong number of initializations");
-      init = NULL;
-      if (type == NULL)
-       type = Type::make_error_type();
-    }
-
-  // Note that INIT was already parsed with the old name bindings, so
-  // we don't have to worry that it will accidentally refer to the
-  // newly declared variables.
-
-  Expression_list::const_iterator pexpr;
-  if (init != NULL)
-    pexpr = init->begin();
-  bool any_new = false;
-  for (Typed_identifier_list::const_iterator p = til->begin();
-       p != til->end();
-       ++p)
-    {
-      if (init != NULL)
-       gcc_assert(pexpr != init->end());
-      this->init_var(*p, type, init == NULL ? NULL : *pexpr, is_coloneq,
-                    false, &any_new);
-      if (init != NULL)
-       ++pexpr;
-    }
-  if (init != NULL)
-    gcc_assert(pexpr == init->end());
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-}
-
-// See if we need to initialize a list of variables from a function
-// call.  This returns true if we have set up the variables and the
-// initialization.
-
-bool
-Parse::init_vars_from_call(const Typed_identifier_list* vars, Type* type,
-                          Expression* expr, bool is_coloneq,
-                          source_location location)
-{
-  Call_expression* call = expr->call_expression();
-  if (call == NULL)
-    return false;
-
-  // This is a function call.  We can't check here whether it returns
-  // the right number of values, but it might.  Declare the variables,
-  // and then assign the results of the call to them.
-
-  unsigned int index = 0;
-  bool any_new = false;
-  for (Typed_identifier_list::const_iterator pv = vars->begin();
-       pv != vars->end();
-       ++pv, ++index)
-    {
-      Expression* init = Expression::make_call_result(call, index);
-      this->init_var(*pv, type, init, is_coloneq, false, &any_new);
-    }
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  return true;
-}
-
-// See if we need to initialize a pair of values from a map index
-// expression.  This returns true if we have set up the variables and
-// the initialization.
-
-bool
-Parse::init_vars_from_map(const Typed_identifier_list* vars, Type* type,
-                         Expression* expr, bool is_coloneq,
-                         source_location location)
-{
-  Index_expression* index = expr->index_expression();
-  if (index == NULL)
-    return false;
-  if (vars->size() != 2)
-    return false;
-
-  // This is an index which is being assigned to two variables.  It
-  // must be a map index.  Declare the variables, and then assign the
-  // results of the map index.
-  bool any_new = false;
-  Typed_identifier_list::const_iterator p = vars->begin();
-  Expression* init = type == NULL ? index : NULL;
-  Named_object* val_no = this->init_var(*p, type, init, is_coloneq,
-                                       type == NULL, &any_new);
-  if (type == NULL && any_new && val_no->is_variable())
-    val_no->var_value()->set_type_from_init_tuple();
-  Expression* val_var = Expression::make_var_reference(val_no, location);
-
-  ++p;
-  Type* var_type = type;
-  if (var_type == NULL)
-    var_type = Type::lookup_bool_type();
-  Named_object* no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                   &any_new);
-  Expression* present_var = Expression::make_var_reference(no, location);
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  Statement* s = Statement::make_tuple_map_assignment(val_var, present_var,
-                                                     index, location);
-
-  if (!this->gogo_->in_global_scope())
-    this->gogo_->add_statement(s);
-  else
-    val_no->var_value()->add_preinit_statement(s);
-
-  return true;
-}
-
-// See if we need to initialize a pair of values from a receive
-// expression.  This returns true if we have set up the variables and
-// the initialization.
-
-bool
-Parse::init_vars_from_receive(const Typed_identifier_list* vars, Type* type,
-                             Expression* expr, bool is_coloneq,
-                             source_location location)
-{
-  Receive_expression* receive = expr->receive_expression();
-  if (receive == NULL)
-    return false;
-  if (vars->size() != 2)
-    return false;
-
-  // This is a receive expression which is being assigned to two
-  // variables.  Declare the variables, and then assign the results of
-  // the receive.
-  bool any_new = false;
-  Typed_identifier_list::const_iterator p = vars->begin();
-  Expression* init = type == NULL ? receive : NULL;
-  Named_object* val_no = this->init_var(*p, type, init, is_coloneq,
-                                       type == NULL, &any_new);
-  if (type == NULL && any_new && val_no->is_variable())
-    val_no->var_value()->set_type_from_init_tuple();
-  Expression* val_var = Expression::make_var_reference(val_no, location);
-
-  ++p;
-  Type* var_type = type;
-  if (var_type == NULL)
-    var_type = Type::lookup_bool_type();
-  Named_object* no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                   &any_new);
-  Expression* received_var = Expression::make_var_reference(no, location);
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  Statement* s = Statement::make_tuple_receive_assignment(val_var,
-                                                         received_var,
-                                                         receive->channel(),
-                                                         location);
-
-  if (!this->gogo_->in_global_scope())
-    this->gogo_->add_statement(s);
-  else
-    val_no->var_value()->add_preinit_statement(s);
-
-  return true;
-}
-
-// See if we need to initialize a pair of values from a type guard
-// expression.  This returns true if we have set up the variables and
-// the initialization.
-
-bool
-Parse::init_vars_from_type_guard(const Typed_identifier_list* vars,
-                                Type* type, Expression* expr,
-                                bool is_coloneq, source_location location)
-{
-  Type_guard_expression* type_guard = expr->type_guard_expression();
-  if (type_guard == NULL)
-    return false;
-  if (vars->size() != 2)
-    return false;
-
-  // This is a type guard expression which is being assigned to two
-  // variables.  Declare the variables, and then assign the results of
-  // the type guard.
-  bool any_new = false;
-  Typed_identifier_list::const_iterator p = vars->begin();
-  Type* var_type = type;
-  if (var_type == NULL)
-    var_type = type_guard->type();
-  Named_object* val_no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                       &any_new);
-  Expression* val_var = Expression::make_var_reference(val_no, location);
-
-  ++p;
-  var_type = type;
-  if (var_type == NULL)
-    var_type = Type::lookup_bool_type();
-  Named_object* no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                   &any_new);
-  Expression* ok_var = Expression::make_var_reference(no, location);
-
-  Expression* texpr = type_guard->expr();
-  Type* t = type_guard->type();
-  Statement* s = Statement::make_tuple_type_guard_assignment(val_var, ok_var,
-                                                            texpr, t,
-                                                            location);
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  if (!this->gogo_->in_global_scope())
-    this->gogo_->add_statement(s);
-  else
-    val_no->var_value()->add_preinit_statement(s);
-
-  return true;
-}
-
-// Create a single variable.  If IS_COLONEQ is true, we permit
-// redeclarations in the same block, and we set *IS_NEW when we find a
-// new variable which is not a redeclaration.
-
-Named_object*
-Parse::init_var(const Typed_identifier& tid, Type* type, Expression* init,
-               bool is_coloneq, bool type_from_init, bool* is_new)
-{
-  source_location location = tid.location();
-
-  if (Gogo::is_sink_name(tid.name()))
-    {
-      if (!type_from_init && init != NULL)
-       {
-         if (!this->gogo_->in_global_scope())
-           this->gogo_->add_statement(Statement::make_statement(init));
-         else
-           {
-             // Create a dummy global variable to force the
-             // initializer to be run in the right place.
-             Variable* var = new Variable(type, init, true, false, false,
-                                          location);
-             static int count;
-             char buf[30];
-             snprintf(buf, sizeof buf, "_.%d", count);
-             ++count;
-             return this->gogo_->add_variable(buf, var);
-           }
-       }
-      return this->gogo_->add_sink();
-    }
-
-  if (is_coloneq)
-    {
-      Named_object* no = this->gogo_->lookup_in_block(tid.name());
-      if (no != NULL
-         && (no->is_variable() || no->is_result_variable()))
-       {
-         // INIT may be NULL even when IS_COLONEQ is true for cases
-         // like v, ok := x.(int).
-         if (!type_from_init && init != NULL)
-           {
-             Expression *v = Expression::make_var_reference(no, location);
-             Statement *s = Statement::make_assignment(v, init, location);
-             this->gogo_->add_statement(s);
-           }
-         return no;
-       }
-    }
-  *is_new = true;
-  Variable* var = new Variable(type, init, this->gogo_->in_global_scope(),
-                              false, false, location);
-  return this->gogo_->add_variable(tid.name(), var);
-}
-
-// SimpleVarDecl = identifier ":=" Expression .
-
-// We've already seen the identifier.
-
-// FIXME: We also have to implement
-//  IdentifierList ":=" ExpressionList
-// In order to support both "a, b := 1, 0" and "a, b = 1, 0" we accept
-// tuple assignments here as well.
-
-// If P_RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-// If P_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-void
-Parse::simple_var_decl_or_assignment(const std::string& name,
-                                    source_location location,
-                                    Range_clause* p_range_clause,
-                                    Type_switch* p_type_switch)
-{
-  Typed_identifier_list til;
-  til.push_back(Typed_identifier(name, NULL, location));
-
-  // We've seen one identifier.  If we see a comma now, this could be
-  // "a, *p = 1, 2".
-  if (this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      gcc_assert(p_type_switch == NULL);
-      while (true)
-       {
-         const Token* token = this->advance_token();
-         if (!token->is_identifier())
-           break;
-
-         std::string id = token->identifier();
-         bool is_id_exported = token->is_identifier_exported();
-         source_location id_location = token->location();
-
-         token = this->advance_token();
-         if (!token->is_op(OPERATOR_COMMA))
-           {
-             if (token->is_op(OPERATOR_COLONEQ))
-               {
-                 id = this->gogo_->pack_hidden_name(id, is_id_exported);
-                 til.push_back(Typed_identifier(id, NULL, location));
-               }
-             else
-               this->unget_token(Token::make_identifier_token(id,
-                                                              is_id_exported,
-                                                              id_location));
-             break;
-           }
-
-         id = this->gogo_->pack_hidden_name(id, is_id_exported);
-         til.push_back(Typed_identifier(id, NULL, location));
-       }
-
-      // We have a comma separated list of identifiers in TIL.  If the
-      // next token is COLONEQ, then this is a simple var decl, and we
-      // have the complete list of identifiers.  If the next token is
-      // not COLONEQ, then the only valid parse is a tuple assignment.
-      // The list of identifiers we have so far is really a list of
-      // expressions.  There are more expressions following.
-
-      if (!this->peek_token()->is_op(OPERATOR_COLONEQ))
-       {
-         Expression_list* exprs = new Expression_list;
-         for (Typed_identifier_list::const_iterator p = til.begin();
-              p != til.end();
-              ++p)
-           exprs->push_back(this->id_to_expression(p->name(),
-                                                   p->location()));
-
-         Expression_list* more_exprs = this->expression_list(NULL, true);
-         for (Expression_list::const_iterator p = more_exprs->begin();
-              p != more_exprs->end();
-              ++p)
-           exprs->push_back(*p);
-         delete more_exprs;
-
-         this->tuple_assignment(exprs, p_range_clause);
-         return;
-       }
-    }
-
-  gcc_assert(this->peek_token()->is_op(OPERATOR_COLONEQ));
-  const Token* token = this->advance_token();
-
-  if (p_range_clause != NULL && token->is_keyword(KEYWORD_RANGE))
-    {
-      this->range_clause_decl(&til, p_range_clause);
-      return;
-    }
-
-  Expression_list* init;
-  if (p_type_switch == NULL)
-    init = this->expression_list(NULL, false);
-  else
-    {
-      bool is_type_switch = false;
-      Expression* expr = this->expression(PRECEDENCE_NORMAL, false, true,
-                                         &is_type_switch);
-      if (is_type_switch)
-       {
-         p_type_switch->found = true;
-         p_type_switch->name = name;
-         p_type_switch->location = location;
-         p_type_switch->expr = expr;
-         return;
-       }
-
-      if (!this->peek_token()->is_op(OPERATOR_COMMA))
-       {
-         init = new Expression_list();
-         init->push_back(expr);
-       }
-      else
-       {
-         this->advance_token();
-         init = this->expression_list(expr, false);
-       }
-    }
-
-  this->init_vars(&til, NULL, init, true, location);
-}
-
-// FunctionDecl = "func" identifier Signature [ Block ] .
-// MethodDecl = "func" Receiver identifier Signature [ Block ] .
-
-// gcc extension:
-//   FunctionDecl = "func" identifier Signature
-//                    __asm__ "(" string_lit ")" .
-// This extension means a function whose real name is the identifier
-// inside the asm.
-
-void
-Parse::function_decl()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_FUNC));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-
-  Typed_identifier* rec = NULL;
-  if (token->is_op(OPERATOR_LPAREN))
-    {
-      rec = this->receiver();
-      token = this->peek_token();
-    }
-
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected function name");
-      return;
-    }
-
-  std::string name =
-    this->gogo_->pack_hidden_name(token->identifier(),
-                                 token->is_identifier_exported());
-
-  this->advance_token();
-
-  Function_type* fntype = this->signature(rec, this->location());
-
-  Named_object* named_object = NULL;
-
-  if (this->peek_token()->is_keyword(KEYWORD_ASM))
-    {
-      if (!this->advance_token()->is_op(OPERATOR_LPAREN))
-       {
-         error_at(this->location(), "expected %<(%>");
-         return;
-       }
-      token = this->advance_token();
-      if (!token->is_string())
-       {
-         error_at(this->location(), "expected string");
-         return;
-       }
-      std::string asm_name = token->string_value();
-      if (!this->advance_token()->is_op(OPERATOR_RPAREN))
-       {
-         error_at(this->location(), "expected %<)%>");
-         return;
-       }
-      this->advance_token();
-      named_object = this->gogo_->declare_function(name, fntype, location);
-      if (named_object->is_function_declaration())
-       named_object->func_declaration_value()->set_asm_name(asm_name);
-    }
-
-  // Check for the easy error of a newline before the opening brace.
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      source_location semi_loc = this->location();
-      if (this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(this->location(),
-                "unexpected semicolon or newline before %<{%>");
-      else
-       this->unget_token(Token::make_operator_token(OPERATOR_SEMICOLON,
-                                                    semi_loc));
-    }
-
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      if (named_object == NULL)
-       named_object = this->gogo_->declare_function(name, fntype, location);
-    }
-  else
-    {
-      this->gogo_->start_function(name, fntype, true, location);
-      source_location end_loc = this->block();
-      this->gogo_->finish_function(end_loc);
-    }
-}
-
-// Receiver     = "(" [ identifier ] [ "*" ] BaseTypeName ")" .
-// BaseTypeName = identifier .
-
-Typed_identifier*
-Parse::receiver()
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_LPAREN));
-
-  std::string name;
-  const Token* token = this->advance_token();
-  source_location location = token->location();
-  if (!token->is_op(OPERATOR_MULT))
-    {
-      if (!token->is_identifier())
-       {
-         error_at(this->location(), "method has no receiver");
-         while (!token->is_eof() && !token->is_op(OPERATOR_RPAREN))
-           token = this->advance_token();
-         if (!token->is_eof())
-           this->advance_token();
-         return NULL;
-       }
-      name = token->identifier();
-      bool is_exported = token->is_identifier_exported();
-      token = this->advance_token();
-      if (!token->is_op(OPERATOR_DOT) && !token->is_op(OPERATOR_RPAREN))
-       {
-         // An identifier followed by something other than a dot or a
-         // right parenthesis must be a receiver name followed by a
-         // type.
-         name = this->gogo_->pack_hidden_name(name, is_exported);
-       }
-      else
-       {
-         // This must be a type name.
-         this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                        location));
-         token = this->peek_token();
-         name.clear();
-       }
-    }
-
-  // Here the receiver name is in NAME (it is empty if the receiver is
-  // unnamed) and TOKEN is the first token in the type.
-
-  bool is_pointer = false;
-  if (token->is_op(OPERATOR_MULT))
-    {
-      is_pointer = true;
-      token = this->advance_token();
-    }
-
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected receiver name or type");
-      int c = token->is_op(OPERATOR_LPAREN) ? 1 : 0;
-      while (!token->is_eof())
-       {
-         token = this->advance_token();
-         if (token->is_op(OPERATOR_LPAREN))
-           ++c;
-         else if (token->is_op(OPERATOR_RPAREN))
-           {
-             if (c == 0)
-               break;
-             --c;
-           }
-       }
-      if (!token->is_eof())
-       this->advance_token();
-      return NULL;
-    }
-
-  Type* type = this->type_name(true);
-
-  if (is_pointer && !type->is_error_type())
-    type = Type::make_pointer_type(type);
-
-  if (this->peek_token()->is_op(OPERATOR_RPAREN))
-    this->advance_token();
-  else
-    {
-      if (this->peek_token()->is_op(OPERATOR_COMMA))
-       error_at(this->location(), "method has multiple receivers");
-      else
-       error_at(this->location(), "expected %<)%>");
-      while (!token->is_eof() && !token->is_op(OPERATOR_RPAREN))
-       token = this->advance_token();
-      if (!token->is_eof())
-       this->advance_token();
-      return NULL;
-    }
-
-  return new Typed_identifier(name, type, location);
-}
-
-// Operand    = Literal | QualifiedIdent | MethodExpr | "(" Expression ")" .
-// Literal    = BasicLit | CompositeLit | FunctionLit .
-// BasicLit   = int_lit | float_lit | imaginary_lit | char_lit | string_lit .
-
-// If MAY_BE_SINK is true, this operand may be "_".
-
-Expression*
-Parse::operand(bool may_be_sink)
-{
-  const Token* token = this->peek_token();
-  Expression* ret;
-  switch (token->classification())
-    {
-    case Token::TOKEN_IDENTIFIER:
-      {
-       source_location location = token->location();
-       std::string id = token->identifier();
-       bool is_exported = token->is_identifier_exported();
-       std::string packed = this->gogo_->pack_hidden_name(id, is_exported);
-
-       Named_object* in_function;
-       Named_object* named_object = this->gogo_->lookup(packed, &in_function);
-
-       Package* package = NULL;
-       if (named_object != NULL && named_object->is_package())
-         {
-           if (!this->advance_token()->is_op(OPERATOR_DOT)
-               || !this->advance_token()->is_identifier())
-             {
-               error_at(location, "unexpected reference to package");
-               return Expression::make_error(location);
-             }
-           package = named_object->package_value();
-           package->set_used();
-           id = this->peek_token()->identifier();
-           is_exported = this->peek_token()->is_identifier_exported();
-           packed = this->gogo_->pack_hidden_name(id, is_exported);
-           named_object = package->lookup(packed);
-           location = this->location();
-           gcc_assert(in_function == NULL);
-         }
-
-       this->advance_token();
-
-       if (named_object != NULL
-           && named_object->is_type()
-           && !named_object->type_value()->is_visible())
-         {
-           gcc_assert(package != NULL);
-           error_at(location, "invalid reference to hidden type %<%s.%s%>",
-                    Gogo::message_name(package->name()).c_str(),
-                    Gogo::message_name(id).c_str());
-           return Expression::make_error(location);
-         }
-
-
-       if (named_object == NULL)
-         {
-           if (package != NULL)
-             {
-               std::string n1 = Gogo::message_name(package->name());
-               std::string n2 = Gogo::message_name(id);
-               if (!is_exported)
-                 error_at(location,
-                          ("invalid reference to unexported identifier "
-                           "%<%s.%s%>"),
-                          n1.c_str(), n2.c_str());
-               else
-                 error_at(location,
-                          "reference to undefined identifier %<%s.%s%>",
-                          n1.c_str(), n2.c_str());
-               return Expression::make_error(location);
-             }
-
-           named_object = this->gogo_->add_unknown_name(packed, location);
-         }
-
-       if (in_function != NULL
-           && in_function != this->gogo_->current_function()
-           && (named_object->is_variable()
-               || named_object->is_result_variable()))
-         return this->enclosing_var_reference(in_function, named_object,
-                                              location);
-
-       switch (named_object->classification())
-         {
-         case Named_object::NAMED_OBJECT_CONST:
-           return Expression::make_const_reference(named_object, location);
-         case Named_object::NAMED_OBJECT_TYPE:
-           return Expression::make_type(named_object->type_value(), location);
-         case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-           {
-             Type* t = Type::make_forward_declaration(named_object);
-             return Expression::make_type(t, location);
-           }
-         case Named_object::NAMED_OBJECT_VAR:
-         case Named_object::NAMED_OBJECT_RESULT_VAR:
-           return Expression::make_var_reference(named_object, location);
-         case Named_object::NAMED_OBJECT_SINK:
-           if (may_be_sink)
-             return Expression::make_sink(location);
-           else
-             {
-               error_at(location, "cannot use _ as value");
-               return Expression::make_error(location);
-             }
-         case Named_object::NAMED_OBJECT_FUNC:
-         case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-           return Expression::make_func_reference(named_object, NULL,
-                                                  location);
-         case Named_object::NAMED_OBJECT_UNKNOWN:
-           return Expression::make_unknown_reference(named_object, location);
-         default:
-           gcc_unreachable();
-         }
-      }
-      gcc_unreachable();
-
-    case Token::TOKEN_STRING:
-      ret = Expression::make_string(token->string_value(), token->location());
-      this->advance_token();
-      return ret;
-
-    case Token::TOKEN_INTEGER:
-      ret = Expression::make_integer(token->integer_value(), NULL,
-                                    token->location());
-      this->advance_token();
-      return ret;
-
-    case Token::TOKEN_FLOAT:
-      ret = Expression::make_float(token->float_value(), NULL,
-                                  token->location());
-      this->advance_token();
-      return ret;
-
-    case Token::TOKEN_IMAGINARY:
-      {
-       mpfr_t zero;
-       mpfr_init_set_ui(zero, 0, GMP_RNDN);
-       ret = Expression::make_complex(&zero, token->imaginary_value(),
-                                      NULL, token->location());
-       mpfr_clear(zero);
-       this->advance_token();
-       return ret;
-      }
-
-    case Token::TOKEN_KEYWORD:
-      switch (token->keyword())
-       {
-       case KEYWORD_FUNC:
-         return this->function_lit();
-       case KEYWORD_CHAN:
-       case KEYWORD_INTERFACE:
-       case KEYWORD_MAP:
-       case KEYWORD_STRUCT:
-         {
-           source_location location = token->location();
-           return Expression::make_type(this->type(), location);
-         }
-       default:
-         break;
-       }
-      break;
-
-    case Token::TOKEN_OPERATOR:
-      if (token->is_op(OPERATOR_LPAREN))
-       {
-         this->advance_token();
-         ret = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-         if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           error_at(this->location(), "missing %<)%>");
-         else
-           this->advance_token();
-         return ret;
-       }
-      else if (token->is_op(OPERATOR_LSQUARE))
-       {
-         // Here we call array_type directly, as this is the only
-         // case where an ellipsis is permitted for an array type.
-         source_location location = token->location();
-         return Expression::make_type(this->array_type(true), location);
-       }
-      break;
-
-    default:
-      break;
-    }
-
-  error_at(this->location(), "expected operand");
-  return Expression::make_error(this->location());
-}
-
-// Handle a reference to a variable in an enclosing function.  We add
-// it to a list of such variables.  We return a reference to a field
-// in a struct which will be passed on the static chain when calling
-// the current function.
-
-Expression*
-Parse::enclosing_var_reference(Named_object* in_function, Named_object* var,
-                              source_location location)
-{
-  gcc_assert(var->is_variable() || var->is_result_variable());
-
-  Named_object* this_function = this->gogo_->current_function();
-  Named_object* closure = this_function->func_value()->closure_var();
-
-  Enclosing_var ev(var, in_function, this->enclosing_vars_.size());
-  std::pair<Enclosing_vars::iterator, bool> ins =
-    this->enclosing_vars_.insert(ev);
-  if (ins.second)
-    {
-      // This is a variable we have not seen before.  Add a new field
-      // to the closure type.
-      this_function->func_value()->add_closure_field(var, location);
-    }
-
-  Expression* closure_ref = Expression::make_var_reference(closure,
-                                                          location);
-  closure_ref = Expression::make_unary(OPERATOR_MULT, closure_ref, location);
-
-  // The closure structure holds pointers to the variables, so we need
-  // to introduce an indirection.
-  Expression* e = Expression::make_field_reference(closure_ref,
-                                                  ins.first->index(),
-                                                  location);
-  e = Expression::make_unary(OPERATOR_MULT, e, location);
-  return e;
-}
-
-// CompositeLit  = LiteralType LiteralValue .
-// LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
-//                 SliceType | MapType | TypeName .
-// LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
-// ElementList   = Element { "," Element } .
-// Element       = [ Key ":" ] Value .
-// Key           = Expression .
-// Value         = Expression | LiteralValue .
-
-// We have already seen the type if there is one, and we are now
-// looking at the LiteralValue.  The case "[" "..."  "]" ElementType
-// will be seen here as an array type whose length is "nil".  The
-// DEPTH parameter is non-zero if this is an embedded composite
-// literal and the type was omitted.  It gives the number of steps up
-// to the type which was provided.  E.g., in [][]int{{1}} it will be
-// 1.  In [][][]int{{{1}}} it will be 2.
-
-Expression*
-Parse::composite_lit(Type* type, int depth, source_location location)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_LCURLY));
-  this->advance_token();
-
-  if (this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      this->advance_token();
-      return Expression::make_composite_literal(type, depth, false, NULL,
-                                               location);
-    }
-
-  bool has_keys = false;
-  Expression_list* vals = new Expression_list;
-  while (true)
-    {
-      Expression* val;
-      bool is_type_omitted = false;
-
-      const Token* token = this->peek_token();
-
-      if (!token->is_op(OPERATOR_LCURLY))
-       val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      else
-       {
-         // This must be a composite literal inside another composite
-         // literal, with the type omitted for the inner one.
-         val = this->composite_lit(type, depth + 1, token->location());
-         is_type_omitted = true;
-       }
-
-      token = this->peek_token();
-      if (!token->is_op(OPERATOR_COLON))
-       {
-         if (has_keys)
-           vals->push_back(NULL);
-       }
-      else
-       {
-         if (is_type_omitted && !val->is_error_expression())
-           {
-             error_at(this->location(), "unexpected %<:%>");
-             val = Expression::make_error(this->location());
-           }
-
-         this->advance_token();
-
-         if (!has_keys && !vals->empty())
-           {
-             Expression_list* newvals = new Expression_list;
-             for (Expression_list::const_iterator p = vals->begin();
-                  p != vals->end();
-                  ++p)
-               {
-                 newvals->push_back(NULL);
-                 newvals->push_back(*p);
-               }
-             delete vals;
-             vals = newvals;
-           }
-         has_keys = true;
-
-         if (val->unknown_expression() != NULL)
-           val->unknown_expression()->set_is_composite_literal_key();
-
-         vals->push_back(val);
-
-         if (!token->is_op(OPERATOR_LCURLY))
-           val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-         else
-           {
-             // This must be a composite literal inside another
-             // composite literal, with the type omitted for the
-             // inner one.
-             val = this->composite_lit(type, depth + 1, token->location());
-           }
-
-         token = this->peek_token();
-       }
-
-      vals->push_back(val);
-
-      if (token->is_op(OPERATOR_COMMA))
-       {
-         if (this->advance_token()->is_op(OPERATOR_RCURLY))
-           {
-             this->advance_token();
-             break;
-           }
-       }
-      else if (token->is_op(OPERATOR_RCURLY))
-       {
-         this->advance_token();
-         break;
-       }
-      else
-       {
-         error_at(this->location(), "expected %<,%> or %<}%>");
-
-         int depth = 0;
-         while (!token->is_eof()
-                && (depth > 0 || !token->is_op(OPERATOR_RCURLY)))
-           {
-             if (token->is_op(OPERATOR_LCURLY))
-               ++depth;
-             else if (token->is_op(OPERATOR_RCURLY))
-               --depth;
-             token = this->advance_token();
-           }
-         if (token->is_op(OPERATOR_RCURLY))
-           this->advance_token();
-
-         return Expression::make_error(location);
-       }
-    }
-
-  return Expression::make_composite_literal(type, depth, has_keys, vals,
-                                           location);
-}
-
-// FunctionLit = "func" Signature Block .
-
-Expression*
-Parse::function_lit()
-{
-  source_location location = this->location();
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_FUNC));
-  this->advance_token();
-
-  Enclosing_vars hold_enclosing_vars;
-  hold_enclosing_vars.swap(this->enclosing_vars_);
-
-  Function_type* type = this->signature(NULL, location);
-
-  // For a function literal, the next token must be a '{'.  If we
-  // don't see that, then we may have a type expression.
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    return Expression::make_type(type, location);
-
-  Named_object* no = this->gogo_->start_function("", type, true, location);
-
-  source_location end_loc = this->block();
-
-  this->gogo_->finish_function(end_loc);
-
-  hold_enclosing_vars.swap(this->enclosing_vars_);
-
-  Expression* closure = this->create_closure(no, &hold_enclosing_vars,
-                                            location);
-
-  return Expression::make_func_reference(no, closure, location);
-}
-
-// Create a closure for the nested function FUNCTION.  This is based
-// on ENCLOSING_VARS, which is a list of all variables defined in
-// enclosing functions and referenced from FUNCTION.  A closure is the
-// address of a struct which contains the addresses of all the
-// referenced variables.  This returns NULL if no closure is required.
-
-Expression*
-Parse::create_closure(Named_object* function, Enclosing_vars* enclosing_vars,
-                     source_location location)
-{
-  if (enclosing_vars->empty())
-    return NULL;
-
-  // Get the variables in order by their field index.
-
-  size_t enclosing_var_count = enclosing_vars->size();
-  std::vector<Enclosing_var> ev(enclosing_var_count);
-  for (Enclosing_vars::const_iterator p = enclosing_vars->begin();
-       p != enclosing_vars->end();
-       ++p)
-    ev[p->index()] = *p;
-
-  // Build an initializer for a composite literal of the closure's
-  // type.
-
-  Named_object* enclosing_function = this->gogo_->current_function();
-  Expression_list* initializer = new Expression_list;
-  for (size_t i = 0; i < enclosing_var_count; ++i)
-    {
-      gcc_assert(ev[i].index() == i);
-      Named_object* var = ev[i].var();
-      Expression* ref;
-      if (ev[i].in_function() == enclosing_function)
-       ref = Expression::make_var_reference(var, location);
-      else
-       ref = this->enclosing_var_reference(ev[i].in_function(), var,
-                                           location);
-      Expression* refaddr = Expression::make_unary(OPERATOR_AND, ref,
-                                                  location);
-      initializer->push_back(refaddr);
-    }
-
-  Named_object* closure_var = function->func_value()->closure_var();
-  Struct_type* st = closure_var->var_value()->type()->deref()->struct_type();
-  Expression* cv = Expression::make_struct_composite_literal(st, initializer,
-                                                            location);
-  return Expression::make_heap_composite(cv, location);
-}
-
-// PrimaryExpr = Operand { Selector | Index | Slice | TypeGuard | Call } .
-
-// If MAY_BE_SINK is true, this expression may be "_".
-
-// If MAY_BE_COMPOSITE_LIT is true, this expression may be a composite
-// literal.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::primary_expr(bool may_be_sink, bool may_be_composite_lit,
-                   bool* is_type_switch)
-{
-  source_location start_loc = this->location();
-  bool is_parenthesized = this->peek_token()->is_op(OPERATOR_LPAREN);
-
-  Expression* ret = this->operand(may_be_sink);
-
-  // An unknown name followed by a curly brace must be a composite
-  // literal, and the unknown name must be a type.
-  if (may_be_composite_lit
-      && !is_parenthesized
-      && ret->unknown_expression() != NULL
-      && this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      Named_object* no = ret->unknown_expression()->named_object();
-      Type* type = Type::make_forward_declaration(no);
-      ret = Expression::make_type(type, ret->location());
-    }
-
-  // We handle composite literals and type casts here, as it is the
-  // easiest way to handle types which are in parentheses, as in
-  // "((uint))(1)".
-  if (ret->is_type_expression())
-    {
-      if (this->peek_token()->is_op(OPERATOR_LCURLY))
-       {
-         if (is_parenthesized)
-           error_at(start_loc,
-                    "cannot parenthesize type in composite literal");
-         ret = this->composite_lit(ret->type(), 0, ret->location());
-       }
-      else if (this->peek_token()->is_op(OPERATOR_LPAREN))
-       {
-         source_location loc = this->location();
-         this->advance_token();
-         Expression* expr = this->expression(PRECEDENCE_NORMAL, false, true,
-                                             NULL);
-         if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           error_at(this->location(), "expected %<)%>");
-         else
-           this->advance_token();
-         if (expr->is_error_expression())
-           return expr;
-         ret = Expression::make_cast(ret->type(), expr, loc);
-       }
-    }
-
-  while (true)
-    {
-      const Token* token = this->peek_token();
-      if (token->is_op(OPERATOR_LPAREN))
-       ret = this->call(this->verify_not_sink(ret));
-      else if (token->is_op(OPERATOR_DOT))
-       {
-         ret = this->selector(this->verify_not_sink(ret), is_type_switch);
-         if (is_type_switch != NULL && *is_type_switch)
-           break;
-       }
-      else if (token->is_op(OPERATOR_LSQUARE))
-       ret = this->index(this->verify_not_sink(ret));
-      else
-       break;
-    }
-
-  return ret;
-}
-
-// Selector = "." identifier .
-// TypeGuard = "." "(" QualifiedIdent ")" .
-
-// Note that Operand can expand to QualifiedIdent, which contains a
-// ".".  That is handled directly in operand when it sees a package
-// name.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::selector(Expression* left, bool* is_type_switch)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_DOT));
-  source_location location = this->location();
-
-  const Token* token = this->advance_token();
-  if (token->is_identifier())
-    {
-      // This could be a field in a struct, or a method in an
-      // interface, or a method associated with a type.  We can't know
-      // which until we have seen all the types.
-      std::string name =
-       this->gogo_->pack_hidden_name(token->identifier(),
-                                     token->is_identifier_exported());
-      if (token->identifier() == "_")
-       {
-         error_at(this->location(), "invalid use of %<_%>");
-         name = this->gogo_->pack_hidden_name("blank", false);
-       }
-      this->advance_token();
-      return Expression::make_selector(left, name, location);
-    }
-  else if (token->is_op(OPERATOR_LPAREN))
-    {
-      this->advance_token();
-      Type* type = NULL;
-      if (is_type_switch == NULL
-         || !this->peek_token()->is_keyword(KEYWORD_TYPE))
-       type = this->type();
-      else
-       {
-         *is_type_switch = true;
-         this->advance_token();
-       }
-      if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-       error_at(this->location(), "missing %<)%>");
-      else
-       this->advance_token();
-      if (is_type_switch != NULL && *is_type_switch)
-       return left;
-      return Expression::make_type_guard(left, type, location);
-    }
-  else
-    {
-      error_at(this->location(), "expected identifier or %<(%>");
-      return left;
-    }
-}
-
-// Index          = "[" Expression "]" .
-// Slice          = "[" Expression ":" [ Expression ] "]" .
-
-Expression*
-Parse::index(Expression* expr)
-{
-  source_location location = this->location();
-  gcc_assert(this->peek_token()->is_op(OPERATOR_LSQUARE));
-  this->advance_token();
-
-  Expression* start;
-  if (!this->peek_token()->is_op(OPERATOR_COLON))
-    start = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  else
-    {
-      mpz_t zero;
-      mpz_init_set_ui(zero, 0);
-      start = Expression::make_integer(&zero, NULL, location);
-      mpz_clear(zero);
-    }
-
-  Expression* end = NULL;
-  if (this->peek_token()->is_op(OPERATOR_COLON))
-    {
-      // We use nil to indicate a missing high expression.
-      if (this->advance_token()->is_op(OPERATOR_RSQUARE))
-       end = Expression::make_nil(this->location());
-      else
-       end = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-    }
-  if (!this->peek_token()->is_op(OPERATOR_RSQUARE))
-    error_at(this->location(), "missing %<]%>");
-  else
-    this->advance_token();
-  return Expression::make_index(expr, start, end, location);
-}
-
-// Call           = "(" [ ArgumentList [ "," ] ] ")" .
-// ArgumentList   = ExpressionList [ "..." ] .
-
-Expression*
-Parse::call(Expression* func)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_LPAREN));
-  Expression_list* args = NULL;
-  bool is_varargs = false;
-  const Token* token = this->advance_token();
-  if (!token->is_op(OPERATOR_RPAREN))
-    {
-      args = this->expression_list(NULL, false);
-      token = this->peek_token();
-      if (token->is_op(OPERATOR_ELLIPSIS))
-       {
-         is_varargs = true;
-         token = this->advance_token();
-       }
-    }
-  if (token->is_op(OPERATOR_COMMA))
-    token = this->advance_token();
-  if (!token->is_op(OPERATOR_RPAREN))
-    error_at(this->location(), "missing %<)%>");
-  else
-    this->advance_token();
-  if (func->is_error_expression())
-    return func;
-  return Expression::make_call(func, args, is_varargs, func->location());
-}
-
-// Return an expression for a single unqualified identifier.
-
-Expression*
-Parse::id_to_expression(const std::string& name, source_location location)
-{
-  Named_object* in_function;
-  Named_object* named_object = this->gogo_->lookup(name, &in_function);
-  if (named_object == NULL)
-    named_object = this->gogo_->add_unknown_name(name, location);
-
-  if (in_function != NULL
-      && in_function != this->gogo_->current_function()
-      && (named_object->is_variable() || named_object->is_result_variable()))
-    return this->enclosing_var_reference(in_function, named_object,
-                                        location);
-
-  switch (named_object->classification())
-    {
-    case Named_object::NAMED_OBJECT_CONST:
-      return Expression::make_const_reference(named_object, location);
-    case Named_object::NAMED_OBJECT_VAR:
-    case Named_object::NAMED_OBJECT_RESULT_VAR:
-      return Expression::make_var_reference(named_object, location);
-    case Named_object::NAMED_OBJECT_SINK:
-      return Expression::make_sink(location);
-    case Named_object::NAMED_OBJECT_FUNC:
-    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-      return Expression::make_func_reference(named_object, NULL, location);
-    case Named_object::NAMED_OBJECT_UNKNOWN:
-      return Expression::make_unknown_reference(named_object, location);
-    default:
-      error_at(this->location(), "unexpected type of identifier");
-      return Expression::make_error(location);
-    }
-}
-
-// Expression = UnaryExpr { binary_op Expression } .
-
-// PRECEDENCE is the precedence of the current operator.
-
-// If MAY_BE_SINK is true, this expression may be "_".
-
-// If MAY_BE_COMPOSITE_LIT is true, this expression may be a composite
-// literal.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::expression(Precedence precedence, bool may_be_sink,
-                 bool may_be_composite_lit, bool* is_type_switch)
-{
-  Expression* left = this->unary_expr(may_be_sink, may_be_composite_lit,
-                                     is_type_switch);
-
-  while (true)
-    {
-      if (is_type_switch != NULL && *is_type_switch)
-       return left;
-
-      const Token* token = this->peek_token();
-      if (token->classification() != Token::TOKEN_OPERATOR)
-       {
-         // Not a binary_op.
-         return left;
-       }
-
-      Precedence right_precedence;
-      switch (token->op())
-       {
-       case OPERATOR_OROR:
-         right_precedence = PRECEDENCE_OROR;
-         break;
-       case OPERATOR_ANDAND:
-         right_precedence = PRECEDENCE_ANDAND;
-         break;
-       case OPERATOR_CHANOP:
-         right_precedence = PRECEDENCE_CHANOP;
-         break;
-       case OPERATOR_EQEQ:
-       case OPERATOR_NOTEQ:
-       case OPERATOR_LT:
-       case OPERATOR_LE:
-       case OPERATOR_GT:
-       case OPERATOR_GE:
-         right_precedence = PRECEDENCE_RELOP;
-         break;
-       case OPERATOR_PLUS:
-       case OPERATOR_MINUS:
-       case OPERATOR_OR:
-       case OPERATOR_XOR:
-         right_precedence = PRECEDENCE_ADDOP;
-         break;
-       case OPERATOR_MULT:
-       case OPERATOR_DIV:
-       case OPERATOR_MOD:
-       case OPERATOR_LSHIFT:
-       case OPERATOR_RSHIFT:
-       case OPERATOR_AND:
-       case OPERATOR_BITCLEAR:
-         right_precedence = PRECEDENCE_MULOP;
-         break;
-       default:
-         right_precedence = PRECEDENCE_INVALID;
-         break;
-       }
-
-      if (right_precedence == PRECEDENCE_INVALID)
-       {
-         // Not a binary_op.
-         return left;
-       }
-
-      Operator op = token->op();
-      source_location binop_location = token->location();
-
-      if (precedence >= right_precedence)
-       {
-         // We've already seen A * B, and we see + C.  We want to
-         // return so that A * B becomes a group.
-         return left;
-       }
-
-      this->advance_token();
-
-      left = this->verify_not_sink(left);
-      Expression* right = this->expression(right_precedence, false,
-                                          may_be_composite_lit,
-                                          is_type_switch);
-      if (op == OPERATOR_CHANOP)
-       left = Expression::make_send(left, right, binop_location);
-      else
-       left = Expression::make_binary(op, left, right, binop_location);
-    }
-}
-
-bool
-Parse::expression_may_start_here()
-{
-  const Token* token = this->peek_token();
-  switch (token->classification())
-    {
-    case Token::TOKEN_INVALID:
-    case Token::TOKEN_EOF:
-      return false;
-    case Token::TOKEN_KEYWORD:
-      switch (token->keyword())
-       {
-       case KEYWORD_CHAN:
-       case KEYWORD_FUNC:
-       case KEYWORD_MAP:
-       case KEYWORD_STRUCT:
-       case KEYWORD_INTERFACE:
-         return true;
-       default:
-         return false;
-       }
-    case Token::TOKEN_IDENTIFIER:
-      return true;
-    case Token::TOKEN_STRING:
-      return true;
-    case Token::TOKEN_OPERATOR:
-      switch (token->op())
-       {
-       case OPERATOR_PLUS:
-       case OPERATOR_MINUS:
-       case OPERATOR_NOT:
-       case OPERATOR_XOR:
-       case OPERATOR_MULT:
-       case OPERATOR_CHANOP:
-       case OPERATOR_AND:
-       case OPERATOR_LPAREN:
-       case OPERATOR_LSQUARE:
-         return true;
-       default:
-         return false;
-       }
-    case Token::TOKEN_INTEGER:
-    case Token::TOKEN_FLOAT:
-    case Token::TOKEN_IMAGINARY:
-      return true;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// UnaryExpr = unary_op UnaryExpr | PrimaryExpr .
-
-// If MAY_BE_SINK is true, this expression may be "_".
-
-// If MAY_BE_COMPOSITE_LIT is true, this expression may be a composite
-// literal.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::unary_expr(bool may_be_sink, bool may_be_composite_lit,
-                 bool* is_type_switch)
-{
-  const Token* token = this->peek_token();
-  if (token->is_op(OPERATOR_PLUS)
-      || token->is_op(OPERATOR_MINUS)
-      || token->is_op(OPERATOR_NOT)
-      || token->is_op(OPERATOR_XOR)
-      || token->is_op(OPERATOR_CHANOP)
-      || token->is_op(OPERATOR_MULT)
-      || token->is_op(OPERATOR_AND))
-    {
-      source_location location = token->location();
-      Operator op = token->op();
-      this->advance_token();
-
-      if (op == OPERATOR_CHANOP
-         && this->peek_token()->is_keyword(KEYWORD_CHAN))
-       {
-         // This is "<- chan" which must be the start of a type.
-         this->unget_token(Token::make_operator_token(op, location));
-         return Expression::make_type(this->type(), location);
-       }
-
-      Expression* expr = this->unary_expr(false, may_be_composite_lit,
-                                         is_type_switch);
-      if (expr->is_error_expression())
-       ;
-      else if (op == OPERATOR_MULT && expr->is_type_expression())
-       expr = Expression::make_type(Type::make_pointer_type(expr->type()),
-                                    location);
-      else if (op == OPERATOR_AND && expr->is_composite_literal())
-       expr = Expression::make_heap_composite(expr, location);
-      else if (op != OPERATOR_CHANOP)
-       expr = Expression::make_unary(op, expr, location);
-      else
-       expr = Expression::make_receive(expr, location);
-      return expr;
-    }
-  else
-    return this->primary_expr(may_be_sink, may_be_composite_lit,
-                             is_type_switch);
-}
-
-// Statement =
-//     Declaration | LabeledStmt | SimpleStmt |
-//     GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
-//     FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
-//     DeferStmt .
-
-// LABEL is the label of this statement if it has one.
-
-void
-Parse::statement(const Label* label)
-{
-  const Token* token = this->peek_token();
-  switch (token->classification())
-    {
-    case Token::TOKEN_KEYWORD:
-      {
-       switch (token->keyword())
-         {
-         case KEYWORD_CONST:
-         case KEYWORD_TYPE:
-         case KEYWORD_VAR:
-           this->declaration();
-           break;
-         case KEYWORD_FUNC:
-         case KEYWORD_MAP:
-         case KEYWORD_STRUCT:
-         case KEYWORD_INTERFACE:
-           this->simple_stat(true, false, NULL, NULL);
-           break;
-         case KEYWORD_GO:
-         case KEYWORD_DEFER:
-           this->go_or_defer_stat();
-           break;
-         case KEYWORD_RETURN:
-           this->return_stat();
-           break;
-         case KEYWORD_BREAK:
-           this->break_stat();
-           break;
-         case KEYWORD_CONTINUE:
-           this->continue_stat();
-           break;
-         case KEYWORD_GOTO:
-           this->goto_stat();
-           break;
-         case KEYWORD_IF:
-           this->if_stat();
-           break;
-         case KEYWORD_SWITCH:
-           this->switch_stat(label);
-           break;
-         case KEYWORD_SELECT:
-           this->select_stat(label);
-           break;
-         case KEYWORD_FOR:
-           this->for_stat(label);
-           break;
-         default:
-           error_at(this->location(), "expected statement");
-           this->advance_token();
-           break;
-         }
-      }
-      break;
-
-    case Token::TOKEN_IDENTIFIER:
-      {
-       std::string identifier = token->identifier();
-       bool is_exported = token->is_identifier_exported();
-       source_location location = token->location();
-       if (this->advance_token()->is_op(OPERATOR_COLON))
-         {
-           this->advance_token();
-           this->labeled_stmt(identifier, location);
-         }
-       else
-         {
-           this->unget_token(Token::make_identifier_token(identifier,
-                                                          is_exported,
-                                                          location));
-           this->simple_stat(true, false, NULL, NULL);
-         }
-      }
-      break;
-
-    case Token::TOKEN_OPERATOR:
-      if (token->is_op(OPERATOR_LCURLY))
-       {
-         source_location location = token->location();
-         this->gogo_->start_block(location);
-         source_location end_loc = this->block();
-         this->gogo_->add_block(this->gogo_->finish_block(end_loc),
-                                location);
-       }
-      else if (!token->is_op(OPERATOR_SEMICOLON))
-       this->simple_stat(true, false, NULL, NULL);
-      break;
-
-    case Token::TOKEN_STRING:
-    case Token::TOKEN_INTEGER:
-    case Token::TOKEN_FLOAT:
-    case Token::TOKEN_IMAGINARY:
-      this->simple_stat(true, false, NULL, NULL);
-      break;
-
-    default:
-      error_at(this->location(), "expected statement");
-      this->advance_token();
-      break;
-    }
-}
-
-bool
-Parse::statement_may_start_here()
-{
-  const Token* token = this->peek_token();
-  switch (token->classification())
-    {
-    case Token::TOKEN_KEYWORD:
-      {
-       switch (token->keyword())
-         {
-         case KEYWORD_CONST:
-         case KEYWORD_TYPE:
-         case KEYWORD_VAR:
-         case KEYWORD_FUNC:
-         case KEYWORD_MAP:
-         case KEYWORD_STRUCT:
-         case KEYWORD_INTERFACE:
-         case KEYWORD_GO:
-         case KEYWORD_DEFER:
-         case KEYWORD_RETURN:
-         case KEYWORD_BREAK:
-         case KEYWORD_CONTINUE:
-         case KEYWORD_GOTO:
-         case KEYWORD_IF:
-         case KEYWORD_SWITCH:
-         case KEYWORD_SELECT:
-         case KEYWORD_FOR:
-           return true;
-
-         default:
-           return false;
-         }
-      }
-      break;
-
-    case Token::TOKEN_IDENTIFIER:
-      return true;
-
-    case Token::TOKEN_OPERATOR:
-      if (token->is_op(OPERATOR_LCURLY)
-         || token->is_op(OPERATOR_SEMICOLON))
-       return true;
-      else
-       return this->expression_may_start_here();
-
-    case Token::TOKEN_STRING:
-    case Token::TOKEN_INTEGER:
-    case Token::TOKEN_FLOAT:
-    case Token::TOKEN_IMAGINARY:
-      return true;
-
-    default:
-      return false;
-    }
-}
-
-// LabeledStmt = Label ":" Statement .
-// Label       = identifier .
-
-void
-Parse::labeled_stmt(const std::string& label_name, source_location location)
-{
-  Label* label = this->gogo_->add_label_definition(label_name, location);
-
-  if (this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      // This is a label at the end of a block.  A program is
-      // permitted to omit a semicolon here.
-      return;
-    }
-
-  if (!this->statement_may_start_here())
-    {
-      error_at(location, "missing statement after label");
-      this->unget_token(Token::make_operator_token(OPERATOR_SEMICOLON,
-                                                  location));
-      return;
-    }
-
-  this->statement(label);
-}
-
-// SimpleStat =
-//   ExpressionStat | IncDecStat | Assignment | SimpleVarDecl .
-
-// In order to make this work for if and switch statements, if
-// RETURN_EXP is true, and we see an ExpressionStat, we return the
-// expression rather than adding an expression statement to the
-// current block.  If we see something other than an ExpressionStat,
-// we add the statement and return NULL.
-
-// If P_RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-// If P_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::simple_stat(bool may_be_composite_lit, bool return_exp,
-                  Range_clause* p_range_clause, Type_switch* p_type_switch)
-{
-  const Token* token = this->peek_token();
-
-  // An identifier follow by := is a SimpleVarDecl.
-  if (token->is_identifier())
-    {
-      std::string identifier = token->identifier();
-      bool is_exported = token->is_identifier_exported();
-      source_location location = token->location();
-
-      token = this->advance_token();
-      if (token->is_op(OPERATOR_COLONEQ)
-         || token->is_op(OPERATOR_COMMA))
-       {
-         identifier = this->gogo_->pack_hidden_name(identifier, is_exported);
-         this->simple_var_decl_or_assignment(identifier, location,
-                                             p_range_clause,
-                                             (token->is_op(OPERATOR_COLONEQ)
-                                              ? p_type_switch
-                                              : NULL));
-         return NULL;
-       }
-
-      this->unget_token(Token::make_identifier_token(identifier, is_exported,
-                                                    location));
-    }
-
-  Expression* exp = this->expression(PRECEDENCE_NORMAL, true,
-                                    may_be_composite_lit,
-                                    (p_type_switch == NULL
-                                     ? NULL
-                                     : &p_type_switch->found));
-  if (p_type_switch != NULL && p_type_switch->found)
-    {
-      p_type_switch->name.clear();
-      p_type_switch->location = exp->location();
-      p_type_switch->expr = this->verify_not_sink(exp);
-      return NULL;
-    }
-  token = this->peek_token();
-  if (token->is_op(OPERATOR_PLUSPLUS) || token->is_op(OPERATOR_MINUSMINUS))
-    this->inc_dec_stat(this->verify_not_sink(exp));
-  else if (token->is_op(OPERATOR_COMMA)
-          || token->is_op(OPERATOR_EQ))
-    this->assignment(exp, p_range_clause);
-  else if (token->is_op(OPERATOR_PLUSEQ)
-          || token->is_op(OPERATOR_MINUSEQ)
-          || token->is_op(OPERATOR_OREQ)
-          || token->is_op(OPERATOR_XOREQ)
-          || token->is_op(OPERATOR_MULTEQ)
-          || token->is_op(OPERATOR_DIVEQ)
-          || token->is_op(OPERATOR_MODEQ)
-          || token->is_op(OPERATOR_LSHIFTEQ)
-          || token->is_op(OPERATOR_RSHIFTEQ)
-          || token->is_op(OPERATOR_ANDEQ)
-          || token->is_op(OPERATOR_BITCLEAREQ))
-    this->assignment(this->verify_not_sink(exp), p_range_clause);
-  else if (return_exp)
-    return this->verify_not_sink(exp);
-  else
-    this->expression_stat(this->verify_not_sink(exp));
-
-  return NULL;
-}
-
-bool
-Parse::simple_stat_may_start_here()
-{
-  return this->expression_may_start_here();
-}
-
-// Parse { Statement ";" } which is used in a few places.  The list of
-// statements may end with a right curly brace, in which case the
-// semicolon may be omitted.
-
-void
-Parse::statement_list()
-{
-  while (this->statement_may_start_here())
-    {
-      this->statement(NULL);
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      else if (this->peek_token()->is_op(OPERATOR_RCURLY))
-       break;
-      else
-       {
-         if (!this->peek_token()->is_eof() || !saw_errors())
-           error_at(this->location(), "expected %<;%> or %<}%> or newline");
-         if (!this->skip_past_error(OPERATOR_RCURLY))
-           return;
-       }
-    }
-}
-
-bool
-Parse::statement_list_may_start_here()
-{
-  return this->statement_may_start_here();
-}
-
-// ExpressionStat = Expression .
-
-void
-Parse::expression_stat(Expression* exp)
-{
-  exp->discarding_value();
-  this->gogo_->add_statement(Statement::make_statement(exp));
-}
-
-// IncDecStat = Expression ( "++" | "--" ) .
-
-void
-Parse::inc_dec_stat(Expression* exp)
-{
-  const Token* token = this->peek_token();
-
-  // Lvalue maps require special handling.
-  if (exp->index_expression() != NULL)
-    exp->index_expression()->set_is_lvalue();
-
-  if (token->is_op(OPERATOR_PLUSPLUS))
-    this->gogo_->add_statement(Statement::make_inc_statement(exp));
-  else if (token->is_op(OPERATOR_MINUSMINUS))
-    this->gogo_->add_statement(Statement::make_dec_statement(exp));
-  else
-    gcc_unreachable();
-  this->advance_token();
-}
-
-// Assignment = ExpressionList assign_op ExpressionList .
-
-// EXP is an expression that we have already parsed.
-
-// If RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-void
-Parse::assignment(Expression* expr, Range_clause* p_range_clause)
-{
-  Expression_list* vars;
-  if (!this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      vars = new Expression_list();
-      vars->push_back(expr);
-    }
-  else
-    {
-      this->advance_token();
-      vars = this->expression_list(expr, true);
-    }
-
-  this->tuple_assignment(vars, p_range_clause);
-}
-
-// An assignment statement.  LHS is the list of expressions which
-// appear on the left hand side.
-
-// If RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-void
-Parse::tuple_assignment(Expression_list* lhs, Range_clause* p_range_clause)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_op(OPERATOR_EQ)
-      && !token->is_op(OPERATOR_PLUSEQ)
-      && !token->is_op(OPERATOR_MINUSEQ)
-      && !token->is_op(OPERATOR_OREQ)
-      && !token->is_op(OPERATOR_XOREQ)
-      && !token->is_op(OPERATOR_MULTEQ)
-      && !token->is_op(OPERATOR_DIVEQ)
-      && !token->is_op(OPERATOR_MODEQ)
-      && !token->is_op(OPERATOR_LSHIFTEQ)
-      && !token->is_op(OPERATOR_RSHIFTEQ)
-      && !token->is_op(OPERATOR_ANDEQ)
-      && !token->is_op(OPERATOR_BITCLEAREQ))
-    {
-      error_at(this->location(), "expected assignment operator");
-      return;
-    }
-  Operator op = token->op();
-  source_location location = token->location();
-
-  token = this->advance_token();
-
-  if (p_range_clause != NULL && token->is_keyword(KEYWORD_RANGE))
-    {
-      if (op != OPERATOR_EQ)
-       error_at(this->location(), "range clause requires %<=%>");
-      this->range_clause_expr(lhs, p_range_clause);
-      return;
-    }
-
-  Expression_list* vals = this->expression_list(NULL, false);
-
-  // We've parsed everything; check for errors.
-  if (lhs == NULL || vals == NULL)
-    return;
-  for (Expression_list::const_iterator pe = lhs->begin();
-       pe != lhs->end();
-       ++pe)
-    {
-      if ((*pe)->is_error_expression())
-       return;
-      if (op != OPERATOR_EQ && (*pe)->is_sink_expression())
-       error_at((*pe)->location(), "cannot use _ as value");
-    }
-  for (Expression_list::const_iterator pe = vals->begin();
-       pe != vals->end();
-       ++pe)
-    {
-      if ((*pe)->is_error_expression())
-       return;
-    }
-
-  // Map expressions act differently when they are lvalues.
-  for (Expression_list::iterator plv = lhs->begin();
-       plv != lhs->end();
-       ++plv)
-    if ((*plv)->index_expression() != NULL)
-      (*plv)->index_expression()->set_is_lvalue();
-
-  Call_expression* call;
-  Index_expression* map_index;
-  Receive_expression* receive;
-  Type_guard_expression* type_guard;
-  if (lhs->size() == vals->size())
-    {
-      Statement* s;
-      if (lhs->size() > 1)
-       {
-         if (op != OPERATOR_EQ)
-           error_at(location, "multiple values only permitted with %<=%>");
-         s = Statement::make_tuple_assignment(lhs, vals, location);
-       }
-      else
-       {
-         if (op == OPERATOR_EQ)
-           s = Statement::make_assignment(lhs->front(), vals->front(),
-                                          location);
-         else
-           s = Statement::make_assignment_operation(op, lhs->front(),
-                                                    vals->front(), location);
-         delete lhs;
-         delete vals;
-       }
-      this->gogo_->add_statement(s);
-    }
-  else if (vals->size() == 1
-          && (call = (*vals->begin())->call_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "multiple results only permitted with %<=%>");
-      delete vals;
-      vals = new Expression_list;
-      for (unsigned int i = 0; i < lhs->size(); ++i)
-       vals->push_back(Expression::make_call_result(call, i));
-      Statement* s = Statement::make_tuple_assignment(lhs, vals, location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 2
-          && vals->size() == 1
-          && (map_index = (*vals->begin())->index_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "two values from map requires %<=%>");
-      Expression* val = lhs->front();
-      Expression* present = lhs->back();
-      Statement* s = Statement::make_tuple_map_assignment(val, present,
-                                                         map_index, location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 1
-          && vals->size() == 2
-          && (map_index = lhs->front()->index_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "assigning tuple to map index requires %<=%>");
-      Expression* val = vals->front();
-      Expression* should_set = vals->back();
-      Statement* s = Statement::make_map_assignment(map_index, val, should_set,
-                                                   location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 2
-          && vals->size() == 1
-          && (receive = (*vals->begin())->receive_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "two values from receive requires %<=%>");
-      Expression* val = lhs->front();
-      Expression* success = lhs->back();
-      Expression* channel = receive->channel();
-      Statement* s = Statement::make_tuple_receive_assignment(val, success,
-                                                             channel,
-                                                             location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 2
-          && vals->size() == 1
-          && (type_guard = (*vals->begin())->type_guard_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "two values from type guard requires %<=%>");
-      Expression* val = lhs->front();
-      Expression* ok = lhs->back();
-      Expression* expr = type_guard->expr();
-      Type* type = type_guard->type();
-      Statement* s = Statement::make_tuple_type_guard_assignment(val, ok,
-                                                                expr, type,
-                                                                location);
-      this->gogo_->add_statement(s);
-    }
-  else
-    {
-      error_at(location, "number of variables does not match number of values");
-    }
-}
-
-// GoStat = "go" Expression .
-// DeferStat = "defer" Expression .
-
-void
-Parse::go_or_defer_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_GO)
-            || this->peek_token()->is_keyword(KEYWORD_DEFER));
-  bool is_go = this->peek_token()->is_keyword(KEYWORD_GO);
-  source_location stat_location = this->location();
-  this->advance_token();
-  source_location expr_location = this->location();
-  Expression* expr = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  Call_expression* call_expr = expr->call_expression();
-  if (call_expr == NULL)
-    {
-      error_at(expr_location, "expected call expression");
-      return;
-    }
-
-  // Make it easier to simplify go/defer statements by putting every
-  // statement in its own block.
-  this->gogo_->start_block(stat_location);
-  Statement* stat;
-  if (is_go)
-    stat = Statement::make_go_statement(call_expr, stat_location);
-  else
-    stat = Statement::make_defer_statement(call_expr, stat_location);
-  this->gogo_->add_statement(stat);
-  this->gogo_->add_block(this->gogo_->finish_block(stat_location),
-                        stat_location);
-}
-
-// ReturnStat = "return" [ ExpressionList ] .
-
-void
-Parse::return_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_RETURN));
-  source_location location = this->location();
-  this->advance_token();
-  Expression_list* vals = NULL;
-  if (this->expression_may_start_here())
-    vals = this->expression_list(NULL, false);
-  const Function* function = this->gogo_->current_function()->func_value();
-  const Typed_identifier_list* results = function->type()->results();
-  this->gogo_->add_statement(Statement::make_return_statement(results, vals,
-                                                             location));
-}
-
-// IfStat = "if" [ [ SimpleStat ] ";" ] [ Condition ]
-//             Block [ "else" Statement ] .
-
-void
-Parse::if_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_IF));
-  source_location location = this->location();
-  this->advance_token();
-
-  this->gogo_->start_block(location);
-
-  Expression* cond = NULL;
-  if (this->simple_stat_may_start_here())
-    cond = this->simple_stat(false, true, NULL, NULL);
-  if (cond != NULL && this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      // The SimpleStat is an expression statement.
-      this->expression_stat(cond);
-      cond = NULL;
-    }
-  if (cond == NULL)
-    {
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-       cond = this->expression(PRECEDENCE_NORMAL, false, false, NULL);
-    }
-
-  this->gogo_->start_block(this->location());
-  source_location end_loc = this->block();
-  Block* then_block = this->gogo_->finish_block(end_loc);
-
-  // Check for the easy error of a newline before "else".
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      source_location semi_loc = this->location();
-      if (this->advance_token()->is_keyword(KEYWORD_ELSE))
-       error_at(this->location(),
-                "unexpected semicolon or newline before %<else%>");
-      else
-       this->unget_token(Token::make_operator_token(OPERATOR_SEMICOLON,
-                                                    semi_loc));
-    }
-
-  Block* else_block = NULL;
-  if (this->peek_token()->is_keyword(KEYWORD_ELSE))
-    {
-      this->advance_token();
-      // We create a block to gather the statement.
-      this->gogo_->start_block(this->location());
-      this->statement(NULL);
-      else_block = this->gogo_->finish_block(this->location());
-    }
-
-  this->gogo_->add_statement(Statement::make_if_statement(cond, then_block,
-                                                         else_block,
-                                                         location));
-
-  this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                        location);
-}
-
-// SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
-// ExprSwitchStmt = "switch" [ [ SimpleStat ] ";" ] [ Expression ]
-//                     "{" { ExprCaseClause } "}" .
-// TypeSwitchStmt  = "switch" [ [ SimpleStat ] ";" ] TypeSwitchGuard
-//                     "{" { TypeCaseClause } "}" .
-// TypeSwitchGuard = [ identifier ":=" ] Expression "." "(" "type" ")" .
-
-void
-Parse::switch_stat(const Label* label)
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_SWITCH));
-  source_location location = this->location();
-  this->advance_token();
-
-  this->gogo_->start_block(location);
-
-  Expression* switch_val = NULL;
-  Type_switch type_switch;
-  if (this->simple_stat_may_start_here())
-    switch_val = this->simple_stat(false, true, NULL, &type_switch);
-  if (switch_val != NULL && this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      // The SimpleStat is an expression statement.
-      this->expression_stat(switch_val);
-      switch_val = NULL;
-    }
-  if (switch_val == NULL && !type_switch.found)
-    {
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-       {
-         if (this->peek_token()->is_identifier())
-           {
-             const Token* token = this->peek_token();
-             std::string identifier = token->identifier();
-             bool is_exported = token->is_identifier_exported();
-             source_location id_loc = token->location();
-
-             token = this->advance_token();
-             bool is_coloneq = token->is_op(OPERATOR_COLONEQ);
-             this->unget_token(Token::make_identifier_token(identifier,
-                                                            is_exported,
-                                                            id_loc));
-             if (is_coloneq)
-               {
-                 // This must be a TypeSwitchGuard.
-                 switch_val = this->simple_stat(false, true, NULL,
-                                                &type_switch);
-                 if (!type_switch.found
-                     && !switch_val->is_error_expression())
-                   {
-                     error_at(id_loc, "expected type switch assignment");
-                     switch_val = Expression::make_error(id_loc);
-                   }
-               }
-           }
-         if (switch_val == NULL && !type_switch.found)
-           {
-             switch_val = this->expression(PRECEDENCE_NORMAL, false, false,
-                                           &type_switch.found);
-             if (type_switch.found)
-               {
-                 type_switch.name.clear();
-                 type_switch.expr = switch_val;
-                 type_switch.location = switch_val->location();
-               }
-           }
-       }
-    }
-
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                                location);
-         return;
-       }
-    }
-  this->advance_token();
-
-  Statement* statement;
-  if (type_switch.found)
-    statement = this->type_switch_body(label, type_switch, location);
-  else
-    statement = this->expr_switch_body(label, switch_val, location);
-
-  if (statement != NULL)
-    this->gogo_->add_statement(statement);
-
-  this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                        location);
-}
-
-// The body of an expression switch.
-//   "{" { ExprCaseClause } "}"
-
-Statement*
-Parse::expr_switch_body(const Label* label, Expression* switch_val,
-                       source_location location)
-{
-  Switch_statement* statement = Statement::make_switch_statement(switch_val,
-                                                                location);
-
-  this->push_break_statement(statement, label);
-
-  Case_clauses* case_clauses = new Case_clauses();
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      if (this->peek_token()->is_eof())
-       {
-         if (!saw_errors())
-           error_at(this->location(), "missing %<}%>");
-         return NULL;
-       }
-      this->expr_case_clause(case_clauses);
-    }
-  this->advance_token();
-
-  statement->add_clauses(case_clauses);
-
-  this->pop_break_statement();
-
-  return statement;
-}
-
-// ExprCaseClause = ExprSwitchCase ":" [ StatementList ] .
-// FallthroughStat = "fallthrough" .
-
-void
-Parse::expr_case_clause(Case_clauses* clauses)
-{
-  source_location location = this->location();
-
-  bool is_default = false;
-  Expression_list* vals = this->expr_switch_case(&is_default);
-
-  if (!this->peek_token()->is_op(OPERATOR_COLON))
-    {
-      if (!saw_errors())
-       error_at(this->location(), "expected %<:%>");
-      return;
-    }
-  else
-    this->advance_token();
-
-  Block* statements = NULL;
-  if (this->statement_list_may_start_here())
-    {
-      this->gogo_->start_block(this->location());
-      this->statement_list();
-      statements = this->gogo_->finish_block(this->location());
-    }
-
-  bool is_fallthrough = false;
-  if (this->peek_token()->is_keyword(KEYWORD_FALLTHROUGH))
-    {
-      is_fallthrough = true;
-      if (this->advance_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-    }
-
-  if (is_default || vals != NULL)
-    clauses->add(vals, is_default, statements, is_fallthrough, location);
-}
-
-// ExprSwitchCase = "case" ExpressionList | "default" .
-
-Expression_list*
-Parse::expr_switch_case(bool* is_default)
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_CASE))
-    {
-      this->advance_token();
-      return this->expression_list(NULL, false);
-    }
-  else if (token->is_keyword(KEYWORD_DEFAULT))
-    {
-      this->advance_token();
-      *is_default = true;
-      return NULL;
-    }
-  else
-    {
-      if (!saw_errors())
-       error_at(this->location(), "expected %<case%> or %<default%>");
-      if (!token->is_op(OPERATOR_RCURLY))
-       this->advance_token();
-      return NULL;
-    }
-}
-
-// The body of a type switch.
-//   "{" { TypeCaseClause } "}" .
-
-Statement*
-Parse::type_switch_body(const Label* label, const Type_switch& type_switch,
-                       source_location location)
-{
-  Named_object* switch_no = NULL;
-  if (!type_switch.name.empty())
-    {
-      Variable* switch_var = new Variable(NULL, type_switch.expr, false, false,
-                                         false, type_switch.location);
-      switch_no = this->gogo_->add_variable(type_switch.name, switch_var);
-    }
-
-  Type_switch_statement* statement =
-    Statement::make_type_switch_statement(switch_no,
-                                         (switch_no == NULL
-                                          ? type_switch.expr
-                                          : NULL),
-                                         location);
-
-  this->push_break_statement(statement, label);
-
-  Type_case_clauses* case_clauses = new Type_case_clauses();
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      if (this->peek_token()->is_eof())
-       {
-         error_at(this->location(), "missing %<}%>");
-         return NULL;
-       }
-      this->type_case_clause(switch_no, case_clauses);
-    }
-  this->advance_token();
-
-  statement->add_clauses(case_clauses);
-
-  this->pop_break_statement();
-
-  return statement;
-}
-
-// TypeCaseClause  = TypeSwitchCase ":" [ StatementList ] .
-
-void
-Parse::type_case_clause(Named_object* switch_no, Type_case_clauses* clauses)
-{
-  source_location location = this->location();
-
-  std::vector<Type*> types;
-  bool is_default = false;
-  this->type_switch_case(&types, &is_default);
-
-  if (!this->peek_token()->is_op(OPERATOR_COLON))
-    error_at(this->location(), "expected %<:%>");
-  else
-    this->advance_token();
-
-  Block* statements = NULL;
-  if (this->statement_list_may_start_here())
-    {
-      this->gogo_->start_block(this->location());
-      if (switch_no != NULL && types.size() == 1)
-       {
-         Type* type = types.front();
-         Expression* init = Expression::make_var_reference(switch_no,
-                                                           location);
-         init = Expression::make_type_guard(init, type, location);
-         Variable* v = new Variable(type, init, false, false, false,
-                                    location);
-         v->set_is_type_switch_var();
-         this->gogo_->add_variable(switch_no->name(), v);
-       }
-      this->statement_list();
-      statements = this->gogo_->finish_block(this->location());
-    }
-
-  if (this->peek_token()->is_keyword(KEYWORD_FALLTHROUGH))
-    {
-      error_at(this->location(),
-              "fallthrough is not permitted in a type switch");
-      if (this->advance_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-    }
-
-  if (is_default)
-    {
-      gcc_assert(types.empty());
-      clauses->add(NULL, false, true, statements, location);
-    }
-  else if (!types.empty())
-    {
-      for (std::vector<Type*>::const_iterator p = types.begin();
-          p + 1 != types.end();
-          ++p)
-       clauses->add(*p, true, false, NULL, location);
-      clauses->add(types.back(), false, false, statements, location);
-    }
-}
-
-// TypeSwitchCase  = "case" type | "default"
-
-// We accept a comma separated list of types.
-
-void
-Parse::type_switch_case(std::vector<Type*>* types, bool* is_default)
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_CASE))
-    {
-      this->advance_token();
-      while (true)
-       {
-         Type* t = this->type();
-         if (!t->is_error_type())
-           types->push_back(t);
-         if (!this->peek_token()->is_op(OPERATOR_COMMA))
-           break;
-         this->advance_token();
-       }
-    }
-  else if (token->is_keyword(KEYWORD_DEFAULT))
-    {
-      this->advance_token();
-      *is_default = true;
-    }
-  else
-    {
-      error_at(this->location(), "expected %<case%> or %<default%>");
-      if (!token->is_op(OPERATOR_RCURLY))
-       this->advance_token();
-    }
-}
-
-// SelectStat = "select" "{" { CommClause } "}" .
-
-void
-Parse::select_stat(const Label* label)
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_SELECT));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-
-  if (!token->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = token->location();
-      if (token->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return;
-       }
-    }
-  this->advance_token();
-
-  Select_statement* statement = Statement::make_select_statement(location);
-
-  this->push_break_statement(statement, label);
-
-  Select_clauses* select_clauses = new Select_clauses();
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      if (this->peek_token()->is_eof())
-       {
-         error_at(this->location(), "expected %<}%>");
-         return;
-       }
-      this->comm_clause(select_clauses);
-    }
-
-  this->advance_token();
-
-  statement->add_clauses(select_clauses);
-
-  this->pop_break_statement();
-
-  this->gogo_->add_statement(statement);
-}
-
-// CommClause = CommCase [ StatementList ] .
-
-void
-Parse::comm_clause(Select_clauses* clauses)
-{
-  source_location location = this->location();
-  bool is_send = false;
-  Expression* channel = NULL;
-  Expression* val = NULL;
-  std::string varname;
-  bool is_default = false;
-  bool got_case = this->comm_case(&is_send, &channel, &val, &varname,
-                                 &is_default);
-
-  Block* statements = NULL;
-  Named_object* var = NULL;
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    this->advance_token();
-  else if (this->statement_list_may_start_here())
-    {
-      this->gogo_->start_block(this->location());
-
-      if (!varname.empty())
-       {
-         // FIXME: LOCATION is slightly wrong here.
-         Variable* v = new Variable(NULL, channel, false, false, false,
-                                    location);
-         v->set_type_from_chan_element();
-         var = this->gogo_->add_variable(varname, v);
-       }
-
-      this->statement_list();
-      statements = this->gogo_->finish_block(this->location());
-    }
-
-  if (got_case)
-    clauses->add(is_send, channel, val, var, is_default, statements, location);
-}
-
-// CommCase = ( "default" | ( "case" ( SendExpr | RecvExpr) ) ) ":" .
-
-bool
-Parse::comm_case(bool* is_send, Expression** channel, Expression** val,
-                std::string* varname, bool* is_default)
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_DEFAULT))
-    {
-      this->advance_token();
-      *is_default = true;
-    }
-  else if (token->is_keyword(KEYWORD_CASE))
-    {
-      this->advance_token();
-      if (!this->send_or_recv_expr(is_send, channel, val, varname))
-       return false;
-    }
-  else
-    {
-      error_at(this->location(), "expected %<case%> or %<default%>");
-      if (!token->is_op(OPERATOR_RCURLY))
-       this->advance_token();
-      return false;
-    }
-
-  if (!this->peek_token()->is_op(OPERATOR_COLON))
-    {
-      error_at(this->location(), "expected colon");
-      return false;
-    }
-
-  this->advance_token();
-
-  return true;
-}
-
-// SendExpr = Expression "<-" Expression .
-// RecvExpr =  [ Expression ( "=" | ":=" ) ] "<-" Expression .
-
-bool
-Parse::send_or_recv_expr(bool* is_send, Expression** channel, Expression** val,
-                        std::string* varname)
-{
-  const Token* token = this->peek_token();
-  source_location location = token->location();
-  if (token->is_identifier())
-    {
-      std::string recv_var = token->identifier();
-      bool is_var_exported = token->is_identifier_exported();
-      if (!this->advance_token()->is_op(OPERATOR_COLONEQ))
-       this->unget_token(Token::make_identifier_token(recv_var,
-                                                      is_var_exported,
-                                                      location));
-      else
-       {
-         if (!this->advance_token()->is_op(OPERATOR_CHANOP))
-           {
-             error_at(this->location(), "expected %<<-%>");
-             return false;
-           }
-         *is_send = false;
-         *varname = this->gogo_->pack_hidden_name(recv_var, is_var_exported);
-         this->advance_token();
-         *channel = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-         return true;
-       }
-    }
-
-  if (this->peek_token()->is_op(OPERATOR_CHANOP))
-    {
-      *is_send = false;
-      this->advance_token();
-      *channel = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-    }
-  else
-    {
-      Expression* left = this->expression(PRECEDENCE_CHANOP, true, true, NULL);
-
-      if (this->peek_token()->is_op(OPERATOR_EQ))
-       {
-         if (!this->advance_token()->is_op(OPERATOR_CHANOP))
-           {
-             error_at(this->location(), "missing %<<-%>");
-             return false;
-           }
-         *is_send = false;
-         *val = left;
-         this->advance_token();
-         *channel = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-       }
-      else if (this->peek_token()->is_op(OPERATOR_CHANOP))
-       {
-         *is_send = true;
-         *channel = this->verify_not_sink(left);
-         this->advance_token();
-         *val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-       }
-      else
-       {
-         error_at(this->location(), "expected %<<-%> or %<=%>");
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// ForStat = "for" [ Condition | ForClause | RangeClause ] Block .
-// Condition = Expression .
-
-void
-Parse::for_stat(const Label* label)
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_FOR));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-
-  // Open a block to hold any variables defined in the init statement
-  // of the for statement.
-  this->gogo_->start_block(location);
-
-  Block* init = NULL;
-  Expression* cond = NULL;
-  Block* post = NULL;
-  Range_clause range_clause;
-
-  if (!token->is_op(OPERATOR_LCURLY))
-    {
-      if (token->is_keyword(KEYWORD_VAR))
-       {
-         error_at(this->location(),
-                  "var declaration not allowed in for initializer");
-         this->var_decl();
-       }
-
-      if (token->is_op(OPERATOR_SEMICOLON))
-       this->for_clause(&cond, &post);
-      else
-       {
-         // We might be looking at a Condition, an InitStat, or a
-         // RangeClause.
-         cond = this->simple_stat(false, true, &range_clause, NULL);
-         if (!this->peek_token()->is_op(OPERATOR_SEMICOLON))
-           {
-             if (cond == NULL && !range_clause.found)
-               error_at(this->location(), "parse error in for statement");
-           }
-         else
-           {
-             if (range_clause.found)
-               error_at(this->location(), "parse error after range clause");
-
-             if (cond != NULL)
-               {
-                 // COND is actually an expression statement for
-                 // InitStat at the start of a ForClause.
-                 this->expression_stat(cond);
-                 cond = NULL;
-               }
-
-             this->for_clause(&cond, &post);
-           }
-       }
-    }
-
-  // Build the For_statement and note that it is the current target
-  // for break and continue statements.
-
-  For_statement* sfor;
-  For_range_statement* srange;
-  Statement* s;
-  if (!range_clause.found)
-    {
-      sfor = Statement::make_for_statement(init, cond, post, location);
-      s = sfor;
-      srange = NULL;
-    }
-  else
-    {
-      srange = Statement::make_for_range_statement(range_clause.index,
-                                                  range_clause.value,
-                                                  range_clause.range,
-                                                  location);
-      s = srange;
-      sfor = NULL;
-    }
-
-  this->push_break_statement(s, label);
-  this->push_continue_statement(s, label);
-
-  // Gather the block of statements in the loop and add them to the
-  // For_statement.
-
-  this->gogo_->start_block(this->location());
-  source_location end_loc = this->block();
-  Block* statements = this->gogo_->finish_block(end_loc);
-
-  if (sfor != NULL)
-    sfor->add_statements(statements);
-  else
-    srange->add_statements(statements);
-
-  // This is no longer the break/continue target.
-  this->pop_break_statement();
-  this->pop_continue_statement();
-
-  // Add the For_statement to the list of statements, and close out
-  // the block we started to hold any variables defined in the for
-  // statement.
-
-  this->gogo_->add_statement(s);
-
-  this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                        location);
-}
-
-// ForClause = [ InitStat ] ";" [ Condition ] ";" [ PostStat ] .
-// InitStat = SimpleStat .
-// PostStat = SimpleStat .
-
-// We have already read InitStat at this point.
-
-void
-Parse::for_clause(Expression** cond, Block** post)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_SEMICOLON));
-  this->advance_token();
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    *cond = NULL;
-  else if (this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      error_at(this->location(),
-              "unexpected semicolon or newline before %<{%>");
-      *cond = NULL;
-      *post = NULL;
-      return;
-    }
-  else
-    *cond = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  if (!this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    error_at(this->location(), "expected semicolon");
-  else
-    this->advance_token();
-
-  if (this->peek_token()->is_op(OPERATOR_LCURLY))
-    *post = NULL;
-  else
-    {
-      this->gogo_->start_block(this->location());
-      this->simple_stat(false, false, NULL, NULL);
-      *post = this->gogo_->finish_block(this->location());
-    }
-}
-
-// RangeClause = IdentifierList ( "=" | ":=" ) "range" Expression .
-
-// This is the := version.  It is called with a list of identifiers.
-
-void
-Parse::range_clause_decl(const Typed_identifier_list* til,
-                        Range_clause* p_range_clause)
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_RANGE));
-  source_location location = this->location();
-
-  p_range_clause->found = true;
-
-  gcc_assert(til->size() >= 1);
-  if (til->size() > 2)
-    error_at(this->location(), "too many variables for range clause");
-
-  this->advance_token();
-  Expression* expr = this->expression(PRECEDENCE_NORMAL, false, false, NULL);
-  p_range_clause->range = expr;
-
-  bool any_new = false;
-
-  const Typed_identifier* pti = &til->front();
-  Named_object* no = this->init_var(*pti, NULL, expr, true, true, &any_new);
-  if (any_new && no->is_variable())
-    no->var_value()->set_type_from_range_index();
-  p_range_clause->index = Expression::make_var_reference(no, location);
-
-  if (til->size() == 1)
-    p_range_clause->value = NULL;
-  else
-    {
-      pti = &til->back();
-      bool is_new = false;
-      no = this->init_var(*pti, NULL, expr, true, true, &is_new);
-      if (is_new && no->is_variable())
-       no->var_value()->set_type_from_range_value();
-      if (is_new)
-       any_new = true;
-      p_range_clause->value = Expression::make_var_reference(no, location);
-    }
-
-  if (!any_new)
-    error_at(location, "variables redeclared but no variable is new");
-}
-
-// The = version of RangeClause.  This is called with a list of
-// expressions.
-
-void
-Parse::range_clause_expr(const Expression_list* vals,
-                        Range_clause* p_range_clause)
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_RANGE));
-
-  p_range_clause->found = true;
-
-  gcc_assert(vals->size() >= 1);
-  if (vals->size() > 2)
-    error_at(this->location(), "too many variables for range clause");
-
-  this->advance_token();
-  p_range_clause->range = this->expression(PRECEDENCE_NORMAL, false, false,
-                                          NULL);
-
-  p_range_clause->index = vals->front();
-  if (vals->size() == 1)
-    p_range_clause->value = NULL;
-  else
-    p_range_clause->value = vals->back();
-}
-
-// Push a statement on the break stack.
-
-void
-Parse::push_break_statement(Statement* enclosing, const Label* label)
-{
-  this->break_stack_.push_back(std::make_pair(enclosing, label));
-}
-
-// Push a statement on the continue stack.
-
-void
-Parse::push_continue_statement(Statement* enclosing, const Label* label)
-{
-  this->continue_stack_.push_back(std::make_pair(enclosing, label));
-}
-
-// Pop the break stack.
-
-void
-Parse::pop_break_statement()
-{
-  this->break_stack_.pop_back();
-}
-
-// Pop the continue stack.
-
-void
-Parse::pop_continue_statement()
-{
-  this->continue_stack_.pop_back();
-}
-
-// Find a break or continue statement given a label name.
-
-Statement*
-Parse::find_bc_statement(const Bc_stack* bc_stack, const std::string& label)
-{
-  for (Bc_stack::const_reverse_iterator p = bc_stack->rbegin();
-       p != bc_stack->rend();
-       ++p)
-    if (p->second != NULL && p->second->name() == label)
-      return p->first;
-  return NULL;
-}
-
-// BreakStat = "break" [ identifier ] .
-
-void
-Parse::break_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_BREAK));
-  source_location location = this->location();
-
-  const Token* token = this->advance_token();
-  Statement* enclosing;
-  if (!token->is_identifier())
-    {
-      if (this->break_stack_.empty())
-       {
-         error_at(this->location(),
-                  "break statement not within for or switch or select");
-         return;
-       }
-      enclosing = this->break_stack_.back().first;
-    }
-  else
-    {
-      enclosing = this->find_bc_statement(&this->break_stack_,
-                                         token->identifier());
-      if (enclosing == NULL)
-       {
-         error_at(token->location(),
-                  ("break label %qs not associated with "
-                   "for or switch or select"),
-                  Gogo::message_name(token->identifier()).c_str());
-         this->advance_token();
-         return;
-       }
-      this->advance_token();
-    }
-
-  Unnamed_label* label;
-  if (enclosing->classification() == Statement::STATEMENT_FOR)
-    label = enclosing->for_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_FOR_RANGE)
-    label = enclosing->for_range_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_SWITCH)
-    label = enclosing->switch_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_TYPE_SWITCH)
-    label = enclosing->type_switch_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_SELECT)
-    label = enclosing->select_statement()->break_label();
-  else
-    gcc_unreachable();
-
-  this->gogo_->add_statement(Statement::make_break_statement(label,
-                                                            location));
-}
-
-// ContinueStat = "continue" [ identifier ] .
-
-void
-Parse::continue_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_CONTINUE));
-  source_location location = this->location();
-
-  const Token* token = this->advance_token();
-  Statement* enclosing;
-  if (!token->is_identifier())
-    {
-      if (this->continue_stack_.empty())
-       {
-         error_at(this->location(), "continue statement not within for");
-         return;
-       }
-      enclosing = this->continue_stack_.back().first;
-    }
-  else
-    {
-      enclosing = this->find_bc_statement(&this->continue_stack_,
-                                         token->identifier());
-      if (enclosing == NULL)
-       {
-         error_at(token->location(),
-                  "continue label %qs not associated with for",
-                  Gogo::message_name(token->identifier()).c_str());
-         this->advance_token();
-         return;
-       }
-      this->advance_token();
-    }
-
-  Unnamed_label* label;
-  if (enclosing->classification() == Statement::STATEMENT_FOR)
-    label = enclosing->for_statement()->continue_label();
-  else if (enclosing->classification() == Statement::STATEMENT_FOR_RANGE)
-    label = enclosing->for_range_statement()->continue_label();
-  else
-    gcc_unreachable();
-
-  this->gogo_->add_statement(Statement::make_continue_statement(label,
-                                                               location));
-}
-
-// GotoStat = "goto" identifier .
-
-void
-Parse::goto_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_GOTO));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-  if (!token->is_identifier())
-    error_at(this->location(), "expected label for goto");
-  else
-    {
-      Label* label = this->gogo_->add_label_reference(token->identifier());
-      Statement* s = Statement::make_goto_statement(label, location);
-      this->gogo_->add_statement(s);
-      this->advance_token();
-    }
-}
-
-// PackageClause = "package" PackageName .
-
-void
-Parse::package_clause()
-{
-  const Token* token = this->peek_token();
-  source_location location = token->location();
-  std::string name;
-  if (!token->is_keyword(KEYWORD_PACKAGE))
-    {
-      error_at(this->location(), "program must start with package clause");
-      name = "ERROR";
-    }
-  else
-    {
-      token = this->advance_token();
-      if (token->is_identifier())
-       {
-         name = token->identifier();
-         if (name == "_")
-           {
-             error_at(this->location(), "invalid package name _");
-             name = "blank";
-           }
-         this->advance_token();
-       }
-      else
-       {
-         error_at(this->location(), "package name must be an identifier");
-         name = "ERROR";
-       }
-    }
-  this->gogo_->set_package_name(name, location);
-}
-
-// ImportDecl = "import" Decl<ImportSpec> .
-
-void
-Parse::import_decl()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_IMPORT));
-  this->advance_token();
-  this->decl(&Parse::import_spec, NULL);
-}
-
-// ImportSpec = [ "." | PackageName ] PackageFileName .
-
-void
-Parse::import_spec(void*)
-{
-  const Token* token = this->peek_token();
-  source_location location = token->location();
-
-  std::string local_name;
-  bool is_local_name_exported = false;
-  if (token->is_op(OPERATOR_DOT))
-    {
-      local_name = ".";
-      token = this->advance_token();
-    }
-  else if (token->is_identifier())
-    {
-      local_name = token->identifier();
-      is_local_name_exported = token->is_identifier_exported();
-      token = this->advance_token();
-    }
-
-  if (!token->is_string())
-    {
-      error_at(this->location(), "missing import package name");
-      return;
-    }
-
-  this->gogo_->import_package(token->string_value(), local_name,
-                             is_local_name_exported, location);
-
-  this->advance_token();
-}
-
-// SourceFile       = PackageClause ";" { ImportDecl ";" }
-//                     { TopLevelDecl ";" } .
-
-void
-Parse::program()
-{
-  this->package_clause();
-
-  const Token* token = this->peek_token();
-  if (token->is_op(OPERATOR_SEMICOLON))
-    token = this->advance_token();
-  else
-    error_at(this->location(),
-            "expected %<;%> or newline after package clause");
-
-  while (token->is_keyword(KEYWORD_IMPORT))
-    {
-      this->import_decl();
-      token = this->peek_token();
-      if (token->is_op(OPERATOR_SEMICOLON))
-       token = this->advance_token();
-      else
-       error_at(this->location(),
-                "expected %<;%> or newline after import declaration");
-    }
-
-  while (!token->is_eof())
-    {
-      if (this->declaration_may_start_here())
-       this->declaration();
-      else
-       {
-         error_at(this->location(), "expected declaration");
-         do
-           this->advance_token();
-         while (!this->peek_token()->is_eof()
-                && !this->peek_token()->is_op(OPERATOR_SEMICOLON)
-                && !this->peek_token()->is_op(OPERATOR_RCURLY));
-         if (!this->peek_token()->is_eof()
-             && !this->peek_token()->is_op(OPERATOR_SEMICOLON))
-           this->advance_token();
-       }
-      token = this->peek_token();
-      if (token->is_op(OPERATOR_SEMICOLON))
-       token = this->advance_token();
-      else if (!token->is_eof() || !saw_errors())
-       {
-         error_at(this->location(),
-                  "expected %<;%> or newline after top level declaration");
-         this->skip_past_error(OPERATOR_INVALID);
-       }
-    }
-}
-
-// Reset the current iota value.
-
-void
-Parse::reset_iota()
-{
-  this->iota_ = 0;
-}
-
-// Return the current iota value.
-
-int
-Parse::iota_value()
-{
-  return this->iota_;
-}
-
-// Increment the current iota value.
-
-void
-Parse::increment_iota()
-{
-  ++this->iota_;
-}
-
-// Skip forward to a semicolon or OP.  OP will normally be
-// OPERATOR_RPAREN or OPERATOR_RCURLY.  If we find a semicolon, move
-// past it and return.  If we find OP, it will be the next token to
-// read.  Return true if we are OK, false if we found EOF.
-
-bool
-Parse::skip_past_error(Operator op)
-{
-  const Token* token = this->peek_token();
-  while (!token->is_op(op))
-    {
-      if (token->is_eof())
-       return false;
-      if (token->is_op(OPERATOR_SEMICOLON))
-       {
-         this->advance_token();
-         return true;
-       }
-      token = this->advance_token();
-    }
-  return true;
-}
-
-// Check that an expression is not a sink.
-
-Expression*
-Parse::verify_not_sink(Expression* expr)
-{
-  if (expr->is_sink_expression())
-    {
-      error_at(expr->location(), "cannot use _ as value");
-      expr = Expression::make_error(expr->location());
-    }
-  return expr;
-}
diff --git a/gcc/go/gofrontend/parse.cc.merge-right.r172891 b/gcc/go/gofrontend/parse.cc.merge-right.r172891
deleted file mode 100644 (file)
index eeb4f5d..0000000
+++ /dev/null
@@ -1,5131 +0,0 @@
-// parse.cc -- Go frontend parser.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "lex.h"
-#include "gogo.h"
-#include "types.h"
-#include "statements.h"
-#include "expressions.h"
-#include "parse.h"
-
-// Struct Parse::Enclosing_var_comparison.
-
-// Return true if v1 should be considered to be less than v2.
-
-bool
-Parse::Enclosing_var_comparison::operator()(const Enclosing_var& v1,
-                                           const Enclosing_var& v2)
-{
-  if (v1.var() == v2.var())
-    return false;
-
-  const std::string& n1(v1.var()->name());
-  const std::string& n2(v2.var()->name());
-  int i = n1.compare(n2);
-  if (i < 0)
-    return true;
-  else if (i > 0)
-    return false;
-
-  // If we get here it means that a single nested function refers to
-  // two different variables defined in enclosing functions, and both
-  // variables have the same name.  I think this is impossible.
-  go_unreachable();
-}
-
-// Class Parse.
-
-Parse::Parse(Lex* lex, Gogo* gogo)
-  : lex_(lex),
-    token_(Token::make_invalid_token(0)),
-    unget_token_(Token::make_invalid_token(0)),
-    unget_token_valid_(false),
-    gogo_(gogo),
-    break_stack_(NULL),
-    continue_stack_(NULL),
-    iota_(0),
-    enclosing_vars_()
-{
-}
-
-// Return the current token.
-
-const Token*
-Parse::peek_token()
-{
-  if (this->unget_token_valid_)
-    return &this->unget_token_;
-  if (this->token_.is_invalid())
-    this->token_ = this->lex_->next_token();
-  return &this->token_;
-}
-
-// Advance to the next token and return it.
-
-const Token*
-Parse::advance_token()
-{
-  if (this->unget_token_valid_)
-    {
-      this->unget_token_valid_ = false;
-      if (!this->token_.is_invalid())
-       return &this->token_;
-    }
-  this->token_ = this->lex_->next_token();
-  return &this->token_;
-}
-
-// Push a token back on the input stream.
-
-void
-Parse::unget_token(const Token& token)
-{
-  go_assert(!this->unget_token_valid_);
-  this->unget_token_ = token;
-  this->unget_token_valid_ = true;
-}
-
-// The location of the current token.
-
-source_location
-Parse::location()
-{
-  return this->peek_token()->location();
-}
-
-// IdentifierList = identifier { "," identifier } .
-
-void
-Parse::identifier_list(Typed_identifier_list* til)
-{
-  const Token* token = this->peek_token();
-  while (true)
-    {
-      if (!token->is_identifier())
-       {
-         error_at(this->location(), "expected identifier");
-         return;
-       }
-      std::string name =
-       this->gogo_->pack_hidden_name(token->identifier(),
-                                     token->is_identifier_exported());
-      til->push_back(Typed_identifier(name, NULL, token->location()));
-      token = this->advance_token();
-      if (!token->is_op(OPERATOR_COMMA))
-       return;
-      token = this->advance_token();
-    }
-}
-
-// ExpressionList = Expression { "," Expression } .
-
-// If MAY_BE_SINK is true, the expressions in the list may be "_".
-
-Expression_list*
-Parse::expression_list(Expression* first, bool may_be_sink)
-{
-  Expression_list* ret = new Expression_list();
-  if (first != NULL)
-    ret->push_back(first);
-  while (true)
-    {
-      ret->push_back(this->expression(PRECEDENCE_NORMAL, may_be_sink, true,
-                                     NULL));
-
-      const Token* token = this->peek_token();
-      if (!token->is_op(OPERATOR_COMMA))
-       return ret;
-
-      // Most expression lists permit a trailing comma.
-      source_location location = token->location();
-      this->advance_token();
-      if (!this->expression_may_start_here())
-       {
-         this->unget_token(Token::make_operator_token(OPERATOR_COMMA,
-                                                      location));
-         return ret;
-       }
-    }
-}
-
-// QualifiedIdent = [ PackageName "." ] identifier .
-// PackageName = identifier .
-
-// This sets *PNAME to the identifier and sets *PPACKAGE to the
-// package or NULL if there isn't one.  This returns true on success,
-// false on failure in which case it will have emitted an error
-// message.
-
-bool
-Parse::qualified_ident(std::string* pname, Named_object** ppackage)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return false;
-    }
-
-  std::string name = token->identifier();
-  bool is_exported = token->is_identifier_exported();
-  name = this->gogo_->pack_hidden_name(name, is_exported);
-
-  token = this->advance_token();
-  if (!token->is_op(OPERATOR_DOT))
-    {
-      *pname = name;
-      *ppackage = NULL;
-      return true;
-    }
-
-  Named_object* package = this->gogo_->lookup(name, NULL);
-  if (package == NULL || !package->is_package())
-    {
-      error_at(this->location(), "expected package");
-      // We expect . IDENTIFIER; skip both.
-      if (this->advance_token()->is_identifier())
-       this->advance_token();
-      return false;
-    }
-
-  package->package_value()->set_used();
-
-  token = this->advance_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return false;
-    }
-
-  name = token->identifier();
-
-  if (name == "_")
-    {
-      error_at(this->location(), "invalid use of %<_%>");
-      name = "blank";
-    }
-
-  if (package->name() == this->gogo_->package_name())
-    name = this->gogo_->pack_hidden_name(name,
-                                        token->is_identifier_exported());
-
-  *pname = name;
-  *ppackage = package;
-
-  this->advance_token();
-
-  return true;
-}
-
-// Type = TypeName | TypeLit | "(" Type ")" .
-// TypeLit =
-//     ArrayType | StructType | PointerType | FunctionType | InterfaceType |
-//     SliceType | MapType | ChannelType .
-
-Type*
-Parse::type()
-{
-  const Token* token = this->peek_token();
-  if (token->is_identifier())
-    return this->type_name(true);
-  else if (token->is_op(OPERATOR_LSQUARE))
-    return this->array_type(false);
-  else if (token->is_keyword(KEYWORD_CHAN)
-          || token->is_op(OPERATOR_CHANOP))
-    return this->channel_type();
-  else if (token->is_keyword(KEYWORD_INTERFACE))
-    return this->interface_type();
-  else if (token->is_keyword(KEYWORD_FUNC))
-    {
-      source_location location = token->location();
-      this->advance_token();
-      Type* type = this->signature(NULL, location);
-      if (type == NULL)
-       return Type::make_error_type();
-      return type;
-    }
-  else if (token->is_keyword(KEYWORD_MAP))
-    return this->map_type();
-  else if (token->is_keyword(KEYWORD_STRUCT))
-    return this->struct_type();
-  else if (token->is_op(OPERATOR_MULT))
-    return this->pointer_type();
-  else if (token->is_op(OPERATOR_LPAREN))
-    {
-      this->advance_token();
-      Type* ret = this->type();
-      if (this->peek_token()->is_op(OPERATOR_RPAREN))
-       this->advance_token();
-      else
-       {
-         if (!ret->is_error_type())
-           error_at(this->location(), "expected %<)%>");
-       }
-      return ret;
-    }
-  else
-    {
-      error_at(token->location(), "expected type");
-      return Type::make_error_type();
-    }
-}
-
-bool
-Parse::type_may_start_here()
-{
-  const Token* token = this->peek_token();
-  return (token->is_identifier()
-         || token->is_op(OPERATOR_LSQUARE)
-         || token->is_op(OPERATOR_CHANOP)
-         || token->is_keyword(KEYWORD_CHAN)
-         || token->is_keyword(KEYWORD_INTERFACE)
-         || token->is_keyword(KEYWORD_FUNC)
-         || token->is_keyword(KEYWORD_MAP)
-         || token->is_keyword(KEYWORD_STRUCT)
-         || token->is_op(OPERATOR_MULT)
-         || token->is_op(OPERATOR_LPAREN));
-}
-
-// TypeName = QualifiedIdent .
-
-// If MAY_BE_NIL is true, then an identifier with the value of the
-// predefined constant nil is accepted, returning the nil type.
-
-Type*
-Parse::type_name(bool issue_error)
-{
-  source_location location = this->location();
-
-  std::string name;
-  Named_object* package;
-  if (!this->qualified_ident(&name, &package))
-    return Type::make_error_type();
-
-  Named_object* named_object;
-  if (package == NULL)
-    named_object = this->gogo_->lookup(name, NULL);
-  else
-    {
-      named_object = package->package_value()->lookup(name);
-      if (named_object == NULL
-         && issue_error
-         && package->name() != this->gogo_->package_name())
-       {
-         // Check whether the name is there but hidden.
-         std::string s = ('.' + package->package_value()->unique_prefix()
-                          + '.' + package->package_value()->name()
-                          + '.' + name);
-         named_object = package->package_value()->lookup(s);
-         if (named_object != NULL)
-           {
-             const std::string& packname(package->package_value()->name());
-             error_at(location, "invalid reference to hidden type %<%s.%s%>",
-                      Gogo::message_name(packname).c_str(),
-                      Gogo::message_name(name).c_str());
-             issue_error = false;
-           }
-       }
-    }
-
-  bool ok = true;
-  if (named_object == NULL)
-    {
-      if (package != NULL)
-       ok = false;
-      else
-       named_object = this->gogo_->add_unknown_name(name, location);
-    }
-  else if (named_object->is_type())
-    {
-      if (!named_object->type_value()->is_visible())
-       ok = false;
-    }
-  else if (named_object->is_unknown() || named_object->is_type_declaration())
-    ;
-  else
-    ok = false;
-
-  if (!ok)
-    {
-      if (issue_error)
-       error_at(location, "expected type");
-      return Type::make_error_type();
-    }
-
-  if (named_object->is_type())
-    return named_object->type_value();
-  else if (named_object->is_unknown() || named_object->is_type_declaration())
-    return Type::make_forward_declaration(named_object);
-  else
-    go_unreachable();
-}
-
-// ArrayType = "[" [ ArrayLength ] "]" ElementType .
-// ArrayLength = Expression .
-// ElementType = CompleteType .
-
-Type*
-Parse::array_type(bool may_use_ellipsis)
-{
-  go_assert(this->peek_token()->is_op(OPERATOR_LSQUARE));
-  const Token* token = this->advance_token();
-
-  Expression* length = NULL;
-  if (token->is_op(OPERATOR_RSQUARE))
-    this->advance_token();
-  else
-    {
-      if (!token->is_op(OPERATOR_ELLIPSIS))
-       length = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      else if (may_use_ellipsis)
-       {
-         // An ellipsis is used in composite literals to represent a
-         // fixed array of the size of the number of elements.  We
-         // use a length of nil to represent this, and change the
-         // length when parsing the composite literal.
-         length = Expression::make_nil(this->location());
-         this->advance_token();
-       }
-      else
-       {
-         error_at(this->location(),
-                  "use of %<[...]%> outside of array literal");
-         length = Expression::make_error(this->location());
-         this->advance_token();
-       }
-      if (!this->peek_token()->is_op(OPERATOR_RSQUARE))
-       {
-         error_at(this->location(), "expected %<]%>");
-         return Type::make_error_type();
-       }
-      this->advance_token();
-    }
-
-  Type* element_type = this->type();
-
-  return Type::make_array_type(element_type, length);
-}
-
-// MapType = "map" "[" KeyType "]" ValueType .
-// KeyType = CompleteType .
-// ValueType = CompleteType .
-
-Type*
-Parse::map_type()
-{
-  source_location location = this->location();
-  go_assert(this->peek_token()->is_keyword(KEYWORD_MAP));
-  if (!this->advance_token()->is_op(OPERATOR_LSQUARE))
-    {
-      error_at(this->location(), "expected %<[%>");
-      return Type::make_error_type();
-    }
-  this->advance_token();
-
-  Type* key_type = this->type();
-
-  if (!this->peek_token()->is_op(OPERATOR_RSQUARE))
-    {
-      error_at(this->location(), "expected %<]%>");
-      return Type::make_error_type();
-    }
-  this->advance_token();
-
-  Type* value_type = this->type();
-
-  if (key_type->is_error_type() || value_type->is_error_type())
-    return Type::make_error_type();
-
-  return Type::make_map_type(key_type, value_type, location);
-}
-
-// StructType     = "struct" "{" { FieldDecl ";" } "}" .
-
-Type*
-Parse::struct_type()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_STRUCT));
-  source_location location = this->location();
-  if (!this->advance_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return Type::make_error_type();
-       }
-    }
-  this->advance_token();
-
-  Struct_field_list* sfl = new Struct_field_list;
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      this->field_decl(sfl);
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      else if (!this->peek_token()->is_op(OPERATOR_RCURLY))
-       {
-         error_at(this->location(), "expected %<;%> or %<}%> or newline");
-         if (!this->skip_past_error(OPERATOR_RCURLY))
-           return Type::make_error_type();
-       }
-    }
-  this->advance_token();
-
-  for (Struct_field_list::const_iterator pi = sfl->begin();
-       pi != sfl->end();
-       ++pi)
-    {
-      if (pi->type()->is_error_type())
-       return pi->type();
-      for (Struct_field_list::const_iterator pj = pi + 1;
-          pj != sfl->end();
-          ++pj)
-       {
-         if (pi->field_name() == pj->field_name()
-             && !Gogo::is_sink_name(pi->field_name()))
-           error_at(pi->location(), "duplicate field name %<%s%>",
-                    Gogo::message_name(pi->field_name()).c_str());
-       }
-    }
-
-  return Type::make_struct_type(sfl, location);
-}
-
-// FieldDecl = (IdentifierList CompleteType | TypeName) [ Tag ] .
-// Tag = string_lit .
-
-void
-Parse::field_decl(Struct_field_list* sfl)
-{
-  const Token* token = this->peek_token();
-  source_location location = token->location();
-  bool is_anonymous;
-  bool is_anonymous_pointer;
-  if (token->is_op(OPERATOR_MULT))
-    {
-      is_anonymous = true;
-      is_anonymous_pointer = true;
-    }
-  else if (token->is_identifier())
-    {
-      std::string id = token->identifier();
-      bool is_id_exported = token->is_identifier_exported();
-      source_location id_location = token->location();
-      token = this->advance_token();
-      is_anonymous = (token->is_op(OPERATOR_SEMICOLON)
-                     || token->is_op(OPERATOR_RCURLY)
-                     || token->is_op(OPERATOR_DOT)
-                     || token->is_string());
-      is_anonymous_pointer = false;
-      this->unget_token(Token::make_identifier_token(id, is_id_exported,
-                                                    id_location));
-    }
-  else
-    {
-      error_at(this->location(), "expected field name");
-      while (!token->is_op(OPERATOR_SEMICOLON)
-            && !token->is_op(OPERATOR_RCURLY)
-            && !token->is_eof())
-       token = this->advance_token();
-      return;
-    }
-
-  if (is_anonymous)
-    {
-      if (is_anonymous_pointer)
-       {
-         this->advance_token();
-         if (!this->peek_token()->is_identifier())
-           {
-             error_at(this->location(), "expected field name");
-             while (!token->is_op(OPERATOR_SEMICOLON)
-                    && !token->is_op(OPERATOR_RCURLY)
-                    && !token->is_eof())
-               token = this->advance_token();
-             return;
-           }
-       }
-      Type* type = this->type_name(true);
-
-      std::string tag;
-      if (this->peek_token()->is_string())
-       {
-         tag = this->peek_token()->string_value();
-         this->advance_token();
-       }
-
-      if (!type->is_error_type())
-       {
-         if (is_anonymous_pointer)
-           type = Type::make_pointer_type(type);
-         sfl->push_back(Struct_field(Typed_identifier("", type, location)));
-         if (!tag.empty())
-           sfl->back().set_tag(tag);
-       }
-    }
-  else
-    {
-      Typed_identifier_list til;
-      while (true)
-       {
-         token = this->peek_token();
-         if (!token->is_identifier())
-           {
-             error_at(this->location(), "expected identifier");
-             return;
-           }
-         std::string name =
-           this->gogo_->pack_hidden_name(token->identifier(),
-                                         token->is_identifier_exported());
-         til.push_back(Typed_identifier(name, NULL, token->location()));
-         if (!this->advance_token()->is_op(OPERATOR_COMMA))
-           break;
-         this->advance_token();
-       }
-
-      Type* type = this->type();
-
-      std::string tag;
-      if (this->peek_token()->is_string())
-       {
-         tag = this->peek_token()->string_value();
-         this->advance_token();
-       }
-
-      for (Typed_identifier_list::iterator p = til.begin();
-          p != til.end();
-          ++p)
-       {
-         p->set_type(type);
-         sfl->push_back(Struct_field(*p));
-         if (!tag.empty())
-           sfl->back().set_tag(tag);
-       }
-    }
-}
-
-// PointerType = "*" Type .
-
-Type*
-Parse::pointer_type()
-{
-  go_assert(this->peek_token()->is_op(OPERATOR_MULT));
-  this->advance_token();
-  Type* type = this->type();
-  if (type->is_error_type())
-    return type;
-  return Type::make_pointer_type(type);
-}
-
-// ChannelType   = Channel | SendChannel | RecvChannel .
-// Channel       = "chan" ElementType .
-// SendChannel   = "chan" "<-" ElementType .
-// RecvChannel   = "<-" "chan" ElementType .
-
-Type*
-Parse::channel_type()
-{
-  const Token* token = this->peek_token();
-  bool send = true;
-  bool receive = true;
-  if (token->is_op(OPERATOR_CHANOP))
-    {
-      if (!this->advance_token()->is_keyword(KEYWORD_CHAN))
-       {
-         error_at(this->location(), "expected %<chan%>");
-         return Type::make_error_type();
-       }
-      send = false;
-      this->advance_token();
-    }
-  else
-    {
-      go_assert(token->is_keyword(KEYWORD_CHAN));
-      if (this->advance_token()->is_op(OPERATOR_CHANOP))
-       {
-         receive = false;
-         this->advance_token();
-       }
-    }
-
-  // Better error messages for the common error of omitting the
-  // channel element type.
-  if (!this->type_may_start_here())
-    {
-      token = this->peek_token();
-      if (token->is_op(OPERATOR_RCURLY))
-       error_at(this->location(), "unexpected %<}%> in channel type");
-      else if (token->is_op(OPERATOR_RPAREN))
-       error_at(this->location(), "unexpected %<)%> in channel type");
-      else if (token->is_op(OPERATOR_COMMA))
-       error_at(this->location(), "unexpected comma in channel type");
-      else
-       error_at(this->location(), "expected channel element type");
-      return Type::make_error_type();
-    }
-
-  Type* element_type = this->type();
-  return Type::make_channel_type(send, receive, element_type);
-}
-
-// Signature      = Parameters [ Result ] .
-
-// RECEIVER is the receiver if there is one, or NULL.  LOCATION is the
-// location of the start of the type.
-
-// This returns NULL on a parse error.
-
-Function_type*
-Parse::signature(Typed_identifier* receiver, source_location location)
-{
-  bool is_varargs = false;
-  Typed_identifier_list* params;
-  bool params_ok = this->parameters(&params, &is_varargs);
-
-  Typed_identifier_list* result = NULL;
-  if (this->peek_token()->is_op(OPERATOR_LPAREN)
-      || this->type_may_start_here())
-    {
-      if (!this->result(&result))
-       return NULL;
-    }
-
-  if (!params_ok)
-    return NULL;
-
-  Function_type* ret = Type::make_function_type(receiver, params, result,
-                                               location);
-  if (is_varargs)
-    ret->set_is_varargs();
-  return ret;
-}
-
-// Parameters     = "(" [ ParameterList [ "," ] ] ")" .
-
-// This returns false on a parse error.
-
-bool
-Parse::parameters(Typed_identifier_list** pparams, bool* is_varargs)
-{
-  *pparams = NULL;
-
-  if (!this->peek_token()->is_op(OPERATOR_LPAREN))
-    {
-      error_at(this->location(), "expected %<(%>");
-      return false;
-    }
-
-  Typed_identifier_list* params = NULL;
-  bool saw_error = false;
-
-  const Token* token = this->advance_token();
-  if (!token->is_op(OPERATOR_RPAREN))
-    {
-      params = this->parameter_list(is_varargs);
-      if (params == NULL)
-       saw_error = true;
-      token = this->peek_token();
-    }
-
-  // The optional trailing comma is picked up in parameter_list.
-
-  if (!token->is_op(OPERATOR_RPAREN))
-    error_at(this->location(), "expected %<)%>");
-  else
-    this->advance_token();
-
-  if (saw_error)
-    return false;
-
-  *pparams = params;
-  return true;
-}
-
-// ParameterList  = ParameterDecl { "," ParameterDecl } .
-
-// This sets *IS_VARARGS if the list ends with an ellipsis.
-// IS_VARARGS will be NULL if varargs are not permitted.
-
-// We pick up an optional trailing comma.
-
-// This returns NULL if some error is seen.
-
-Typed_identifier_list*
-Parse::parameter_list(bool* is_varargs)
-{
-  source_location location = this->location();
-  Typed_identifier_list* ret = new Typed_identifier_list();
-
-  bool saw_error = false;
-
-  // If we see an identifier and then a comma, then we don't know
-  // whether we are looking at a list of identifiers followed by a
-  // type, or a list of types given by name.  We have to do an
-  // arbitrary lookahead to figure it out.
-
-  bool parameters_have_names;
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      // This must be a type which starts with something like '*'.
-      parameters_have_names = false;
-    }
-  else
-    {
-      std::string name = token->identifier();
-      bool is_exported = token->is_identifier_exported();
-      source_location location = token->location();
-      token = this->advance_token();
-      if (!token->is_op(OPERATOR_COMMA))
-       {
-         if (token->is_op(OPERATOR_DOT))
-           {
-             // This is a qualified identifier, which must turn out
-             // to be a type.
-             parameters_have_names = false;
-           }
-         else if (token->is_op(OPERATOR_RPAREN))
-           {
-             // A single identifier followed by a parenthesis must be
-             // a type name.
-             parameters_have_names = false;
-           }
-         else
-           {
-             // An identifier followed by something other than a
-             // comma or a dot or a right parenthesis must be a
-             // parameter name followed by a type.
-             parameters_have_names = true;
-           }
-
-         this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                        location));
-       }
-      else
-       {
-         // An identifier followed by a comma may be the first in a
-         // list of parameter names followed by a type, or it may be
-         // the first in a list of types without parameter names.  To
-         // find out we gather as many identifiers separated by
-         // commas as we can.
-         std::string id_name = this->gogo_->pack_hidden_name(name,
-                                                             is_exported);
-         ret->push_back(Typed_identifier(id_name, NULL, location));
-         bool just_saw_comma = true;
-         while (this->advance_token()->is_identifier())
-           {
-             name = this->peek_token()->identifier();
-             is_exported = this->peek_token()->is_identifier_exported();
-             location = this->peek_token()->location();
-             id_name = this->gogo_->pack_hidden_name(name, is_exported);
-             ret->push_back(Typed_identifier(id_name, NULL, location));
-             if (!this->advance_token()->is_op(OPERATOR_COMMA))
-               {
-                 just_saw_comma = false;
-                 break;
-               }
-           }
-
-         if (just_saw_comma)
-           {
-             // We saw ID1 "," ID2 "," followed by something which
-             // was not an identifier.  We must be seeing the start
-             // of a type, and ID1 and ID2 must be types, and the
-             // parameters don't have names.
-             parameters_have_names = false;
-           }
-         else if (this->peek_token()->is_op(OPERATOR_RPAREN))
-           {
-             // We saw ID1 "," ID2 ")".  ID1 and ID2 must be types,
-             // and the parameters don't have names.
-             parameters_have_names = false;
-           }
-         else if (this->peek_token()->is_op(OPERATOR_DOT))
-           {
-             // We saw ID1 "," ID2 ".".  ID2 must be a package name,
-             // ID1 must be a type, and the parameters don't have
-             // names.
-             parameters_have_names = false;
-             this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                            location));
-             ret->pop_back();
-             just_saw_comma = true;
-           }
-         else
-           {
-             // We saw ID1 "," ID2 followed by something other than
-             // ",", ".", or ")".  We must be looking at the start of
-             // a type, and ID1 and ID2 must be parameter names.
-             parameters_have_names = true;
-           }
-
-         if (parameters_have_names)
-           {
-             go_assert(!just_saw_comma);
-             // We have just seen ID1, ID2 xxx.
-             Type* type;
-             if (!this->peek_token()->is_op(OPERATOR_ELLIPSIS))
-               type = this->type();
-             else
-               {
-                 error_at(this->location(), "%<...%> only permits one name");
-                 saw_error = true;
-                 this->advance_token();
-                 type = this->type();
-               }
-             for (size_t i = 0; i < ret->size(); ++i)
-               ret->set_type(i, type);
-             if (!this->peek_token()->is_op(OPERATOR_COMMA))
-               return saw_error ? NULL : ret;
-             if (this->advance_token()->is_op(OPERATOR_RPAREN))
-               return saw_error ? NULL : ret;
-           }
-         else
-           {
-             Typed_identifier_list* tret = new Typed_identifier_list();
-             for (Typed_identifier_list::const_iterator p = ret->begin();
-                  p != ret->end();
-                  ++p)
-               {
-                 Named_object* no = this->gogo_->lookup(p->name(), NULL);
-                 Type* type;
-                 if (no == NULL)
-                   no = this->gogo_->add_unknown_name(p->name(),
-                                                      p->location());
-
-                 if (no->is_type())
-                   type = no->type_value();
-                 else if (no->is_unknown() || no->is_type_declaration())
-                   type = Type::make_forward_declaration(no);
-                 else
-                   {
-                     error_at(p->location(), "expected %<%s%> to be a type",
-                              Gogo::message_name(p->name()).c_str());
-                     saw_error = true;
-                     type = Type::make_error_type();
-                   }
-                 tret->push_back(Typed_identifier("", type, p->location()));
-               }
-             delete ret;
-             ret = tret;
-             if (!just_saw_comma
-                 || this->peek_token()->is_op(OPERATOR_RPAREN))
-               return saw_error ? NULL : ret;
-           }
-       }
-    }
-
-  bool mix_error = false;
-  this->parameter_decl(parameters_have_names, ret, is_varargs, &mix_error);
-  while (this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      if (is_varargs != NULL && *is_varargs)
-       {
-         error_at(this->location(), "%<...%> must be last parameter");
-         saw_error = true;
-       }
-      if (this->advance_token()->is_op(OPERATOR_RPAREN))
-       break;
-      this->parameter_decl(parameters_have_names, ret, is_varargs, &mix_error);
-    }
-  if (mix_error)
-    {
-      error_at(location, "invalid named/anonymous mix");
-      saw_error = true;
-    }
-  if (saw_error)
-    {
-      delete ret;
-      return NULL;
-    }
-  return ret;
-}
-
-// ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
-
-void
-Parse::parameter_decl(bool parameters_have_names,
-                     Typed_identifier_list* til,
-                     bool* is_varargs,
-                     bool* mix_error)
-{
-  if (!parameters_have_names)
-    {
-      Type* type;
-      source_location location = this->location();
-      if (!this->peek_token()->is_identifier())
-       {
-         if (!this->peek_token()->is_op(OPERATOR_ELLIPSIS))
-           type = this->type();
-         else
-           {
-             if (is_varargs == NULL)
-               error_at(this->location(), "invalid use of %<...%>");
-             else
-               *is_varargs = true;
-             this->advance_token();
-             if (is_varargs == NULL
-                 && this->peek_token()->is_op(OPERATOR_RPAREN))
-               type = Type::make_error_type();
-             else
-               {
-                 Type* element_type = this->type();
-                 type = Type::make_array_type(element_type, NULL);
-               }
-           }
-       }
-      else
-       {
-         type = this->type_name(false);
-         if (type->is_error_type()
-             || (!this->peek_token()->is_op(OPERATOR_COMMA)
-                 && !this->peek_token()->is_op(OPERATOR_RPAREN)))
-           {
-             *mix_error = true;
-             while (!this->peek_token()->is_op(OPERATOR_COMMA)
-                    && !this->peek_token()->is_op(OPERATOR_RPAREN))
-               this->advance_token();
-           }
-       }
-      if (!type->is_error_type())
-       til->push_back(Typed_identifier("", type, location));
-    }
-  else
-    {
-      size_t orig_count = til->size();
-      if (this->peek_token()->is_identifier())
-       this->identifier_list(til);
-      else
-       *mix_error = true;
-      size_t new_count = til->size();
-
-      Type* type;
-      if (!this->peek_token()->is_op(OPERATOR_ELLIPSIS))
-       type = this->type();
-      else
-       {
-         if (is_varargs == NULL)
-           error_at(this->location(), "invalid use of %<...%>");
-         else if (new_count > orig_count + 1)
-           error_at(this->location(), "%<...%> only permits one name");
-         else
-           *is_varargs = true;
-         this->advance_token();
-         Type* element_type = this->type();
-         type = Type::make_array_type(element_type, NULL);
-       }
-      for (size_t i = orig_count; i < new_count; ++i)
-       til->set_type(i, type);
-    }
-}
-
-// Result         = Parameters | Type .
-
-// This returns false on a parse error.
-
-bool
-Parse::result(Typed_identifier_list** presults)
-{
-  if (this->peek_token()->is_op(OPERATOR_LPAREN))
-    return this->parameters(presults, NULL);
-  else
-    {
-      source_location location = this->location();
-      Type* type = this->type();
-      if (type->is_error_type())
-       {
-         *presults = NULL;
-         return false;
-       }
-      Typed_identifier_list* til = new Typed_identifier_list();
-      til->push_back(Typed_identifier("", type, location));
-      *presults = til;
-      return true;
-    }
-}
-
-// Block = "{" [ StatementList ] "}" .
-
-// Returns the location of the closing brace.
-
-source_location
-Parse::block()
-{
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return UNKNOWN_LOCATION;
-       }
-    }
-
-  const Token* token = this->advance_token();
-
-  if (!token->is_op(OPERATOR_RCURLY))
-    {
-      this->statement_list();
-      token = this->peek_token();
-      if (!token->is_op(OPERATOR_RCURLY))
-       {
-         if (!token->is_eof() || !saw_errors())
-           error_at(this->location(), "expected %<}%>");
-
-         // Skip ahead to the end of the block, in hopes of avoiding
-         // lots of meaningless errors.
-         source_location ret = token->location();
-         int nest = 0;
-         while (!token->is_eof())
-           {
-             if (token->is_op(OPERATOR_LCURLY))
-               ++nest;
-             else if (token->is_op(OPERATOR_RCURLY))
-               {
-                 --nest;
-                 if (nest < 0)
-                   {
-                     this->advance_token();
-                     break;
-                   }
-               }
-             token = this->advance_token();
-             ret = token->location();
-           }
-         return ret;
-       }
-    }
-
-  source_location ret = token->location();
-  this->advance_token();
-  return ret;
-}
-
-// InterfaceType      = "interface" "{" [ MethodSpecList ] "}" .
-// MethodSpecList     = MethodSpec { ";" MethodSpec } [ ";" ] .
-
-Type*
-Parse::interface_type()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_INTERFACE));
-  source_location location = this->location();
-
-  if (!this->advance_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return Type::make_error_type();
-       }
-    }
-  this->advance_token();
-
-  Typed_identifier_list* methods = new Typed_identifier_list();
-  if (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      this->method_spec(methods);
-      while (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       {
-         if (this->advance_token()->is_op(OPERATOR_RCURLY))
-           break;
-         this->method_spec(methods);
-       }
-      if (!this->peek_token()->is_op(OPERATOR_RCURLY))
-       {
-         error_at(this->location(), "expected %<}%>");
-         while (!this->advance_token()->is_op(OPERATOR_RCURLY))
-           {
-             if (this->peek_token()->is_eof())
-               return Type::make_error_type();
-           }
-       }
-    }
-  this->advance_token();
-
-  if (methods->empty())
-    {
-      delete methods;
-      methods = NULL;
-    }
-
-  Interface_type* ret = Type::make_interface_type(methods, location);
-  this->gogo_->record_interface_type(ret);
-  return ret;
-}
-
-// MethodSpec         = MethodName Signature | InterfaceTypeName .
-// MethodName         = identifier .
-// InterfaceTypeName  = TypeName .
-
-void
-Parse::method_spec(Typed_identifier_list* methods)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return;
-    }
-
-  std::string name = token->identifier();
-  bool is_exported = token->is_identifier_exported();
-  source_location location = token->location();
-
-  if (this->advance_token()->is_op(OPERATOR_LPAREN))
-    {
-      // This is a MethodName.
-      name = this->gogo_->pack_hidden_name(name, is_exported);
-      Type* type = this->signature(NULL, location);
-      if (type == NULL)
-       return;
-      methods->push_back(Typed_identifier(name, type, location));
-    }
-  else
-    {
-      this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                    location));
-      Type* type = this->type_name(false);
-      if (type->is_error_type()
-         || (!this->peek_token()->is_op(OPERATOR_SEMICOLON)
-             && !this->peek_token()->is_op(OPERATOR_RCURLY)))
-       {
-         if (this->peek_token()->is_op(OPERATOR_COMMA))
-           error_at(this->location(),
-                    "name list not allowed in interface type");
-         else
-           error_at(location, "expected signature or type name");
-         token = this->peek_token();
-         while (!token->is_eof()
-                && !token->is_op(OPERATOR_SEMICOLON)
-                && !token->is_op(OPERATOR_RCURLY))
-           token = this->advance_token();
-         return;
-       }
-      // This must be an interface type, but we can't check that now.
-      // We check it and pull out the methods in
-      // Interface_type::do_verify.
-      methods->push_back(Typed_identifier("", type, location));
-    }
-}
-
-// Declaration = ConstDecl | TypeDecl | VarDecl | FunctionDecl | MethodDecl .
-
-void
-Parse::declaration()
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_CONST))
-    this->const_decl();
-  else if (token->is_keyword(KEYWORD_TYPE))
-    this->type_decl();
-  else if (token->is_keyword(KEYWORD_VAR))
-    this->var_decl();
-  else if (token->is_keyword(KEYWORD_FUNC))
-    this->function_decl();
-  else
-    {
-      error_at(this->location(), "expected declaration");
-      this->advance_token();
-    }
-}
-
-bool
-Parse::declaration_may_start_here()
-{
-  const Token* token = this->peek_token();
-  return (token->is_keyword(KEYWORD_CONST)
-         || token->is_keyword(KEYWORD_TYPE)
-         || token->is_keyword(KEYWORD_VAR)
-         || token->is_keyword(KEYWORD_FUNC));
-}
-
-// Decl<P> = P | "(" [ List<P> ] ")" .
-
-void
-Parse::decl(void (Parse::*pfn)(void*), void* varg)
-{
-  if (!this->peek_token()->is_op(OPERATOR_LPAREN))
-    (this->*pfn)(varg);
-  else
-    {
-      if (!this->advance_token()->is_op(OPERATOR_RPAREN))
-       {
-         this->list(pfn, varg, true);
-         if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           {
-             error_at(this->location(), "missing %<)%>");
-             while (!this->advance_token()->is_op(OPERATOR_RPAREN))
-               {
-                 if (this->peek_token()->is_eof())
-                   return;
-               }
-           }
-       }
-      this->advance_token();
-    }
-}
-
-// List<P> = P { ";" P } [ ";" ] .
-
-// In order to pick up the trailing semicolon we need to know what
-// might follow.  This is either a '}' or a ')'.
-
-void
-Parse::list(void (Parse::*pfn)(void*), void* varg, bool follow_is_paren)
-{
-  (this->*pfn)(varg);
-  Operator follow = follow_is_paren ? OPERATOR_RPAREN : OPERATOR_RCURLY;
-  while (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-        || this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      if (this->peek_token()->is_op(OPERATOR_COMMA))
-       error_at(this->location(), "unexpected comma");
-      if (this->advance_token()->is_op(follow))
-       break;
-      (this->*pfn)(varg);
-    }
-}
-
-// ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
-
-void
-Parse::const_decl()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_CONST));
-  this->advance_token();
-  this->reset_iota();
-
-  Type* last_type = NULL;
-  Expression_list* last_expr_list = NULL;
-
-  if (!this->peek_token()->is_op(OPERATOR_LPAREN))
-    this->const_spec(&last_type, &last_expr_list);
-  else
-    {
-      this->advance_token();
-      while (!this->peek_token()->is_op(OPERATOR_RPAREN))
-       {
-         this->const_spec(&last_type, &last_expr_list);
-         if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-           this->advance_token();
-         else if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           {
-             error_at(this->location(), "expected %<;%> or %<)%> or newline");
-             if (!this->skip_past_error(OPERATOR_RPAREN))
-               return;
-           }
-       }
-      this->advance_token();
-    }
-
-  if (last_expr_list != NULL)
-    delete last_expr_list;
-}
-
-// ConstSpec = IdentifierList [ [ CompleteType ] "=" ExpressionList ] .
-
-void
-Parse::const_spec(Type** last_type, Expression_list** last_expr_list)
-{
-  Typed_identifier_list til;
-  this->identifier_list(&til);
-
-  Type* type = NULL;
-  if (this->type_may_start_here())
-    {
-      type = this->type();
-      *last_type = NULL;
-      *last_expr_list = NULL;
-    }
-
-  Expression_list *expr_list;
-  if (!this->peek_token()->is_op(OPERATOR_EQ))
-    {
-      if (*last_expr_list == NULL)
-       {
-         error_at(this->location(), "expected %<=%>");
-         return;
-       }
-      type = *last_type;
-      expr_list = new Expression_list;
-      for (Expression_list::const_iterator p = (*last_expr_list)->begin();
-          p != (*last_expr_list)->end();
-          ++p)
-       expr_list->push_back((*p)->copy());
-    }
-  else
-    {
-      this->advance_token();
-      expr_list = this->expression_list(NULL, false);
-      *last_type = type;
-      if (*last_expr_list != NULL)
-       delete *last_expr_list;
-      *last_expr_list = expr_list;
-    }
-
-  Expression_list::const_iterator pe = expr_list->begin();
-  for (Typed_identifier_list::iterator pi = til.begin();
-       pi != til.end();
-       ++pi, ++pe)
-    {
-      if (pe == expr_list->end())
-       {
-         error_at(this->location(), "not enough initializers");
-         return;
-       }
-      if (type != NULL)
-       pi->set_type(type);
-
-      if (!Gogo::is_sink_name(pi->name()))
-       this->gogo_->add_constant(*pi, *pe, this->iota_value());
-    }
-  if (pe != expr_list->end())
-    error_at(this->location(), "too many initializers");
-
-  this->increment_iota();
-
-  return;
-}
-
-// TypeDecl = "type" Decl<TypeSpec> .
-
-void
-Parse::type_decl()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_TYPE));
-  this->advance_token();
-  this->decl(&Parse::type_spec, NULL);
-}
-
-// TypeSpec = identifier Type .
-
-void
-Parse::type_spec(void*)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return;
-    }
-  std::string name = token->identifier();
-  bool is_exported = token->is_identifier_exported();
-  source_location location = token->location();
-  token = this->advance_token();
-
-  // The scope of the type name starts at the point where the
-  // identifier appears in the source code.  We implement this by
-  // declaring the type before we read the type definition.
-  Named_object* named_type = NULL;
-  if (name != "_")
-    {
-      name = this->gogo_->pack_hidden_name(name, is_exported);
-      named_type = this->gogo_->declare_type(name, location);
-    }
-
-  Type* type;
-  if (!this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    type = this->type();
-  else
-    {
-      error_at(this->location(),
-              "unexpected semicolon or newline in type declaration");
-      type = Type::make_error_type();
-      this->advance_token();
-    }
-
-  if (type->is_error_type())
-    {
-      while (!this->peek_token()->is_op(OPERATOR_SEMICOLON)
-            && !this->peek_token()->is_eof())
-       this->advance_token();
-    }
-
-  if (name != "_")
-    {
-      if (named_type->is_type_declaration())
-       {
-         Type* ftype = type->forwarded();
-         if (ftype->forward_declaration_type() != NULL
-             && (ftype->forward_declaration_type()->named_object()
-                 == named_type))
-           {
-             error_at(location, "invalid recursive type");
-             type = Type::make_error_type();
-           }
-
-         this->gogo_->define_type(named_type,
-                                  Type::make_named_type(named_type, type,
-                                                        location));
-         go_assert(named_type->package() == NULL);
-       }
-      else
-       {
-         // This will probably give a redefinition error.
-         this->gogo_->add_type(name, type, location);
-       }
-    }
-}
-
-// VarDecl = "var" Decl<VarSpec> .
-
-void
-Parse::var_decl()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_VAR));
-  this->advance_token();
-  this->decl(&Parse::var_spec, NULL);
-}
-
-// VarSpec = IdentifierList
-//             ( CompleteType [ "=" ExpressionList ] | "=" ExpressionList ) .
-
-void
-Parse::var_spec(void*)
-{
-  // Get the variable names.
-  Typed_identifier_list til;
-  this->identifier_list(&til);
-
-  source_location location = this->location();
-
-  Type* type = NULL;
-  Expression_list* init = NULL;
-  if (!this->peek_token()->is_op(OPERATOR_EQ))
-    {
-      type = this->type();
-      if (type->is_error_type())
-       {
-         while (!this->peek_token()->is_op(OPERATOR_EQ)
-                && !this->peek_token()->is_op(OPERATOR_SEMICOLON)
-                && !this->peek_token()->is_eof())
-           this->advance_token();
-       }
-      if (this->peek_token()->is_op(OPERATOR_EQ))
-       {
-         this->advance_token();
-         init = this->expression_list(NULL, false);
-       }
-    }
-  else
-    {
-      this->advance_token();
-      init = this->expression_list(NULL, false);
-    }
-
-  this->init_vars(&til, type, init, false, location);
-
-  if (init != NULL)
-    delete init;
-}
-
-// Create variables.  TIL is a list of variable names.  If TYPE is not
-// NULL, it is the type of all the variables.  If INIT is not NULL, it
-// is an initializer list for the variables.
-
-void
-Parse::init_vars(const Typed_identifier_list* til, Type* type,
-                Expression_list* init, bool is_coloneq,
-                source_location location)
-{
-  // Check for an initialization which can yield multiple values.
-  if (init != NULL && init->size() == 1 && til->size() > 1)
-    {
-      if (this->init_vars_from_call(til, type, *init->begin(), is_coloneq,
-                                   location))
-       return;
-      if (this->init_vars_from_map(til, type, *init->begin(), is_coloneq,
-                                  location))
-       return;
-      if (this->init_vars_from_receive(til, type, *init->begin(), is_coloneq,
-                                      location))
-       return;
-      if (this->init_vars_from_type_guard(til, type, *init->begin(),
-                                         is_coloneq, location))
-       return;
-    }
-
-  if (init != NULL && init->size() != til->size())
-    {
-      if (init->empty() || !init->front()->is_error_expression())
-       error_at(location, "wrong number of initializations");
-      init = NULL;
-      if (type == NULL)
-       type = Type::make_error_type();
-    }
-
-  // Note that INIT was already parsed with the old name bindings, so
-  // we don't have to worry that it will accidentally refer to the
-  // newly declared variables.
-
-  Expression_list::const_iterator pexpr;
-  if (init != NULL)
-    pexpr = init->begin();
-  bool any_new = false;
-  for (Typed_identifier_list::const_iterator p = til->begin();
-       p != til->end();
-       ++p)
-    {
-      if (init != NULL)
-       go_assert(pexpr != init->end());
-      this->init_var(*p, type, init == NULL ? NULL : *pexpr, is_coloneq,
-                    false, &any_new);
-      if (init != NULL)
-       ++pexpr;
-    }
-  if (init != NULL)
-    go_assert(pexpr == init->end());
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-}
-
-// See if we need to initialize a list of variables from a function
-// call.  This returns true if we have set up the variables and the
-// initialization.
-
-bool
-Parse::init_vars_from_call(const Typed_identifier_list* vars, Type* type,
-                          Expression* expr, bool is_coloneq,
-                          source_location location)
-{
-  Call_expression* call = expr->call_expression();
-  if (call == NULL)
-    return false;
-
-  // This is a function call.  We can't check here whether it returns
-  // the right number of values, but it might.  Declare the variables,
-  // and then assign the results of the call to them.
-
-  unsigned int index = 0;
-  bool any_new = false;
-  for (Typed_identifier_list::const_iterator pv = vars->begin();
-       pv != vars->end();
-       ++pv, ++index)
-    {
-      Expression* init = Expression::make_call_result(call, index);
-      this->init_var(*pv, type, init, is_coloneq, false, &any_new);
-    }
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  return true;
-}
-
-// See if we need to initialize a pair of values from a map index
-// expression.  This returns true if we have set up the variables and
-// the initialization.
-
-bool
-Parse::init_vars_from_map(const Typed_identifier_list* vars, Type* type,
-                         Expression* expr, bool is_coloneq,
-                         source_location location)
-{
-  Index_expression* index = expr->index_expression();
-  if (index == NULL)
-    return false;
-  if (vars->size() != 2)
-    return false;
-
-  // This is an index which is being assigned to two variables.  It
-  // must be a map index.  Declare the variables, and then assign the
-  // results of the map index.
-  bool any_new = false;
-  Typed_identifier_list::const_iterator p = vars->begin();
-  Expression* init = type == NULL ? index : NULL;
-  Named_object* val_no = this->init_var(*p, type, init, is_coloneq,
-                                       type == NULL, &any_new);
-  if (type == NULL && any_new && val_no->is_variable())
-    val_no->var_value()->set_type_from_init_tuple();
-  Expression* val_var = Expression::make_var_reference(val_no, location);
-
-  ++p;
-  Type* var_type = type;
-  if (var_type == NULL)
-    var_type = Type::lookup_bool_type();
-  Named_object* no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                   &any_new);
-  Expression* present_var = Expression::make_var_reference(no, location);
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  Statement* s = Statement::make_tuple_map_assignment(val_var, present_var,
-                                                     index, location);
-
-  if (!this->gogo_->in_global_scope())
-    this->gogo_->add_statement(s);
-  else if (!val_no->is_sink())
-    {
-      if (val_no->is_variable())
-       val_no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else if (!no->is_sink())
-    {
-      if (no->is_variable())
-       no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else
-    {
-      // Execute the map index expression just so that we can fail if
-      // the map is nil.
-      Named_object* dummy = this->create_dummy_global(Type::lookup_bool_type(),
-                                                     NULL, location);
-      dummy->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-
-  return true;
-}
-
-// See if we need to initialize a pair of values from a receive
-// expression.  This returns true if we have set up the variables and
-// the initialization.
-
-bool
-Parse::init_vars_from_receive(const Typed_identifier_list* vars, Type* type,
-                             Expression* expr, bool is_coloneq,
-                             source_location location)
-{
-  Receive_expression* receive = expr->receive_expression();
-  if (receive == NULL)
-    return false;
-  if (vars->size() != 2)
-    return false;
-
-  // This is a receive expression which is being assigned to two
-  // variables.  Declare the variables, and then assign the results of
-  // the receive.
-  bool any_new = false;
-  Typed_identifier_list::const_iterator p = vars->begin();
-  Expression* init = type == NULL ? receive : NULL;
-  Named_object* val_no = this->init_var(*p, type, init, is_coloneq,
-                                       type == NULL, &any_new);
-  if (type == NULL && any_new && val_no->is_variable())
-    val_no->var_value()->set_type_from_init_tuple();
-  Expression* val_var = Expression::make_var_reference(val_no, location);
-
-  ++p;
-  Type* var_type = type;
-  if (var_type == NULL)
-    var_type = Type::lookup_bool_type();
-  Named_object* no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                   &any_new);
-  Expression* received_var = Expression::make_var_reference(no, location);
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  Statement* s = Statement::make_tuple_receive_assignment(val_var,
-                                                         received_var,
-                                                         receive->channel(),
-                                                         false,
-                                                         location);
-
-  if (!this->gogo_->in_global_scope())
-    this->gogo_->add_statement(s);
-  else if (!val_no->is_sink())
-    {
-      if (val_no->is_variable())
-       val_no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else if (!no->is_sink())
-    {
-      if (no->is_variable())
-       no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else
-    {
-      Named_object* dummy = this->create_dummy_global(Type::lookup_bool_type(),
-                                                     NULL, location);
-      dummy->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-
-  return true;
-}
-
-// See if we need to initialize a pair of values from a type guard
-// expression.  This returns true if we have set up the variables and
-// the initialization.
-
-bool
-Parse::init_vars_from_type_guard(const Typed_identifier_list* vars,
-                                Type* type, Expression* expr,
-                                bool is_coloneq, source_location location)
-{
-  Type_guard_expression* type_guard = expr->type_guard_expression();
-  if (type_guard == NULL)
-    return false;
-  if (vars->size() != 2)
-    return false;
-
-  // This is a type guard expression which is being assigned to two
-  // variables.  Declare the variables, and then assign the results of
-  // the type guard.
-  bool any_new = false;
-  Typed_identifier_list::const_iterator p = vars->begin();
-  Type* var_type = type;
-  if (var_type == NULL)
-    var_type = type_guard->type();
-  Named_object* val_no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                       &any_new);
-  Expression* val_var = Expression::make_var_reference(val_no, location);
-
-  ++p;
-  var_type = type;
-  if (var_type == NULL)
-    var_type = Type::lookup_bool_type();
-  Named_object* no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                   &any_new);
-  Expression* ok_var = Expression::make_var_reference(no, location);
-
-  Expression* texpr = type_guard->expr();
-  Type* t = type_guard->type();
-  Statement* s = Statement::make_tuple_type_guard_assignment(val_var, ok_var,
-                                                            texpr, t,
-                                                            location);
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  if (!this->gogo_->in_global_scope())
-    this->gogo_->add_statement(s);
-  else if (!val_no->is_sink())
-    {
-      if (val_no->is_variable())
-       val_no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else if (!no->is_sink())
-    {
-      if (no->is_variable())
-       no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else
-    {
-      Named_object* dummy = this->create_dummy_global(type, NULL, location);
-      dummy->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-
-  return true;
-}
-
-// Create a single variable.  If IS_COLONEQ is true, we permit
-// redeclarations in the same block, and we set *IS_NEW when we find a
-// new variable which is not a redeclaration.
-
-Named_object*
-Parse::init_var(const Typed_identifier& tid, Type* type, Expression* init,
-               bool is_coloneq, bool type_from_init, bool* is_new)
-{
-  source_location location = tid.location();
-
-  if (Gogo::is_sink_name(tid.name()))
-    {
-      if (!type_from_init && init != NULL)
-       {
-         if (!this->gogo_->in_global_scope())
-           this->gogo_->add_statement(Statement::make_statement(init));
-         else
-           return this->create_dummy_global(type, init, location);
-       }
-      return this->gogo_->add_sink();
-    }
-
-  if (is_coloneq)
-    {
-      Named_object* no = this->gogo_->lookup_in_block(tid.name());
-      if (no != NULL
-         && (no->is_variable() || no->is_result_variable()))
-       {
-         // INIT may be NULL even when IS_COLONEQ is true for cases
-         // like v, ok := x.(int).
-         if (!type_from_init && init != NULL)
-           {
-             Expression *v = Expression::make_var_reference(no, location);
-             Statement *s = Statement::make_assignment(v, init, location);
-             this->gogo_->add_statement(s);
-           }
-         return no;
-       }
-    }
-  *is_new = true;
-  Variable* var = new Variable(type, init, this->gogo_->in_global_scope(),
-                              false, false, location);
-  Named_object* no = this->gogo_->add_variable(tid.name(), var);
-  if (!no->is_variable())
-    {
-      // The name is already defined, so we just gave an error.
-      return this->gogo_->add_sink();
-    }
-  return no;
-}
-
-// Create a dummy global variable to force an initializer to be run in
-// the right place.  This is used when a sink variable is initialized
-// at global scope.
-
-Named_object*
-Parse::create_dummy_global(Type* type, Expression* init,
-                          source_location location)
-{
-  if (type == NULL && init == NULL)
-    type = Type::lookup_bool_type();
-  Variable* var = new Variable(type, init, true, false, false, location);
-  static int count;
-  char buf[30];
-  snprintf(buf, sizeof buf, "_.%d", count);
-  ++count;
-  return this->gogo_->add_variable(buf, var);
-}
-
-// SimpleVarDecl = identifier ":=" Expression .
-
-// We've already seen the identifier.
-
-// FIXME: We also have to implement
-//  IdentifierList ":=" ExpressionList
-// In order to support both "a, b := 1, 0" and "a, b = 1, 0" we accept
-// tuple assignments here as well.
-
-// If P_RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-// If P_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-void
-Parse::simple_var_decl_or_assignment(const std::string& name,
-                                    source_location location,
-                                    Range_clause* p_range_clause,
-                                    Type_switch* p_type_switch)
-{
-  Typed_identifier_list til;
-  til.push_back(Typed_identifier(name, NULL, location));
-
-  // We've seen one identifier.  If we see a comma now, this could be
-  // "a, *p = 1, 2".
-  if (this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      go_assert(p_type_switch == NULL);
-      while (true)
-       {
-         const Token* token = this->advance_token();
-         if (!token->is_identifier())
-           break;
-
-         std::string id = token->identifier();
-         bool is_id_exported = token->is_identifier_exported();
-         source_location id_location = token->location();
-
-         token = this->advance_token();
-         if (!token->is_op(OPERATOR_COMMA))
-           {
-             if (token->is_op(OPERATOR_COLONEQ))
-               {
-                 id = this->gogo_->pack_hidden_name(id, is_id_exported);
-                 til.push_back(Typed_identifier(id, NULL, location));
-               }
-             else
-               this->unget_token(Token::make_identifier_token(id,
-                                                              is_id_exported,
-                                                              id_location));
-             break;
-           }
-
-         id = this->gogo_->pack_hidden_name(id, is_id_exported);
-         til.push_back(Typed_identifier(id, NULL, location));
-       }
-
-      // We have a comma separated list of identifiers in TIL.  If the
-      // next token is COLONEQ, then this is a simple var decl, and we
-      // have the complete list of identifiers.  If the next token is
-      // not COLONEQ, then the only valid parse is a tuple assignment.
-      // The list of identifiers we have so far is really a list of
-      // expressions.  There are more expressions following.
-
-      if (!this->peek_token()->is_op(OPERATOR_COLONEQ))
-       {
-         Expression_list* exprs = new Expression_list;
-         for (Typed_identifier_list::const_iterator p = til.begin();
-              p != til.end();
-              ++p)
-           exprs->push_back(this->id_to_expression(p->name(),
-                                                   p->location()));
-
-         Expression_list* more_exprs = this->expression_list(NULL, true);
-         for (Expression_list::const_iterator p = more_exprs->begin();
-              p != more_exprs->end();
-              ++p)
-           exprs->push_back(*p);
-         delete more_exprs;
-
-         this->tuple_assignment(exprs, p_range_clause);
-         return;
-       }
-    }
-
-  go_assert(this->peek_token()->is_op(OPERATOR_COLONEQ));
-  const Token* token = this->advance_token();
-
-  if (p_range_clause != NULL && token->is_keyword(KEYWORD_RANGE))
-    {
-      this->range_clause_decl(&til, p_range_clause);
-      return;
-    }
-
-  Expression_list* init;
-  if (p_type_switch == NULL)
-    init = this->expression_list(NULL, false);
-  else
-    {
-      bool is_type_switch = false;
-      Expression* expr = this->expression(PRECEDENCE_NORMAL, false, true,
-                                         &is_type_switch);
-      if (is_type_switch)
-       {
-         p_type_switch->found = true;
-         p_type_switch->name = name;
-         p_type_switch->location = location;
-         p_type_switch->expr = expr;
-         return;
-       }
-
-      if (!this->peek_token()->is_op(OPERATOR_COMMA))
-       {
-         init = new Expression_list();
-         init->push_back(expr);
-       }
-      else
-       {
-         this->advance_token();
-         init = this->expression_list(expr, false);
-       }
-    }
-
-  this->init_vars(&til, NULL, init, true, location);
-}
-
-// FunctionDecl = "func" identifier Signature [ Block ] .
-// MethodDecl = "func" Receiver identifier Signature [ Block ] .
-
-// gcc extension:
-//   FunctionDecl = "func" identifier Signature
-//                    __asm__ "(" string_lit ")" .
-// This extension means a function whose real name is the identifier
-// inside the asm.
-
-void
-Parse::function_decl()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_FUNC));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-
-  Typed_identifier* rec = NULL;
-  if (token->is_op(OPERATOR_LPAREN))
-    {
-      rec = this->receiver();
-      token = this->peek_token();
-    }
-
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected function name");
-      return;
-    }
-
-  std::string name =
-    this->gogo_->pack_hidden_name(token->identifier(),
-                                 token->is_identifier_exported());
-
-  this->advance_token();
-
-  Function_type* fntype = this->signature(rec, this->location());
-  if (fntype == NULL)
-    return;
-
-  Named_object* named_object = NULL;
-
-  if (this->peek_token()->is_keyword(KEYWORD_ASM))
-    {
-      if (!this->advance_token()->is_op(OPERATOR_LPAREN))
-       {
-         error_at(this->location(), "expected %<(%>");
-         return;
-       }
-      token = this->advance_token();
-      if (!token->is_string())
-       {
-         error_at(this->location(), "expected string");
-         return;
-       }
-      std::string asm_name = token->string_value();
-      if (!this->advance_token()->is_op(OPERATOR_RPAREN))
-       {
-         error_at(this->location(), "expected %<)%>");
-         return;
-       }
-      this->advance_token();
-      if (!Gogo::is_sink_name(name))
-       {
-         named_object = this->gogo_->declare_function(name, fntype, location);
-         if (named_object->is_function_declaration())
-           named_object->func_declaration_value()->set_asm_name(asm_name);
-       }
-    }
-
-  // Check for the easy error of a newline before the opening brace.
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      source_location semi_loc = this->location();
-      if (this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(this->location(),
-                "unexpected semicolon or newline before %<{%>");
-      else
-       this->unget_token(Token::make_operator_token(OPERATOR_SEMICOLON,
-                                                    semi_loc));
-    }
-
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      if (named_object == NULL && !Gogo::is_sink_name(name))
-       this->gogo_->declare_function(name, fntype, location);
-    }
-  else
-    {
-      this->gogo_->start_function(name, fntype, true, location);
-      source_location end_loc = this->block();
-      this->gogo_->finish_function(end_loc);
-    }
-}
-
-// Receiver     = "(" [ identifier ] [ "*" ] BaseTypeName ")" .
-// BaseTypeName = identifier .
-
-Typed_identifier*
-Parse::receiver()
-{
-  go_assert(this->peek_token()->is_op(OPERATOR_LPAREN));
-
-  std::string name;
-  const Token* token = this->advance_token();
-  source_location location = token->location();
-  if (!token->is_op(OPERATOR_MULT))
-    {
-      if (!token->is_identifier())
-       {
-         error_at(this->location(), "method has no receiver");
-         while (!token->is_eof() && !token->is_op(OPERATOR_RPAREN))
-           token = this->advance_token();
-         if (!token->is_eof())
-           this->advance_token();
-         return NULL;
-       }
-      name = token->identifier();
-      bool is_exported = token->is_identifier_exported();
-      token = this->advance_token();
-      if (!token->is_op(OPERATOR_DOT) && !token->is_op(OPERATOR_RPAREN))
-       {
-         // An identifier followed by something other than a dot or a
-         // right parenthesis must be a receiver name followed by a
-         // type.
-         name = this->gogo_->pack_hidden_name(name, is_exported);
-       }
-      else
-       {
-         // This must be a type name.
-         this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                        location));
-         token = this->peek_token();
-         name.clear();
-       }
-    }
-
-  // Here the receiver name is in NAME (it is empty if the receiver is
-  // unnamed) and TOKEN is the first token in the type.
-
-  bool is_pointer = false;
-  if (token->is_op(OPERATOR_MULT))
-    {
-      is_pointer = true;
-      token = this->advance_token();
-    }
-
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected receiver name or type");
-      int c = token->is_op(OPERATOR_LPAREN) ? 1 : 0;
-      while (!token->is_eof())
-       {
-         token = this->advance_token();
-         if (token->is_op(OPERATOR_LPAREN))
-           ++c;
-         else if (token->is_op(OPERATOR_RPAREN))
-           {
-             if (c == 0)
-               break;
-             --c;
-           }
-       }
-      if (!token->is_eof())
-       this->advance_token();
-      return NULL;
-    }
-
-  Type* type = this->type_name(true);
-
-  if (is_pointer && !type->is_error_type())
-    type = Type::make_pointer_type(type);
-
-  if (this->peek_token()->is_op(OPERATOR_RPAREN))
-    this->advance_token();
-  else
-    {
-      if (this->peek_token()->is_op(OPERATOR_COMMA))
-       error_at(this->location(), "method has multiple receivers");
-      else
-       error_at(this->location(), "expected %<)%>");
-      while (!token->is_eof() && !token->is_op(OPERATOR_RPAREN))
-       token = this->advance_token();
-      if (!token->is_eof())
-       this->advance_token();
-      return NULL;
-    }
-
-  return new Typed_identifier(name, type, location);
-}
-
-// Operand    = Literal | QualifiedIdent | MethodExpr | "(" Expression ")" .
-// Literal    = BasicLit | CompositeLit | FunctionLit .
-// BasicLit   = int_lit | float_lit | imaginary_lit | char_lit | string_lit .
-
-// If MAY_BE_SINK is true, this operand may be "_".
-
-Expression*
-Parse::operand(bool may_be_sink)
-{
-  const Token* token = this->peek_token();
-  Expression* ret;
-  switch (token->classification())
-    {
-    case Token::TOKEN_IDENTIFIER:
-      {
-       source_location location = token->location();
-       std::string id = token->identifier();
-       bool is_exported = token->is_identifier_exported();
-       std::string packed = this->gogo_->pack_hidden_name(id, is_exported);
-
-       Named_object* in_function;
-       Named_object* named_object = this->gogo_->lookup(packed, &in_function);
-
-       Package* package = NULL;
-       if (named_object != NULL && named_object->is_package())
-         {
-           if (!this->advance_token()->is_op(OPERATOR_DOT)
-               || !this->advance_token()->is_identifier())
-             {
-               error_at(location, "unexpected reference to package");
-               return Expression::make_error(location);
-             }
-           package = named_object->package_value();
-           package->set_used();
-           id = this->peek_token()->identifier();
-           is_exported = this->peek_token()->is_identifier_exported();
-           packed = this->gogo_->pack_hidden_name(id, is_exported);
-           named_object = package->lookup(packed);
-           location = this->location();
-           go_assert(in_function == NULL);
-         }
-
-       this->advance_token();
-
-       if (named_object != NULL
-           && named_object->is_type()
-           && !named_object->type_value()->is_visible())
-         {
-           go_assert(package != NULL);
-           error_at(location, "invalid reference to hidden type %<%s.%s%>",
-                    Gogo::message_name(package->name()).c_str(),
-                    Gogo::message_name(id).c_str());
-           return Expression::make_error(location);
-         }
-
-
-       if (named_object == NULL)
-         {
-           if (package != NULL)
-             {
-               std::string n1 = Gogo::message_name(package->name());
-               std::string n2 = Gogo::message_name(id);
-               if (!is_exported)
-                 error_at(location,
-                          ("invalid reference to unexported identifier "
-                           "%<%s.%s%>"),
-                          n1.c_str(), n2.c_str());
-               else
-                 error_at(location,
-                          "reference to undefined identifier %<%s.%s%>",
-                          n1.c_str(), n2.c_str());
-               return Expression::make_error(location);
-             }
-
-           named_object = this->gogo_->add_unknown_name(packed, location);
-         }
-
-       if (in_function != NULL
-           && in_function != this->gogo_->current_function()
-           && (named_object->is_variable()
-               || named_object->is_result_variable()))
-         return this->enclosing_var_reference(in_function, named_object,
-                                              location);
-
-       switch (named_object->classification())
-         {
-         case Named_object::NAMED_OBJECT_CONST:
-           return Expression::make_const_reference(named_object, location);
-         case Named_object::NAMED_OBJECT_TYPE:
-           return Expression::make_type(named_object->type_value(), location);
-         case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-           {
-             Type* t = Type::make_forward_declaration(named_object);
-             return Expression::make_type(t, location);
-           }
-         case Named_object::NAMED_OBJECT_VAR:
-         case Named_object::NAMED_OBJECT_RESULT_VAR:
-           return Expression::make_var_reference(named_object, location);
-         case Named_object::NAMED_OBJECT_SINK:
-           if (may_be_sink)
-             return Expression::make_sink(location);
-           else
-             {
-               error_at(location, "cannot use _ as value");
-               return Expression::make_error(location);
-             }
-         case Named_object::NAMED_OBJECT_FUNC:
-         case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-           return Expression::make_func_reference(named_object, NULL,
-                                                  location);
-         case Named_object::NAMED_OBJECT_UNKNOWN:
-           return Expression::make_unknown_reference(named_object, location);
-         default:
-           go_unreachable();
-         }
-      }
-      go_unreachable();
-
-    case Token::TOKEN_STRING:
-      ret = Expression::make_string(token->string_value(), token->location());
-      this->advance_token();
-      return ret;
-
-    case Token::TOKEN_INTEGER:
-      ret = Expression::make_integer(token->integer_value(), NULL,
-                                    token->location());
-      this->advance_token();
-      return ret;
-
-    case Token::TOKEN_FLOAT:
-      ret = Expression::make_float(token->float_value(), NULL,
-                                  token->location());
-      this->advance_token();
-      return ret;
-
-    case Token::TOKEN_IMAGINARY:
-      {
-       mpfr_t zero;
-       mpfr_init_set_ui(zero, 0, GMP_RNDN);
-       ret = Expression::make_complex(&zero, token->imaginary_value(),
-                                      NULL, token->location());
-       mpfr_clear(zero);
-       this->advance_token();
-       return ret;
-      }
-
-    case Token::TOKEN_KEYWORD:
-      switch (token->keyword())
-       {
-       case KEYWORD_FUNC:
-         return this->function_lit();
-       case KEYWORD_CHAN:
-       case KEYWORD_INTERFACE:
-       case KEYWORD_MAP:
-       case KEYWORD_STRUCT:
-         {
-           source_location location = token->location();
-           return Expression::make_type(this->type(), location);
-         }
-       default:
-         break;
-       }
-      break;
-
-    case Token::TOKEN_OPERATOR:
-      if (token->is_op(OPERATOR_LPAREN))
-       {
-         this->advance_token();
-         ret = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-         if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           error_at(this->location(), "missing %<)%>");
-         else
-           this->advance_token();
-         return ret;
-       }
-      else if (token->is_op(OPERATOR_LSQUARE))
-       {
-         // Here we call array_type directly, as this is the only
-         // case where an ellipsis is permitted for an array type.
-         source_location location = token->location();
-         return Expression::make_type(this->array_type(true), location);
-       }
-      break;
-
-    default:
-      break;
-    }
-
-  error_at(this->location(), "expected operand");
-  return Expression::make_error(this->location());
-}
-
-// Handle a reference to a variable in an enclosing function.  We add
-// it to a list of such variables.  We return a reference to a field
-// in a struct which will be passed on the static chain when calling
-// the current function.
-
-Expression*
-Parse::enclosing_var_reference(Named_object* in_function, Named_object* var,
-                              source_location location)
-{
-  go_assert(var->is_variable() || var->is_result_variable());
-
-  Named_object* this_function = this->gogo_->current_function();
-  Named_object* closure = this_function->func_value()->closure_var();
-
-  Enclosing_var ev(var, in_function, this->enclosing_vars_.size());
-  std::pair<Enclosing_vars::iterator, bool> ins =
-    this->enclosing_vars_.insert(ev);
-  if (ins.second)
-    {
-      // This is a variable we have not seen before.  Add a new field
-      // to the closure type.
-      this_function->func_value()->add_closure_field(var, location);
-    }
-
-  Expression* closure_ref = Expression::make_var_reference(closure,
-                                                          location);
-  closure_ref = Expression::make_unary(OPERATOR_MULT, closure_ref, location);
-
-  // The closure structure holds pointers to the variables, so we need
-  // to introduce an indirection.
-  Expression* e = Expression::make_field_reference(closure_ref,
-                                                  ins.first->index(),
-                                                  location);
-  e = Expression::make_unary(OPERATOR_MULT, e, location);
-  return e;
-}
-
-// CompositeLit  = LiteralType LiteralValue .
-// LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
-//                 SliceType | MapType | TypeName .
-// LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
-// ElementList   = Element { "," Element } .
-// Element       = [ Key ":" ] Value .
-// Key           = Expression .
-// Value         = Expression | LiteralValue .
-
-// We have already seen the type if there is one, and we are now
-// looking at the LiteralValue.  The case "[" "..."  "]" ElementType
-// will be seen here as an array type whose length is "nil".  The
-// DEPTH parameter is non-zero if this is an embedded composite
-// literal and the type was omitted.  It gives the number of steps up
-// to the type which was provided.  E.g., in [][]int{{1}} it will be
-// 1.  In [][][]int{{{1}}} it will be 2.
-
-Expression*
-Parse::composite_lit(Type* type, int depth, source_location location)
-{
-  go_assert(this->peek_token()->is_op(OPERATOR_LCURLY));
-  this->advance_token();
-
-  if (this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      this->advance_token();
-      return Expression::make_composite_literal(type, depth, false, NULL,
-                                               location);
-    }
-
-  bool has_keys = false;
-  Expression_list* vals = new Expression_list;
-  while (true)
-    {
-      Expression* val;
-      bool is_type_omitted = false;
-
-      const Token* token = this->peek_token();
-
-      if (!token->is_op(OPERATOR_LCURLY))
-       val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      else
-       {
-         // This must be a composite literal inside another composite
-         // literal, with the type omitted for the inner one.
-         val = this->composite_lit(type, depth + 1, token->location());
-         is_type_omitted = true;
-       }
-
-      token = this->peek_token();
-      if (!token->is_op(OPERATOR_COLON))
-       {
-         if (has_keys)
-           vals->push_back(NULL);
-       }
-      else
-       {
-         if (is_type_omitted && !val->is_error_expression())
-           {
-             error_at(this->location(), "unexpected %<:%>");
-             val = Expression::make_error(this->location());
-           }
-
-         this->advance_token();
-
-         if (!has_keys && !vals->empty())
-           {
-             Expression_list* newvals = new Expression_list;
-             for (Expression_list::const_iterator p = vals->begin();
-                  p != vals->end();
-                  ++p)
-               {
-                 newvals->push_back(NULL);
-                 newvals->push_back(*p);
-               }
-             delete vals;
-             vals = newvals;
-           }
-         has_keys = true;
-
-         if (val->unknown_expression() != NULL)
-           val->unknown_expression()->set_is_composite_literal_key();
-
-         vals->push_back(val);
-
-         if (!token->is_op(OPERATOR_LCURLY))
-           val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-         else
-           {
-             // This must be a composite literal inside another
-             // composite literal, with the type omitted for the
-             // inner one.
-             val = this->composite_lit(type, depth + 1, token->location());
-           }
-
-         token = this->peek_token();
-       }
-
-      vals->push_back(val);
-
-      if (token->is_op(OPERATOR_COMMA))
-       {
-         if (this->advance_token()->is_op(OPERATOR_RCURLY))
-           {
-             this->advance_token();
-             break;
-           }
-       }
-      else if (token->is_op(OPERATOR_RCURLY))
-       {
-         this->advance_token();
-         break;
-       }
-      else
-       {
-         error_at(this->location(), "expected %<,%> or %<}%>");
-
-         int depth = 0;
-         while (!token->is_eof()
-                && (depth > 0 || !token->is_op(OPERATOR_RCURLY)))
-           {
-             if (token->is_op(OPERATOR_LCURLY))
-               ++depth;
-             else if (token->is_op(OPERATOR_RCURLY))
-               --depth;
-             token = this->advance_token();
-           }
-         if (token->is_op(OPERATOR_RCURLY))
-           this->advance_token();
-
-         return Expression::make_error(location);
-       }
-    }
-
-  return Expression::make_composite_literal(type, depth, has_keys, vals,
-                                           location);
-}
-
-// FunctionLit = "func" Signature Block .
-
-Expression*
-Parse::function_lit()
-{
-  source_location location = this->location();
-  go_assert(this->peek_token()->is_keyword(KEYWORD_FUNC));
-  this->advance_token();
-
-  Enclosing_vars hold_enclosing_vars;
-  hold_enclosing_vars.swap(this->enclosing_vars_);
-
-  Function_type* type = this->signature(NULL, location);
-  if (type == NULL)
-    type = Type::make_function_type(NULL, NULL, NULL, location);
-
-  // For a function literal, the next token must be a '{'.  If we
-  // don't see that, then we may have a type expression.
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    return Expression::make_type(type, location);
-
-  Bc_stack* hold_break_stack = this->break_stack_;
-  Bc_stack* hold_continue_stack = this->continue_stack_;
-  this->break_stack_ = NULL;
-  this->continue_stack_ = NULL;
-
-  Named_object* no = this->gogo_->start_function("", type, true, location);
-
-  source_location end_loc = this->block();
-
-  this->gogo_->finish_function(end_loc);
-
-  if (this->break_stack_ != NULL)
-    delete this->break_stack_;
-  if (this->continue_stack_ != NULL)
-    delete this->continue_stack_;
-  this->break_stack_ = hold_break_stack;
-  this->continue_stack_ = hold_continue_stack;
-
-  hold_enclosing_vars.swap(this->enclosing_vars_);
-
-  Expression* closure = this->create_closure(no, &hold_enclosing_vars,
-                                            location);
-
-  return Expression::make_func_reference(no, closure, location);
-}
-
-// Create a closure for the nested function FUNCTION.  This is based
-// on ENCLOSING_VARS, which is a list of all variables defined in
-// enclosing functions and referenced from FUNCTION.  A closure is the
-// address of a struct which contains the addresses of all the
-// referenced variables.  This returns NULL if no closure is required.
-
-Expression*
-Parse::create_closure(Named_object* function, Enclosing_vars* enclosing_vars,
-                     source_location location)
-{
-  if (enclosing_vars->empty())
-    return NULL;
-
-  // Get the variables in order by their field index.
-
-  size_t enclosing_var_count = enclosing_vars->size();
-  std::vector<Enclosing_var> ev(enclosing_var_count);
-  for (Enclosing_vars::const_iterator p = enclosing_vars->begin();
-       p != enclosing_vars->end();
-       ++p)
-    ev[p->index()] = *p;
-
-  // Build an initializer for a composite literal of the closure's
-  // type.
-
-  Named_object* enclosing_function = this->gogo_->current_function();
-  Expression_list* initializer = new Expression_list;
-  for (size_t i = 0; i < enclosing_var_count; ++i)
-    {
-      go_assert(ev[i].index() == i);
-      Named_object* var = ev[i].var();
-      Expression* ref;
-      if (ev[i].in_function() == enclosing_function)
-       ref = Expression::make_var_reference(var, location);
-      else
-       ref = this->enclosing_var_reference(ev[i].in_function(), var,
-                                           location);
-      Expression* refaddr = Expression::make_unary(OPERATOR_AND, ref,
-                                                  location);
-      initializer->push_back(refaddr);
-    }
-
-  Named_object* closure_var = function->func_value()->closure_var();
-  Struct_type* st = closure_var->var_value()->type()->deref()->struct_type();
-  Expression* cv = Expression::make_struct_composite_literal(st, initializer,
-                                                            location);
-  return Expression::make_heap_composite(cv, location);
-}
-
-// PrimaryExpr = Operand { Selector | Index | Slice | TypeGuard | Call } .
-
-// If MAY_BE_SINK is true, this expression may be "_".
-
-// If MAY_BE_COMPOSITE_LIT is true, this expression may be a composite
-// literal.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::primary_expr(bool may_be_sink, bool may_be_composite_lit,
-                   bool* is_type_switch)
-{
-  source_location start_loc = this->location();
-  bool is_parenthesized = this->peek_token()->is_op(OPERATOR_LPAREN);
-
-  Expression* ret = this->operand(may_be_sink);
-
-  // An unknown name followed by a curly brace must be a composite
-  // literal, and the unknown name must be a type.
-  if (may_be_composite_lit
-      && !is_parenthesized
-      && ret->unknown_expression() != NULL
-      && this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      Named_object* no = ret->unknown_expression()->named_object();
-      Type* type = Type::make_forward_declaration(no);
-      ret = Expression::make_type(type, ret->location());
-    }
-
-  // We handle composite literals and type casts here, as it is the
-  // easiest way to handle types which are in parentheses, as in
-  // "((uint))(1)".
-  if (ret->is_type_expression())
-    {
-      if (this->peek_token()->is_op(OPERATOR_LCURLY))
-       {
-         if (is_parenthesized)
-           error_at(start_loc,
-                    "cannot parenthesize type in composite literal");
-         ret = this->composite_lit(ret->type(), 0, ret->location());
-       }
-      else if (this->peek_token()->is_op(OPERATOR_LPAREN))
-       {
-         source_location loc = this->location();
-         this->advance_token();
-         Expression* expr = this->expression(PRECEDENCE_NORMAL, false, true,
-                                             NULL);
-         if (this->peek_token()->is_op(OPERATOR_ELLIPSIS))
-           {
-             error_at(this->location(),
-                      "invalid use of %<...%> in type conversion");
-             this->advance_token();
-           }
-         if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           error_at(this->location(), "expected %<)%>");
-         else
-           this->advance_token();
-         if (expr->is_error_expression())
-           return expr;
-         ret = Expression::make_cast(ret->type(), expr, loc);
-       }
-    }
-
-  while (true)
-    {
-      const Token* token = this->peek_token();
-      if (token->is_op(OPERATOR_LPAREN))
-       ret = this->call(this->verify_not_sink(ret));
-      else if (token->is_op(OPERATOR_DOT))
-       {
-         ret = this->selector(this->verify_not_sink(ret), is_type_switch);
-         if (is_type_switch != NULL && *is_type_switch)
-           break;
-       }
-      else if (token->is_op(OPERATOR_LSQUARE))
-       ret = this->index(this->verify_not_sink(ret));
-      else
-       break;
-    }
-
-  return ret;
-}
-
-// Selector = "." identifier .
-// TypeGuard = "." "(" QualifiedIdent ")" .
-
-// Note that Operand can expand to QualifiedIdent, which contains a
-// ".".  That is handled directly in operand when it sees a package
-// name.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::selector(Expression* left, bool* is_type_switch)
-{
-  go_assert(this->peek_token()->is_op(OPERATOR_DOT));
-  source_location location = this->location();
-
-  const Token* token = this->advance_token();
-  if (token->is_identifier())
-    {
-      // This could be a field in a struct, or a method in an
-      // interface, or a method associated with a type.  We can't know
-      // which until we have seen all the types.
-      std::string name =
-       this->gogo_->pack_hidden_name(token->identifier(),
-                                     token->is_identifier_exported());
-      if (token->identifier() == "_")
-       {
-         error_at(this->location(), "invalid use of %<_%>");
-         name = this->gogo_->pack_hidden_name("blank", false);
-       }
-      this->advance_token();
-      return Expression::make_selector(left, name, location);
-    }
-  else if (token->is_op(OPERATOR_LPAREN))
-    {
-      this->advance_token();
-      Type* type = NULL;
-      if (!this->peek_token()->is_keyword(KEYWORD_TYPE))
-       type = this->type();
-      else
-       {
-         if (is_type_switch != NULL)
-           *is_type_switch = true;
-         else
-           {
-             error_at(this->location(),
-                      "use of %<.(type)%> outside type switch");
-             type = Type::make_error_type();
-           }
-         this->advance_token();
-       }
-      if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-       error_at(this->location(), "missing %<)%>");
-      else
-       this->advance_token();
-      if (is_type_switch != NULL && *is_type_switch)
-       return left;
-      return Expression::make_type_guard(left, type, location);
-    }
-  else
-    {
-      error_at(this->location(), "expected identifier or %<(%>");
-      return left;
-    }
-}
-
-// Index          = "[" Expression "]" .
-// Slice          = "[" Expression ":" [ Expression ] "]" .
-
-Expression*
-Parse::index(Expression* expr)
-{
-  source_location location = this->location();
-  go_assert(this->peek_token()->is_op(OPERATOR_LSQUARE));
-  this->advance_token();
-
-  Expression* start;
-  if (!this->peek_token()->is_op(OPERATOR_COLON))
-    start = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  else
-    {
-      mpz_t zero;
-      mpz_init_set_ui(zero, 0);
-      start = Expression::make_integer(&zero, NULL, location);
-      mpz_clear(zero);
-    }
-
-  Expression* end = NULL;
-  if (this->peek_token()->is_op(OPERATOR_COLON))
-    {
-      // We use nil to indicate a missing high expression.
-      if (this->advance_token()->is_op(OPERATOR_RSQUARE))
-       end = Expression::make_nil(this->location());
-      else
-       end = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-    }
-  if (!this->peek_token()->is_op(OPERATOR_RSQUARE))
-    error_at(this->location(), "missing %<]%>");
-  else
-    this->advance_token();
-  return Expression::make_index(expr, start, end, location);
-}
-
-// Call           = "(" [ ArgumentList [ "," ] ] ")" .
-// ArgumentList   = ExpressionList [ "..." ] .
-
-Expression*
-Parse::call(Expression* func)
-{
-  go_assert(this->peek_token()->is_op(OPERATOR_LPAREN));
-  Expression_list* args = NULL;
-  bool is_varargs = false;
-  const Token* token = this->advance_token();
-  if (!token->is_op(OPERATOR_RPAREN))
-    {
-      args = this->expression_list(NULL, false);
-      token = this->peek_token();
-      if (token->is_op(OPERATOR_ELLIPSIS))
-       {
-         is_varargs = true;
-         token = this->advance_token();
-       }
-    }
-  if (token->is_op(OPERATOR_COMMA))
-    token = this->advance_token();
-  if (!token->is_op(OPERATOR_RPAREN))
-    error_at(this->location(), "missing %<)%>");
-  else
-    this->advance_token();
-  if (func->is_error_expression())
-    return func;
-  return Expression::make_call(func, args, is_varargs, func->location());
-}
-
-// Return an expression for a single unqualified identifier.
-
-Expression*
-Parse::id_to_expression(const std::string& name, source_location location)
-{
-  Named_object* in_function;
-  Named_object* named_object = this->gogo_->lookup(name, &in_function);
-  if (named_object == NULL)
-    named_object = this->gogo_->add_unknown_name(name, location);
-
-  if (in_function != NULL
-      && in_function != this->gogo_->current_function()
-      && (named_object->is_variable() || named_object->is_result_variable()))
-    return this->enclosing_var_reference(in_function, named_object,
-                                        location);
-
-  switch (named_object->classification())
-    {
-    case Named_object::NAMED_OBJECT_CONST:
-      return Expression::make_const_reference(named_object, location);
-    case Named_object::NAMED_OBJECT_VAR:
-    case Named_object::NAMED_OBJECT_RESULT_VAR:
-      return Expression::make_var_reference(named_object, location);
-    case Named_object::NAMED_OBJECT_SINK:
-      return Expression::make_sink(location);
-    case Named_object::NAMED_OBJECT_FUNC:
-    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-      return Expression::make_func_reference(named_object, NULL, location);
-    case Named_object::NAMED_OBJECT_UNKNOWN:
-      return Expression::make_unknown_reference(named_object, location);
-    default:
-      error_at(this->location(), "unexpected type of identifier");
-      return Expression::make_error(location);
-    }
-}
-
-// Expression = UnaryExpr { binary_op Expression } .
-
-// PRECEDENCE is the precedence of the current operator.
-
-// If MAY_BE_SINK is true, this expression may be "_".
-
-// If MAY_BE_COMPOSITE_LIT is true, this expression may be a composite
-// literal.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::expression(Precedence precedence, bool may_be_sink,
-                 bool may_be_composite_lit, bool* is_type_switch)
-{
-  Expression* left = this->unary_expr(may_be_sink, may_be_composite_lit,
-                                     is_type_switch);
-
-  while (true)
-    {
-      if (is_type_switch != NULL && *is_type_switch)
-       return left;
-
-      const Token* token = this->peek_token();
-      if (token->classification() != Token::TOKEN_OPERATOR)
-       {
-         // Not a binary_op.
-         return left;
-       }
-
-      Precedence right_precedence;
-      switch (token->op())
-       {
-       case OPERATOR_OROR:
-         right_precedence = PRECEDENCE_OROR;
-         break;
-       case OPERATOR_ANDAND:
-         right_precedence = PRECEDENCE_ANDAND;
-         break;
-       case OPERATOR_EQEQ:
-       case OPERATOR_NOTEQ:
-       case OPERATOR_LT:
-       case OPERATOR_LE:
-       case OPERATOR_GT:
-       case OPERATOR_GE:
-         right_precedence = PRECEDENCE_RELOP;
-         break;
-       case OPERATOR_PLUS:
-       case OPERATOR_MINUS:
-       case OPERATOR_OR:
-       case OPERATOR_XOR:
-         right_precedence = PRECEDENCE_ADDOP;
-         break;
-       case OPERATOR_MULT:
-       case OPERATOR_DIV:
-       case OPERATOR_MOD:
-       case OPERATOR_LSHIFT:
-       case OPERATOR_RSHIFT:
-       case OPERATOR_AND:
-       case OPERATOR_BITCLEAR:
-         right_precedence = PRECEDENCE_MULOP;
-         break;
-       default:
-         right_precedence = PRECEDENCE_INVALID;
-         break;
-       }
-
-      if (right_precedence == PRECEDENCE_INVALID)
-       {
-         // Not a binary_op.
-         return left;
-       }
-
-      Operator op = token->op();
-      source_location binop_location = token->location();
-
-      if (precedence >= right_precedence)
-       {
-         // We've already seen A * B, and we see + C.  We want to
-         // return so that A * B becomes a group.
-         return left;
-       }
-
-      this->advance_token();
-
-      left = this->verify_not_sink(left);
-      Expression* right = this->expression(right_precedence, false,
-                                          may_be_composite_lit,
-                                          NULL);
-      left = Expression::make_binary(op, left, right, binop_location);
-    }
-}
-
-bool
-Parse::expression_may_start_here()
-{
-  const Token* token = this->peek_token();
-  switch (token->classification())
-    {
-    case Token::TOKEN_INVALID:
-    case Token::TOKEN_EOF:
-      return false;
-    case Token::TOKEN_KEYWORD:
-      switch (token->keyword())
-       {
-       case KEYWORD_CHAN:
-       case KEYWORD_FUNC:
-       case KEYWORD_MAP:
-       case KEYWORD_STRUCT:
-       case KEYWORD_INTERFACE:
-         return true;
-       default:
-         return false;
-       }
-    case Token::TOKEN_IDENTIFIER:
-      return true;
-    case Token::TOKEN_STRING:
-      return true;
-    case Token::TOKEN_OPERATOR:
-      switch (token->op())
-       {
-       case OPERATOR_PLUS:
-       case OPERATOR_MINUS:
-       case OPERATOR_NOT:
-       case OPERATOR_XOR:
-       case OPERATOR_MULT:
-       case OPERATOR_CHANOP:
-       case OPERATOR_AND:
-       case OPERATOR_LPAREN:
-       case OPERATOR_LSQUARE:
-         return true;
-       default:
-         return false;
-       }
-    case Token::TOKEN_INTEGER:
-    case Token::TOKEN_FLOAT:
-    case Token::TOKEN_IMAGINARY:
-      return true;
-    default:
-      go_unreachable();
-    }
-}
-
-// UnaryExpr = unary_op UnaryExpr | PrimaryExpr .
-
-// If MAY_BE_SINK is true, this expression may be "_".
-
-// If MAY_BE_COMPOSITE_LIT is true, this expression may be a composite
-// literal.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::unary_expr(bool may_be_sink, bool may_be_composite_lit,
-                 bool* is_type_switch)
-{
-  const Token* token = this->peek_token();
-  if (token->is_op(OPERATOR_PLUS)
-      || token->is_op(OPERATOR_MINUS)
-      || token->is_op(OPERATOR_NOT)
-      || token->is_op(OPERATOR_XOR)
-      || token->is_op(OPERATOR_CHANOP)
-      || token->is_op(OPERATOR_MULT)
-      || token->is_op(OPERATOR_AND))
-    {
-      source_location location = token->location();
-      Operator op = token->op();
-      this->advance_token();
-
-      if (op == OPERATOR_CHANOP
-         && this->peek_token()->is_keyword(KEYWORD_CHAN))
-       {
-         // This is "<- chan" which must be the start of a type.
-         this->unget_token(Token::make_operator_token(op, location));
-         return Expression::make_type(this->type(), location);
-       }
-
-      Expression* expr = this->unary_expr(false, may_be_composite_lit, NULL);
-      if (expr->is_error_expression())
-       ;
-      else if (op == OPERATOR_MULT && expr->is_type_expression())
-       expr = Expression::make_type(Type::make_pointer_type(expr->type()),
-                                    location);
-      else if (op == OPERATOR_AND && expr->is_composite_literal())
-       expr = Expression::make_heap_composite(expr, location);
-      else if (op != OPERATOR_CHANOP)
-       expr = Expression::make_unary(op, expr, location);
-      else
-       expr = Expression::make_receive(expr, location);
-      return expr;
-    }
-  else
-    return this->primary_expr(may_be_sink, may_be_composite_lit,
-                             is_type_switch);
-}
-
-// Statement =
-//     Declaration | LabeledStmt | SimpleStmt |
-//     GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
-//     FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
-//     DeferStmt .
-
-// LABEL is the label of this statement if it has one.
-
-void
-Parse::statement(Label* label)
-{
-  const Token* token = this->peek_token();
-  switch (token->classification())
-    {
-    case Token::TOKEN_KEYWORD:
-      {
-       switch (token->keyword())
-         {
-         case KEYWORD_CONST:
-         case KEYWORD_TYPE:
-         case KEYWORD_VAR:
-           this->declaration();
-           break;
-         case KEYWORD_FUNC:
-         case KEYWORD_MAP:
-         case KEYWORD_STRUCT:
-         case KEYWORD_INTERFACE:
-           this->simple_stat(true, NULL, NULL, NULL);
-           break;
-         case KEYWORD_GO:
-         case KEYWORD_DEFER:
-           this->go_or_defer_stat();
-           break;
-         case KEYWORD_RETURN:
-           this->return_stat();
-           break;
-         case KEYWORD_BREAK:
-           this->break_stat();
-           break;
-         case KEYWORD_CONTINUE:
-           this->continue_stat();
-           break;
-         case KEYWORD_GOTO:
-           this->goto_stat();
-           break;
-         case KEYWORD_IF:
-           this->if_stat();
-           break;
-         case KEYWORD_SWITCH:
-           this->switch_stat(label);
-           break;
-         case KEYWORD_SELECT:
-           this->select_stat(label);
-           break;
-         case KEYWORD_FOR:
-           this->for_stat(label);
-           break;
-         default:
-           error_at(this->location(), "expected statement");
-           this->advance_token();
-           break;
-         }
-      }
-      break;
-
-    case Token::TOKEN_IDENTIFIER:
-      {
-       std::string identifier = token->identifier();
-       bool is_exported = token->is_identifier_exported();
-       source_location location = token->location();
-       if (this->advance_token()->is_op(OPERATOR_COLON))
-         {
-           this->advance_token();
-           this->labeled_stmt(identifier, location);
-         }
-       else
-         {
-           this->unget_token(Token::make_identifier_token(identifier,
-                                                          is_exported,
-                                                          location));
-           this->simple_stat(true, NULL, NULL, NULL);
-         }
-      }
-      break;
-
-    case Token::TOKEN_OPERATOR:
-      if (token->is_op(OPERATOR_LCURLY))
-       {
-         source_location location = token->location();
-         this->gogo_->start_block(location);
-         source_location end_loc = this->block();
-         this->gogo_->add_block(this->gogo_->finish_block(end_loc),
-                                location);
-       }
-      else if (!token->is_op(OPERATOR_SEMICOLON))
-       this->simple_stat(true, NULL, NULL, NULL);
-      break;
-
-    case Token::TOKEN_STRING:
-    case Token::TOKEN_INTEGER:
-    case Token::TOKEN_FLOAT:
-    case Token::TOKEN_IMAGINARY:
-      this->simple_stat(true, NULL, NULL, NULL);
-      break;
-
-    default:
-      error_at(this->location(), "expected statement");
-      this->advance_token();
-      break;
-    }
-}
-
-bool
-Parse::statement_may_start_here()
-{
-  const Token* token = this->peek_token();
-  switch (token->classification())
-    {
-    case Token::TOKEN_KEYWORD:
-      {
-       switch (token->keyword())
-         {
-         case KEYWORD_CONST:
-         case KEYWORD_TYPE:
-         case KEYWORD_VAR:
-         case KEYWORD_FUNC:
-         case KEYWORD_MAP:
-         case KEYWORD_STRUCT:
-         case KEYWORD_INTERFACE:
-         case KEYWORD_GO:
-         case KEYWORD_DEFER:
-         case KEYWORD_RETURN:
-         case KEYWORD_BREAK:
-         case KEYWORD_CONTINUE:
-         case KEYWORD_GOTO:
-         case KEYWORD_IF:
-         case KEYWORD_SWITCH:
-         case KEYWORD_SELECT:
-         case KEYWORD_FOR:
-           return true;
-
-         default:
-           return false;
-         }
-      }
-      break;
-
-    case Token::TOKEN_IDENTIFIER:
-      return true;
-
-    case Token::TOKEN_OPERATOR:
-      if (token->is_op(OPERATOR_LCURLY)
-         || token->is_op(OPERATOR_SEMICOLON))
-       return true;
-      else
-       return this->expression_may_start_here();
-
-    case Token::TOKEN_STRING:
-    case Token::TOKEN_INTEGER:
-    case Token::TOKEN_FLOAT:
-    case Token::TOKEN_IMAGINARY:
-      return true;
-
-    default:
-      return false;
-    }
-}
-
-// LabeledStmt = Label ":" Statement .
-// Label       = identifier .
-
-void
-Parse::labeled_stmt(const std::string& label_name, source_location location)
-{
-  Label* label = this->gogo_->add_label_definition(label_name, location);
-
-  if (this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      // This is a label at the end of a block.  A program is
-      // permitted to omit a semicolon here.
-      return;
-    }
-
-  if (!this->statement_may_start_here())
-    {
-      // Mark the label as used to avoid a useless error about an
-      // unused label.
-      label->set_is_used();
-
-      error_at(location, "missing statement after label");
-      this->unget_token(Token::make_operator_token(OPERATOR_SEMICOLON,
-                                                  location));
-      return;
-    }
-
-  this->statement(label);
-}
-
-// SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt |
-//     Assignment | ShortVarDecl .
-
-// EmptyStmt was handled in Parse::statement.
-
-// In order to make this work for if and switch statements, if
-// RETURN_EXP is not NULL, and we see an ExpressionStat, we return the
-// expression rather than adding an expression statement to the
-// current block.  If we see something other than an ExpressionStat,
-// we add the statement, set *RETURN_EXP to true if we saw a send
-// statement, and return NULL.  The handling of send statements is for
-// better error messages.
-
-// If P_RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-// If P_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::simple_stat(bool may_be_composite_lit, bool* return_exp,
-                  Range_clause* p_range_clause, Type_switch* p_type_switch)
-{
-  const Token* token = this->peek_token();
-
-  // An identifier follow by := is a SimpleVarDecl.
-  if (token->is_identifier())
-    {
-      std::string identifier = token->identifier();
-      bool is_exported = token->is_identifier_exported();
-      source_location location = token->location();
-
-      token = this->advance_token();
-      if (token->is_op(OPERATOR_COLONEQ)
-         || token->is_op(OPERATOR_COMMA))
-       {
-         identifier = this->gogo_->pack_hidden_name(identifier, is_exported);
-         this->simple_var_decl_or_assignment(identifier, location,
-                                             p_range_clause,
-                                             (token->is_op(OPERATOR_COLONEQ)
-                                              ? p_type_switch
-                                              : NULL));
-         return NULL;
-       }
-
-      this->unget_token(Token::make_identifier_token(identifier, is_exported,
-                                                    location));
-    }
-
-  Expression* exp = this->expression(PRECEDENCE_NORMAL, true,
-                                    may_be_composite_lit,
-                                    (p_type_switch == NULL
-                                     ? NULL
-                                     : &p_type_switch->found));
-  if (p_type_switch != NULL && p_type_switch->found)
-    {
-      p_type_switch->name.clear();
-      p_type_switch->location = exp->location();
-      p_type_switch->expr = this->verify_not_sink(exp);
-      return NULL;
-    }
-  token = this->peek_token();
-  if (token->is_op(OPERATOR_CHANOP))
-    {
-      this->send_stmt(this->verify_not_sink(exp));
-      if (return_exp != NULL)
-       *return_exp = true;
-    }
-  else if (token->is_op(OPERATOR_PLUSPLUS)
-          || token->is_op(OPERATOR_MINUSMINUS))
-    this->inc_dec_stat(this->verify_not_sink(exp));
-  else if (token->is_op(OPERATOR_COMMA)
-          || token->is_op(OPERATOR_EQ))
-    this->assignment(exp, p_range_clause);
-  else if (token->is_op(OPERATOR_PLUSEQ)
-          || token->is_op(OPERATOR_MINUSEQ)
-          || token->is_op(OPERATOR_OREQ)
-          || token->is_op(OPERATOR_XOREQ)
-          || token->is_op(OPERATOR_MULTEQ)
-          || token->is_op(OPERATOR_DIVEQ)
-          || token->is_op(OPERATOR_MODEQ)
-          || token->is_op(OPERATOR_LSHIFTEQ)
-          || token->is_op(OPERATOR_RSHIFTEQ)
-          || token->is_op(OPERATOR_ANDEQ)
-          || token->is_op(OPERATOR_BITCLEAREQ))
-    this->assignment(this->verify_not_sink(exp), p_range_clause);
-  else if (return_exp != NULL)
-    return this->verify_not_sink(exp);
-  else
-    this->expression_stat(this->verify_not_sink(exp));
-
-  return NULL;
-}
-
-bool
-Parse::simple_stat_may_start_here()
-{
-  return this->expression_may_start_here();
-}
-
-// Parse { Statement ";" } which is used in a few places.  The list of
-// statements may end with a right curly brace, in which case the
-// semicolon may be omitted.
-
-void
-Parse::statement_list()
-{
-  while (this->statement_may_start_here())
-    {
-      this->statement(NULL);
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      else if (this->peek_token()->is_op(OPERATOR_RCURLY))
-       break;
-      else
-       {
-         if (!this->peek_token()->is_eof() || !saw_errors())
-           error_at(this->location(), "expected %<;%> or %<}%> or newline");
-         if (!this->skip_past_error(OPERATOR_RCURLY))
-           return;
-       }
-    }
-}
-
-bool
-Parse::statement_list_may_start_here()
-{
-  return this->statement_may_start_here();
-}
-
-// ExpressionStat = Expression .
-
-void
-Parse::expression_stat(Expression* exp)
-{
-  exp->discarding_value();
-  this->gogo_->add_statement(Statement::make_statement(exp));
-}
-
-// SendStmt = Channel "&lt;-" Expression .
-// Channel  = Expression .
-
-void
-Parse::send_stmt(Expression* channel)
-{
-  go_assert(this->peek_token()->is_op(OPERATOR_CHANOP));
-  source_location loc = this->location();
-  this->advance_token();
-  Expression* val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  Statement* s = Statement::make_send_statement(channel, val, loc);
-  this->gogo_->add_statement(s);
-}
-
-// IncDecStat = Expression ( "++" | "--" ) .
-
-void
-Parse::inc_dec_stat(Expression* exp)
-{
-  const Token* token = this->peek_token();
-
-  // Lvalue maps require special handling.
-  if (exp->index_expression() != NULL)
-    exp->index_expression()->set_is_lvalue();
-
-  if (token->is_op(OPERATOR_PLUSPLUS))
-    this->gogo_->add_statement(Statement::make_inc_statement(exp));
-  else if (token->is_op(OPERATOR_MINUSMINUS))
-    this->gogo_->add_statement(Statement::make_dec_statement(exp));
-  else
-    go_unreachable();
-  this->advance_token();
-}
-
-// Assignment = ExpressionList assign_op ExpressionList .
-
-// EXP is an expression that we have already parsed.
-
-// If RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-void
-Parse::assignment(Expression* expr, Range_clause* p_range_clause)
-{
-  Expression_list* vars;
-  if (!this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      vars = new Expression_list();
-      vars->push_back(expr);
-    }
-  else
-    {
-      this->advance_token();
-      vars = this->expression_list(expr, true);
-    }
-
-  this->tuple_assignment(vars, p_range_clause);
-}
-
-// An assignment statement.  LHS is the list of expressions which
-// appear on the left hand side.
-
-// If RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-void
-Parse::tuple_assignment(Expression_list* lhs, Range_clause* p_range_clause)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_op(OPERATOR_EQ)
-      && !token->is_op(OPERATOR_PLUSEQ)
-      && !token->is_op(OPERATOR_MINUSEQ)
-      && !token->is_op(OPERATOR_OREQ)
-      && !token->is_op(OPERATOR_XOREQ)
-      && !token->is_op(OPERATOR_MULTEQ)
-      && !token->is_op(OPERATOR_DIVEQ)
-      && !token->is_op(OPERATOR_MODEQ)
-      && !token->is_op(OPERATOR_LSHIFTEQ)
-      && !token->is_op(OPERATOR_RSHIFTEQ)
-      && !token->is_op(OPERATOR_ANDEQ)
-      && !token->is_op(OPERATOR_BITCLEAREQ))
-    {
-      error_at(this->location(), "expected assignment operator");
-      return;
-    }
-  Operator op = token->op();
-  source_location location = token->location();
-
-  token = this->advance_token();
-
-  if (p_range_clause != NULL && token->is_keyword(KEYWORD_RANGE))
-    {
-      if (op != OPERATOR_EQ)
-       error_at(this->location(), "range clause requires %<=%>");
-      this->range_clause_expr(lhs, p_range_clause);
-      return;
-    }
-
-  Expression_list* vals = this->expression_list(NULL, false);
-
-  // We've parsed everything; check for errors.
-  if (lhs == NULL || vals == NULL)
-    return;
-  for (Expression_list::const_iterator pe = lhs->begin();
-       pe != lhs->end();
-       ++pe)
-    {
-      if ((*pe)->is_error_expression())
-       return;
-      if (op != OPERATOR_EQ && (*pe)->is_sink_expression())
-       error_at((*pe)->location(), "cannot use _ as value");
-    }
-  for (Expression_list::const_iterator pe = vals->begin();
-       pe != vals->end();
-       ++pe)
-    {
-      if ((*pe)->is_error_expression())
-       return;
-    }
-
-  // Map expressions act differently when they are lvalues.
-  for (Expression_list::iterator plv = lhs->begin();
-       plv != lhs->end();
-       ++plv)
-    if ((*plv)->index_expression() != NULL)
-      (*plv)->index_expression()->set_is_lvalue();
-
-  Call_expression* call;
-  Index_expression* map_index;
-  Receive_expression* receive;
-  Type_guard_expression* type_guard;
-  if (lhs->size() == vals->size())
-    {
-      Statement* s;
-      if (lhs->size() > 1)
-       {
-         if (op != OPERATOR_EQ)
-           error_at(location, "multiple values only permitted with %<=%>");
-         s = Statement::make_tuple_assignment(lhs, vals, location);
-       }
-      else
-       {
-         if (op == OPERATOR_EQ)
-           s = Statement::make_assignment(lhs->front(), vals->front(),
-                                          location);
-         else
-           s = Statement::make_assignment_operation(op, lhs->front(),
-                                                    vals->front(), location);
-         delete lhs;
-         delete vals;
-       }
-      this->gogo_->add_statement(s);
-    }
-  else if (vals->size() == 1
-          && (call = (*vals->begin())->call_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "multiple results only permitted with %<=%>");
-      delete vals;
-      vals = new Expression_list;
-      for (unsigned int i = 0; i < lhs->size(); ++i)
-       vals->push_back(Expression::make_call_result(call, i));
-      Statement* s = Statement::make_tuple_assignment(lhs, vals, location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 2
-          && vals->size() == 1
-          && (map_index = (*vals->begin())->index_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "two values from map requires %<=%>");
-      Expression* val = lhs->front();
-      Expression* present = lhs->back();
-      Statement* s = Statement::make_tuple_map_assignment(val, present,
-                                                         map_index, location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 1
-          && vals->size() == 2
-          && (map_index = lhs->front()->index_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "assigning tuple to map index requires %<=%>");
-      Expression* val = vals->front();
-      Expression* should_set = vals->back();
-      Statement* s = Statement::make_map_assignment(map_index, val, should_set,
-                                                   location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 2
-          && vals->size() == 1
-          && (receive = (*vals->begin())->receive_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "two values from receive requires %<=%>");
-      Expression* val = lhs->front();
-      Expression* success = lhs->back();
-      Expression* channel = receive->channel();
-      Statement* s = Statement::make_tuple_receive_assignment(val, success,
-                                                             channel,
-                                                             false,
-                                                             location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 2
-          && vals->size() == 1
-          && (type_guard = (*vals->begin())->type_guard_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "two values from type guard requires %<=%>");
-      Expression* val = lhs->front();
-      Expression* ok = lhs->back();
-      Expression* expr = type_guard->expr();
-      Type* type = type_guard->type();
-      Statement* s = Statement::make_tuple_type_guard_assignment(val, ok,
-                                                                expr, type,
-                                                                location);
-      this->gogo_->add_statement(s);
-    }
-  else
-    {
-      error_at(location, "number of variables does not match number of values");
-    }
-}
-
-// GoStat = "go" Expression .
-// DeferStat = "defer" Expression .
-
-void
-Parse::go_or_defer_stat()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_GO)
-            || this->peek_token()->is_keyword(KEYWORD_DEFER));
-  bool is_go = this->peek_token()->is_keyword(KEYWORD_GO);
-  source_location stat_location = this->location();
-  this->advance_token();
-  source_location expr_location = this->location();
-  Expression* expr = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  Call_expression* call_expr = expr->call_expression();
-  if (call_expr == NULL)
-    {
-      error_at(expr_location, "expected call expression");
-      return;
-    }
-
-  // Make it easier to simplify go/defer statements by putting every
-  // statement in its own block.
-  this->gogo_->start_block(stat_location);
-  Statement* stat;
-  if (is_go)
-    stat = Statement::make_go_statement(call_expr, stat_location);
-  else
-    stat = Statement::make_defer_statement(call_expr, stat_location);
-  this->gogo_->add_statement(stat);
-  this->gogo_->add_block(this->gogo_->finish_block(stat_location),
-                        stat_location);
-}
-
-// ReturnStat = "return" [ ExpressionList ] .
-
-void
-Parse::return_stat()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_RETURN));
-  source_location location = this->location();
-  this->advance_token();
-  Expression_list* vals = NULL;
-  if (this->expression_may_start_here())
-    vals = this->expression_list(NULL, false);
-  this->gogo_->add_statement(Statement::make_return_statement(vals, location));
-}
-
-// IfStmt    = "if" [ SimpleStmt ";" ] Expression Block [ "else" Statement ] .
-
-void
-Parse::if_stat()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_IF));
-  source_location location = this->location();
-  this->advance_token();
-
-  this->gogo_->start_block(location);
-
-  bool saw_simple_stat = false;
-  Expression* cond = NULL;
-  bool saw_send_stmt;
-  if (this->simple_stat_may_start_here())
-    {
-      cond = this->simple_stat(false, &saw_send_stmt, NULL, NULL);
-      saw_simple_stat = true;
-    }
-  if (cond != NULL && this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      // The SimpleStat is an expression statement.
-      this->expression_stat(cond);
-      cond = NULL;
-    }
-  if (cond == NULL)
-    {
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      else if (saw_simple_stat)
-       {
-         if (saw_send_stmt)
-           error_at(this->location(),
-                    ("send statement used as value; "
-                     "use select for non-blocking send"));
-         else
-           error_at(this->location(),
-                    "expected %<;%> after statement in if expression");
-         if (!this->expression_may_start_here())
-           cond = Expression::make_error(this->location());
-       }
-      if (cond == NULL && this->peek_token()->is_op(OPERATOR_LCURLY))
-       {
-         error_at(this->location(),
-                  "missing condition in if statement");
-         cond = Expression::make_error(this->location());
-       }
-      if (cond == NULL)
-       cond = this->expression(PRECEDENCE_NORMAL, false, false, NULL);
-    }
-
-  this->gogo_->start_block(this->location());
-  source_location end_loc = this->block();
-  Block* then_block = this->gogo_->finish_block(end_loc);
-
-  // Check for the easy error of a newline before "else".
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      source_location semi_loc = this->location();
-      if (this->advance_token()->is_keyword(KEYWORD_ELSE))
-       error_at(this->location(),
-                "unexpected semicolon or newline before %<else%>");
-      else
-       this->unget_token(Token::make_operator_token(OPERATOR_SEMICOLON,
-                                                    semi_loc));
-    }
-
-  Block* else_block = NULL;
-  if (this->peek_token()->is_keyword(KEYWORD_ELSE))
-    {
-      this->advance_token();
-      // We create a block to gather the statement.
-      this->gogo_->start_block(this->location());
-      this->statement(NULL);
-      else_block = this->gogo_->finish_block(this->location());
-    }
-
-  this->gogo_->add_statement(Statement::make_if_statement(cond, then_block,
-                                                         else_block,
-                                                         location));
-
-  this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                        location);
-}
-
-// SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
-// ExprSwitchStmt = "switch" [ [ SimpleStat ] ";" ] [ Expression ]
-//                     "{" { ExprCaseClause } "}" .
-// TypeSwitchStmt  = "switch" [ [ SimpleStat ] ";" ] TypeSwitchGuard
-//                     "{" { TypeCaseClause } "}" .
-// TypeSwitchGuard = [ identifier ":=" ] Expression "." "(" "type" ")" .
-
-void
-Parse::switch_stat(Label* label)
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_SWITCH));
-  source_location location = this->location();
-  this->advance_token();
-
-  this->gogo_->start_block(location);
-
-  bool saw_simple_stat = false;
-  Expression* switch_val = NULL;
-  bool saw_send_stmt;
-  Type_switch type_switch;
-  if (this->simple_stat_may_start_here())
-    {
-      switch_val = this->simple_stat(false, &saw_send_stmt, NULL,
-                                    &type_switch);
-      saw_simple_stat = true;
-    }
-  if (switch_val != NULL && this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      // The SimpleStat is an expression statement.
-      this->expression_stat(switch_val);
-      switch_val = NULL;
-    }
-  if (switch_val == NULL && !type_switch.found)
-    {
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      else if (saw_simple_stat)
-       {
-         if (saw_send_stmt)
-           error_at(this->location(),
-                    ("send statement used as value; "
-                     "use select for non-blocking send"));
-         else
-           error_at(this->location(),
-                    "expected %<;%> after statement in switch expression");
-       }
-      if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-       {
-         if (this->peek_token()->is_identifier())
-           {
-             const Token* token = this->peek_token();
-             std::string identifier = token->identifier();
-             bool is_exported = token->is_identifier_exported();
-             source_location id_loc = token->location();
-
-             token = this->advance_token();
-             bool is_coloneq = token->is_op(OPERATOR_COLONEQ);
-             this->unget_token(Token::make_identifier_token(identifier,
-                                                            is_exported,
-                                                            id_loc));
-             if (is_coloneq)
-               {
-                 // This must be a TypeSwitchGuard.
-                 switch_val = this->simple_stat(false, &saw_send_stmt, NULL,
-                                                &type_switch);
-                 if (!type_switch.found)
-                   {
-                     if (switch_val == NULL
-                         || !switch_val->is_error_expression())
-                       {
-                         error_at(id_loc, "expected type switch assignment");
-                         switch_val = Expression::make_error(id_loc);
-                       }
-                   }
-               }
-           }
-         if (switch_val == NULL && !type_switch.found)
-           {
-             switch_val = this->expression(PRECEDENCE_NORMAL, false, false,
-                                           &type_switch.found);
-             if (type_switch.found)
-               {
-                 type_switch.name.clear();
-                 type_switch.expr = switch_val;
-                 type_switch.location = switch_val->location();
-               }
-           }
-       }
-    }
-
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else if (this->peek_token()->is_op(OPERATOR_COLONEQ))
-       {
-         error_at(token_loc, "invalid variable name");
-         this->advance_token();
-         this->expression(PRECEDENCE_NORMAL, false, false,
-                          &type_switch.found);
-         if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-           this->advance_token();
-         if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-           return;
-         if (type_switch.found)
-           type_switch.expr = Expression::make_error(location);
-       }
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                                location);
-         return;
-       }
-    }
-  this->advance_token();
-
-  Statement* statement;
-  if (type_switch.found)
-    statement = this->type_switch_body(label, type_switch, location);
-  else
-    statement = this->expr_switch_body(label, switch_val, location);
-
-  if (statement != NULL)
-    this->gogo_->add_statement(statement);
-
-  this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                        location);
-}
-
-// The body of an expression switch.
-//   "{" { ExprCaseClause } "}"
-
-Statement*
-Parse::expr_switch_body(Label* label, Expression* switch_val,
-                       source_location location)
-{
-  Switch_statement* statement = Statement::make_switch_statement(switch_val,
-                                                                location);
-
-  this->push_break_statement(statement, label);
-
-  Case_clauses* case_clauses = new Case_clauses();
-  bool saw_default = false;
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      if (this->peek_token()->is_eof())
-       {
-         if (!saw_errors())
-           error_at(this->location(), "missing %<}%>");
-         return NULL;
-       }
-      this->expr_case_clause(case_clauses, &saw_default);
-    }
-  this->advance_token();
-
-  statement->add_clauses(case_clauses);
-
-  this->pop_break_statement();
-
-  return statement;
-}
-
-// ExprCaseClause = ExprSwitchCase ":" [ StatementList ] .
-// FallthroughStat = "fallthrough" .
-
-void
-Parse::expr_case_clause(Case_clauses* clauses, bool* saw_default)
-{
-  source_location location = this->location();
-
-  bool is_default = false;
-  Expression_list* vals = this->expr_switch_case(&is_default);
-
-  if (!this->peek_token()->is_op(OPERATOR_COLON))
-    {
-      if (!saw_errors())
-       error_at(this->location(), "expected %<:%>");
-      return;
-    }
-  else
-    this->advance_token();
-
-  Block* statements = NULL;
-  if (this->statement_list_may_start_here())
-    {
-      this->gogo_->start_block(this->location());
-      this->statement_list();
-      statements = this->gogo_->finish_block(this->location());
-    }
-
-  bool is_fallthrough = false;
-  if (this->peek_token()->is_keyword(KEYWORD_FALLTHROUGH))
-    {
-      is_fallthrough = true;
-      if (this->advance_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-    }
-
-  if (is_default)
-    {
-      if (*saw_default)
-       {
-         error_at(location, "multiple defaults in switch");
-         return;
-       }
-      *saw_default = true;
-    }
-
-  if (is_default || vals != NULL)
-    clauses->add(vals, is_default, statements, is_fallthrough, location);
-}
-
-// ExprSwitchCase = "case" ExpressionList | "default" .
-
-Expression_list*
-Parse::expr_switch_case(bool* is_default)
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_CASE))
-    {
-      this->advance_token();
-      return this->expression_list(NULL, false);
-    }
-  else if (token->is_keyword(KEYWORD_DEFAULT))
-    {
-      this->advance_token();
-      *is_default = true;
-      return NULL;
-    }
-  else
-    {
-      if (!saw_errors())
-       error_at(this->location(), "expected %<case%> or %<default%>");
-      if (!token->is_op(OPERATOR_RCURLY))
-       this->advance_token();
-      return NULL;
-    }
-}
-
-// The body of a type switch.
-//   "{" { TypeCaseClause } "}" .
-
-Statement*
-Parse::type_switch_body(Label* label, const Type_switch& type_switch,
-                       source_location location)
-{
-  Named_object* switch_no = NULL;
-  if (!type_switch.name.empty())
-    {
-      Variable* switch_var = new Variable(NULL, type_switch.expr, false, false,
-                                         false, type_switch.location);
-      switch_no = this->gogo_->add_variable(type_switch.name, switch_var);
-    }
-
-  Type_switch_statement* statement =
-    Statement::make_type_switch_statement(switch_no,
-                                         (switch_no == NULL
-                                          ? type_switch.expr
-                                          : NULL),
-                                         location);
-
-  this->push_break_statement(statement, label);
-
-  Type_case_clauses* case_clauses = new Type_case_clauses();
-  bool saw_default = false;
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      if (this->peek_token()->is_eof())
-       {
-         error_at(this->location(), "missing %<}%>");
-         return NULL;
-       }
-      this->type_case_clause(switch_no, case_clauses, &saw_default);
-    }
-  this->advance_token();
-
-  statement->add_clauses(case_clauses);
-
-  this->pop_break_statement();
-
-  return statement;
-}
-
-// TypeCaseClause  = TypeSwitchCase ":" [ StatementList ] .
-
-void
-Parse::type_case_clause(Named_object* switch_no, Type_case_clauses* clauses,
-                       bool* saw_default)
-{
-  source_location location = this->location();
-
-  std::vector<Type*> types;
-  bool is_default = false;
-  this->type_switch_case(&types, &is_default);
-
-  if (!this->peek_token()->is_op(OPERATOR_COLON))
-    error_at(this->location(), "expected %<:%>");
-  else
-    this->advance_token();
-
-  Block* statements = NULL;
-  if (this->statement_list_may_start_here())
-    {
-      this->gogo_->start_block(this->location());
-      if (switch_no != NULL && types.size() == 1)
-       {
-         Type* type = types.front();
-         Expression* init = Expression::make_var_reference(switch_no,
-                                                           location);
-         init = Expression::make_type_guard(init, type, location);
-         Variable* v = new Variable(type, init, false, false, false,
-                                    location);
-         v->set_is_type_switch_var();
-         this->gogo_->add_variable(switch_no->name(), v);
-       }
-      this->statement_list();
-      statements = this->gogo_->finish_block(this->location());
-    }
-
-  if (this->peek_token()->is_keyword(KEYWORD_FALLTHROUGH))
-    {
-      error_at(this->location(),
-              "fallthrough is not permitted in a type switch");
-      if (this->advance_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-    }
-
-  if (is_default)
-    {
-      go_assert(types.empty());
-      if (*saw_default)
-       {
-         error_at(location, "multiple defaults in type switch");
-         return;
-       }
-      *saw_default = true;
-      clauses->add(NULL, false, true, statements, location);
-    }
-  else if (!types.empty())
-    {
-      for (std::vector<Type*>::const_iterator p = types.begin();
-          p + 1 != types.end();
-          ++p)
-       clauses->add(*p, true, false, NULL, location);
-      clauses->add(types.back(), false, false, statements, location);
-    }
-  else
-    clauses->add(Type::make_error_type(), false, false, statements, location);
-}
-
-// TypeSwitchCase  = "case" type | "default"
-
-// We accept a comma separated list of types.
-
-void
-Parse::type_switch_case(std::vector<Type*>* types, bool* is_default)
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_CASE))
-    {
-      this->advance_token();
-      while (true)
-       {
-         Type* t = this->type();
-         if (!t->is_error_type())
-           types->push_back(t);
-         if (!this->peek_token()->is_op(OPERATOR_COMMA))
-           break;
-         this->advance_token();
-       }
-    }
-  else if (token->is_keyword(KEYWORD_DEFAULT))
-    {
-      this->advance_token();
-      *is_default = true;
-    }
-  else
-    {
-      error_at(this->location(), "expected %<case%> or %<default%>");
-      if (!token->is_op(OPERATOR_RCURLY))
-       this->advance_token();
-    }
-}
-
-// SelectStat = "select" "{" { CommClause } "}" .
-
-void
-Parse::select_stat(Label* label)
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_SELECT));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-
-  if (!token->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = token->location();
-      if (token->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return;
-       }
-    }
-  this->advance_token();
-
-  Select_statement* statement = Statement::make_select_statement(location);
-
-  this->push_break_statement(statement, label);
-
-  Select_clauses* select_clauses = new Select_clauses();
-  bool saw_default = false;
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      if (this->peek_token()->is_eof())
-       {
-         error_at(this->location(), "expected %<}%>");
-         return;
-       }
-      this->comm_clause(select_clauses, &saw_default);
-    }
-
-  this->advance_token();
-
-  statement->add_clauses(select_clauses);
-
-  this->pop_break_statement();
-
-  this->gogo_->add_statement(statement);
-}
-
-// CommClause = CommCase ":" { Statement ";" } .
-
-void
-Parse::comm_clause(Select_clauses* clauses, bool* saw_default)
-{
-  source_location location = this->location();
-  bool is_send = false;
-  Expression* channel = NULL;
-  Expression* val = NULL;
-  Expression* closed = NULL;
-  std::string varname;
-  std::string closedname;
-  bool is_default = false;
-  bool got_case = this->comm_case(&is_send, &channel, &val, &closed,
-                                 &varname, &closedname, &is_default);
-
-  if (!is_send
-      && varname.empty()
-      && closedname.empty()
-      && val != NULL
-      && val->index_expression() != NULL)
-    val->index_expression()->set_is_lvalue();
-
-  if (this->peek_token()->is_op(OPERATOR_COLON))
-    this->advance_token();
-  else
-    error_at(this->location(), "expected colon");
-
-  this->gogo_->start_block(this->location());
-
-  Named_object* var = NULL;
-  if (!varname.empty())
-    {
-      // FIXME: LOCATION is slightly wrong here.
-      Variable* v = new Variable(NULL, channel, false, false, false,
-                                location);
-      v->set_type_from_chan_element();
-      var = this->gogo_->add_variable(varname, v);
-    }
-
-  Named_object* closedvar = NULL;
-  if (!closedname.empty())
-    {
-      // FIXME: LOCATION is slightly wrong here.
-      Variable* v = new Variable(Type::lookup_bool_type(), NULL,
-                                false, false, false, location);
-      closedvar = this->gogo_->add_variable(closedname, v);
-    }
-
-  this->statement_list();
-
-  Block* statements = this->gogo_->finish_block(this->location());
-
-  if (is_default)
-    {
-      if (*saw_default)
-       {
-         error_at(location, "multiple defaults in select");
-         return;
-       }
-      *saw_default = true;
-    }
-
-  if (got_case)
-    clauses->add(is_send, channel, val, closed, var, closedvar, is_default,
-                statements, location);
-  else if (statements != NULL)
-    {
-      // Add the statements to make sure that any names they define
-      // are traversed.
-      this->gogo_->add_block(statements, location);
-    }
-}
-
-// CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
-
-bool
-Parse::comm_case(bool* is_send, Expression** channel, Expression** val,
-                Expression** closed, std::string* varname,
-                std::string* closedname, bool* is_default)
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_DEFAULT))
-    {
-      this->advance_token();
-      *is_default = true;
-    }
-  else if (token->is_keyword(KEYWORD_CASE))
-    {
-      this->advance_token();
-      if (!this->send_or_recv_stmt(is_send, channel, val, closed, varname,
-                                  closedname))
-       return false;
-    }
-  else
-    {
-      error_at(this->location(), "expected %<case%> or %<default%>");
-      if (!token->is_op(OPERATOR_RCURLY))
-       this->advance_token();
-      return false;
-    }
-
-  return true;
-}
-
-// RecvStmt   = [ Expression [ "," Expression ] ( "=" | ":=" ) ] RecvExpr .
-// RecvExpr   = Expression .
-
-bool
-Parse::send_or_recv_stmt(bool* is_send, Expression** channel, Expression** val,
-                        Expression** closed, std::string* varname,
-                        std::string* closedname)
-{
-  const Token* token = this->peek_token();
-  bool saw_comma = false;
-  bool closed_is_id = false;
-  if (token->is_identifier())
-    {
-      Gogo* gogo = this->gogo_;
-      std::string recv_var = token->identifier();
-      bool is_rv_exported = token->is_identifier_exported();
-      source_location recv_var_loc = token->location();
-      token = this->advance_token();
-      if (token->is_op(OPERATOR_COLONEQ))
-       {
-         // case rv := <-c:
-         if (!this->advance_token()->is_op(OPERATOR_CHANOP))
-           {
-             error_at(this->location(), "expected %<<-%>");
-             return false;
-           }
-         if (recv_var == "_")
-           {
-             error_at(recv_var_loc,
-                      "no new variables on left side of %<:=%>");
-             recv_var = "blank";
-           }
-         *is_send = false;
-         *varname = gogo->pack_hidden_name(recv_var, is_rv_exported);
-         this->advance_token();
-         *channel = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-         return true;
-       }
-      else if (token->is_op(OPERATOR_COMMA))
-       {
-         token = this->advance_token();
-         if (token->is_identifier())
-           {
-             std::string recv_closed = token->identifier();
-             bool is_rc_exported = token->is_identifier_exported();
-             source_location recv_closed_loc = token->location();
-             closed_is_id = true;
-
-             token = this->advance_token();
-             if (token->is_op(OPERATOR_COLONEQ))
-               {
-                 // case rv, rc := <-c:
-                 if (!this->advance_token()->is_op(OPERATOR_CHANOP))
-                   {
-                     error_at(this->location(), "expected %<<-%>");
-                     return false;
-                   }
-                 if (recv_var == "_" && recv_closed == "_")
-                   {
-                     error_at(recv_var_loc,
-                              "no new variables on left side of %<:=%>");
-                     recv_var = "blank";
-                   }
-                 *is_send = false;
-                 if (recv_var != "_")
-                   *varname = gogo->pack_hidden_name(recv_var,
-                                                     is_rv_exported);
-                 if (recv_closed != "_")
-                   *closedname = gogo->pack_hidden_name(recv_closed,
-                                                        is_rc_exported);
-                 this->advance_token();
-                 *channel = this->expression(PRECEDENCE_NORMAL, false, true,
-                                             NULL);
-                 return true;
-               }
-
-             this->unget_token(Token::make_identifier_token(recv_closed,
-                                                            is_rc_exported,
-                                                            recv_closed_loc));
-           }
-
-         *val = this->id_to_expression(gogo->pack_hidden_name(recv_var,
-                                                              is_rv_exported),
-                                       recv_var_loc);
-         saw_comma = true;
-       }
-      else
-       this->unget_token(Token::make_identifier_token(recv_var,
-                                                      is_rv_exported,
-                                                      recv_var_loc));
-    }
-
-  // If SAW_COMMA is false, then we are looking at the start of the
-  // send or receive expression.  If SAW_COMMA is true, then *VAL is
-  // set and we just read a comma.
-
-  Expression* e;
-  if (saw_comma || !this->peek_token()->is_op(OPERATOR_CHANOP))
-    e = this->expression(PRECEDENCE_NORMAL, true, true, NULL);
-  else
-    {
-      // case <-c:
-      *is_send = false;
-      this->advance_token();
-      *channel = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-
-      // The next token should be ':'.  If it is '<-', then we have
-      // case <-c <- v:
-      // which is to say, send on a channel received from a channel.
-      if (!this->peek_token()->is_op(OPERATOR_CHANOP))
-       return true;
-
-      e = Expression::make_receive(*channel, (*channel)->location());
-    }
-
-  if (this->peek_token()->is_op(OPERATOR_EQ))
-    {
-      if (!this->advance_token()->is_op(OPERATOR_CHANOP))
-       {
-         error_at(this->location(), "missing %<<-%>");
-         return false;
-       }
-      *is_send = false;
-      this->advance_token();
-      *channel = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      if (saw_comma)
-       {
-         // case v, e = <-c:
-         // *VAL is already set.
-         if (!e->is_sink_expression())
-           *closed = e;
-       }
-      else
-       {
-         // case v = <-c:
-         if (!e->is_sink_expression())
-           *val = e;
-       }
-      return true;
-    }
-
-  if (saw_comma)
-    {
-      if (closed_is_id)
-       error_at(this->location(), "expected %<=%> or %<:=%>");
-      else
-       error_at(this->location(), "expected %<=%>");
-      return false;
-    }
-
-  if (this->peek_token()->is_op(OPERATOR_CHANOP))
-    {
-      // case c <- v:
-      *is_send = true;
-      *channel = this->verify_not_sink(e);
-      this->advance_token();
-      *val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      return true;
-    }
-
-  error_at(this->location(), "expected %<<-%> or %<=%>");
-  return false;
-}
-
-// ForStat = "for" [ Condition | ForClause | RangeClause ] Block .
-// Condition = Expression .
-
-void
-Parse::for_stat(Label* label)
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_FOR));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-
-  // Open a block to hold any variables defined in the init statement
-  // of the for statement.
-  this->gogo_->start_block(location);
-
-  Block* init = NULL;
-  Expression* cond = NULL;
-  Block* post = NULL;
-  Range_clause range_clause;
-
-  if (!token->is_op(OPERATOR_LCURLY))
-    {
-      if (token->is_keyword(KEYWORD_VAR))
-       {
-         error_at(this->location(),
-                  "var declaration not allowed in for initializer");
-         this->var_decl();
-       }
-
-      if (token->is_op(OPERATOR_SEMICOLON))
-       this->for_clause(&cond, &post);
-      else
-       {
-         // We might be looking at a Condition, an InitStat, or a
-         // RangeClause.
-         bool saw_send_stmt;
-         cond = this->simple_stat(false, &saw_send_stmt, &range_clause, NULL);
-         if (!this->peek_token()->is_op(OPERATOR_SEMICOLON))
-           {
-             if (cond == NULL && !range_clause.found)
-               {
-                 if (saw_send_stmt)
-                   error_at(this->location(),
-                            ("send statement used as value; "
-                             "use select for non-blocking send"));
-                 else
-                   error_at(this->location(), "parse error in for statement");
-               }
-           }
-         else
-           {
-             if (range_clause.found)
-               error_at(this->location(), "parse error after range clause");
-
-             if (cond != NULL)
-               {
-                 // COND is actually an expression statement for
-                 // InitStat at the start of a ForClause.
-                 this->expression_stat(cond);
-                 cond = NULL;
-               }
-
-             this->for_clause(&cond, &post);
-           }
-       }
-    }
-
-  // Build the For_statement and note that it is the current target
-  // for break and continue statements.
-
-  For_statement* sfor;
-  For_range_statement* srange;
-  Statement* s;
-  if (!range_clause.found)
-    {
-      sfor = Statement::make_for_statement(init, cond, post, location);
-      s = sfor;
-      srange = NULL;
-    }
-  else
-    {
-      srange = Statement::make_for_range_statement(range_clause.index,
-                                                  range_clause.value,
-                                                  range_clause.range,
-                                                  location);
-      s = srange;
-      sfor = NULL;
-    }
-
-  this->push_break_statement(s, label);
-  this->push_continue_statement(s, label);
-
-  // Gather the block of statements in the loop and add them to the
-  // For_statement.
-
-  this->gogo_->start_block(this->location());
-  source_location end_loc = this->block();
-  Block* statements = this->gogo_->finish_block(end_loc);
-
-  if (sfor != NULL)
-    sfor->add_statements(statements);
-  else
-    srange->add_statements(statements);
-
-  // This is no longer the break/continue target.
-  this->pop_break_statement();
-  this->pop_continue_statement();
-
-  // Add the For_statement to the list of statements, and close out
-  // the block we started to hold any variables defined in the for
-  // statement.
-
-  this->gogo_->add_statement(s);
-
-  this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                        location);
-}
-
-// ForClause = [ InitStat ] ";" [ Condition ] ";" [ PostStat ] .
-// InitStat = SimpleStat .
-// PostStat = SimpleStat .
-
-// We have already read InitStat at this point.
-
-void
-Parse::for_clause(Expression** cond, Block** post)
-{
-  go_assert(this->peek_token()->is_op(OPERATOR_SEMICOLON));
-  this->advance_token();
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    *cond = NULL;
-  else if (this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      error_at(this->location(),
-              "unexpected semicolon or newline before %<{%>");
-      *cond = NULL;
-      *post = NULL;
-      return;
-    }
-  else
-    *cond = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  if (!this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    error_at(this->location(), "expected semicolon");
-  else
-    this->advance_token();
-
-  if (this->peek_token()->is_op(OPERATOR_LCURLY))
-    *post = NULL;
-  else
-    {
-      this->gogo_->start_block(this->location());
-      this->simple_stat(false, NULL, NULL, NULL);
-      *post = this->gogo_->finish_block(this->location());
-    }
-}
-
-// RangeClause = IdentifierList ( "=" | ":=" ) "range" Expression .
-
-// This is the := version.  It is called with a list of identifiers.
-
-void
-Parse::range_clause_decl(const Typed_identifier_list* til,
-                        Range_clause* p_range_clause)
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_RANGE));
-  source_location location = this->location();
-
-  p_range_clause->found = true;
-
-  go_assert(til->size() >= 1);
-  if (til->size() > 2)
-    error_at(this->location(), "too many variables for range clause");
-
-  this->advance_token();
-  Expression* expr = this->expression(PRECEDENCE_NORMAL, false, false, NULL);
-  p_range_clause->range = expr;
-
-  bool any_new = false;
-
-  const Typed_identifier* pti = &til->front();
-  Named_object* no = this->init_var(*pti, NULL, expr, true, true, &any_new);
-  if (any_new && no->is_variable())
-    no->var_value()->set_type_from_range_index();
-  p_range_clause->index = Expression::make_var_reference(no, location);
-
-  if (til->size() == 1)
-    p_range_clause->value = NULL;
-  else
-    {
-      pti = &til->back();
-      bool is_new = false;
-      no = this->init_var(*pti, NULL, expr, true, true, &is_new);
-      if (is_new && no->is_variable())
-       no->var_value()->set_type_from_range_value();
-      if (is_new)
-       any_new = true;
-      p_range_clause->value = Expression::make_var_reference(no, location);
-    }
-
-  if (!any_new)
-    error_at(location, "variables redeclared but no variable is new");
-}
-
-// The = version of RangeClause.  This is called with a list of
-// expressions.
-
-void
-Parse::range_clause_expr(const Expression_list* vals,
-                        Range_clause* p_range_clause)
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_RANGE));
-
-  p_range_clause->found = true;
-
-  go_assert(vals->size() >= 1);
-  if (vals->size() > 2)
-    error_at(this->location(), "too many variables for range clause");
-
-  this->advance_token();
-  p_range_clause->range = this->expression(PRECEDENCE_NORMAL, false, false,
-                                          NULL);
-
-  p_range_clause->index = vals->front();
-  if (vals->size() == 1)
-    p_range_clause->value = NULL;
-  else
-    p_range_clause->value = vals->back();
-}
-
-// Push a statement on the break stack.
-
-void
-Parse::push_break_statement(Statement* enclosing, Label* label)
-{
-  if (this->break_stack_ == NULL)
-    this->break_stack_ = new Bc_stack();
-  this->break_stack_->push_back(std::make_pair(enclosing, label));
-}
-
-// Push a statement on the continue stack.
-
-void
-Parse::push_continue_statement(Statement* enclosing, Label* label)
-{
-  if (this->continue_stack_ == NULL)
-    this->continue_stack_ = new Bc_stack();
-  this->continue_stack_->push_back(std::make_pair(enclosing, label));
-}
-
-// Pop the break stack.
-
-void
-Parse::pop_break_statement()
-{
-  this->break_stack_->pop_back();
-}
-
-// Pop the continue stack.
-
-void
-Parse::pop_continue_statement()
-{
-  this->continue_stack_->pop_back();
-}
-
-// Find a break or continue statement given a label name.
-
-Statement*
-Parse::find_bc_statement(const Bc_stack* bc_stack, const std::string& label)
-{
-  if (bc_stack == NULL)
-    return NULL;
-  for (Bc_stack::const_reverse_iterator p = bc_stack->rbegin();
-       p != bc_stack->rend();
-       ++p)
-    {
-      if (p->second != NULL && p->second->name() == label)
-       {
-         p->second->set_is_used();
-         return p->first;
-       }
-    }
-  return NULL;
-}
-
-// BreakStat = "break" [ identifier ] .
-
-void
-Parse::break_stat()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_BREAK));
-  source_location location = this->location();
-
-  const Token* token = this->advance_token();
-  Statement* enclosing;
-  if (!token->is_identifier())
-    {
-      if (this->break_stack_ == NULL || this->break_stack_->empty())
-       {
-         error_at(this->location(),
-                  "break statement not within for or switch or select");
-         return;
-       }
-      enclosing = this->break_stack_->back().first;
-    }
-  else
-    {
-      enclosing = this->find_bc_statement(this->break_stack_,
-                                         token->identifier());
-      if (enclosing == NULL)
-       {
-         // If there is a label with this name, mark it as used to
-         // avoid a useless error about an unused label.
-         this->gogo_->add_label_reference(token->identifier());
-
-         error_at(token->location(), "invalid break label %qs",
-                  Gogo::message_name(token->identifier()).c_str());
-         this->advance_token();
-         return;
-       }
-      this->advance_token();
-    }
-
-  Unnamed_label* label;
-  if (enclosing->classification() == Statement::STATEMENT_FOR)
-    label = enclosing->for_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_FOR_RANGE)
-    label = enclosing->for_range_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_SWITCH)
-    label = enclosing->switch_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_TYPE_SWITCH)
-    label = enclosing->type_switch_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_SELECT)
-    label = enclosing->select_statement()->break_label();
-  else
-    go_unreachable();
-
-  this->gogo_->add_statement(Statement::make_break_statement(label,
-                                                            location));
-}
-
-// ContinueStat = "continue" [ identifier ] .
-
-void
-Parse::continue_stat()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_CONTINUE));
-  source_location location = this->location();
-
-  const Token* token = this->advance_token();
-  Statement* enclosing;
-  if (!token->is_identifier())
-    {
-      if (this->continue_stack_ == NULL || this->continue_stack_->empty())
-       {
-         error_at(this->location(), "continue statement not within for");
-         return;
-       }
-      enclosing = this->continue_stack_->back().first;
-    }
-  else
-    {
-      enclosing = this->find_bc_statement(this->continue_stack_,
-                                         token->identifier());
-      if (enclosing == NULL)
-       {
-         // If there is a label with this name, mark it as used to
-         // avoid a useless error about an unused label.
-         this->gogo_->add_label_reference(token->identifier());
-
-         error_at(token->location(), "invalid continue label %qs",
-                  Gogo::message_name(token->identifier()).c_str());
-         this->advance_token();
-         return;
-       }
-      this->advance_token();
-    }
-
-  Unnamed_label* label;
-  if (enclosing->classification() == Statement::STATEMENT_FOR)
-    label = enclosing->for_statement()->continue_label();
-  else if (enclosing->classification() == Statement::STATEMENT_FOR_RANGE)
-    label = enclosing->for_range_statement()->continue_label();
-  else
-    go_unreachable();
-
-  this->gogo_->add_statement(Statement::make_continue_statement(label,
-                                                               location));
-}
-
-// GotoStat = "goto" identifier .
-
-void
-Parse::goto_stat()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_GOTO));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-  if (!token->is_identifier())
-    error_at(this->location(), "expected label for goto");
-  else
-    {
-      Label* label = this->gogo_->add_label_reference(token->identifier());
-      Statement* s = Statement::make_goto_statement(label, location);
-      this->gogo_->add_statement(s);
-      this->advance_token();
-    }
-}
-
-// PackageClause = "package" PackageName .
-
-void
-Parse::package_clause()
-{
-  const Token* token = this->peek_token();
-  source_location location = token->location();
-  std::string name;
-  if (!token->is_keyword(KEYWORD_PACKAGE))
-    {
-      error_at(this->location(), "program must start with package clause");
-      name = "ERROR";
-    }
-  else
-    {
-      token = this->advance_token();
-      if (token->is_identifier())
-       {
-         name = token->identifier();
-         if (name == "_")
-           {
-             error_at(this->location(), "invalid package name _");
-             name = "blank";
-           }
-         this->advance_token();
-       }
-      else
-       {
-         error_at(this->location(), "package name must be an identifier");
-         name = "ERROR";
-       }
-    }
-  this->gogo_->set_package_name(name, location);
-}
-
-// ImportDecl = "import" Decl<ImportSpec> .
-
-void
-Parse::import_decl()
-{
-  go_assert(this->peek_token()->is_keyword(KEYWORD_IMPORT));
-  this->advance_token();
-  this->decl(&Parse::import_spec, NULL);
-}
-
-// ImportSpec = [ "." | PackageName ] PackageFileName .
-
-void
-Parse::import_spec(void*)
-{
-  const Token* token = this->peek_token();
-  source_location location = token->location();
-
-  std::string local_name;
-  bool is_local_name_exported = false;
-  if (token->is_op(OPERATOR_DOT))
-    {
-      local_name = ".";
-      token = this->advance_token();
-    }
-  else if (token->is_identifier())
-    {
-      local_name = token->identifier();
-      is_local_name_exported = token->is_identifier_exported();
-      token = this->advance_token();
-    }
-
-  if (!token->is_string())
-    {
-      error_at(this->location(), "missing import package name");
-      return;
-    }
-
-  this->gogo_->import_package(token->string_value(), local_name,
-                             is_local_name_exported, location);
-
-  this->advance_token();
-}
-
-// SourceFile       = PackageClause ";" { ImportDecl ";" }
-//                     { TopLevelDecl ";" } .
-
-void
-Parse::program()
-{
-  this->package_clause();
-
-  const Token* token = this->peek_token();
-  if (token->is_op(OPERATOR_SEMICOLON))
-    token = this->advance_token();
-  else
-    error_at(this->location(),
-            "expected %<;%> or newline after package clause");
-
-  while (token->is_keyword(KEYWORD_IMPORT))
-    {
-      this->import_decl();
-      token = this->peek_token();
-      if (token->is_op(OPERATOR_SEMICOLON))
-       token = this->advance_token();
-      else
-       error_at(this->location(),
-                "expected %<;%> or newline after import declaration");
-    }
-
-  while (!token->is_eof())
-    {
-      if (this->declaration_may_start_here())
-       this->declaration();
-      else
-       {
-         error_at(this->location(), "expected declaration");
-         do
-           this->advance_token();
-         while (!this->peek_token()->is_eof()
-                && !this->peek_token()->is_op(OPERATOR_SEMICOLON)
-                && !this->peek_token()->is_op(OPERATOR_RCURLY));
-         if (!this->peek_token()->is_eof()
-             && !this->peek_token()->is_op(OPERATOR_SEMICOLON))
-           this->advance_token();
-       }
-      token = this->peek_token();
-      if (token->is_op(OPERATOR_SEMICOLON))
-       token = this->advance_token();
-      else if (!token->is_eof() || !saw_errors())
-       {
-         if (token->is_op(OPERATOR_CHANOP))
-           error_at(this->location(),
-                    ("send statement used as value; "
-                     "use select for non-blocking send"));
-         else
-           error_at(this->location(),
-                    "expected %<;%> or newline after top level declaration");
-         this->skip_past_error(OPERATOR_INVALID);
-       }
-    }
-}
-
-// Reset the current iota value.
-
-void
-Parse::reset_iota()
-{
-  this->iota_ = 0;
-}
-
-// Return the current iota value.
-
-int
-Parse::iota_value()
-{
-  return this->iota_;
-}
-
-// Increment the current iota value.
-
-void
-Parse::increment_iota()
-{
-  ++this->iota_;
-}
-
-// Skip forward to a semicolon or OP.  OP will normally be
-// OPERATOR_RPAREN or OPERATOR_RCURLY.  If we find a semicolon, move
-// past it and return.  If we find OP, it will be the next token to
-// read.  Return true if we are OK, false if we found EOF.
-
-bool
-Parse::skip_past_error(Operator op)
-{
-  const Token* token = this->peek_token();
-  while (!token->is_op(op))
-    {
-      if (token->is_eof())
-       return false;
-      if (token->is_op(OPERATOR_SEMICOLON))
-       {
-         this->advance_token();
-         return true;
-       }
-      token = this->advance_token();
-    }
-  return true;
-}
-
-// Check that an expression is not a sink.
-
-Expression*
-Parse::verify_not_sink(Expression* expr)
-{
-  if (expr->is_sink_expression())
-    {
-      error_at(expr->location(), "cannot use _ as value");
-      expr = Expression::make_error(expr->location());
-    }
-  return expr;
-}
diff --git a/gcc/go/gofrontend/parse.cc.working b/gcc/go/gofrontend/parse.cc.working
deleted file mode 100644 (file)
index f1b9342..0000000
+++ /dev/null
@@ -1,5015 +0,0 @@
-// parse.cc -- Go frontend parser.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "lex.h"
-#include "gogo.h"
-#include "types.h"
-#include "statements.h"
-#include "expressions.h"
-#include "parse.h"
-
-// Struct Parse::Enclosing_var_comparison.
-
-// Return true if v1 should be considered to be less than v2.
-
-bool
-Parse::Enclosing_var_comparison::operator()(const Enclosing_var& v1,
-                                           const Enclosing_var& v2)
-{
-  if (v1.var() == v2.var())
-    return false;
-
-  const std::string& n1(v1.var()->name());
-  const std::string& n2(v2.var()->name());
-  int i = n1.compare(n2);
-  if (i < 0)
-    return true;
-  else if (i > 0)
-    return false;
-
-  // If we get here it means that a single nested function refers to
-  // two different variables defined in enclosing functions, and both
-  // variables have the same name.  I think this is impossible.
-  gcc_unreachable();
-}
-
-// Class Parse.
-
-Parse::Parse(Lex* lex, Gogo* gogo)
-  : lex_(lex),
-    token_(Token::make_invalid_token(0)),
-    unget_token_(Token::make_invalid_token(0)),
-    unget_token_valid_(false),
-    gogo_(gogo),
-    break_stack_(NULL),
-    continue_stack_(NULL),
-    iota_(0),
-    enclosing_vars_()
-{
-}
-
-// Return the current token.
-
-const Token*
-Parse::peek_token()
-{
-  if (this->unget_token_valid_)
-    return &this->unget_token_;
-  if (this->token_.is_invalid())
-    this->token_ = this->lex_->next_token();
-  return &this->token_;
-}
-
-// Advance to the next token and return it.
-
-const Token*
-Parse::advance_token()
-{
-  if (this->unget_token_valid_)
-    {
-      this->unget_token_valid_ = false;
-      if (!this->token_.is_invalid())
-       return &this->token_;
-    }
-  this->token_ = this->lex_->next_token();
-  return &this->token_;
-}
-
-// Push a token back on the input stream.
-
-void
-Parse::unget_token(const Token& token)
-{
-  gcc_assert(!this->unget_token_valid_);
-  this->unget_token_ = token;
-  this->unget_token_valid_ = true;
-}
-
-// The location of the current token.
-
-source_location
-Parse::location()
-{
-  return this->peek_token()->location();
-}
-
-// IdentifierList = identifier { "," identifier } .
-
-void
-Parse::identifier_list(Typed_identifier_list* til)
-{
-  const Token* token = this->peek_token();
-  while (true)
-    {
-      if (!token->is_identifier())
-       {
-         error_at(this->location(), "expected identifier");
-         return;
-       }
-      std::string name =
-       this->gogo_->pack_hidden_name(token->identifier(),
-                                     token->is_identifier_exported());
-      til->push_back(Typed_identifier(name, NULL, token->location()));
-      token = this->advance_token();
-      if (!token->is_op(OPERATOR_COMMA))
-       return;
-      token = this->advance_token();
-    }
-}
-
-// ExpressionList = Expression { "," Expression } .
-
-// If MAY_BE_SINK is true, the expressions in the list may be "_".
-
-Expression_list*
-Parse::expression_list(Expression* first, bool may_be_sink)
-{
-  Expression_list* ret = new Expression_list();
-  if (first != NULL)
-    ret->push_back(first);
-  while (true)
-    {
-      ret->push_back(this->expression(PRECEDENCE_NORMAL, may_be_sink, true,
-                                     NULL));
-
-      const Token* token = this->peek_token();
-      if (!token->is_op(OPERATOR_COMMA))
-       return ret;
-
-      // Most expression lists permit a trailing comma.
-      source_location location = token->location();
-      this->advance_token();
-      if (!this->expression_may_start_here())
-       {
-         this->unget_token(Token::make_operator_token(OPERATOR_COMMA,
-                                                      location));
-         return ret;
-       }
-    }
-}
-
-// QualifiedIdent = [ PackageName "." ] identifier .
-// PackageName = identifier .
-
-// This sets *PNAME to the identifier and sets *PPACKAGE to the
-// package or NULL if there isn't one.  This returns true on success,
-// false on failure in which case it will have emitted an error
-// message.
-
-bool
-Parse::qualified_ident(std::string* pname, Named_object** ppackage)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return false;
-    }
-
-  std::string name = token->identifier();
-  bool is_exported = token->is_identifier_exported();
-  name = this->gogo_->pack_hidden_name(name, is_exported);
-
-  token = this->advance_token();
-  if (!token->is_op(OPERATOR_DOT))
-    {
-      *pname = name;
-      *ppackage = NULL;
-      return true;
-    }
-
-  Named_object* package = this->gogo_->lookup(name, NULL);
-  if (package == NULL || !package->is_package())
-    {
-      error_at(this->location(), "expected package");
-      // We expect . IDENTIFIER; skip both.
-      if (this->advance_token()->is_identifier())
-       this->advance_token();
-      return false;
-    }
-
-  package->package_value()->set_used();
-
-  token = this->advance_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return false;
-    }
-
-  name = token->identifier();
-
-  if (name == "_")
-    {
-      error_at(this->location(), "invalid use of %<_%>");
-      name = "blank";
-    }
-
-  if (package->name() == this->gogo_->package_name())
-    name = this->gogo_->pack_hidden_name(name,
-                                        token->is_identifier_exported());
-
-  *pname = name;
-  *ppackage = package;
-
-  this->advance_token();
-
-  return true;
-}
-
-// Type = TypeName | TypeLit | "(" Type ")" .
-// TypeLit =
-//     ArrayType | StructType | PointerType | FunctionType | InterfaceType |
-//     SliceType | MapType | ChannelType .
-
-Type*
-Parse::type()
-{
-  const Token* token = this->peek_token();
-  if (token->is_identifier())
-    return this->type_name(true);
-  else if (token->is_op(OPERATOR_LSQUARE))
-    return this->array_type(false);
-  else if (token->is_keyword(KEYWORD_CHAN)
-          || token->is_op(OPERATOR_CHANOP))
-    return this->channel_type();
-  else if (token->is_keyword(KEYWORD_INTERFACE))
-    return this->interface_type();
-  else if (token->is_keyword(KEYWORD_FUNC))
-    {
-      source_location location = token->location();
-      this->advance_token();
-      Type* type = this->signature(NULL, location);
-      if (type == NULL)
-       return Type::make_error_type();
-      return type;
-    }
-  else if (token->is_keyword(KEYWORD_MAP))
-    return this->map_type();
-  else if (token->is_keyword(KEYWORD_STRUCT))
-    return this->struct_type();
-  else if (token->is_op(OPERATOR_MULT))
-    return this->pointer_type();
-  else if (token->is_op(OPERATOR_LPAREN))
-    {
-      this->advance_token();
-      Type* ret = this->type();
-      if (this->peek_token()->is_op(OPERATOR_RPAREN))
-       this->advance_token();
-      else
-       {
-         if (!ret->is_error_type())
-           error_at(this->location(), "expected %<)%>");
-       }
-      return ret;
-    }
-  else
-    {
-      error_at(token->location(), "expected type");
-      return Type::make_error_type();
-    }
-}
-
-bool
-Parse::type_may_start_here()
-{
-  const Token* token = this->peek_token();
-  return (token->is_identifier()
-         || token->is_op(OPERATOR_LSQUARE)
-         || token->is_op(OPERATOR_CHANOP)
-         || token->is_keyword(KEYWORD_CHAN)
-         || token->is_keyword(KEYWORD_INTERFACE)
-         || token->is_keyword(KEYWORD_FUNC)
-         || token->is_keyword(KEYWORD_MAP)
-         || token->is_keyword(KEYWORD_STRUCT)
-         || token->is_op(OPERATOR_MULT)
-         || token->is_op(OPERATOR_LPAREN));
-}
-
-// TypeName = QualifiedIdent .
-
-// If MAY_BE_NIL is true, then an identifier with the value of the
-// predefined constant nil is accepted, returning the nil type.
-
-Type*
-Parse::type_name(bool issue_error)
-{
-  source_location location = this->location();
-
-  std::string name;
-  Named_object* package;
-  if (!this->qualified_ident(&name, &package))
-    return Type::make_error_type();
-
-  Named_object* named_object;
-  if (package == NULL)
-    named_object = this->gogo_->lookup(name, NULL);
-  else
-    {
-      named_object = package->package_value()->lookup(name);
-      if (named_object == NULL
-         && issue_error
-         && package->name() != this->gogo_->package_name())
-       {
-         // Check whether the name is there but hidden.
-         std::string s = ('.' + package->package_value()->unique_prefix()
-                          + '.' + package->package_value()->name()
-                          + '.' + name);
-         named_object = package->package_value()->lookup(s);
-         if (named_object != NULL)
-           {
-             const std::string& packname(package->package_value()->name());
-             error_at(location, "invalid reference to hidden type %<%s.%s%>",
-                      Gogo::message_name(packname).c_str(),
-                      Gogo::message_name(name).c_str());
-             issue_error = false;
-           }
-       }
-    }
-
-  bool ok = true;
-  if (named_object == NULL)
-    {
-      if (package != NULL)
-       ok = false;
-      else
-       named_object = this->gogo_->add_unknown_name(name, location);
-    }
-  else if (named_object->is_type())
-    {
-      if (!named_object->type_value()->is_visible())
-       ok = false;
-    }
-  else if (named_object->is_unknown() || named_object->is_type_declaration())
-    ;
-  else
-    ok = false;
-
-  if (!ok)
-    {
-      if (issue_error)
-       error_at(location, "expected type");
-      return Type::make_error_type();
-    }
-
-  if (named_object->is_type())
-    return named_object->type_value();
-  else if (named_object->is_unknown() || named_object->is_type_declaration())
-    return Type::make_forward_declaration(named_object);
-  else
-    gcc_unreachable();
-}
-
-// ArrayType = "[" [ ArrayLength ] "]" ElementType .
-// ArrayLength = Expression .
-// ElementType = CompleteType .
-
-Type*
-Parse::array_type(bool may_use_ellipsis)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_LSQUARE));
-  const Token* token = this->advance_token();
-
-  Expression* length = NULL;
-  if (token->is_op(OPERATOR_RSQUARE))
-    this->advance_token();
-  else
-    {
-      if (!token->is_op(OPERATOR_ELLIPSIS))
-       length = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      else if (may_use_ellipsis)
-       {
-         // An ellipsis is used in composite literals to represent a
-         // fixed array of the size of the number of elements.  We
-         // use a length of nil to represent this, and change the
-         // length when parsing the composite literal.
-         length = Expression::make_nil(this->location());
-         this->advance_token();
-       }
-      else
-       {
-         error_at(this->location(),
-                  "use of %<[...]%> outside of array literal");
-         length = Expression::make_error(this->location());
-         this->advance_token();
-       }
-      if (!this->peek_token()->is_op(OPERATOR_RSQUARE))
-       {
-         error_at(this->location(), "expected %<]%>");
-         return Type::make_error_type();
-       }
-      this->advance_token();
-    }
-
-  Type* element_type = this->type();
-
-  return Type::make_array_type(element_type, length);
-}
-
-// MapType = "map" "[" KeyType "]" ValueType .
-// KeyType = CompleteType .
-// ValueType = CompleteType .
-
-Type*
-Parse::map_type()
-{
-  source_location location = this->location();
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_MAP));
-  if (!this->advance_token()->is_op(OPERATOR_LSQUARE))
-    {
-      error_at(this->location(), "expected %<[%>");
-      return Type::make_error_type();
-    }
-  this->advance_token();
-
-  Type* key_type = this->type();
-
-  if (!this->peek_token()->is_op(OPERATOR_RSQUARE))
-    {
-      error_at(this->location(), "expected %<]%>");
-      return Type::make_error_type();
-    }
-  this->advance_token();
-
-  Type* value_type = this->type();
-
-  if (key_type->is_error_type() || value_type->is_error_type())
-    return Type::make_error_type();
-
-  return Type::make_map_type(key_type, value_type, location);
-}
-
-// StructType     = "struct" "{" { FieldDecl ";" } "}" .
-
-Type*
-Parse::struct_type()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_STRUCT));
-  source_location location = this->location();
-  if (!this->advance_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return Type::make_error_type();
-       }
-    }
-  this->advance_token();
-
-  Struct_field_list* sfl = new Struct_field_list;
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      this->field_decl(sfl);
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      else if (!this->peek_token()->is_op(OPERATOR_RCURLY))
-       {
-         error_at(this->location(), "expected %<;%> or %<}%> or newline");
-         if (!this->skip_past_error(OPERATOR_RCURLY))
-           return Type::make_error_type();
-       }
-    }
-  this->advance_token();
-
-  for (Struct_field_list::const_iterator pi = sfl->begin();
-       pi != sfl->end();
-       ++pi)
-    {
-      if (pi->type()->is_error_type())
-       return pi->type();
-      for (Struct_field_list::const_iterator pj = pi + 1;
-          pj != sfl->end();
-          ++pj)
-       {
-         if (pi->field_name() == pj->field_name()
-             && !Gogo::is_sink_name(pi->field_name()))
-           error_at(pi->location(), "duplicate field name %<%s%>",
-                    Gogo::message_name(pi->field_name()).c_str());
-       }
-    }
-
-  return Type::make_struct_type(sfl, location);
-}
-
-// FieldDecl = (IdentifierList CompleteType | TypeName) [ Tag ] .
-// Tag = string_lit .
-
-void
-Parse::field_decl(Struct_field_list* sfl)
-{
-  const Token* token = this->peek_token();
-  source_location location = token->location();
-  bool is_anonymous;
-  bool is_anonymous_pointer;
-  if (token->is_op(OPERATOR_MULT))
-    {
-      is_anonymous = true;
-      is_anonymous_pointer = true;
-    }
-  else if (token->is_identifier())
-    {
-      std::string id = token->identifier();
-      bool is_id_exported = token->is_identifier_exported();
-      source_location id_location = token->location();
-      token = this->advance_token();
-      is_anonymous = (token->is_op(OPERATOR_SEMICOLON)
-                     || token->is_op(OPERATOR_RCURLY)
-                     || token->is_op(OPERATOR_DOT)
-                     || token->is_string());
-      is_anonymous_pointer = false;
-      this->unget_token(Token::make_identifier_token(id, is_id_exported,
-                                                    id_location));
-    }
-  else
-    {
-      error_at(this->location(), "expected field name");
-      while (!token->is_op(OPERATOR_SEMICOLON)
-            && !token->is_op(OPERATOR_RCURLY)
-            && !token->is_eof())
-       token = this->advance_token();
-      return;
-    }
-
-  if (is_anonymous)
-    {
-      if (is_anonymous_pointer)
-       {
-         this->advance_token();
-         if (!this->peek_token()->is_identifier())
-           {
-             error_at(this->location(), "expected field name");
-             while (!token->is_op(OPERATOR_SEMICOLON)
-                    && !token->is_op(OPERATOR_RCURLY)
-                    && !token->is_eof())
-               token = this->advance_token();
-             return;
-           }
-       }
-      Type* type = this->type_name(true);
-
-      std::string tag;
-      if (this->peek_token()->is_string())
-       {
-         tag = this->peek_token()->string_value();
-         this->advance_token();
-       }
-
-      if (!type->is_error_type())
-       {
-         if (is_anonymous_pointer)
-           type = Type::make_pointer_type(type);
-         sfl->push_back(Struct_field(Typed_identifier("", type, location)));
-         if (!tag.empty())
-           sfl->back().set_tag(tag);
-       }
-    }
-  else
-    {
-      Typed_identifier_list til;
-      while (true)
-       {
-         token = this->peek_token();
-         if (!token->is_identifier())
-           {
-             error_at(this->location(), "expected identifier");
-             return;
-           }
-         std::string name =
-           this->gogo_->pack_hidden_name(token->identifier(),
-                                         token->is_identifier_exported());
-         til.push_back(Typed_identifier(name, NULL, token->location()));
-         if (!this->advance_token()->is_op(OPERATOR_COMMA))
-           break;
-         this->advance_token();
-       }
-
-      Type* type = this->type();
-
-      std::string tag;
-      if (this->peek_token()->is_string())
-       {
-         tag = this->peek_token()->string_value();
-         this->advance_token();
-       }
-
-      for (Typed_identifier_list::iterator p = til.begin();
-          p != til.end();
-          ++p)
-       {
-         p->set_type(type);
-         sfl->push_back(Struct_field(*p));
-         if (!tag.empty())
-           sfl->back().set_tag(tag);
-       }
-    }
-}
-
-// PointerType = "*" Type .
-
-Type*
-Parse::pointer_type()
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_MULT));
-  this->advance_token();
-  Type* type = this->type();
-  if (type->is_error_type())
-    return type;
-  return Type::make_pointer_type(type);
-}
-
-// ChannelType   = Channel | SendChannel | RecvChannel .
-// Channel       = "chan" ElementType .
-// SendChannel   = "chan" "<-" ElementType .
-// RecvChannel   = "<-" "chan" ElementType .
-
-Type*
-Parse::channel_type()
-{
-  const Token* token = this->peek_token();
-  bool send = true;
-  bool receive = true;
-  if (token->is_op(OPERATOR_CHANOP))
-    {
-      if (!this->advance_token()->is_keyword(KEYWORD_CHAN))
-       {
-         error_at(this->location(), "expected %<chan%>");
-         return Type::make_error_type();
-       }
-      send = false;
-      this->advance_token();
-    }
-  else
-    {
-      gcc_assert(token->is_keyword(KEYWORD_CHAN));
-      if (this->advance_token()->is_op(OPERATOR_CHANOP))
-       {
-         receive = false;
-         this->advance_token();
-       }
-    }
-  Type* element_type = this->type();
-  return Type::make_channel_type(send, receive, element_type);
-}
-
-// Signature      = Parameters [ Result ] .
-
-// RECEIVER is the receiver if there is one, or NULL.  LOCATION is the
-// location of the start of the type.
-
-// This returns NULL on a parse error.
-
-Function_type*
-Parse::signature(Typed_identifier* receiver, source_location location)
-{
-  bool is_varargs = false;
-  Typed_identifier_list* params;
-  bool params_ok = this->parameters(&params, &is_varargs);
-
-  Typed_identifier_list* result = NULL;
-  if (this->peek_token()->is_op(OPERATOR_LPAREN)
-      || this->type_may_start_here())
-    {
-      if (!this->result(&result))
-       return NULL;
-    }
-
-  if (!params_ok)
-    return NULL;
-
-  Function_type* ret = Type::make_function_type(receiver, params, result,
-                                               location);
-  if (is_varargs)
-    ret->set_is_varargs();
-  return ret;
-}
-
-// Parameters     = "(" [ ParameterList [ "," ] ] ")" .
-
-// This returns false on a parse error.
-
-bool
-Parse::parameters(Typed_identifier_list** pparams, bool* is_varargs)
-{
-  *pparams = NULL;
-
-  if (!this->peek_token()->is_op(OPERATOR_LPAREN))
-    {
-      error_at(this->location(), "expected %<(%>");
-      return false;
-    }
-
-  Typed_identifier_list* params = NULL;
-  bool saw_error = false;
-
-  const Token* token = this->advance_token();
-  if (!token->is_op(OPERATOR_RPAREN))
-    {
-      params = this->parameter_list(is_varargs);
-      if (params == NULL)
-       saw_error = true;
-      token = this->peek_token();
-    }
-
-  // The optional trailing comma is picked up in parameter_list.
-
-  if (!token->is_op(OPERATOR_RPAREN))
-    error_at(this->location(), "expected %<)%>");
-  else
-    this->advance_token();
-
-  if (saw_error)
-    return false;
-
-  *pparams = params;
-  return true;
-}
-
-// ParameterList  = ParameterDecl { "," ParameterDecl } .
-
-// This sets *IS_VARARGS if the list ends with an ellipsis.
-// IS_VARARGS will be NULL if varargs are not permitted.
-
-// We pick up an optional trailing comma.
-
-// This returns NULL if some error is seen.
-
-Typed_identifier_list*
-Parse::parameter_list(bool* is_varargs)
-{
-  source_location location = this->location();
-  Typed_identifier_list* ret = new Typed_identifier_list();
-
-  bool saw_error = false;
-
-  // If we see an identifier and then a comma, then we don't know
-  // whether we are looking at a list of identifiers followed by a
-  // type, or a list of types given by name.  We have to do an
-  // arbitrary lookahead to figure it out.
-
-  bool parameters_have_names;
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      // This must be a type which starts with something like '*'.
-      parameters_have_names = false;
-    }
-  else
-    {
-      std::string name = token->identifier();
-      bool is_exported = token->is_identifier_exported();
-      source_location location = token->location();
-      token = this->advance_token();
-      if (!token->is_op(OPERATOR_COMMA))
-       {
-         if (token->is_op(OPERATOR_DOT))
-           {
-             // This is a qualified identifier, which must turn out
-             // to be a type.
-             parameters_have_names = false;
-           }
-         else if (token->is_op(OPERATOR_RPAREN))
-           {
-             // A single identifier followed by a parenthesis must be
-             // a type name.
-             parameters_have_names = false;
-           }
-         else
-           {
-             // An identifier followed by something other than a
-             // comma or a dot or a right parenthesis must be a
-             // parameter name followed by a type.
-             parameters_have_names = true;
-           }
-
-         this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                        location));
-       }
-      else
-       {
-         // An identifier followed by a comma may be the first in a
-         // list of parameter names followed by a type, or it may be
-         // the first in a list of types without parameter names.  To
-         // find out we gather as many identifiers separated by
-         // commas as we can.
-         std::string id_name = this->gogo_->pack_hidden_name(name,
-                                                             is_exported);
-         ret->push_back(Typed_identifier(id_name, NULL, location));
-         bool just_saw_comma = true;
-         while (this->advance_token()->is_identifier())
-           {
-             name = this->peek_token()->identifier();
-             is_exported = this->peek_token()->is_identifier_exported();
-             location = this->peek_token()->location();
-             id_name = this->gogo_->pack_hidden_name(name, is_exported);
-             ret->push_back(Typed_identifier(id_name, NULL, location));
-             if (!this->advance_token()->is_op(OPERATOR_COMMA))
-               {
-                 just_saw_comma = false;
-                 break;
-               }
-           }
-
-         if (just_saw_comma)
-           {
-             // We saw ID1 "," ID2 "," followed by something which
-             // was not an identifier.  We must be seeing the start
-             // of a type, and ID1 and ID2 must be types, and the
-             // parameters don't have names.
-             parameters_have_names = false;
-           }
-         else if (this->peek_token()->is_op(OPERATOR_RPAREN))
-           {
-             // We saw ID1 "," ID2 ")".  ID1 and ID2 must be types,
-             // and the parameters don't have names.
-             parameters_have_names = false;
-           }
-         else if (this->peek_token()->is_op(OPERATOR_DOT))
-           {
-             // We saw ID1 "," ID2 ".".  ID2 must be a package name,
-             // ID1 must be a type, and the parameters don't have
-             // names.
-             parameters_have_names = false;
-             this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                            location));
-             ret->pop_back();
-             just_saw_comma = true;
-           }
-         else
-           {
-             // We saw ID1 "," ID2 followed by something other than
-             // ",", ".", or ")".  We must be looking at the start of
-             // a type, and ID1 and ID2 must be parameter names.
-             parameters_have_names = true;
-           }
-
-         if (parameters_have_names)
-           {
-             gcc_assert(!just_saw_comma);
-             // We have just seen ID1, ID2 xxx.
-             Type* type;
-             if (!this->peek_token()->is_op(OPERATOR_ELLIPSIS))
-               type = this->type();
-             else
-               {
-                 error_at(this->location(), "%<...%> only permits one name");
-                 saw_error = true;
-                 this->advance_token();
-                 type = this->type();
-               }
-             for (size_t i = 0; i < ret->size(); ++i)
-               ret->set_type(i, type);
-             if (!this->peek_token()->is_op(OPERATOR_COMMA))
-               return saw_error ? NULL : ret;
-             if (this->advance_token()->is_op(OPERATOR_RPAREN))
-               return saw_error ? NULL : ret;
-           }
-         else
-           {
-             Typed_identifier_list* tret = new Typed_identifier_list();
-             for (Typed_identifier_list::const_iterator p = ret->begin();
-                  p != ret->end();
-                  ++p)
-               {
-                 Named_object* no = this->gogo_->lookup(p->name(), NULL);
-                 Type* type;
-                 if (no == NULL)
-                   no = this->gogo_->add_unknown_name(p->name(),
-                                                      p->location());
-
-                 if (no->is_type())
-                   type = no->type_value();
-                 else if (no->is_unknown() || no->is_type_declaration())
-                   type = Type::make_forward_declaration(no);
-                 else
-                   {
-                     error_at(p->location(), "expected %<%s%> to be a type",
-                              Gogo::message_name(p->name()).c_str());
-                     saw_error = true;
-                     type = Type::make_error_type();
-                   }
-                 tret->push_back(Typed_identifier("", type, p->location()));
-               }
-             delete ret;
-             ret = tret;
-             if (!just_saw_comma
-                 || this->peek_token()->is_op(OPERATOR_RPAREN))
-               return saw_error ? NULL : ret;
-           }
-       }
-    }
-
-  bool mix_error = false;
-  this->parameter_decl(parameters_have_names, ret, is_varargs, &mix_error);
-  while (this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      if (is_varargs != NULL && *is_varargs)
-       {
-         error_at(this->location(), "%<...%> must be last parameter");
-         saw_error = true;
-       }
-      if (this->advance_token()->is_op(OPERATOR_RPAREN))
-       break;
-      this->parameter_decl(parameters_have_names, ret, is_varargs, &mix_error);
-    }
-  if (mix_error)
-    {
-      error_at(location, "invalid named/anonymous mix");
-      saw_error = true;
-    }
-  if (saw_error)
-    {
-      delete ret;
-      return NULL;
-    }
-  return ret;
-}
-
-// ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
-
-void
-Parse::parameter_decl(bool parameters_have_names,
-                     Typed_identifier_list* til,
-                     bool* is_varargs,
-                     bool* mix_error)
-{
-  if (!parameters_have_names)
-    {
-      Type* type;
-      source_location location = this->location();
-      if (!this->peek_token()->is_identifier())
-       {
-         if (!this->peek_token()->is_op(OPERATOR_ELLIPSIS))
-           type = this->type();
-         else
-           {
-             if (is_varargs == NULL)
-               error_at(this->location(), "invalid use of %<...%>");
-             else
-               *is_varargs = true;
-             this->advance_token();
-             if (is_varargs == NULL
-                 && this->peek_token()->is_op(OPERATOR_RPAREN))
-               type = Type::make_error_type();
-             else
-               {
-                 Type* element_type = this->type();
-                 type = Type::make_array_type(element_type, NULL);
-               }
-           }
-       }
-      else
-       {
-         type = this->type_name(false);
-         if (type->is_error_type()
-             || (!this->peek_token()->is_op(OPERATOR_COMMA)
-                 && !this->peek_token()->is_op(OPERATOR_RPAREN)))
-           {
-             *mix_error = true;
-             while (!this->peek_token()->is_op(OPERATOR_COMMA)
-                    && !this->peek_token()->is_op(OPERATOR_RPAREN))
-               this->advance_token();
-           }
-       }
-      if (!type->is_error_type())
-       til->push_back(Typed_identifier("", type, location));
-    }
-  else
-    {
-      size_t orig_count = til->size();
-      if (this->peek_token()->is_identifier())
-       this->identifier_list(til);
-      else
-       *mix_error = true;
-      size_t new_count = til->size();
-
-      Type* type;
-      if (!this->peek_token()->is_op(OPERATOR_ELLIPSIS))
-       type = this->type();
-      else
-       {
-         if (is_varargs == NULL)
-           error_at(this->location(), "invalid use of %<...%>");
-         else if (new_count > orig_count + 1)
-           error_at(this->location(), "%<...%> only permits one name");
-         else
-           *is_varargs = true;
-         this->advance_token();
-         Type* element_type = this->type();
-         type = Type::make_array_type(element_type, NULL);
-       }
-      for (size_t i = orig_count; i < new_count; ++i)
-       til->set_type(i, type);
-    }
-}
-
-// Result         = Parameters | Type .
-
-// This returns false on a parse error.
-
-bool
-Parse::result(Typed_identifier_list** presults)
-{
-  if (this->peek_token()->is_op(OPERATOR_LPAREN))
-    return this->parameters(presults, NULL);
-  else
-    {
-      source_location location = this->location();
-      Type* type = this->type();
-      if (type->is_error_type())
-       {
-         *presults = NULL;
-         return false;
-       }
-      Typed_identifier_list* til = new Typed_identifier_list();
-      til->push_back(Typed_identifier("", type, location));
-      *presults = til;
-      return true;
-    }
-}
-
-// Block = "{" [ StatementList ] "}" .
-
-// Returns the location of the closing brace.
-
-source_location
-Parse::block()
-{
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return UNKNOWN_LOCATION;
-       }
-    }
-
-  const Token* token = this->advance_token();
-
-  if (!token->is_op(OPERATOR_RCURLY))
-    {
-      this->statement_list();
-      token = this->peek_token();
-      if (!token->is_op(OPERATOR_RCURLY))
-       {
-         if (!token->is_eof() || !saw_errors())
-           error_at(this->location(), "expected %<}%>");
-
-         // Skip ahead to the end of the block, in hopes of avoiding
-         // lots of meaningless errors.
-         source_location ret = token->location();
-         int nest = 0;
-         while (!token->is_eof())
-           {
-             if (token->is_op(OPERATOR_LCURLY))
-               ++nest;
-             else if (token->is_op(OPERATOR_RCURLY))
-               {
-                 --nest;
-                 if (nest < 0)
-                   {
-                     this->advance_token();
-                     break;
-                   }
-               }
-             token = this->advance_token();
-             ret = token->location();
-           }
-         return ret;
-       }
-    }
-
-  source_location ret = token->location();
-  this->advance_token();
-  return ret;
-}
-
-// InterfaceType      = "interface" "{" [ MethodSpecList ] "}" .
-// MethodSpecList     = MethodSpec { ";" MethodSpec } [ ";" ] .
-
-Type*
-Parse::interface_type()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_INTERFACE));
-  source_location location = this->location();
-
-  if (!this->advance_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return Type::make_error_type();
-       }
-    }
-  this->advance_token();
-
-  Typed_identifier_list* methods = new Typed_identifier_list();
-  if (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      this->method_spec(methods);
-      while (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       {
-         if (this->advance_token()->is_op(OPERATOR_RCURLY))
-           break;
-         this->method_spec(methods);
-       }
-      if (!this->peek_token()->is_op(OPERATOR_RCURLY))
-       {
-         error_at(this->location(), "expected %<}%>");
-         while (!this->advance_token()->is_op(OPERATOR_RCURLY))
-           {
-             if (this->peek_token()->is_eof())
-               return Type::make_error_type();
-           }
-       }
-    }
-  this->advance_token();
-
-  if (methods->empty())
-    {
-      delete methods;
-      methods = NULL;
-    }
-
-  Interface_type* ret = Type::make_interface_type(methods, location);
-  this->gogo_->record_interface_type(ret);
-  return ret;
-}
-
-// MethodSpec         = MethodName Signature | InterfaceTypeName .
-// MethodName         = identifier .
-// InterfaceTypeName  = TypeName .
-
-void
-Parse::method_spec(Typed_identifier_list* methods)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return;
-    }
-
-  std::string name = token->identifier();
-  bool is_exported = token->is_identifier_exported();
-  source_location location = token->location();
-
-  if (this->advance_token()->is_op(OPERATOR_LPAREN))
-    {
-      // This is a MethodName.
-      name = this->gogo_->pack_hidden_name(name, is_exported);
-      Type* type = this->signature(NULL, location);
-      if (type == NULL)
-       return;
-      methods->push_back(Typed_identifier(name, type, location));
-    }
-  else
-    {
-      this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                    location));
-      Type* type = this->type_name(false);
-      if (type->is_error_type()
-         || (!this->peek_token()->is_op(OPERATOR_SEMICOLON)
-             && !this->peek_token()->is_op(OPERATOR_RCURLY)))
-       {
-         if (this->peek_token()->is_op(OPERATOR_COMMA))
-           error_at(this->location(),
-                    "name list not allowed in interface type");
-         else
-           error_at(location, "expected signature or type name");
-         token = this->peek_token();
-         while (!token->is_eof()
-                && !token->is_op(OPERATOR_SEMICOLON)
-                && !token->is_op(OPERATOR_RCURLY))
-           token = this->advance_token();
-         return;
-       }
-      // This must be an interface type, but we can't check that now.
-      // We check it and pull out the methods in
-      // Interface_type::do_verify.
-      methods->push_back(Typed_identifier("", type, location));
-    }
-}
-
-// Declaration = ConstDecl | TypeDecl | VarDecl | FunctionDecl | MethodDecl .
-
-void
-Parse::declaration()
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_CONST))
-    this->const_decl();
-  else if (token->is_keyword(KEYWORD_TYPE))
-    this->type_decl();
-  else if (token->is_keyword(KEYWORD_VAR))
-    this->var_decl();
-  else if (token->is_keyword(KEYWORD_FUNC))
-    this->function_decl();
-  else
-    {
-      error_at(this->location(), "expected declaration");
-      this->advance_token();
-    }
-}
-
-bool
-Parse::declaration_may_start_here()
-{
-  const Token* token = this->peek_token();
-  return (token->is_keyword(KEYWORD_CONST)
-         || token->is_keyword(KEYWORD_TYPE)
-         || token->is_keyword(KEYWORD_VAR)
-         || token->is_keyword(KEYWORD_FUNC));
-}
-
-// Decl<P> = P | "(" [ List<P> ] ")" .
-
-void
-Parse::decl(void (Parse::*pfn)(void*), void* varg)
-{
-  if (!this->peek_token()->is_op(OPERATOR_LPAREN))
-    (this->*pfn)(varg);
-  else
-    {
-      if (!this->advance_token()->is_op(OPERATOR_RPAREN))
-       {
-         this->list(pfn, varg, true);
-         if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           {
-             error_at(this->location(), "missing %<)%>");
-             while (!this->advance_token()->is_op(OPERATOR_RPAREN))
-               {
-                 if (this->peek_token()->is_eof())
-                   return;
-               }
-           }
-       }
-      this->advance_token();
-    }
-}
-
-// List<P> = P { ";" P } [ ";" ] .
-
-// In order to pick up the trailing semicolon we need to know what
-// might follow.  This is either a '}' or a ')'.
-
-void
-Parse::list(void (Parse::*pfn)(void*), void* varg, bool follow_is_paren)
-{
-  (this->*pfn)(varg);
-  Operator follow = follow_is_paren ? OPERATOR_RPAREN : OPERATOR_RCURLY;
-  while (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-        || this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      if (this->peek_token()->is_op(OPERATOR_COMMA))
-       error_at(this->location(), "unexpected comma");
-      if (this->advance_token()->is_op(follow))
-       break;
-      (this->*pfn)(varg);
-    }
-}
-
-// ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
-
-void
-Parse::const_decl()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_CONST));
-  this->advance_token();
-  this->reset_iota();
-
-  Type* last_type = NULL;
-  Expression_list* last_expr_list = NULL;
-
-  if (!this->peek_token()->is_op(OPERATOR_LPAREN))
-    this->const_spec(&last_type, &last_expr_list);
-  else
-    {
-      this->advance_token();
-      while (!this->peek_token()->is_op(OPERATOR_RPAREN))
-       {
-         this->const_spec(&last_type, &last_expr_list);
-         if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-           this->advance_token();
-         else if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           {
-             error_at(this->location(), "expected %<;%> or %<)%> or newline");
-             if (!this->skip_past_error(OPERATOR_RPAREN))
-               return;
-           }
-       }
-      this->advance_token();
-    }
-
-  if (last_expr_list != NULL)
-    delete last_expr_list;
-}
-
-// ConstSpec = IdentifierList [ [ CompleteType ] "=" ExpressionList ] .
-
-void
-Parse::const_spec(Type** last_type, Expression_list** last_expr_list)
-{
-  Typed_identifier_list til;
-  this->identifier_list(&til);
-
-  Type* type = NULL;
-  if (this->type_may_start_here())
-    {
-      type = this->type();
-      *last_type = NULL;
-      *last_expr_list = NULL;
-    }
-
-  Expression_list *expr_list;
-  if (!this->peek_token()->is_op(OPERATOR_EQ))
-    {
-      if (*last_expr_list == NULL)
-       {
-         error_at(this->location(), "expected %<=%>");
-         return;
-       }
-      type = *last_type;
-      expr_list = new Expression_list;
-      for (Expression_list::const_iterator p = (*last_expr_list)->begin();
-          p != (*last_expr_list)->end();
-          ++p)
-       expr_list->push_back((*p)->copy());
-    }
-  else
-    {
-      this->advance_token();
-      expr_list = this->expression_list(NULL, false);
-      *last_type = type;
-      if (*last_expr_list != NULL)
-       delete *last_expr_list;
-      *last_expr_list = expr_list;
-    }
-
-  Expression_list::const_iterator pe = expr_list->begin();
-  for (Typed_identifier_list::iterator pi = til.begin();
-       pi != til.end();
-       ++pi, ++pe)
-    {
-      if (pe == expr_list->end())
-       {
-         error_at(this->location(), "not enough initializers");
-         return;
-       }
-      if (type != NULL)
-       pi->set_type(type);
-
-      if (!Gogo::is_sink_name(pi->name()))
-       this->gogo_->add_constant(*pi, *pe, this->iota_value());
-    }
-  if (pe != expr_list->end())
-    error_at(this->location(), "too many initializers");
-
-  this->increment_iota();
-
-  return;
-}
-
-// TypeDecl = "type" Decl<TypeSpec> .
-
-void
-Parse::type_decl()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_TYPE));
-  this->advance_token();
-  this->decl(&Parse::type_spec, NULL);
-}
-
-// TypeSpec = identifier Type .
-
-void
-Parse::type_spec(void*)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected identifier");
-      return;
-    }
-  std::string name = token->identifier();
-  bool is_exported = token->is_identifier_exported();
-  source_location location = token->location();
-  token = this->advance_token();
-
-  // The scope of the type name starts at the point where the
-  // identifier appears in the source code.  We implement this by
-  // declaring the type before we read the type definition.
-  Named_object* named_type = NULL;
-  if (name != "_")
-    {
-      name = this->gogo_->pack_hidden_name(name, is_exported);
-      named_type = this->gogo_->declare_type(name, location);
-    }
-
-  Type* type;
-  if (!this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    type = this->type();
-  else
-    {
-      error_at(this->location(),
-              "unexpected semicolon or newline in type declaration");
-      type = Type::make_error_type();
-      this->advance_token();
-    }
-
-  if (type->is_error_type())
-    {
-      while (!this->peek_token()->is_op(OPERATOR_SEMICOLON)
-            && !this->peek_token()->is_eof())
-       this->advance_token();
-    }
-
-  if (name != "_")
-    {
-      if (named_type->is_type_declaration())
-       {
-         Type* ftype = type->forwarded();
-         if (ftype->forward_declaration_type() != NULL
-             && (ftype->forward_declaration_type()->named_object()
-                 == named_type))
-           {
-             error_at(location, "invalid recursive type");
-             type = Type::make_error_type();
-           }
-
-         this->gogo_->define_type(named_type,
-                                  Type::make_named_type(named_type, type,
-                                                        location));
-         gcc_assert(named_type->package() == NULL);
-       }
-      else
-       {
-         // This will probably give a redefinition error.
-         this->gogo_->add_type(name, type, location);
-       }
-    }
-}
-
-// VarDecl = "var" Decl<VarSpec> .
-
-void
-Parse::var_decl()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_VAR));
-  this->advance_token();
-  this->decl(&Parse::var_spec, NULL);
-}
-
-// VarSpec = IdentifierList
-//             ( CompleteType [ "=" ExpressionList ] | "=" ExpressionList ) .
-
-void
-Parse::var_spec(void*)
-{
-  // Get the variable names.
-  Typed_identifier_list til;
-  this->identifier_list(&til);
-
-  source_location location = this->location();
-
-  Type* type = NULL;
-  Expression_list* init = NULL;
-  if (!this->peek_token()->is_op(OPERATOR_EQ))
-    {
-      type = this->type();
-      if (type->is_error_type())
-       {
-         while (!this->peek_token()->is_op(OPERATOR_EQ)
-                && !this->peek_token()->is_op(OPERATOR_SEMICOLON)
-                && !this->peek_token()->is_eof())
-           this->advance_token();
-       }
-      if (this->peek_token()->is_op(OPERATOR_EQ))
-       {
-         this->advance_token();
-         init = this->expression_list(NULL, false);
-       }
-    }
-  else
-    {
-      this->advance_token();
-      init = this->expression_list(NULL, false);
-    }
-
-  this->init_vars(&til, type, init, false, location);
-
-  if (init != NULL)
-    delete init;
-}
-
-// Create variables.  TIL is a list of variable names.  If TYPE is not
-// NULL, it is the type of all the variables.  If INIT is not NULL, it
-// is an initializer list for the variables.
-
-void
-Parse::init_vars(const Typed_identifier_list* til, Type* type,
-                Expression_list* init, bool is_coloneq,
-                source_location location)
-{
-  // Check for an initialization which can yield multiple values.
-  if (init != NULL && init->size() == 1 && til->size() > 1)
-    {
-      if (this->init_vars_from_call(til, type, *init->begin(), is_coloneq,
-                                   location))
-       return;
-      if (this->init_vars_from_map(til, type, *init->begin(), is_coloneq,
-                                  location))
-       return;
-      if (this->init_vars_from_receive(til, type, *init->begin(), is_coloneq,
-                                      location))
-       return;
-      if (this->init_vars_from_type_guard(til, type, *init->begin(),
-                                         is_coloneq, location))
-       return;
-    }
-
-  if (init != NULL && init->size() != til->size())
-    {
-      if (init->empty() || !init->front()->is_error_expression())
-       error_at(location, "wrong number of initializations");
-      init = NULL;
-      if (type == NULL)
-       type = Type::make_error_type();
-    }
-
-  // Note that INIT was already parsed with the old name bindings, so
-  // we don't have to worry that it will accidentally refer to the
-  // newly declared variables.
-
-  Expression_list::const_iterator pexpr;
-  if (init != NULL)
-    pexpr = init->begin();
-  bool any_new = false;
-  for (Typed_identifier_list::const_iterator p = til->begin();
-       p != til->end();
-       ++p)
-    {
-      if (init != NULL)
-       gcc_assert(pexpr != init->end());
-      this->init_var(*p, type, init == NULL ? NULL : *pexpr, is_coloneq,
-                    false, &any_new);
-      if (init != NULL)
-       ++pexpr;
-    }
-  if (init != NULL)
-    gcc_assert(pexpr == init->end());
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-}
-
-// See if we need to initialize a list of variables from a function
-// call.  This returns true if we have set up the variables and the
-// initialization.
-
-bool
-Parse::init_vars_from_call(const Typed_identifier_list* vars, Type* type,
-                          Expression* expr, bool is_coloneq,
-                          source_location location)
-{
-  Call_expression* call = expr->call_expression();
-  if (call == NULL)
-    return false;
-
-  // This is a function call.  We can't check here whether it returns
-  // the right number of values, but it might.  Declare the variables,
-  // and then assign the results of the call to them.
-
-  unsigned int index = 0;
-  bool any_new = false;
-  for (Typed_identifier_list::const_iterator pv = vars->begin();
-       pv != vars->end();
-       ++pv, ++index)
-    {
-      Expression* init = Expression::make_call_result(call, index);
-      this->init_var(*pv, type, init, is_coloneq, false, &any_new);
-    }
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  return true;
-}
-
-// See if we need to initialize a pair of values from a map index
-// expression.  This returns true if we have set up the variables and
-// the initialization.
-
-bool
-Parse::init_vars_from_map(const Typed_identifier_list* vars, Type* type,
-                         Expression* expr, bool is_coloneq,
-                         source_location location)
-{
-  Index_expression* index = expr->index_expression();
-  if (index == NULL)
-    return false;
-  if (vars->size() != 2)
-    return false;
-
-  // This is an index which is being assigned to two variables.  It
-  // must be a map index.  Declare the variables, and then assign the
-  // results of the map index.
-  bool any_new = false;
-  Typed_identifier_list::const_iterator p = vars->begin();
-  Expression* init = type == NULL ? index : NULL;
-  Named_object* val_no = this->init_var(*p, type, init, is_coloneq,
-                                       type == NULL, &any_new);
-  if (type == NULL && any_new && val_no->is_variable())
-    val_no->var_value()->set_type_from_init_tuple();
-  Expression* val_var = Expression::make_var_reference(val_no, location);
-
-  ++p;
-  Type* var_type = type;
-  if (var_type == NULL)
-    var_type = Type::lookup_bool_type();
-  Named_object* no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                   &any_new);
-  Expression* present_var = Expression::make_var_reference(no, location);
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  Statement* s = Statement::make_tuple_map_assignment(val_var, present_var,
-                                                     index, location);
-
-  if (!this->gogo_->in_global_scope())
-    this->gogo_->add_statement(s);
-  else if (!val_no->is_sink())
-    {
-      if (val_no->is_variable())
-       val_no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else if (!no->is_sink())
-    {
-      if (no->is_variable())
-       no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else
-    {
-      // Execute the map index expression just so that we can fail if
-      // the map is nil.
-      Named_object* dummy = this->create_dummy_global(Type::lookup_bool_type(),
-                                                     NULL, location);
-      dummy->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-
-  return true;
-}
-
-// See if we need to initialize a pair of values from a receive
-// expression.  This returns true if we have set up the variables and
-// the initialization.
-
-bool
-Parse::init_vars_from_receive(const Typed_identifier_list* vars, Type* type,
-                             Expression* expr, bool is_coloneq,
-                             source_location location)
-{
-  Receive_expression* receive = expr->receive_expression();
-  if (receive == NULL)
-    return false;
-  if (vars->size() != 2)
-    return false;
-
-  // This is a receive expression which is being assigned to two
-  // variables.  Declare the variables, and then assign the results of
-  // the receive.
-  bool any_new = false;
-  Typed_identifier_list::const_iterator p = vars->begin();
-  Expression* init = type == NULL ? receive : NULL;
-  Named_object* val_no = this->init_var(*p, type, init, is_coloneq,
-                                       type == NULL, &any_new);
-  if (type == NULL && any_new && val_no->is_variable())
-    val_no->var_value()->set_type_from_init_tuple();
-  Expression* val_var = Expression::make_var_reference(val_no, location);
-
-  ++p;
-  Type* var_type = type;
-  if (var_type == NULL)
-    var_type = Type::lookup_bool_type();
-  Named_object* no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                   &any_new);
-  Expression* received_var = Expression::make_var_reference(no, location);
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  Statement* s = Statement::make_tuple_receive_assignment(val_var,
-                                                         received_var,
-                                                         receive->channel(),
-                                                         false,
-                                                         location);
-
-  if (!this->gogo_->in_global_scope())
-    this->gogo_->add_statement(s);
-  else if (!val_no->is_sink())
-    {
-      if (val_no->is_variable())
-       val_no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else if (!no->is_sink())
-    {
-      if (no->is_variable())
-       no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else
-    {
-      Named_object* dummy = this->create_dummy_global(Type::lookup_bool_type(),
-                                                     NULL, location);
-      dummy->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-
-  return true;
-}
-
-// See if we need to initialize a pair of values from a type guard
-// expression.  This returns true if we have set up the variables and
-// the initialization.
-
-bool
-Parse::init_vars_from_type_guard(const Typed_identifier_list* vars,
-                                Type* type, Expression* expr,
-                                bool is_coloneq, source_location location)
-{
-  Type_guard_expression* type_guard = expr->type_guard_expression();
-  if (type_guard == NULL)
-    return false;
-  if (vars->size() != 2)
-    return false;
-
-  // This is a type guard expression which is being assigned to two
-  // variables.  Declare the variables, and then assign the results of
-  // the type guard.
-  bool any_new = false;
-  Typed_identifier_list::const_iterator p = vars->begin();
-  Type* var_type = type;
-  if (var_type == NULL)
-    var_type = type_guard->type();
-  Named_object* val_no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                       &any_new);
-  Expression* val_var = Expression::make_var_reference(val_no, location);
-
-  ++p;
-  var_type = type;
-  if (var_type == NULL)
-    var_type = Type::lookup_bool_type();
-  Named_object* no = this->init_var(*p, var_type, NULL, is_coloneq, false,
-                                   &any_new);
-  Expression* ok_var = Expression::make_var_reference(no, location);
-
-  Expression* texpr = type_guard->expr();
-  Type* t = type_guard->type();
-  Statement* s = Statement::make_tuple_type_guard_assignment(val_var, ok_var,
-                                                            texpr, t,
-                                                            location);
-
-  if (is_coloneq && !any_new)
-    error_at(location, "variables redeclared but no variable is new");
-
-  if (!this->gogo_->in_global_scope())
-    this->gogo_->add_statement(s);
-  else if (!val_no->is_sink())
-    {
-      if (val_no->is_variable())
-       val_no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else if (!no->is_sink())
-    {
-      if (no->is_variable())
-       no->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-  else
-    {
-      Named_object* dummy = this->create_dummy_global(type, NULL, location);
-      dummy->var_value()->add_preinit_statement(this->gogo_, s);
-    }
-
-  return true;
-}
-
-// Create a single variable.  If IS_COLONEQ is true, we permit
-// redeclarations in the same block, and we set *IS_NEW when we find a
-// new variable which is not a redeclaration.
-
-Named_object*
-Parse::init_var(const Typed_identifier& tid, Type* type, Expression* init,
-               bool is_coloneq, bool type_from_init, bool* is_new)
-{
-  source_location location = tid.location();
-
-  if (Gogo::is_sink_name(tid.name()))
-    {
-      if (!type_from_init && init != NULL)
-       {
-         if (!this->gogo_->in_global_scope())
-           this->gogo_->add_statement(Statement::make_statement(init));
-         else
-           return this->create_dummy_global(type, init, location);
-       }
-      return this->gogo_->add_sink();
-    }
-
-  if (is_coloneq)
-    {
-      Named_object* no = this->gogo_->lookup_in_block(tid.name());
-      if (no != NULL
-         && (no->is_variable() || no->is_result_variable()))
-       {
-         // INIT may be NULL even when IS_COLONEQ is true for cases
-         // like v, ok := x.(int).
-         if (!type_from_init && init != NULL)
-           {
-             Expression *v = Expression::make_var_reference(no, location);
-             Statement *s = Statement::make_assignment(v, init, location);
-             this->gogo_->add_statement(s);
-           }
-         return no;
-       }
-    }
-  *is_new = true;
-  Variable* var = new Variable(type, init, this->gogo_->in_global_scope(),
-                              false, false, location);
-  Named_object* no = this->gogo_->add_variable(tid.name(), var);
-  if (!no->is_variable())
-    {
-      // The name is already defined, so we just gave an error.
-      return this->gogo_->add_sink();
-    }
-  return no;
-}
-
-// Create a dummy global variable to force an initializer to be run in
-// the right place.  This is used when a sink variable is initialized
-// at global scope.
-
-Named_object*
-Parse::create_dummy_global(Type* type, Expression* init,
-                          source_location location)
-{
-  if (type == NULL && init == NULL)
-    type = Type::lookup_bool_type();
-  Variable* var = new Variable(type, init, true, false, false, location);
-  static int count;
-  char buf[30];
-  snprintf(buf, sizeof buf, "_.%d", count);
-  ++count;
-  return this->gogo_->add_variable(buf, var);
-}
-
-// SimpleVarDecl = identifier ":=" Expression .
-
-// We've already seen the identifier.
-
-// FIXME: We also have to implement
-//  IdentifierList ":=" ExpressionList
-// In order to support both "a, b := 1, 0" and "a, b = 1, 0" we accept
-// tuple assignments here as well.
-
-// If P_RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-// If P_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-void
-Parse::simple_var_decl_or_assignment(const std::string& name,
-                                    source_location location,
-                                    Range_clause* p_range_clause,
-                                    Type_switch* p_type_switch)
-{
-  Typed_identifier_list til;
-  til.push_back(Typed_identifier(name, NULL, location));
-
-  // We've seen one identifier.  If we see a comma now, this could be
-  // "a, *p = 1, 2".
-  if (this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      gcc_assert(p_type_switch == NULL);
-      while (true)
-       {
-         const Token* token = this->advance_token();
-         if (!token->is_identifier())
-           break;
-
-         std::string id = token->identifier();
-         bool is_id_exported = token->is_identifier_exported();
-         source_location id_location = token->location();
-
-         token = this->advance_token();
-         if (!token->is_op(OPERATOR_COMMA))
-           {
-             if (token->is_op(OPERATOR_COLONEQ))
-               {
-                 id = this->gogo_->pack_hidden_name(id, is_id_exported);
-                 til.push_back(Typed_identifier(id, NULL, location));
-               }
-             else
-               this->unget_token(Token::make_identifier_token(id,
-                                                              is_id_exported,
-                                                              id_location));
-             break;
-           }
-
-         id = this->gogo_->pack_hidden_name(id, is_id_exported);
-         til.push_back(Typed_identifier(id, NULL, location));
-       }
-
-      // We have a comma separated list of identifiers in TIL.  If the
-      // next token is COLONEQ, then this is a simple var decl, and we
-      // have the complete list of identifiers.  If the next token is
-      // not COLONEQ, then the only valid parse is a tuple assignment.
-      // The list of identifiers we have so far is really a list of
-      // expressions.  There are more expressions following.
-
-      if (!this->peek_token()->is_op(OPERATOR_COLONEQ))
-       {
-         Expression_list* exprs = new Expression_list;
-         for (Typed_identifier_list::const_iterator p = til.begin();
-              p != til.end();
-              ++p)
-           exprs->push_back(this->id_to_expression(p->name(),
-                                                   p->location()));
-
-         Expression_list* more_exprs = this->expression_list(NULL, true);
-         for (Expression_list::const_iterator p = more_exprs->begin();
-              p != more_exprs->end();
-              ++p)
-           exprs->push_back(*p);
-         delete more_exprs;
-
-         this->tuple_assignment(exprs, p_range_clause);
-         return;
-       }
-    }
-
-  gcc_assert(this->peek_token()->is_op(OPERATOR_COLONEQ));
-  const Token* token = this->advance_token();
-
-  if (p_range_clause != NULL && token->is_keyword(KEYWORD_RANGE))
-    {
-      this->range_clause_decl(&til, p_range_clause);
-      return;
-    }
-
-  Expression_list* init;
-  if (p_type_switch == NULL)
-    init = this->expression_list(NULL, false);
-  else
-    {
-      bool is_type_switch = false;
-      Expression* expr = this->expression(PRECEDENCE_NORMAL, false, true,
-                                         &is_type_switch);
-      if (is_type_switch)
-       {
-         p_type_switch->found = true;
-         p_type_switch->name = name;
-         p_type_switch->location = location;
-         p_type_switch->expr = expr;
-         return;
-       }
-
-      if (!this->peek_token()->is_op(OPERATOR_COMMA))
-       {
-         init = new Expression_list();
-         init->push_back(expr);
-       }
-      else
-       {
-         this->advance_token();
-         init = this->expression_list(expr, false);
-       }
-    }
-
-  this->init_vars(&til, NULL, init, true, location);
-}
-
-// FunctionDecl = "func" identifier Signature [ Block ] .
-// MethodDecl = "func" Receiver identifier Signature [ Block ] .
-
-// gcc extension:
-//   FunctionDecl = "func" identifier Signature
-//                    __asm__ "(" string_lit ")" .
-// This extension means a function whose real name is the identifier
-// inside the asm.
-
-void
-Parse::function_decl()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_FUNC));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-
-  Typed_identifier* rec = NULL;
-  if (token->is_op(OPERATOR_LPAREN))
-    {
-      rec = this->receiver();
-      token = this->peek_token();
-    }
-
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected function name");
-      return;
-    }
-
-  std::string name =
-    this->gogo_->pack_hidden_name(token->identifier(),
-                                 token->is_identifier_exported());
-
-  this->advance_token();
-
-  Function_type* fntype = this->signature(rec, this->location());
-  if (fntype == NULL)
-    return;
-
-  Named_object* named_object = NULL;
-
-  if (this->peek_token()->is_keyword(KEYWORD_ASM))
-    {
-      if (!this->advance_token()->is_op(OPERATOR_LPAREN))
-       {
-         error_at(this->location(), "expected %<(%>");
-         return;
-       }
-      token = this->advance_token();
-      if (!token->is_string())
-       {
-         error_at(this->location(), "expected string");
-         return;
-       }
-      std::string asm_name = token->string_value();
-      if (!this->advance_token()->is_op(OPERATOR_RPAREN))
-       {
-         error_at(this->location(), "expected %<)%>");
-         return;
-       }
-      this->advance_token();
-      if (!Gogo::is_sink_name(name))
-       {
-         named_object = this->gogo_->declare_function(name, fntype, location);
-         if (named_object->is_function_declaration())
-           named_object->func_declaration_value()->set_asm_name(asm_name);
-       }
-    }
-
-  // Check for the easy error of a newline before the opening brace.
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      source_location semi_loc = this->location();
-      if (this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(this->location(),
-                "unexpected semicolon or newline before %<{%>");
-      else
-       this->unget_token(Token::make_operator_token(OPERATOR_SEMICOLON,
-                                                    semi_loc));
-    }
-
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      if (named_object == NULL && !Gogo::is_sink_name(name))
-       this->gogo_->declare_function(name, fntype, location);
-    }
-  else
-    {
-      this->gogo_->start_function(name, fntype, true, location);
-      source_location end_loc = this->block();
-      this->gogo_->finish_function(end_loc);
-    }
-}
-
-// Receiver     = "(" [ identifier ] [ "*" ] BaseTypeName ")" .
-// BaseTypeName = identifier .
-
-Typed_identifier*
-Parse::receiver()
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_LPAREN));
-
-  std::string name;
-  const Token* token = this->advance_token();
-  source_location location = token->location();
-  if (!token->is_op(OPERATOR_MULT))
-    {
-      if (!token->is_identifier())
-       {
-         error_at(this->location(), "method has no receiver");
-         while (!token->is_eof() && !token->is_op(OPERATOR_RPAREN))
-           token = this->advance_token();
-         if (!token->is_eof())
-           this->advance_token();
-         return NULL;
-       }
-      name = token->identifier();
-      bool is_exported = token->is_identifier_exported();
-      token = this->advance_token();
-      if (!token->is_op(OPERATOR_DOT) && !token->is_op(OPERATOR_RPAREN))
-       {
-         // An identifier followed by something other than a dot or a
-         // right parenthesis must be a receiver name followed by a
-         // type.
-         name = this->gogo_->pack_hidden_name(name, is_exported);
-       }
-      else
-       {
-         // This must be a type name.
-         this->unget_token(Token::make_identifier_token(name, is_exported,
-                                                        location));
-         token = this->peek_token();
-         name.clear();
-       }
-    }
-
-  // Here the receiver name is in NAME (it is empty if the receiver is
-  // unnamed) and TOKEN is the first token in the type.
-
-  bool is_pointer = false;
-  if (token->is_op(OPERATOR_MULT))
-    {
-      is_pointer = true;
-      token = this->advance_token();
-    }
-
-  if (!token->is_identifier())
-    {
-      error_at(this->location(), "expected receiver name or type");
-      int c = token->is_op(OPERATOR_LPAREN) ? 1 : 0;
-      while (!token->is_eof())
-       {
-         token = this->advance_token();
-         if (token->is_op(OPERATOR_LPAREN))
-           ++c;
-         else if (token->is_op(OPERATOR_RPAREN))
-           {
-             if (c == 0)
-               break;
-             --c;
-           }
-       }
-      if (!token->is_eof())
-       this->advance_token();
-      return NULL;
-    }
-
-  Type* type = this->type_name(true);
-
-  if (is_pointer && !type->is_error_type())
-    type = Type::make_pointer_type(type);
-
-  if (this->peek_token()->is_op(OPERATOR_RPAREN))
-    this->advance_token();
-  else
-    {
-      if (this->peek_token()->is_op(OPERATOR_COMMA))
-       error_at(this->location(), "method has multiple receivers");
-      else
-       error_at(this->location(), "expected %<)%>");
-      while (!token->is_eof() && !token->is_op(OPERATOR_RPAREN))
-       token = this->advance_token();
-      if (!token->is_eof())
-       this->advance_token();
-      return NULL;
-    }
-
-  return new Typed_identifier(name, type, location);
-}
-
-// Operand    = Literal | QualifiedIdent | MethodExpr | "(" Expression ")" .
-// Literal    = BasicLit | CompositeLit | FunctionLit .
-// BasicLit   = int_lit | float_lit | imaginary_lit | char_lit | string_lit .
-
-// If MAY_BE_SINK is true, this operand may be "_".
-
-Expression*
-Parse::operand(bool may_be_sink)
-{
-  const Token* token = this->peek_token();
-  Expression* ret;
-  switch (token->classification())
-    {
-    case Token::TOKEN_IDENTIFIER:
-      {
-       source_location location = token->location();
-       std::string id = token->identifier();
-       bool is_exported = token->is_identifier_exported();
-       std::string packed = this->gogo_->pack_hidden_name(id, is_exported);
-
-       Named_object* in_function;
-       Named_object* named_object = this->gogo_->lookup(packed, &in_function);
-
-       Package* package = NULL;
-       if (named_object != NULL && named_object->is_package())
-         {
-           if (!this->advance_token()->is_op(OPERATOR_DOT)
-               || !this->advance_token()->is_identifier())
-             {
-               error_at(location, "unexpected reference to package");
-               return Expression::make_error(location);
-             }
-           package = named_object->package_value();
-           package->set_used();
-           id = this->peek_token()->identifier();
-           is_exported = this->peek_token()->is_identifier_exported();
-           packed = this->gogo_->pack_hidden_name(id, is_exported);
-           named_object = package->lookup(packed);
-           location = this->location();
-           gcc_assert(in_function == NULL);
-         }
-
-       this->advance_token();
-
-       if (named_object != NULL
-           && named_object->is_type()
-           && !named_object->type_value()->is_visible())
-         {
-           gcc_assert(package != NULL);
-           error_at(location, "invalid reference to hidden type %<%s.%s%>",
-                    Gogo::message_name(package->name()).c_str(),
-                    Gogo::message_name(id).c_str());
-           return Expression::make_error(location);
-         }
-
-
-       if (named_object == NULL)
-         {
-           if (package != NULL)
-             {
-               std::string n1 = Gogo::message_name(package->name());
-               std::string n2 = Gogo::message_name(id);
-               if (!is_exported)
-                 error_at(location,
-                          ("invalid reference to unexported identifier "
-                           "%<%s.%s%>"),
-                          n1.c_str(), n2.c_str());
-               else
-                 error_at(location,
-                          "reference to undefined identifier %<%s.%s%>",
-                          n1.c_str(), n2.c_str());
-               return Expression::make_error(location);
-             }
-
-           named_object = this->gogo_->add_unknown_name(packed, location);
-         }
-
-       if (in_function != NULL
-           && in_function != this->gogo_->current_function()
-           && (named_object->is_variable()
-               || named_object->is_result_variable()))
-         return this->enclosing_var_reference(in_function, named_object,
-                                              location);
-
-       switch (named_object->classification())
-         {
-         case Named_object::NAMED_OBJECT_CONST:
-           return Expression::make_const_reference(named_object, location);
-         case Named_object::NAMED_OBJECT_TYPE:
-           return Expression::make_type(named_object->type_value(), location);
-         case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
-           {
-             Type* t = Type::make_forward_declaration(named_object);
-             return Expression::make_type(t, location);
-           }
-         case Named_object::NAMED_OBJECT_VAR:
-         case Named_object::NAMED_OBJECT_RESULT_VAR:
-           return Expression::make_var_reference(named_object, location);
-         case Named_object::NAMED_OBJECT_SINK:
-           if (may_be_sink)
-             return Expression::make_sink(location);
-           else
-             {
-               error_at(location, "cannot use _ as value");
-               return Expression::make_error(location);
-             }
-         case Named_object::NAMED_OBJECT_FUNC:
-         case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-           return Expression::make_func_reference(named_object, NULL,
-                                                  location);
-         case Named_object::NAMED_OBJECT_UNKNOWN:
-           return Expression::make_unknown_reference(named_object, location);
-         default:
-           gcc_unreachable();
-         }
-      }
-      gcc_unreachable();
-
-    case Token::TOKEN_STRING:
-      ret = Expression::make_string(token->string_value(), token->location());
-      this->advance_token();
-      return ret;
-
-    case Token::TOKEN_INTEGER:
-      ret = Expression::make_integer(token->integer_value(), NULL,
-                                    token->location());
-      this->advance_token();
-      return ret;
-
-    case Token::TOKEN_FLOAT:
-      ret = Expression::make_float(token->float_value(), NULL,
-                                  token->location());
-      this->advance_token();
-      return ret;
-
-    case Token::TOKEN_IMAGINARY:
-      {
-       mpfr_t zero;
-       mpfr_init_set_ui(zero, 0, GMP_RNDN);
-       ret = Expression::make_complex(&zero, token->imaginary_value(),
-                                      NULL, token->location());
-       mpfr_clear(zero);
-       this->advance_token();
-       return ret;
-      }
-
-    case Token::TOKEN_KEYWORD:
-      switch (token->keyword())
-       {
-       case KEYWORD_FUNC:
-         return this->function_lit();
-       case KEYWORD_CHAN:
-       case KEYWORD_INTERFACE:
-       case KEYWORD_MAP:
-       case KEYWORD_STRUCT:
-         {
-           source_location location = token->location();
-           return Expression::make_type(this->type(), location);
-         }
-       default:
-         break;
-       }
-      break;
-
-    case Token::TOKEN_OPERATOR:
-      if (token->is_op(OPERATOR_LPAREN))
-       {
-         this->advance_token();
-         ret = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-         if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           error_at(this->location(), "missing %<)%>");
-         else
-           this->advance_token();
-         return ret;
-       }
-      else if (token->is_op(OPERATOR_LSQUARE))
-       {
-         // Here we call array_type directly, as this is the only
-         // case where an ellipsis is permitted for an array type.
-         source_location location = token->location();
-         return Expression::make_type(this->array_type(true), location);
-       }
-      break;
-
-    default:
-      break;
-    }
-
-  error_at(this->location(), "expected operand");
-  return Expression::make_error(this->location());
-}
-
-// Handle a reference to a variable in an enclosing function.  We add
-// it to a list of such variables.  We return a reference to a field
-// in a struct which will be passed on the static chain when calling
-// the current function.
-
-Expression*
-Parse::enclosing_var_reference(Named_object* in_function, Named_object* var,
-                              source_location location)
-{
-  gcc_assert(var->is_variable() || var->is_result_variable());
-
-  Named_object* this_function = this->gogo_->current_function();
-  Named_object* closure = this_function->func_value()->closure_var();
-
-  Enclosing_var ev(var, in_function, this->enclosing_vars_.size());
-  std::pair<Enclosing_vars::iterator, bool> ins =
-    this->enclosing_vars_.insert(ev);
-  if (ins.second)
-    {
-      // This is a variable we have not seen before.  Add a new field
-      // to the closure type.
-      this_function->func_value()->add_closure_field(var, location);
-    }
-
-  Expression* closure_ref = Expression::make_var_reference(closure,
-                                                          location);
-  closure_ref = Expression::make_unary(OPERATOR_MULT, closure_ref, location);
-
-  // The closure structure holds pointers to the variables, so we need
-  // to introduce an indirection.
-  Expression* e = Expression::make_field_reference(closure_ref,
-                                                  ins.first->index(),
-                                                  location);
-  e = Expression::make_unary(OPERATOR_MULT, e, location);
-  return e;
-}
-
-// CompositeLit  = LiteralType LiteralValue .
-// LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
-//                 SliceType | MapType | TypeName .
-// LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
-// ElementList   = Element { "," Element } .
-// Element       = [ Key ":" ] Value .
-// Key           = Expression .
-// Value         = Expression | LiteralValue .
-
-// We have already seen the type if there is one, and we are now
-// looking at the LiteralValue.  The case "[" "..."  "]" ElementType
-// will be seen here as an array type whose length is "nil".  The
-// DEPTH parameter is non-zero if this is an embedded composite
-// literal and the type was omitted.  It gives the number of steps up
-// to the type which was provided.  E.g., in [][]int{{1}} it will be
-// 1.  In [][][]int{{{1}}} it will be 2.
-
-Expression*
-Parse::composite_lit(Type* type, int depth, source_location location)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_LCURLY));
-  this->advance_token();
-
-  if (this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      this->advance_token();
-      return Expression::make_composite_literal(type, depth, false, NULL,
-                                               location);
-    }
-
-  bool has_keys = false;
-  Expression_list* vals = new Expression_list;
-  while (true)
-    {
-      Expression* val;
-      bool is_type_omitted = false;
-
-      const Token* token = this->peek_token();
-
-      if (!token->is_op(OPERATOR_LCURLY))
-       val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      else
-       {
-         // This must be a composite literal inside another composite
-         // literal, with the type omitted for the inner one.
-         val = this->composite_lit(type, depth + 1, token->location());
-         is_type_omitted = true;
-       }
-
-      token = this->peek_token();
-      if (!token->is_op(OPERATOR_COLON))
-       {
-         if (has_keys)
-           vals->push_back(NULL);
-       }
-      else
-       {
-         if (is_type_omitted && !val->is_error_expression())
-           {
-             error_at(this->location(), "unexpected %<:%>");
-             val = Expression::make_error(this->location());
-           }
-
-         this->advance_token();
-
-         if (!has_keys && !vals->empty())
-           {
-             Expression_list* newvals = new Expression_list;
-             for (Expression_list::const_iterator p = vals->begin();
-                  p != vals->end();
-                  ++p)
-               {
-                 newvals->push_back(NULL);
-                 newvals->push_back(*p);
-               }
-             delete vals;
-             vals = newvals;
-           }
-         has_keys = true;
-
-         if (val->unknown_expression() != NULL)
-           val->unknown_expression()->set_is_composite_literal_key();
-
-         vals->push_back(val);
-
-         if (!token->is_op(OPERATOR_LCURLY))
-           val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-         else
-           {
-             // This must be a composite literal inside another
-             // composite literal, with the type omitted for the
-             // inner one.
-             val = this->composite_lit(type, depth + 1, token->location());
-           }
-
-         token = this->peek_token();
-       }
-
-      vals->push_back(val);
-
-      if (token->is_op(OPERATOR_COMMA))
-       {
-         if (this->advance_token()->is_op(OPERATOR_RCURLY))
-           {
-             this->advance_token();
-             break;
-           }
-       }
-      else if (token->is_op(OPERATOR_RCURLY))
-       {
-         this->advance_token();
-         break;
-       }
-      else
-       {
-         error_at(this->location(), "expected %<,%> or %<}%>");
-
-         int depth = 0;
-         while (!token->is_eof()
-                && (depth > 0 || !token->is_op(OPERATOR_RCURLY)))
-           {
-             if (token->is_op(OPERATOR_LCURLY))
-               ++depth;
-             else if (token->is_op(OPERATOR_RCURLY))
-               --depth;
-             token = this->advance_token();
-           }
-         if (token->is_op(OPERATOR_RCURLY))
-           this->advance_token();
-
-         return Expression::make_error(location);
-       }
-    }
-
-  return Expression::make_composite_literal(type, depth, has_keys, vals,
-                                           location);
-}
-
-// FunctionLit = "func" Signature Block .
-
-Expression*
-Parse::function_lit()
-{
-  source_location location = this->location();
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_FUNC));
-  this->advance_token();
-
-  Enclosing_vars hold_enclosing_vars;
-  hold_enclosing_vars.swap(this->enclosing_vars_);
-
-  Function_type* type = this->signature(NULL, location);
-  if (type == NULL)
-    type = Type::make_function_type(NULL, NULL, NULL, location);
-
-  // For a function literal, the next token must be a '{'.  If we
-  // don't see that, then we may have a type expression.
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    return Expression::make_type(type, location);
-
-  Bc_stack* hold_break_stack = this->break_stack_;
-  Bc_stack* hold_continue_stack = this->continue_stack_;
-  this->break_stack_ = NULL;
-  this->continue_stack_ = NULL;
-
-  Named_object* no = this->gogo_->start_function("", type, true, location);
-
-  source_location end_loc = this->block();
-
-  this->gogo_->finish_function(end_loc);
-
-  if (this->break_stack_ != NULL)
-    delete this->break_stack_;
-  if (this->continue_stack_ != NULL)
-    delete this->continue_stack_;
-  this->break_stack_ = hold_break_stack;
-  this->continue_stack_ = hold_continue_stack;
-
-  hold_enclosing_vars.swap(this->enclosing_vars_);
-
-  Expression* closure = this->create_closure(no, &hold_enclosing_vars,
-                                            location);
-
-  return Expression::make_func_reference(no, closure, location);
-}
-
-// Create a closure for the nested function FUNCTION.  This is based
-// on ENCLOSING_VARS, which is a list of all variables defined in
-// enclosing functions and referenced from FUNCTION.  A closure is the
-// address of a struct which contains the addresses of all the
-// referenced variables.  This returns NULL if no closure is required.
-
-Expression*
-Parse::create_closure(Named_object* function, Enclosing_vars* enclosing_vars,
-                     source_location location)
-{
-  if (enclosing_vars->empty())
-    return NULL;
-
-  // Get the variables in order by their field index.
-
-  size_t enclosing_var_count = enclosing_vars->size();
-  std::vector<Enclosing_var> ev(enclosing_var_count);
-  for (Enclosing_vars::const_iterator p = enclosing_vars->begin();
-       p != enclosing_vars->end();
-       ++p)
-    ev[p->index()] = *p;
-
-  // Build an initializer for a composite literal of the closure's
-  // type.
-
-  Named_object* enclosing_function = this->gogo_->current_function();
-  Expression_list* initializer = new Expression_list;
-  for (size_t i = 0; i < enclosing_var_count; ++i)
-    {
-      gcc_assert(ev[i].index() == i);
-      Named_object* var = ev[i].var();
-      Expression* ref;
-      if (ev[i].in_function() == enclosing_function)
-       ref = Expression::make_var_reference(var, location);
-      else
-       ref = this->enclosing_var_reference(ev[i].in_function(), var,
-                                           location);
-      Expression* refaddr = Expression::make_unary(OPERATOR_AND, ref,
-                                                  location);
-      initializer->push_back(refaddr);
-    }
-
-  Named_object* closure_var = function->func_value()->closure_var();
-  Struct_type* st = closure_var->var_value()->type()->deref()->struct_type();
-  Expression* cv = Expression::make_struct_composite_literal(st, initializer,
-                                                            location);
-  return Expression::make_heap_composite(cv, location);
-}
-
-// PrimaryExpr = Operand { Selector | Index | Slice | TypeGuard | Call } .
-
-// If MAY_BE_SINK is true, this expression may be "_".
-
-// If MAY_BE_COMPOSITE_LIT is true, this expression may be a composite
-// literal.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::primary_expr(bool may_be_sink, bool may_be_composite_lit,
-                   bool* is_type_switch)
-{
-  source_location start_loc = this->location();
-  bool is_parenthesized = this->peek_token()->is_op(OPERATOR_LPAREN);
-
-  Expression* ret = this->operand(may_be_sink);
-
-  // An unknown name followed by a curly brace must be a composite
-  // literal, and the unknown name must be a type.
-  if (may_be_composite_lit
-      && !is_parenthesized
-      && ret->unknown_expression() != NULL
-      && this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      Named_object* no = ret->unknown_expression()->named_object();
-      Type* type = Type::make_forward_declaration(no);
-      ret = Expression::make_type(type, ret->location());
-    }
-
-  // We handle composite literals and type casts here, as it is the
-  // easiest way to handle types which are in parentheses, as in
-  // "((uint))(1)".
-  if (ret->is_type_expression())
-    {
-      if (this->peek_token()->is_op(OPERATOR_LCURLY))
-       {
-         if (is_parenthesized)
-           error_at(start_loc,
-                    "cannot parenthesize type in composite literal");
-         ret = this->composite_lit(ret->type(), 0, ret->location());
-       }
-      else if (this->peek_token()->is_op(OPERATOR_LPAREN))
-       {
-         source_location loc = this->location();
-         this->advance_token();
-         Expression* expr = this->expression(PRECEDENCE_NORMAL, false, true,
-                                             NULL);
-         if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-           error_at(this->location(), "expected %<)%>");
-         else
-           this->advance_token();
-         if (expr->is_error_expression())
-           return expr;
-         ret = Expression::make_cast(ret->type(), expr, loc);
-       }
-    }
-
-  while (true)
-    {
-      const Token* token = this->peek_token();
-      if (token->is_op(OPERATOR_LPAREN))
-       ret = this->call(this->verify_not_sink(ret));
-      else if (token->is_op(OPERATOR_DOT))
-       {
-         ret = this->selector(this->verify_not_sink(ret), is_type_switch);
-         if (is_type_switch != NULL && *is_type_switch)
-           break;
-       }
-      else if (token->is_op(OPERATOR_LSQUARE))
-       ret = this->index(this->verify_not_sink(ret));
-      else
-       break;
-    }
-
-  return ret;
-}
-
-// Selector = "." identifier .
-// TypeGuard = "." "(" QualifiedIdent ")" .
-
-// Note that Operand can expand to QualifiedIdent, which contains a
-// ".".  That is handled directly in operand when it sees a package
-// name.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::selector(Expression* left, bool* is_type_switch)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_DOT));
-  source_location location = this->location();
-
-  const Token* token = this->advance_token();
-  if (token->is_identifier())
-    {
-      // This could be a field in a struct, or a method in an
-      // interface, or a method associated with a type.  We can't know
-      // which until we have seen all the types.
-      std::string name =
-       this->gogo_->pack_hidden_name(token->identifier(),
-                                     token->is_identifier_exported());
-      if (token->identifier() == "_")
-       {
-         error_at(this->location(), "invalid use of %<_%>");
-         name = this->gogo_->pack_hidden_name("blank", false);
-       }
-      this->advance_token();
-      return Expression::make_selector(left, name, location);
-    }
-  else if (token->is_op(OPERATOR_LPAREN))
-    {
-      this->advance_token();
-      Type* type = NULL;
-      if (!this->peek_token()->is_keyword(KEYWORD_TYPE))
-       type = this->type();
-      else
-       {
-         if (is_type_switch != NULL)
-           *is_type_switch = true;
-         else
-           {
-             error_at(this->location(),
-                      "use of %<.(type)%> outside type switch");
-             type = Type::make_error_type();
-           }
-         this->advance_token();
-       }
-      if (!this->peek_token()->is_op(OPERATOR_RPAREN))
-       error_at(this->location(), "missing %<)%>");
-      else
-       this->advance_token();
-      if (is_type_switch != NULL && *is_type_switch)
-       return left;
-      return Expression::make_type_guard(left, type, location);
-    }
-  else
-    {
-      error_at(this->location(), "expected identifier or %<(%>");
-      return left;
-    }
-}
-
-// Index          = "[" Expression "]" .
-// Slice          = "[" Expression ":" [ Expression ] "]" .
-
-Expression*
-Parse::index(Expression* expr)
-{
-  source_location location = this->location();
-  gcc_assert(this->peek_token()->is_op(OPERATOR_LSQUARE));
-  this->advance_token();
-
-  Expression* start;
-  if (!this->peek_token()->is_op(OPERATOR_COLON))
-    start = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  else
-    {
-      mpz_t zero;
-      mpz_init_set_ui(zero, 0);
-      start = Expression::make_integer(&zero, NULL, location);
-      mpz_clear(zero);
-    }
-
-  Expression* end = NULL;
-  if (this->peek_token()->is_op(OPERATOR_COLON))
-    {
-      // We use nil to indicate a missing high expression.
-      if (this->advance_token()->is_op(OPERATOR_RSQUARE))
-       end = Expression::make_nil(this->location());
-      else
-       end = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-    }
-  if (!this->peek_token()->is_op(OPERATOR_RSQUARE))
-    error_at(this->location(), "missing %<]%>");
-  else
-    this->advance_token();
-  return Expression::make_index(expr, start, end, location);
-}
-
-// Call           = "(" [ ArgumentList [ "," ] ] ")" .
-// ArgumentList   = ExpressionList [ "..." ] .
-
-Expression*
-Parse::call(Expression* func)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_LPAREN));
-  Expression_list* args = NULL;
-  bool is_varargs = false;
-  const Token* token = this->advance_token();
-  if (!token->is_op(OPERATOR_RPAREN))
-    {
-      args = this->expression_list(NULL, false);
-      token = this->peek_token();
-      if (token->is_op(OPERATOR_ELLIPSIS))
-       {
-         is_varargs = true;
-         token = this->advance_token();
-       }
-    }
-  if (token->is_op(OPERATOR_COMMA))
-    token = this->advance_token();
-  if (!token->is_op(OPERATOR_RPAREN))
-    error_at(this->location(), "missing %<)%>");
-  else
-    this->advance_token();
-  if (func->is_error_expression())
-    return func;
-  return Expression::make_call(func, args, is_varargs, func->location());
-}
-
-// Return an expression for a single unqualified identifier.
-
-Expression*
-Parse::id_to_expression(const std::string& name, source_location location)
-{
-  Named_object* in_function;
-  Named_object* named_object = this->gogo_->lookup(name, &in_function);
-  if (named_object == NULL)
-    named_object = this->gogo_->add_unknown_name(name, location);
-
-  if (in_function != NULL
-      && in_function != this->gogo_->current_function()
-      && (named_object->is_variable() || named_object->is_result_variable()))
-    return this->enclosing_var_reference(in_function, named_object,
-                                        location);
-
-  switch (named_object->classification())
-    {
-    case Named_object::NAMED_OBJECT_CONST:
-      return Expression::make_const_reference(named_object, location);
-    case Named_object::NAMED_OBJECT_VAR:
-    case Named_object::NAMED_OBJECT_RESULT_VAR:
-      return Expression::make_var_reference(named_object, location);
-    case Named_object::NAMED_OBJECT_SINK:
-      return Expression::make_sink(location);
-    case Named_object::NAMED_OBJECT_FUNC:
-    case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
-      return Expression::make_func_reference(named_object, NULL, location);
-    case Named_object::NAMED_OBJECT_UNKNOWN:
-      return Expression::make_unknown_reference(named_object, location);
-    default:
-      error_at(this->location(), "unexpected type of identifier");
-      return Expression::make_error(location);
-    }
-}
-
-// Expression = UnaryExpr { binary_op Expression } .
-
-// PRECEDENCE is the precedence of the current operator.
-
-// If MAY_BE_SINK is true, this expression may be "_".
-
-// If MAY_BE_COMPOSITE_LIT is true, this expression may be a composite
-// literal.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::expression(Precedence precedence, bool may_be_sink,
-                 bool may_be_composite_lit, bool* is_type_switch)
-{
-  Expression* left = this->unary_expr(may_be_sink, may_be_composite_lit,
-                                     is_type_switch);
-
-  while (true)
-    {
-      if (is_type_switch != NULL && *is_type_switch)
-       return left;
-
-      const Token* token = this->peek_token();
-      if (token->classification() != Token::TOKEN_OPERATOR)
-       {
-         // Not a binary_op.
-         return left;
-       }
-
-      Precedence right_precedence;
-      switch (token->op())
-       {
-       case OPERATOR_OROR:
-         right_precedence = PRECEDENCE_OROR;
-         break;
-       case OPERATOR_ANDAND:
-         right_precedence = PRECEDENCE_ANDAND;
-         break;
-       case OPERATOR_EQEQ:
-       case OPERATOR_NOTEQ:
-       case OPERATOR_LT:
-       case OPERATOR_LE:
-       case OPERATOR_GT:
-       case OPERATOR_GE:
-         right_precedence = PRECEDENCE_RELOP;
-         break;
-       case OPERATOR_PLUS:
-       case OPERATOR_MINUS:
-       case OPERATOR_OR:
-       case OPERATOR_XOR:
-         right_precedence = PRECEDENCE_ADDOP;
-         break;
-       case OPERATOR_MULT:
-       case OPERATOR_DIV:
-       case OPERATOR_MOD:
-       case OPERATOR_LSHIFT:
-       case OPERATOR_RSHIFT:
-       case OPERATOR_AND:
-       case OPERATOR_BITCLEAR:
-         right_precedence = PRECEDENCE_MULOP;
-         break;
-       default:
-         right_precedence = PRECEDENCE_INVALID;
-         break;
-       }
-
-      if (right_precedence == PRECEDENCE_INVALID)
-       {
-         // Not a binary_op.
-         return left;
-       }
-
-      Operator op = token->op();
-      source_location binop_location = token->location();
-
-      if (precedence >= right_precedence)
-       {
-         // We've already seen A * B, and we see + C.  We want to
-         // return so that A * B becomes a group.
-         return left;
-       }
-
-      this->advance_token();
-
-      left = this->verify_not_sink(left);
-      Expression* right = this->expression(right_precedence, false,
-                                          may_be_composite_lit,
-                                          NULL);
-      left = Expression::make_binary(op, left, right, binop_location);
-    }
-}
-
-bool
-Parse::expression_may_start_here()
-{
-  const Token* token = this->peek_token();
-  switch (token->classification())
-    {
-    case Token::TOKEN_INVALID:
-    case Token::TOKEN_EOF:
-      return false;
-    case Token::TOKEN_KEYWORD:
-      switch (token->keyword())
-       {
-       case KEYWORD_CHAN:
-       case KEYWORD_FUNC:
-       case KEYWORD_MAP:
-       case KEYWORD_STRUCT:
-       case KEYWORD_INTERFACE:
-         return true;
-       default:
-         return false;
-       }
-    case Token::TOKEN_IDENTIFIER:
-      return true;
-    case Token::TOKEN_STRING:
-      return true;
-    case Token::TOKEN_OPERATOR:
-      switch (token->op())
-       {
-       case OPERATOR_PLUS:
-       case OPERATOR_MINUS:
-       case OPERATOR_NOT:
-       case OPERATOR_XOR:
-       case OPERATOR_MULT:
-       case OPERATOR_CHANOP:
-       case OPERATOR_AND:
-       case OPERATOR_LPAREN:
-       case OPERATOR_LSQUARE:
-         return true;
-       default:
-         return false;
-       }
-    case Token::TOKEN_INTEGER:
-    case Token::TOKEN_FLOAT:
-    case Token::TOKEN_IMAGINARY:
-      return true;
-    default:
-      gcc_unreachable();
-    }
-}
-
-// UnaryExpr = unary_op UnaryExpr | PrimaryExpr .
-
-// If MAY_BE_SINK is true, this expression may be "_".
-
-// If MAY_BE_COMPOSITE_LIT is true, this expression may be a composite
-// literal.
-
-// If IS_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::unary_expr(bool may_be_sink, bool may_be_composite_lit,
-                 bool* is_type_switch)
-{
-  const Token* token = this->peek_token();
-  if (token->is_op(OPERATOR_PLUS)
-      || token->is_op(OPERATOR_MINUS)
-      || token->is_op(OPERATOR_NOT)
-      || token->is_op(OPERATOR_XOR)
-      || token->is_op(OPERATOR_CHANOP)
-      || token->is_op(OPERATOR_MULT)
-      || token->is_op(OPERATOR_AND))
-    {
-      source_location location = token->location();
-      Operator op = token->op();
-      this->advance_token();
-
-      if (op == OPERATOR_CHANOP
-         && this->peek_token()->is_keyword(KEYWORD_CHAN))
-       {
-         // This is "<- chan" which must be the start of a type.
-         this->unget_token(Token::make_operator_token(op, location));
-         return Expression::make_type(this->type(), location);
-       }
-
-      Expression* expr = this->unary_expr(false, may_be_composite_lit, NULL);
-      if (expr->is_error_expression())
-       ;
-      else if (op == OPERATOR_MULT && expr->is_type_expression())
-       expr = Expression::make_type(Type::make_pointer_type(expr->type()),
-                                    location);
-      else if (op == OPERATOR_AND && expr->is_composite_literal())
-       expr = Expression::make_heap_composite(expr, location);
-      else if (op != OPERATOR_CHANOP)
-       expr = Expression::make_unary(op, expr, location);
-      else
-       expr = Expression::make_receive(expr, location);
-      return expr;
-    }
-  else
-    return this->primary_expr(may_be_sink, may_be_composite_lit,
-                             is_type_switch);
-}
-
-// Statement =
-//     Declaration | LabeledStmt | SimpleStmt |
-//     GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
-//     FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
-//     DeferStmt .
-
-// LABEL is the label of this statement if it has one.
-
-void
-Parse::statement(const Label* label)
-{
-  const Token* token = this->peek_token();
-  switch (token->classification())
-    {
-    case Token::TOKEN_KEYWORD:
-      {
-       switch (token->keyword())
-         {
-         case KEYWORD_CONST:
-         case KEYWORD_TYPE:
-         case KEYWORD_VAR:
-           this->declaration();
-           break;
-         case KEYWORD_FUNC:
-         case KEYWORD_MAP:
-         case KEYWORD_STRUCT:
-         case KEYWORD_INTERFACE:
-           this->simple_stat(true, false, NULL, NULL);
-           break;
-         case KEYWORD_GO:
-         case KEYWORD_DEFER:
-           this->go_or_defer_stat();
-           break;
-         case KEYWORD_RETURN:
-           this->return_stat();
-           break;
-         case KEYWORD_BREAK:
-           this->break_stat();
-           break;
-         case KEYWORD_CONTINUE:
-           this->continue_stat();
-           break;
-         case KEYWORD_GOTO:
-           this->goto_stat();
-           break;
-         case KEYWORD_IF:
-           this->if_stat();
-           break;
-         case KEYWORD_SWITCH:
-           this->switch_stat(label);
-           break;
-         case KEYWORD_SELECT:
-           this->select_stat(label);
-           break;
-         case KEYWORD_FOR:
-           this->for_stat(label);
-           break;
-         default:
-           error_at(this->location(), "expected statement");
-           this->advance_token();
-           break;
-         }
-      }
-      break;
-
-    case Token::TOKEN_IDENTIFIER:
-      {
-       std::string identifier = token->identifier();
-       bool is_exported = token->is_identifier_exported();
-       source_location location = token->location();
-       if (this->advance_token()->is_op(OPERATOR_COLON))
-         {
-           this->advance_token();
-           this->labeled_stmt(identifier, location);
-         }
-       else
-         {
-           this->unget_token(Token::make_identifier_token(identifier,
-                                                          is_exported,
-                                                          location));
-           this->simple_stat(true, false, NULL, NULL);
-         }
-      }
-      break;
-
-    case Token::TOKEN_OPERATOR:
-      if (token->is_op(OPERATOR_LCURLY))
-       {
-         source_location location = token->location();
-         this->gogo_->start_block(location);
-         source_location end_loc = this->block();
-         this->gogo_->add_block(this->gogo_->finish_block(end_loc),
-                                location);
-       }
-      else if (!token->is_op(OPERATOR_SEMICOLON))
-       this->simple_stat(true, false, NULL, NULL);
-      break;
-
-    case Token::TOKEN_STRING:
-    case Token::TOKEN_INTEGER:
-    case Token::TOKEN_FLOAT:
-    case Token::TOKEN_IMAGINARY:
-      this->simple_stat(true, false, NULL, NULL);
-      break;
-
-    default:
-      error_at(this->location(), "expected statement");
-      this->advance_token();
-      break;
-    }
-}
-
-bool
-Parse::statement_may_start_here()
-{
-  const Token* token = this->peek_token();
-  switch (token->classification())
-    {
-    case Token::TOKEN_KEYWORD:
-      {
-       switch (token->keyword())
-         {
-         case KEYWORD_CONST:
-         case KEYWORD_TYPE:
-         case KEYWORD_VAR:
-         case KEYWORD_FUNC:
-         case KEYWORD_MAP:
-         case KEYWORD_STRUCT:
-         case KEYWORD_INTERFACE:
-         case KEYWORD_GO:
-         case KEYWORD_DEFER:
-         case KEYWORD_RETURN:
-         case KEYWORD_BREAK:
-         case KEYWORD_CONTINUE:
-         case KEYWORD_GOTO:
-         case KEYWORD_IF:
-         case KEYWORD_SWITCH:
-         case KEYWORD_SELECT:
-         case KEYWORD_FOR:
-           return true;
-
-         default:
-           return false;
-         }
-      }
-      break;
-
-    case Token::TOKEN_IDENTIFIER:
-      return true;
-
-    case Token::TOKEN_OPERATOR:
-      if (token->is_op(OPERATOR_LCURLY)
-         || token->is_op(OPERATOR_SEMICOLON))
-       return true;
-      else
-       return this->expression_may_start_here();
-
-    case Token::TOKEN_STRING:
-    case Token::TOKEN_INTEGER:
-    case Token::TOKEN_FLOAT:
-    case Token::TOKEN_IMAGINARY:
-      return true;
-
-    default:
-      return false;
-    }
-}
-
-// LabeledStmt = Label ":" Statement .
-// Label       = identifier .
-
-void
-Parse::labeled_stmt(const std::string& label_name, source_location location)
-{
-  Label* label = this->gogo_->add_label_definition(label_name, location);
-
-  if (this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      // This is a label at the end of a block.  A program is
-      // permitted to omit a semicolon here.
-      return;
-    }
-
-  if (!this->statement_may_start_here())
-    {
-      error_at(location, "missing statement after label");
-      this->unget_token(Token::make_operator_token(OPERATOR_SEMICOLON,
-                                                  location));
-      return;
-    }
-
-  this->statement(label);
-}
-
-// SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt |
-//     Assignment | ShortVarDecl .
-
-// EmptyStmt was handled in Parse::statement.
-
-// In order to make this work for if and switch statements, if
-// RETURN_EXP is true, and we see an ExpressionStat, we return the
-// expression rather than adding an expression statement to the
-// current block.  If we see something other than an ExpressionStat,
-// we add the statement and return NULL.
-
-// If P_RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-// If P_TYPE_SWITCH is not NULL, this will recognize a type switch
-// guard (var := expr.("type") using the literal keyword "type").
-
-Expression*
-Parse::simple_stat(bool may_be_composite_lit, bool return_exp,
-                  Range_clause* p_range_clause, Type_switch* p_type_switch)
-{
-  const Token* token = this->peek_token();
-
-  // An identifier follow by := is a SimpleVarDecl.
-  if (token->is_identifier())
-    {
-      std::string identifier = token->identifier();
-      bool is_exported = token->is_identifier_exported();
-      source_location location = token->location();
-
-      token = this->advance_token();
-      if (token->is_op(OPERATOR_COLONEQ)
-         || token->is_op(OPERATOR_COMMA))
-       {
-         identifier = this->gogo_->pack_hidden_name(identifier, is_exported);
-         this->simple_var_decl_or_assignment(identifier, location,
-                                             p_range_clause,
-                                             (token->is_op(OPERATOR_COLONEQ)
-                                              ? p_type_switch
-                                              : NULL));
-         return NULL;
-       }
-
-      this->unget_token(Token::make_identifier_token(identifier, is_exported,
-                                                    location));
-    }
-
-  Expression* exp = this->expression(PRECEDENCE_NORMAL, true,
-                                    may_be_composite_lit,
-                                    (p_type_switch == NULL
-                                     ? NULL
-                                     : &p_type_switch->found));
-  if (p_type_switch != NULL && p_type_switch->found)
-    {
-      p_type_switch->name.clear();
-      p_type_switch->location = exp->location();
-      p_type_switch->expr = this->verify_not_sink(exp);
-      return NULL;
-    }
-  token = this->peek_token();
-  if (token->is_op(OPERATOR_CHANOP))
-    this->send_stmt(this->verify_not_sink(exp));
-  else if (token->is_op(OPERATOR_PLUSPLUS)
-          || token->is_op(OPERATOR_MINUSMINUS))
-    this->inc_dec_stat(this->verify_not_sink(exp));
-  else if (token->is_op(OPERATOR_COMMA)
-          || token->is_op(OPERATOR_EQ))
-    this->assignment(exp, p_range_clause);
-  else if (token->is_op(OPERATOR_PLUSEQ)
-          || token->is_op(OPERATOR_MINUSEQ)
-          || token->is_op(OPERATOR_OREQ)
-          || token->is_op(OPERATOR_XOREQ)
-          || token->is_op(OPERATOR_MULTEQ)
-          || token->is_op(OPERATOR_DIVEQ)
-          || token->is_op(OPERATOR_MODEQ)
-          || token->is_op(OPERATOR_LSHIFTEQ)
-          || token->is_op(OPERATOR_RSHIFTEQ)
-          || token->is_op(OPERATOR_ANDEQ)
-          || token->is_op(OPERATOR_BITCLEAREQ))
-    this->assignment(this->verify_not_sink(exp), p_range_clause);
-  else if (return_exp)
-    return this->verify_not_sink(exp);
-  else
-    this->expression_stat(this->verify_not_sink(exp));
-
-  return NULL;
-}
-
-bool
-Parse::simple_stat_may_start_here()
-{
-  return this->expression_may_start_here();
-}
-
-// Parse { Statement ";" } which is used in a few places.  The list of
-// statements may end with a right curly brace, in which case the
-// semicolon may be omitted.
-
-void
-Parse::statement_list()
-{
-  while (this->statement_may_start_here())
-    {
-      this->statement(NULL);
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      else if (this->peek_token()->is_op(OPERATOR_RCURLY))
-       break;
-      else
-       {
-         if (!this->peek_token()->is_eof() || !saw_errors())
-           error_at(this->location(), "expected %<;%> or %<}%> or newline");
-         if (!this->skip_past_error(OPERATOR_RCURLY))
-           return;
-       }
-    }
-}
-
-bool
-Parse::statement_list_may_start_here()
-{
-  return this->statement_may_start_here();
-}
-
-// ExpressionStat = Expression .
-
-void
-Parse::expression_stat(Expression* exp)
-{
-  exp->discarding_value();
-  this->gogo_->add_statement(Statement::make_statement(exp));
-}
-
-// SendStmt = Channel "&lt;-" Expression .
-// Channel  = Expression .
-
-void
-Parse::send_stmt(Expression* channel)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_CHANOP));
-  source_location loc = this->location();
-  this->advance_token();
-  Expression* val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  Statement* s = Statement::make_send_statement(channel, val, loc);
-  this->gogo_->add_statement(s);
-}
-
-// IncDecStat = Expression ( "++" | "--" ) .
-
-void
-Parse::inc_dec_stat(Expression* exp)
-{
-  const Token* token = this->peek_token();
-
-  // Lvalue maps require special handling.
-  if (exp->index_expression() != NULL)
-    exp->index_expression()->set_is_lvalue();
-
-  if (token->is_op(OPERATOR_PLUSPLUS))
-    this->gogo_->add_statement(Statement::make_inc_statement(exp));
-  else if (token->is_op(OPERATOR_MINUSMINUS))
-    this->gogo_->add_statement(Statement::make_dec_statement(exp));
-  else
-    gcc_unreachable();
-  this->advance_token();
-}
-
-// Assignment = ExpressionList assign_op ExpressionList .
-
-// EXP is an expression that we have already parsed.
-
-// If RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-void
-Parse::assignment(Expression* expr, Range_clause* p_range_clause)
-{
-  Expression_list* vars;
-  if (!this->peek_token()->is_op(OPERATOR_COMMA))
-    {
-      vars = new Expression_list();
-      vars->push_back(expr);
-    }
-  else
-    {
-      this->advance_token();
-      vars = this->expression_list(expr, true);
-    }
-
-  this->tuple_assignment(vars, p_range_clause);
-}
-
-// An assignment statement.  LHS is the list of expressions which
-// appear on the left hand side.
-
-// If RANGE_CLAUSE is not NULL, then this will recognize a
-// RangeClause.
-
-void
-Parse::tuple_assignment(Expression_list* lhs, Range_clause* p_range_clause)
-{
-  const Token* token = this->peek_token();
-  if (!token->is_op(OPERATOR_EQ)
-      && !token->is_op(OPERATOR_PLUSEQ)
-      && !token->is_op(OPERATOR_MINUSEQ)
-      && !token->is_op(OPERATOR_OREQ)
-      && !token->is_op(OPERATOR_XOREQ)
-      && !token->is_op(OPERATOR_MULTEQ)
-      && !token->is_op(OPERATOR_DIVEQ)
-      && !token->is_op(OPERATOR_MODEQ)
-      && !token->is_op(OPERATOR_LSHIFTEQ)
-      && !token->is_op(OPERATOR_RSHIFTEQ)
-      && !token->is_op(OPERATOR_ANDEQ)
-      && !token->is_op(OPERATOR_BITCLEAREQ))
-    {
-      error_at(this->location(), "expected assignment operator");
-      return;
-    }
-  Operator op = token->op();
-  source_location location = token->location();
-
-  token = this->advance_token();
-
-  if (p_range_clause != NULL && token->is_keyword(KEYWORD_RANGE))
-    {
-      if (op != OPERATOR_EQ)
-       error_at(this->location(), "range clause requires %<=%>");
-      this->range_clause_expr(lhs, p_range_clause);
-      return;
-    }
-
-  Expression_list* vals = this->expression_list(NULL, false);
-
-  // We've parsed everything; check for errors.
-  if (lhs == NULL || vals == NULL)
-    return;
-  for (Expression_list::const_iterator pe = lhs->begin();
-       pe != lhs->end();
-       ++pe)
-    {
-      if ((*pe)->is_error_expression())
-       return;
-      if (op != OPERATOR_EQ && (*pe)->is_sink_expression())
-       error_at((*pe)->location(), "cannot use _ as value");
-    }
-  for (Expression_list::const_iterator pe = vals->begin();
-       pe != vals->end();
-       ++pe)
-    {
-      if ((*pe)->is_error_expression())
-       return;
-    }
-
-  // Map expressions act differently when they are lvalues.
-  for (Expression_list::iterator plv = lhs->begin();
-       plv != lhs->end();
-       ++plv)
-    if ((*plv)->index_expression() != NULL)
-      (*plv)->index_expression()->set_is_lvalue();
-
-  Call_expression* call;
-  Index_expression* map_index;
-  Receive_expression* receive;
-  Type_guard_expression* type_guard;
-  if (lhs->size() == vals->size())
-    {
-      Statement* s;
-      if (lhs->size() > 1)
-       {
-         if (op != OPERATOR_EQ)
-           error_at(location, "multiple values only permitted with %<=%>");
-         s = Statement::make_tuple_assignment(lhs, vals, location);
-       }
-      else
-       {
-         if (op == OPERATOR_EQ)
-           s = Statement::make_assignment(lhs->front(), vals->front(),
-                                          location);
-         else
-           s = Statement::make_assignment_operation(op, lhs->front(),
-                                                    vals->front(), location);
-         delete lhs;
-         delete vals;
-       }
-      this->gogo_->add_statement(s);
-    }
-  else if (vals->size() == 1
-          && (call = (*vals->begin())->call_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "multiple results only permitted with %<=%>");
-      delete vals;
-      vals = new Expression_list;
-      for (unsigned int i = 0; i < lhs->size(); ++i)
-       vals->push_back(Expression::make_call_result(call, i));
-      Statement* s = Statement::make_tuple_assignment(lhs, vals, location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 2
-          && vals->size() == 1
-          && (map_index = (*vals->begin())->index_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "two values from map requires %<=%>");
-      Expression* val = lhs->front();
-      Expression* present = lhs->back();
-      Statement* s = Statement::make_tuple_map_assignment(val, present,
-                                                         map_index, location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 1
-          && vals->size() == 2
-          && (map_index = lhs->front()->index_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "assigning tuple to map index requires %<=%>");
-      Expression* val = vals->front();
-      Expression* should_set = vals->back();
-      Statement* s = Statement::make_map_assignment(map_index, val, should_set,
-                                                   location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 2
-          && vals->size() == 1
-          && (receive = (*vals->begin())->receive_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "two values from receive requires %<=%>");
-      Expression* val = lhs->front();
-      Expression* success = lhs->back();
-      Expression* channel = receive->channel();
-      Statement* s = Statement::make_tuple_receive_assignment(val, success,
-                                                             channel,
-                                                             false,
-                                                             location);
-      this->gogo_->add_statement(s);
-    }
-  else if (lhs->size() == 2
-          && vals->size() == 1
-          && (type_guard = (*vals->begin())->type_guard_expression()) != NULL)
-    {
-      if (op != OPERATOR_EQ)
-       error_at(location, "two values from type guard requires %<=%>");
-      Expression* val = lhs->front();
-      Expression* ok = lhs->back();
-      Expression* expr = type_guard->expr();
-      Type* type = type_guard->type();
-      Statement* s = Statement::make_tuple_type_guard_assignment(val, ok,
-                                                                expr, type,
-                                                                location);
-      this->gogo_->add_statement(s);
-    }
-  else
-    {
-      error_at(location, "number of variables does not match number of values");
-    }
-}
-
-// GoStat = "go" Expression .
-// DeferStat = "defer" Expression .
-
-void
-Parse::go_or_defer_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_GO)
-            || this->peek_token()->is_keyword(KEYWORD_DEFER));
-  bool is_go = this->peek_token()->is_keyword(KEYWORD_GO);
-  source_location stat_location = this->location();
-  this->advance_token();
-  source_location expr_location = this->location();
-  Expression* expr = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  Call_expression* call_expr = expr->call_expression();
-  if (call_expr == NULL)
-    {
-      error_at(expr_location, "expected call expression");
-      return;
-    }
-
-  // Make it easier to simplify go/defer statements by putting every
-  // statement in its own block.
-  this->gogo_->start_block(stat_location);
-  Statement* stat;
-  if (is_go)
-    stat = Statement::make_go_statement(call_expr, stat_location);
-  else
-    stat = Statement::make_defer_statement(call_expr, stat_location);
-  this->gogo_->add_statement(stat);
-  this->gogo_->add_block(this->gogo_->finish_block(stat_location),
-                        stat_location);
-}
-
-// ReturnStat = "return" [ ExpressionList ] .
-
-void
-Parse::return_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_RETURN));
-  source_location location = this->location();
-  this->advance_token();
-  Expression_list* vals = NULL;
-  if (this->expression_may_start_here())
-    vals = this->expression_list(NULL, false);
-  const Function* function = this->gogo_->current_function()->func_value();
-  const Typed_identifier_list* results = function->type()->results();
-  this->gogo_->add_statement(Statement::make_return_statement(results, vals,
-                                                             location));
-}
-
-// IfStmt    = "if" [ SimpleStmt ";" ] Expression Block [ "else" Statement ] .
-
-void
-Parse::if_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_IF));
-  source_location location = this->location();
-  this->advance_token();
-
-  this->gogo_->start_block(location);
-
-  Expression* cond = NULL;
-  if (this->simple_stat_may_start_here())
-    cond = this->simple_stat(false, true, NULL, NULL);
-  if (cond != NULL && this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      // The SimpleStat is an expression statement.
-      this->expression_stat(cond);
-      cond = NULL;
-    }
-  if (cond == NULL)
-    {
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      cond = this->expression(PRECEDENCE_NORMAL, false, false, NULL);
-    }
-
-  this->gogo_->start_block(this->location());
-  source_location end_loc = this->block();
-  Block* then_block = this->gogo_->finish_block(end_loc);
-
-  // Check for the easy error of a newline before "else".
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      source_location semi_loc = this->location();
-      if (this->advance_token()->is_keyword(KEYWORD_ELSE))
-       error_at(this->location(),
-                "unexpected semicolon or newline before %<else%>");
-      else
-       this->unget_token(Token::make_operator_token(OPERATOR_SEMICOLON,
-                                                    semi_loc));
-    }
-
-  Block* else_block = NULL;
-  if (this->peek_token()->is_keyword(KEYWORD_ELSE))
-    {
-      this->advance_token();
-      // We create a block to gather the statement.
-      this->gogo_->start_block(this->location());
-      this->statement(NULL);
-      else_block = this->gogo_->finish_block(this->location());
-    }
-
-  this->gogo_->add_statement(Statement::make_if_statement(cond, then_block,
-                                                         else_block,
-                                                         location));
-
-  this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                        location);
-}
-
-// SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
-// ExprSwitchStmt = "switch" [ [ SimpleStat ] ";" ] [ Expression ]
-//                     "{" { ExprCaseClause } "}" .
-// TypeSwitchStmt  = "switch" [ [ SimpleStat ] ";" ] TypeSwitchGuard
-//                     "{" { TypeCaseClause } "}" .
-// TypeSwitchGuard = [ identifier ":=" ] Expression "." "(" "type" ")" .
-
-void
-Parse::switch_stat(const Label* label)
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_SWITCH));
-  source_location location = this->location();
-  this->advance_token();
-
-  this->gogo_->start_block(location);
-
-  Expression* switch_val = NULL;
-  Type_switch type_switch;
-  if (this->simple_stat_may_start_here())
-    switch_val = this->simple_stat(false, true, NULL, &type_switch);
-  if (switch_val != NULL && this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    {
-      // The SimpleStat is an expression statement.
-      this->expression_stat(switch_val);
-      switch_val = NULL;
-    }
-  if (switch_val == NULL && !type_switch.found)
-    {
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-      if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-       {
-         if (this->peek_token()->is_identifier())
-           {
-             const Token* token = this->peek_token();
-             std::string identifier = token->identifier();
-             bool is_exported = token->is_identifier_exported();
-             source_location id_loc = token->location();
-
-             token = this->advance_token();
-             bool is_coloneq = token->is_op(OPERATOR_COLONEQ);
-             this->unget_token(Token::make_identifier_token(identifier,
-                                                            is_exported,
-                                                            id_loc));
-             if (is_coloneq)
-               {
-                 // This must be a TypeSwitchGuard.
-                 switch_val = this->simple_stat(false, true, NULL,
-                                                &type_switch);
-                 if (!type_switch.found)
-                   {
-                     if (switch_val == NULL
-                         || !switch_val->is_error_expression())
-                       {
-                         error_at(id_loc, "expected type switch assignment");
-                         switch_val = Expression::make_error(id_loc);
-                       }
-                   }
-               }
-           }
-         if (switch_val == NULL && !type_switch.found)
-           {
-             switch_val = this->expression(PRECEDENCE_NORMAL, false, false,
-                                           &type_switch.found);
-             if (type_switch.found)
-               {
-                 type_switch.name.clear();
-                 type_switch.expr = switch_val;
-                 type_switch.location = switch_val->location();
-               }
-           }
-       }
-    }
-
-  if (!this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = this->location();
-      if (this->peek_token()->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                                location);
-         return;
-       }
-    }
-  this->advance_token();
-
-  Statement* statement;
-  if (type_switch.found)
-    statement = this->type_switch_body(label, type_switch, location);
-  else
-    statement = this->expr_switch_body(label, switch_val, location);
-
-  if (statement != NULL)
-    this->gogo_->add_statement(statement);
-
-  this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                        location);
-}
-
-// The body of an expression switch.
-//   "{" { ExprCaseClause } "}"
-
-Statement*
-Parse::expr_switch_body(const Label* label, Expression* switch_val,
-                       source_location location)
-{
-  Switch_statement* statement = Statement::make_switch_statement(switch_val,
-                                                                location);
-
-  this->push_break_statement(statement, label);
-
-  Case_clauses* case_clauses = new Case_clauses();
-  bool saw_default = false;
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      if (this->peek_token()->is_eof())
-       {
-         if (!saw_errors())
-           error_at(this->location(), "missing %<}%>");
-         return NULL;
-       }
-      this->expr_case_clause(case_clauses, &saw_default);
-    }
-  this->advance_token();
-
-  statement->add_clauses(case_clauses);
-
-  this->pop_break_statement();
-
-  return statement;
-}
-
-// ExprCaseClause = ExprSwitchCase ":" [ StatementList ] .
-// FallthroughStat = "fallthrough" .
-
-void
-Parse::expr_case_clause(Case_clauses* clauses, bool* saw_default)
-{
-  source_location location = this->location();
-
-  bool is_default = false;
-  Expression_list* vals = this->expr_switch_case(&is_default);
-
-  if (!this->peek_token()->is_op(OPERATOR_COLON))
-    {
-      if (!saw_errors())
-       error_at(this->location(), "expected %<:%>");
-      return;
-    }
-  else
-    this->advance_token();
-
-  Block* statements = NULL;
-  if (this->statement_list_may_start_here())
-    {
-      this->gogo_->start_block(this->location());
-      this->statement_list();
-      statements = this->gogo_->finish_block(this->location());
-    }
-
-  bool is_fallthrough = false;
-  if (this->peek_token()->is_keyword(KEYWORD_FALLTHROUGH))
-    {
-      is_fallthrough = true;
-      if (this->advance_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-    }
-
-  if (is_default)
-    {
-      if (*saw_default)
-       {
-         error_at(location, "multiple defaults in switch");
-         return;
-       }
-      *saw_default = true;
-    }
-
-  if (is_default || vals != NULL)
-    clauses->add(vals, is_default, statements, is_fallthrough, location);
-}
-
-// ExprSwitchCase = "case" ExpressionList | "default" .
-
-Expression_list*
-Parse::expr_switch_case(bool* is_default)
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_CASE))
-    {
-      this->advance_token();
-      return this->expression_list(NULL, false);
-    }
-  else if (token->is_keyword(KEYWORD_DEFAULT))
-    {
-      this->advance_token();
-      *is_default = true;
-      return NULL;
-    }
-  else
-    {
-      if (!saw_errors())
-       error_at(this->location(), "expected %<case%> or %<default%>");
-      if (!token->is_op(OPERATOR_RCURLY))
-       this->advance_token();
-      return NULL;
-    }
-}
-
-// The body of a type switch.
-//   "{" { TypeCaseClause } "}" .
-
-Statement*
-Parse::type_switch_body(const Label* label, const Type_switch& type_switch,
-                       source_location location)
-{
-  Named_object* switch_no = NULL;
-  if (!type_switch.name.empty())
-    {
-      Variable* switch_var = new Variable(NULL, type_switch.expr, false, false,
-                                         false, type_switch.location);
-      switch_no = this->gogo_->add_variable(type_switch.name, switch_var);
-    }
-
-  Type_switch_statement* statement =
-    Statement::make_type_switch_statement(switch_no,
-                                         (switch_no == NULL
-                                          ? type_switch.expr
-                                          : NULL),
-                                         location);
-
-  this->push_break_statement(statement, label);
-
-  Type_case_clauses* case_clauses = new Type_case_clauses();
-  bool saw_default = false;
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      if (this->peek_token()->is_eof())
-       {
-         error_at(this->location(), "missing %<}%>");
-         return NULL;
-       }
-      this->type_case_clause(switch_no, case_clauses, &saw_default);
-    }
-  this->advance_token();
-
-  statement->add_clauses(case_clauses);
-
-  this->pop_break_statement();
-
-  return statement;
-}
-
-// TypeCaseClause  = TypeSwitchCase ":" [ StatementList ] .
-
-void
-Parse::type_case_clause(Named_object* switch_no, Type_case_clauses* clauses,
-                       bool* saw_default)
-{
-  source_location location = this->location();
-
-  std::vector<Type*> types;
-  bool is_default = false;
-  this->type_switch_case(&types, &is_default);
-
-  if (!this->peek_token()->is_op(OPERATOR_COLON))
-    error_at(this->location(), "expected %<:%>");
-  else
-    this->advance_token();
-
-  Block* statements = NULL;
-  if (this->statement_list_may_start_here())
-    {
-      this->gogo_->start_block(this->location());
-      if (switch_no != NULL && types.size() == 1)
-       {
-         Type* type = types.front();
-         Expression* init = Expression::make_var_reference(switch_no,
-                                                           location);
-         init = Expression::make_type_guard(init, type, location);
-         Variable* v = new Variable(type, init, false, false, false,
-                                    location);
-         v->set_is_type_switch_var();
-         this->gogo_->add_variable(switch_no->name(), v);
-       }
-      this->statement_list();
-      statements = this->gogo_->finish_block(this->location());
-    }
-
-  if (this->peek_token()->is_keyword(KEYWORD_FALLTHROUGH))
-    {
-      error_at(this->location(),
-              "fallthrough is not permitted in a type switch");
-      if (this->advance_token()->is_op(OPERATOR_SEMICOLON))
-       this->advance_token();
-    }
-
-  if (is_default)
-    {
-      gcc_assert(types.empty());
-      if (*saw_default)
-       {
-         error_at(location, "multiple defaults in type switch");
-         return;
-       }
-      *saw_default = true;
-      clauses->add(NULL, false, true, statements, location);
-    }
-  else if (!types.empty())
-    {
-      for (std::vector<Type*>::const_iterator p = types.begin();
-          p + 1 != types.end();
-          ++p)
-       clauses->add(*p, true, false, NULL, location);
-      clauses->add(types.back(), false, false, statements, location);
-    }
-  else
-    clauses->add(Type::make_error_type(), false, false, statements, location);
-}
-
-// TypeSwitchCase  = "case" type | "default"
-
-// We accept a comma separated list of types.
-
-void
-Parse::type_switch_case(std::vector<Type*>* types, bool* is_default)
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_CASE))
-    {
-      this->advance_token();
-      while (true)
-       {
-         Type* t = this->type();
-         if (!t->is_error_type())
-           types->push_back(t);
-         if (!this->peek_token()->is_op(OPERATOR_COMMA))
-           break;
-         this->advance_token();
-       }
-    }
-  else if (token->is_keyword(KEYWORD_DEFAULT))
-    {
-      this->advance_token();
-      *is_default = true;
-    }
-  else
-    {
-      error_at(this->location(), "expected %<case%> or %<default%>");
-      if (!token->is_op(OPERATOR_RCURLY))
-       this->advance_token();
-    }
-}
-
-// SelectStat = "select" "{" { CommClause } "}" .
-
-void
-Parse::select_stat(const Label* label)
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_SELECT));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-
-  if (!token->is_op(OPERATOR_LCURLY))
-    {
-      source_location token_loc = token->location();
-      if (token->is_op(OPERATOR_SEMICOLON)
-         && this->advance_token()->is_op(OPERATOR_LCURLY))
-       error_at(token_loc, "unexpected semicolon or newline before %<{%>");
-      else
-       {
-         error_at(this->location(), "expected %<{%>");
-         return;
-       }
-    }
-  this->advance_token();
-
-  Select_statement* statement = Statement::make_select_statement(location);
-
-  this->push_break_statement(statement, label);
-
-  Select_clauses* select_clauses = new Select_clauses();
-  bool saw_default = false;
-  while (!this->peek_token()->is_op(OPERATOR_RCURLY))
-    {
-      if (this->peek_token()->is_eof())
-       {
-         error_at(this->location(), "expected %<}%>");
-         return;
-       }
-      this->comm_clause(select_clauses, &saw_default);
-    }
-
-  this->advance_token();
-
-  statement->add_clauses(select_clauses);
-
-  this->pop_break_statement();
-
-  this->gogo_->add_statement(statement);
-}
-
-// CommClause = CommCase ":" { Statement ";" } .
-
-void
-Parse::comm_clause(Select_clauses* clauses, bool* saw_default)
-{
-  source_location location = this->location();
-  bool is_send = false;
-  Expression* channel = NULL;
-  Expression* val = NULL;
-  Expression* closed = NULL;
-  std::string varname;
-  std::string closedname;
-  bool is_default = false;
-  bool got_case = this->comm_case(&is_send, &channel, &val, &closed,
-                                 &varname, &closedname, &is_default);
-
-  if (this->peek_token()->is_op(OPERATOR_COLON))
-    this->advance_token();
-  else
-    error_at(this->location(), "expected colon");
-
-  Block* statements = NULL;
-  Named_object* var = NULL;
-  Named_object* closedvar = NULL;
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    this->advance_token();
-  else if (this->statement_list_may_start_here())
-    {
-      this->gogo_->start_block(this->location());
-
-      if (!varname.empty())
-       {
-         // FIXME: LOCATION is slightly wrong here.
-         Variable* v = new Variable(NULL, channel, false, false, false,
-                                    location);
-         v->set_type_from_chan_element();
-         var = this->gogo_->add_variable(varname, v);
-       }
-
-      if (!closedname.empty())
-       {
-         // FIXME: LOCATION is slightly wrong here.
-         Variable* v = new Variable(Type::lookup_bool_type(), NULL,
-                                    false, false, false, location);
-         closedvar = this->gogo_->add_variable(closedname, v);
-       }
-
-      this->statement_list();
-      statements = this->gogo_->finish_block(this->location());
-    }
-
-  if (is_default)
-    {
-      if (*saw_default)
-       {
-         error_at(location, "multiple defaults in select");
-         return;
-       }
-      *saw_default = true;
-    }
-
-  if (got_case)
-    clauses->add(is_send, channel, val, closed, var, closedvar, is_default,
-                statements, location);
-  else if (statements != NULL)
-    {
-      // Add the statements to make sure that any names they define
-      // are traversed.
-      this->gogo_->add_block(statements, location);
-    }
-}
-
-// CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
-
-bool
-Parse::comm_case(bool* is_send, Expression** channel, Expression** val,
-                Expression** closed, std::string* varname,
-                std::string* closedname, bool* is_default)
-{
-  const Token* token = this->peek_token();
-  if (token->is_keyword(KEYWORD_DEFAULT))
-    {
-      this->advance_token();
-      *is_default = true;
-    }
-  else if (token->is_keyword(KEYWORD_CASE))
-    {
-      this->advance_token();
-      if (!this->send_or_recv_stmt(is_send, channel, val, closed, varname,
-                                  closedname))
-       return false;
-    }
-  else
-    {
-      error_at(this->location(), "expected %<case%> or %<default%>");
-      if (!token->is_op(OPERATOR_RCURLY))
-       this->advance_token();
-      return false;
-    }
-
-  return true;
-}
-
-// RecvStmt   = [ Expression [ "," Expression ] ( "=" | ":=" ) ] RecvExpr .
-// RecvExpr   = Expression .
-
-bool
-Parse::send_or_recv_stmt(bool* is_send, Expression** channel, Expression** val,
-                        Expression** closed, std::string* varname,
-                        std::string* closedname)
-{
-  const Token* token = this->peek_token();
-  bool saw_comma = false;
-  bool closed_is_id = false;
-  if (token->is_identifier())
-    {
-      Gogo* gogo = this->gogo_;
-      std::string recv_var = token->identifier();
-      bool is_rv_exported = token->is_identifier_exported();
-      source_location recv_var_loc = token->location();
-      token = this->advance_token();
-      if (token->is_op(OPERATOR_COLONEQ))
-       {
-         // case rv := <-c:
-         if (!this->advance_token()->is_op(OPERATOR_CHANOP))
-           {
-             error_at(this->location(), "expected %<<-%>");
-             return false;
-           }
-         if (recv_var == "_")
-           {
-             error_at(recv_var_loc,
-                      "no new variables on left side of %<:=%>");
-             recv_var = "blank";
-           }
-         *is_send = false;
-         *varname = gogo->pack_hidden_name(recv_var, is_rv_exported);
-         this->advance_token();
-         *channel = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-         return true;
-       }
-      else if (token->is_op(OPERATOR_COMMA))
-       {
-         token = this->advance_token();
-         if (token->is_identifier())
-           {
-             std::string recv_closed = token->identifier();
-             bool is_rc_exported = token->is_identifier_exported();
-             source_location recv_closed_loc = token->location();
-             closed_is_id = true;
-
-             token = this->advance_token();
-             if (token->is_op(OPERATOR_COLONEQ))
-               {
-                 // case rv, rc := <-c:
-                 if (!this->advance_token()->is_op(OPERATOR_CHANOP))
-                   {
-                     error_at(this->location(), "expected %<<-%>");
-                     return false;
-                   }
-                 if (recv_var == "_" && recv_closed == "_")
-                   {
-                     error_at(recv_var_loc,
-                              "no new variables on left side of %<:=%>");
-                     recv_var = "blank";
-                   }
-                 *is_send = false;
-                 if (recv_var != "_")
-                   *varname = gogo->pack_hidden_name(recv_var,
-                                                     is_rv_exported);
-                 if (recv_closed != "_")
-                   *closedname = gogo->pack_hidden_name(recv_closed,
-                                                        is_rc_exported);
-                 this->advance_token();
-                 *channel = this->expression(PRECEDENCE_NORMAL, false, true,
-                                             NULL);
-                 return true;
-               }
-
-             this->unget_token(Token::make_identifier_token(recv_closed,
-                                                            is_rc_exported,
-                                                            recv_closed_loc));
-           }
-
-         *val = this->id_to_expression(gogo->pack_hidden_name(recv_var,
-                                                              is_rv_exported),
-                                       recv_var_loc);
-         saw_comma = true;
-       }
-      else
-       this->unget_token(Token::make_identifier_token(recv_var,
-                                                      is_rv_exported,
-                                                      recv_var_loc));
-    }
-
-  // If SAW_COMMA is false, then we are looking at the start of the
-  // send or receive expression.  If SAW_COMMA is true, then *VAL is
-  // set and we just read a comma.
-
-  if (!saw_comma && this->peek_token()->is_op(OPERATOR_CHANOP))
-    {
-      // case <-c:
-      *is_send = false;
-      this->advance_token();
-      *channel = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      return true;
-    }
-
-  Expression* e = this->expression(PRECEDENCE_NORMAL, true, true, NULL);
-
-  if (this->peek_token()->is_op(OPERATOR_EQ))
-    {
-      if (!this->advance_token()->is_op(OPERATOR_CHANOP))
-       {
-         error_at(this->location(), "missing %<<-%>");
-         return false;
-       }
-      *is_send = false;
-      this->advance_token();
-      *channel = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      if (saw_comma)
-       {
-         // case v, e = <-c:
-         // *VAL is already set.
-         if (!e->is_sink_expression())
-           *closed = e;
-       }
-      else
-       {
-         // case v = <-c:
-         if (!e->is_sink_expression())
-           *val = e;
-       }
-      return true;
-    }
-
-  if (saw_comma)
-    {
-      if (closed_is_id)
-       error_at(this->location(), "expected %<=%> or %<:=%>");
-      else
-       error_at(this->location(), "expected %<=%>");
-      return false;
-    }
-
-  if (this->peek_token()->is_op(OPERATOR_CHANOP))
-    {
-      // case c <- v:
-      *is_send = true;
-      *channel = this->verify_not_sink(e);
-      this->advance_token();
-      *val = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-      return true;
-    }
-
-  error_at(this->location(), "expected %<<-%> or %<=%>");
-  return false;
-}
-
-// ForStat = "for" [ Condition | ForClause | RangeClause ] Block .
-// Condition = Expression .
-
-void
-Parse::for_stat(const Label* label)
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_FOR));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-
-  // Open a block to hold any variables defined in the init statement
-  // of the for statement.
-  this->gogo_->start_block(location);
-
-  Block* init = NULL;
-  Expression* cond = NULL;
-  Block* post = NULL;
-  Range_clause range_clause;
-
-  if (!token->is_op(OPERATOR_LCURLY))
-    {
-      if (token->is_keyword(KEYWORD_VAR))
-       {
-         error_at(this->location(),
-                  "var declaration not allowed in for initializer");
-         this->var_decl();
-       }
-
-      if (token->is_op(OPERATOR_SEMICOLON))
-       this->for_clause(&cond, &post);
-      else
-       {
-         // We might be looking at a Condition, an InitStat, or a
-         // RangeClause.
-         cond = this->simple_stat(false, true, &range_clause, NULL);
-         if (!this->peek_token()->is_op(OPERATOR_SEMICOLON))
-           {
-             if (cond == NULL && !range_clause.found)
-               error_at(this->location(), "parse error in for statement");
-           }
-         else
-           {
-             if (range_clause.found)
-               error_at(this->location(), "parse error after range clause");
-
-             if (cond != NULL)
-               {
-                 // COND is actually an expression statement for
-                 // InitStat at the start of a ForClause.
-                 this->expression_stat(cond);
-                 cond = NULL;
-               }
-
-             this->for_clause(&cond, &post);
-           }
-       }
-    }
-
-  // Build the For_statement and note that it is the current target
-  // for break and continue statements.
-
-  For_statement* sfor;
-  For_range_statement* srange;
-  Statement* s;
-  if (!range_clause.found)
-    {
-      sfor = Statement::make_for_statement(init, cond, post, location);
-      s = sfor;
-      srange = NULL;
-    }
-  else
-    {
-      srange = Statement::make_for_range_statement(range_clause.index,
-                                                  range_clause.value,
-                                                  range_clause.range,
-                                                  location);
-      s = srange;
-      sfor = NULL;
-    }
-
-  this->push_break_statement(s, label);
-  this->push_continue_statement(s, label);
-
-  // Gather the block of statements in the loop and add them to the
-  // For_statement.
-
-  this->gogo_->start_block(this->location());
-  source_location end_loc = this->block();
-  Block* statements = this->gogo_->finish_block(end_loc);
-
-  if (sfor != NULL)
-    sfor->add_statements(statements);
-  else
-    srange->add_statements(statements);
-
-  // This is no longer the break/continue target.
-  this->pop_break_statement();
-  this->pop_continue_statement();
-
-  // Add the For_statement to the list of statements, and close out
-  // the block we started to hold any variables defined in the for
-  // statement.
-
-  this->gogo_->add_statement(s);
-
-  this->gogo_->add_block(this->gogo_->finish_block(this->location()),
-                        location);
-}
-
-// ForClause = [ InitStat ] ";" [ Condition ] ";" [ PostStat ] .
-// InitStat = SimpleStat .
-// PostStat = SimpleStat .
-
-// We have already read InitStat at this point.
-
-void
-Parse::for_clause(Expression** cond, Block** post)
-{
-  gcc_assert(this->peek_token()->is_op(OPERATOR_SEMICOLON));
-  this->advance_token();
-  if (this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    *cond = NULL;
-  else if (this->peek_token()->is_op(OPERATOR_LCURLY))
-    {
-      error_at(this->location(),
-              "unexpected semicolon or newline before %<{%>");
-      *cond = NULL;
-      *post = NULL;
-      return;
-    }
-  else
-    *cond = this->expression(PRECEDENCE_NORMAL, false, true, NULL);
-  if (!this->peek_token()->is_op(OPERATOR_SEMICOLON))
-    error_at(this->location(), "expected semicolon");
-  else
-    this->advance_token();
-
-  if (this->peek_token()->is_op(OPERATOR_LCURLY))
-    *post = NULL;
-  else
-    {
-      this->gogo_->start_block(this->location());
-      this->simple_stat(false, false, NULL, NULL);
-      *post = this->gogo_->finish_block(this->location());
-    }
-}
-
-// RangeClause = IdentifierList ( "=" | ":=" ) "range" Expression .
-
-// This is the := version.  It is called with a list of identifiers.
-
-void
-Parse::range_clause_decl(const Typed_identifier_list* til,
-                        Range_clause* p_range_clause)
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_RANGE));
-  source_location location = this->location();
-
-  p_range_clause->found = true;
-
-  gcc_assert(til->size() >= 1);
-  if (til->size() > 2)
-    error_at(this->location(), "too many variables for range clause");
-
-  this->advance_token();
-  Expression* expr = this->expression(PRECEDENCE_NORMAL, false, false, NULL);
-  p_range_clause->range = expr;
-
-  bool any_new = false;
-
-  const Typed_identifier* pti = &til->front();
-  Named_object* no = this->init_var(*pti, NULL, expr, true, true, &any_new);
-  if (any_new && no->is_variable())
-    no->var_value()->set_type_from_range_index();
-  p_range_clause->index = Expression::make_var_reference(no, location);
-
-  if (til->size() == 1)
-    p_range_clause->value = NULL;
-  else
-    {
-      pti = &til->back();
-      bool is_new = false;
-      no = this->init_var(*pti, NULL, expr, true, true, &is_new);
-      if (is_new && no->is_variable())
-       no->var_value()->set_type_from_range_value();
-      if (is_new)
-       any_new = true;
-      p_range_clause->value = Expression::make_var_reference(no, location);
-    }
-
-  if (!any_new)
-    error_at(location, "variables redeclared but no variable is new");
-}
-
-// The = version of RangeClause.  This is called with a list of
-// expressions.
-
-void
-Parse::range_clause_expr(const Expression_list* vals,
-                        Range_clause* p_range_clause)
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_RANGE));
-
-  p_range_clause->found = true;
-
-  gcc_assert(vals->size() >= 1);
-  if (vals->size() > 2)
-    error_at(this->location(), "too many variables for range clause");
-
-  this->advance_token();
-  p_range_clause->range = this->expression(PRECEDENCE_NORMAL, false, false,
-                                          NULL);
-
-  p_range_clause->index = vals->front();
-  if (vals->size() == 1)
-    p_range_clause->value = NULL;
-  else
-    p_range_clause->value = vals->back();
-}
-
-// Push a statement on the break stack.
-
-void
-Parse::push_break_statement(Statement* enclosing, const Label* label)
-{
-  if (this->break_stack_ == NULL)
-    this->break_stack_ = new Bc_stack();
-  this->break_stack_->push_back(std::make_pair(enclosing, label));
-}
-
-// Push a statement on the continue stack.
-
-void
-Parse::push_continue_statement(Statement* enclosing, const Label* label)
-{
-  if (this->continue_stack_ == NULL)
-    this->continue_stack_ = new Bc_stack();
-  this->continue_stack_->push_back(std::make_pair(enclosing, label));
-}
-
-// Pop the break stack.
-
-void
-Parse::pop_break_statement()
-{
-  this->break_stack_->pop_back();
-}
-
-// Pop the continue stack.
-
-void
-Parse::pop_continue_statement()
-{
-  this->continue_stack_->pop_back();
-}
-
-// Find a break or continue statement given a label name.
-
-Statement*
-Parse::find_bc_statement(const Bc_stack* bc_stack, const std::string& label)
-{
-  if (bc_stack == NULL)
-    return NULL;
-  for (Bc_stack::const_reverse_iterator p = bc_stack->rbegin();
-       p != bc_stack->rend();
-       ++p)
-    if (p->second != NULL && p->second->name() == label)
-      return p->first;
-  return NULL;
-}
-
-// BreakStat = "break" [ identifier ] .
-
-void
-Parse::break_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_BREAK));
-  source_location location = this->location();
-
-  const Token* token = this->advance_token();
-  Statement* enclosing;
-  if (!token->is_identifier())
-    {
-      if (this->break_stack_ == NULL || this->break_stack_->empty())
-       {
-         error_at(this->location(),
-                  "break statement not within for or switch or select");
-         return;
-       }
-      enclosing = this->break_stack_->back().first;
-    }
-  else
-    {
-      enclosing = this->find_bc_statement(this->break_stack_,
-                                         token->identifier());
-      if (enclosing == NULL)
-       {
-         error_at(token->location(),
-                  ("break label %qs not associated with "
-                   "for or switch or select"),
-                  Gogo::message_name(token->identifier()).c_str());
-         this->advance_token();
-         return;
-       }
-      this->advance_token();
-    }
-
-  Unnamed_label* label;
-  if (enclosing->classification() == Statement::STATEMENT_FOR)
-    label = enclosing->for_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_FOR_RANGE)
-    label = enclosing->for_range_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_SWITCH)
-    label = enclosing->switch_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_TYPE_SWITCH)
-    label = enclosing->type_switch_statement()->break_label();
-  else if (enclosing->classification() == Statement::STATEMENT_SELECT)
-    label = enclosing->select_statement()->break_label();
-  else
-    gcc_unreachable();
-
-  this->gogo_->add_statement(Statement::make_break_statement(label,
-                                                            location));
-}
-
-// ContinueStat = "continue" [ identifier ] .
-
-void
-Parse::continue_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_CONTINUE));
-  source_location location = this->location();
-
-  const Token* token = this->advance_token();
-  Statement* enclosing;
-  if (!token->is_identifier())
-    {
-      if (this->continue_stack_ == NULL || this->continue_stack_->empty())
-       {
-         error_at(this->location(), "continue statement not within for");
-         return;
-       }
-      enclosing = this->continue_stack_->back().first;
-    }
-  else
-    {
-      enclosing = this->find_bc_statement(this->continue_stack_,
-                                         token->identifier());
-      if (enclosing == NULL)
-       {
-         error_at(token->location(),
-                  "continue label %qs not associated with for",
-                  Gogo::message_name(token->identifier()).c_str());
-         this->advance_token();
-         return;
-       }
-      this->advance_token();
-    }
-
-  Unnamed_label* label;
-  if (enclosing->classification() == Statement::STATEMENT_FOR)
-    label = enclosing->for_statement()->continue_label();
-  else if (enclosing->classification() == Statement::STATEMENT_FOR_RANGE)
-    label = enclosing->for_range_statement()->continue_label();
-  else
-    gcc_unreachable();
-
-  this->gogo_->add_statement(Statement::make_continue_statement(label,
-                                                               location));
-}
-
-// GotoStat = "goto" identifier .
-
-void
-Parse::goto_stat()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_GOTO));
-  source_location location = this->location();
-  const Token* token = this->advance_token();
-  if (!token->is_identifier())
-    error_at(this->location(), "expected label for goto");
-  else
-    {
-      Label* label = this->gogo_->add_label_reference(token->identifier());
-      Statement* s = Statement::make_goto_statement(label, location);
-      this->gogo_->add_statement(s);
-      this->advance_token();
-    }
-}
-
-// PackageClause = "package" PackageName .
-
-void
-Parse::package_clause()
-{
-  const Token* token = this->peek_token();
-  source_location location = token->location();
-  std::string name;
-  if (!token->is_keyword(KEYWORD_PACKAGE))
-    {
-      error_at(this->location(), "program must start with package clause");
-      name = "ERROR";
-    }
-  else
-    {
-      token = this->advance_token();
-      if (token->is_identifier())
-       {
-         name = token->identifier();
-         if (name == "_")
-           {
-             error_at(this->location(), "invalid package name _");
-             name = "blank";
-           }
-         this->advance_token();
-       }
-      else
-       {
-         error_at(this->location(), "package name must be an identifier");
-         name = "ERROR";
-       }
-    }
-  this->gogo_->set_package_name(name, location);
-}
-
-// ImportDecl = "import" Decl<ImportSpec> .
-
-void
-Parse::import_decl()
-{
-  gcc_assert(this->peek_token()->is_keyword(KEYWORD_IMPORT));
-  this->advance_token();
-  this->decl(&Parse::import_spec, NULL);
-}
-
-// ImportSpec = [ "." | PackageName ] PackageFileName .
-
-void
-Parse::import_spec(void*)
-{
-  const Token* token = this->peek_token();
-  source_location location = token->location();
-
-  std::string local_name;
-  bool is_local_name_exported = false;
-  if (token->is_op(OPERATOR_DOT))
-    {
-      local_name = ".";
-      token = this->advance_token();
-    }
-  else if (token->is_identifier())
-    {
-      local_name = token->identifier();
-      is_local_name_exported = token->is_identifier_exported();
-      token = this->advance_token();
-    }
-
-  if (!token->is_string())
-    {
-      error_at(this->location(), "missing import package name");
-      return;
-    }
-
-  this->gogo_->import_package(token->string_value(), local_name,
-                             is_local_name_exported, location);
-
-  this->advance_token();
-}
-
-// SourceFile       = PackageClause ";" { ImportDecl ";" }
-//                     { TopLevelDecl ";" } .
-
-void
-Parse::program()
-{
-  this->package_clause();
-
-  const Token* token = this->peek_token();
-  if (token->is_op(OPERATOR_SEMICOLON))
-    token = this->advance_token();
-  else
-    error_at(this->location(),
-            "expected %<;%> or newline after package clause");
-
-  while (token->is_keyword(KEYWORD_IMPORT))
-    {
-      this->import_decl();
-      token = this->peek_token();
-      if (token->is_op(OPERATOR_SEMICOLON))
-       token = this->advance_token();
-      else
-       error_at(this->location(),
-                "expected %<;%> or newline after import declaration");
-    }
-
-  while (!token->is_eof())
-    {
-      if (this->declaration_may_start_here())
-       this->declaration();
-      else
-       {
-         error_at(this->location(), "expected declaration");
-         do
-           this->advance_token();
-         while (!this->peek_token()->is_eof()
-                && !this->peek_token()->is_op(OPERATOR_SEMICOLON)
-                && !this->peek_token()->is_op(OPERATOR_RCURLY));
-         if (!this->peek_token()->is_eof()
-             && !this->peek_token()->is_op(OPERATOR_SEMICOLON))
-           this->advance_token();
-       }
-      token = this->peek_token();
-      if (token->is_op(OPERATOR_SEMICOLON))
-       token = this->advance_token();
-      else if (!token->is_eof() || !saw_errors())
-       {
-         error_at(this->location(),
-                  "expected %<;%> or newline after top level declaration");
-         this->skip_past_error(OPERATOR_INVALID);
-       }
-    }
-}
-
-// Reset the current iota value.
-
-void
-Parse::reset_iota()
-{
-  this->iota_ = 0;
-}
-
-// Return the current iota value.
-
-int
-Parse::iota_value()
-{
-  return this->iota_;
-}
-
-// Increment the current iota value.
-
-void
-Parse::increment_iota()
-{
-  ++this->iota_;
-}
-
-// Skip forward to a semicolon or OP.  OP will normally be
-// OPERATOR_RPAREN or OPERATOR_RCURLY.  If we find a semicolon, move
-// past it and return.  If we find OP, it will be the next token to
-// read.  Return true if we are OK, false if we found EOF.
-
-bool
-Parse::skip_past_error(Operator op)
-{
-  const Token* token = this->peek_token();
-  while (!token->is_op(op))
-    {
-      if (token->is_eof())
-       return false;
-      if (token->is_op(OPERATOR_SEMICOLON))
-       {
-         this->advance_token();
-         return true;
-       }
-      token = this->advance_token();
-    }
-  return true;
-}
-
-// Check that an expression is not a sink.
-
-Expression*
-Parse::verify_not_sink(Expression* expr)
-{
-  if (expr->is_sink_expression())
-    {
-      error_at(expr->location(), "cannot use _ as value");
-      expr = Expression::make_error(expr->location());
-    }
-  return expr;
-}
diff --git a/gcc/go/gofrontend/parse.h.merge-left.r167407 b/gcc/go/gofrontend/parse.h.merge-left.r167407
deleted file mode 100644 (file)
index fc2eb12..0000000
+++ /dev/null
@@ -1,307 +0,0 @@
-// parse.h -- Go frontend parser.     -*- C++ -*-
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#ifndef GO_PARSE_H
-#define GO_PARSE_H
-
-class Set_iota_traverse;
-class Lex;
-class Gogo;
-class Named_object;
-class Type;
-class Typed_identifier;
-class Typed_identifier_list;
-class Function_type;
-class Block;
-class Expression;
-class Expression_list;
-class Struct_field_list;
-class Case_clauses;
-class Type_case_clauses;
-class Select_clauses;
-class Statement;
-class Label;
-
-// Parse the program.
-
-class Parse
-{
- public:
-  Parse(Lex*, Gogo*);
-
-  // Parse a program.
-  void
-  program();
-
- private:
-  // Precedence values.
-  enum Precedence
-  {
-    PRECEDENCE_INVALID = -1,
-    PRECEDENCE_NORMAL = 0,
-    PRECEDENCE_OROR,
-    PRECEDENCE_ANDAND,
-    PRECEDENCE_CHANOP,
-    PRECEDENCE_RELOP,
-    PRECEDENCE_ADDOP,
-    PRECEDENCE_MULOP
-  };
-
-  // We use this when parsing the range clause of a for statement.
-  struct Range_clause
-  {
-    // Set to true if we found a range clause.
-    bool found;
-    // The index expression.
-    Expression* index;
-    // The value expression.
-    Expression* value;
-    // The range expression.
-    Expression* range;
-
-    Range_clause()
-      : found(false), index(NULL), value(NULL), range(NULL)
-    { }
-  };
-
-  // We use this when parsing the statement at the start of a switch,
-  // in order to recognize type switches.
-  struct Type_switch
-  {
-    // Set to true if we find a type switch.
-    bool found;
-    // The variable name.
-    std::string name;
-    // The location of the variable.
-    source_location location;
-    // The expression.
-    Expression* expr;
-
-    Type_switch()
-      : found(false), name(), location(UNKNOWN_LOCATION), expr(NULL)
-    { }
-  };
-
-  // A variable defined in an enclosing function referenced by the
-  // current function.
-  class Enclosing_var
-  {
-   public:
-    Enclosing_var(Named_object* var, Named_object* in_function,
-                 unsigned int index)
-      : var_(var), in_function_(in_function), index_(index)
-    { }
-
-    // We put these in a vector, so we need a default constructor.
-    Enclosing_var()
-      : var_(NULL), in_function_(NULL), index_(-1U)
-    { }
-
-    Named_object*
-    var() const
-    { return this->var_; }
-
-    Named_object*
-    in_function() const
-    { return this->in_function_; }
-
-    unsigned int
-    index() const
-    { return this->index_; }
-
-   private:
-    // The variable which is being referred to.
-    Named_object* var_;
-    // The function where the variable is defined.
-    Named_object* in_function_;
-    // The index of the field in this function's closure struct for
-    // this variable.
-    unsigned int index_;
-  };
-
-  // We store Enclosing_var entries in a set, so we need a comparator.
-  struct Enclosing_var_comparison
-  {
-    bool
-    operator()(const Enclosing_var&, const Enclosing_var&);
-  };
-
-  // A set of Enclosing_var entries.
-  typedef std::set<Enclosing_var, Enclosing_var_comparison> Enclosing_vars;
-
-  // Peek at the current token from the lexer.
-  const Token*
-  peek_token();
-
-  // Consume the current token, return the next one.
-  const Token*
-  advance_token();
-
-  // Push a token back on the input stream.
-  void
-  unget_token(const Token&);
-
-  // The location of the current token.
-  source_location
-  location();
-
-  // For break and continue we keep a stack of statements with
-  // associated labels (if any).  The top of the stack is used for a
-  // break or continue statement with no label.
-  typedef std::vector<std::pair<Statement*, const Label*> > Bc_stack;
-
-  // Parser nonterminals.
-  void identifier_list(Typed_identifier_list*);
-  Expression_list* expression_list(Expression*, bool may_be_sink);
-  bool qualified_ident(std::string*, Named_object**);
-  Type* type();
-  bool type_may_start_here();
-  Type* type_name(bool issue_error);
-  Type* array_type(bool may_use_ellipsis);
-  Type* map_type();
-  Type* struct_type();
-  void field_decl(Struct_field_list*);
-  Type* pointer_type();
-  Type* channel_type();
-  Function_type* signature(Typed_identifier*, source_location);
-  Typed_identifier_list* parameters(bool* is_varargs);
-  Typed_identifier_list* parameter_list(bool* is_varargs);
-  void parameter_decl(bool, Typed_identifier_list*, bool*, bool*);
-  Typed_identifier_list* result();
-  source_location block();
-  Type* interface_type();
-  bool method_spec(Typed_identifier_list*);
-  void declaration();
-  bool declaration_may_start_here();
-  void decl(void (Parse::*)(void*), void*);
-  void list(void (Parse::*)(void*), void*, bool);
-  void const_decl();
-  void const_spec(Type**, Expression_list**);
-  void type_decl();
-  void type_spec(void*);
-  void var_decl();
-  void var_spec(void*);
-  void init_vars(const Typed_identifier_list*, Type*, Expression_list*,
-                bool is_coloneq, source_location);
-  bool init_vars_from_call(const Typed_identifier_list*, Type*, Expression*,
-                          bool is_coloneq, source_location);
-  bool init_vars_from_map(const Typed_identifier_list*, Type*, Expression*,
-                         bool is_coloneq, source_location);
-  bool init_vars_from_receive(const Typed_identifier_list*, Type*,
-                             Expression*, bool is_coloneq, source_location);
-  bool init_vars_from_type_guard(const Typed_identifier_list*, Type*,
-                                Expression*, bool is_coloneq,
-                                source_location);
-  Named_object* init_var(const Typed_identifier&, Type*, Expression*,
-                        bool is_coloneq, bool type_from_init, bool* is_new);
-  void simple_var_decl_or_assignment(const std::string&, source_location,
-                                    Range_clause*, Type_switch*);
-  void function_decl();
-  Typed_identifier* receiver();
-  Expression* operand(bool may_be_sink);
-  Expression* enclosing_var_reference(Named_object*, Named_object*,
-                                     source_location);
-  Expression* composite_lit(Type*, int depth, source_location);
-  Expression* function_lit();
-  Expression* create_closure(Named_object* function, Enclosing_vars*,
-                            source_location);
-  Expression* primary_expr(bool may_be_sink, bool may_be_composite_lit,
-                          bool* is_type_switch);
-  Expression* selector(Expression*, bool* is_type_switch);
-  Expression* index(Expression*);
-  Expression* call(Expression*);
-  Expression* expression(Precedence, bool may_be_sink,
-                        bool may_be_composite_lit, bool* is_type_switch);
-  bool expression_may_start_here();
-  Expression* unary_expr(bool may_be_sink, bool may_be_composite_lit,
-                        bool* is_type_switch);
-  Expression* qualified_expr(Expression*, source_location);
-  Expression* id_to_expression(const std::string&, source_location);
-  void statement(const Label*);
-  bool statement_may_start_here();
-  void labeled_stmt(const std::string&, source_location);
-  Expression* simple_stat(bool, bool, Range_clause*, Type_switch*);
-  bool simple_stat_may_start_here();
-  void statement_list();
-  bool statement_list_may_start_here();
-  void expression_stat(Expression*);
-  void inc_dec_stat(Expression*);
-  void assignment(Expression*, Range_clause*);
-  void tuple_assignment(Expression_list*, Range_clause*);
-  void send();
-  void go_or_defer_stat();
-  void return_stat();
-  void if_stat();
-  void switch_stat(const Label*);
-  Statement* expr_switch_body(const Label*, Expression*, source_location);
-  void expr_case_clause(Case_clauses*);
-  Expression_list* expr_switch_case(bool*);
-  Statement* type_switch_body(const Label*, const Type_switch&,
-                             source_location);
-  void type_case_clause(Named_object*, Type_case_clauses*);
-  void type_switch_case(std::vector<Type*>*, bool*);
-  void select_stat(const Label*);
-  void comm_clause(Select_clauses*);
-  bool comm_case(bool*, Expression**, Expression**, std::string*, bool*);
-  bool send_or_recv_expr(bool*, Expression**, Expression**, std::string*);
-  void for_stat(const Label*);
-  void for_clause(Expression**, Block**);
-  void range_clause_decl(const Typed_identifier_list*, Range_clause*);
-  void range_clause_expr(const Expression_list*, Range_clause*);
-  void push_break_statement(Statement*, const Label*);
-  void push_continue_statement(Statement*, const Label*);
-  void pop_break_statement();
-  void pop_continue_statement();
-  Statement* find_bc_statement(const Bc_stack*, const std::string&);
-  void break_stat();
-  void continue_stat();
-  void goto_stat();
-  void package_clause();
-  void import_decl();
-  void import_spec(void*);
-
-  void reset_iota();
-  int iota_value();
-  void increment_iota();
-
-  // Skip past an error looking for a semicolon or OP.  Return true if
-  // all is well, false if we found EOF.
-  bool
-  skip_past_error(Operator op);
-
-  // Verify that an expression is not a sink, and return either the
-  // expression or an error.
-  Expression*
-  verify_not_sink(Expression*);
-
-  // Return the statement associated with a label in a Bc_stack, or
-  // NULL.
-  Statement*
-  find_bc_statement(const Bc_stack*, const std::string&) const;
-
-  // The lexer output we are parsing.
-  Lex* lex_;
-  // The current token.
-  Token token_;
-  // A token pushed back on the input stream.
-  Token unget_token_;
-  // Whether unget_token_ is valid.
-  bool unget_token_valid_;
-  // The code we are generating.
-  Gogo* gogo_;
-  // A stack of statements for which break may be used.
-  Bc_stack break_stack_;
-  // A stack of statements for which continue may be used.
-  Bc_stack continue_stack_;
-  // The current iota value.
-  int iota_;
-  // References from the local function to variables defined in
-  // enclosing functions.
-  Enclosing_vars enclosing_vars_;
-};
-
-
-#endif // !defined(GO_PARSE_H)
diff --git a/gcc/go/gofrontend/parse.h.merge-right.r172891 b/gcc/go/gofrontend/parse.h.merge-right.r172891
deleted file mode 100644 (file)
index f072fd3..0000000
+++ /dev/null
@@ -1,309 +0,0 @@
-// parse.h -- Go frontend parser.     -*- C++ -*-
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#ifndef GO_PARSE_H
-#define GO_PARSE_H
-
-class Set_iota_traverse;
-class Lex;
-class Gogo;
-class Named_object;
-class Type;
-class Typed_identifier;
-class Typed_identifier_list;
-class Function_type;
-class Block;
-class Expression;
-class Expression_list;
-class Struct_field_list;
-class Case_clauses;
-class Type_case_clauses;
-class Select_clauses;
-class Statement;
-class Label;
-
-// Parse the program.
-
-class Parse
-{
- public:
-  Parse(Lex*, Gogo*);
-
-  // Parse a program.
-  void
-  program();
-
- private:
-  // Precedence values.
-  enum Precedence
-  {
-    PRECEDENCE_INVALID = -1,
-    PRECEDENCE_NORMAL = 0,
-    PRECEDENCE_OROR,
-    PRECEDENCE_ANDAND,
-    PRECEDENCE_RELOP,
-    PRECEDENCE_ADDOP,
-    PRECEDENCE_MULOP
-  };
-
-  // We use this when parsing the range clause of a for statement.
-  struct Range_clause
-  {
-    // Set to true if we found a range clause.
-    bool found;
-    // The index expression.
-    Expression* index;
-    // The value expression.
-    Expression* value;
-    // The range expression.
-    Expression* range;
-
-    Range_clause()
-      : found(false), index(NULL), value(NULL), range(NULL)
-    { }
-  };
-
-  // We use this when parsing the statement at the start of a switch,
-  // in order to recognize type switches.
-  struct Type_switch
-  {
-    // Set to true if we find a type switch.
-    bool found;
-    // The variable name.
-    std::string name;
-    // The location of the variable.
-    source_location location;
-    // The expression.
-    Expression* expr;
-
-    Type_switch()
-      : found(false), name(), location(UNKNOWN_LOCATION), expr(NULL)
-    { }
-  };
-
-  // A variable defined in an enclosing function referenced by the
-  // current function.
-  class Enclosing_var
-  {
-   public:
-    Enclosing_var(Named_object* var, Named_object* in_function,
-                 unsigned int index)
-      : var_(var), in_function_(in_function), index_(index)
-    { }
-
-    // We put these in a vector, so we need a default constructor.
-    Enclosing_var()
-      : var_(NULL), in_function_(NULL), index_(-1U)
-    { }
-
-    Named_object*
-    var() const
-    { return this->var_; }
-
-    Named_object*
-    in_function() const
-    { return this->in_function_; }
-
-    unsigned int
-    index() const
-    { return this->index_; }
-
-   private:
-    // The variable which is being referred to.
-    Named_object* var_;
-    // The function where the variable is defined.
-    Named_object* in_function_;
-    // The index of the field in this function's closure struct for
-    // this variable.
-    unsigned int index_;
-  };
-
-  // We store Enclosing_var entries in a set, so we need a comparator.
-  struct Enclosing_var_comparison
-  {
-    bool
-    operator()(const Enclosing_var&, const Enclosing_var&);
-  };
-
-  // A set of Enclosing_var entries.
-  typedef std::set<Enclosing_var, Enclosing_var_comparison> Enclosing_vars;
-
-  // Peek at the current token from the lexer.
-  const Token*
-  peek_token();
-
-  // Consume the current token, return the next one.
-  const Token*
-  advance_token();
-
-  // Push a token back on the input stream.
-  void
-  unget_token(const Token&);
-
-  // The location of the current token.
-  source_location
-  location();
-
-  // For break and continue we keep a stack of statements with
-  // associated labels (if any).  The top of the stack is used for a
-  // break or continue statement with no label.
-  typedef std::vector<std::pair<Statement*, Label*> > Bc_stack;
-
-  // Parser nonterminals.
-  void identifier_list(Typed_identifier_list*);
-  Expression_list* expression_list(Expression*, bool may_be_sink);
-  bool qualified_ident(std::string*, Named_object**);
-  Type* type();
-  bool type_may_start_here();
-  Type* type_name(bool issue_error);
-  Type* array_type(bool may_use_ellipsis);
-  Type* map_type();
-  Type* struct_type();
-  void field_decl(Struct_field_list*);
-  Type* pointer_type();
-  Type* channel_type();
-  Function_type* signature(Typed_identifier*, source_location);
-  bool parameters(Typed_identifier_list**, bool* is_varargs);
-  Typed_identifier_list* parameter_list(bool* is_varargs);
-  void parameter_decl(bool, Typed_identifier_list*, bool*, bool*);
-  bool result(Typed_identifier_list**);
-  source_location block();
-  Type* interface_type();
-  void method_spec(Typed_identifier_list*);
-  void declaration();
-  bool declaration_may_start_here();
-  void decl(void (Parse::*)(void*), void*);
-  void list(void (Parse::*)(void*), void*, bool);
-  void const_decl();
-  void const_spec(Type**, Expression_list**);
-  void type_decl();
-  void type_spec(void*);
-  void var_decl();
-  void var_spec(void*);
-  void init_vars(const Typed_identifier_list*, Type*, Expression_list*,
-                bool is_coloneq, source_location);
-  bool init_vars_from_call(const Typed_identifier_list*, Type*, Expression*,
-                          bool is_coloneq, source_location);
-  bool init_vars_from_map(const Typed_identifier_list*, Type*, Expression*,
-                         bool is_coloneq, source_location);
-  bool init_vars_from_receive(const Typed_identifier_list*, Type*,
-                             Expression*, bool is_coloneq, source_location);
-  bool init_vars_from_type_guard(const Typed_identifier_list*, Type*,
-                                Expression*, bool is_coloneq,
-                                source_location);
-  Named_object* init_var(const Typed_identifier&, Type*, Expression*,
-                        bool is_coloneq, bool type_from_init, bool* is_new);
-  Named_object* create_dummy_global(Type*, Expression*, source_location);
-  void simple_var_decl_or_assignment(const std::string&, source_location,
-                                    Range_clause*, Type_switch*);
-  void function_decl();
-  Typed_identifier* receiver();
-  Expression* operand(bool may_be_sink);
-  Expression* enclosing_var_reference(Named_object*, Named_object*,
-                                     source_location);
-  Expression* composite_lit(Type*, int depth, source_location);
-  Expression* function_lit();
-  Expression* create_closure(Named_object* function, Enclosing_vars*,
-                            source_location);
-  Expression* primary_expr(bool may_be_sink, bool may_be_composite_lit,
-                          bool* is_type_switch);
-  Expression* selector(Expression*, bool* is_type_switch);
-  Expression* index(Expression*);
-  Expression* call(Expression*);
-  Expression* expression(Precedence, bool may_be_sink,
-                        bool may_be_composite_lit, bool* is_type_switch);
-  bool expression_may_start_here();
-  Expression* unary_expr(bool may_be_sink, bool may_be_composite_lit,
-                        bool* is_type_switch);
-  Expression* qualified_expr(Expression*, source_location);
-  Expression* id_to_expression(const std::string&, source_location);
-  void statement(Label*);
-  bool statement_may_start_here();
-  void labeled_stmt(const std::string&, source_location);
-  Expression* simple_stat(bool, bool*, Range_clause*, Type_switch*);
-  bool simple_stat_may_start_here();
-  void statement_list();
-  bool statement_list_may_start_here();
-  void expression_stat(Expression*);
-  void send_stmt(Expression*);
-  void inc_dec_stat(Expression*);
-  void assignment(Expression*, Range_clause*);
-  void tuple_assignment(Expression_list*, Range_clause*);
-  void send();
-  void go_or_defer_stat();
-  void return_stat();
-  void if_stat();
-  void switch_stat(Label*);
-  Statement* expr_switch_body(Label*, Expression*, source_location);
-  void expr_case_clause(Case_clauses*, bool* saw_default);
-  Expression_list* expr_switch_case(bool*);
-  Statement* type_switch_body(Label*, const Type_switch&, source_location);
-  void type_case_clause(Named_object*, Type_case_clauses*, bool* saw_default);
-  void type_switch_case(std::vector<Type*>*, bool*);
-  void select_stat(Label*);
-  void comm_clause(Select_clauses*, bool* saw_default);
-  bool comm_case(bool*, Expression**, Expression**, Expression**,
-                std::string*, std::string*, bool*);
-  bool send_or_recv_stmt(bool*, Expression**, Expression**, Expression**,
-                        std::string*, std::string*);
-  void for_stat(Label*);
-  void for_clause(Expression**, Block**);
-  void range_clause_decl(const Typed_identifier_list*, Range_clause*);
-  void range_clause_expr(const Expression_list*, Range_clause*);
-  void push_break_statement(Statement*, Label*);
-  void push_continue_statement(Statement*, Label*);
-  void pop_break_statement();
-  void pop_continue_statement();
-  Statement* find_bc_statement(const Bc_stack*, const std::string&);
-  void break_stat();
-  void continue_stat();
-  void goto_stat();
-  void package_clause();
-  void import_decl();
-  void import_spec(void*);
-
-  void reset_iota();
-  int iota_value();
-  void increment_iota();
-
-  // Skip past an error looking for a semicolon or OP.  Return true if
-  // all is well, false if we found EOF.
-  bool
-  skip_past_error(Operator op);
-
-  // Verify that an expression is not a sink, and return either the
-  // expression or an error.
-  Expression*
-  verify_not_sink(Expression*);
-
-  // Return the statement associated with a label in a Bc_stack, or
-  // NULL.
-  Statement*
-  find_bc_statement(const Bc_stack*, const std::string&) const;
-
-  // The lexer output we are parsing.
-  Lex* lex_;
-  // The current token.
-  Token token_;
-  // A token pushed back on the input stream.
-  Token unget_token_;
-  // Whether unget_token_ is valid.
-  bool unget_token_valid_;
-  // The code we are generating.
-  Gogo* gogo_;
-  // A stack of statements for which break may be used.
-  Bc_stack* break_stack_;
-  // A stack of statements for which continue may be used.
-  Bc_stack* continue_stack_;
-  // The current iota value.
-  int iota_;
-  // References from the local function to variables defined in
-  // enclosing functions.
-  Enclosing_vars enclosing_vars_;
-};
-
-
-#endif // !defined(GO_PARSE_H)
diff --git a/gcc/go/gofrontend/parse.h.working b/gcc/go/gofrontend/parse.h.working
deleted file mode 100644 (file)
index d164414..0000000
+++ /dev/null
@@ -1,310 +0,0 @@
-// parse.h -- Go frontend parser.     -*- C++ -*-
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#ifndef GO_PARSE_H
-#define GO_PARSE_H
-
-class Set_iota_traverse;
-class Lex;
-class Gogo;
-class Named_object;
-class Type;
-class Typed_identifier;
-class Typed_identifier_list;
-class Function_type;
-class Block;
-class Expression;
-class Expression_list;
-class Struct_field_list;
-class Case_clauses;
-class Type_case_clauses;
-class Select_clauses;
-class Statement;
-class Label;
-
-// Parse the program.
-
-class Parse
-{
- public:
-  Parse(Lex*, Gogo*);
-
-  // Parse a program.
-  void
-  program();
-
- private:
-  // Precedence values.
-  enum Precedence
-  {
-    PRECEDENCE_INVALID = -1,
-    PRECEDENCE_NORMAL = 0,
-    PRECEDENCE_OROR,
-    PRECEDENCE_ANDAND,
-    PRECEDENCE_RELOP,
-    PRECEDENCE_ADDOP,
-    PRECEDENCE_MULOP
-  };
-
-  // We use this when parsing the range clause of a for statement.
-  struct Range_clause
-  {
-    // Set to true if we found a range clause.
-    bool found;
-    // The index expression.
-    Expression* index;
-    // The value expression.
-    Expression* value;
-    // The range expression.
-    Expression* range;
-
-    Range_clause()
-      : found(false), index(NULL), value(NULL), range(NULL)
-    { }
-  };
-
-  // We use this when parsing the statement at the start of a switch,
-  // in order to recognize type switches.
-  struct Type_switch
-  {
-    // Set to true if we find a type switch.
-    bool found;
-    // The variable name.
-    std::string name;
-    // The location of the variable.
-    source_location location;
-    // The expression.
-    Expression* expr;
-
-    Type_switch()
-      : found(false), name(), location(UNKNOWN_LOCATION), expr(NULL)
-    { }
-  };
-
-  // A variable defined in an enclosing function referenced by the
-  // current function.
-  class Enclosing_var
-  {
-   public:
-    Enclosing_var(Named_object* var, Named_object* in_function,
-                 unsigned int index)
-      : var_(var), in_function_(in_function), index_(index)
-    { }
-
-    // We put these in a vector, so we need a default constructor.
-    Enclosing_var()
-      : var_(NULL), in_function_(NULL), index_(-1U)
-    { }
-
-    Named_object*
-    var() const
-    { return this->var_; }
-
-    Named_object*
-    in_function() const
-    { return this->in_function_; }
-
-    unsigned int
-    index() const
-    { return this->index_; }
-
-   private:
-    // The variable which is being referred to.
-    Named_object* var_;
-    // The function where the variable is defined.
-    Named_object* in_function_;
-    // The index of the field in this function's closure struct for
-    // this variable.
-    unsigned int index_;
-  };
-
-  // We store Enclosing_var entries in a set, so we need a comparator.
-  struct Enclosing_var_comparison
-  {
-    bool
-    operator()(const Enclosing_var&, const Enclosing_var&);
-  };
-
-  // A set of Enclosing_var entries.
-  typedef std::set<Enclosing_var, Enclosing_var_comparison> Enclosing_vars;
-
-  // Peek at the current token from the lexer.
-  const Token*
-  peek_token();
-
-  // Consume the current token, return the next one.
-  const Token*
-  advance_token();
-
-  // Push a token back on the input stream.
-  void
-  unget_token(const Token&);
-
-  // The location of the current token.
-  source_location
-  location();
-
-  // For break and continue we keep a stack of statements with
-  // associated labels (if any).  The top of the stack is used for a
-  // break or continue statement with no label.
-  typedef std::vector<std::pair<Statement*, const Label*> > Bc_stack;
-
-  // Parser nonterminals.
-  void identifier_list(Typed_identifier_list*);
-  Expression_list* expression_list(Expression*, bool may_be_sink);
-  bool qualified_ident(std::string*, Named_object**);
-  Type* type();
-  bool type_may_start_here();
-  Type* type_name(bool issue_error);
-  Type* array_type(bool may_use_ellipsis);
-  Type* map_type();
-  Type* struct_type();
-  void field_decl(Struct_field_list*);
-  Type* pointer_type();
-  Type* channel_type();
-  Function_type* signature(Typed_identifier*, source_location);
-  bool parameters(Typed_identifier_list**, bool* is_varargs);
-  Typed_identifier_list* parameter_list(bool* is_varargs);
-  void parameter_decl(bool, Typed_identifier_list*, bool*, bool*);
-  bool result(Typed_identifier_list**);
-  source_location block();
-  Type* interface_type();
-  void method_spec(Typed_identifier_list*);
-  void declaration();
-  bool declaration_may_start_here();
-  void decl(void (Parse::*)(void*), void*);
-  void list(void (Parse::*)(void*), void*, bool);
-  void const_decl();
-  void const_spec(Type**, Expression_list**);
-  void type_decl();
-  void type_spec(void*);
-  void var_decl();
-  void var_spec(void*);
-  void init_vars(const Typed_identifier_list*, Type*, Expression_list*,
-                bool is_coloneq, source_location);
-  bool init_vars_from_call(const Typed_identifier_list*, Type*, Expression*,
-                          bool is_coloneq, source_location);
-  bool init_vars_from_map(const Typed_identifier_list*, Type*, Expression*,
-                         bool is_coloneq, source_location);
-  bool init_vars_from_receive(const Typed_identifier_list*, Type*,
-                             Expression*, bool is_coloneq, source_location);
-  bool init_vars_from_type_guard(const Typed_identifier_list*, Type*,
-                                Expression*, bool is_coloneq,
-                                source_location);
-  Named_object* init_var(const Typed_identifier&, Type*, Expression*,
-                        bool is_coloneq, bool type_from_init, bool* is_new);
-  Named_object* create_dummy_global(Type*, Expression*, source_location);
-  void simple_var_decl_or_assignment(const std::string&, source_location,
-                                    Range_clause*, Type_switch*);
-  void function_decl();
-  Typed_identifier* receiver();
-  Expression* operand(bool may_be_sink);
-  Expression* enclosing_var_reference(Named_object*, Named_object*,
-                                     source_location);
-  Expression* composite_lit(Type*, int depth, source_location);
-  Expression* function_lit();
-  Expression* create_closure(Named_object* function, Enclosing_vars*,
-                            source_location);
-  Expression* primary_expr(bool may_be_sink, bool may_be_composite_lit,
-                          bool* is_type_switch);
-  Expression* selector(Expression*, bool* is_type_switch);
-  Expression* index(Expression*);
-  Expression* call(Expression*);
-  Expression* expression(Precedence, bool may_be_sink,
-                        bool may_be_composite_lit, bool* is_type_switch);
-  bool expression_may_start_here();
-  Expression* unary_expr(bool may_be_sink, bool may_be_composite_lit,
-                        bool* is_type_switch);
-  Expression* qualified_expr(Expression*, source_location);
-  Expression* id_to_expression(const std::string&, source_location);
-  void statement(const Label*);
-  bool statement_may_start_here();
-  void labeled_stmt(const std::string&, source_location);
-  Expression* simple_stat(bool, bool, Range_clause*, Type_switch*);
-  bool simple_stat_may_start_here();
-  void statement_list();
-  bool statement_list_may_start_here();
-  void expression_stat(Expression*);
-  void send_stmt(Expression*);
-  void inc_dec_stat(Expression*);
-  void assignment(Expression*, Range_clause*);
-  void tuple_assignment(Expression_list*, Range_clause*);
-  void send();
-  void go_or_defer_stat();
-  void return_stat();
-  void if_stat();
-  void switch_stat(const Label*);
-  Statement* expr_switch_body(const Label*, Expression*, source_location);
-  void expr_case_clause(Case_clauses*, bool* saw_default);
-  Expression_list* expr_switch_case(bool*);
-  Statement* type_switch_body(const Label*, const Type_switch&,
-                             source_location);
-  void type_case_clause(Named_object*, Type_case_clauses*, bool* saw_default);
-  void type_switch_case(std::vector<Type*>*, bool*);
-  void select_stat(const Label*);
-  void comm_clause(Select_clauses*, bool* saw_default);
-  bool comm_case(bool*, Expression**, Expression**, Expression**,
-                std::string*, std::string*, bool*);
-  bool send_or_recv_stmt(bool*, Expression**, Expression**, Expression**,
-                        std::string*, std::string*);
-  void for_stat(const Label*);
-  void for_clause(Expression**, Block**);
-  void range_clause_decl(const Typed_identifier_list*, Range_clause*);
-  void range_clause_expr(const Expression_list*, Range_clause*);
-  void push_break_statement(Statement*, const Label*);
-  void push_continue_statement(Statement*, const Label*);
-  void pop_break_statement();
-  void pop_continue_statement();
-  Statement* find_bc_statement(const Bc_stack*, const std::string&);
-  void break_stat();
-  void continue_stat();
-  void goto_stat();
-  void package_clause();
-  void import_decl();
-  void import_spec(void*);
-
-  void reset_iota();
-  int iota_value();
-  void increment_iota();
-
-  // Skip past an error looking for a semicolon or OP.  Return true if
-  // all is well, false if we found EOF.
-  bool
-  skip_past_error(Operator op);
-
-  // Verify that an expression is not a sink, and return either the
-  // expression or an error.
-  Expression*
-  verify_not_sink(Expression*);
-
-  // Return the statement associated with a label in a Bc_stack, or
-  // NULL.
-  Statement*
-  find_bc_statement(const Bc_stack*, const std::string&) const;
-
-  // The lexer output we are parsing.
-  Lex* lex_;
-  // The current token.
-  Token token_;
-  // A token pushed back on the input stream.
-  Token unget_token_;
-  // Whether unget_token_ is valid.
-  bool unget_token_valid_;
-  // The code we are generating.
-  Gogo* gogo_;
-  // A stack of statements for which break may be used.
-  Bc_stack* break_stack_;
-  // A stack of statements for which continue may be used.
-  Bc_stack* continue_stack_;
-  // The current iota value.
-  int iota_;
-  // References from the local function to variables defined in
-  // enclosing functions.
-  Enclosing_vars enclosing_vars_;
-};
-
-
-#endif // !defined(GO_PARSE_H)
diff --git a/gcc/go/gofrontend/statements.cc.merge-left.r167407 b/gcc/go/gofrontend/statements.cc.merge-left.r167407
deleted file mode 100644 (file)
index 10fe7e4..0000000
+++ /dev/null
@@ -1,5146 +0,0 @@
-// statements.cc -- Go frontend statements.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "intl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "convert.h"
-#include "tree-iterator.h"
-#include "tree-flow.h"
-#include "real.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "types.h"
-#include "expressions.h"
-#include "gogo.h"
-#include "statements.h"
-
-// Class Statement.
-
-Statement::Statement(Statement_classification classification,
-                    source_location location)
-  : classification_(classification), location_(location)
-{
-}
-
-Statement::~Statement()
-{
-}
-
-// Traverse the tree.  The work of walking the components is handled
-// by the subclasses.
-
-int
-Statement::traverse(Block* block, size_t* pindex, Traverse* traverse)
-{
-  if (this->classification_ == STATEMENT_ERROR)
-    return TRAVERSE_CONTINUE;
-
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  if ((traverse_mask & Traverse::traverse_statements) != 0)
-    {
-      int t = traverse->statement(block, pindex, this);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-
-  // No point in checking traverse_mask here--a statement may contain
-  // other blocks or statements, and if we got here we always want to
-  // walk them.
-  return this->do_traverse(traverse);
-}
-
-// Traverse the contents of a statement.
-
-int
-Statement::traverse_contents(Traverse* traverse)
-{
-  return this->do_traverse(traverse);
-}
-
-// Traverse assignments.
-
-bool
-Statement::traverse_assignments(Traverse_assignments* tassign)
-{
-  if (this->classification_ == STATEMENT_ERROR)
-    return false;
-  return this->do_traverse_assignments(tassign);
-}
-
-// Traverse an expression in a statement.  This is a helper function
-// for child classes.
-
-int
-Statement::traverse_expression(Traverse* traverse, Expression** expr)
-{
-  if ((traverse->traverse_mask()
-       & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0)
-    return TRAVERSE_CONTINUE;
-  return Expression::traverse(expr, traverse);
-}
-
-// Traverse an expression list in a statement.  This is a helper
-// function for child classes.
-
-int
-Statement::traverse_expression_list(Traverse* traverse,
-                                   Expression_list* expr_list)
-{
-  if (expr_list == NULL)
-    return TRAVERSE_CONTINUE;
-  if ((traverse->traverse_mask() & Traverse::traverse_expressions) == 0)
-    return TRAVERSE_CONTINUE;
-  return expr_list->traverse(traverse);
-}
-
-// Traverse a type in a statement.  This is a helper function for
-// child classes.
-
-int
-Statement::traverse_type(Traverse* traverse, Type* type)
-{
-  if ((traverse->traverse_mask()
-       & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0)
-    return TRAVERSE_CONTINUE;
-  return Type::traverse(type, traverse);
-}
-
-// Set type information for unnamed constants.  This is really done by
-// the child class.
-
-void
-Statement::determine_types()
-{
-  this->do_determine_types();
-}
-
-// If this is a thunk statement, return it.
-
-Thunk_statement*
-Statement::thunk_statement()
-{
-  Thunk_statement* ret = this->convert<Thunk_statement, STATEMENT_GO>();
-  if (ret == NULL)
-    ret = this->convert<Thunk_statement, STATEMENT_DEFER>();
-  return ret;
-}
-
-// Get a tree for a Statement.  This is really done by the child
-// class.
-
-tree
-Statement::get_tree(Translate_context* context)
-{
-  if (this->classification_ == STATEMENT_ERROR)
-    return error_mark_node;
-
-  return this->do_get_tree(context);
-}
-
-// Build tree nodes and set locations.
-
-tree
-Statement::build_stmt_1(int tree_code_value, tree node)
-{
-  tree ret = build1(static_cast<tree_code>(tree_code_value),
-                   void_type_node, node);
-  SET_EXPR_LOCATION(ret, this->location_);
-  return ret;
-}
-
-// Note that this statement is erroneous.  This is called by children
-// when they discover an error.
-
-void
-Statement::set_is_error()
-{
-  this->classification_ = STATEMENT_ERROR;
-}
-
-// For children to call to report an error conveniently.
-
-void
-Statement::report_error(const char* msg)
-{
-  error_at(this->location_, "%s", msg);
-  this->set_is_error();
-}
-
-// An error statement, used to avoid crashing after we report an
-// error.
-
-class Error_statement : public Statement
-{
- public:
-  Error_statement(source_location location)
-    : Statement(STATEMENT_ERROR, location)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-};
-
-// Make an error statement.
-
-Statement*
-Statement::make_error_statement(source_location location)
-{
-  return new Error_statement(location);
-}
-
-// Class Variable_declaration_statement.
-
-Variable_declaration_statement::Variable_declaration_statement(
-    Named_object* var)
-  : Statement(STATEMENT_VARIABLE_DECLARATION, var->var_value()->location()),
-    var_(var)
-{
-}
-
-// We don't actually traverse the variable here; it was traversed
-// while traversing the Block.
-
-int
-Variable_declaration_statement::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// Traverse the assignments in a variable declaration.  Note that this
-// traversal is different from the usual traversal.
-
-bool
-Variable_declaration_statement::do_traverse_assignments(
-    Traverse_assignments* tassign)
-{
-  tassign->initialize_variable(this->var_);
-  return true;
-}
-
-// Return the tree for a variable declaration.
-
-tree
-Variable_declaration_statement::do_get_tree(Translate_context* context)
-{
-  tree val = this->var_->get_tree(context->gogo(), context->function());
-  if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
-    return error_mark_node;
-  Variable* variable = this->var_->var_value();
-
-  tree init = variable->get_init_tree(context->gogo(), context->function());
-  if (init == error_mark_node)
-    return error_mark_node;
-
-  // If this variable lives on the heap, we need to allocate it now.
-  if (!variable->is_in_heap())
-    {
-      DECL_INITIAL(val) = init;
-      return this->build_stmt_1(DECL_EXPR, val);
-    }
-  else
-    {
-      gcc_assert(TREE_CODE(val) == INDIRECT_REF);
-      tree decl = TREE_OPERAND(val, 0);
-      gcc_assert(TREE_CODE(decl) == VAR_DECL);
-      tree type = TREE_TYPE(decl);
-      gcc_assert(POINTER_TYPE_P(type));
-      tree size = TYPE_SIZE_UNIT(TREE_TYPE(type));
-      tree space = context->gogo()->allocate_memory(variable->type(), size,
-                                                   this->location());
-      space = fold_convert(TREE_TYPE(decl), space);
-      DECL_INITIAL(decl) = space;
-      return build2(COMPOUND_EXPR, void_type_node,
-                   this->build_stmt_1(DECL_EXPR, decl),
-                   build2(MODIFY_EXPR, void_type_node, val, init));
-    }
-}
-
-// Make a variable declaration.
-
-Statement*
-Statement::make_variable_declaration(Named_object* var)
-{
-  return new Variable_declaration_statement(var);
-}
-
-// Class Temporary_statement.
-
-// Return the type of the temporary variable.
-
-Type*
-Temporary_statement::type() const
-{
-  return this->type_ != NULL ? this->type_ : this->init_->type();
-}
-
-// Traversal.
-
-int
-Temporary_statement::do_traverse(Traverse* traverse)
-{
-  if (this->init_ == NULL)
-    return TRAVERSE_CONTINUE;
-  else
-    return this->traverse_expression(traverse, &this->init_);
-}
-
-// Traverse assignments.
-
-bool
-Temporary_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  if (this->init_ == NULL)
-    return false;
-  tassign->value(&this->init_, true, true);
-  return true;
-}
-
-// Determine types.
-
-void
-Temporary_statement::do_determine_types()
-{
-  if (this->init_ != NULL)
-    {
-      if (this->type_ == NULL)
-       this->init_->determine_type_no_context();
-      else
-       {
-         Type_context context(this->type_, false);
-         this->init_->determine_type(&context);
-       }
-    }
-
-  if (this->type_ == NULL)
-    this->type_ = this->init_->type();
-
-  if (this->type_->is_abstract())
-    this->type_ = this->type_->make_non_abstract_type();
-}
-
-// Check types.
-
-void
-Temporary_statement::do_check_types(Gogo*)
-{
-  if (this->type_ != NULL && this->init_ != NULL)
-    gcc_assert(Type::are_assignable(this->type_, this->init_->type(), NULL));
-}
-
-// Return a tree.
-
-tree
-Temporary_statement::do_get_tree(Translate_context* context)
-{
-  gcc_assert(this->decl_ == NULL_TREE);
-  tree type_tree = this->type()->get_tree(context->gogo());
-  if (type_tree == error_mark_node)
-    {
-      this->decl_ = error_mark_node;
-      return error_mark_node;
-    }
-  // We can only use create_tmp_var if the type is not addressable.
-  if (!TREE_ADDRESSABLE(type_tree))
-    {
-      this->decl_ = create_tmp_var(type_tree, "GOTMP");
-      DECL_SOURCE_LOCATION(this->decl_) = this->location();
-    }
-  else
-    {
-      gcc_assert(context->function() != NULL && context->block() != NULL);
-      tree decl = build_decl(this->location(), VAR_DECL,
-                            create_tmp_var_name("GOTMP"),
-                            type_tree);
-      DECL_ARTIFICIAL(decl) = 1;
-      DECL_IGNORED_P(decl) = 1;
-      TREE_USED(decl) = 1;
-      gcc_assert(current_function_decl != NULL_TREE);
-      DECL_CONTEXT(decl) = current_function_decl;
-
-      // We have to add this variable to the block so that it winds up
-      // in a BIND_EXPR.
-      tree block_tree = context->block_tree();
-      gcc_assert(block_tree != NULL_TREE);
-      DECL_CHAIN(decl) = BLOCK_VARS(block_tree);
-      BLOCK_VARS(block_tree) = decl;
-
-      this->decl_ = decl;
-    }
-  if (this->init_ != NULL)
-    DECL_INITIAL(this->decl_) =
-      Expression::convert_for_assignment(context, this->type(),
-                                        this->init_->type(),
-                                        this->init_->get_tree(context),
-                                        this->location());
-  if (this->is_address_taken_)
-    TREE_ADDRESSABLE(this->decl_) = 1;
-  return this->build_stmt_1(DECL_EXPR, this->decl_);
-}
-
-// Make and initialize a temporary variable in BLOCK.
-
-Temporary_statement*
-Statement::make_temporary(Type* type, Expression* init,
-                         source_location location)
-{
-  return new Temporary_statement(type, init, location);
-}
-
-// An assignment statement.
-
-class Assignment_statement : public Statement
-{
- public:
-  Assignment_statement(Expression* lhs, Expression* rhs,
-                      source_location location)
-    : Statement(STATEMENT_ASSIGNMENT, location),
-      lhs_(lhs), rhs_(rhs)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // Left hand side--the lvalue.
-  Expression* lhs_;
-  // Right hand side--the rvalue.
-  Expression* rhs_;
-};
-
-// Traversal.
-
-int
-Assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->lhs_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->rhs_);
-}
-
-bool
-Assignment_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  tassign->assignment(&this->lhs_, &this->rhs_);
-  return true;
-}
-
-// Set types for the assignment.
-
-void
-Assignment_statement::do_determine_types()
-{
-  this->lhs_->determine_type_no_context();
-  Type_context context(this->lhs_->type(), false);
-  this->rhs_->determine_type(&context);
-}
-
-// Check types for an assignment.
-
-void
-Assignment_statement::do_check_types(Gogo*)
-{
-  // The left hand side must be either addressable, a map index
-  // expression, or the blank identifier.
-  if (!this->lhs_->is_addressable()
-      && this->lhs_->map_index_expression() == NULL
-      && !this->lhs_->is_sink_expression())
-    {
-      if (!this->lhs_->type()->is_error_type())
-       this->report_error(_("invalid left hand side of assignment"));
-      return;
-    }
-
-  Type* lhs_type = this->lhs_->type();
-  Type* rhs_type = this->rhs_->type();
-  std::string reason;
-  if (!Type::are_assignable(lhs_type, rhs_type, &reason))
-    {
-      if (reason.empty())
-       error_at(this->location(), "incompatible types in assignment");
-      else
-       error_at(this->location(), "incompatible types in assignment (%s)",
-                reason.c_str());
-      this->set_is_error();
-    }
-
-  if (lhs_type->is_error_type()
-      || rhs_type->is_error_type()
-      || lhs_type->is_undefined()
-      || rhs_type->is_undefined())
-    {
-      // Make sure we get the error for an undefined type.
-      lhs_type->base();
-      rhs_type->base();
-      this->set_is_error();
-    }
-}
-
-// Build a tree for an assignment statement.
-
-tree
-Assignment_statement::do_get_tree(Translate_context* context)
-{
-  tree rhs_tree = this->rhs_->get_tree(context);
-
-  if (this->lhs_->is_sink_expression())
-    return rhs_tree;
-
-  tree lhs_tree = this->lhs_->get_tree(context);
-
-  if (lhs_tree == error_mark_node || rhs_tree == error_mark_node)
-    return error_mark_node;
-
-  rhs_tree = Expression::convert_for_assignment(context, this->lhs_->type(),
-                                               this->rhs_->type(), rhs_tree,
-                                               this->location());
-  if (rhs_tree == error_mark_node)
-    return error_mark_node;
-
-  return fold_build2_loc(this->location(), MODIFY_EXPR, void_type_node,
-                        lhs_tree, rhs_tree);
-}
-
-// Make an assignment statement.
-
-Statement*
-Statement::make_assignment(Expression* lhs, Expression* rhs,
-                          source_location location)
-{
-  return new Assignment_statement(lhs, rhs, location);
-}
-
-// The Move_ordered_evals class is used to find any subexpressions of
-// an expression that have an evaluation order dependency.  It creates
-// temporary variables to hold them.
-
-class Move_ordered_evals : public Traverse
-{
- public:
-  Move_ordered_evals(Block* block)
-    : Traverse(traverse_expressions),
-      block_(block)
-  { }
-
- protected:
-  int
-  expression(Expression**);
-
- private:
-  // The block where new temporary variables should be added.
-  Block* block_;
-};
-
-int
-Move_ordered_evals::expression(Expression** pexpr)
-{
-  // We have to look at subexpressions first.
-  if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if ((*pexpr)->must_eval_in_order())
-    {
-      source_location loc = (*pexpr)->location();
-      Temporary_statement* temp = Statement::make_temporary(NULL, *pexpr, loc);
-      this->block_->add_statement(temp);
-      *pexpr = Expression::make_temporary_reference(temp, loc);
-    }
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// An assignment operation statement.
-
-class Assignment_operation_statement : public Statement
-{
- public:
-  Assignment_operation_statement(Operator op, Expression* lhs, Expression* rhs,
-                                source_location location)
-    : Statement(STATEMENT_ASSIGNMENT_OPERATION, location),
-      op_(op), lhs_(lhs), rhs_(rhs)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // The operator (OPERATOR_PLUSEQ, etc.).
-  Operator op_;
-  // Left hand side.
-  Expression* lhs_;
-  // Right hand side.
-  Expression* rhs_;
-};
-
-// Traversal.
-
-int
-Assignment_operation_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->lhs_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->rhs_);
-}
-
-// Lower an assignment operation statement to a regular assignment
-// statement.
-
-Statement*
-Assignment_operation_statement::do_lower(Gogo*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  // We have to evaluate the left hand side expression only once.  We
-  // do this by moving out any expression with side effects.
-  Block* b = new Block(enclosing, loc);
-  Move_ordered_evals moe(b);
-  this->lhs_->traverse_subexpressions(&moe);
-
-  Expression* lval = this->lhs_->copy();
-
-  Operator op;
-  switch (this->op_)
-    {
-    case OPERATOR_PLUSEQ:
-      op = OPERATOR_PLUS;
-      break;
-    case OPERATOR_MINUSEQ:
-      op = OPERATOR_MINUS;
-      break;
-    case OPERATOR_OREQ:
-      op = OPERATOR_OR;
-      break;
-    case OPERATOR_XOREQ:
-      op = OPERATOR_XOR;
-      break;
-    case OPERATOR_MULTEQ:
-      op = OPERATOR_MULT;
-      break;
-    case OPERATOR_DIVEQ:
-      op = OPERATOR_DIV;
-      break;
-    case OPERATOR_MODEQ:
-      op = OPERATOR_MOD;
-      break;
-    case OPERATOR_LSHIFTEQ:
-      op = OPERATOR_LSHIFT;
-      break;
-    case OPERATOR_RSHIFTEQ:
-      op = OPERATOR_RSHIFT;
-      break;
-    case OPERATOR_ANDEQ:
-      op = OPERATOR_AND;
-      break;
-    case OPERATOR_BITCLEAREQ:
-      op = OPERATOR_BITCLEAR;
-      break;
-    default:
-      gcc_unreachable();
-    }
-
-  Expression* binop = Expression::make_binary(op, lval, this->rhs_, loc);
-  Statement* s = Statement::make_assignment(this->lhs_, binop, loc);
-  if (b->statements()->empty())
-    {
-      delete b;
-      return s;
-    }
-  else
-    {
-      b->add_statement(s);
-      return Statement::make_block_statement(b, loc);
-    }
-}
-
-// Make an assignment operation statement.
-
-Statement*
-Statement::make_assignment_operation(Operator op, Expression* lhs,
-                                    Expression* rhs, source_location location)
-{
-  return new Assignment_operation_statement(op, lhs, rhs, location);
-}
-
-// A tuple assignment statement.  This differs from an assignment
-// statement in that the right-hand-side expressions are evaluated in
-// parallel.
-
-class Tuple_assignment_statement : public Statement
-{
- public:
-  Tuple_assignment_statement(Expression_list* lhs, Expression_list* rhs,
-                            source_location location)
-    : Statement(STATEMENT_TUPLE_ASSIGNMENT, location),
-      lhs_(lhs), rhs_(rhs)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // Left hand side--a list of lvalues.
-  Expression_list* lhs_;
-  // Right hand side--a list of rvalues.
-  Expression_list* rhs_;
-};
-
-// Traversal.
-
-int
-Tuple_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression_list(traverse, this->lhs_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression_list(traverse, this->rhs_);
-}
-
-// Lower a tuple assignment.  We use temporary variables to split it
-// up into a set of single assignments.
-
-Statement*
-Tuple_assignment_statement::do_lower(Gogo*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Block* b = new Block(enclosing, loc);
-  
-  // First move out any subexpressions on the left hand side.  The
-  // right hand side will be evaluated in the required order anyhow.
-  Move_ordered_evals moe(b);
-  for (Expression_list::const_iterator plhs = this->lhs_->begin();
-       plhs != this->lhs_->end();
-       ++plhs)
-    (*plhs)->traverse_subexpressions(&moe);
-
-  std::vector<Temporary_statement*> temps;
-  temps.reserve(this->lhs_->size());
-
-  Expression_list::const_iterator prhs = this->rhs_->begin();
-  for (Expression_list::const_iterator plhs = this->lhs_->begin();
-       plhs != this->lhs_->end();
-       ++plhs, ++prhs)
-    {
-      gcc_assert(prhs != this->rhs_->end());
-
-      if ((*plhs)->is_sink_expression())
-       {
-         b->add_statement(Statement::make_statement(*prhs));
-         continue;
-       }
-
-      Temporary_statement* temp = Statement::make_temporary((*plhs)->type(),
-                                                           *prhs, loc);
-      b->add_statement(temp);
-      temps.push_back(temp);
-
-    }
-  gcc_assert(prhs == this->rhs_->end());
-
-  prhs = this->rhs_->begin();
-  std::vector<Temporary_statement*>::const_iterator ptemp = temps.begin();
-  for (Expression_list::const_iterator plhs = this->lhs_->begin();
-       plhs != this->lhs_->end();
-       ++plhs, ++prhs)
-    {
-      if ((*plhs)->is_sink_expression())
-       continue;
-
-      Expression* ref = Expression::make_temporary_reference(*ptemp, loc);
-      Statement* s = Statement::make_assignment(*plhs, ref, loc);
-      b->add_statement(s);
-      ++ptemp;
-    }
-  gcc_assert(ptemp == temps.end());
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a tuple assignment statement.
-
-Statement*
-Statement::make_tuple_assignment(Expression_list* lhs, Expression_list* rhs,
-                                source_location location)
-{
-  return new Tuple_assignment_statement(lhs, rhs, location);
-}
-
-// A tuple assignment from a map index expression.
-//   v, ok = m[k]
-
-class Tuple_map_assignment_statement : public Statement
-{
-public:
-  Tuple_map_assignment_statement(Expression* val, Expression* present,
-                                Expression* map_index,
-                                source_location location)
-    : Statement(STATEMENT_TUPLE_MAP_ASSIGNMENT, location),
-      val_(val), present_(present), map_index_(map_index)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // Lvalue which receives the value from the map.
-  Expression* val_;
-  // Lvalue which receives whether the key value was present.
-  Expression* present_;
-  // The map index expression.
-  Expression* map_index_;
-};
-
-// Traversal.
-
-int
-Tuple_map_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->present_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->map_index_);
-}
-
-// Lower a tuple map assignment.
-
-Statement*
-Tuple_map_assignment_statement::do_lower(Gogo*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Map_index_expression* map_index = this->map_index_->map_index_expression();
-  if (map_index == NULL)
-    {
-      this->report_error(_("expected map index on right hand side"));
-      return Statement::make_error_statement(loc);
-    }
-  Map_type* map_type = map_index->get_map_type();
-
-  Block* b = new Block(enclosing, loc);
-
-  // Move out any subexpressions to make sure that functions are
-  // called in the required order.
-  Move_ordered_evals moe(b);
-  this->val_->traverse_subexpressions(&moe);
-  this->present_->traverse_subexpressions(&moe);
-
-  // Copy the key value into a temporary so that we can take its
-  // address without pushing the value onto the heap.
-
-  // var key_temp KEY_TYPE = MAP_INDEX
-  Temporary_statement* key_temp =
-    Statement::make_temporary(map_type->key_type(), map_index->index(), loc);
-  b->add_statement(key_temp);
-
-  // var val_temp VAL_TYPE
-  Temporary_statement* val_temp =
-    Statement::make_temporary(map_type->val_type(), NULL, loc);
-  b->add_statement(val_temp);
-
-  // var present_temp bool
-  Temporary_statement* present_temp =
-    Statement::make_temporary(Type::lookup_bool_type(), NULL, loc);
-  b->add_statement(present_temp);
-
-  // func mapaccess2(hmap map[k]v, key *k, val *v) bool
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("hmap", map_type, bloc));
-  Type* pkey_type = Type::make_pointer_type(map_type->key_type());
-  param_types->push_back(Typed_identifier("key", pkey_type, bloc));
-  Type* pval_type = Type::make_pointer_type(map_type->val_type());
-  param_types->push_back(Typed_identifier("val", pval_type, bloc));
-
-  Typed_identifier_list* ret_types = new Typed_identifier_list();
-  ret_types->push_back(Typed_identifier("", Type::make_boolean_type(), bloc));
-
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  ret_types, bloc);
-  Named_object* mapaccess2 =
-    Named_object::make_function_declaration("mapaccess2", NULL, fntype, bloc);
-  mapaccess2->func_declaration_value()->set_asm_name("runtime.mapaccess2");
-
-  // present_temp = mapaccess2(MAP, &key_temp, &val_temp)
-  Expression* func = Expression::make_func_reference(mapaccess2, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(map_index->map());
-  Expression* ref = Expression::make_temporary_reference(key_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  Expression* call = Expression::make_call(func, params, false, loc);
-
-  ref = Expression::make_temporary_reference(present_temp, loc);
-  Statement* s = Statement::make_assignment(ref, call, loc);
-  b->add_statement(s);
-
-  // val = val_temp
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  s = Statement::make_assignment(this->val_, ref, loc);
-  b->add_statement(s);
-
-  // present = present_temp
-  ref = Expression::make_temporary_reference(present_temp, loc);
-  s = Statement::make_assignment(this->present_, ref, loc);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a map assignment statement which returns a pair of values.
-
-Statement*
-Statement::make_tuple_map_assignment(Expression* val, Expression* present,
-                                    Expression* map_index,
-                                    source_location location)
-{
-  return new Tuple_map_assignment_statement(val, present, map_index, location);
-}
-
-// Assign a pair of entries to a map.
-//   m[k] = v, p
-
-class Map_assignment_statement : public Statement
-{
- public:
-  Map_assignment_statement(Expression* map_index,
-                          Expression* val, Expression* should_set,
-                          source_location location)
-    : Statement(STATEMENT_MAP_ASSIGNMENT, location),
-      map_index_(map_index), val_(val), should_set_(should_set)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // A reference to the map index which should be set or deleted.
-  Expression* map_index_;
-  // The value to add to the map.
-  Expression* val_;
-  // Whether or not to add the value.
-  Expression* should_set_;
-};
-
-// Traverse a map assignment.
-
-int
-Map_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->map_index_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->should_set_);
-}
-
-// Lower a map assignment to a function call.
-
-Statement*
-Map_assignment_statement::do_lower(Gogo*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Map_index_expression* map_index = this->map_index_->map_index_expression();
-  if (map_index == NULL)
-    {
-      this->report_error(_("expected map index on left hand side"));
-      return Statement::make_error_statement(loc);
-    }
-  Map_type* map_type = map_index->get_map_type();
-
-  Block* b = new Block(enclosing, loc);
-
-  // Evaluate the map first to get order of evaluation right.
-  // map_temp := m // we are evaluating m[k] = v, p
-  Temporary_statement* map_temp = Statement::make_temporary(map_type,
-                                                           map_index->map(),
-                                                           loc);
-  b->add_statement(map_temp);
-
-  // var key_temp MAP_KEY_TYPE = k
-  Temporary_statement* key_temp =
-    Statement::make_temporary(map_type->key_type(), map_index->index(), loc);
-  b->add_statement(key_temp);
-
-  // var val_temp MAP_VAL_TYPE = v
-  Temporary_statement* val_temp =
-    Statement::make_temporary(map_type->val_type(), this->val_, loc);
-  b->add_statement(val_temp);
-
-  // func mapassign2(hmap map[k]v, key *k, val *v, p)
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("hmap", map_type, bloc));
-  Type* pkey_type = Type::make_pointer_type(map_type->key_type());
-  param_types->push_back(Typed_identifier("key", pkey_type, bloc));
-  Type* pval_type = Type::make_pointer_type(map_type->val_type());
-  param_types->push_back(Typed_identifier("val", pval_type, bloc));
-  param_types->push_back(Typed_identifier("p", Type::lookup_bool_type(), bloc));
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  NULL, bloc);
-  Named_object* mapassign2 =
-    Named_object::make_function_declaration("mapassign2", NULL, fntype, bloc);
-  mapassign2->func_declaration_value()->set_asm_name("runtime.mapassign2");
-
-  // mapassign2(map_temp, &key_temp, &val_temp, p)
-  Expression* func = Expression::make_func_reference(mapassign2, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(Expression::make_temporary_reference(map_temp, loc));
-  Expression* ref = Expression::make_temporary_reference(key_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  params->push_back(this->should_set_);
-  Expression* call = Expression::make_call(func, params, false, loc);
-  Statement* s = Statement::make_statement(call);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a statement which assigns a pair of entries to a map.
-
-Statement*
-Statement::make_map_assignment(Expression* map_index,
-                              Expression* val, Expression* should_set,
-                              source_location location)
-{
-  return new Map_assignment_statement(map_index, val, should_set, location);
-}
-
-// A tuple assignment from a receive statement.
-
-class Tuple_receive_assignment_statement : public Statement
-{
- public:
-  Tuple_receive_assignment_statement(Expression* val, Expression* success,
-                                    Expression* channel,
-                                    source_location location)
-    : Statement(STATEMENT_TUPLE_RECEIVE_ASSIGNMENT, location),
-      val_(val), success_(success), channel_(channel)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // Lvalue which receives the value from the channel.
-  Expression* val_;
-  // Lvalue which receives whether the read succeeded or failed.
-  Expression* success_;
-  // The channel on which we receive the value.
-  Expression* channel_;
-};
-
-// Traversal.
-
-int
-Tuple_receive_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->success_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->channel_);
-}
-
-// Lower to a function call.
-
-Statement*
-Tuple_receive_assignment_statement::do_lower(Gogo*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  if (channel_type == NULL)
-    {
-      this->report_error(_("expected channel"));
-      return Statement::make_error_statement(loc);
-    }
-  if (!channel_type->may_receive())
-    {
-      this->report_error(_("invalid receive on send-only channel"));
-      return Statement::make_error_statement(loc);
-    }
-
-  Block* b = new Block(enclosing, loc);
-
-  // Make sure that any subexpressions on the left hand side are
-  // evaluated in the right order.
-  Move_ordered_evals moe(b);
-  this->val_->traverse_subexpressions(&moe);
-  this->success_->traverse_subexpressions(&moe);
-
-  // var val_temp ELEMENT_TYPE
-  Temporary_statement* val_temp =
-    Statement::make_temporary(channel_type->element_type(), NULL, loc);
-  b->add_statement(val_temp);
-
-  // var success_temp bool
-  Temporary_statement* success_temp =
-    Statement::make_temporary(Type::lookup_bool_type(), NULL, loc);
-  b->add_statement(success_temp);
-
-  // func chanrecv2(c chan T, val *T) bool
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("c", channel_type, bloc));
-  Type* pelement_type = Type::make_pointer_type(channel_type->element_type());
-  param_types->push_back(Typed_identifier("val", pelement_type, bloc));
-
-  Typed_identifier_list* ret_types = new Typed_identifier_list();
-  ret_types->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
-
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  ret_types, bloc);
-  Named_object* chanrecv2 =
-    Named_object::make_function_declaration("chanrecv2", NULL, fntype, bloc);
-  chanrecv2->func_declaration_value()->set_asm_name("runtime.chanrecv2");
-
-  // success_temp = chanrecv2(channel, &val_temp)
-  Expression* func = Expression::make_func_reference(chanrecv2, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(this->channel_);
-  Expression* ref = Expression::make_temporary_reference(val_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  Expression* call = Expression::make_call(func, params, false, loc);
-  ref = Expression::make_temporary_reference(success_temp, loc);
-  Statement* s = Statement::make_assignment(ref, call, loc);
-  b->add_statement(s);
-
-  // val = val_temp
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  s = Statement::make_assignment(this->val_, ref, loc);
-  b->add_statement(s);
-
-  // success = success_temp
-  ref = Expression::make_temporary_reference(success_temp, loc);
-  s = Statement::make_assignment(this->success_, ref, loc);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a nonblocking receive statement.
-
-Statement*
-Statement::make_tuple_receive_assignment(Expression* val, Expression* success,
-                                        Expression* channel,
-                                        source_location location)
-{
-  return new Tuple_receive_assignment_statement(val, success, channel,
-                                               location);
-}
-
-// An assignment to a pair of values from a type guard.  This is a
-// conditional type guard.  v, ok = i.(type).
-
-class Tuple_type_guard_assignment_statement : public Statement
-{
- public:
-  Tuple_type_guard_assignment_statement(Expression* val, Expression* ok,
-                                       Expression* expr, Type* type,
-                                       source_location location)
-    : Statement(STATEMENT_TUPLE_TYPE_GUARD_ASSIGNMENT, location),
-      val_(val), ok_(ok), expr_(expr), type_(type)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  Call_expression*
-  lower_to_empty_interface(const char*);
-
-  Call_expression*
-  lower_to_type(const char*);
-
-  void
-  lower_to_object_type(Block*, const char*);
-
-  // The variable which recieves the converted value.
-  Expression* val_;
-  // The variable which receives the indication of success.
-  Expression* ok_;
-  // The expression being converted.
-  Expression* expr_;
-  // The type to which the expression is being converted.
-  Type* type_;
-};
-
-// Traverse a type guard tuple assignment.
-
-int
-Tuple_type_guard_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->ok_) == TRAVERSE_EXIT
-      || this->traverse_type(traverse, this->type_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->expr_);
-}
-
-// Lower to a function call.
-
-Statement*
-Tuple_type_guard_assignment_statement::do_lower(Gogo*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Type* expr_type = this->expr_->type();
-  if (expr_type->interface_type() == NULL)
-    {
-      this->report_error(_("type assertion only valid for interface types"));
-      return Statement::make_error_statement(loc);
-    }
-
-  Block* b = new Block(enclosing, loc);
-
-  // Make sure that any subexpressions on the left hand side are
-  // evaluated in the right order.
-  Move_ordered_evals moe(b);
-  this->val_->traverse_subexpressions(&moe);
-  this->ok_->traverse_subexpressions(&moe);
-
-  bool expr_is_empty = expr_type->interface_type()->is_empty();
-  Call_expression* call;
-  if (this->type_->interface_type() != NULL)
-    {
-      if (this->type_->interface_type()->is_empty())
-       call = this->lower_to_empty_interface(expr_is_empty
-                                             ? "ifaceE2E2"
-                                             : "ifaceI2E2");
-      else
-       call = this->lower_to_type(expr_is_empty ? "ifaceE2I2" : "ifaceI2I2");
-    }
-  else if (this->type_->points_to() != NULL)
-    call = this->lower_to_type(expr_is_empty ? "ifaceE2T2P" : "ifaceI2T2P");
-  else
-    {
-      this->lower_to_object_type(b, expr_is_empty ? "ifaceE2T2" : "ifaceI2T2");
-      call = NULL;
-    }
-
-  if (call != NULL)
-    {
-      Expression* res = Expression::make_call_result(call, 0);
-      Statement* s = Statement::make_assignment(this->val_, res, loc);
-      b->add_statement(s);
-
-      res = Expression::make_call_result(call, 1);
-      s = Statement::make_assignment(this->ok_, res, loc);
-      b->add_statement(s);
-    }
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Lower a conversion to an empty interface type.
-
-Call_expression*
-Tuple_type_guard_assignment_statement::lower_to_empty_interface(
-    const char *fnname)
-{
-  source_location loc = this->location();
-
-  // func FNNAME(interface) (empty, bool)
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("i", this->expr_->type(), bloc));
-  Typed_identifier_list* ret_types = new Typed_identifier_list();
-  ret_types->push_back(Typed_identifier("ret", this->type_, bloc));
-  ret_types->push_back(Typed_identifier("ok", Type::lookup_bool_type(), bloc));
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  ret_types, bloc);
-  Named_object* fn =
-    Named_object::make_function_declaration(fnname, NULL, fntype, bloc);
-  std::string asm_name = "runtime.";
-  asm_name += fnname;
-  fn->func_declaration_value()->set_asm_name(asm_name);
-
-  // val, ok = FNNAME(expr)
-  Expression* func = Expression::make_func_reference(fn, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(this->expr_);
-  return Expression::make_call(func, params, false, loc);
-}
-
-// Lower a conversion to a non-empty interface type or a pointer type.
-
-Call_expression*
-Tuple_type_guard_assignment_statement::lower_to_type(const char* fnname)
-{
-  source_location loc = this->location();
-
-  // func FNNAME(*descriptor, interface) (interface, bool)
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("inter",
-                                         Type::make_type_descriptor_ptr_type(),
-                                         bloc));
-  param_types->push_back(Typed_identifier("i", this->expr_->type(), bloc));
-  Typed_identifier_list* ret_types = new Typed_identifier_list();
-  ret_types->push_back(Typed_identifier("ret", this->type_, bloc));
-  ret_types->push_back(Typed_identifier("ok", Type::lookup_bool_type(), bloc));
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  ret_types, bloc);
-  Named_object* fn =
-    Named_object::make_function_declaration(fnname, NULL, fntype, bloc);
-  std::string asm_name = "runtime.";
-  asm_name += fnname;
-  fn->func_declaration_value()->set_asm_name(asm_name);
-
-  // val, ok = FNNAME(type_descriptor, expr)
-  Expression* func = Expression::make_func_reference(fn, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(Expression::make_type_descriptor(this->type_, loc));
-  params->push_back(this->expr_);
-  return Expression::make_call(func, params, false, loc);
-}
-
-// Lower a conversion to a non-interface non-pointer type.
-
-void
-Tuple_type_guard_assignment_statement::lower_to_object_type(Block* b,
-                                                           const char *fnname)
-{
-  source_location loc = this->location();
-
-  // var val_temp TYPE
-  Temporary_statement* val_temp = Statement::make_temporary(this->type_,
-                                                           NULL, loc);
-  b->add_statement(val_temp);
-
-  // func FNNAME(*descriptor, interface, *T) bool
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("inter",
-                                         Type::make_type_descriptor_ptr_type(),
-                                         bloc));
-  param_types->push_back(Typed_identifier("i", this->expr_->type(), bloc));
-  Type* ptype = Type::make_pointer_type(this->type_);
-  param_types->push_back(Typed_identifier("v", ptype, bloc));
-  Typed_identifier_list* ret_types = new Typed_identifier_list();
-  ret_types->push_back(Typed_identifier("ok", Type::lookup_bool_type(), bloc));
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  ret_types, bloc);
-  Named_object* fn =
-    Named_object::make_function_declaration(fnname, NULL, fntype, bloc);
-  std::string asm_name = "runtime.";
-  asm_name += fnname;
-  fn->func_declaration_value()->set_asm_name(asm_name);
-
-  // ok = FNNAME(type_descriptor, expr, &val_temp)
-  Expression* func = Expression::make_func_reference(fn, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(Expression::make_type_descriptor(this->type_, loc));
-  params->push_back(this->expr_);
-  Expression* ref = Expression::make_temporary_reference(val_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  Expression* call = Expression::make_call(func, params, false, loc);
-  Statement* s = Statement::make_assignment(this->ok_, call, loc);
-  b->add_statement(s);
-
-  // val = val_temp
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  s = Statement::make_assignment(this->val_, ref, loc);
-  b->add_statement(s);
-}
-
-// Make an assignment from a type guard to a pair of variables.
-
-Statement*
-Statement::make_tuple_type_guard_assignment(Expression* val, Expression* ok,
-                                           Expression* expr, Type* type,
-                                           source_location location)
-{
-  return new Tuple_type_guard_assignment_statement(val, ok, expr, type,
-                                                  location);
-}
-
-// An expression statement.
-
-class Expression_statement : public Statement
-{
- public:
-  Expression_statement(Expression* expr)
-    : Statement(STATEMENT_EXPRESSION, expr->location()),
-      expr_(expr)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->traverse_expression(traverse, &this->expr_); }
-
-  void
-  do_determine_types()
-  { this->expr_->determine_type_no_context(); }
-
-  bool
-  do_may_fall_through() const;
-
-  tree
-  do_get_tree(Translate_context* context)
-  { return this->expr_->get_tree(context); }
-
- private:
-  Expression* expr_;
-};
-
-// An expression statement may fall through unless it is a call to a
-// function which does not return.
-
-bool
-Expression_statement::do_may_fall_through() const
-{
-  const Call_expression* call = this->expr_->call_expression();
-  if (call != NULL)
-    {
-      const Expression* fn = call->fn();
-      const Func_expression* fe = fn->func_expression();
-      if (fe != NULL)
-       {
-         const Named_object* no = fe->named_object();
-
-         Function_type* fntype;
-         if (no->is_function())
-           fntype = no->func_value()->type();
-         else if (no->is_function_declaration())
-           fntype = no->func_declaration_value()->type();
-         else
-           fntype = NULL;
-
-         // The builtin function panic does not return.
-         if (fntype != NULL && fntype->is_builtin() && no->name() == "panic")
-           return false;
-       }
-    }
-  return true;
-}
-
-// Make an expression statement from an Expression.
-
-Statement*
-Statement::make_statement(Expression* expr)
-{
-  return new Expression_statement(expr);
-}
-
-// A block statement--a list of statements which may include variable
-// definitions.
-
-class Block_statement : public Statement
-{
- public:
-  Block_statement(Block* block, source_location location)
-    : Statement(STATEMENT_BLOCK, location),
-      block_(block)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->block_->traverse(traverse); }
-
-  void
-  do_determine_types()
-  { this->block_->determine_types(); }
-
-  bool
-  do_may_fall_through() const
-  { return this->block_->may_fall_through(); }
-
-  tree
-  do_get_tree(Translate_context* context)
-  { return this->block_->get_tree(context); }
-
- private:
-  Block* block_;
-};
-
-// Make a block statement.
-
-Statement*
-Statement::make_block_statement(Block* block, source_location location)
-{
-  return new Block_statement(block, location);
-}
-
-// An increment or decrement statement.
-
-class Inc_dec_statement : public Statement
-{
- public:
-  Inc_dec_statement(bool is_inc, Expression* expr)
-    : Statement(STATEMENT_INCDEC, expr->location()),
-      expr_(expr), is_inc_(is_inc)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->traverse_expression(traverse, &this->expr_); }
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // The l-value to increment or decrement.
-  Expression* expr_;
-  // Whether to increment or decrement.
-  bool is_inc_;
-};
-
-// Lower to += or -=.
-
-Statement*
-Inc_dec_statement::do_lower(Gogo*, Block*)
-{
-  source_location loc = this->location();
-
-  mpz_t oval;
-  mpz_init_set_ui(oval, 1UL);
-  Expression* oexpr = Expression::make_integer(&oval, NULL, loc);
-  mpz_clear(oval);
-
-  Operator op = this->is_inc_ ? OPERATOR_PLUSEQ : OPERATOR_MINUSEQ;
-  return Statement::make_assignment_operation(op, this->expr_, oexpr, loc);
-}
-
-// Make an increment statement.
-
-Statement*
-Statement::make_inc_statement(Expression* expr)
-{
-  return new Inc_dec_statement(true, expr);
-}
-
-// Make a decrement statement.
-
-Statement*
-Statement::make_dec_statement(Expression* expr)
-{
-  return new Inc_dec_statement(false, expr);
-}
-
-// Class Thunk_statement.  This is the base class for go and defer
-// statements.
-
-const char* const Thunk_statement::thunk_field_fn = "fn";
-
-const char* const Thunk_statement::thunk_field_receiver = "receiver";
-
-// Constructor.
-
-Thunk_statement::Thunk_statement(Statement_classification classification,
-                                Call_expression* call,
-                                source_location location)
-    : Statement(classification, location),
-      call_(call), struct_type_(NULL)
-{
-}
-
-// Return whether this is a simple statement which does not require a
-// thunk.
-
-bool
-Thunk_statement::is_simple(Function_type* fntype) const
-{
-  // We need a thunk to call a method, or to pass a variable number of
-  // arguments.
-  if (fntype->is_method() || fntype->is_varargs())
-    return false;
-
-  // A defer statement requires a thunk to set up for whether the
-  // function can call recover.
-  if (this->classification() == STATEMENT_DEFER)
-    return false;
-
-  // We can only permit a single parameter of pointer type.
-  const Typed_identifier_list* parameters = fntype->parameters();
-  if (parameters != NULL
-      && (parameters->size() > 1
-         || (parameters->size() == 1
-             && parameters->begin()->type()->points_to() == NULL)))
-    return false;
-
-  // If the function returns multiple values, or returns a type other
-  // than integer, floating point, or pointer, then it may get a
-  // hidden first parameter, in which case we need the more
-  // complicated approach.  This is true even though we are going to
-  // ignore the return value.
-  const Typed_identifier_list* results = fntype->results();
-  if (results != NULL
-      && (results->size() > 1
-         || (results->size() == 1
-             && !results->begin()->type()->is_basic_type()
-             && results->begin()->type()->points_to() == NULL)))
-    return false;
-
-  // If this calls something which is not a simple function, then we
-  // need a thunk.
-  Expression* fn = this->call_->call_expression()->fn();
-  if (fn->bound_method_expression() != NULL
-      || fn->interface_field_reference_expression() != NULL)
-    return false;
-
-  return true;
-}
-
-// Traverse a thunk statement.
-
-int
-Thunk_statement::do_traverse(Traverse* traverse)
-{
-  return this->traverse_expression(traverse, &this->call_);
-}
-
-// We implement traverse_assignment for a thunk statement because it
-// effectively copies the function call.
-
-bool
-Thunk_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  Expression* fn = this->call_->call_expression()->fn();
-  Expression* fn2 = fn;
-  tassign->value(&fn2, true, false);
-  return true;
-}
-
-// Determine types in a thunk statement.
-
-void
-Thunk_statement::do_determine_types()
-{
-  this->call_->determine_type_no_context();
-
-  // Now that we know the types of the call, build the struct used to
-  // pass parameters.
-  Function_type* fntype =
-    this->call_->call_expression()->get_function_type();
-  if (fntype != NULL && !this->is_simple(fntype))
-    this->struct_type_ = this->build_struct(fntype);
-}
-
-// Check types in a thunk statement.
-
-void
-Thunk_statement::do_check_types(Gogo*)
-{
-  Call_expression* ce = this->call_->call_expression();
-  Function_type* fntype = ce->get_function_type();
-  if (fntype != NULL && fntype->is_method())
-    {
-      Expression* fn = ce->fn();
-      if (fn->bound_method_expression() == NULL
-         && fn->interface_field_reference_expression() == NULL)
-       this->report_error(_("no object for method call"));
-    }
-}
-
-// The Traverse class used to find and simplify thunk statements.
-
-class Simplify_thunk_traverse : public Traverse
-{
- public:
-  Simplify_thunk_traverse(Gogo* gogo)
-    : Traverse(traverse_blocks),
-      gogo_(gogo)
-  { }
-
-  int
-  block(Block*);
-
- private:
-  Gogo* gogo_;
-};
-
-int
-Simplify_thunk_traverse::block(Block* b)
-{
-  // The parser ensures that thunk statements always appear at the end
-  // of a block.
-  if (b->statements()->size() < 1)
-    return TRAVERSE_CONTINUE;
-  Thunk_statement* stat = b->statements()->back()->thunk_statement();
-  if (stat == NULL)
-    return TRAVERSE_CONTINUE;
-  if (stat->simplify_statement(this->gogo_, b))
-    return TRAVERSE_SKIP_COMPONENTS;
-  return TRAVERSE_CONTINUE;
-}
-
-// Simplify all thunk statements.
-
-void
-Gogo::simplify_thunk_statements()
-{
-  Simplify_thunk_traverse thunk_traverse(this);
-  this->traverse(&thunk_traverse);
-}
-
-// Simplify complex thunk statements into simple ones.  A complicated
-// thunk statement is one which takes anything other than zero
-// parameters or a single pointer parameter.  We rewrite it into code
-// which allocates a struct, stores the parameter values into the
-// struct, and does a simple go or defer statement which passes the
-// struct to a thunk.  The thunk does the real call.
-
-bool
-Thunk_statement::simplify_statement(Gogo* gogo, Block* block)
-{
-  if (this->classification() == STATEMENT_ERROR)
-    return false;
-  if (this->call_->is_error_expression())
-    return false;
-
-  Call_expression* ce = this->call_->call_expression();
-  Function_type* fntype = ce->get_function_type();
-  if (fntype == NULL || this->is_simple(fntype))
-    return false;
-
-  Expression* fn = ce->fn();
-  Bound_method_expression* bound_method = fn->bound_method_expression();
-  Interface_field_reference_expression* interface_method =
-    fn->interface_field_reference_expression();
-  const bool is_method = bound_method != NULL || interface_method != NULL;
-
-  source_location location = this->location();
-
-  std::string thunk_name = Gogo::thunk_name();
-
-  // Build the thunk.
-  this->build_thunk(gogo, thunk_name, fntype);
-
-  // Generate code to call the thunk.
-
-  // Get the values to store into the struct which is the single
-  // argument to the thunk.
-
-  Expression_list* vals = new Expression_list();
-  if (fntype->is_builtin())
-    ;
-  else if (!is_method)
-    vals->push_back(fn);
-  else if (interface_method != NULL)
-    vals->push_back(interface_method->expr());
-  else if (bound_method != NULL)
-    {
-      vals->push_back(bound_method->method());
-      Expression* first_arg = bound_method->first_argument();
-
-      // We always pass a pointer when calling a method.
-      if (first_arg->type()->points_to() == NULL)
-       first_arg = Expression::make_unary(OPERATOR_AND, first_arg, location);
-
-      // If we are calling a method which was inherited from an
-      // embedded struct, and the method did not get a stub, then the
-      // first type may be wrong.
-      Type* fatype = bound_method->first_argument_type();
-      if (fatype != NULL)
-       {
-         if (fatype->points_to() == NULL)
-           fatype = Type::make_pointer_type(fatype);
-         Type* unsafe = Type::make_pointer_type(Type::make_void_type());
-         first_arg = Expression::make_cast(unsafe, first_arg, location);
-         first_arg = Expression::make_cast(fatype, first_arg, location);
-       }
-
-      vals->push_back(first_arg);
-    }
-  else
-    gcc_unreachable();
-
-  if (ce->args() != NULL)
-    {
-      for (Expression_list::const_iterator p = ce->args()->begin();
-          p != ce->args()->end();
-          ++p)
-       vals->push_back(*p);
-    }
-
-  // Build the struct.
-  Expression* constructor =
-    Expression::make_struct_composite_literal(this->struct_type_, vals,
-                                             location);
-
-  // Allocate the initialized struct on the heap.
-  constructor = Expression::make_heap_composite(constructor, location);
-
-  // Look up the thunk.
-  Named_object* named_thunk = gogo->lookup(thunk_name, NULL);
-  gcc_assert(named_thunk != NULL && named_thunk->is_function());
-
-  // Build the call.
-  Expression* func = Expression::make_func_reference(named_thunk, NULL,
-                                                    location);
-  Expression_list* params = new Expression_list();
-  params->push_back(constructor);
-  Call_expression* call = Expression::make_call(func, params, false, location);
-
-  // Build the simple go or defer statement.
-  Statement* s;
-  if (this->classification() == STATEMENT_GO)
-    s = Statement::make_go_statement(call, location);
-  else if (this->classification() == STATEMENT_DEFER)
-    s = Statement::make_defer_statement(call, location);
-  else
-    gcc_unreachable();
-
-  // The current block should end with the go statement.
-  gcc_assert(block->statements()->size() >= 1);
-  gcc_assert(block->statements()->back() == this);
-  block->replace_statement(block->statements()->size() - 1, s);
-
-  // We already ran the determine_types pass, so we need to run it now
-  // for the new statement.
-  s->determine_types();
-
-  // Sanity check.
-  gogo->check_types_in_block(block);
-
-  // Return true to tell the block not to keep looking at statements.
-  return true;
-}
-
-// Set the name to use for thunk parameter N.
-
-void
-Thunk_statement::thunk_field_param(int n, char* buf, size_t buflen)
-{
-  snprintf(buf, buflen, "a%d", n);
-}
-
-// Build a new struct type to hold the parameters for a complicated
-// thunk statement.  FNTYPE is the type of the function call.
-
-Struct_type*
-Thunk_statement::build_struct(Function_type* fntype)
-{
-  source_location location = this->location();
-
-  Struct_field_list* fields = new Struct_field_list();
-
-  Call_expression* ce = this->call_->call_expression();
-  Expression* fn = ce->fn();
-
-  Interface_field_reference_expression* interface_method =
-    fn->interface_field_reference_expression();
-  if (interface_method != NULL)
-    {
-      // If this thunk statement calls a method on an interface, we
-      // pass the interface object to the thunk.
-      Typed_identifier tid(Thunk_statement::thunk_field_fn,
-                          interface_method->expr()->type(),
-                          location);
-      fields->push_back(Struct_field(tid));
-    }
-  else if (!fntype->is_builtin())
-    {
-      // The function to call.
-      Typed_identifier tid(Go_statement::thunk_field_fn, fntype, location);
-      fields->push_back(Struct_field(tid));
-    }
-  else if (ce->is_recover_call())
-    {
-      // The predeclared recover function has no argument.  However,
-      // we add an argument when building recover thunks.  Handle that
-      // here.
-      fields->push_back(Struct_field(Typed_identifier("can_recover",
-                                                     Type::make_boolean_type(),
-                                                     location)));
-    }
-
-  if (fn->bound_method_expression() != NULL)
-    {
-      gcc_assert(fntype->is_method());
-      Type* rtype = fntype->receiver()->type();
-      // We always pass the receiver as a pointer.
-      if (rtype->points_to() == NULL)
-       rtype = Type::make_pointer_type(rtype);
-      Typed_identifier tid(Thunk_statement::thunk_field_receiver, rtype,
-                          location);
-      fields->push_back(Struct_field(tid));
-    }
-
-  const Expression_list* args = ce->args();
-  if (args != NULL)
-    {
-      int i = 0;
-      for (Expression_list::const_iterator p = args->begin();
-          p != args->end();
-          ++p, ++i)
-       {
-         char buf[50];
-         this->thunk_field_param(i, buf, sizeof buf);
-         fields->push_back(Struct_field(Typed_identifier(buf, (*p)->type(),
-                                                         location)));
-       }
-    }
-
-  return Type::make_struct_type(fields, location);
-}
-
-// Build the thunk we are going to call.  This is a brand new, albeit
-// artificial, function.
-
-void
-Thunk_statement::build_thunk(Gogo* gogo, const std::string& thunk_name,
-                            Function_type* fntype)
-{
-  source_location location = this->location();
-
-  Call_expression* ce = this->call_->call_expression();
-
-  bool may_call_recover = false;
-  if (this->classification() == STATEMENT_DEFER)
-    {
-      Func_expression* fn = ce->fn()->func_expression();
-      if (fn == NULL)
-       may_call_recover = true;
-      else
-       {
-         const Named_object* no = fn->named_object();
-         if (!no->is_function())
-           may_call_recover = true;
-         else
-           may_call_recover = no->func_value()->calls_recover();
-       }
-    }
-
-  // Build the type of the thunk.  The thunk takes a single parameter,
-  // which is a pointer to the special structure we build.
-  const char* const parameter_name = "__go_thunk_parameter";
-  Typed_identifier_list* thunk_parameters = new Typed_identifier_list();
-  Type* pointer_to_struct_type = Type::make_pointer_type(this->struct_type_);
-  thunk_parameters->push_back(Typed_identifier(parameter_name,
-                                              pointer_to_struct_type,
-                                              location));
-
-  Typed_identifier_list* thunk_results = NULL;
-  if (may_call_recover)
-    {
-      // When deferring a function which may call recover, add a
-      // return value, to disable tail call optimizations which will
-      // break the way we check whether recover is permitted.
-      thunk_results = new Typed_identifier_list();
-      thunk_results->push_back(Typed_identifier("", Type::make_boolean_type(),
-                                               location));
-    }
-
-  Function_type* thunk_type = Type::make_function_type(NULL, thunk_parameters,
-                                                      thunk_results,
-                                                      location);
-
-  // Start building the thunk.
-  Named_object* function = gogo->start_function(thunk_name, thunk_type, true,
-                                               location);
-
-  // For a defer statement, start with a call to
-  // __go_set_defer_retaddr.  */
-  Label* retaddr_label = NULL; 
-  if (may_call_recover)
-    {
-      retaddr_label = gogo->add_label_reference("retaddr");
-      Expression* arg = Expression::make_label_addr(retaddr_label, location);
-      Expression_list* args = new Expression_list();
-      args->push_back(arg);
-
-      static Named_object* set_defer_retaddr;
-      if (set_defer_retaddr == NULL)
-       {
-         const source_location bloc = BUILTINS_LOCATION;
-         Typed_identifier_list* param_types = new Typed_identifier_list();
-         Type *voidptr_type = Type::make_pointer_type(Type::make_void_type());
-         param_types->push_back(Typed_identifier("r", voidptr_type, bloc));
-
-         Typed_identifier_list* result_types = new Typed_identifier_list();
-         result_types->push_back(Typed_identifier("",
-                                                  Type::make_boolean_type(),
-                                                  bloc));
-
-         Function_type* t = Type::make_function_type(NULL, param_types,
-                                                     result_types, bloc);
-         set_defer_retaddr =
-           Named_object::make_function_declaration("__go_set_defer_retaddr",
-                                                   NULL, t, bloc);
-         const char* n = "__go_set_defer_retaddr";
-         set_defer_retaddr->func_declaration_value()->set_asm_name(n);
-       }
-
-      Expression* fn = Expression::make_func_reference(set_defer_retaddr,
-                                                      NULL, location);
-      Expression* call = Expression::make_call(fn, args, false, location);
-
-      // This is a hack to prevent the middle-end from deleting the
-      // label.
-      gogo->start_block(location);
-      gogo->add_statement(Statement::make_goto_statement(retaddr_label,
-                                                        location));
-      Block* then_block = gogo->finish_block(location);
-      then_block->determine_types();
-
-      Statement* s = Statement::make_if_statement(call, then_block, NULL,
-                                                 location);
-      s->determine_types();
-      gogo->add_statement(s);
-    }
-
-  // Get a reference to the parameter.
-  Named_object* named_parameter = gogo->lookup(parameter_name, NULL);
-  gcc_assert(named_parameter != NULL && named_parameter->is_variable());
-
-  // Build the call.  Note that the field names are the same as the
-  // ones used in build_struct.
-  Expression* thunk_parameter = Expression::make_var_reference(named_parameter,
-                                                              location);
-  thunk_parameter = Expression::make_unary(OPERATOR_MULT, thunk_parameter,
-                                          location);
-
-  Bound_method_expression* bound_method = ce->fn()->bound_method_expression();
-  Interface_field_reference_expression* interface_method =
-    ce->fn()->interface_field_reference_expression();
-
-  Expression* func_to_call;
-  unsigned int next_index;
-  if (!fntype->is_builtin())
-    {
-      func_to_call = Expression::make_field_reference(thunk_parameter,
-                                                     0, location);
-      next_index = 1;
-    }
-  else
-    {
-      gcc_assert(bound_method == NULL && interface_method == NULL);
-      func_to_call = ce->fn();
-      next_index = 0;
-    }
-
-  if (bound_method != NULL)
-    {
-      Expression* r = Expression::make_field_reference(thunk_parameter, 1,
-                                                      location);
-      // The main program passes in a function pointer from the
-      // interface expression, so here we can make a bound method in
-      // all cases.
-      func_to_call = Expression::make_bound_method(r, func_to_call,
-                                                  location);
-      next_index = 2;
-    }
-  else if (interface_method != NULL)
-    {
-      // The main program passes the interface object.
-      const std::string& name(interface_method->name());
-      func_to_call = Expression::make_interface_field_reference(func_to_call,
-                                                               name,
-                                                               location);
-    }
-
-  Expression_list* call_params = new Expression_list();
-  const Struct_field_list* fields = this->struct_type_->fields();
-  Struct_field_list::const_iterator p = fields->begin();
-  for (unsigned int i = 0; i < next_index; ++i)
-    ++p;
-  for (; p != fields->end(); ++p, ++next_index)
-    {
-      Expression* thunk_param = Expression::make_var_reference(named_parameter,
-                                                              location);
-      thunk_param = Expression::make_unary(OPERATOR_MULT, thunk_param,
-                                          location);
-      Expression* param = Expression::make_field_reference(thunk_param,
-                                                          next_index,
-                                                          location);
-      call_params->push_back(param);
-    }
-
-  Expression* call = Expression::make_call(func_to_call, call_params, false,
-                                          location);
-  // We need to lower in case this is a builtin function.
-  call = call->lower(gogo, function, -1);
-  if (may_call_recover)
-    {
-      Call_expression* ce = call->call_expression();
-      if (ce != NULL)
-       ce->set_is_deferred();
-    }
-
-  Statement* call_statement = Statement::make_statement(call);
-
-  // We already ran the determine_types pass, so we need to run it
-  // just for this statement now.
-  call_statement->determine_types();
-
-  gogo->add_statement(call_statement);
-
-  // If this is a defer statement, the label comes immediately after
-  // the call.
-  if (may_call_recover)
-    {
-      gogo->add_label_definition("retaddr", location);
-
-      Expression_list* vals = new Expression_list();
-      vals->push_back(Expression::make_boolean(false, location));
-      const Typed_identifier_list* results =
-       function->func_value()->type()->results();
-      gogo->add_statement(Statement::make_return_statement(results, vals,
-                                                         location));
-    }
-
-  // That is all the thunk has to do.
-  gogo->finish_function(location);
-}
-
-// Get the function and argument trees.
-
-void
-Thunk_statement::get_fn_and_arg(Translate_context* context, tree* pfn,
-                               tree* parg)
-{
-  if (this->call_->is_error_expression())
-    {
-      *pfn = error_mark_node;
-      *parg = error_mark_node;
-      return;
-    }
-
-  Call_expression* ce = this->call_->call_expression();
-
-  Expression* fn = ce->fn();
-  *pfn = fn->get_tree(context);
-
-  const Expression_list* args = ce->args();
-  if (args == NULL || args->empty())
-    *parg = null_pointer_node;
-  else
-    {
-      gcc_assert(args->size() == 1);
-      *parg = args->front()->get_tree(context);
-    }
-}
-
-// Class Go_statement.
-
-tree
-Go_statement::do_get_tree(Translate_context* context)
-{
-  tree fn_tree;
-  tree arg_tree;
-  this->get_fn_and_arg(context, &fn_tree, &arg_tree);
-
-  static tree go_fndecl;
-
-  tree fn_arg_type = NULL_TREE;
-  if (go_fndecl == NULL_TREE)
-    {
-      // Only build FN_ARG_TYPE if we need it.
-      tree subargtypes = tree_cons(NULL_TREE, ptr_type_node, void_list_node);
-      tree subfntype = build_function_type(ptr_type_node, subargtypes);
-      fn_arg_type = build_pointer_type(subfntype);
-    }
-
-  return Gogo::call_builtin(&go_fndecl,
-                           this->location(),
-                           "__go_go",
-                           2,
-                           void_type_node,
-                           fn_arg_type,
-                           fn_tree,
-                           ptr_type_node,
-                           arg_tree);
-}
-
-// Make a go statement.
-
-Statement*
-Statement::make_go_statement(Call_expression* call, source_location location)
-{
-  return new Go_statement(call, location);
-}
-
-// Class Defer_statement.
-
-tree
-Defer_statement::do_get_tree(Translate_context* context)
-{
-  source_location loc = this->location();
-
-  tree fn_tree;
-  tree arg_tree;
-  this->get_fn_and_arg(context, &fn_tree, &arg_tree);
-  if (fn_tree == error_mark_node || arg_tree == error_mark_node)
-    return error_mark_node;
-
-  static tree defer_fndecl;
-
-  tree fn_arg_type = NULL_TREE;
-  if (defer_fndecl == NULL_TREE)
-    {
-      // Only build FN_ARG_TYPE if we need it.
-      tree subargtypes = tree_cons(NULL_TREE, ptr_type_node, void_list_node);
-      tree subfntype = build_function_type(ptr_type_node, subargtypes);
-      fn_arg_type = build_pointer_type(subfntype);
-    }
-
-  tree defer_stack = context->function()->func_value()->defer_stack(loc);
-
-  return Gogo::call_builtin(&defer_fndecl,
-                           loc,
-                           "__go_defer",
-                           3,
-                           void_type_node,
-                           ptr_type_node,
-                           defer_stack,
-                           fn_arg_type,
-                           fn_tree,
-                           ptr_type_node,
-                           arg_tree);
-}
-
-// Make a defer statement.
-
-Statement*
-Statement::make_defer_statement(Call_expression* call,
-                               source_location location)
-{
-  return new Defer_statement(call, location);
-}
-
-// Class Return_statement.
-
-// Traverse assignments.  We treat each return value as a top level
-// RHS in an expression.
-
-bool
-Return_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  Expression_list* vals = this->vals_;
-  if (vals != NULL)
-    {
-      for (Expression_list::iterator p = vals->begin();
-          p != vals->end();
-          ++p)
-       tassign->value(&*p, true, true);
-    }
-  return true;
-}
-
-// Lower a return statement.  If we are returning a function call
-// which returns multiple values which match the current function,
-// split up the call's results.  If the function has named result
-// variables, and the return statement lists explicit values, then
-// implement it by assigning the values to the result variables and
-// changing the statement to not list any values.  This lets
-// panic/recover work correctly.
-
-Statement*
-Return_statement::do_lower(Gogo*, Block* enclosing)
-{
-  if (this->vals_ == NULL)
-    return this;
-
-  const Typed_identifier_list* results = this->results_;
-  if (results == NULL || results->empty())
-    return this;
-
-  // If the current function has multiple return values, and we are
-  // returning a single call expression, split up the call expression.
-  size_t results_count = results->size();
-  if (results_count > 1
-      && this->vals_->size() == 1
-      && this->vals_->front()->call_expression() != NULL)
-    {
-      Call_expression* call = this->vals_->front()->call_expression();
-      size_t count = results->size();
-      Expression_list* vals = new Expression_list;
-      for (size_t i = 0; i < count; ++i)
-       vals->push_back(Expression::make_call_result(call, i));
-      delete this->vals_;
-      this->vals_ = vals;
-    }
-
-  if (results->front().name().empty())
-    return this;
-
-  if (results_count != this->vals_->size())
-    {
-      // Presumably an error which will be reported in check_types.
-      return this;
-    }
-
-  // Assign to named return values and then return them.
-
-  source_location loc = this->location();
-  const Block* top = enclosing;
-  while (top->enclosing() != NULL)
-    top = top->enclosing();
-
-  const Bindings *bindings = top->bindings();
-  Block* b = new Block(enclosing, loc);
-
-  Expression_list* lhs = new Expression_list();
-  Expression_list* rhs = new Expression_list();
-
-  Expression_list::const_iterator pe = this->vals_->begin();
-  int i = 1;
-  for (Typed_identifier_list::const_iterator pr = results->begin();
-       pr != results->end();
-       ++pr, ++pe, ++i)
-    {
-      Named_object* rv = bindings->lookup_local(pr->name());
-      if (rv == NULL || !rv->is_result_variable())
-       {
-         // Presumably an error.
-         delete b;
-         delete lhs;
-         delete rhs;
-         return this;
-       }
-
-      Expression* e = *pe;
-
-      // Check types now so that we give a good error message.  The
-      // result type is known.  We determine the expression type
-      // early.
-
-      Type *rvtype = rv->result_var_value()->type();
-      Type_context type_context(rvtype, false);
-      e->determine_type(&type_context);
-
-      std::string reason;
-      if (Type::are_assignable(rvtype, e->type(), &reason))
-       {
-         Expression* ve = Expression::make_var_reference(rv, e->location());
-         lhs->push_back(ve);
-         rhs->push_back(e);
-       }
-      else
-       {
-         if (reason.empty())
-           error_at(e->location(), "incompatible type for return value %d", i);
-         else
-           error_at(e->location(),
-                    "incompatible type for return value %d (%s)",
-                    i, reason.c_str());
-       }
-    }
-  gcc_assert(lhs->size() == rhs->size());
-
-  if (lhs->empty())
-    ;
-  else if (lhs->size() == 1)
-    {
-      b->add_statement(Statement::make_assignment(lhs->front(), rhs->front(),
-                                                 loc));
-      delete lhs;
-      delete rhs;
-    }
-  else
-    b->add_statement(Statement::make_tuple_assignment(lhs, rhs, loc));
-
-  b->add_statement(Statement::make_return_statement(this->results_, NULL,
-                                                   loc));
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Determine types.
-
-void
-Return_statement::do_determine_types()
-{
-  if (this->vals_ == NULL)
-    return;
-  const Typed_identifier_list* results = this->results_;
-
-  Typed_identifier_list::const_iterator pt;
-  if (results != NULL)
-    pt = results->begin();
-  for (Expression_list::iterator pe = this->vals_->begin();
-       pe != this->vals_->end();
-       ++pe)
-    {
-      if (results == NULL || pt == results->end())
-       (*pe)->determine_type_no_context();
-      else
-       {
-         Type_context context(pt->type(), false);
-         (*pe)->determine_type(&context);
-         ++pt;
-       }
-    }
-}
-
-// Check types.
-
-void
-Return_statement::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  const Typed_identifier_list* results = this->results_;
-  if (results == NULL)
-    {
-      this->report_error(_("return with value in function "
-                          "with no return type"));
-      return;
-    }
-
-  int i = 1;
-  Typed_identifier_list::const_iterator pt = results->begin();
-  for (Expression_list::const_iterator pe = this->vals_->begin();
-       pe != this->vals_->end();
-       ++pe, ++pt, ++i)
-    {
-      if (pt == results->end())
-       {
-         this->report_error(_("too many values in return statement"));
-         return;
-       }
-      std::string reason;
-      if (!Type::are_assignable(pt->type(), (*pe)->type(), &reason))
-       {
-         if (reason.empty())
-           error_at(this->location(),
-                    "incompatible type for return value %d",
-                    i);
-         else
-           error_at(this->location(),
-                    "incompatible type for return value %d (%s)",
-                    i, reason.c_str());
-         this->set_is_error();
-       }
-      else if (pt->type()->is_error_type()
-              || (*pe)->type()->is_error_type()
-              || pt->type()->is_undefined()
-              || (*pe)->type()->is_undefined())
-       {
-         // Make sure we get the error for an undefined type.
-         pt->type()->base();
-         (*pe)->type()->base();
-         this->set_is_error();
-       }
-    }
-
-  if (pt != results->end())
-    this->report_error(_("not enough values in return statement"));
-}
-
-// Build a RETURN_EXPR tree.
-
-tree
-Return_statement::do_get_tree(Translate_context* context)
-{
-  Function* function = context->function()->func_value();
-  tree fndecl = function->get_decl();
-
-  const Typed_identifier_list* results = this->results_;
-
-  if (this->vals_ == NULL)
-    {
-      tree stmt_list = NULL_TREE;
-      tree retval = function->return_value(context->gogo(),
-                                          context->function(),
-                                          this->location(),
-                                          &stmt_list);
-      tree set;
-      if (retval == NULL_TREE)
-       set = NULL_TREE;
-      else
-       set = fold_build2_loc(this->location(), MODIFY_EXPR, void_type_node,
-                             DECL_RESULT(fndecl), retval);
-      append_to_statement_list(this->build_stmt_1(RETURN_EXPR, set),
-                              &stmt_list);
-      return stmt_list;
-    }
-  else if (this->vals_->size() == 1)
-    {
-      gcc_assert(!VOID_TYPE_P(TREE_TYPE(TREE_TYPE(fndecl))));
-      tree val = (*this->vals_->begin())->get_tree(context);
-      if (val == error_mark_node)
-       return error_mark_node;
-      gcc_assert(results != NULL && results->size() == 1);
-      val = Expression::convert_for_assignment(context,
-                                              results->begin()->type(),
-                                              (*this->vals_->begin())->type(),
-                                              val, this->location());
-      tree set = build2(MODIFY_EXPR, void_type_node,
-                       DECL_RESULT(fndecl), val);
-      SET_EXPR_LOCATION(set, this->location());
-      return this->build_stmt_1(RETURN_EXPR, set);
-    }
-  else
-    {
-      gcc_assert(!VOID_TYPE_P(TREE_TYPE(TREE_TYPE(fndecl))));
-      tree stmt_list = NULL_TREE;
-      tree rettype = TREE_TYPE(DECL_RESULT(fndecl));
-      tree retvar = create_tmp_var(rettype, "RESULT");
-      gcc_assert(results != NULL && results->size() == this->vals_->size());
-      Expression_list::const_iterator pv = this->vals_->begin();
-      Typed_identifier_list::const_iterator pr = results->begin();
-      for (tree field = TYPE_FIELDS(rettype);
-          field != NULL_TREE;
-          ++pv, ++pr, field = DECL_CHAIN(field))
-       {
-         gcc_assert(pv != this->vals_->end());
-         tree val = (*pv)->get_tree(context);
-         if (val == error_mark_node)
-           return error_mark_node;
-         val = Expression::convert_for_assignment(context, pr->type(),
-                                                  (*pv)->type(), val,
-                                                  this->location());
-         tree set = build2(MODIFY_EXPR, void_type_node,
-                           build3(COMPONENT_REF, TREE_TYPE(field),
-                                  retvar, field, NULL_TREE),
-                           val);
-         SET_EXPR_LOCATION(set, this->location());
-         append_to_statement_list(set, &stmt_list);
-       }
-      tree set = build2(MODIFY_EXPR, void_type_node, DECL_RESULT(fndecl),
-                       retvar);
-      append_to_statement_list(this->build_stmt_1(RETURN_EXPR, set),
-                              &stmt_list);
-      return stmt_list;
-    }
-}
-
-// Make a return statement.
-
-Statement*
-Statement::make_return_statement(const Typed_identifier_list* results,
-                                Expression_list* vals,
-                                source_location location)
-{
-  return new Return_statement(results, vals, location);
-}
-
-// A break or continue statement.
-
-class Bc_statement : public Statement
-{
- public:
-  Bc_statement(bool is_break, Unnamed_label* label, source_location location)
-    : Statement(STATEMENT_BREAK_OR_CONTINUE, location),
-      label_(label), is_break_(is_break)
-  { }
-
-  bool
-  is_break() const
-  { return this->is_break_; }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->label_->get_goto(this->location()); }
-
- private:
-  // The label that this branches to.
-  Unnamed_label* label_;
-  // True if this is "break", false if it is "continue".
-  bool is_break_;
-};
-
-// Make a break statement.
-
-Statement*
-Statement::make_break_statement(Unnamed_label* label, source_location location)
-{
-  return new Bc_statement(true, label, location);
-}
-
-// Make a continue statement.
-
-Statement*
-Statement::make_continue_statement(Unnamed_label* label,
-                                  source_location location)
-{
-  return new Bc_statement(false, label, location);
-}
-
-// A goto statement.
-
-class Goto_statement : public Statement
-{
- public:
-  Goto_statement(Label* label, source_location location)
-    : Statement(STATEMENT_GOTO, location),
-      label_(label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  Label* label_;
-};
-
-// Check types for a label.  There aren't any types per se, but we use
-// this to give an error if the label was never defined.
-
-void
-Goto_statement::do_check_types(Gogo*)
-{
-  if (!this->label_->is_defined())
-    {
-      error_at(this->location(), "reference to undefined label %qs",
-              Gogo::message_name(this->label_->name()).c_str());
-      this->set_is_error();
-    }
-}
-
-// Return the tree for the goto statement.
-
-tree
-Goto_statement::do_get_tree(Translate_context*)
-{
-  return this->build_stmt_1(GOTO_EXPR, this->label_->get_decl());
-}
-
-// Make a goto statement.
-
-Statement*
-Statement::make_goto_statement(Label* label, source_location location)
-{
-  return new Goto_statement(label, location);
-}
-
-// A goto statement to an unnamed label.
-
-class Goto_unnamed_statement : public Statement
-{
- public:
-  Goto_unnamed_statement(Unnamed_label* label, source_location location)
-    : Statement(STATEMENT_GOTO_UNNAMED, location),
-      label_(label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->label_->get_goto(this->location()); }
-
- private:
-  Unnamed_label* label_;
-};
-
-// Make a goto statement to an unnamed label.
-
-Statement*
-Statement::make_goto_unnamed_statement(Unnamed_label* label,
-                                      source_location location)
-{
-  return new Goto_unnamed_statement(label, location);
-}
-
-// Class Label_statement.
-
-// Traversal.
-
-int
-Label_statement::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// Return a tree defining this label.
-
-tree
-Label_statement::do_get_tree(Translate_context*)
-{
-  return this->build_stmt_1(LABEL_EXPR, this->label_->get_decl());
-}
-
-// Make a label statement.
-
-Statement*
-Statement::make_label_statement(Label* label, source_location location)
-{
-  return new Label_statement(label, location);
-}
-
-// An unnamed label statement.
-
-class Unnamed_label_statement : public Statement
-{
- public:
-  Unnamed_label_statement(Unnamed_label* label)
-    : Statement(STATEMENT_UNNAMED_LABEL, label->location()),
-      label_(label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->label_->get_definition(); }
-
- private:
-  // The label.
-  Unnamed_label* label_;
-};
-
-// Make an unnamed label statement.
-
-Statement*
-Statement::make_unnamed_label_statement(Unnamed_label* label)
-{
-  return new Unnamed_label_statement(label);
-}
-
-// An if statement.
-
-class If_statement : public Statement
-{
- public:
-  If_statement(Expression* cond, Block* then_block, Block* else_block,
-              source_location location)
-    : Statement(STATEMENT_IF, location),
-      cond_(cond), then_block_(then_block), else_block_(else_block)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const;
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  Expression* cond_;
-  Block* then_block_;
-  Block* else_block_;
-};
-
-// Traversal.
-
-int
-If_statement::do_traverse(Traverse* traverse)
-{
-  if (this->cond_ != NULL)
-    {
-      if (this->traverse_expression(traverse, &this->cond_) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->then_block_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->else_block_ != NULL)
-    {
-      if (this->else_block_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-void
-If_statement::do_determine_types()
-{
-  if (this->cond_ != NULL)
-    {
-      Type_context context(Type::lookup_bool_type(), false);
-      this->cond_->determine_type(&context);
-    }
-  this->then_block_->determine_types();
-  if (this->else_block_ != NULL)
-    this->else_block_->determine_types();
-}
-
-// Check types.
-
-void
-If_statement::do_check_types(Gogo*)
-{
-  if (this->cond_ != NULL)
-    {
-      Type* type = this->cond_->type();
-      if (type->is_error_type())
-       this->set_is_error();
-      else if (!type->is_boolean_type())
-       this->report_error(_("expected boolean expression"));
-    }
-}
-
-// Whether the overall statement may fall through.
-
-bool
-If_statement::do_may_fall_through() const
-{
-  return (this->else_block_ == NULL
-         || this->then_block_->may_fall_through()
-         || this->else_block_->may_fall_through());
-}
-
-// Get tree.
-
-tree
-If_statement::do_get_tree(Translate_context* context)
-{
-  gcc_assert(this->cond_ == NULL || this->cond_->type()->is_boolean_type());
-  tree ret = build3(COND_EXPR, void_type_node,
-                   (this->cond_ == NULL
-                    ? boolean_true_node
-                    : this->cond_->get_tree(context)),
-                   this->then_block_->get_tree(context),
-                   (this->else_block_ == NULL
-                    ? NULL_TREE
-                    : this->else_block_->get_tree(context)));
-  SET_EXPR_LOCATION(ret, this->location());
-  return ret;
-}
-
-// Make an if statement.
-
-Statement*
-Statement::make_if_statement(Expression* cond, Block* then_block,
-                            Block* else_block, source_location location)
-{
-  return new If_statement(cond, then_block, else_block, location);
-}
-
-// Class Case_clauses::Case_clause.
-
-// Traversal.
-
-int
-Case_clauses::Case_clause::traverse(Traverse* traverse)
-{
-  if (this->cases_ != NULL
-      && (traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
-    {
-      if (this->cases_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->statements_ != NULL)
-    {
-      if (this->statements_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check whether all the case expressions are integer constants.
-
-bool
-Case_clauses::Case_clause::is_constant() const
-{
-  if (this->cases_ != NULL)
-    {
-      for (Expression_list::const_iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       if (!(*p)->is_constant() || (*p)->type()->integer_type() == NULL)
-         return false;
-    }
-  return true;
-}
-
-// Lower a case clause for a nonconstant switch.  VAL_TEMP is the
-// value we are switching on; it may be NULL.  If START_LABEL is not
-// NULL, it goes at the start of the statements, after the condition
-// test.  We branch to FINISH_LABEL at the end of the statements.
-
-void
-Case_clauses::Case_clause::lower(Block* b, Temporary_statement* val_temp,
-                                Unnamed_label* start_label,
-                                Unnamed_label* finish_label) const
-{
-  source_location loc = this->location_;
-  Unnamed_label* next_case_label;
-  if (this->cases_ == NULL || this->cases_->empty())
-    {
-      gcc_assert(this->is_default_);
-      next_case_label = NULL;
-    }
-  else
-    {
-      Expression* cond = NULL;
-
-      for (Expression_list::const_iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       {
-         Expression* this_cond;
-         if (val_temp == NULL)
-           this_cond = *p;
-         else
-           {
-             Expression* ref = Expression::make_temporary_reference(val_temp,
-                                                                    loc);
-             this_cond = Expression::make_binary(OPERATOR_EQEQ, ref, *p, loc);
-           }
-
-         if (cond == NULL)
-           cond = this_cond;
-         else
-           cond = Expression::make_binary(OPERATOR_OROR, cond, this_cond, loc);
-       }
-
-      Block* then_block = new Block(b, loc);
-      next_case_label = new Unnamed_label(UNKNOWN_LOCATION);
-      Statement* s = Statement::make_goto_unnamed_statement(next_case_label,
-                                                           loc);
-      then_block->add_statement(s);
-
-      // if !COND { goto NEXT_CASE_LABEL }
-      cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
-      s = Statement::make_if_statement(cond, then_block, NULL, loc);
-      b->add_statement(s);
-    }
-
-  if (start_label != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(start_label));
-
-  if (this->statements_ != NULL)
-    b->add_statement(Statement::make_block_statement(this->statements_, loc));
-
-  Statement* s = Statement::make_goto_unnamed_statement(finish_label, loc);
-  b->add_statement(s);
-
-  if (next_case_label != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(next_case_label));
-}
-
-// Determine types.
-
-void
-Case_clauses::Case_clause::determine_types(Type* type)
-{
-  if (this->cases_ != NULL)
-    {
-      Type_context case_context(type, false);
-      for (Expression_list::iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       (*p)->determine_type(&case_context);
-    }
-  if (this->statements_ != NULL)
-    this->statements_->determine_types();
-}
-
-// Check types.  Returns false if there was an error.
-
-bool
-Case_clauses::Case_clause::check_types(Type* type)
-{
-  if (this->cases_ != NULL)
-    {
-      for (Expression_list::iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       {
-         if (!Type::are_assignable(type, (*p)->type(), NULL)
-             && !Type::are_assignable((*p)->type(), type, NULL))
-           {
-             error_at((*p)->location(),
-                      "type mismatch between switch value and case clause");
-             return false;
-           }
-       }
-    }
-  return true;
-}
-
-// Return true if this clause may fall through to the following
-// statements.  Note that this is not the same as whether the case
-// uses the "fallthrough" keyword.
-
-bool
-Case_clauses::Case_clause::may_fall_through() const
-{
-  if (this->statements_ == NULL)
-    return true;
-  return this->statements_->may_fall_through();
-}
-
-// Build up the body of a SWITCH_EXPR.
-
-void
-Case_clauses::Case_clause::get_constant_tree(Translate_context* context,
-                                            Unnamed_label* break_label,
-                                            Case_constants* case_constants,
-                                            tree* stmt_list) const
-{
-  if (this->cases_ != NULL)
-    {
-      for (Expression_list::const_iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       {
-         Type* itype;
-         mpz_t ival;
-         mpz_init(ival);
-         if (!(*p)->integer_constant_value(true, ival, &itype))
-           gcc_unreachable();
-         gcc_assert(itype != NULL);
-         tree type_tree = itype->get_tree(context->gogo());
-         tree val = Expression::integer_constant_tree(ival, type_tree);
-         mpz_clear(ival);
-
-         if (val != error_mark_node)
-           {
-             gcc_assert(TREE_CODE(val) == INTEGER_CST);
-
-             std::pair<Case_constants::iterator, bool> ins =
-               case_constants->insert(val);
-             if (!ins.second)
-               {
-                 // Value was already present.
-                 warning_at(this->location_, 0,
-                            "duplicate case value will never match");
-                 continue;
-               }
-
-             tree label = create_artificial_label(this->location_);
-             append_to_statement_list(build3(CASE_LABEL_EXPR, void_type_node,
-                                             val, NULL_TREE, label),
-                                      stmt_list);
-           }
-       }
-    }
-
-  if (this->is_default_)
-    {
-      tree label = create_artificial_label(this->location_);
-      append_to_statement_list(build3(CASE_LABEL_EXPR, void_type_node,
-                                     NULL_TREE, NULL_TREE, label),
-                              stmt_list);
-    }
-
-  if (this->statements_ != NULL)
-    {
-      tree block_tree = this->statements_->get_tree(context);
-      if (block_tree != error_mark_node)
-       append_to_statement_list(block_tree, stmt_list);
-    }
-
-  if (!this->is_fallthrough_)
-    append_to_statement_list(break_label->get_goto(this->location_), stmt_list);
-}
-
-// Class Case_clauses.
-
-// Traversal.
-
-int
-Case_clauses::traverse(Traverse* traverse)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check whether all the case expressions are constant.
-
-bool
-Case_clauses::is_constant() const
-{
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    if (!p->is_constant())
-      return false;
-  return true;
-}
-
-// Lower case clauses for a nonconstant switch.
-
-void
-Case_clauses::lower(Block* b, Temporary_statement* val_temp,
-                   Unnamed_label* break_label) const
-{
-  // The default case.
-  const Case_clause* default_case = NULL;
-
-  // The label for the fallthrough of the previous case.
-  Unnamed_label* last_fallthrough_label = NULL;
-
-  // The label for the start of the default case.  This is used if the
-  // case before the default case falls through.
-  Unnamed_label* default_start_label = NULL;
-
-  // The label for the end of the default case.  This normally winds
-  // up as BREAK_LABEL, but it will be different if the default case
-  // falls through.
-  Unnamed_label* default_finish_label = NULL;
-
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      // The label to use for the start of the statements for this
-      // case.  This is NULL unless the previous case falls through.
-      Unnamed_label* start_label = last_fallthrough_label;
-
-      // The label to jump to after the end of the statements for this
-      // case.
-      Unnamed_label* finish_label = break_label;
-
-      last_fallthrough_label = NULL;
-      if (p->is_fallthrough() && p + 1 != this->clauses_.end())
-       {
-         finish_label = new Unnamed_label(p->location());
-         last_fallthrough_label = finish_label;
-       }
-
-      if (!p->is_default())
-       p->lower(b, val_temp, start_label, finish_label);
-      else
-       {
-         // We have to move the default case to the end, so that we
-         // only use it if all the other tests fail.
-         default_case = &*p;
-         default_start_label = start_label;
-         default_finish_label = finish_label;
-       }
-    }
-
-  if (default_case != NULL)
-    default_case->lower(b, val_temp, default_start_label,
-                       default_finish_label);
-      
-}
-
-// Determine types.
-
-void
-Case_clauses::determine_types(Type* type)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->determine_types(type);
-}
-
-// Check types.  Returns false if there was an error.
-
-bool
-Case_clauses::check_types(Type* type)
-{
-  bool ret = true;
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (!p->check_types(type))
-       ret = false;
-    }
-  return ret;
-}
-
-// Return true if these clauses may fall through to the statements
-// following the switch statement.
-
-bool
-Case_clauses::may_fall_through() const
-{
-  bool found_default = false;
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->may_fall_through() && !p->is_fallthrough())
-       return true;
-      if (p->is_default())
-       found_default = true;
-    }
-  return !found_default;
-}
-
-// Return a tree when all case expressions are constants.
-
-tree
-Case_clauses::get_constant_tree(Translate_context* context,
-                               Unnamed_label* break_label) const
-{
-  Case_constants case_constants;
-  tree stmt_list = NULL_TREE;
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->get_constant_tree(context, break_label, &case_constants,
-                        &stmt_list);
-  return stmt_list;
-}
-
-// A constant switch statement.  A Switch_statement is lowered to this
-// when all the cases are constants.
-
-class Constant_switch_statement : public Statement
-{
- public:
-  Constant_switch_statement(Expression* val, Case_clauses* clauses,
-                           Unnamed_label* break_label,
-                           source_location location)
-    : Statement(STATEMENT_CONSTANT_SWITCH, location),
-      val_(val), clauses_(clauses), break_label_(break_label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const;
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The value to switch on.
-  Expression* val_;
-  // The case clauses.
-  Case_clauses* clauses_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-};
-
-// Traversal.
-
-int
-Constant_switch_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->clauses_->traverse(traverse);
-}
-
-// Determine types.
-
-void
-Constant_switch_statement::do_determine_types()
-{
-  this->val_->determine_type_no_context();
-  this->clauses_->determine_types(this->val_->type());
-}
-
-// Check types.
-
-void
-Constant_switch_statement::do_check_types(Gogo*)
-{
-  if (!this->clauses_->check_types(this->val_->type()))
-    this->set_is_error();
-}
-
-// Return whether this switch may fall through.
-
-bool
-Constant_switch_statement::do_may_fall_through() const
-{
-  if (this->clauses_ == NULL)
-    return true;
-
-  // If we have a break label, then some case needed it.  That implies
-  // that the switch statement as a whole can fall through.
-  if (this->break_label_ != NULL)
-    return true;
-
-  return this->clauses_->may_fall_through();
-}
-
-// Convert to GENERIC.
-
-tree
-Constant_switch_statement::do_get_tree(Translate_context* context)
-{
-  tree switch_val_tree = this->val_->get_tree(context);
-
-  Unnamed_label* break_label = this->break_label_;
-  if (break_label == NULL)
-    break_label = new Unnamed_label(this->location());
-
-  tree stmt_list = NULL_TREE;
-  tree s = build3(SWITCH_EXPR, void_type_node, switch_val_tree,
-                 this->clauses_->get_constant_tree(context, break_label),
-                 NULL_TREE);
-  SET_EXPR_LOCATION(s, this->location());
-  append_to_statement_list(s, &stmt_list);
-
-  append_to_statement_list(break_label->get_definition(), &stmt_list);
-
-  return stmt_list;
-}
-
-// Class Switch_statement.
-
-// Traversal.
-
-int
-Switch_statement::do_traverse(Traverse* traverse)
-{
-  if (this->val_ != NULL)
-    {
-      if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return this->clauses_->traverse(traverse);
-}
-
-// Lower a Switch_statement to a Constant_switch_statement or a series
-// of if statements.
-
-Statement*
-Switch_statement::do_lower(Gogo*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  if (this->val_ != NULL
-      && (this->val_->is_error_expression()
-         || this->val_->type()->is_error_type()))
-    return Statement::make_error_statement(loc);
-
-  if (this->val_ != NULL
-      && this->val_->type()->integer_type() != NULL
-      && !this->clauses_->empty()
-      && this->clauses_->is_constant())
-    return new Constant_switch_statement(this->val_, this->clauses_,
-                                        this->break_label_, loc);
-
-  Block* b = new Block(enclosing, loc);
-
-  if (this->clauses_->empty())
-    {
-      Expression* val = this->val_;
-      if (val == NULL)
-       val = Expression::make_boolean(true, loc);
-      return Statement::make_statement(val);
-    }
-
-  Temporary_statement* val_temp;
-  if (this->val_ == NULL)
-    val_temp = NULL;
-  else
-    {
-      // var val_temp VAL_TYPE = VAL
-      val_temp = Statement::make_temporary(NULL, this->val_, loc);
-      b->add_statement(val_temp);
-    }
-
-  this->clauses_->lower(b, val_temp, this->break_label());
-
-  Statement* s = Statement::make_unnamed_label_statement(this->break_label_);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Return the break label for this switch statement, creating it if
-// necessary.
-
-Unnamed_label*
-Switch_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Make a switch statement.
-
-Switch_statement*
-Statement::make_switch_statement(Expression* val, source_location location)
-{
-  return new Switch_statement(val, location);
-}
-
-// Class Type_case_clauses::Type_case_clause.
-
-// Traversal.
-
-int
-Type_case_clauses::Type_case_clause::traverse(Traverse* traverse)
-{
-  if (!this->is_default_
-      && ((traverse->traverse_mask()
-          & (Traverse::traverse_types | Traverse::traverse_expressions)) != 0)
-      && Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->statements_ != NULL)
-    return this->statements_->traverse(traverse);
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower one clause in a type switch.  Add statements to the block B.
-// The type descriptor we are switching on is in DESCRIPTOR_TEMP.
-// BREAK_LABEL is the label at the end of the type switch.
-// *STMTS_LABEL, if not NULL, is a label to put at the start of the
-// statements.
-
-void
-Type_case_clauses::Type_case_clause::lower(Block* b,
-                                          Temporary_statement* descriptor_temp,
-                                          Unnamed_label* break_label,
-                                          Unnamed_label** stmts_label) const
-{
-  source_location loc = this->location_;
-
-  Unnamed_label* next_case_label = NULL;
-  if (!this->is_default_)
-    {
-      Type* type = this->type_;
-
-      Expression* cond;
-      // The language permits case nil, which is of course a constant
-      // rather than a type.  It will appear here as an invalid
-      // forwarding type.
-      if (type->is_nil_constant_as_type())
-       {
-         Expression* ref =
-           Expression::make_temporary_reference(descriptor_temp, loc);
-         cond = Expression::make_binary(OPERATOR_EQEQ, ref,
-                                        Expression::make_nil(loc),
-                                        loc);
-       }
-      else
-       {
-         Expression* func;
-         if (type->interface_type() == NULL)
-           {
-             // func ifacetypeeq(*descriptor, *descriptor) bool
-             static Named_object* ifacetypeeq;
-             if (ifacetypeeq == NULL)
-               {
-                 const source_location bloc = BUILTINS_LOCATION;
-                 Typed_identifier_list* param_types =
-                   new Typed_identifier_list();
-                 Type* descriptor_type = Type::make_type_descriptor_ptr_type();
-                 param_types->push_back(Typed_identifier("a", descriptor_type,
-                                                         bloc));
-                 param_types->push_back(Typed_identifier("b", descriptor_type,
-                                                         bloc));
-                 Typed_identifier_list* ret_types =
-                   new Typed_identifier_list();
-                 Type* bool_type = Type::lookup_bool_type();
-                 ret_types->push_back(Typed_identifier("", bool_type, bloc));
-                 Function_type* fntype = Type::make_function_type(NULL,
-                                                                  param_types,
-                                                                  ret_types,
-                                                                  bloc);
-                 ifacetypeeq =
-                   Named_object::make_function_declaration("ifacetypeeq", NULL,
-                                                           fntype, bloc);
-                 const char* n = "runtime.ifacetypeeq";
-                 ifacetypeeq->func_declaration_value()->set_asm_name(n);
-               }
-
-             // ifacetypeeq(descriptor_temp, DESCRIPTOR)
-             func = Expression::make_func_reference(ifacetypeeq, NULL, loc);
-           }
-         else
-           {
-             // func ifaceI2Tp(*descriptor, *descriptor) bool
-             static Named_object* ifaceI2Tp;
-             if (ifaceI2Tp == NULL)
-               {
-                 const source_location bloc = BUILTINS_LOCATION;
-                 Typed_identifier_list* param_types =
-                   new Typed_identifier_list();
-                 Type* descriptor_type = Type::make_type_descriptor_ptr_type();
-                 param_types->push_back(Typed_identifier("a", descriptor_type,
-                                                         bloc));
-                 param_types->push_back(Typed_identifier("b", descriptor_type,
-                                                         bloc));
-                 Typed_identifier_list* ret_types =
-                   new Typed_identifier_list();
-                 Type* bool_type = Type::lookup_bool_type();
-                 ret_types->push_back(Typed_identifier("", bool_type, bloc));
-                 Function_type* fntype = Type::make_function_type(NULL,
-                                                                  param_types,
-                                                                  ret_types,
-                                                                  bloc);
-                 ifaceI2Tp =
-                   Named_object::make_function_declaration("ifaceI2Tp", NULL,
-                                                           fntype, bloc);
-                 const char* n = "runtime.ifaceI2Tp";
-                 ifaceI2Tp->func_declaration_value()->set_asm_name(n);
-               }
-
-             // ifaceI2Tp(descriptor_temp, DESCRIPTOR)
-             func = Expression::make_func_reference(ifaceI2Tp, NULL, loc);
-           }
-         Expression_list* params = new Expression_list();
-         params->push_back(Expression::make_type_descriptor(type, loc));
-         Expression* ref =
-           Expression::make_temporary_reference(descriptor_temp, loc);
-         params->push_back(ref);
-         cond = Expression::make_call(func, params, false, loc);
-       }
-
-      Unnamed_label* dest;
-      if (!this->is_fallthrough_)
-       {
-         // if !COND { goto NEXT_CASE_LABEL }
-         next_case_label = new Unnamed_label(UNKNOWN_LOCATION);
-         dest = next_case_label;
-         cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
-       }
-      else
-       {
-         // if COND { goto STMTS_LABEL }
-         gcc_assert(stmts_label != NULL);
-         if (*stmts_label == NULL)
-           *stmts_label = new Unnamed_label(UNKNOWN_LOCATION);
-         dest = *stmts_label;
-       }
-      Block* then_block = new Block(b, loc);
-      Statement* s = Statement::make_goto_unnamed_statement(dest, loc);
-      then_block->add_statement(s);
-      s = Statement::make_if_statement(cond, then_block, NULL, loc);
-      b->add_statement(s);
-    }
-
-  if (this->statements_ != NULL
-      || (!this->is_fallthrough_
-         && stmts_label != NULL
-         && *stmts_label != NULL))
-    {
-      gcc_assert(!this->is_fallthrough_);
-      if (stmts_label != NULL && *stmts_label != NULL)
-       {
-         gcc_assert(!this->is_default_);
-         if (this->statements_ != NULL)
-           (*stmts_label)->set_location(this->statements_->start_location());
-         Statement* s = Statement::make_unnamed_label_statement(*stmts_label);
-         b->add_statement(s);
-         *stmts_label = NULL;
-       }
-      if (this->statements_ != NULL)
-       b->add_statement(Statement::make_block_statement(this->statements_,
-                                                        loc));
-    }
-
-  if (this->is_fallthrough_)
-    gcc_assert(next_case_label == NULL);
-  else
-    {
-      source_location gloc = (this->statements_ == NULL
-                             ? loc
-                             : this->statements_->end_location());
-      b->add_statement(Statement::make_goto_unnamed_statement(break_label,
-                                                             gloc));
-      if (next_case_label != NULL)
-       {
-         Statement* s =
-           Statement::make_unnamed_label_statement(next_case_label);
-         b->add_statement(s);
-       }
-    }
-}
-
-// Class Type_case_clauses.
-
-// Traversal.
-
-int
-Type_case_clauses::traverse(Traverse* traverse)
-{
-  for (Type_clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check for duplicate types.
-
-void
-Type_case_clauses::check_duplicates() const
-{
-  typedef Unordered_set_hash(const Type*, Type_hash_identical,
-                            Type_identical) Types_seen;
-  Types_seen types_seen;
-  for (Type_clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      Type* t = p->type();
-      if (t == NULL)
-       continue;
-      if (t->is_nil_constant_as_type())
-       t = Type::make_nil_type();
-      std::pair<Types_seen::iterator, bool> ins = types_seen.insert(t);
-      if (!ins.second)
-       error_at(p->location(), "duplicate type in switch");
-    }
-}
-
-// Lower the clauses in a type switch.  Add statements to the block B.
-// The type descriptor we are switching on is in DESCRIPTOR_TEMP.
-// BREAK_LABEL is the label at the end of the type switch.
-
-void
-Type_case_clauses::lower(Block* b, Temporary_statement* descriptor_temp,
-                        Unnamed_label* break_label) const
-{
-  const Type_case_clause* default_case = NULL;
-
-  Unnamed_label* stmts_label = NULL;
-  for (Type_clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (!p->is_default())
-       p->lower(b, descriptor_temp, break_label, &stmts_label);
-      else
-       {
-         // We are generating a series of tests, which means that we
-         // need to move the default case to the end.
-         default_case = &*p;
-       }
-    }
-  gcc_assert(stmts_label == NULL);
-
-  if (default_case != NULL)
-    default_case->lower(b, descriptor_temp, break_label, NULL);
-}
-
-// Class Type_switch_statement.
-
-// Traversal.
-
-int
-Type_switch_statement::do_traverse(Traverse* traverse)
-{
-  if (this->var_ == NULL)
-    {
-      if (this->traverse_expression(traverse, &this->expr_) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->clauses_ != NULL)
-    return this->clauses_->traverse(traverse);
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a type switch statement to a series of if statements.  The gc
-// compiler is able to generate a table in some cases.  However, that
-// does not work for us because we may have type descriptors in
-// different shared libraries, so we can't compare them with simple
-// equality testing.
-
-Statement*
-Type_switch_statement::do_lower(Gogo*, Block* enclosing)
-{
-  const source_location loc = this->location();
-
-  if (this->clauses_ != NULL)
-    this->clauses_->check_duplicates();
-
-  Block* b = new Block(enclosing, loc);
-
-  Type* val_type = (this->var_ != NULL
-                   ? this->var_->var_value()->type()
-                   : this->expr_->type());
-
-  // var descriptor_temp DESCRIPTOR_TYPE
-  Type* descriptor_type = Type::make_type_descriptor_ptr_type();
-  Temporary_statement* descriptor_temp =
-    Statement::make_temporary(descriptor_type, NULL, loc);
-  b->add_statement(descriptor_temp);
-
-  if (val_type->interface_type() == NULL)
-    {
-      // Doing a type switch on a non-interface type.  Should we issue
-      // a warning for this case?
-      // descriptor_temp = DESCRIPTOR
-      Expression* lhs = Expression::make_temporary_reference(descriptor_temp,
-                                                            loc);
-      Expression* rhs = Expression::make_type_descriptor(val_type, loc);
-      Statement* s = Statement::make_assignment(lhs, rhs, loc);
-      b->add_statement(s);
-    }
-  else
-    {
-      const source_location bloc = BUILTINS_LOCATION;
-
-      // func {efacetype,ifacetype}(*interface) *descriptor
-      // FIXME: This should be inlined.
-      Typed_identifier_list* param_types = new Typed_identifier_list();
-      param_types->push_back(Typed_identifier("i", val_type, bloc));
-      Typed_identifier_list* ret_types = new Typed_identifier_list();
-      ret_types->push_back(Typed_identifier("", descriptor_type, bloc));
-      Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                      ret_types, bloc);
-      bool is_empty = val_type->interface_type()->is_empty();
-      const char* fnname = is_empty ? "efacetype" : "ifacetype";
-      Named_object* fn =
-       Named_object::make_function_declaration(fnname, NULL, fntype, bloc);
-      const char* asm_name = (is_empty
-                             ? "runtime.efacetype"
-                             : "runtime.ifacetype");
-      fn->func_declaration_value()->set_asm_name(asm_name);
-
-      // descriptor_temp = ifacetype(val_temp)
-      Expression* func = Expression::make_func_reference(fn, NULL, loc);
-      Expression_list* params = new Expression_list();
-      Expression* ref;
-      if (this->var_ == NULL)
-       ref = this->expr_;
-      else
-       ref = Expression::make_var_reference(this->var_, loc);
-      params->push_back(ref);
-      Expression* call = Expression::make_call(func, params, false, loc);
-      Expression* lhs = Expression::make_temporary_reference(descriptor_temp,
-                                                            loc);
-      Statement* s = Statement::make_assignment(lhs, call, loc);
-      b->add_statement(s);
-    }
-
-  if (this->clauses_ != NULL)
-    this->clauses_->lower(b, descriptor_temp, this->break_label());
-
-  Statement* s = Statement::make_unnamed_label_statement(this->break_label_);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Return the break label for this type switch statement, creating it
-// if necessary.
-
-Unnamed_label*
-Type_switch_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Make a type switch statement.
-
-Type_switch_statement*
-Statement::make_type_switch_statement(Named_object* var, Expression* expr,
-                                     source_location location)
-{
-  return new Type_switch_statement(var, expr, location);
-}
-
-// Class Select_clauses::Select_clause.
-
-// Traversal.
-
-int
-Select_clauses::Select_clause::traverse(Traverse* traverse)
-{
-  if (!this->is_lowered_
-      && (traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
-    {
-      if (this->channel_ != NULL)
-       {
-         if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-      if (this->val_ != NULL)
-       {
-         if (Expression::traverse(&this->val_, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-    }
-  if (this->statements_ != NULL)
-    {
-      if (this->statements_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lowering.  Here we pull out the channel and the send values, to
-// enforce the order of evaluation.  We also add explicit send and
-// receive statements to the clauses.
-
-void
-Select_clauses::Select_clause::lower(Block* b)
-{
-  if (this->is_default_)
-    {
-      gcc_assert(this->channel_ == NULL && this->val_ == NULL);
-      this->is_lowered_ = true;
-      return;
-    }
-
-  source_location loc = this->location_;
-
-  // Evaluate the channel before the select statement.
-  Temporary_statement* channel_temp = Statement::make_temporary(NULL,
-                                                               this->channel_,
-                                                               loc);
-  b->add_statement(channel_temp);
-  this->channel_ = Expression::make_temporary_reference(channel_temp, loc);
-
-  // If this is a send clause, evaluate the value to send before the
-  // select statement.
-  Temporary_statement* val_temp = NULL;
-  if (this->is_send_)
-    {
-      val_temp = Statement::make_temporary(NULL, this->val_, loc);
-      b->add_statement(val_temp);
-    }
-
-  // Add the send or receive before the rest of the statements if any.
-  Block *init = new Block(b, loc);
-  Expression* ref = Expression::make_temporary_reference(channel_temp, loc);
-  if (this->is_send_)
-    {
-      Expression* ref2 = Expression::make_temporary_reference(val_temp, loc);
-      Send_expression* send = Expression::make_send(ref, ref2, loc);
-      send->discarding_value();
-      send->set_for_select();
-      init->add_statement(Statement::make_statement(send));
-    }
-  else
-    {
-      Receive_expression* recv = Expression::make_receive(ref, loc);
-      recv->set_for_select();
-      if (this->val_ != NULL)
-       {
-         gcc_assert(this->var_ == NULL);
-         init->add_statement(Statement::make_assignment(this->val_, recv,
-                                                        loc));
-       }
-      else if (this->var_ != NULL)
-       {
-         this->var_->var_value()->set_init(recv);
-         this->var_->var_value()->clear_type_from_chan_element();
-       }
-      else
-       {
-         recv->discarding_value();
-         init->add_statement(Statement::make_statement(recv));
-       }
-    }
-
-  if (this->statements_ != NULL)
-    init->add_statement(Statement::make_block_statement(this->statements_,
-                                                       loc));
-
-  this->statements_ = init;
-
-  // Now all references should be handled through the statements, not
-  // through here.
-  this->is_lowered_ = true;
-  this->val_ = NULL;
-  this->var_ = NULL;
-}
-
-// Determine types.
-
-void
-Select_clauses::Select_clause::determine_types()
-{
-  gcc_assert(this->is_lowered_);
-  if (this->statements_ != NULL)
-    this->statements_->determine_types();
-}
-
-// Whether this clause may fall through to the statement which follows
-// the overall select statement.
-
-bool
-Select_clauses::Select_clause::may_fall_through() const
-{
-  if (this->statements_ == NULL)
-    return true;
-  return this->statements_->may_fall_through();
-}
-
-// Return a tree for the statements to execute.
-
-tree
-Select_clauses::Select_clause::get_statements_tree(Translate_context* context)
-{
-  if (this->statements_ == NULL)
-    return NULL_TREE;
-  return this->statements_->get_tree(context);
-}
-
-// Class Select_clauses.
-
-// Traversal.
-
-int
-Select_clauses::traverse(Traverse* traverse)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lowering.  Here we pull out the channel and the send values, to
-// enforce the order of evaluation.  We also add explicit send and
-// receive statements to the clauses.
-
-void
-Select_clauses::lower(Block* b)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->lower(b);
-}
-
-// Determine types.
-
-void
-Select_clauses::determine_types()
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->determine_types();
-}
-
-// Return whether these select clauses fall through to the statement
-// following the overall select statement.
-
-bool
-Select_clauses::may_fall_through() const
-{
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    if (p->may_fall_through())
-      return true;
-  return false;
-}
-
-// Return a tree.  We build a call to
-//   size_t __go_select(size_t count, _Bool has_default,
-//                      channel* channels, _Bool* is_send)
-//
-// There are COUNT entries in the CHANNELS and IS_SEND arrays.  The
-// value in the IS_SEND array is true for send, false for receive.
-// __go_select returns an integer from 0 to COUNT, inclusive.  A
-// return of 0 means that the default case should be run; this only
-// happens if HAS_DEFAULT is non-zero.  Otherwise the number indicates
-// the case to run.
-
-// FIXME: This doesn't handle channels which send interface types
-// where the receiver has a static type which matches that interface.
-
-tree
-Select_clauses::get_tree(Translate_context* context,
-                        Unnamed_label *break_label,
-                        source_location location)
-{
-  size_t count = this->clauses_.size();
-  VEC(constructor_elt, gc)* chan_init = VEC_alloc(constructor_elt, gc, count);
-  VEC(constructor_elt, gc)* is_send_init = VEC_alloc(constructor_elt, gc,
-                                                    count);
-  Select_clause* default_clause = NULL;
-  tree final_stmt_list = NULL_TREE;
-  tree channel_type_tree = NULL_TREE;
-
-  size_t i = 0;
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->is_default())
-       {
-         default_clause = &*p;
-         --count;
-         continue;
-       }
-
-      tree channel_tree = p->channel()->get_tree(context);
-      if (channel_tree == error_mark_node)
-       return error_mark_node;
-      channel_type_tree = TREE_TYPE(channel_tree);
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, chan_init, NULL);
-      elt->index = build_int_cstu(sizetype, i);
-      elt->value = channel_tree;
-
-      elt = VEC_quick_push(constructor_elt, is_send_init, NULL);
-      elt->index = build_int_cstu(sizetype, i);
-      elt->value = p->is_send() ? boolean_true_node : boolean_false_node;
-
-      ++i;
-    }
-  gcc_assert(i == count);
-
-  if (i == 0 && default_clause != NULL)
-    {
-      // There is only a default clause.
-      gcc_assert(final_stmt_list == NULL_TREE);
-      tree stmt_list = NULL_TREE;
-      append_to_statement_list(default_clause->get_statements_tree(context),
-                              &stmt_list);
-      append_to_statement_list(break_label->get_definition(), &stmt_list);
-      return stmt_list;
-    }
-
-  tree pointer_chan_type_tree = (channel_type_tree == NULL_TREE
-                                ? ptr_type_node
-                                : build_pointer_type(channel_type_tree));
-  tree chans_arg;
-  tree pointer_boolean_type_tree = build_pointer_type(boolean_type_node);
-  tree is_sends_arg;
-
-  if (i == 0)
-    {
-      chans_arg = fold_convert_loc(location, pointer_chan_type_tree,
-                                  null_pointer_node);
-      is_sends_arg = fold_convert_loc(location, pointer_boolean_type_tree,
-                                     null_pointer_node);
-    }
-  else
-    {
-      tree index_type_tree = build_index_type(size_int(count - 1));
-      tree chan_array_type_tree = build_array_type(channel_type_tree,
-                                                  index_type_tree);
-      tree chan_constructor = build_constructor(chan_array_type_tree,
-                                               chan_init);
-      tree chan_var = create_tmp_var(chan_array_type_tree, "CHAN");
-      DECL_IGNORED_P(chan_var) = 0;
-      DECL_INITIAL(chan_var) = chan_constructor;
-      DECL_SOURCE_LOCATION(chan_var) = location;
-      TREE_ADDRESSABLE(chan_var) = 1;
-      tree decl_expr = build1(DECL_EXPR, void_type_node, chan_var);
-      SET_EXPR_LOCATION(decl_expr, location);
-      append_to_statement_list(decl_expr, &final_stmt_list);
-
-      tree is_send_array_type_tree = build_array_type(boolean_type_node,
-                                                     index_type_tree);
-      tree is_send_constructor = build_constructor(is_send_array_type_tree,
-                                                  is_send_init);
-      tree is_send_var = create_tmp_var(is_send_array_type_tree, "ISSEND");
-      DECL_IGNORED_P(is_send_var) = 0;
-      DECL_INITIAL(is_send_var) = is_send_constructor;
-      DECL_SOURCE_LOCATION(is_send_var) = location;
-      TREE_ADDRESSABLE(is_send_var) = 1;
-      decl_expr = build1(DECL_EXPR, void_type_node, is_send_var);
-      SET_EXPR_LOCATION(decl_expr, location);
-      append_to_statement_list(decl_expr, &final_stmt_list);
-
-      chans_arg = fold_convert_loc(location, pointer_chan_type_tree,
-                                  build_fold_addr_expr_loc(location,
-                                                           chan_var));
-      is_sends_arg = fold_convert_loc(location, pointer_boolean_type_tree,
-                                     build_fold_addr_expr_loc(location,
-                                                              is_send_var));
-    }
-
-  static tree select_fndecl;
-  tree call = Gogo::call_builtin(&select_fndecl,
-                                location,
-                                "__go_select",
-                                4,
-                                sizetype,
-                                sizetype,
-                                size_int(count),
-                                boolean_type_node,
-                                (default_clause == NULL
-                                 ? boolean_false_node
-                                 : boolean_true_node),
-                                pointer_chan_type_tree,
-                                chans_arg,
-                                pointer_boolean_type_tree,
-                                is_sends_arg);
-
-  tree stmt_list = NULL_TREE;
-
-  if (default_clause != NULL)
-    this->add_clause_tree(context, 0, default_clause, break_label, &stmt_list);
-
-  i = 1;
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (!p->is_default())
-       {
-         this->add_clause_tree(context, i, &*p, break_label, &stmt_list);
-         ++i;
-       }
-    }
-
-  append_to_statement_list(break_label->get_definition(), &stmt_list);
-
-  tree switch_stmt = build3(SWITCH_EXPR, sizetype, call, stmt_list, NULL_TREE);
-  SET_EXPR_LOCATION(switch_stmt, location);
-  append_to_statement_list(switch_stmt, &final_stmt_list);
-
-  return final_stmt_list;
-}
-
-// Add the tree for CLAUSE to STMT_LIST.
-
-void
-Select_clauses::add_clause_tree(Translate_context* context, int case_index,
-                               Select_clause* clause,
-                               Unnamed_label* bottom_label, tree* stmt_list)
-{
-  tree label = create_artificial_label(clause->location());
-  append_to_statement_list(build3(CASE_LABEL_EXPR, void_type_node,
-                                 build_int_cst(sizetype, case_index),
-                                 NULL_TREE, label),
-                          stmt_list);
-  append_to_statement_list(clause->get_statements_tree(context), stmt_list);
-  tree g = bottom_label->get_goto(clause->statements() == NULL
-                                 ? clause->location()
-                                 : clause->statements()->end_location());
-  append_to_statement_list(g, stmt_list);
-}
-
-// Class Select_statement.
-
-// Return the break label for this switch statement, creating it if
-// necessary.
-
-Unnamed_label*
-Select_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Lower a select statement.  This will still return a select
-// statement, but it will be modified to implement the order of
-// evaluation rules, and to include the send and receive statements as
-// explicit statements in the clauses.
-
-Statement*
-Select_statement::do_lower(Gogo*, Block* enclosing)
-{
-  if (this->is_lowered_)
-    return this;
-  Block* b = new Block(enclosing, this->location());
-  this->clauses_->lower(b);
-  this->is_lowered_ = true;
-  b->add_statement(this);
-  return Statement::make_block_statement(b, this->location());
-}
-
-// Return the tree for a select statement.
-
-tree
-Select_statement::do_get_tree(Translate_context* context)
-{
-  return this->clauses_->get_tree(context, this->break_label(),
-                                 this->location());
-}
-
-// Make a select statement.
-
-Select_statement*
-Statement::make_select_statement(source_location location)
-{
-  return new Select_statement(location);
-}
-
-// Class For_statement.
-
-// Traversal.
-
-int
-For_statement::do_traverse(Traverse* traverse)
-{
-  if (this->init_ != NULL)
-    {
-      if (this->init_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->cond_ != NULL)
-    {
-      if (this->traverse_expression(traverse, &this->cond_) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->post_ != NULL)
-    {
-      if (this->post_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return this->statements_->traverse(traverse);
-}
-
-// Lower a For_statement into if statements and gotos.  Getting rid of
-// complex statements make it easier to handle garbage collection.
-
-Statement*
-For_statement::do_lower(Gogo*, Block* enclosing)
-{
-  Statement* s;
-  source_location loc = this->location();
-
-  Block* b = new Block(enclosing, this->location());
-  if (this->init_ != NULL)
-    {
-      s = Statement::make_block_statement(this->init_,
-                                         this->init_->start_location());
-      b->add_statement(s);
-    }
-
-  Unnamed_label* entry = NULL;
-  if (this->cond_ != NULL)
-    {
-      entry = new Unnamed_label(this->location());
-      b->add_statement(Statement::make_goto_unnamed_statement(entry, loc));
-    }
-
-  Unnamed_label* top = new Unnamed_label(this->location());
-  b->add_statement(Statement::make_unnamed_label_statement(top));
-
-  s = Statement::make_block_statement(this->statements_,
-                                     this->statements_->start_location());
-  b->add_statement(s);
-
-  source_location end_loc = this->statements_->end_location();
-
-  Unnamed_label* cont = this->continue_label_;
-  if (cont != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(cont));
-
-  if (this->post_ != NULL)
-    {
-      s = Statement::make_block_statement(this->post_,
-                                         this->post_->start_location());
-      b->add_statement(s);
-      end_loc = this->post_->end_location();
-    }
-
-  if (this->cond_ == NULL)
-    b->add_statement(Statement::make_goto_unnamed_statement(top, end_loc));
-  else
-    {
-      b->add_statement(Statement::make_unnamed_label_statement(entry));
-
-      source_location cond_loc = this->cond_->location();
-      Block* then_block = new Block(b, cond_loc);
-      s = Statement::make_goto_unnamed_statement(top, cond_loc);
-      then_block->add_statement(s);
-
-      s = Statement::make_if_statement(this->cond_, then_block, NULL, cond_loc);
-      b->add_statement(s);
-    }
-
-  Unnamed_label* brk = this->break_label_;
-  if (brk != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(brk));
-
-  b->set_end_location(end_loc);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Return the break label, creating it if necessary.
-
-Unnamed_label*
-For_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Return the continue LABEL_EXPR.
-
-Unnamed_label*
-For_statement::continue_label()
-{
-  if (this->continue_label_ == NULL)
-    this->continue_label_ = new Unnamed_label(this->location());
-  return this->continue_label_;
-}
-
-// Set the break and continue labels a for statement.  This is used
-// when lowering a for range statement.
-
-void
-For_statement::set_break_continue_labels(Unnamed_label* break_label,
-                                        Unnamed_label* continue_label)
-{
-  gcc_assert(this->break_label_ == NULL && this->continue_label_ == NULL);
-  this->break_label_ = break_label;
-  this->continue_label_ = continue_label;
-}
-
-// Make a for statement.
-
-For_statement*
-Statement::make_for_statement(Block* init, Expression* cond, Block* post,
-                             source_location location)
-{
-  return new For_statement(init, cond, post, location);
-}
-
-// Class For_range_statement.
-
-// Traversal.
-
-int
-For_range_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->index_var_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->value_var_ != NULL)
-    {
-      if (this->traverse_expression(traverse, &this->value_var_)
-         == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->traverse_expression(traverse, &this->range_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->statements_->traverse(traverse);
-}
-
-// Lower a for range statement.  For simplicity we lower this into a
-// for statement, which will then be lowered in turn to goto
-// statements.
-
-Statement*
-For_range_statement::do_lower(Gogo* gogo, Block* enclosing)
-{
-  Type* range_type = this->range_->type();
-  if (range_type->points_to() != NULL
-      && range_type->points_to()->array_type() != NULL
-      && !range_type->points_to()->is_open_array_type())
-    range_type = range_type->points_to();
-
-  Type* index_type;
-  Type* value_type = NULL;
-  if (range_type->array_type() != NULL)
-    {
-      index_type = Type::lookup_integer_type("int");
-      value_type = range_type->array_type()->element_type();
-    }
-  else if (range_type->is_string_type())
-    {
-      index_type = Type::lookup_integer_type("int");
-      value_type = index_type;
-    }
-  else if (range_type->map_type() != NULL)
-    {
-      index_type = range_type->map_type()->key_type();
-      value_type = range_type->map_type()->val_type();
-    }
-  else if (range_type->channel_type() != NULL)
-    {
-      index_type = range_type->channel_type()->element_type();
-      if (this->value_var_ != NULL)
-       {
-         if (!this->value_var_->type()->is_error_type())
-           this->report_error(_("too many variables for range clause "
-                                "with channel"));
-         return Statement::make_error_statement(this->location());
-       }
-    }
-  else
-    {
-      this->report_error(_("range clause must have "
-                          "array, slice, setring, map, or channel type"));
-      return Statement::make_error_statement(this->location());
-    }
-
-  source_location loc = this->location();
-  Block* temp_block = new Block(enclosing, loc);
-
-  Named_object* range_object = NULL;
-  Temporary_statement* range_temp = NULL;
-  Var_expression* ve = this->range_->var_expression();
-  if (ve != NULL)
-    range_object = ve->named_object();
-  else
-    {
-      range_temp = Statement::make_temporary(NULL, this->range_, loc);
-      temp_block->add_statement(range_temp);
-    }
-
-  Temporary_statement* index_temp = Statement::make_temporary(index_type,
-                                                             NULL, loc);
-  temp_block->add_statement(index_temp);
-
-  Temporary_statement* value_temp = NULL;
-  if (this->value_var_ != NULL)
-    {
-      value_temp = Statement::make_temporary(value_type, NULL, loc);
-      temp_block->add_statement(value_temp);
-    }
-
-  Block* body = new Block(temp_block, loc);
-
-  Block* init;
-  Expression* cond;
-  Block* iter_init;
-  Block* post;
-
-  // Arrange to do a loop appropriate for the type.  We will produce
-  //   for INIT ; COND ; POST {
-  //           ITER_INIT
-  //           INDEX = INDEX_TEMP
-  //           VALUE = VALUE_TEMP // If there is a value
-  //           original statements
-  //   }
-
-  if (range_type->array_type() != NULL)
-    this->lower_range_array(gogo, temp_block, body, range_object, range_temp,
-                           index_temp, value_temp, &init, &cond, &iter_init,
-                           &post);
-  else if (range_type->is_string_type())
-    this->lower_range_string(gogo, temp_block, body, range_object, range_temp,
-                            index_temp, value_temp, &init, &cond, &iter_init,
-                            &post);
-  else if (range_type->map_type() != NULL)
-    this->lower_range_map(gogo, temp_block, body, range_object, range_temp,
-                         index_temp, value_temp, &init, &cond, &iter_init,
-                         &post);
-  else if (range_type->channel_type() != NULL)
-    this->lower_range_channel(gogo, temp_block, body, range_object, range_temp,
-                             index_temp, value_temp, &init, &cond, &iter_init,
-                             &post);
-  else
-    gcc_unreachable();
-
-  if (iter_init != NULL)
-    body->add_statement(Statement::make_block_statement(iter_init, loc));
-
-  Statement* assign;
-  Expression* index_ref = Expression::make_temporary_reference(index_temp, loc);
-  if (this->value_var_ == NULL)
-    {
-      assign = Statement::make_assignment(this->index_var_, index_ref, loc);
-    }
-  else
-    {
-      Expression_list* lhs = new Expression_list();
-      lhs->push_back(this->index_var_);
-      lhs->push_back(this->value_var_);
-
-      Expression_list* rhs = new Expression_list();
-      rhs->push_back(index_ref);
-      rhs->push_back(Expression::make_temporary_reference(value_temp, loc));
-
-      assign = Statement::make_tuple_assignment(lhs, rhs, loc);
-    }
-  body->add_statement(assign);
-
-  body->add_statement(Statement::make_block_statement(this->statements_, loc));
-
-  body->set_end_location(this->statements_->end_location());
-
-  For_statement* loop = Statement::make_for_statement(init, cond, post,
-                                                     this->location());
-  loop->add_statements(body);
-  loop->set_break_continue_labels(this->break_label_, this->continue_label_);
-
-  temp_block->add_statement(loop);
-
-  return Statement::make_block_statement(temp_block, loc);
-}
-
-// Return a reference to the range, which may be in RANGE_OBJECT or in
-// RANGE_TEMP.
-
-Expression*
-For_range_statement::make_range_ref(Named_object* range_object,
-                                   Temporary_statement* range_temp,
-                                   source_location loc)
-{
-  if (range_object != NULL)
-    return Expression::make_var_reference(range_object, loc);
-  else
-    return Expression::make_temporary_reference(range_temp, loc);
-}
-
-// Return a call to the predeclared function FUNCNAME passing a
-// reference to the temporary variable ARG.
-
-Expression*
-For_range_statement::call_builtin(Gogo* gogo, const char* funcname,
-                                 Expression* arg,
-                                 source_location loc)
-{
-  Named_object* no = gogo->lookup_global(funcname);
-  gcc_assert(no != NULL && no->is_function_declaration());
-  Expression* func = Expression::make_func_reference(no, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(arg);
-  return Expression::make_call(func, params, false, loc);
-}
-
-// Lower a for range over an array or slice.
-
-void
-For_range_statement::lower_range_array(Gogo* gogo,
-                                      Block* enclosing,
-                                      Block* body_block,
-                                      Named_object* range_object,
-                                      Temporary_statement* range_temp,
-                                      Temporary_statement* index_temp,
-                                      Temporary_statement* value_temp,
-                                      Block** pinit,
-                                      Expression** pcond,
-                                      Block** piter_init,
-                                      Block** ppost)
-{
-  source_location loc = this->location();
-
-  // The loop we generate:
-  //   len_temp := len(range)
-  //   for index_temp = 0; index_temp < len_temp; index_temp++ {
-  //           value_temp = range[index_temp]
-  //           index = index_temp
-  //           value = value_temp
-  //           original body
-  //   }
-
-  // Set *PINIT to
-  //   var len_temp int
-  //   len_temp = len(range)
-  //   index_temp = 0
-
-  Block* init = new Block(enclosing, loc);
-
-  Expression* ref = this->make_range_ref(range_object, range_temp, loc);
-  Expression* len_call = this->call_builtin(gogo, "len", ref, loc);
-  Temporary_statement* len_temp = Statement::make_temporary(index_temp->type(),
-                                                           len_call, loc);
-  init->add_statement(len_temp);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, loc);
-  mpz_clear(zval);
-
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  Statement* s = Statement::make_assignment(ref, zexpr, loc);
-  init->add_statement(s);
-
-  *pinit = init;
-
-  // Set *PCOND to
-  //   index_temp < len_temp
-
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  Expression* ref2 = Expression::make_temporary_reference(len_temp, loc);
-  Expression* lt = Expression::make_binary(OPERATOR_LT, ref, ref2, loc);
-
-  *pcond = lt;
-
-  // Set *PITER_INIT to
-  //   value_temp = range[index_temp]
-
-  Block* iter_init = NULL;
-  if (value_temp != NULL)
-    {
-      iter_init = new Block(body_block, loc);
-
-      ref = this->make_range_ref(range_object, range_temp, loc);
-      Expression* ref2 = Expression::make_temporary_reference(index_temp, loc);
-      Expression* index = Expression::make_index(ref, ref2, NULL, loc);
-
-      ref = Expression::make_temporary_reference(value_temp, loc);
-      s = Statement::make_assignment(ref, index, loc);
-
-      iter_init->add_statement(s);
-    }
-  *piter_init = iter_init;
-
-  // Set *PPOST to
-  //   index_temp++
-
-  Block* post = new Block(enclosing, loc);
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  s = Statement::make_inc_statement(ref);
-  post->add_statement(s);
-  *ppost = post;
-}
-
-// Lower a for range over a string.
-
-void
-For_range_statement::lower_range_string(Gogo* gogo,
-                                       Block* enclosing,
-                                       Block* body_block,
-                                       Named_object* range_object,
-                                       Temporary_statement* range_temp,
-                                       Temporary_statement* index_temp,
-                                       Temporary_statement* value_temp,
-                                       Block** pinit,
-                                       Expression** pcond,
-                                       Block** piter_init,
-                                       Block** ppost)
-{
-  source_location loc = this->location();
-
-  // The loop we generate:
-  //   var next_index_temp int
-  //   for index_temp = 0; ; index_temp = next_index_temp {
-  //           next_index_temp, value_temp = stringiter2(range, index_temp)
-  //           if next_index_temp == 0 {
-  //                   break
-  //           }
-  //           index = index_temp
-  //           value = value_temp
-  //           original body
-  //   }
-
-  // Set *PINIT to
-  //   var next_index_temp int
-  //   index_temp = 0
-
-  Block* init = new Block(enclosing, loc);
-
-  Temporary_statement* next_index_temp =
-    Statement::make_temporary(index_temp->type(), NULL, loc);
-  init->add_statement(next_index_temp);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, loc);
-
-  Expression* ref = Expression::make_temporary_reference(index_temp, loc);
-  Statement* s = Statement::make_assignment(ref, zexpr, loc);
-
-  init->add_statement(s);
-  *pinit = init;
-
-  // The loop has no condition.
-
-  *pcond = NULL;
-
-  // Set *PITER_INIT to
-  //   next_index_temp = runtime.stringiter(range, index_temp)
-  // or
-  //   next_index_temp, value_temp = runtime.stringiter2(range, index_temp)
-  // followed by
-  //   if next_index_temp == 0 {
-  //           break
-  //   }
-
-  Block* iter_init = new Block(body_block, loc);
-
-  Named_object* no;
-  if (value_temp == NULL)
-    {
-      static Named_object* stringiter;
-      if (stringiter == NULL)
-       {
-         source_location bloc = BUILTINS_LOCATION;
-         Type* int_type = gogo->lookup_global("int")->type_value();
-
-         Typed_identifier_list* params = new Typed_identifier_list();
-         params->push_back(Typed_identifier("s", Type::make_string_type(),
-                                            bloc));
-         params->push_back(Typed_identifier("k", int_type, bloc));
-
-         Typed_identifier_list* results = new Typed_identifier_list();
-         results->push_back(Typed_identifier("", int_type, bloc));
-
-         Function_type* fntype = Type::make_function_type(NULL, params,
-                                                          results, bloc);
-         stringiter = Named_object::make_function_declaration("stringiter",
-                                                              NULL, fntype,
-                                                              bloc);
-         const char* n = "runtime.stringiter";
-         stringiter->func_declaration_value()->set_asm_name(n);
-       }
-      no = stringiter;
-    }
-  else
-    {
-      static Named_object* stringiter2;
-      if (stringiter2 == NULL)
-       {
-         source_location bloc = BUILTINS_LOCATION;
-         Type* int_type = gogo->lookup_global("int")->type_value();
-
-         Typed_identifier_list* params = new Typed_identifier_list();
-         params->push_back(Typed_identifier("s", Type::make_string_type(),
-                                            bloc));
-         params->push_back(Typed_identifier("k", int_type, bloc));
-
-         Typed_identifier_list* results = new Typed_identifier_list();
-         results->push_back(Typed_identifier("", int_type, bloc));
-         results->push_back(Typed_identifier("", int_type, bloc));
-
-         Function_type* fntype = Type::make_function_type(NULL, params,
-                                                          results, bloc);
-         stringiter2 = Named_object::make_function_declaration("stringiter",
-                                                               NULL, fntype,
-                                                               bloc);
-         const char* n = "runtime.stringiter2";
-         stringiter2->func_declaration_value()->set_asm_name(n);
-       }
-      no = stringiter2;
-    }
-
-  Expression* func = Expression::make_func_reference(no, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(this->make_range_ref(range_object, range_temp, loc));
-  params->push_back(Expression::make_temporary_reference(index_temp, loc));
-  Call_expression* call = Expression::make_call(func, params, false, loc);
-
-  if (value_temp == NULL)
-    {
-      ref = Expression::make_temporary_reference(next_index_temp, loc);
-      s = Statement::make_assignment(ref, call, loc);
-    }
-  else
-    {
-      Expression_list* lhs = new Expression_list();
-      lhs->push_back(Expression::make_temporary_reference(next_index_temp,
-                                                         loc));
-      lhs->push_back(Expression::make_temporary_reference(value_temp, loc));
-
-      Expression_list* rhs = new Expression_list();
-      rhs->push_back(Expression::make_call_result(call, 0));
-      rhs->push_back(Expression::make_call_result(call, 1));
-
-      s = Statement::make_tuple_assignment(lhs, rhs, loc);
-    }
-  iter_init->add_statement(s);
-
-  ref = Expression::make_temporary_reference(next_index_temp, loc);
-  zexpr = Expression::make_integer(&zval, NULL, loc);
-  mpz_clear(zval);
-  Expression* equals = Expression::make_binary(OPERATOR_EQEQ, ref, zexpr, loc);
-
-  Block* then_block = new Block(iter_init, loc);
-  s = Statement::make_break_statement(this->break_label(), loc);
-  then_block->add_statement(s);
-
-  s = Statement::make_if_statement(equals, then_block, NULL, loc);
-  iter_init->add_statement(s);
-
-  *piter_init = iter_init;
-
-  // Set *PPOST to
-  //   index_temp = next_index_temp
-
-  Block* post = new Block(enclosing, loc);
-
-  Expression* lhs = Expression::make_temporary_reference(index_temp, loc);
-  Expression* rhs = Expression::make_temporary_reference(next_index_temp, loc);
-  s = Statement::make_assignment(lhs, rhs, loc);
-
-  post->add_statement(s);
-  *ppost = post;
-}
-
-// Lower a for range over a map.
-
-void
-For_range_statement::lower_range_map(Gogo* gogo,
-                                    Block* enclosing,
-                                    Block* body_block,
-                                    Named_object* range_object,
-                                    Temporary_statement* range_temp,
-                                    Temporary_statement* index_temp,
-                                    Temporary_statement* value_temp,
-                                    Block** pinit,
-                                    Expression** pcond,
-                                    Block** piter_init,
-                                    Block** ppost)
-{
-  source_location loc = this->location();
-
-  // The runtime uses a struct to handle ranges over a map.  The
-  // struct is four pointers long.  The first pointer is NULL when we
-  // have completed the iteration.
-
-  // The loop we generate:
-  //   var hiter map_iteration_struct
-  //   for mapiterinit(range, &hiter); hiter[0] != nil; mapiternext(&hiter) {
-  //           mapiter2(hiter, &index_temp, &value_temp)
-  //           index = index_temp
-  //           value = value_temp
-  //           original body
-  //   }
-
-  // Set *PINIT to
-  //   var hiter map_iteration_struct
-  //   runtime.mapiterinit(range, &hiter)
-
-  Block* init = new Block(enclosing, loc);
-
-  const unsigned long map_iteration_size = 4;
-
-  mpz_t ival;
-  mpz_init_set_ui(ival, map_iteration_size);
-  Expression* iexpr = Expression::make_integer(&ival, NULL, loc);
-  mpz_clear(ival);
-
-  Type* byte_type = gogo->lookup_global("byte")->type_value();
-  Type* ptr_type = Type::make_pointer_type(byte_type);
-
-  Type* map_iteration_type = Type::make_array_type(ptr_type, iexpr);
-  Type* map_iteration_ptr = Type::make_pointer_type(map_iteration_type);
-
-  Temporary_statement* hiter = Statement::make_temporary(map_iteration_type,
-                                                        NULL, loc);
-  init->add_statement(hiter);
-
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("map", this->range_->type(), bloc));
-  param_types->push_back(Typed_identifier("it", map_iteration_ptr, bloc));
-  Function_type* fntype = Type::make_function_type(NULL, param_types, NULL,
-                                                  bloc);
-
-  Named_object* mapiterinit =
-    Named_object::make_function_declaration("mapiterinit", NULL, fntype, bloc);
-  const char* n = "runtime.mapiterinit";
-  mapiterinit->func_declaration_value()->set_asm_name(n);
-
-  Expression* func = Expression::make_func_reference(mapiterinit, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(this->make_range_ref(range_object, range_temp, loc));
-  Expression* ref = Expression::make_temporary_reference(hiter, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  Expression* call = Expression::make_call(func, params, false, loc);
-  init->add_statement(Statement::make_statement(call));
-
-  *pinit = init;
-
-  // Set *PCOND to
-  //   hiter[0] != nil
-
-  ref = Expression::make_temporary_reference(hiter, loc);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, loc);
-  mpz_clear(zval);
-
-  Expression* index = Expression::make_index(ref, zexpr, NULL, loc);
-
-  Expression* ne = Expression::make_binary(OPERATOR_NOTEQ, index,
-                                          Expression::make_nil(loc),
-                                          loc);
-
-  *pcond = ne;
-
-  // Set *PITER_INIT to
-  //   mapiter1(hiter, &index_temp)
-  // or
-  //   mapiter2(hiter, &index_temp, &value_temp)
-
-  Block* iter_init = new Block(body_block, loc);
-
-  param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("hiter", map_iteration_ptr, bloc));
-  Type* pkey_type = Type::make_pointer_type(index_temp->type());
-  param_types->push_back(Typed_identifier("key", pkey_type, bloc));
-  if (value_temp != NULL)
-    {
-      Type* pval_type = Type::make_pointer_type(value_temp->type());
-      param_types->push_back(Typed_identifier("val", pval_type, bloc));
-    }
-  fntype = Type::make_function_type(NULL, param_types, NULL, bloc);
-  n = value_temp == NULL ? "mapiter1" : "mapiter2";
-  Named_object* mapiter = Named_object::make_function_declaration(n, NULL,
-                                                                 fntype, bloc);
-  n = value_temp == NULL ? "runtime.mapiter1" : "runtime.mapiter2";
-  mapiter->func_declaration_value()->set_asm_name(n);
-
-  func = Expression::make_func_reference(mapiter, NULL, loc);
-  params = new Expression_list();
-  ref = Expression::make_temporary_reference(hiter, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  if (value_temp != NULL)
-    {
-      ref = Expression::make_temporary_reference(value_temp, loc);
-      params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-    }
-  call = Expression::make_call(func, params, false, loc);
-  iter_init->add_statement(Statement::make_statement(call));
-
-  *piter_init = iter_init;
-
-  // Set *PPOST to
-  //   mapiternext(&hiter)
-
-  Block* post = new Block(enclosing, loc);
-
-  static Named_object* mapiternext;
-  if (mapiternext == NULL)
-    {
-      param_types = new Typed_identifier_list();
-      param_types->push_back(Typed_identifier("it", map_iteration_ptr, bloc));
-      fntype = Type::make_function_type(NULL, param_types, NULL, bloc);
-      mapiternext = Named_object::make_function_declaration("mapiternext",
-                                                           NULL, fntype,
-                                                           bloc);
-      const char* n = "runtime.mapiternext";
-      mapiternext->func_declaration_value()->set_asm_name(n);
-    }
-
-  func = Expression::make_func_reference(mapiternext, NULL, loc);
-  params = new Expression_list();
-  ref = Expression::make_temporary_reference(hiter, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  call = Expression::make_call(func, params, false, loc);
-  post->add_statement(Statement::make_statement(call));
-
-  *ppost = post;
-}
-
-// Lower a for range over a channel.
-
-void
-For_range_statement::lower_range_channel(Gogo* gogo,
-                                        Block*,
-                                        Block* body_block,
-                                        Named_object* range_object,
-                                        Temporary_statement* range_temp,
-                                        Temporary_statement* index_temp,
-                                        Temporary_statement* value_temp,
-                                        Block** pinit,
-                                        Expression** pcond,
-                                        Block** piter_init,
-                                        Block** ppost)
-{
-  gcc_assert(value_temp == NULL);
-
-  source_location loc = this->location();
-
-  // The loop we generate:
-  //   for {
-  //           index_temp = <-range
-  //           if closed(range) {
-  //                   break
-  //           }
-  //           index = index_temp
-  //           value = value_temp
-  //           original body
-  //   }
-
-  // We have no initialization code, no condition, and no post code.
-
-  *pinit = NULL;
-  *pcond = NULL;
-  *ppost = NULL;
-
-  // Set *PITER_INIT to
-  //   index_temp = <-range
-  //   if closed(range) {
-  //           break
-  //   }
-
-  Block* iter_init = new Block(body_block, loc);
-
-  Expression* ref = this->make_range_ref(range_object, range_temp, loc);
-  Expression* cond = this->call_builtin(gogo, "closed", ref, loc);
-
-  ref = this->make_range_ref(range_object, range_temp, loc);
-  Expression* recv = Expression::make_receive(ref, loc);
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  Statement* s = Statement::make_assignment(ref, recv, loc);
-  iter_init->add_statement(s);
-
-  Block* then_block = new Block(iter_init, loc);
-  s = Statement::make_break_statement(this->break_label(), loc);
-  then_block->add_statement(s);
-
-  s = Statement::make_if_statement(cond, then_block, NULL, loc);
-  iter_init->add_statement(s);
-
-  *piter_init = iter_init;
-}
-
-// Return the break LABEL_EXPR.
-
-Unnamed_label*
-For_range_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Return the continue LABEL_EXPR.
-
-Unnamed_label*
-For_range_statement::continue_label()
-{
-  if (this->continue_label_ == NULL)
-    this->continue_label_ = new Unnamed_label(this->location());
-  return this->continue_label_;
-}
-
-// Make a for statement with a range clause.
-
-For_range_statement*
-Statement::make_for_range_statement(Expression* index_var,
-                                   Expression* value_var,
-                                   Expression* range,
-                                   source_location location)
-{
-  return new For_range_statement(index_var, value_var, range, location);
-}
diff --git a/gcc/go/gofrontend/statements.cc.merge-right.r172891 b/gcc/go/gofrontend/statements.cc.merge-right.r172891
deleted file mode 100644 (file)
index 7e422fc..0000000
+++ /dev/null
@@ -1,5073 +0,0 @@
-// statements.cc -- Go frontend statements.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#include "go-c.h"
-#include "types.h"
-#include "expressions.h"
-#include "gogo.h"
-#include "runtime.h"
-#include "backend.h"
-#include "statements.h"
-
-// Class Statement.
-
-Statement::Statement(Statement_classification classification,
-                    source_location location)
-  : classification_(classification), location_(location)
-{
-}
-
-Statement::~Statement()
-{
-}
-
-// Traverse the tree.  The work of walking the components is handled
-// by the subclasses.
-
-int
-Statement::traverse(Block* block, size_t* pindex, Traverse* traverse)
-{
-  if (this->classification_ == STATEMENT_ERROR)
-    return TRAVERSE_CONTINUE;
-
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  if ((traverse_mask & Traverse::traverse_statements) != 0)
-    {
-      int t = traverse->statement(block, pindex, this);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-
-  // No point in checking traverse_mask here--a statement may contain
-  // other blocks or statements, and if we got here we always want to
-  // walk them.
-  return this->do_traverse(traverse);
-}
-
-// Traverse the contents of a statement.
-
-int
-Statement::traverse_contents(Traverse* traverse)
-{
-  return this->do_traverse(traverse);
-}
-
-// Traverse assignments.
-
-bool
-Statement::traverse_assignments(Traverse_assignments* tassign)
-{
-  if (this->classification_ == STATEMENT_ERROR)
-    return false;
-  return this->do_traverse_assignments(tassign);
-}
-
-// Traverse an expression in a statement.  This is a helper function
-// for child classes.
-
-int
-Statement::traverse_expression(Traverse* traverse, Expression** expr)
-{
-  if ((traverse->traverse_mask()
-       & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0)
-    return TRAVERSE_CONTINUE;
-  return Expression::traverse(expr, traverse);
-}
-
-// Traverse an expression list in a statement.  This is a helper
-// function for child classes.
-
-int
-Statement::traverse_expression_list(Traverse* traverse,
-                                   Expression_list* expr_list)
-{
-  if (expr_list == NULL)
-    return TRAVERSE_CONTINUE;
-  if ((traverse->traverse_mask()
-       & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0)
-    return TRAVERSE_CONTINUE;
-  return expr_list->traverse(traverse);
-}
-
-// Traverse a type in a statement.  This is a helper function for
-// child classes.
-
-int
-Statement::traverse_type(Traverse* traverse, Type* type)
-{
-  if ((traverse->traverse_mask()
-       & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0)
-    return TRAVERSE_CONTINUE;
-  return Type::traverse(type, traverse);
-}
-
-// Set type information for unnamed constants.  This is really done by
-// the child class.
-
-void
-Statement::determine_types()
-{
-  this->do_determine_types();
-}
-
-// If this is a thunk statement, return it.
-
-Thunk_statement*
-Statement::thunk_statement()
-{
-  Thunk_statement* ret = this->convert<Thunk_statement, STATEMENT_GO>();
-  if (ret == NULL)
-    ret = this->convert<Thunk_statement, STATEMENT_DEFER>();
-  return ret;
-}
-
-// Convert a Statement to the backend representation.  This is really
-// done by the child class.
-
-Bstatement*
-Statement::get_backend(Translate_context* context)
-{
-  if (this->classification_ == STATEMENT_ERROR)
-    return context->backend()->error_statement();
-  return this->do_get_backend(context);
-}
-
-// Note that this statement is erroneous.  This is called by children
-// when they discover an error.
-
-void
-Statement::set_is_error()
-{
-  this->classification_ = STATEMENT_ERROR;
-}
-
-// For children to call to report an error conveniently.
-
-void
-Statement::report_error(const char* msg)
-{
-  error_at(this->location_, "%s", msg);
-  this->set_is_error();
-}
-
-// An error statement, used to avoid crashing after we report an
-// error.
-
-class Error_statement : public Statement
-{
- public:
-  Error_statement(source_location location)
-    : Statement(STATEMENT_ERROR, location)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-};
-
-// Make an error statement.
-
-Statement*
-Statement::make_error_statement(source_location location)
-{
-  return new Error_statement(location);
-}
-
-// Class Variable_declaration_statement.
-
-Variable_declaration_statement::Variable_declaration_statement(
-    Named_object* var)
-  : Statement(STATEMENT_VARIABLE_DECLARATION, var->var_value()->location()),
-    var_(var)
-{
-}
-
-// We don't actually traverse the variable here; it was traversed
-// while traversing the Block.
-
-int
-Variable_declaration_statement::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// Traverse the assignments in a variable declaration.  Note that this
-// traversal is different from the usual traversal.
-
-bool
-Variable_declaration_statement::do_traverse_assignments(
-    Traverse_assignments* tassign)
-{
-  tassign->initialize_variable(this->var_);
-  return true;
-}
-
-// Convert a variable declaration to the backend representation.
-
-Bstatement*
-Variable_declaration_statement::do_get_backend(Translate_context* context)
-{
-  Variable* var = this->var_->var_value();
-  Bvariable* bvar = this->var_->get_backend_variable(context->gogo(),
-                                                    context->function());
-  tree init = var->get_init_tree(context->gogo(), context->function());
-  Bexpression* binit = init == NULL ? NULL : tree_to_expr(init);
-
-  if (!var->is_in_heap())
-    {
-      go_assert(binit != NULL);
-      return context->backend()->init_statement(bvar, binit);
-    }
-
-  // Something takes the address of this variable, so the value is
-  // stored in the heap.  Initialize it to newly allocated memory
-  // space, and assign the initial value to the new space.
-  source_location loc = this->location();
-  Named_object* newfn = context->gogo()->lookup_global("new");
-  go_assert(newfn != NULL && newfn->is_function_declaration());
-  Expression* func = Expression::make_func_reference(newfn, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(Expression::make_type(var->type(), loc));
-  Expression* call = Expression::make_call(func, params, false, loc);
-  context->gogo()->lower_expression(context->function(), &call);
-  Temporary_statement* temp = Statement::make_temporary(NULL, call, loc);
-  Bstatement* btemp = temp->get_backend(context);
-
-  Bstatement* set = NULL;
-  if (binit != NULL)
-    {
-      Expression* e = Expression::make_temporary_reference(temp, loc);
-      e = Expression::make_unary(OPERATOR_MULT, e, loc);
-      Bexpression* be = tree_to_expr(e->get_tree(context));
-      set = context->backend()->assignment_statement(be, binit, loc);
-    }
-
-  Expression* ref = Expression::make_temporary_reference(temp, loc);
-  Bexpression* bref = tree_to_expr(ref->get_tree(context));
-  Bstatement* sinit = context->backend()->init_statement(bvar, bref);
-
-  std::vector<Bstatement*> stats;
-  stats.reserve(3);
-  stats.push_back(btemp);
-  if (set != NULL)
-    stats.push_back(set);
-  stats.push_back(sinit);
-  return context->backend()->statement_list(stats);
-}
-
-// Make a variable declaration.
-
-Statement*
-Statement::make_variable_declaration(Named_object* var)
-{
-  return new Variable_declaration_statement(var);
-}
-
-// Class Temporary_statement.
-
-// Return the type of the temporary variable.
-
-Type*
-Temporary_statement::type() const
-{
-  return this->type_ != NULL ? this->type_ : this->init_->type();
-}
-
-// Traversal.
-
-int
-Temporary_statement::do_traverse(Traverse* traverse)
-{
-  if (this->type_ != NULL
-      && this->traverse_type(traverse, this->type_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->init_ == NULL)
-    return TRAVERSE_CONTINUE;
-  else
-    return this->traverse_expression(traverse, &this->init_);
-}
-
-// Traverse assignments.
-
-bool
-Temporary_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  if (this->init_ == NULL)
-    return false;
-  tassign->value(&this->init_, true, true);
-  return true;
-}
-
-// Determine types.
-
-void
-Temporary_statement::do_determine_types()
-{
-  if (this->type_ != NULL && this->type_->is_abstract())
-    this->type_ = this->type_->make_non_abstract_type();
-
-  if (this->init_ != NULL)
-    {
-      if (this->type_ == NULL)
-       this->init_->determine_type_no_context();
-      else
-       {
-         Type_context context(this->type_, false);
-         this->init_->determine_type(&context);
-       }
-    }
-
-  if (this->type_ == NULL)
-    {
-      this->type_ = this->init_->type();
-      go_assert(!this->type_->is_abstract());
-    }
-}
-
-// Check types.
-
-void
-Temporary_statement::do_check_types(Gogo*)
-{
-  if (this->type_ != NULL && this->init_ != NULL)
-    {
-      std::string reason;
-      if (!Type::are_assignable(this->type_, this->init_->type(), &reason))
-       {
-         if (reason.empty())
-           error_at(this->location(), "incompatible types in assignment");
-         else
-           error_at(this->location(), "incompatible types in assignment (%s)",
-                    reason.c_str());
-         this->set_is_error();
-       }
-    }
-}
-
-// Convert to backend representation.
-
-Bstatement*
-Temporary_statement::do_get_backend(Translate_context* context)
-{
-  go_assert(this->bvariable_ == NULL);
-
-  // FIXME: Permitting FUNCTION to be NULL here is a temporary measure
-  // until we have a better representation of the init function.
-  Named_object* function = context->function();
-  Bfunction* bfunction;
-  if (function == NULL)
-    bfunction = NULL;
-  else
-    bfunction = tree_to_function(function->func_value()->get_decl());
-
-  Btype* btype = tree_to_type(this->type()->get_tree(context->gogo()));
-
-  Bexpression* binit;
-  if (this->init_ == NULL)
-    binit = NULL;
-  else if (this->type_ == NULL)
-    binit = tree_to_expr(this->init_->get_tree(context));
-  else
-    {
-      Expression* init = Expression::make_cast(this->type_, this->init_,
-                                              this->location());
-      context->gogo()->lower_expression(context->function(), &init);
-      binit = tree_to_expr(init->get_tree(context));
-    }
-
-  Bstatement* statement;
-  this->bvariable_ =
-    context->backend()->temporary_variable(bfunction, context->bblock(),
-                                          btype, binit,
-                                          this->is_address_taken_,
-                                          this->location(), &statement);
-  return statement;
-}
-
-// Return the backend variable.
-
-Bvariable*
-Temporary_statement::get_backend_variable(Translate_context* context) const
-{
-  if (this->bvariable_ == NULL)
-    {
-      go_assert(saw_errors());
-      return context->backend()->error_variable();
-    }
-  return this->bvariable_;
-}
-
-// Make and initialize a temporary variable in BLOCK.
-
-Temporary_statement*
-Statement::make_temporary(Type* type, Expression* init,
-                         source_location location)
-{
-  return new Temporary_statement(type, init, location);
-}
-
-// An assignment statement.
-
-class Assignment_statement : public Statement
-{
- public:
-  Assignment_statement(Expression* lhs, Expression* rhs,
-                      source_location location)
-    : Statement(STATEMENT_ASSIGNMENT, location),
-      lhs_(lhs), rhs_(rhs)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  Bstatement*
-  do_get_backend(Translate_context*);
-
- private:
-  // Left hand side--the lvalue.
-  Expression* lhs_;
-  // Right hand side--the rvalue.
-  Expression* rhs_;
-};
-
-// Traversal.
-
-int
-Assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->lhs_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->rhs_);
-}
-
-bool
-Assignment_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  tassign->assignment(&this->lhs_, &this->rhs_);
-  return true;
-}
-
-// Set types for the assignment.
-
-void
-Assignment_statement::do_determine_types()
-{
-  this->lhs_->determine_type_no_context();
-  Type_context context(this->lhs_->type(), false);
-  this->rhs_->determine_type(&context);
-}
-
-// Check types for an assignment.
-
-void
-Assignment_statement::do_check_types(Gogo*)
-{
-  // The left hand side must be either addressable, a map index
-  // expression, or the blank identifier.
-  if (!this->lhs_->is_addressable()
-      && this->lhs_->map_index_expression() == NULL
-      && !this->lhs_->is_sink_expression())
-    {
-      if (!this->lhs_->type()->is_error())
-       this->report_error(_("invalid left hand side of assignment"));
-      return;
-    }
-
-  Type* lhs_type = this->lhs_->type();
-  Type* rhs_type = this->rhs_->type();
-  std::string reason;
-  if (!Type::are_assignable(lhs_type, rhs_type, &reason))
-    {
-      if (reason.empty())
-       error_at(this->location(), "incompatible types in assignment");
-      else
-       error_at(this->location(), "incompatible types in assignment (%s)",
-                reason.c_str());
-      this->set_is_error();
-    }
-
-  if (lhs_type->is_error() || rhs_type->is_error())
-    this->set_is_error();
-}
-
-// Convert an assignment statement to the backend representation.
-
-Bstatement*
-Assignment_statement::do_get_backend(Translate_context* context)
-{
-  tree rhs_tree = this->rhs_->get_tree(context);
-  if (this->lhs_->is_sink_expression())
-    return context->backend()->expression_statement(tree_to_expr(rhs_tree));
-  tree lhs_tree = this->lhs_->get_tree(context);
-  rhs_tree = Expression::convert_for_assignment(context, this->lhs_->type(),
-                                               this->rhs_->type(), rhs_tree,
-                                               this->location());
-  return context->backend()->assignment_statement(tree_to_expr(lhs_tree),
-                                                 tree_to_expr(rhs_tree),
-                                                 this->location());
-}
-
-// Make an assignment statement.
-
-Statement*
-Statement::make_assignment(Expression* lhs, Expression* rhs,
-                          source_location location)
-{
-  return new Assignment_statement(lhs, rhs, location);
-}
-
-// The Move_ordered_evals class is used to find any subexpressions of
-// an expression that have an evaluation order dependency.  It creates
-// temporary variables to hold them.
-
-class Move_ordered_evals : public Traverse
-{
- public:
-  Move_ordered_evals(Block* block)
-    : Traverse(traverse_expressions),
-      block_(block)
-  { }
-
- protected:
-  int
-  expression(Expression**);
-
- private:
-  // The block where new temporary variables should be added.
-  Block* block_;
-};
-
-int
-Move_ordered_evals::expression(Expression** pexpr)
-{
-  // We have to look at subexpressions first.
-  if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if ((*pexpr)->must_eval_in_order())
-    {
-      source_location loc = (*pexpr)->location();
-      Temporary_statement* temp = Statement::make_temporary(NULL, *pexpr, loc);
-      this->block_->add_statement(temp);
-      *pexpr = Expression::make_temporary_reference(temp, loc);
-    }
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// An assignment operation statement.
-
-class Assignment_operation_statement : public Statement
-{
- public:
-  Assignment_operation_statement(Operator op, Expression* lhs, Expression* rhs,
-                                source_location location)
-    : Statement(STATEMENT_ASSIGNMENT_OPERATION, location),
-      op_(op), lhs_(lhs), rhs_(rhs)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { go_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  // The operator (OPERATOR_PLUSEQ, etc.).
-  Operator op_;
-  // Left hand side.
-  Expression* lhs_;
-  // Right hand side.
-  Expression* rhs_;
-};
-
-// Traversal.
-
-int
-Assignment_operation_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->lhs_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->rhs_);
-}
-
-// Lower an assignment operation statement to a regular assignment
-// statement.
-
-Statement*
-Assignment_operation_statement::do_lower(Gogo*, Named_object*,
-                                        Block* enclosing)
-{
-  source_location loc = this->location();
-
-  // We have to evaluate the left hand side expression only once.  We
-  // do this by moving out any expression with side effects.
-  Block* b = new Block(enclosing, loc);
-  Move_ordered_evals moe(b);
-  this->lhs_->traverse_subexpressions(&moe);
-
-  Expression* lval = this->lhs_->copy();
-
-  Operator op;
-  switch (this->op_)
-    {
-    case OPERATOR_PLUSEQ:
-      op = OPERATOR_PLUS;
-      break;
-    case OPERATOR_MINUSEQ:
-      op = OPERATOR_MINUS;
-      break;
-    case OPERATOR_OREQ:
-      op = OPERATOR_OR;
-      break;
-    case OPERATOR_XOREQ:
-      op = OPERATOR_XOR;
-      break;
-    case OPERATOR_MULTEQ:
-      op = OPERATOR_MULT;
-      break;
-    case OPERATOR_DIVEQ:
-      op = OPERATOR_DIV;
-      break;
-    case OPERATOR_MODEQ:
-      op = OPERATOR_MOD;
-      break;
-    case OPERATOR_LSHIFTEQ:
-      op = OPERATOR_LSHIFT;
-      break;
-    case OPERATOR_RSHIFTEQ:
-      op = OPERATOR_RSHIFT;
-      break;
-    case OPERATOR_ANDEQ:
-      op = OPERATOR_AND;
-      break;
-    case OPERATOR_BITCLEAREQ:
-      op = OPERATOR_BITCLEAR;
-      break;
-    default:
-      go_unreachable();
-    }
-
-  Expression* binop = Expression::make_binary(op, lval, this->rhs_, loc);
-  Statement* s = Statement::make_assignment(this->lhs_, binop, loc);
-  if (b->statements()->empty())
-    {
-      delete b;
-      return s;
-    }
-  else
-    {
-      b->add_statement(s);
-      return Statement::make_block_statement(b, loc);
-    }
-}
-
-// Make an assignment operation statement.
-
-Statement*
-Statement::make_assignment_operation(Operator op, Expression* lhs,
-                                    Expression* rhs, source_location location)
-{
-  return new Assignment_operation_statement(op, lhs, rhs, location);
-}
-
-// A tuple assignment statement.  This differs from an assignment
-// statement in that the right-hand-side expressions are evaluated in
-// parallel.
-
-class Tuple_assignment_statement : public Statement
-{
- public:
-  Tuple_assignment_statement(Expression_list* lhs, Expression_list* rhs,
-                            source_location location)
-    : Statement(STATEMENT_TUPLE_ASSIGNMENT, location),
-      lhs_(lhs), rhs_(rhs)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { go_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  // Left hand side--a list of lvalues.
-  Expression_list* lhs_;
-  // Right hand side--a list of rvalues.
-  Expression_list* rhs_;
-};
-
-// Traversal.
-
-int
-Tuple_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression_list(traverse, this->lhs_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression_list(traverse, this->rhs_);
-}
-
-// Lower a tuple assignment.  We use temporary variables to split it
-// up into a set of single assignments.
-
-Statement*
-Tuple_assignment_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Block* b = new Block(enclosing, loc);
-  
-  // First move out any subexpressions on the left hand side.  The
-  // right hand side will be evaluated in the required order anyhow.
-  Move_ordered_evals moe(b);
-  for (Expression_list::const_iterator plhs = this->lhs_->begin();
-       plhs != this->lhs_->end();
-       ++plhs)
-    (*plhs)->traverse_subexpressions(&moe);
-
-  std::vector<Temporary_statement*> temps;
-  temps.reserve(this->lhs_->size());
-
-  Expression_list::const_iterator prhs = this->rhs_->begin();
-  for (Expression_list::const_iterator plhs = this->lhs_->begin();
-       plhs != this->lhs_->end();
-       ++plhs, ++prhs)
-    {
-      go_assert(prhs != this->rhs_->end());
-
-      if ((*plhs)->is_error_expression()
-         || (*plhs)->type()->is_error()
-         || (*prhs)->is_error_expression()
-         || (*prhs)->type()->is_error())
-       continue;
-
-      if ((*plhs)->is_sink_expression())
-       {
-         b->add_statement(Statement::make_statement(*prhs));
-         continue;
-       }
-
-      Temporary_statement* temp = Statement::make_temporary((*plhs)->type(),
-                                                           *prhs, loc);
-      b->add_statement(temp);
-      temps.push_back(temp);
-
-    }
-  go_assert(prhs == this->rhs_->end());
-
-  prhs = this->rhs_->begin();
-  std::vector<Temporary_statement*>::const_iterator ptemp = temps.begin();
-  for (Expression_list::const_iterator plhs = this->lhs_->begin();
-       plhs != this->lhs_->end();
-       ++plhs, ++prhs)
-    {
-      if ((*plhs)->is_error_expression()
-         || (*plhs)->type()->is_error()
-         || (*prhs)->is_error_expression()
-         || (*prhs)->type()->is_error())
-       continue;
-
-      if ((*plhs)->is_sink_expression())
-       continue;
-
-      Expression* ref = Expression::make_temporary_reference(*ptemp, loc);
-      Statement* s = Statement::make_assignment(*plhs, ref, loc);
-      b->add_statement(s);
-      ++ptemp;
-    }
-  go_assert(ptemp == temps.end());
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a tuple assignment statement.
-
-Statement*
-Statement::make_tuple_assignment(Expression_list* lhs, Expression_list* rhs,
-                                source_location location)
-{
-  return new Tuple_assignment_statement(lhs, rhs, location);
-}
-
-// A tuple assignment from a map index expression.
-//   v, ok = m[k]
-
-class Tuple_map_assignment_statement : public Statement
-{
-public:
-  Tuple_map_assignment_statement(Expression* val, Expression* present,
-                                Expression* map_index,
-                                source_location location)
-    : Statement(STATEMENT_TUPLE_MAP_ASSIGNMENT, location),
-      val_(val), present_(present), map_index_(map_index)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { go_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  // Lvalue which receives the value from the map.
-  Expression* val_;
-  // Lvalue which receives whether the key value was present.
-  Expression* present_;
-  // The map index expression.
-  Expression* map_index_;
-};
-
-// Traversal.
-
-int
-Tuple_map_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->present_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->map_index_);
-}
-
-// Lower a tuple map assignment.
-
-Statement*
-Tuple_map_assignment_statement::do_lower(Gogo*, Named_object*,
-                                        Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Map_index_expression* map_index = this->map_index_->map_index_expression();
-  if (map_index == NULL)
-    {
-      this->report_error(_("expected map index on right hand side"));
-      return Statement::make_error_statement(loc);
-    }
-  Map_type* map_type = map_index->get_map_type();
-  if (map_type == NULL)
-    return Statement::make_error_statement(loc);
-
-  Block* b = new Block(enclosing, loc);
-
-  // Move out any subexpressions to make sure that functions are
-  // called in the required order.
-  Move_ordered_evals moe(b);
-  this->val_->traverse_subexpressions(&moe);
-  this->present_->traverse_subexpressions(&moe);
-
-  // Copy the key value into a temporary so that we can take its
-  // address without pushing the value onto the heap.
-
-  // var key_temp KEY_TYPE = MAP_INDEX
-  Temporary_statement* key_temp =
-    Statement::make_temporary(map_type->key_type(), map_index->index(), loc);
-  b->add_statement(key_temp);
-
-  // var val_temp VAL_TYPE
-  Temporary_statement* val_temp =
-    Statement::make_temporary(map_type->val_type(), NULL, loc);
-  b->add_statement(val_temp);
-
-  // var present_temp bool
-  Temporary_statement* present_temp =
-    Statement::make_temporary(Type::lookup_bool_type(), NULL, loc);
-  b->add_statement(present_temp);
-
-  // present_temp = mapaccess2(MAP, &key_temp, &val_temp)
-  Expression* ref = Expression::make_temporary_reference(key_temp, loc);
-  Expression* a1 = Expression::make_unary(OPERATOR_AND, ref, loc);
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  Expression* a2 = Expression::make_unary(OPERATOR_AND, ref, loc);
-  Expression* call = Runtime::make_call(Runtime::MAPACCESS2, loc, 3,
-                                       map_index->map(), a1, a2);
-
-  ref = Expression::make_temporary_reference(present_temp, loc);
-  Statement* s = Statement::make_assignment(ref, call, loc);
-  b->add_statement(s);
-
-  // val = val_temp
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  s = Statement::make_assignment(this->val_, ref, loc);
-  b->add_statement(s);
-
-  // present = present_temp
-  ref = Expression::make_temporary_reference(present_temp, loc);
-  s = Statement::make_assignment(this->present_, ref, loc);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a map assignment statement which returns a pair of values.
-
-Statement*
-Statement::make_tuple_map_assignment(Expression* val, Expression* present,
-                                    Expression* map_index,
-                                    source_location location)
-{
-  return new Tuple_map_assignment_statement(val, present, map_index, location);
-}
-
-// Assign a pair of entries to a map.
-//   m[k] = v, p
-
-class Map_assignment_statement : public Statement
-{
- public:
-  Map_assignment_statement(Expression* map_index,
-                          Expression* val, Expression* should_set,
-                          source_location location)
-    : Statement(STATEMENT_MAP_ASSIGNMENT, location),
-      map_index_(map_index), val_(val), should_set_(should_set)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { go_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  // A reference to the map index which should be set or deleted.
-  Expression* map_index_;
-  // The value to add to the map.
-  Expression* val_;
-  // Whether or not to add the value.
-  Expression* should_set_;
-};
-
-// Traverse a map assignment.
-
-int
-Map_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->map_index_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->should_set_);
-}
-
-// Lower a map assignment to a function call.
-
-Statement*
-Map_assignment_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Map_index_expression* map_index = this->map_index_->map_index_expression();
-  if (map_index == NULL)
-    {
-      this->report_error(_("expected map index on left hand side"));
-      return Statement::make_error_statement(loc);
-    }
-  Map_type* map_type = map_index->get_map_type();
-  if (map_type == NULL)
-    return Statement::make_error_statement(loc);
-
-  Block* b = new Block(enclosing, loc);
-
-  // Evaluate the map first to get order of evaluation right.
-  // map_temp := m // we are evaluating m[k] = v, p
-  Temporary_statement* map_temp = Statement::make_temporary(map_type,
-                                                           map_index->map(),
-                                                           loc);
-  b->add_statement(map_temp);
-
-  // var key_temp MAP_KEY_TYPE = k
-  Temporary_statement* key_temp =
-    Statement::make_temporary(map_type->key_type(), map_index->index(), loc);
-  b->add_statement(key_temp);
-
-  // var val_temp MAP_VAL_TYPE = v
-  Temporary_statement* val_temp =
-    Statement::make_temporary(map_type->val_type(), this->val_, loc);
-  b->add_statement(val_temp);
-
-  // var insert_temp bool = p
-  Temporary_statement* insert_temp =
-    Statement::make_temporary(Type::lookup_bool_type(), this->should_set_,
-                             loc);
-  b->add_statement(insert_temp);
-
-  // mapassign2(map_temp, &key_temp, &val_temp, p)
-  Expression* p1 = Expression::make_temporary_reference(map_temp, loc);
-  Expression* ref = Expression::make_temporary_reference(key_temp, loc);
-  Expression* p2 = Expression::make_unary(OPERATOR_AND, ref, loc);
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  Expression* p3 = Expression::make_unary(OPERATOR_AND, ref, loc);
-  Expression* p4 = Expression::make_temporary_reference(insert_temp, loc);
-  Expression* call = Runtime::make_call(Runtime::MAPASSIGN2, loc, 4,
-                                       p1, p2, p3, p4);
-  Statement* s = Statement::make_statement(call);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a statement which assigns a pair of entries to a map.
-
-Statement*
-Statement::make_map_assignment(Expression* map_index,
-                              Expression* val, Expression* should_set,
-                              source_location location)
-{
-  return new Map_assignment_statement(map_index, val, should_set, location);
-}
-
-// A tuple assignment from a receive statement.
-
-class Tuple_receive_assignment_statement : public Statement
-{
- public:
-  Tuple_receive_assignment_statement(Expression* val, Expression* closed,
-                                    Expression* channel, bool for_select,
-                                    source_location location)
-    : Statement(STATEMENT_TUPLE_RECEIVE_ASSIGNMENT, location),
-      val_(val), closed_(closed), channel_(channel), for_select_(for_select)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { go_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  // Lvalue which receives the value from the channel.
-  Expression* val_;
-  // Lvalue which receives whether the channel is closed.
-  Expression* closed_;
-  // The channel on which we receive the value.
-  Expression* channel_;
-  // Whether this is for a select statement.
-  bool for_select_;
-};
-
-// Traversal.
-
-int
-Tuple_receive_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->closed_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->channel_);
-}
-
-// Lower to a function call.
-
-Statement*
-Tuple_receive_assignment_statement::do_lower(Gogo*, Named_object*,
-                                            Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  if (channel_type == NULL)
-    {
-      this->report_error(_("expected channel"));
-      return Statement::make_error_statement(loc);
-    }
-  if (!channel_type->may_receive())
-    {
-      this->report_error(_("invalid receive on send-only channel"));
-      return Statement::make_error_statement(loc);
-    }
-
-  Block* b = new Block(enclosing, loc);
-
-  // Make sure that any subexpressions on the left hand side are
-  // evaluated in the right order.
-  Move_ordered_evals moe(b);
-  this->val_->traverse_subexpressions(&moe);
-  this->closed_->traverse_subexpressions(&moe);
-
-  // var val_temp ELEMENT_TYPE
-  Temporary_statement* val_temp =
-    Statement::make_temporary(channel_type->element_type(), NULL, loc);
-  b->add_statement(val_temp);
-
-  // var closed_temp bool
-  Temporary_statement* closed_temp =
-    Statement::make_temporary(Type::lookup_bool_type(), NULL, loc);
-  b->add_statement(closed_temp);
-
-  // closed_temp = chanrecv[23](channel, &val_temp)
-  Expression* ref = Expression::make_temporary_reference(val_temp, loc);
-  Expression* p2 = Expression::make_unary(OPERATOR_AND, ref, loc);
-  Expression* call = Runtime::make_call((this->for_select_
-                                        ? Runtime::CHANRECV3
-                                        : Runtime::CHANRECV2),
-                                       loc, 2, this->channel_, p2);
-  ref = Expression::make_temporary_reference(closed_temp, loc);
-  Statement* s = Statement::make_assignment(ref, call, loc);
-  b->add_statement(s);
-
-  // val = val_temp
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  s = Statement::make_assignment(this->val_, ref, loc);
-  b->add_statement(s);
-
-  // closed = closed_temp
-  ref = Expression::make_temporary_reference(closed_temp, loc);
-  s = Statement::make_assignment(this->closed_, ref, loc);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a nonblocking receive statement.
-
-Statement*
-Statement::make_tuple_receive_assignment(Expression* val, Expression* closed,
-                                        Expression* channel,
-                                        bool for_select,
-                                        source_location location)
-{
-  return new Tuple_receive_assignment_statement(val, closed, channel,
-                                               for_select, location);
-}
-
-// An assignment to a pair of values from a type guard.  This is a
-// conditional type guard.  v, ok = i.(type).
-
-class Tuple_type_guard_assignment_statement : public Statement
-{
- public:
-  Tuple_type_guard_assignment_statement(Expression* val, Expression* ok,
-                                       Expression* expr, Type* type,
-                                       source_location location)
-    : Statement(STATEMENT_TUPLE_TYPE_GUARD_ASSIGNMENT, location),
-      val_(val), ok_(ok), expr_(expr), type_(type)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { go_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  Call_expression*
-  lower_to_type(Runtime::Function);
-
-  void
-  lower_to_object_type(Block*, Runtime::Function);
-
-  // The variable which recieves the converted value.
-  Expression* val_;
-  // The variable which receives the indication of success.
-  Expression* ok_;
-  // The expression being converted.
-  Expression* expr_;
-  // The type to which the expression is being converted.
-  Type* type_;
-};
-
-// Traverse a type guard tuple assignment.
-
-int
-Tuple_type_guard_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->ok_) == TRAVERSE_EXIT
-      || this->traverse_type(traverse, this->type_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->expr_);
-}
-
-// Lower to a function call.
-
-Statement*
-Tuple_type_guard_assignment_statement::do_lower(Gogo*, Named_object*,
-                                               Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Type* expr_type = this->expr_->type();
-  if (expr_type->interface_type() == NULL)
-    {
-      if (!expr_type->is_error() && !this->type_->is_error())
-       this->report_error(_("type assertion only valid for interface types"));
-      return Statement::make_error_statement(loc);
-    }
-
-  Block* b = new Block(enclosing, loc);
-
-  // Make sure that any subexpressions on the left hand side are
-  // evaluated in the right order.
-  Move_ordered_evals moe(b);
-  this->val_->traverse_subexpressions(&moe);
-  this->ok_->traverse_subexpressions(&moe);
-
-  bool expr_is_empty = expr_type->interface_type()->is_empty();
-  Call_expression* call;
-  if (this->type_->interface_type() != NULL)
-    {
-      if (this->type_->interface_type()->is_empty())
-       call = Runtime::make_call((expr_is_empty
-                                  ? Runtime::IFACEE2E2
-                                  : Runtime::IFACEI2E2),
-                                 loc, 1, this->expr_);
-      else
-       call = this->lower_to_type(expr_is_empty
-                                  ? Runtime::IFACEE2I2
-                                  : Runtime::IFACEI2I2);
-    }
-  else if (this->type_->points_to() != NULL)
-    call = this->lower_to_type(expr_is_empty
-                              ? Runtime::IFACEE2T2P
-                              : Runtime::IFACEI2T2P);
-  else
-    {
-      this->lower_to_object_type(b,
-                                (expr_is_empty
-                                 ? Runtime::IFACEE2T2
-                                 : Runtime::IFACEI2T2));
-      call = NULL;
-    }
-
-  if (call != NULL)
-    {
-      Expression* res = Expression::make_call_result(call, 0);
-      res = Expression::make_unsafe_cast(this->type_, res, loc);
-      Statement* s = Statement::make_assignment(this->val_, res, loc);
-      b->add_statement(s);
-
-      res = Expression::make_call_result(call, 1);
-      s = Statement::make_assignment(this->ok_, res, loc);
-      b->add_statement(s);
-    }
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Lower a conversion to a non-empty interface type or a pointer type.
-
-Call_expression*
-Tuple_type_guard_assignment_statement::lower_to_type(Runtime::Function code)
-{
-  source_location loc = this->location();
-  return Runtime::make_call(code, loc, 2,
-                           Expression::make_type_descriptor(this->type_, loc),
-                           this->expr_);
-}
-
-// Lower a conversion to a non-interface non-pointer type.
-
-void
-Tuple_type_guard_assignment_statement::lower_to_object_type(
-    Block* b,
-    Runtime::Function code)
-{
-  source_location loc = this->location();
-
-  // var val_temp TYPE
-  Temporary_statement* val_temp = Statement::make_temporary(this->type_,
-                                                           NULL, loc);
-  b->add_statement(val_temp);
-
-  // ok = CODE(type_descriptor, expr, &val_temp)
-  Expression* p1 = Expression::make_type_descriptor(this->type_, loc);
-  Expression* ref = Expression::make_temporary_reference(val_temp, loc);
-  Expression* p3 = Expression::make_unary(OPERATOR_AND, ref, loc);
-  Expression* call = Runtime::make_call(code, loc, 3, p1, this->expr_, p3);
-  Statement* s = Statement::make_assignment(this->ok_, call, loc);
-  b->add_statement(s);
-
-  // val = val_temp
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  s = Statement::make_assignment(this->val_, ref, loc);
-  b->add_statement(s);
-}
-
-// Make an assignment from a type guard to a pair of variables.
-
-Statement*
-Statement::make_tuple_type_guard_assignment(Expression* val, Expression* ok,
-                                           Expression* expr, Type* type,
-                                           source_location location)
-{
-  return new Tuple_type_guard_assignment_statement(val, ok, expr, type,
-                                                  location);
-}
-
-// An expression statement.
-
-class Expression_statement : public Statement
-{
- public:
-  Expression_statement(Expression* expr)
-    : Statement(STATEMENT_EXPRESSION, expr->location()),
-      expr_(expr)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->traverse_expression(traverse, &this->expr_); }
-
-  void
-  do_determine_types()
-  { this->expr_->determine_type_no_context(); }
-
-  bool
-  do_may_fall_through() const;
-
-  Bstatement*
-  do_get_backend(Translate_context* context);
-
- private:
-  Expression* expr_;
-};
-
-// An expression statement may fall through unless it is a call to a
-// function which does not return.
-
-bool
-Expression_statement::do_may_fall_through() const
-{
-  const Call_expression* call = this->expr_->call_expression();
-  if (call != NULL)
-    {
-      const Expression* fn = call->fn();
-      const Func_expression* fe = fn->func_expression();
-      if (fe != NULL)
-       {
-         const Named_object* no = fe->named_object();
-
-         Function_type* fntype;
-         if (no->is_function())
-           fntype = no->func_value()->type();
-         else if (no->is_function_declaration())
-           fntype = no->func_declaration_value()->type();
-         else
-           fntype = NULL;
-
-         // The builtin function panic does not return.
-         if (fntype != NULL && fntype->is_builtin() && no->name() == "panic")
-           return false;
-       }
-    }
-  return true;
-}
-
-// Convert to backend representation.
-
-Bstatement*
-Expression_statement::do_get_backend(Translate_context* context)
-{
-  tree expr_tree = this->expr_->get_tree(context);
-  return context->backend()->expression_statement(tree_to_expr(expr_tree));
-}
-
-// Make an expression statement from an Expression.
-
-Statement*
-Statement::make_statement(Expression* expr)
-{
-  return new Expression_statement(expr);
-}
-
-// A block statement--a list of statements which may include variable
-// definitions.
-
-class Block_statement : public Statement
-{
- public:
-  Block_statement(Block* block, source_location location)
-    : Statement(STATEMENT_BLOCK, location),
-      block_(block)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->block_->traverse(traverse); }
-
-  void
-  do_determine_types()
-  { this->block_->determine_types(); }
-
-  bool
-  do_may_fall_through() const
-  { return this->block_->may_fall_through(); }
-
-  Bstatement*
-  do_get_backend(Translate_context* context);
-
- private:
-  Block* block_;
-};
-
-// Convert a block to the backend representation of a statement.
-
-Bstatement*
-Block_statement::do_get_backend(Translate_context* context)
-{
-  Bblock* bblock = this->block_->get_backend(context);
-  return context->backend()->block_statement(bblock);
-}
-
-// Make a block statement.
-
-Statement*
-Statement::make_block_statement(Block* block, source_location location)
-{
-  return new Block_statement(block, location);
-}
-
-// An increment or decrement statement.
-
-class Inc_dec_statement : public Statement
-{
- public:
-  Inc_dec_statement(bool is_inc, Expression* expr)
-    : Statement(STATEMENT_INCDEC, expr->location()),
-      expr_(expr), is_inc_(is_inc)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->traverse_expression(traverse, &this->expr_); }
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { go_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  // The l-value to increment or decrement.
-  Expression* expr_;
-  // Whether to increment or decrement.
-  bool is_inc_;
-};
-
-// Lower to += or -=.
-
-Statement*
-Inc_dec_statement::do_lower(Gogo*, Named_object*, Block*)
-{
-  source_location loc = this->location();
-
-  mpz_t oval;
-  mpz_init_set_ui(oval, 1UL);
-  Expression* oexpr = Expression::make_integer(&oval, NULL, loc);
-  mpz_clear(oval);
-
-  Operator op = this->is_inc_ ? OPERATOR_PLUSEQ : OPERATOR_MINUSEQ;
-  return Statement::make_assignment_operation(op, this->expr_, oexpr, loc);
-}
-
-// Make an increment statement.
-
-Statement*
-Statement::make_inc_statement(Expression* expr)
-{
-  return new Inc_dec_statement(true, expr);
-}
-
-// Make a decrement statement.
-
-Statement*
-Statement::make_dec_statement(Expression* expr)
-{
-  return new Inc_dec_statement(false, expr);
-}
-
-// Class Thunk_statement.  This is the base class for go and defer
-// statements.
-
-const char* const Thunk_statement::thunk_field_fn = "fn";
-
-const char* const Thunk_statement::thunk_field_receiver = "receiver";
-
-// Constructor.
-
-Thunk_statement::Thunk_statement(Statement_classification classification,
-                                Call_expression* call,
-                                source_location location)
-    : Statement(classification, location),
-      call_(call), struct_type_(NULL)
-{
-}
-
-// Return whether this is a simple statement which does not require a
-// thunk.
-
-bool
-Thunk_statement::is_simple(Function_type* fntype) const
-{
-  // We need a thunk to call a method, or to pass a variable number of
-  // arguments.
-  if (fntype->is_method() || fntype->is_varargs())
-    return false;
-
-  // A defer statement requires a thunk to set up for whether the
-  // function can call recover.
-  if (this->classification() == STATEMENT_DEFER)
-    return false;
-
-  // We can only permit a single parameter of pointer type.
-  const Typed_identifier_list* parameters = fntype->parameters();
-  if (parameters != NULL
-      && (parameters->size() > 1
-         || (parameters->size() == 1
-             && parameters->begin()->type()->points_to() == NULL)))
-    return false;
-
-  // If the function returns multiple values, or returns a type other
-  // than integer, floating point, or pointer, then it may get a
-  // hidden first parameter, in which case we need the more
-  // complicated approach.  This is true even though we are going to
-  // ignore the return value.
-  const Typed_identifier_list* results = fntype->results();
-  if (results != NULL
-      && (results->size() > 1
-         || (results->size() == 1
-             && !results->begin()->type()->is_basic_type()
-             && results->begin()->type()->points_to() == NULL)))
-    return false;
-
-  // If this calls something which is not a simple function, then we
-  // need a thunk.
-  Expression* fn = this->call_->call_expression()->fn();
-  if (fn->bound_method_expression() != NULL
-      || fn->interface_field_reference_expression() != NULL)
-    return false;
-
-  return true;
-}
-
-// Traverse a thunk statement.
-
-int
-Thunk_statement::do_traverse(Traverse* traverse)
-{
-  return this->traverse_expression(traverse, &this->call_);
-}
-
-// We implement traverse_assignment for a thunk statement because it
-// effectively copies the function call.
-
-bool
-Thunk_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  Expression* fn = this->call_->call_expression()->fn();
-  Expression* fn2 = fn;
-  tassign->value(&fn2, true, false);
-  return true;
-}
-
-// Determine types in a thunk statement.
-
-void
-Thunk_statement::do_determine_types()
-{
-  this->call_->determine_type_no_context();
-
-  // Now that we know the types of the call, build the struct used to
-  // pass parameters.
-  Call_expression* ce = this->call_->call_expression();
-  if (ce == NULL)
-    return;
-  Function_type* fntype = ce->get_function_type();
-  if (fntype != NULL && !this->is_simple(fntype))
-    this->struct_type_ = this->build_struct(fntype);
-}
-
-// Check types in a thunk statement.
-
-void
-Thunk_statement::do_check_types(Gogo*)
-{
-  Call_expression* ce = this->call_->call_expression();
-  if (ce == NULL)
-    {
-      if (!this->call_->is_error_expression())
-       this->report_error("expected call expression");
-      return;
-    }
-  Function_type* fntype = ce->get_function_type();
-  if (fntype != NULL && fntype->is_method())
-    {
-      Expression* fn = ce->fn();
-      if (fn->bound_method_expression() == NULL
-         && fn->interface_field_reference_expression() == NULL)
-       this->report_error(_("no object for method call"));
-    }
-}
-
-// The Traverse class used to find and simplify thunk statements.
-
-class Simplify_thunk_traverse : public Traverse
-{
- public:
-  Simplify_thunk_traverse(Gogo* gogo)
-    : Traverse(traverse_functions | traverse_blocks),
-      gogo_(gogo), function_(NULL)
-  { }
-
-  int
-  function(Named_object*);
-
-  int
-  block(Block*);
-
- private:
-  // General IR.
-  Gogo* gogo_;
-  // The function we are traversing.
-  Named_object* function_;
-};
-
-// Keep track of the current function while looking for thunks.
-
-int
-Simplify_thunk_traverse::function(Named_object* no)
-{
-  go_assert(this->function_ == NULL);
-  this->function_ = no;
-  int t = no->func_value()->traverse(this);
-  this->function_ = NULL;
-  if (t == TRAVERSE_EXIT)
-    return t;
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// Look for thunks in a block.
-
-int
-Simplify_thunk_traverse::block(Block* b)
-{
-  // The parser ensures that thunk statements always appear at the end
-  // of a block.
-  if (b->statements()->size() < 1)
-    return TRAVERSE_CONTINUE;
-  Thunk_statement* stat = b->statements()->back()->thunk_statement();
-  if (stat == NULL)
-    return TRAVERSE_CONTINUE;
-  if (stat->simplify_statement(this->gogo_, this->function_, b))
-    return TRAVERSE_SKIP_COMPONENTS;
-  return TRAVERSE_CONTINUE;
-}
-
-// Simplify all thunk statements.
-
-void
-Gogo::simplify_thunk_statements()
-{
-  Simplify_thunk_traverse thunk_traverse(this);
-  this->traverse(&thunk_traverse);
-}
-
-// Simplify complex thunk statements into simple ones.  A complicated
-// thunk statement is one which takes anything other than zero
-// parameters or a single pointer parameter.  We rewrite it into code
-// which allocates a struct, stores the parameter values into the
-// struct, and does a simple go or defer statement which passes the
-// struct to a thunk.  The thunk does the real call.
-
-bool
-Thunk_statement::simplify_statement(Gogo* gogo, Named_object* function,
-                                   Block* block)
-{
-  if (this->classification() == STATEMENT_ERROR)
-    return false;
-  if (this->call_->is_error_expression())
-    return false;
-
-  if (this->classification() == STATEMENT_DEFER)
-    {
-      // Make sure that the defer stack exists for the function.  We
-      // will use when converting this statement to the backend
-      // representation, but we want it to exist when we start
-      // converting the function.
-      function->func_value()->defer_stack(this->location());
-    }
-
-  Call_expression* ce = this->call_->call_expression();
-  Function_type* fntype = ce->get_function_type();
-  if (fntype == NULL)
-    {
-      go_assert(saw_errors());
-      this->set_is_error();
-      return false;
-    }
-  if (this->is_simple(fntype))
-    return false;
-
-  Expression* fn = ce->fn();
-  Bound_method_expression* bound_method = fn->bound_method_expression();
-  Interface_field_reference_expression* interface_method =
-    fn->interface_field_reference_expression();
-  const bool is_method = bound_method != NULL || interface_method != NULL;
-
-  source_location location = this->location();
-
-  std::string thunk_name = Gogo::thunk_name();
-
-  // Build the thunk.
-  this->build_thunk(gogo, thunk_name, fntype);
-
-  // Generate code to call the thunk.
-
-  // Get the values to store into the struct which is the single
-  // argument to the thunk.
-
-  Expression_list* vals = new Expression_list();
-  if (fntype->is_builtin())
-    ;
-  else if (!is_method)
-    vals->push_back(fn);
-  else if (interface_method != NULL)
-    vals->push_back(interface_method->expr());
-  else if (bound_method != NULL)
-    {
-      vals->push_back(bound_method->method());
-      Expression* first_arg = bound_method->first_argument();
-
-      // We always pass a pointer when calling a method.
-      if (first_arg->type()->points_to() == NULL)
-       first_arg = Expression::make_unary(OPERATOR_AND, first_arg, location);
-
-      // If we are calling a method which was inherited from an
-      // embedded struct, and the method did not get a stub, then the
-      // first type may be wrong.
-      Type* fatype = bound_method->first_argument_type();
-      if (fatype != NULL)
-       {
-         if (fatype->points_to() == NULL)
-           fatype = Type::make_pointer_type(fatype);
-         Type* unsafe = Type::make_pointer_type(Type::make_void_type());
-         first_arg = Expression::make_cast(unsafe, first_arg, location);
-         first_arg = Expression::make_cast(fatype, first_arg, location);
-       }
-
-      vals->push_back(first_arg);
-    }
-  else
-    go_unreachable();
-
-  if (ce->args() != NULL)
-    {
-      for (Expression_list::const_iterator p = ce->args()->begin();
-          p != ce->args()->end();
-          ++p)
-       vals->push_back(*p);
-    }
-
-  // Build the struct.
-  Expression* constructor =
-    Expression::make_struct_composite_literal(this->struct_type_, vals,
-                                             location);
-
-  // Allocate the initialized struct on the heap.
-  constructor = Expression::make_heap_composite(constructor, location);
-
-  // Look up the thunk.
-  Named_object* named_thunk = gogo->lookup(thunk_name, NULL);
-  go_assert(named_thunk != NULL && named_thunk->is_function());
-
-  // Build the call.
-  Expression* func = Expression::make_func_reference(named_thunk, NULL,
-                                                    location);
-  Expression_list* params = new Expression_list();
-  params->push_back(constructor);
-  Call_expression* call = Expression::make_call(func, params, false, location);
-
-  // Build the simple go or defer statement.
-  Statement* s;
-  if (this->classification() == STATEMENT_GO)
-    s = Statement::make_go_statement(call, location);
-  else if (this->classification() == STATEMENT_DEFER)
-    s = Statement::make_defer_statement(call, location);
-  else
-    go_unreachable();
-
-  // The current block should end with the go statement.
-  go_assert(block->statements()->size() >= 1);
-  go_assert(block->statements()->back() == this);
-  block->replace_statement(block->statements()->size() - 1, s);
-
-  // We already ran the determine_types pass, so we need to run it now
-  // for the new statement.
-  s->determine_types();
-
-  // Sanity check.
-  gogo->check_types_in_block(block);
-
-  // Return true to tell the block not to keep looking at statements.
-  return true;
-}
-
-// Set the name to use for thunk parameter N.
-
-void
-Thunk_statement::thunk_field_param(int n, char* buf, size_t buflen)
-{
-  snprintf(buf, buflen, "a%d", n);
-}
-
-// Build a new struct type to hold the parameters for a complicated
-// thunk statement.  FNTYPE is the type of the function call.
-
-Struct_type*
-Thunk_statement::build_struct(Function_type* fntype)
-{
-  source_location location = this->location();
-
-  Struct_field_list* fields = new Struct_field_list();
-
-  Call_expression* ce = this->call_->call_expression();
-  Expression* fn = ce->fn();
-
-  Interface_field_reference_expression* interface_method =
-    fn->interface_field_reference_expression();
-  if (interface_method != NULL)
-    {
-      // If this thunk statement calls a method on an interface, we
-      // pass the interface object to the thunk.
-      Typed_identifier tid(Thunk_statement::thunk_field_fn,
-                          interface_method->expr()->type(),
-                          location);
-      fields->push_back(Struct_field(tid));
-    }
-  else if (!fntype->is_builtin())
-    {
-      // The function to call.
-      Typed_identifier tid(Go_statement::thunk_field_fn, fntype, location);
-      fields->push_back(Struct_field(tid));
-    }
-  else if (ce->is_recover_call())
-    {
-      // The predeclared recover function has no argument.  However,
-      // we add an argument when building recover thunks.  Handle that
-      // here.
-      fields->push_back(Struct_field(Typed_identifier("can_recover",
-                                                     Type::lookup_bool_type(),
-                                                     location)));
-    }
-
-  if (fn->bound_method_expression() != NULL)
-    {
-      go_assert(fntype->is_method());
-      Type* rtype = fntype->receiver()->type();
-      // We always pass the receiver as a pointer.
-      if (rtype->points_to() == NULL)
-       rtype = Type::make_pointer_type(rtype);
-      Typed_identifier tid(Thunk_statement::thunk_field_receiver, rtype,
-                          location);
-      fields->push_back(Struct_field(tid));
-    }
-
-  const Expression_list* args = ce->args();
-  if (args != NULL)
-    {
-      int i = 0;
-      for (Expression_list::const_iterator p = args->begin();
-          p != args->end();
-          ++p, ++i)
-       {
-         char buf[50];
-         this->thunk_field_param(i, buf, sizeof buf);
-         fields->push_back(Struct_field(Typed_identifier(buf, (*p)->type(),
-                                                         location)));
-       }
-    }
-
-  return Type::make_struct_type(fields, location);
-}
-
-// Build the thunk we are going to call.  This is a brand new, albeit
-// artificial, function.
-
-void
-Thunk_statement::build_thunk(Gogo* gogo, const std::string& thunk_name,
-                            Function_type* fntype)
-{
-  source_location location = this->location();
-
-  Call_expression* ce = this->call_->call_expression();
-
-  bool may_call_recover = false;
-  if (this->classification() == STATEMENT_DEFER)
-    {
-      Func_expression* fn = ce->fn()->func_expression();
-      if (fn == NULL)
-       may_call_recover = true;
-      else
-       {
-         const Named_object* no = fn->named_object();
-         if (!no->is_function())
-           may_call_recover = true;
-         else
-           may_call_recover = no->func_value()->calls_recover();
-       }
-    }
-
-  // Build the type of the thunk.  The thunk takes a single parameter,
-  // which is a pointer to the special structure we build.
-  const char* const parameter_name = "__go_thunk_parameter";
-  Typed_identifier_list* thunk_parameters = new Typed_identifier_list();
-  Type* pointer_to_struct_type = Type::make_pointer_type(this->struct_type_);
-  thunk_parameters->push_back(Typed_identifier(parameter_name,
-                                              pointer_to_struct_type,
-                                              location));
-
-  Typed_identifier_list* thunk_results = NULL;
-  if (may_call_recover)
-    {
-      // When deferring a function which may call recover, add a
-      // return value, to disable tail call optimizations which will
-      // break the way we check whether recover is permitted.
-      thunk_results = new Typed_identifier_list();
-      thunk_results->push_back(Typed_identifier("", Type::lookup_bool_type(),
-                                               location));
-    }
-
-  Function_type* thunk_type = Type::make_function_type(NULL, thunk_parameters,
-                                                      thunk_results,
-                                                      location);
-
-  // Start building the thunk.
-  Named_object* function = gogo->start_function(thunk_name, thunk_type, true,
-                                               location);
-
-  // For a defer statement, start with a call to
-  // __go_set_defer_retaddr.  */
-  Label* retaddr_label = NULL; 
-  if (may_call_recover)
-    {
-      retaddr_label = gogo->add_label_reference("retaddr");
-      Expression* arg = Expression::make_label_addr(retaddr_label, location);
-      Expression* call = Runtime::make_call(Runtime::SET_DEFER_RETADDR,
-                                           location, 1, arg);
-
-      // This is a hack to prevent the middle-end from deleting the
-      // label.
-      gogo->start_block(location);
-      gogo->add_statement(Statement::make_goto_statement(retaddr_label,
-                                                        location));
-      Block* then_block = gogo->finish_block(location);
-      then_block->determine_types();
-
-      Statement* s = Statement::make_if_statement(call, then_block, NULL,
-                                                 location);
-      s->determine_types();
-      gogo->add_statement(s);
-    }
-
-  // Get a reference to the parameter.
-  Named_object* named_parameter = gogo->lookup(parameter_name, NULL);
-  go_assert(named_parameter != NULL && named_parameter->is_variable());
-
-  // Build the call.  Note that the field names are the same as the
-  // ones used in build_struct.
-  Expression* thunk_parameter = Expression::make_var_reference(named_parameter,
-                                                              location);
-  thunk_parameter = Expression::make_unary(OPERATOR_MULT, thunk_parameter,
-                                          location);
-
-  Bound_method_expression* bound_method = ce->fn()->bound_method_expression();
-  Interface_field_reference_expression* interface_method =
-    ce->fn()->interface_field_reference_expression();
-
-  Expression* func_to_call;
-  unsigned int next_index;
-  if (!fntype->is_builtin())
-    {
-      func_to_call = Expression::make_field_reference(thunk_parameter,
-                                                     0, location);
-      next_index = 1;
-    }
-  else
-    {
-      go_assert(bound_method == NULL && interface_method == NULL);
-      func_to_call = ce->fn();
-      next_index = 0;
-    }
-
-  if (bound_method != NULL)
-    {
-      Expression* r = Expression::make_field_reference(thunk_parameter, 1,
-                                                      location);
-      // The main program passes in a function pointer from the
-      // interface expression, so here we can make a bound method in
-      // all cases.
-      func_to_call = Expression::make_bound_method(r, func_to_call,
-                                                  location);
-      next_index = 2;
-    }
-  else if (interface_method != NULL)
-    {
-      // The main program passes the interface object.
-      const std::string& name(interface_method->name());
-      func_to_call = Expression::make_interface_field_reference(func_to_call,
-                                                               name,
-                                                               location);
-    }
-
-  Expression_list* call_params = new Expression_list();
-  const Struct_field_list* fields = this->struct_type_->fields();
-  Struct_field_list::const_iterator p = fields->begin();
-  for (unsigned int i = 0; i < next_index; ++i)
-    ++p;
-  bool is_recover_call = ce->is_recover_call();
-  Expression* recover_arg = NULL;
-  for (; p != fields->end(); ++p, ++next_index)
-    {
-      Expression* thunk_param = Expression::make_var_reference(named_parameter,
-                                                              location);
-      thunk_param = Expression::make_unary(OPERATOR_MULT, thunk_param,
-                                          location);
-      Expression* param = Expression::make_field_reference(thunk_param,
-                                                          next_index,
-                                                          location);
-      if (!is_recover_call)
-       call_params->push_back(param);
-      else
-       {
-         go_assert(call_params->empty());
-         recover_arg = param;
-       }
-    }
-
-  if (call_params->empty())
-    {
-      delete call_params;
-      call_params = NULL;
-    }
-
-  Expression* call = Expression::make_call(func_to_call, call_params, false,
-                                          location);
-  // We need to lower in case this is a builtin function.
-  call = call->lower(gogo, function, -1);
-  Call_expression* call_ce = call->call_expression();
-  if (call_ce != NULL && may_call_recover)
-    call_ce->set_is_deferred();
-
-  Statement* call_statement = Statement::make_statement(call);
-
-  // We already ran the determine_types pass, so we need to run it
-  // just for this statement now.
-  call_statement->determine_types();
-
-  // Sanity check.
-  call->check_types(gogo);
-
-  if (call_ce != NULL && recover_arg != NULL)
-    call_ce->set_recover_arg(recover_arg);
-
-  gogo->add_statement(call_statement);
-
-  // If this is a defer statement, the label comes immediately after
-  // the call.
-  if (may_call_recover)
-    {
-      gogo->add_label_definition("retaddr", location);
-
-      Expression_list* vals = new Expression_list();
-      vals->push_back(Expression::make_boolean(false, location));
-      gogo->add_statement(Statement::make_return_statement(vals, location));
-    }
-
-  // That is all the thunk has to do.
-  gogo->finish_function(location);
-}
-
-// Get the function and argument expressions.
-
-bool
-Thunk_statement::get_fn_and_arg(Expression** pfn, Expression** parg)
-{
-  if (this->call_->is_error_expression())
-    return false;
-
-  Call_expression* ce = this->call_->call_expression();
-
-  *pfn = ce->fn();
-
-  const Expression_list* args = ce->args();
-  if (args == NULL || args->empty())
-    *parg = Expression::make_nil(this->location());
-  else
-    {
-      go_assert(args->size() == 1);
-      *parg = args->front();
-    }
-
-  return true;
-}
-
-// Class Go_statement.
-
-Bstatement*
-Go_statement::do_get_backend(Translate_context* context)
-{
-  Expression* fn;
-  Expression* arg;
-  if (!this->get_fn_and_arg(&fn, &arg))
-    return context->backend()->error_statement();
-
-  Expression* call = Runtime::make_call(Runtime::GO, this->location(), 2,
-                                       fn, arg);
-  tree call_tree = call->get_tree(context);
-  Bexpression* call_bexpr = tree_to_expr(call_tree);
-  return context->backend()->expression_statement(call_bexpr);
-}
-
-// Make a go statement.
-
-Statement*
-Statement::make_go_statement(Call_expression* call, source_location location)
-{
-  return new Go_statement(call, location);
-}
-
-// Class Defer_statement.
-
-Bstatement*
-Defer_statement::do_get_backend(Translate_context* context)
-{
-  Expression* fn;
-  Expression* arg;
-  if (!this->get_fn_and_arg(&fn, &arg))
-    return context->backend()->error_statement();
-
-  source_location loc = this->location();
-  Expression* ds = context->function()->func_value()->defer_stack(loc);
-
-  Expression* call = Runtime::make_call(Runtime::DEFER, loc, 3,
-                                       ds, fn, arg);
-  tree call_tree = call->get_tree(context);
-  Bexpression* call_bexpr = tree_to_expr(call_tree);
-  return context->backend()->expression_statement(call_bexpr);
-}
-
-// Make a defer statement.
-
-Statement*
-Statement::make_defer_statement(Call_expression* call,
-                               source_location location)
-{
-  return new Defer_statement(call, location);
-}
-
-// Class Return_statement.
-
-// Traverse assignments.  We treat each return value as a top level
-// RHS in an expression.
-
-bool
-Return_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  Expression_list* vals = this->vals_;
-  if (vals != NULL)
-    {
-      for (Expression_list::iterator p = vals->begin();
-          p != vals->end();
-          ++p)
-       tassign->value(&*p, true, true);
-    }
-  return true;
-}
-
-// Lower a return statement.  If we are returning a function call
-// which returns multiple values which match the current function,
-// split up the call's results.  If the function has named result
-// variables, and the return statement lists explicit values, then
-// implement it by assigning the values to the result variables and
-// changing the statement to not list any values.  This lets
-// panic/recover work correctly.
-
-Statement*
-Return_statement::do_lower(Gogo*, Named_object* function, Block* enclosing)
-{
-  if (this->is_lowered_)
-    return this;
-
-  Expression_list* vals = this->vals_;
-  this->vals_ = NULL;
-  this->is_lowered_ = true;
-
-  source_location loc = this->location();
-
-  size_t vals_count = vals == NULL ? 0 : vals->size();
-  Function::Results* results = function->func_value()->result_variables();
-  size_t results_count = results == NULL ? 0 : results->size();
-
-  if (vals_count == 0)
-    {
-      if (results_count > 0 && !function->func_value()->results_are_named())
-       {
-         this->report_error(_("not enough arguments to return"));
-         return this;
-       }
-      return this;
-    }
-
-  if (results_count == 0)
-    {
-      this->report_error(_("return with value in function "
-                          "with no return type"));
-      return this;
-    }
-
-  // If the current function has multiple return values, and we are
-  // returning a single call expression, split up the call expression.
-  if (results_count > 1
-      && vals->size() == 1
-      && vals->front()->call_expression() != NULL)
-    {
-      Call_expression* call = vals->front()->call_expression();
-      delete vals;
-      vals = new Expression_list;
-      for (size_t i = 0; i < results_count; ++i)
-       vals->push_back(Expression::make_call_result(call, i));
-      vals_count = results_count;
-    }
-
-  if (vals_count < results_count)
-    {
-      this->report_error(_("not enough arguments to return"));
-      return this;
-    }
-
-  if (vals_count > results_count)
-    {
-      this->report_error(_("too many values in return statement"));
-      return this;
-    }
-
-  Block* b = new Block(enclosing, loc);
-
-  Expression_list* lhs = new Expression_list();
-  Expression_list* rhs = new Expression_list();
-
-  Expression_list::const_iterator pe = vals->begin();
-  int i = 1;
-  for (Function::Results::const_iterator pr = results->begin();
-       pr != results->end();
-       ++pr, ++pe, ++i)
-    {
-      Named_object* rv = *pr;
-      Expression* e = *pe;
-
-      // Check types now so that we give a good error message.  The
-      // result type is known.  We determine the expression type
-      // early.
-
-      Type *rvtype = rv->result_var_value()->type();
-      Type_context type_context(rvtype, false);
-      e->determine_type(&type_context);
-
-      std::string reason;
-      if (Type::are_assignable(rvtype, e->type(), &reason))
-       {
-         Expression* ve = Expression::make_var_reference(rv, e->location());
-         lhs->push_back(ve);
-         rhs->push_back(e);
-       }
-      else
-       {
-         if (reason.empty())
-           error_at(e->location(), "incompatible type for return value %d", i);
-         else
-           error_at(e->location(),
-                    "incompatible type for return value %d (%s)",
-                    i, reason.c_str());
-       }
-    }
-  go_assert(lhs->size() == rhs->size());
-
-  if (lhs->empty())
-    ;
-  else if (lhs->size() == 1)
-    {
-      b->add_statement(Statement::make_assignment(lhs->front(), rhs->front(),
-                                                 loc));
-      delete lhs;
-      delete rhs;
-    }
-  else
-    b->add_statement(Statement::make_tuple_assignment(lhs, rhs, loc));
-
-  b->add_statement(this);
-
-  delete vals;
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Convert a return statement to the backend representation.
-
-Bstatement*
-Return_statement::do_get_backend(Translate_context* context)
-{
-  source_location loc = this->location();
-
-  Function* function = context->function()->func_value();
-  tree fndecl = function->get_decl();
-
-  Function::Results* results = function->result_variables();
-  std::vector<Bexpression*> retvals;
-  if (results != NULL && !results->empty())
-    {
-      retvals.reserve(results->size());
-      for (Function::Results::const_iterator p = results->begin();
-          p != results->end();
-          p++)
-       {
-         Expression* vr = Expression::make_var_reference(*p, loc);
-         retvals.push_back(tree_to_expr(vr->get_tree(context)));
-       }
-    }
-
-  return context->backend()->return_statement(tree_to_function(fndecl),
-                                             retvals, loc);
-}
-
-// Make a return statement.
-
-Statement*
-Statement::make_return_statement(Expression_list* vals,
-                                source_location location)
-{
-  return new Return_statement(vals, location);
-}
-
-// A break or continue statement.
-
-class Bc_statement : public Statement
-{
- public:
-  Bc_statement(bool is_break, Unnamed_label* label, source_location location)
-    : Statement(STATEMENT_BREAK_OR_CONTINUE, location),
-      label_(label), is_break_(is_break)
-  { }
-
-  bool
-  is_break() const
-  { return this->is_break_; }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  Bstatement*
-  do_get_backend(Translate_context* context)
-  { return this->label_->get_goto(context, this->location()); }
-
- private:
-  // The label that this branches to.
-  Unnamed_label* label_;
-  // True if this is "break", false if it is "continue".
-  bool is_break_;
-};
-
-// Make a break statement.
-
-Statement*
-Statement::make_break_statement(Unnamed_label* label, source_location location)
-{
-  return new Bc_statement(true, label, location);
-}
-
-// Make a continue statement.
-
-Statement*
-Statement::make_continue_statement(Unnamed_label* label,
-                                  source_location location)
-{
-  return new Bc_statement(false, label, location);
-}
-
-// A goto statement.
-
-class Goto_statement : public Statement
-{
- public:
-  Goto_statement(Label* label, source_location location)
-    : Statement(STATEMENT_GOTO, location),
-      label_(label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  Bstatement*
-  do_get_backend(Translate_context*);
-
- private:
-  Label* label_;
-};
-
-// Check types for a label.  There aren't any types per se, but we use
-// this to give an error if the label was never defined.
-
-void
-Goto_statement::do_check_types(Gogo*)
-{
-  if (!this->label_->is_defined())
-    {
-      error_at(this->location(), "reference to undefined label %qs",
-              Gogo::message_name(this->label_->name()).c_str());
-      this->set_is_error();
-    }
-}
-
-// Convert the goto statement to the backend representation.
-
-Bstatement*
-Goto_statement::do_get_backend(Translate_context* context)
-{
-  Blabel* blabel = this->label_->get_backend_label(context);
-  return context->backend()->goto_statement(blabel, this->location());
-}
-
-// Make a goto statement.
-
-Statement*
-Statement::make_goto_statement(Label* label, source_location location)
-{
-  return new Goto_statement(label, location);
-}
-
-// A goto statement to an unnamed label.
-
-class Goto_unnamed_statement : public Statement
-{
- public:
-  Goto_unnamed_statement(Unnamed_label* label, source_location location)
-    : Statement(STATEMENT_GOTO_UNNAMED, location),
-      label_(label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  Bstatement*
-  do_get_backend(Translate_context* context)
-  { return this->label_->get_goto(context, this->location()); }
-
- private:
-  Unnamed_label* label_;
-};
-
-// Make a goto statement to an unnamed label.
-
-Statement*
-Statement::make_goto_unnamed_statement(Unnamed_label* label,
-                                      source_location location)
-{
-  return new Goto_unnamed_statement(label, location);
-}
-
-// Class Label_statement.
-
-// Traversal.
-
-int
-Label_statement::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// Return the backend representation of the statement defining this
-// label.
-
-Bstatement*
-Label_statement::do_get_backend(Translate_context* context)
-{
-  Blabel* blabel = this->label_->get_backend_label(context);
-  return context->backend()->label_definition_statement(blabel);
-}
-
-// Make a label statement.
-
-Statement*
-Statement::make_label_statement(Label* label, source_location location)
-{
-  return new Label_statement(label, location);
-}
-
-// An unnamed label statement.
-
-class Unnamed_label_statement : public Statement
-{
- public:
-  Unnamed_label_statement(Unnamed_label* label)
-    : Statement(STATEMENT_UNNAMED_LABEL, label->location()),
-      label_(label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  Bstatement*
-  do_get_backend(Translate_context* context)
-  { return this->label_->get_definition(context); }
-
- private:
-  // The label.
-  Unnamed_label* label_;
-};
-
-// Make an unnamed label statement.
-
-Statement*
-Statement::make_unnamed_label_statement(Unnamed_label* label)
-{
-  return new Unnamed_label_statement(label);
-}
-
-// An if statement.
-
-class If_statement : public Statement
-{
- public:
-  If_statement(Expression* cond, Block* then_block, Block* else_block,
-              source_location location)
-    : Statement(STATEMENT_IF, location),
-      cond_(cond), then_block_(then_block), else_block_(else_block)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const;
-
-  Bstatement*
-  do_get_backend(Translate_context*);
-
- private:
-  Expression* cond_;
-  Block* then_block_;
-  Block* else_block_;
-};
-
-// Traversal.
-
-int
-If_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->cond_) == TRAVERSE_EXIT
-      || this->then_block_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->else_block_ != NULL)
-    {
-      if (this->else_block_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-void
-If_statement::do_determine_types()
-{
-  Type_context context(Type::lookup_bool_type(), false);
-  this->cond_->determine_type(&context);
-  this->then_block_->determine_types();
-  if (this->else_block_ != NULL)
-    this->else_block_->determine_types();
-}
-
-// Check types.
-
-void
-If_statement::do_check_types(Gogo*)
-{
-  Type* type = this->cond_->type();
-  if (type->is_error())
-    this->set_is_error();
-  else if (!type->is_boolean_type())
-    this->report_error(_("expected boolean expression"));
-}
-
-// Whether the overall statement may fall through.
-
-bool
-If_statement::do_may_fall_through() const
-{
-  return (this->else_block_ == NULL
-         || this->then_block_->may_fall_through()
-         || this->else_block_->may_fall_through());
-}
-
-// Get the backend representation.
-
-Bstatement*
-If_statement::do_get_backend(Translate_context* context)
-{
-  go_assert(this->cond_->type()->is_boolean_type()
-            || this->cond_->type()->is_error());
-  tree cond_tree = this->cond_->get_tree(context);
-  Bexpression* cond_expr = tree_to_expr(cond_tree);
-  Bblock* then_block = this->then_block_->get_backend(context);
-  Bblock* else_block = (this->else_block_ == NULL
-                       ? NULL
-                       : this->else_block_->get_backend(context));
-  return context->backend()->if_statement(cond_expr, then_block,
-                                         else_block, this->location());
-}
-
-// Make an if statement.
-
-Statement*
-Statement::make_if_statement(Expression* cond, Block* then_block,
-                            Block* else_block, source_location location)
-{
-  return new If_statement(cond, then_block, else_block, location);
-}
-
-// Class Case_clauses::Hash_integer_value.
-
-class Case_clauses::Hash_integer_value
-{
- public:
-  size_t
-  operator()(Expression*) const;
-};
-
-size_t
-Case_clauses::Hash_integer_value::operator()(Expression* pe) const
-{
-  Type* itype;
-  mpz_t ival;
-  mpz_init(ival);
-  if (!pe->integer_constant_value(true, ival, &itype))
-    go_unreachable();
-  size_t ret = mpz_get_ui(ival);
-  mpz_clear(ival);
-  return ret;
-}
-
-// Class Case_clauses::Eq_integer_value.
-
-class Case_clauses::Eq_integer_value
-{
- public:
-  bool
-  operator()(Expression*, Expression*) const;
-};
-
-bool
-Case_clauses::Eq_integer_value::operator()(Expression* a, Expression* b) const
-{
-  Type* atype;
-  Type* btype;
-  mpz_t aval;
-  mpz_t bval;
-  mpz_init(aval);
-  mpz_init(bval);
-  if (!a->integer_constant_value(true, aval, &atype)
-      || !b->integer_constant_value(true, bval, &btype))
-    go_unreachable();
-  bool ret = mpz_cmp(aval, bval) == 0;
-  mpz_clear(aval);
-  mpz_clear(bval);
-  return ret;
-}
-
-// Class Case_clauses::Case_clause.
-
-// Traversal.
-
-int
-Case_clauses::Case_clause::traverse(Traverse* traverse)
-{
-  if (this->cases_ != NULL
-      && (traverse->traverse_mask()
-         & (Traverse::traverse_types | Traverse::traverse_expressions)) != 0)
-    {
-      if (this->cases_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->statements_ != NULL)
-    {
-      if (this->statements_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check whether all the case expressions are integer constants.
-
-bool
-Case_clauses::Case_clause::is_constant() const
-{
-  if (this->cases_ != NULL)
-    {
-      for (Expression_list::const_iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       if (!(*p)->is_constant() || (*p)->type()->integer_type() == NULL)
-         return false;
-    }
-  return true;
-}
-
-// Lower a case clause for a nonconstant switch.  VAL_TEMP is the
-// value we are switching on; it may be NULL.  If START_LABEL is not
-// NULL, it goes at the start of the statements, after the condition
-// test.  We branch to FINISH_LABEL at the end of the statements.
-
-void
-Case_clauses::Case_clause::lower(Block* b, Temporary_statement* val_temp,
-                                Unnamed_label* start_label,
-                                Unnamed_label* finish_label) const
-{
-  source_location loc = this->location_;
-  Unnamed_label* next_case_label;
-  if (this->cases_ == NULL || this->cases_->empty())
-    {
-      go_assert(this->is_default_);
-      next_case_label = NULL;
-    }
-  else
-    {
-      Expression* cond = NULL;
-
-      for (Expression_list::const_iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       {
-         Expression* this_cond;
-         if (val_temp == NULL)
-           this_cond = *p;
-         else
-           {
-             Expression* ref = Expression::make_temporary_reference(val_temp,
-                                                                    loc);
-             this_cond = Expression::make_binary(OPERATOR_EQEQ, ref, *p, loc);
-           }
-
-         if (cond == NULL)
-           cond = this_cond;
-         else
-           cond = Expression::make_binary(OPERATOR_OROR, cond, this_cond, loc);
-       }
-
-      Block* then_block = new Block(b, loc);
-      next_case_label = new Unnamed_label(UNKNOWN_LOCATION);
-      Statement* s = Statement::make_goto_unnamed_statement(next_case_label,
-                                                           loc);
-      then_block->add_statement(s);
-
-      // if !COND { goto NEXT_CASE_LABEL }
-      cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
-      s = Statement::make_if_statement(cond, then_block, NULL, loc);
-      b->add_statement(s);
-    }
-
-  if (start_label != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(start_label));
-
-  if (this->statements_ != NULL)
-    b->add_statement(Statement::make_block_statement(this->statements_, loc));
-
-  Statement* s = Statement::make_goto_unnamed_statement(finish_label, loc);
-  b->add_statement(s);
-
-  if (next_case_label != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(next_case_label));
-}
-
-// Determine types.
-
-void
-Case_clauses::Case_clause::determine_types(Type* type)
-{
-  if (this->cases_ != NULL)
-    {
-      Type_context case_context(type, false);
-      for (Expression_list::iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       (*p)->determine_type(&case_context);
-    }
-  if (this->statements_ != NULL)
-    this->statements_->determine_types();
-}
-
-// Check types.  Returns false if there was an error.
-
-bool
-Case_clauses::Case_clause::check_types(Type* type)
-{
-  if (this->cases_ != NULL)
-    {
-      for (Expression_list::iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       {
-         if (!Type::are_assignable(type, (*p)->type(), NULL)
-             && !Type::are_assignable((*p)->type(), type, NULL))
-           {
-             error_at((*p)->location(),
-                      "type mismatch between switch value and case clause");
-             return false;
-           }
-       }
-    }
-  return true;
-}
-
-// Return true if this clause may fall through to the following
-// statements.  Note that this is not the same as whether the case
-// uses the "fallthrough" keyword.
-
-bool
-Case_clauses::Case_clause::may_fall_through() const
-{
-  if (this->statements_ == NULL)
-    return true;
-  return this->statements_->may_fall_through();
-}
-
-// Convert the case values and statements to the backend
-// representation.  BREAK_LABEL is the label which break statements
-// should branch to.  CASE_CONSTANTS is used to detect duplicate
-// constants.  *CASES should be passed as an empty vector; the values
-// for this case will be added to it.  If this is the default case,
-// *CASES will remain empty.  This returns the statement to execute if
-// one of these cases is selected.
-
-Bstatement*
-Case_clauses::Case_clause::get_backend(Translate_context* context,
-                                      Unnamed_label* break_label,
-                                      Case_constants* case_constants,
-                                      std::vector<Bexpression*>* cases) const
-{
-  if (this->cases_ != NULL)
-    {
-      go_assert(!this->is_default_);
-      for (Expression_list::const_iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       {
-         Expression* e = *p;
-         if (e->classification() != Expression::EXPRESSION_INTEGER)
-           {
-             Type* itype;
-             mpz_t ival;
-             mpz_init(ival);
-             if (!(*p)->integer_constant_value(true, ival, &itype))
-               {
-                 // Something went wrong.  This can happen with a
-                 // negative constant and an unsigned switch value.
-                 go_assert(saw_errors());
-                 continue;
-               }
-             go_assert(itype != NULL);
-             e = Expression::make_integer(&ival, itype, e->location());
-             mpz_clear(ival);
-           }
-
-         std::pair<Case_constants::iterator, bool> ins =
-           case_constants->insert(e);
-         if (!ins.second)
-           {
-             // Value was already present.
-             error_at(this->location_, "duplicate case in switch");
-             continue;
-           }
-
-         tree case_tree = e->get_tree(context);
-         Bexpression* case_expr = tree_to_expr(case_tree);
-         cases->push_back(case_expr);
-       }
-    }
-
-  Bstatement* statements;
-  if (this->statements_ == NULL)
-    statements = NULL;
-  else
-    {
-      Bblock* bblock = this->statements_->get_backend(context);
-      statements = context->backend()->block_statement(bblock);
-    }
-
-  Bstatement* break_stat;
-  if (this->is_fallthrough_)
-    break_stat = NULL;
-  else
-    break_stat = break_label->get_goto(context, this->location_);
-
-  if (statements == NULL)
-    return break_stat;
-  else if (break_stat == NULL)
-    return statements;
-  else
-    return context->backend()->compound_statement(statements, break_stat);
-}
-
-// Class Case_clauses.
-
-// Traversal.
-
-int
-Case_clauses::traverse(Traverse* traverse)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check whether all the case expressions are constant.
-
-bool
-Case_clauses::is_constant() const
-{
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    if (!p->is_constant())
-      return false;
-  return true;
-}
-
-// Lower case clauses for a nonconstant switch.
-
-void
-Case_clauses::lower(Block* b, Temporary_statement* val_temp,
-                   Unnamed_label* break_label) const
-{
-  // The default case.
-  const Case_clause* default_case = NULL;
-
-  // The label for the fallthrough of the previous case.
-  Unnamed_label* last_fallthrough_label = NULL;
-
-  // The label for the start of the default case.  This is used if the
-  // case before the default case falls through.
-  Unnamed_label* default_start_label = NULL;
-
-  // The label for the end of the default case.  This normally winds
-  // up as BREAK_LABEL, but it will be different if the default case
-  // falls through.
-  Unnamed_label* default_finish_label = NULL;
-
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      // The label to use for the start of the statements for this
-      // case.  This is NULL unless the previous case falls through.
-      Unnamed_label* start_label = last_fallthrough_label;
-
-      // The label to jump to after the end of the statements for this
-      // case.
-      Unnamed_label* finish_label = break_label;
-
-      last_fallthrough_label = NULL;
-      if (p->is_fallthrough() && p + 1 != this->clauses_.end())
-       {
-         finish_label = new Unnamed_label(p->location());
-         last_fallthrough_label = finish_label;
-       }
-
-      if (!p->is_default())
-       p->lower(b, val_temp, start_label, finish_label);
-      else
-       {
-         // We have to move the default case to the end, so that we
-         // only use it if all the other tests fail.
-         default_case = &*p;
-         default_start_label = start_label;
-         default_finish_label = finish_label;
-       }
-    }
-
-  if (default_case != NULL)
-    default_case->lower(b, val_temp, default_start_label,
-                       default_finish_label);
-      
-}
-
-// Determine types.
-
-void
-Case_clauses::determine_types(Type* type)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->determine_types(type);
-}
-
-// Check types.  Returns false if there was an error.
-
-bool
-Case_clauses::check_types(Type* type)
-{
-  bool ret = true;
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (!p->check_types(type))
-       ret = false;
-    }
-  return ret;
-}
-
-// Return true if these clauses may fall through to the statements
-// following the switch statement.
-
-bool
-Case_clauses::may_fall_through() const
-{
-  bool found_default = false;
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->may_fall_through() && !p->is_fallthrough())
-       return true;
-      if (p->is_default())
-       found_default = true;
-    }
-  return !found_default;
-}
-
-// Convert the cases to the backend representation.  This sets
-// *ALL_CASES and *ALL_STATEMENTS.
-
-void
-Case_clauses::get_backend(Translate_context* context,
-                         Unnamed_label* break_label,
-                         std::vector<std::vector<Bexpression*> >* all_cases,
-                         std::vector<Bstatement*>* all_statements) const
-{
-  Case_constants case_constants;
-
-  size_t c = this->clauses_.size();
-  all_cases->resize(c);
-  all_statements->resize(c);
-
-  size_t i = 0;
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p, ++i)
-    {
-      std::vector<Bexpression*> cases;
-      Bstatement* stat = p->get_backend(context, break_label, &case_constants,
-                                       &cases);
-      (*all_cases)[i].swap(cases);
-      (*all_statements)[i] = stat;
-    }
-}
-
-// A constant switch statement.  A Switch_statement is lowered to this
-// when all the cases are constants.
-
-class Constant_switch_statement : public Statement
-{
- public:
-  Constant_switch_statement(Expression* val, Case_clauses* clauses,
-                           Unnamed_label* break_label,
-                           source_location location)
-    : Statement(STATEMENT_CONSTANT_SWITCH, location),
-      val_(val), clauses_(clauses), break_label_(break_label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const;
-
-  Bstatement*
-  do_get_backend(Translate_context*);
-
- private:
-  // The value to switch on.
-  Expression* val_;
-  // The case clauses.
-  Case_clauses* clauses_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-};
-
-// Traversal.
-
-int
-Constant_switch_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->clauses_->traverse(traverse);
-}
-
-// Determine types.
-
-void
-Constant_switch_statement::do_determine_types()
-{
-  this->val_->determine_type_no_context();
-  this->clauses_->determine_types(this->val_->type());
-}
-
-// Check types.
-
-void
-Constant_switch_statement::do_check_types(Gogo*)
-{
-  if (!this->clauses_->check_types(this->val_->type()))
-    this->set_is_error();
-}
-
-// Return whether this switch may fall through.
-
-bool
-Constant_switch_statement::do_may_fall_through() const
-{
-  if (this->clauses_ == NULL)
-    return true;
-
-  // If we have a break label, then some case needed it.  That implies
-  // that the switch statement as a whole can fall through.
-  if (this->break_label_ != NULL)
-    return true;
-
-  return this->clauses_->may_fall_through();
-}
-
-// Convert to GENERIC.
-
-Bstatement*
-Constant_switch_statement::do_get_backend(Translate_context* context)
-{
-  tree switch_val_tree = this->val_->get_tree(context);
-  Bexpression* switch_val_expr = tree_to_expr(switch_val_tree);
-
-  Unnamed_label* break_label = this->break_label_;
-  if (break_label == NULL)
-    break_label = new Unnamed_label(this->location());
-
-  std::vector<std::vector<Bexpression*> > all_cases;
-  std::vector<Bstatement*> all_statements;
-  this->clauses_->get_backend(context, break_label, &all_cases,
-                             &all_statements);
-
-  Bstatement* switch_statement;
-  switch_statement = context->backend()->switch_statement(switch_val_expr,
-                                                         all_cases,
-                                                         all_statements,
-                                                         this->location());
-  Bstatement* ldef = break_label->get_definition(context);
-  return context->backend()->compound_statement(switch_statement, ldef);
-}
-
-// Class Switch_statement.
-
-// Traversal.
-
-int
-Switch_statement::do_traverse(Traverse* traverse)
-{
-  if (this->val_ != NULL)
-    {
-      if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return this->clauses_->traverse(traverse);
-}
-
-// Lower a Switch_statement to a Constant_switch_statement or a series
-// of if statements.
-
-Statement*
-Switch_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  if (this->val_ != NULL
-      && (this->val_->is_error_expression()
-         || this->val_->type()->is_error()))
-    return Statement::make_error_statement(loc);
-
-  if (this->val_ != NULL
-      && this->val_->type()->integer_type() != NULL
-      && !this->clauses_->empty()
-      && this->clauses_->is_constant())
-    return new Constant_switch_statement(this->val_, this->clauses_,
-                                        this->break_label_, loc);
-
-  Block* b = new Block(enclosing, loc);
-
-  if (this->clauses_->empty())
-    {
-      Expression* val = this->val_;
-      if (val == NULL)
-       val = Expression::make_boolean(true, loc);
-      return Statement::make_statement(val);
-    }
-
-  Temporary_statement* val_temp;
-  if (this->val_ == NULL)
-    val_temp = NULL;
-  else
-    {
-      // var val_temp VAL_TYPE = VAL
-      val_temp = Statement::make_temporary(NULL, this->val_, loc);
-      b->add_statement(val_temp);
-    }
-
-  this->clauses_->lower(b, val_temp, this->break_label());
-
-  Statement* s = Statement::make_unnamed_label_statement(this->break_label_);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Return the break label for this switch statement, creating it if
-// necessary.
-
-Unnamed_label*
-Switch_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Make a switch statement.
-
-Switch_statement*
-Statement::make_switch_statement(Expression* val, source_location location)
-{
-  return new Switch_statement(val, location);
-}
-
-// Class Type_case_clauses::Type_case_clause.
-
-// Traversal.
-
-int
-Type_case_clauses::Type_case_clause::traverse(Traverse* traverse)
-{
-  if (!this->is_default_
-      && ((traverse->traverse_mask()
-          & (Traverse::traverse_types | Traverse::traverse_expressions)) != 0)
-      && Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->statements_ != NULL)
-    return this->statements_->traverse(traverse);
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower one clause in a type switch.  Add statements to the block B.
-// The type descriptor we are switching on is in DESCRIPTOR_TEMP.
-// BREAK_LABEL is the label at the end of the type switch.
-// *STMTS_LABEL, if not NULL, is a label to put at the start of the
-// statements.
-
-void
-Type_case_clauses::Type_case_clause::lower(Block* b,
-                                          Temporary_statement* descriptor_temp,
-                                          Unnamed_label* break_label,
-                                          Unnamed_label** stmts_label) const
-{
-  source_location loc = this->location_;
-
-  Unnamed_label* next_case_label = NULL;
-  if (!this->is_default_)
-    {
-      Type* type = this->type_;
-
-      Expression* ref = Expression::make_temporary_reference(descriptor_temp,
-                                                            loc);
-
-      Expression* cond;
-      // The language permits case nil, which is of course a constant
-      // rather than a type.  It will appear here as an invalid
-      // forwarding type.
-      if (type->is_nil_constant_as_type())
-       cond = Expression::make_binary(OPERATOR_EQEQ, ref,
-                                      Expression::make_nil(loc),
-                                      loc);
-      else
-       cond = Runtime::make_call((type->interface_type() == NULL
-                                  ? Runtime::IFACETYPEEQ
-                                  : Runtime::IFACEI2TP),
-                                 loc, 2,
-                                 Expression::make_type_descriptor(type, loc),
-                                 ref);
-
-      Unnamed_label* dest;
-      if (!this->is_fallthrough_)
-       {
-         // if !COND { goto NEXT_CASE_LABEL }
-         next_case_label = new Unnamed_label(UNKNOWN_LOCATION);
-         dest = next_case_label;
-         cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
-       }
-      else
-       {
-         // if COND { goto STMTS_LABEL }
-         go_assert(stmts_label != NULL);
-         if (*stmts_label == NULL)
-           *stmts_label = new Unnamed_label(UNKNOWN_LOCATION);
-         dest = *stmts_label;
-       }
-      Block* then_block = new Block(b, loc);
-      Statement* s = Statement::make_goto_unnamed_statement(dest, loc);
-      then_block->add_statement(s);
-      s = Statement::make_if_statement(cond, then_block, NULL, loc);
-      b->add_statement(s);
-    }
-
-  if (this->statements_ != NULL
-      || (!this->is_fallthrough_
-         && stmts_label != NULL
-         && *stmts_label != NULL))
-    {
-      go_assert(!this->is_fallthrough_);
-      if (stmts_label != NULL && *stmts_label != NULL)
-       {
-         go_assert(!this->is_default_);
-         if (this->statements_ != NULL)
-           (*stmts_label)->set_location(this->statements_->start_location());
-         Statement* s = Statement::make_unnamed_label_statement(*stmts_label);
-         b->add_statement(s);
-         *stmts_label = NULL;
-       }
-      if (this->statements_ != NULL)
-       b->add_statement(Statement::make_block_statement(this->statements_,
-                                                        loc));
-    }
-
-  if (this->is_fallthrough_)
-    go_assert(next_case_label == NULL);
-  else
-    {
-      source_location gloc = (this->statements_ == NULL
-                             ? loc
-                             : this->statements_->end_location());
-      b->add_statement(Statement::make_goto_unnamed_statement(break_label,
-                                                             gloc));
-      if (next_case_label != NULL)
-       {
-         Statement* s =
-           Statement::make_unnamed_label_statement(next_case_label);
-         b->add_statement(s);
-       }
-    }
-}
-
-// Class Type_case_clauses.
-
-// Traversal.
-
-int
-Type_case_clauses::traverse(Traverse* traverse)
-{
-  for (Type_clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check for duplicate types.
-
-void
-Type_case_clauses::check_duplicates() const
-{
-  typedef Unordered_set_hash(const Type*, Type_hash_identical,
-                            Type_identical) Types_seen;
-  Types_seen types_seen;
-  for (Type_clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      Type* t = p->type();
-      if (t == NULL)
-       continue;
-      if (t->is_nil_constant_as_type())
-       t = Type::make_nil_type();
-      std::pair<Types_seen::iterator, bool> ins = types_seen.insert(t);
-      if (!ins.second)
-       error_at(p->location(), "duplicate type in switch");
-    }
-}
-
-// Lower the clauses in a type switch.  Add statements to the block B.
-// The type descriptor we are switching on is in DESCRIPTOR_TEMP.
-// BREAK_LABEL is the label at the end of the type switch.
-
-void
-Type_case_clauses::lower(Block* b, Temporary_statement* descriptor_temp,
-                        Unnamed_label* break_label) const
-{
-  const Type_case_clause* default_case = NULL;
-
-  Unnamed_label* stmts_label = NULL;
-  for (Type_clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (!p->is_default())
-       p->lower(b, descriptor_temp, break_label, &stmts_label);
-      else
-       {
-         // We are generating a series of tests, which means that we
-         // need to move the default case to the end.
-         default_case = &*p;
-       }
-    }
-  go_assert(stmts_label == NULL);
-
-  if (default_case != NULL)
-    default_case->lower(b, descriptor_temp, break_label, NULL);
-}
-
-// Class Type_switch_statement.
-
-// Traversal.
-
-int
-Type_switch_statement::do_traverse(Traverse* traverse)
-{
-  if (this->var_ == NULL)
-    {
-      if (this->traverse_expression(traverse, &this->expr_) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->clauses_ != NULL)
-    return this->clauses_->traverse(traverse);
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a type switch statement to a series of if statements.  The gc
-// compiler is able to generate a table in some cases.  However, that
-// does not work for us because we may have type descriptors in
-// different shared libraries, so we can't compare them with simple
-// equality testing.
-
-Statement*
-Type_switch_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  const source_location loc = this->location();
-
-  if (this->clauses_ != NULL)
-    this->clauses_->check_duplicates();
-
-  Block* b = new Block(enclosing, loc);
-
-  Type* val_type = (this->var_ != NULL
-                   ? this->var_->var_value()->type()
-                   : this->expr_->type());
-
-  // var descriptor_temp DESCRIPTOR_TYPE
-  Type* descriptor_type = Type::make_type_descriptor_ptr_type();
-  Temporary_statement* descriptor_temp =
-    Statement::make_temporary(descriptor_type, NULL, loc);
-  b->add_statement(descriptor_temp);
-
-  if (val_type->interface_type() == NULL)
-    {
-      // Doing a type switch on a non-interface type.  Should we issue
-      // a warning for this case?
-      Expression* lhs = Expression::make_temporary_reference(descriptor_temp,
-                                                            loc);
-      Expression* rhs;
-      if (val_type->is_nil_type())
-       rhs = Expression::make_nil(loc);
-      else
-       {
-         if (val_type->is_abstract())
-           val_type = val_type->make_non_abstract_type();
-         rhs = Expression::make_type_descriptor(val_type, loc);
-       }
-      Statement* s = Statement::make_assignment(lhs, rhs, loc);
-      b->add_statement(s);
-    }
-  else
-    {
-      // descriptor_temp = ifacetype(val_temp)
-      // FIXME: This should be inlined.
-      bool is_empty = val_type->interface_type()->is_empty();
-      Expression* ref;
-      if (this->var_ == NULL)
-       ref = this->expr_;
-      else
-       ref = Expression::make_var_reference(this->var_, loc);
-      Expression* call = Runtime::make_call((is_empty
-                                            ? Runtime::EFACETYPE
-                                            : Runtime::IFACETYPE),
-                                           loc, 1, ref);
-      Expression* lhs = Expression::make_temporary_reference(descriptor_temp,
-                                                            loc);
-      Statement* s = Statement::make_assignment(lhs, call, loc);
-      b->add_statement(s);
-    }
-
-  if (this->clauses_ != NULL)
-    this->clauses_->lower(b, descriptor_temp, this->break_label());
-
-  Statement* s = Statement::make_unnamed_label_statement(this->break_label_);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Return the break label for this type switch statement, creating it
-// if necessary.
-
-Unnamed_label*
-Type_switch_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Make a type switch statement.
-
-Type_switch_statement*
-Statement::make_type_switch_statement(Named_object* var, Expression* expr,
-                                     source_location location)
-{
-  return new Type_switch_statement(var, expr, location);
-}
-
-// Class Send_statement.
-
-// Traversal.
-
-int
-Send_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->channel_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->val_);
-}
-
-// Determine types.
-
-void
-Send_statement::do_determine_types()
-{
-  this->channel_->determine_type_no_context();
-  Type* type = this->channel_->type();
-  Type_context context;
-  if (type->channel_type() != NULL)
-    context.type = type->channel_type()->element_type();
-  this->val_->determine_type(&context);
-}
-
-// Check types.
-
-void
-Send_statement::do_check_types(Gogo*)
-{
-  Type* type = this->channel_->type();
-  if (type->is_error())
-    {
-      this->set_is_error();
-      return;
-    }
-  Channel_type* channel_type = type->channel_type();
-  if (channel_type == NULL)
-    {
-      error_at(this->location(), "left operand of %<<-%> must be channel");
-      this->set_is_error();
-      return;
-    }
-  Type* element_type = channel_type->element_type();
-  if (!Type::are_assignable(element_type, this->val_->type(), NULL))
-    {
-      this->report_error(_("incompatible types in send"));
-      return;
-    }
-  if (!channel_type->may_send())
-    {
-      this->report_error(_("invalid send on receive-only channel"));
-      return;
-    }
-}
-
-// Convert a send statement to the backend representation.
-
-Bstatement*
-Send_statement::do_get_backend(Translate_context* context)
-{
-  source_location loc = this->location();
-
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  Type* element_type = channel_type->element_type();
-  Expression* val = Expression::make_cast(element_type, this->val_, loc);
-
-  bool is_small;
-  bool can_take_address;
-  switch (element_type->base()->classification())
-    {
-    case Type::TYPE_BOOLEAN:
-    case Type::TYPE_INTEGER:
-    case Type::TYPE_FUNCTION:
-    case Type::TYPE_POINTER:
-    case Type::TYPE_MAP:
-    case Type::TYPE_CHANNEL:
-      is_small = true;
-      can_take_address = false;
-      break;
-
-    case Type::TYPE_FLOAT:
-    case Type::TYPE_COMPLEX:
-    case Type::TYPE_STRING:
-    case Type::TYPE_INTERFACE:
-      is_small = false;
-      can_take_address = false;
-      break;
-
-    case Type::TYPE_STRUCT:
-      is_small = false;
-      can_take_address = true;
-      break;
-
-    case Type::TYPE_ARRAY:
-      is_small = false;
-      can_take_address = !element_type->is_open_array_type();
-      break;
-
-    default:
-    case Type::TYPE_ERROR:
-    case Type::TYPE_VOID:
-    case Type::TYPE_SINK:
-    case Type::TYPE_NIL:
-    case Type::TYPE_NAMED:
-    case Type::TYPE_FORWARD:
-      go_assert(saw_errors());
-      return context->backend()->error_statement();
-    }
-
-  // Only try to take the address of a variable.  We have already
-  // moved variables to the heap, so this should not cause that to
-  // happen unnecessarily.
-  if (can_take_address
-      && val->var_expression() == NULL
-      && val->temporary_reference_expression() == NULL)
-    can_take_address = false;
-
-  Runtime::Function code;
-  Bstatement* btemp = NULL;
-  Expression* call;
-  if (is_small)
-      {
-       // Type is small enough to handle as uint64.
-       code = Runtime::SEND_SMALL;
-       val = Expression::make_unsafe_cast(Type::lookup_integer_type("uint64"),
-                                          val, loc);
-      }
-  else if (can_take_address)
-    {
-      // Must pass address of value.  The function doesn't change the
-      // value, so just take its address directly.
-      code = Runtime::SEND_BIG;
-      val = Expression::make_unary(OPERATOR_AND, val, loc);
-    }
-  else
-    {
-      // Must pass address of value, but the value is small enough
-      // that it might be in registers.  Copy value into temporary
-      // variable to take address.
-      code = Runtime::SEND_BIG;
-      Temporary_statement* temp = Statement::make_temporary(element_type,
-                                                           val, loc);
-      Expression* ref = Expression::make_temporary_reference(temp, loc);
-      val = Expression::make_unary(OPERATOR_AND, ref, loc);
-      btemp = temp->get_backend(context);
-    }
-
-  call = Runtime::make_call(code, loc, 3, this->channel_, val,
-                           Expression::make_boolean(this->for_select_, loc));
-
-  context->gogo()->lower_expression(context->function(), &call);
-  Bexpression* bcall = tree_to_expr(call->get_tree(context));
-  Bstatement* s = context->backend()->expression_statement(bcall);
-
-  if (btemp == NULL)
-    return s;
-  else
-    return context->backend()->compound_statement(btemp, s);
-}
-
-// Make a send statement.
-
-Send_statement*
-Statement::make_send_statement(Expression* channel, Expression* val,
-                              source_location location)
-{
-  return new Send_statement(channel, val, location);
-}
-
-// Class Select_clauses::Select_clause.
-
-// Traversal.
-
-int
-Select_clauses::Select_clause::traverse(Traverse* traverse)
-{
-  if (!this->is_lowered_
-      && (traverse->traverse_mask()
-         & (Traverse::traverse_types | Traverse::traverse_expressions)) != 0)
-    {
-      if (this->channel_ != NULL)
-       {
-         if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-      if (this->val_ != NULL)
-       {
-         if (Expression::traverse(&this->val_, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-      if (this->closed_ != NULL)
-       {
-         if (Expression::traverse(&this->closed_, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-    }
-  if (this->statements_ != NULL)
-    {
-      if (this->statements_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lowering.  Here we pull out the channel and the send values, to
-// enforce the order of evaluation.  We also add explicit send and
-// receive statements to the clauses.
-
-void
-Select_clauses::Select_clause::lower(Gogo* gogo, Named_object* function,
-                                    Block* b)
-{
-  if (this->is_default_)
-    {
-      go_assert(this->channel_ == NULL && this->val_ == NULL);
-      this->is_lowered_ = true;
-      return;
-    }
-
-  source_location loc = this->location_;
-
-  // Evaluate the channel before the select statement.
-  Temporary_statement* channel_temp = Statement::make_temporary(NULL,
-                                                               this->channel_,
-                                                               loc);
-  b->add_statement(channel_temp);
-  this->channel_ = Expression::make_temporary_reference(channel_temp, loc);
-
-  // If this is a send clause, evaluate the value to send before the
-  // select statement.
-  Temporary_statement* val_temp = NULL;
-  if (this->is_send_ && !this->val_->is_constant())
-    {
-      val_temp = Statement::make_temporary(NULL, this->val_, loc);
-      b->add_statement(val_temp);
-    }
-
-  // Add the send or receive before the rest of the statements if any.
-  Block *init = new Block(b, loc);
-  Expression* ref = Expression::make_temporary_reference(channel_temp, loc);
-  if (this->is_send_)
-    {
-      Expression* ref2;
-      if (val_temp == NULL)
-       ref2 = this->val_;
-      else
-       ref2 = Expression::make_temporary_reference(val_temp, loc);
-      Send_statement* send = Statement::make_send_statement(ref, ref2, loc);
-      send->set_for_select();
-      init->add_statement(send);
-    }
-  else if (this->closed_ != NULL && !this->closed_->is_sink_expression())
-    {
-      go_assert(this->var_ == NULL && this->closedvar_ == NULL);
-      if (this->val_ == NULL)
-       this->val_ = Expression::make_sink(loc);
-      Statement* s = Statement::make_tuple_receive_assignment(this->val_,
-                                                             this->closed_,
-                                                             ref, true, loc);
-      init->add_statement(s);
-    }
-  else if (this->closedvar_ != NULL)
-    {
-      go_assert(this->val_ == NULL);
-      Expression* val;
-      if (this->var_ == NULL)
-       val = Expression::make_sink(loc);
-      else
-       val = Expression::make_var_reference(this->var_, loc);
-      Expression* closed = Expression::make_var_reference(this->closedvar_,
-                                                         loc);
-      Statement* s = Statement::make_tuple_receive_assignment(val, closed, ref,
-                                                             true, loc);
-      // We have to put S in STATEMENTS_, because that is where the
-      // variables are declared.
-      go_assert(this->statements_ != NULL);
-      this->statements_->add_statement_at_front(s);
-      // We have to lower STATEMENTS_ again, to lower the tuple
-      // receive assignment we just added.
-      gogo->lower_block(function, this->statements_);
-    }
-  else
-    {
-      Receive_expression* recv = Expression::make_receive(ref, loc);
-      recv->set_for_select();
-      if (this->val_ != NULL)
-       {
-         go_assert(this->var_ == NULL);
-         init->add_statement(Statement::make_assignment(this->val_, recv,
-                                                        loc));
-       }
-      else if (this->var_ != NULL)
-       {
-         this->var_->var_value()->set_init(recv);
-         this->var_->var_value()->clear_type_from_chan_element();
-       }
-      else
-       {
-         init->add_statement(Statement::make_statement(recv));
-       }
-    }
-
-  // Lower any statements we just created.
-  gogo->lower_block(function, init);
-
-  if (this->statements_ != NULL)
-    init->add_statement(Statement::make_block_statement(this->statements_,
-                                                       loc));
-
-  this->statements_ = init;
-
-  // Now all references should be handled through the statements, not
-  // through here.
-  this->is_lowered_ = true;
-  this->val_ = NULL;
-  this->var_ = NULL;
-}
-
-// Determine types.
-
-void
-Select_clauses::Select_clause::determine_types()
-{
-  go_assert(this->is_lowered_);
-  if (this->statements_ != NULL)
-    this->statements_->determine_types();
-}
-
-// Whether this clause may fall through to the statement which follows
-// the overall select statement.
-
-bool
-Select_clauses::Select_clause::may_fall_through() const
-{
-  if (this->statements_ == NULL)
-    return true;
-  return this->statements_->may_fall_through();
-}
-
-// Return the backend representation for the statements to execute.
-
-Bstatement*
-Select_clauses::Select_clause::get_statements_backend(
-    Translate_context* context)
-{
-  if (this->statements_ == NULL)
-    return NULL;
-  Bblock* bblock = this->statements_->get_backend(context);
-  return context->backend()->block_statement(bblock);
-}
-
-// Class Select_clauses.
-
-// Traversal.
-
-int
-Select_clauses::traverse(Traverse* traverse)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lowering.  Here we pull out the channel and the send values, to
-// enforce the order of evaluation.  We also add explicit send and
-// receive statements to the clauses.
-
-void
-Select_clauses::lower(Gogo* gogo, Named_object* function, Block* b)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->lower(gogo, function, b);
-}
-
-// Determine types.
-
-void
-Select_clauses::determine_types()
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->determine_types();
-}
-
-// Return whether these select clauses fall through to the statement
-// following the overall select statement.
-
-bool
-Select_clauses::may_fall_through() const
-{
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    if (p->may_fall_through())
-      return true;
-  return false;
-}
-
-// Convert to the backend representation.  We build a call to
-//   size_t __go_select(size_t count, _Bool has_default,
-//                      channel* channels, _Bool* is_send)
-//
-// There are COUNT entries in the CHANNELS and IS_SEND arrays.  The
-// value in the IS_SEND array is true for send, false for receive.
-// __go_select returns an integer from 0 to COUNT, inclusive.  A
-// return of 0 means that the default case should be run; this only
-// happens if HAS_DEFAULT is non-zero.  Otherwise the number indicates
-// the case to run.
-
-// FIXME: This doesn't handle channels which send interface types
-// where the receiver has a static type which matches that interface.
-
-Bstatement*
-Select_clauses::get_backend(Translate_context* context,
-                           Unnamed_label *break_label,
-                           source_location location)
-{
-  size_t count = this->clauses_.size();
-
-  Expression_list* chan_init = new Expression_list();
-  chan_init->reserve(count);
-
-  Expression_list* is_send_init = new Expression_list();
-  is_send_init->reserve(count);
-
-  Select_clause *default_clause = NULL;
-
-  Type* runtime_chanptr_type = Runtime::chanptr_type();
-  Type* runtime_chan_type = runtime_chanptr_type->points_to();
-
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->is_default())
-       {
-         default_clause = &*p;
-         --count;
-         continue;
-       }
-
-      if (p->channel()->type()->channel_type() == NULL)
-       {
-         // We should have given an error in the send or receive
-         // statement we created via lowering.
-         go_assert(saw_errors());
-         return context->backend()->error_statement();
-       }
-
-      Expression* c = p->channel();
-      c = Expression::make_unsafe_cast(runtime_chan_type, c, p->location());
-      chan_init->push_back(c);
-
-      is_send_init->push_back(Expression::make_boolean(p->is_send(),
-                                                      p->location()));
-    }
-
-  if (chan_init->empty())
-    {
-      go_assert(count == 0);
-      Bstatement* s;
-      Bstatement* ldef = break_label->get_definition(context);
-      if (default_clause != NULL)
-       {
-         // There is a default clause and no cases.  Just execute the
-         // default clause.
-         s = default_clause->get_statements_backend(context);
-       }
-      else
-       {
-         // There isn't even a default clause.  In this case select
-         // pauses forever.  Call the runtime function with nils.
-         mpz_t zval;
-         mpz_init_set_ui(zval, 0);
-         Expression* zero = Expression::make_integer(&zval, NULL, location);
-         mpz_clear(zval);
-         Expression* default_arg = Expression::make_boolean(false, location);
-         Expression* nil1 = Expression::make_nil(location);
-         Expression* nil2 = nil1->copy();
-         Expression* call = Runtime::make_call(Runtime::SELECT, location, 4,
-                                               zero, default_arg, nil1, nil2);
-         context->gogo()->lower_expression(context->function(), &call);
-         Bexpression* bcall = tree_to_expr(call->get_tree(context));
-         s = context->backend()->expression_statement(bcall);
-       }
-      if (s == NULL)
-       return ldef;
-      return context->backend()->compound_statement(s, ldef);
-    }
-  go_assert(count > 0);
-
-  std::vector<Bstatement*> statements;
-
-  mpz_t ival;
-  mpz_init_set_ui(ival, count);
-  Expression* ecount = Expression::make_integer(&ival, NULL, location);
-  mpz_clear(ival);
-
-  Type* chan_array_type = Type::make_array_type(runtime_chan_type, ecount);
-  Expression* chans = Expression::make_composite_literal(chan_array_type, 0,
-                                                        false, chan_init,
-                                                        location);
-  context->gogo()->lower_expression(context->function(), &chans);
-  Temporary_statement* chan_temp = Statement::make_temporary(chan_array_type,
-                                                            chans,
-                                                            location);
-  statements.push_back(chan_temp->get_backend(context));
-
-  Type* is_send_array_type = Type::make_array_type(Type::lookup_bool_type(),
-                                                  ecount->copy());
-  Expression* is_sends = Expression::make_composite_literal(is_send_array_type,
-                                                           0, false,
-                                                           is_send_init,
-                                                           location);
-  context->gogo()->lower_expression(context->function(), &is_sends);
-  Temporary_statement* is_send_temp =
-    Statement::make_temporary(is_send_array_type, is_sends, location);
-  statements.push_back(is_send_temp->get_backend(context));
-
-  mpz_init_set_ui(ival, 0);
-  Expression* zero = Expression::make_integer(&ival, NULL, location);
-  mpz_clear(ival);
-
-  Expression* ref = Expression::make_temporary_reference(chan_temp, location);
-  Expression* chan_arg = Expression::make_array_index(ref, zero, NULL,
-                                                     location);
-  chan_arg = Expression::make_unary(OPERATOR_AND, chan_arg, location);
-  chan_arg = Expression::make_unsafe_cast(runtime_chanptr_type, chan_arg,
-                                         location);
-
-  ref = Expression::make_temporary_reference(is_send_temp, location);
-  Expression* is_send_arg = Expression::make_array_index(ref, zero->copy(),
-                                                        NULL, location);
-  is_send_arg = Expression::make_unary(OPERATOR_AND, is_send_arg, location);
-
-  Expression* default_arg = Expression::make_boolean(default_clause != NULL,
-                                                    location);
-  Expression* call = Runtime::make_call(Runtime::SELECT, location, 4,
-                                       ecount->copy(), default_arg,
-                                       chan_arg, is_send_arg);
-  context->gogo()->lower_expression(context->function(), &call);
-  Bexpression* bcall = tree_to_expr(call->get_tree(context));
-
-  std::vector<std::vector<Bexpression*> > cases;
-  std::vector<Bstatement*> clauses;
-
-  cases.resize(count + (default_clause != NULL ? 1 : 0));
-  clauses.resize(count + (default_clause != NULL ? 1 : 0));
-
-  int index = 0;
-
-  if (default_clause != NULL)
-    {
-      this->add_clause_backend(context, location, index, 0, default_clause,
-                              break_label, &cases, &clauses);
-      ++index;
-    }
-
-  int i = 1;
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (!p->is_default())
-       {
-         this->add_clause_backend(context, location, index, i, &*p,
-                                  break_label, &cases, &clauses);
-         ++i;
-         ++index;
-       }
-    }
-
-  Bstatement* switch_stmt = context->backend()->switch_statement(bcall,
-                                                                cases,
-                                                                clauses,
-                                                                location);
-  statements.push_back(switch_stmt);
-
-  Bstatement* ldef = break_label->get_definition(context);
-  statements.push_back(ldef);
-
-  return context->backend()->statement_list(statements);
-}
-
-// Add CLAUSE to CASES/CLAUSES at INDEX.
-
-void
-Select_clauses::add_clause_backend(
-    Translate_context* context,
-    source_location location,
-    int index,
-    int case_value,
-    Select_clause* clause,
-    Unnamed_label* bottom_label,
-    std::vector<std::vector<Bexpression*> > *cases,
-    std::vector<Bstatement*>* clauses)
-{
-  mpz_t ival;
-  mpz_init_set_ui(ival, case_value);
-  Expression* e = Expression::make_integer(&ival, NULL, location);
-  mpz_clear(ival);
-  (*cases)[index].push_back(tree_to_expr(e->get_tree(context)));
-
-  Bstatement* s = clause->get_statements_backend(context);
-
-  source_location gloc = (clause->statements() == NULL
-                         ? clause->location()
-                         : clause->statements()->end_location());
-  Bstatement* g = bottom_label->get_goto(context, gloc);
-                               
-  if (s == NULL)
-    (*clauses)[index] = g;
-  else
-    (*clauses)[index] = context->backend()->compound_statement(s, g);
-}
-
-// Class Select_statement.
-
-// Return the break label for this switch statement, creating it if
-// necessary.
-
-Unnamed_label*
-Select_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Lower a select statement.  This will still return a select
-// statement, but it will be modified to implement the order of
-// evaluation rules, and to include the send and receive statements as
-// explicit statements in the clauses.
-
-Statement*
-Select_statement::do_lower(Gogo* gogo, Named_object* function,
-                          Block* enclosing)
-{
-  if (this->is_lowered_)
-    return this;
-  Block* b = new Block(enclosing, this->location());
-  this->clauses_->lower(gogo, function, b);
-  this->is_lowered_ = true;
-  b->add_statement(this);
-  return Statement::make_block_statement(b, this->location());
-}
-
-// Return the backend representation for a select statement.
-
-Bstatement*
-Select_statement::do_get_backend(Translate_context* context)
-{
-  return this->clauses_->get_backend(context, this->break_label(),
-                                    this->location());
-}
-
-// Make a select statement.
-
-Select_statement*
-Statement::make_select_statement(source_location location)
-{
-  return new Select_statement(location);
-}
-
-// Class For_statement.
-
-// Traversal.
-
-int
-For_statement::do_traverse(Traverse* traverse)
-{
-  if (this->init_ != NULL)
-    {
-      if (this->init_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->cond_ != NULL)
-    {
-      if (this->traverse_expression(traverse, &this->cond_) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->post_ != NULL)
-    {
-      if (this->post_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return this->statements_->traverse(traverse);
-}
-
-// Lower a For_statement into if statements and gotos.  Getting rid of
-// complex statements make it easier to handle garbage collection.
-
-Statement*
-For_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  Statement* s;
-  source_location loc = this->location();
-
-  Block* b = new Block(enclosing, this->location());
-  if (this->init_ != NULL)
-    {
-      s = Statement::make_block_statement(this->init_,
-                                         this->init_->start_location());
-      b->add_statement(s);
-    }
-
-  Unnamed_label* entry = NULL;
-  if (this->cond_ != NULL)
-    {
-      entry = new Unnamed_label(this->location());
-      b->add_statement(Statement::make_goto_unnamed_statement(entry, loc));
-    }
-
-  Unnamed_label* top = new Unnamed_label(this->location());
-  b->add_statement(Statement::make_unnamed_label_statement(top));
-
-  s = Statement::make_block_statement(this->statements_,
-                                     this->statements_->start_location());
-  b->add_statement(s);
-
-  source_location end_loc = this->statements_->end_location();
-
-  Unnamed_label* cont = this->continue_label_;
-  if (cont != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(cont));
-
-  if (this->post_ != NULL)
-    {
-      s = Statement::make_block_statement(this->post_,
-                                         this->post_->start_location());
-      b->add_statement(s);
-      end_loc = this->post_->end_location();
-    }
-
-  if (this->cond_ == NULL)
-    b->add_statement(Statement::make_goto_unnamed_statement(top, end_loc));
-  else
-    {
-      b->add_statement(Statement::make_unnamed_label_statement(entry));
-
-      source_location cond_loc = this->cond_->location();
-      Block* then_block = new Block(b, cond_loc);
-      s = Statement::make_goto_unnamed_statement(top, cond_loc);
-      then_block->add_statement(s);
-
-      s = Statement::make_if_statement(this->cond_, then_block, NULL, cond_loc);
-      b->add_statement(s);
-    }
-
-  Unnamed_label* brk = this->break_label_;
-  if (brk != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(brk));
-
-  b->set_end_location(end_loc);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Return the break label, creating it if necessary.
-
-Unnamed_label*
-For_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Return the continue LABEL_EXPR.
-
-Unnamed_label*
-For_statement::continue_label()
-{
-  if (this->continue_label_ == NULL)
-    this->continue_label_ = new Unnamed_label(this->location());
-  return this->continue_label_;
-}
-
-// Set the break and continue labels a for statement.  This is used
-// when lowering a for range statement.
-
-void
-For_statement::set_break_continue_labels(Unnamed_label* break_label,
-                                        Unnamed_label* continue_label)
-{
-  go_assert(this->break_label_ == NULL && this->continue_label_ == NULL);
-  this->break_label_ = break_label;
-  this->continue_label_ = continue_label;
-}
-
-// Make a for statement.
-
-For_statement*
-Statement::make_for_statement(Block* init, Expression* cond, Block* post,
-                             source_location location)
-{
-  return new For_statement(init, cond, post, location);
-}
-
-// Class For_range_statement.
-
-// Traversal.
-
-int
-For_range_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->index_var_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->value_var_ != NULL)
-    {
-      if (this->traverse_expression(traverse, &this->value_var_)
-         == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->traverse_expression(traverse, &this->range_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->statements_->traverse(traverse);
-}
-
-// Lower a for range statement.  For simplicity we lower this into a
-// for statement, which will then be lowered in turn to goto
-// statements.
-
-Statement*
-For_range_statement::do_lower(Gogo* gogo, Named_object*, Block* enclosing)
-{
-  Type* range_type = this->range_->type();
-  if (range_type->points_to() != NULL
-      && range_type->points_to()->array_type() != NULL
-      && !range_type->points_to()->is_open_array_type())
-    range_type = range_type->points_to();
-
-  Type* index_type;
-  Type* value_type = NULL;
-  if (range_type->array_type() != NULL)
-    {
-      index_type = Type::lookup_integer_type("int");
-      value_type = range_type->array_type()->element_type();
-    }
-  else if (range_type->is_string_type())
-    {
-      index_type = Type::lookup_integer_type("int");
-      value_type = index_type;
-    }
-  else if (range_type->map_type() != NULL)
-    {
-      index_type = range_type->map_type()->key_type();
-      value_type = range_type->map_type()->val_type();
-    }
-  else if (range_type->channel_type() != NULL)
-    {
-      index_type = range_type->channel_type()->element_type();
-      if (this->value_var_ != NULL)
-       {
-         if (!this->value_var_->type()->is_error())
-           this->report_error(_("too many variables for range clause "
-                                "with channel"));
-         return Statement::make_error_statement(this->location());
-       }
-    }
-  else
-    {
-      this->report_error(_("range clause must have "
-                          "array, slice, setring, map, or channel type"));
-      return Statement::make_error_statement(this->location());
-    }
-
-  source_location loc = this->location();
-  Block* temp_block = new Block(enclosing, loc);
-
-  Named_object* range_object = NULL;
-  Temporary_statement* range_temp = NULL;
-  Var_expression* ve = this->range_->var_expression();
-  if (ve != NULL)
-    range_object = ve->named_object();
-  else
-    {
-      range_temp = Statement::make_temporary(NULL, this->range_, loc);
-      temp_block->add_statement(range_temp);
-    }
-
-  Temporary_statement* index_temp = Statement::make_temporary(index_type,
-                                                             NULL, loc);
-  temp_block->add_statement(index_temp);
-
-  Temporary_statement* value_temp = NULL;
-  if (this->value_var_ != NULL)
-    {
-      value_temp = Statement::make_temporary(value_type, NULL, loc);
-      temp_block->add_statement(value_temp);
-    }
-
-  Block* body = new Block(temp_block, loc);
-
-  Block* init;
-  Expression* cond;
-  Block* iter_init;
-  Block* post;
-
-  // Arrange to do a loop appropriate for the type.  We will produce
-  //   for INIT ; COND ; POST {
-  //           ITER_INIT
-  //           INDEX = INDEX_TEMP
-  //           VALUE = VALUE_TEMP // If there is a value
-  //           original statements
-  //   }
-
-  if (range_type->array_type() != NULL)
-    this->lower_range_array(gogo, temp_block, body, range_object, range_temp,
-                           index_temp, value_temp, &init, &cond, &iter_init,
-                           &post);
-  else if (range_type->is_string_type())
-    this->lower_range_string(gogo, temp_block, body, range_object, range_temp,
-                            index_temp, value_temp, &init, &cond, &iter_init,
-                            &post);
-  else if (range_type->map_type() != NULL)
-    this->lower_range_map(gogo, temp_block, body, range_object, range_temp,
-                         index_temp, value_temp, &init, &cond, &iter_init,
-                         &post);
-  else if (range_type->channel_type() != NULL)
-    this->lower_range_channel(gogo, temp_block, body, range_object, range_temp,
-                             index_temp, value_temp, &init, &cond, &iter_init,
-                             &post);
-  else
-    go_unreachable();
-
-  if (iter_init != NULL)
-    body->add_statement(Statement::make_block_statement(iter_init, loc));
-
-  Statement* assign;
-  Expression* index_ref = Expression::make_temporary_reference(index_temp, loc);
-  if (this->value_var_ == NULL)
-    {
-      assign = Statement::make_assignment(this->index_var_, index_ref, loc);
-    }
-  else
-    {
-      Expression_list* lhs = new Expression_list();
-      lhs->push_back(this->index_var_);
-      lhs->push_back(this->value_var_);
-
-      Expression_list* rhs = new Expression_list();
-      rhs->push_back(index_ref);
-      rhs->push_back(Expression::make_temporary_reference(value_temp, loc));
-
-      assign = Statement::make_tuple_assignment(lhs, rhs, loc);
-    }
-  body->add_statement(assign);
-
-  body->add_statement(Statement::make_block_statement(this->statements_, loc));
-
-  body->set_end_location(this->statements_->end_location());
-
-  For_statement* loop = Statement::make_for_statement(init, cond, post,
-                                                     this->location());
-  loop->add_statements(body);
-  loop->set_break_continue_labels(this->break_label_, this->continue_label_);
-
-  temp_block->add_statement(loop);
-
-  return Statement::make_block_statement(temp_block, loc);
-}
-
-// Return a reference to the range, which may be in RANGE_OBJECT or in
-// RANGE_TEMP.
-
-Expression*
-For_range_statement::make_range_ref(Named_object* range_object,
-                                   Temporary_statement* range_temp,
-                                   source_location loc)
-{
-  if (range_object != NULL)
-    return Expression::make_var_reference(range_object, loc);
-  else
-    return Expression::make_temporary_reference(range_temp, loc);
-}
-
-// Return a call to the predeclared function FUNCNAME passing a
-// reference to the temporary variable ARG.
-
-Expression*
-For_range_statement::call_builtin(Gogo* gogo, const char* funcname,
-                                 Expression* arg,
-                                 source_location loc)
-{
-  Named_object* no = gogo->lookup_global(funcname);
-  go_assert(no != NULL && no->is_function_declaration());
-  Expression* func = Expression::make_func_reference(no, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(arg);
-  return Expression::make_call(func, params, false, loc);
-}
-
-// Lower a for range over an array or slice.
-
-void
-For_range_statement::lower_range_array(Gogo* gogo,
-                                      Block* enclosing,
-                                      Block* body_block,
-                                      Named_object* range_object,
-                                      Temporary_statement* range_temp,
-                                      Temporary_statement* index_temp,
-                                      Temporary_statement* value_temp,
-                                      Block** pinit,
-                                      Expression** pcond,
-                                      Block** piter_init,
-                                      Block** ppost)
-{
-  source_location loc = this->location();
-
-  // The loop we generate:
-  //   len_temp := len(range)
-  //   for index_temp = 0; index_temp < len_temp; index_temp++ {
-  //           value_temp = range[index_temp]
-  //           index = index_temp
-  //           value = value_temp
-  //           original body
-  //   }
-
-  // Set *PINIT to
-  //   var len_temp int
-  //   len_temp = len(range)
-  //   index_temp = 0
-
-  Block* init = new Block(enclosing, loc);
-
-  Expression* ref = this->make_range_ref(range_object, range_temp, loc);
-  Expression* len_call = this->call_builtin(gogo, "len", ref, loc);
-  Temporary_statement* len_temp = Statement::make_temporary(index_temp->type(),
-                                                           len_call, loc);
-  init->add_statement(len_temp);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, loc);
-  mpz_clear(zval);
-
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  Statement* s = Statement::make_assignment(ref, zexpr, loc);
-  init->add_statement(s);
-
-  *pinit = init;
-
-  // Set *PCOND to
-  //   index_temp < len_temp
-
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  Expression* ref2 = Expression::make_temporary_reference(len_temp, loc);
-  Expression* lt = Expression::make_binary(OPERATOR_LT, ref, ref2, loc);
-
-  *pcond = lt;
-
-  // Set *PITER_INIT to
-  //   value_temp = range[index_temp]
-
-  Block* iter_init = NULL;
-  if (value_temp != NULL)
-    {
-      iter_init = new Block(body_block, loc);
-
-      ref = this->make_range_ref(range_object, range_temp, loc);
-      Expression* ref2 = Expression::make_temporary_reference(index_temp, loc);
-      Expression* index = Expression::make_index(ref, ref2, NULL, loc);
-
-      ref = Expression::make_temporary_reference(value_temp, loc);
-      s = Statement::make_assignment(ref, index, loc);
-
-      iter_init->add_statement(s);
-    }
-  *piter_init = iter_init;
-
-  // Set *PPOST to
-  //   index_temp++
-
-  Block* post = new Block(enclosing, loc);
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  s = Statement::make_inc_statement(ref);
-  post->add_statement(s);
-  *ppost = post;
-}
-
-// Lower a for range over a string.
-
-void
-For_range_statement::lower_range_string(Gogo*,
-                                       Block* enclosing,
-                                       Block* body_block,
-                                       Named_object* range_object,
-                                       Temporary_statement* range_temp,
-                                       Temporary_statement* index_temp,
-                                       Temporary_statement* value_temp,
-                                       Block** pinit,
-                                       Expression** pcond,
-                                       Block** piter_init,
-                                       Block** ppost)
-{
-  source_location loc = this->location();
-
-  // The loop we generate:
-  //   var next_index_temp int
-  //   for index_temp = 0; ; index_temp = next_index_temp {
-  //           next_index_temp, value_temp = stringiter2(range, index_temp)
-  //           if next_index_temp == 0 {
-  //                   break
-  //           }
-  //           index = index_temp
-  //           value = value_temp
-  //           original body
-  //   }
-
-  // Set *PINIT to
-  //   var next_index_temp int
-  //   index_temp = 0
-
-  Block* init = new Block(enclosing, loc);
-
-  Temporary_statement* next_index_temp =
-    Statement::make_temporary(index_temp->type(), NULL, loc);
-  init->add_statement(next_index_temp);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, loc);
-
-  Expression* ref = Expression::make_temporary_reference(index_temp, loc);
-  Statement* s = Statement::make_assignment(ref, zexpr, loc);
-
-  init->add_statement(s);
-  *pinit = init;
-
-  // The loop has no condition.
-
-  *pcond = NULL;
-
-  // Set *PITER_INIT to
-  //   next_index_temp = runtime.stringiter(range, index_temp)
-  // or
-  //   next_index_temp, value_temp = runtime.stringiter2(range, index_temp)
-  // followed by
-  //   if next_index_temp == 0 {
-  //           break
-  //   }
-
-  Block* iter_init = new Block(body_block, loc);
-
-  Expression* p1 = this->make_range_ref(range_object, range_temp, loc);
-  Expression* p2 = Expression::make_temporary_reference(index_temp, loc);
-  Call_expression* call = Runtime::make_call((value_temp == NULL
-                                             ? Runtime::STRINGITER
-                                             : Runtime::STRINGITER2),
-                                            loc, 2, p1, p2);
-
-  if (value_temp == NULL)
-    {
-      ref = Expression::make_temporary_reference(next_index_temp, loc);
-      s = Statement::make_assignment(ref, call, loc);
-    }
-  else
-    {
-      Expression_list* lhs = new Expression_list();
-      lhs->push_back(Expression::make_temporary_reference(next_index_temp,
-                                                         loc));
-      lhs->push_back(Expression::make_temporary_reference(value_temp, loc));
-
-      Expression_list* rhs = new Expression_list();
-      rhs->push_back(Expression::make_call_result(call, 0));
-      rhs->push_back(Expression::make_call_result(call, 1));
-
-      s = Statement::make_tuple_assignment(lhs, rhs, loc);
-    }
-  iter_init->add_statement(s);
-
-  ref = Expression::make_temporary_reference(next_index_temp, loc);
-  zexpr = Expression::make_integer(&zval, NULL, loc);
-  mpz_clear(zval);
-  Expression* equals = Expression::make_binary(OPERATOR_EQEQ, ref, zexpr, loc);
-
-  Block* then_block = new Block(iter_init, loc);
-  s = Statement::make_break_statement(this->break_label(), loc);
-  then_block->add_statement(s);
-
-  s = Statement::make_if_statement(equals, then_block, NULL, loc);
-  iter_init->add_statement(s);
-
-  *piter_init = iter_init;
-
-  // Set *PPOST to
-  //   index_temp = next_index_temp
-
-  Block* post = new Block(enclosing, loc);
-
-  Expression* lhs = Expression::make_temporary_reference(index_temp, loc);
-  Expression* rhs = Expression::make_temporary_reference(next_index_temp, loc);
-  s = Statement::make_assignment(lhs, rhs, loc);
-
-  post->add_statement(s);
-  *ppost = post;
-}
-
-// Lower a for range over a map.
-
-void
-For_range_statement::lower_range_map(Gogo*,
-                                    Block* enclosing,
-                                    Block* body_block,
-                                    Named_object* range_object,
-                                    Temporary_statement* range_temp,
-                                    Temporary_statement* index_temp,
-                                    Temporary_statement* value_temp,
-                                    Block** pinit,
-                                    Expression** pcond,
-                                    Block** piter_init,
-                                    Block** ppost)
-{
-  source_location loc = this->location();
-
-  // The runtime uses a struct to handle ranges over a map.  The
-  // struct is four pointers long.  The first pointer is NULL when we
-  // have completed the iteration.
-
-  // The loop we generate:
-  //   var hiter map_iteration_struct
-  //   for mapiterinit(range, &hiter); hiter[0] != nil; mapiternext(&hiter) {
-  //           mapiter2(hiter, &index_temp, &value_temp)
-  //           index = index_temp
-  //           value = value_temp
-  //           original body
-  //   }
-
-  // Set *PINIT to
-  //   var hiter map_iteration_struct
-  //   runtime.mapiterinit(range, &hiter)
-
-  Block* init = new Block(enclosing, loc);
-
-  Type* map_iteration_type = Runtime::map_iteration_type();
-  Temporary_statement* hiter = Statement::make_temporary(map_iteration_type,
-                                                        NULL, loc);
-  init->add_statement(hiter);
-
-  Expression* p1 = this->make_range_ref(range_object, range_temp, loc);
-  Expression* ref = Expression::make_temporary_reference(hiter, loc);
-  Expression* p2 = Expression::make_unary(OPERATOR_AND, ref, loc);
-  Expression* call = Runtime::make_call(Runtime::MAPITERINIT, loc, 2, p1, p2);
-  init->add_statement(Statement::make_statement(call));
-
-  *pinit = init;
-
-  // Set *PCOND to
-  //   hiter[0] != nil
-
-  ref = Expression::make_temporary_reference(hiter, loc);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, loc);
-  mpz_clear(zval);
-
-  Expression* index = Expression::make_index(ref, zexpr, NULL, loc);
-
-  Expression* ne = Expression::make_binary(OPERATOR_NOTEQ, index,
-                                          Expression::make_nil(loc),
-                                          loc);
-
-  *pcond = ne;
-
-  // Set *PITER_INIT to
-  //   mapiter1(hiter, &index_temp)
-  // or
-  //   mapiter2(hiter, &index_temp, &value_temp)
-
-  Block* iter_init = new Block(body_block, loc);
-
-  ref = Expression::make_temporary_reference(hiter, loc);
-  p1 = Expression::make_unary(OPERATOR_AND, ref, loc);
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  p2 = Expression::make_unary(OPERATOR_AND, ref, loc);
-  if (value_temp == NULL)
-    call = Runtime::make_call(Runtime::MAPITER1, loc, 2, p1, p2);
-  else
-    {
-      ref = Expression::make_temporary_reference(value_temp, loc);
-      Expression* p3 = Expression::make_unary(OPERATOR_AND, ref, loc);
-      call = Runtime::make_call(Runtime::MAPITER2, loc, 3, p1, p2, p3);
-    }
-  iter_init->add_statement(Statement::make_statement(call));
-
-  *piter_init = iter_init;
-
-  // Set *PPOST to
-  //   mapiternext(&hiter)
-
-  Block* post = new Block(enclosing, loc);
-
-  ref = Expression::make_temporary_reference(hiter, loc);
-  p1 = Expression::make_unary(OPERATOR_AND, ref, loc);
-  call = Runtime::make_call(Runtime::MAPITERNEXT, loc, 1, p1);
-  post->add_statement(Statement::make_statement(call));
-
-  *ppost = post;
-}
-
-// Lower a for range over a channel.
-
-void
-For_range_statement::lower_range_channel(Gogo*,
-                                        Block*,
-                                        Block* body_block,
-                                        Named_object* range_object,
-                                        Temporary_statement* range_temp,
-                                        Temporary_statement* index_temp,
-                                        Temporary_statement* value_temp,
-                                        Block** pinit,
-                                        Expression** pcond,
-                                        Block** piter_init,
-                                        Block** ppost)
-{
-  go_assert(value_temp == NULL);
-
-  source_location loc = this->location();
-
-  // The loop we generate:
-  //   for {
-  //           index_temp, ok_temp = <-range
-  //           if !ok_temp {
-  //                   break
-  //           }
-  //           index = index_temp
-  //           original body
-  //   }
-
-  // We have no initialization code, no condition, and no post code.
-
-  *pinit = NULL;
-  *pcond = NULL;
-  *ppost = NULL;
-
-  // Set *PITER_INIT to
-  //   index_temp, ok_temp = <-range
-  //   if !ok_temp {
-  //           break
-  //   }
-
-  Block* iter_init = new Block(body_block, loc);
-
-  Temporary_statement* ok_temp =
-    Statement::make_temporary(Type::lookup_bool_type(), NULL, loc);
-  iter_init->add_statement(ok_temp);
-
-  Expression* cref = this->make_range_ref(range_object, range_temp, loc);
-  Expression* iref = Expression::make_temporary_reference(index_temp, loc);
-  Expression* oref = Expression::make_temporary_reference(ok_temp, loc);
-  Statement* s = Statement::make_tuple_receive_assignment(iref, oref, cref,
-                                                         false, loc);
-  iter_init->add_statement(s);
-
-  Block* then_block = new Block(iter_init, loc);
-  s = Statement::make_break_statement(this->break_label(), loc);
-  then_block->add_statement(s);
-
-  oref = Expression::make_temporary_reference(ok_temp, loc);
-  Expression* cond = Expression::make_unary(OPERATOR_NOT, oref, loc);
-  s = Statement::make_if_statement(cond, then_block, NULL, loc);
-  iter_init->add_statement(s);
-
-  *piter_init = iter_init;
-}
-
-// Return the break LABEL_EXPR.
-
-Unnamed_label*
-For_range_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Return the continue LABEL_EXPR.
-
-Unnamed_label*
-For_range_statement::continue_label()
-{
-  if (this->continue_label_ == NULL)
-    this->continue_label_ = new Unnamed_label(this->location());
-  return this->continue_label_;
-}
-
-// Make a for statement with a range clause.
-
-For_range_statement*
-Statement::make_for_range_statement(Expression* index_var,
-                                   Expression* value_var,
-                                   Expression* range,
-                                   source_location location)
-{
-  return new For_range_statement(index_var, value_var, range, location);
-}
diff --git a/gcc/go/gofrontend/statements.cc.working b/gcc/go/gofrontend/statements.cc.working
deleted file mode 100644 (file)
index d24d98f..0000000
+++ /dev/null
@@ -1,5396 +0,0 @@
-// statements.cc -- Go frontend statements.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "intl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "convert.h"
-#include "tree-iterator.h"
-#include "tree-flow.h"
-#include "real.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "types.h"
-#include "expressions.h"
-#include "gogo.h"
-#include "statements.h"
-
-// Class Statement.
-
-Statement::Statement(Statement_classification classification,
-                    source_location location)
-  : classification_(classification), location_(location)
-{
-}
-
-Statement::~Statement()
-{
-}
-
-// Traverse the tree.  The work of walking the components is handled
-// by the subclasses.
-
-int
-Statement::traverse(Block* block, size_t* pindex, Traverse* traverse)
-{
-  if (this->classification_ == STATEMENT_ERROR)
-    return TRAVERSE_CONTINUE;
-
-  unsigned int traverse_mask = traverse->traverse_mask();
-
-  if ((traverse_mask & Traverse::traverse_statements) != 0)
-    {
-      int t = traverse->statement(block, pindex, this);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-
-  // No point in checking traverse_mask here--a statement may contain
-  // other blocks or statements, and if we got here we always want to
-  // walk them.
-  return this->do_traverse(traverse);
-}
-
-// Traverse the contents of a statement.
-
-int
-Statement::traverse_contents(Traverse* traverse)
-{
-  return this->do_traverse(traverse);
-}
-
-// Traverse assignments.
-
-bool
-Statement::traverse_assignments(Traverse_assignments* tassign)
-{
-  if (this->classification_ == STATEMENT_ERROR)
-    return false;
-  return this->do_traverse_assignments(tassign);
-}
-
-// Traverse an expression in a statement.  This is a helper function
-// for child classes.
-
-int
-Statement::traverse_expression(Traverse* traverse, Expression** expr)
-{
-  if ((traverse->traverse_mask()
-       & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0)
-    return TRAVERSE_CONTINUE;
-  return Expression::traverse(expr, traverse);
-}
-
-// Traverse an expression list in a statement.  This is a helper
-// function for child classes.
-
-int
-Statement::traverse_expression_list(Traverse* traverse,
-                                   Expression_list* expr_list)
-{
-  if (expr_list == NULL)
-    return TRAVERSE_CONTINUE;
-  if ((traverse->traverse_mask()
-       & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0)
-    return TRAVERSE_CONTINUE;
-  return expr_list->traverse(traverse);
-}
-
-// Traverse a type in a statement.  This is a helper function for
-// child classes.
-
-int
-Statement::traverse_type(Traverse* traverse, Type* type)
-{
-  if ((traverse->traverse_mask()
-       & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0)
-    return TRAVERSE_CONTINUE;
-  return Type::traverse(type, traverse);
-}
-
-// Set type information for unnamed constants.  This is really done by
-// the child class.
-
-void
-Statement::determine_types()
-{
-  this->do_determine_types();
-}
-
-// If this is a thunk statement, return it.
-
-Thunk_statement*
-Statement::thunk_statement()
-{
-  Thunk_statement* ret = this->convert<Thunk_statement, STATEMENT_GO>();
-  if (ret == NULL)
-    ret = this->convert<Thunk_statement, STATEMENT_DEFER>();
-  return ret;
-}
-
-// Get a tree for a Statement.  This is really done by the child
-// class.
-
-tree
-Statement::get_tree(Translate_context* context)
-{
-  if (this->classification_ == STATEMENT_ERROR)
-    return error_mark_node;
-
-  return this->do_get_tree(context);
-}
-
-// Build tree nodes and set locations.
-
-tree
-Statement::build_stmt_1(int tree_code_value, tree node)
-{
-  tree ret = build1(static_cast<tree_code>(tree_code_value),
-                   void_type_node, node);
-  SET_EXPR_LOCATION(ret, this->location_);
-  return ret;
-}
-
-// Note that this statement is erroneous.  This is called by children
-// when they discover an error.
-
-void
-Statement::set_is_error()
-{
-  this->classification_ = STATEMENT_ERROR;
-}
-
-// For children to call to report an error conveniently.
-
-void
-Statement::report_error(const char* msg)
-{
-  error_at(this->location_, "%s", msg);
-  this->set_is_error();
-}
-
-// An error statement, used to avoid crashing after we report an
-// error.
-
-class Error_statement : public Statement
-{
- public:
-  Error_statement(source_location location)
-    : Statement(STATEMENT_ERROR, location)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-};
-
-// Make an error statement.
-
-Statement*
-Statement::make_error_statement(source_location location)
-{
-  return new Error_statement(location);
-}
-
-// Class Variable_declaration_statement.
-
-Variable_declaration_statement::Variable_declaration_statement(
-    Named_object* var)
-  : Statement(STATEMENT_VARIABLE_DECLARATION, var->var_value()->location()),
-    var_(var)
-{
-}
-
-// We don't actually traverse the variable here; it was traversed
-// while traversing the Block.
-
-int
-Variable_declaration_statement::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// Traverse the assignments in a variable declaration.  Note that this
-// traversal is different from the usual traversal.
-
-bool
-Variable_declaration_statement::do_traverse_assignments(
-    Traverse_assignments* tassign)
-{
-  tassign->initialize_variable(this->var_);
-  return true;
-}
-
-// Return the tree for a variable declaration.
-
-tree
-Variable_declaration_statement::do_get_tree(Translate_context* context)
-{
-  tree val = this->var_->get_tree(context->gogo(), context->function());
-  if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
-    return error_mark_node;
-  Variable* variable = this->var_->var_value();
-
-  tree init = variable->get_init_tree(context->gogo(), context->function());
-  if (init == error_mark_node)
-    return error_mark_node;
-
-  // If this variable lives on the heap, we need to allocate it now.
-  if (!variable->is_in_heap())
-    {
-      DECL_INITIAL(val) = init;
-      return this->build_stmt_1(DECL_EXPR, val);
-    }
-  else
-    {
-      gcc_assert(TREE_CODE(val) == INDIRECT_REF);
-      tree decl = TREE_OPERAND(val, 0);
-      gcc_assert(TREE_CODE(decl) == VAR_DECL);
-      tree type = TREE_TYPE(decl);
-      gcc_assert(POINTER_TYPE_P(type));
-      tree size = TYPE_SIZE_UNIT(TREE_TYPE(type));
-      tree space = context->gogo()->allocate_memory(variable->type(), size,
-                                                   this->location());
-      space = fold_convert(TREE_TYPE(decl), space);
-      DECL_INITIAL(decl) = space;
-      return build2(COMPOUND_EXPR, void_type_node,
-                   this->build_stmt_1(DECL_EXPR, decl),
-                   build2(MODIFY_EXPR, void_type_node, val, init));
-    }
-}
-
-// Make a variable declaration.
-
-Statement*
-Statement::make_variable_declaration(Named_object* var)
-{
-  return new Variable_declaration_statement(var);
-}
-
-// Class Temporary_statement.
-
-// Return the type of the temporary variable.
-
-Type*
-Temporary_statement::type() const
-{
-  return this->type_ != NULL ? this->type_ : this->init_->type();
-}
-
-// Return the tree for the temporary variable.
-
-tree
-Temporary_statement::get_decl() const
-{
-  if (this->decl_ == NULL)
-    {
-      gcc_assert(saw_errors());
-      return error_mark_node;
-    }
-  return this->decl_;
-}
-
-// Traversal.
-
-int
-Temporary_statement::do_traverse(Traverse* traverse)
-{
-  if (this->type_ != NULL
-      && this->traverse_type(traverse, this->type_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->init_ == NULL)
-    return TRAVERSE_CONTINUE;
-  else
-    return this->traverse_expression(traverse, &this->init_);
-}
-
-// Traverse assignments.
-
-bool
-Temporary_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  if (this->init_ == NULL)
-    return false;
-  tassign->value(&this->init_, true, true);
-  return true;
-}
-
-// Determine types.
-
-void
-Temporary_statement::do_determine_types()
-{
-  if (this->type_ != NULL && this->type_->is_abstract())
-    this->type_ = this->type_->make_non_abstract_type();
-
-  if (this->init_ != NULL)
-    {
-      if (this->type_ == NULL)
-       this->init_->determine_type_no_context();
-      else
-       {
-         Type_context context(this->type_, false);
-         this->init_->determine_type(&context);
-       }
-    }
-
-  if (this->type_ == NULL)
-    {
-      this->type_ = this->init_->type();
-      gcc_assert(!this->type_->is_abstract());
-    }
-}
-
-// Check types.
-
-void
-Temporary_statement::do_check_types(Gogo*)
-{
-  if (this->type_ != NULL && this->init_ != NULL)
-    {
-      std::string reason;
-      if (!Type::are_assignable(this->type_, this->init_->type(), &reason))
-       {
-         if (reason.empty())
-           error_at(this->location(), "incompatible types in assignment");
-         else
-           error_at(this->location(), "incompatible types in assignment (%s)",
-                    reason.c_str());
-         this->set_is_error();
-       }
-    }
-}
-
-// Return a tree.
-
-tree
-Temporary_statement::do_get_tree(Translate_context* context)
-{
-  gcc_assert(this->decl_ == NULL_TREE);
-  tree type_tree = this->type()->get_tree(context->gogo());
-  tree init_tree = (this->init_ == NULL
-                   ? NULL_TREE
-                   : this->init_->get_tree(context));
-  if (type_tree == error_mark_node || init_tree == error_mark_node)
-    {
-      this->decl_ = error_mark_node;
-      return error_mark_node;
-    }
-  // We can only use create_tmp_var if the type is not addressable.
-  if (!TREE_ADDRESSABLE(type_tree))
-    {
-      this->decl_ = create_tmp_var(type_tree, "GOTMP");
-      DECL_SOURCE_LOCATION(this->decl_) = this->location();
-    }
-  else
-    {
-      gcc_assert(context->function() != NULL && context->block() != NULL);
-      tree decl = build_decl(this->location(), VAR_DECL,
-                            create_tmp_var_name("GOTMP"),
-                            type_tree);
-      DECL_ARTIFICIAL(decl) = 1;
-      DECL_IGNORED_P(decl) = 1;
-      TREE_USED(decl) = 1;
-      gcc_assert(current_function_decl != NULL_TREE);
-      DECL_CONTEXT(decl) = current_function_decl;
-
-      // We have to add this variable to the block so that it winds up
-      // in a BIND_EXPR.
-      tree block_tree = context->block_tree();
-      gcc_assert(block_tree != NULL_TREE);
-      DECL_CHAIN(decl) = BLOCK_VARS(block_tree);
-      BLOCK_VARS(block_tree) = decl;
-
-      this->decl_ = decl;
-    }
-  if (init_tree != NULL_TREE)
-    DECL_INITIAL(this->decl_) =
-      Expression::convert_for_assignment(context, this->type(),
-                                        this->init_->type(), init_tree,
-                                        this->location());
-  if (this->is_address_taken_)
-    TREE_ADDRESSABLE(this->decl_) = 1;
-  return this->build_stmt_1(DECL_EXPR, this->decl_);
-}
-
-// Make and initialize a temporary variable in BLOCK.
-
-Temporary_statement*
-Statement::make_temporary(Type* type, Expression* init,
-                         source_location location)
-{
-  return new Temporary_statement(type, init, location);
-}
-
-// An assignment statement.
-
-class Assignment_statement : public Statement
-{
- public:
-  Assignment_statement(Expression* lhs, Expression* rhs,
-                      source_location location)
-    : Statement(STATEMENT_ASSIGNMENT, location),
-      lhs_(lhs), rhs_(rhs)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // Left hand side--the lvalue.
-  Expression* lhs_;
-  // Right hand side--the rvalue.
-  Expression* rhs_;
-};
-
-// Traversal.
-
-int
-Assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->lhs_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->rhs_);
-}
-
-bool
-Assignment_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  tassign->assignment(&this->lhs_, &this->rhs_);
-  return true;
-}
-
-// Set types for the assignment.
-
-void
-Assignment_statement::do_determine_types()
-{
-  this->lhs_->determine_type_no_context();
-  Type_context context(this->lhs_->type(), false);
-  this->rhs_->determine_type(&context);
-}
-
-// Check types for an assignment.
-
-void
-Assignment_statement::do_check_types(Gogo*)
-{
-  // The left hand side must be either addressable, a map index
-  // expression, or the blank identifier.
-  if (!this->lhs_->is_addressable()
-      && this->lhs_->map_index_expression() == NULL
-      && !this->lhs_->is_sink_expression())
-    {
-      if (!this->lhs_->type()->is_error_type())
-       this->report_error(_("invalid left hand side of assignment"));
-      return;
-    }
-
-  Type* lhs_type = this->lhs_->type();
-  Type* rhs_type = this->rhs_->type();
-  std::string reason;
-  if (!Type::are_assignable(lhs_type, rhs_type, &reason))
-    {
-      if (reason.empty())
-       error_at(this->location(), "incompatible types in assignment");
-      else
-       error_at(this->location(), "incompatible types in assignment (%s)",
-                reason.c_str());
-      this->set_is_error();
-    }
-
-  if (lhs_type->is_error_type()
-      || rhs_type->is_error_type()
-      || lhs_type->is_undefined()
-      || rhs_type->is_undefined())
-    {
-      // Make sure we get the error for an undefined type.
-      lhs_type->base();
-      rhs_type->base();
-      this->set_is_error();
-    }
-}
-
-// Build a tree for an assignment statement.
-
-tree
-Assignment_statement::do_get_tree(Translate_context* context)
-{
-  tree rhs_tree = this->rhs_->get_tree(context);
-
-  if (this->lhs_->is_sink_expression())
-    return rhs_tree;
-
-  tree lhs_tree = this->lhs_->get_tree(context);
-
-  if (lhs_tree == error_mark_node || rhs_tree == error_mark_node)
-    return error_mark_node;
-
-  rhs_tree = Expression::convert_for_assignment(context, this->lhs_->type(),
-                                               this->rhs_->type(), rhs_tree,
-                                               this->location());
-  if (rhs_tree == error_mark_node)
-    return error_mark_node;
-
-  return fold_build2_loc(this->location(), MODIFY_EXPR, void_type_node,
-                        lhs_tree, rhs_tree);
-}
-
-// Make an assignment statement.
-
-Statement*
-Statement::make_assignment(Expression* lhs, Expression* rhs,
-                          source_location location)
-{
-  return new Assignment_statement(lhs, rhs, location);
-}
-
-// The Move_ordered_evals class is used to find any subexpressions of
-// an expression that have an evaluation order dependency.  It creates
-// temporary variables to hold them.
-
-class Move_ordered_evals : public Traverse
-{
- public:
-  Move_ordered_evals(Block* block)
-    : Traverse(traverse_expressions),
-      block_(block)
-  { }
-
- protected:
-  int
-  expression(Expression**);
-
- private:
-  // The block where new temporary variables should be added.
-  Block* block_;
-};
-
-int
-Move_ordered_evals::expression(Expression** pexpr)
-{
-  // We have to look at subexpressions first.
-  if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if ((*pexpr)->must_eval_in_order())
-    {
-      source_location loc = (*pexpr)->location();
-      Temporary_statement* temp = Statement::make_temporary(NULL, *pexpr, loc);
-      this->block_->add_statement(temp);
-      *pexpr = Expression::make_temporary_reference(temp, loc);
-    }
-  return TRAVERSE_SKIP_COMPONENTS;
-}
-
-// An assignment operation statement.
-
-class Assignment_operation_statement : public Statement
-{
- public:
-  Assignment_operation_statement(Operator op, Expression* lhs, Expression* rhs,
-                                source_location location)
-    : Statement(STATEMENT_ASSIGNMENT_OPERATION, location),
-      op_(op), lhs_(lhs), rhs_(rhs)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // The operator (OPERATOR_PLUSEQ, etc.).
-  Operator op_;
-  // Left hand side.
-  Expression* lhs_;
-  // Right hand side.
-  Expression* rhs_;
-};
-
-// Traversal.
-
-int
-Assignment_operation_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->lhs_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->rhs_);
-}
-
-// Lower an assignment operation statement to a regular assignment
-// statement.
-
-Statement*
-Assignment_operation_statement::do_lower(Gogo*, Named_object*,
-                                        Block* enclosing)
-{
-  source_location loc = this->location();
-
-  // We have to evaluate the left hand side expression only once.  We
-  // do this by moving out any expression with side effects.
-  Block* b = new Block(enclosing, loc);
-  Move_ordered_evals moe(b);
-  this->lhs_->traverse_subexpressions(&moe);
-
-  Expression* lval = this->lhs_->copy();
-
-  Operator op;
-  switch (this->op_)
-    {
-    case OPERATOR_PLUSEQ:
-      op = OPERATOR_PLUS;
-      break;
-    case OPERATOR_MINUSEQ:
-      op = OPERATOR_MINUS;
-      break;
-    case OPERATOR_OREQ:
-      op = OPERATOR_OR;
-      break;
-    case OPERATOR_XOREQ:
-      op = OPERATOR_XOR;
-      break;
-    case OPERATOR_MULTEQ:
-      op = OPERATOR_MULT;
-      break;
-    case OPERATOR_DIVEQ:
-      op = OPERATOR_DIV;
-      break;
-    case OPERATOR_MODEQ:
-      op = OPERATOR_MOD;
-      break;
-    case OPERATOR_LSHIFTEQ:
-      op = OPERATOR_LSHIFT;
-      break;
-    case OPERATOR_RSHIFTEQ:
-      op = OPERATOR_RSHIFT;
-      break;
-    case OPERATOR_ANDEQ:
-      op = OPERATOR_AND;
-      break;
-    case OPERATOR_BITCLEAREQ:
-      op = OPERATOR_BITCLEAR;
-      break;
-    default:
-      gcc_unreachable();
-    }
-
-  Expression* binop = Expression::make_binary(op, lval, this->rhs_, loc);
-  Statement* s = Statement::make_assignment(this->lhs_, binop, loc);
-  if (b->statements()->empty())
-    {
-      delete b;
-      return s;
-    }
-  else
-    {
-      b->add_statement(s);
-      return Statement::make_block_statement(b, loc);
-    }
-}
-
-// Make an assignment operation statement.
-
-Statement*
-Statement::make_assignment_operation(Operator op, Expression* lhs,
-                                    Expression* rhs, source_location location)
-{
-  return new Assignment_operation_statement(op, lhs, rhs, location);
-}
-
-// A tuple assignment statement.  This differs from an assignment
-// statement in that the right-hand-side expressions are evaluated in
-// parallel.
-
-class Tuple_assignment_statement : public Statement
-{
- public:
-  Tuple_assignment_statement(Expression_list* lhs, Expression_list* rhs,
-                            source_location location)
-    : Statement(STATEMENT_TUPLE_ASSIGNMENT, location),
-      lhs_(lhs), rhs_(rhs)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // Left hand side--a list of lvalues.
-  Expression_list* lhs_;
-  // Right hand side--a list of rvalues.
-  Expression_list* rhs_;
-};
-
-// Traversal.
-
-int
-Tuple_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression_list(traverse, this->lhs_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression_list(traverse, this->rhs_);
-}
-
-// Lower a tuple assignment.  We use temporary variables to split it
-// up into a set of single assignments.
-
-Statement*
-Tuple_assignment_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Block* b = new Block(enclosing, loc);
-  
-  // First move out any subexpressions on the left hand side.  The
-  // right hand side will be evaluated in the required order anyhow.
-  Move_ordered_evals moe(b);
-  for (Expression_list::const_iterator plhs = this->lhs_->begin();
-       plhs != this->lhs_->end();
-       ++plhs)
-    (*plhs)->traverse_subexpressions(&moe);
-
-  std::vector<Temporary_statement*> temps;
-  temps.reserve(this->lhs_->size());
-
-  Expression_list::const_iterator prhs = this->rhs_->begin();
-  for (Expression_list::const_iterator plhs = this->lhs_->begin();
-       plhs != this->lhs_->end();
-       ++plhs, ++prhs)
-    {
-      gcc_assert(prhs != this->rhs_->end());
-
-      if ((*plhs)->is_error_expression()
-         || (*plhs)->type()->is_error_type()
-         || (*prhs)->is_error_expression()
-         || (*prhs)->type()->is_error_type())
-       continue;
-
-      if ((*plhs)->is_sink_expression())
-       {
-         b->add_statement(Statement::make_statement(*prhs));
-         continue;
-       }
-
-      Temporary_statement* temp = Statement::make_temporary((*plhs)->type(),
-                                                           *prhs, loc);
-      b->add_statement(temp);
-      temps.push_back(temp);
-
-    }
-  gcc_assert(prhs == this->rhs_->end());
-
-  prhs = this->rhs_->begin();
-  std::vector<Temporary_statement*>::const_iterator ptemp = temps.begin();
-  for (Expression_list::const_iterator plhs = this->lhs_->begin();
-       plhs != this->lhs_->end();
-       ++plhs, ++prhs)
-    {
-      if ((*plhs)->is_error_expression()
-         || (*plhs)->type()->is_error_type()
-         || (*prhs)->is_error_expression()
-         || (*prhs)->type()->is_error_type())
-       continue;
-
-      if ((*plhs)->is_sink_expression())
-       continue;
-
-      Expression* ref = Expression::make_temporary_reference(*ptemp, loc);
-      Statement* s = Statement::make_assignment(*plhs, ref, loc);
-      b->add_statement(s);
-      ++ptemp;
-    }
-  gcc_assert(ptemp == temps.end());
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a tuple assignment statement.
-
-Statement*
-Statement::make_tuple_assignment(Expression_list* lhs, Expression_list* rhs,
-                                source_location location)
-{
-  return new Tuple_assignment_statement(lhs, rhs, location);
-}
-
-// A tuple assignment from a map index expression.
-//   v, ok = m[k]
-
-class Tuple_map_assignment_statement : public Statement
-{
-public:
-  Tuple_map_assignment_statement(Expression* val, Expression* present,
-                                Expression* map_index,
-                                source_location location)
-    : Statement(STATEMENT_TUPLE_MAP_ASSIGNMENT, location),
-      val_(val), present_(present), map_index_(map_index)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // Lvalue which receives the value from the map.
-  Expression* val_;
-  // Lvalue which receives whether the key value was present.
-  Expression* present_;
-  // The map index expression.
-  Expression* map_index_;
-};
-
-// Traversal.
-
-int
-Tuple_map_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->present_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->map_index_);
-}
-
-// Lower a tuple map assignment.
-
-Statement*
-Tuple_map_assignment_statement::do_lower(Gogo*, Named_object*,
-                                        Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Map_index_expression* map_index = this->map_index_->map_index_expression();
-  if (map_index == NULL)
-    {
-      this->report_error(_("expected map index on right hand side"));
-      return Statement::make_error_statement(loc);
-    }
-  Map_type* map_type = map_index->get_map_type();
-  if (map_type == NULL)
-    return Statement::make_error_statement(loc);
-
-  Block* b = new Block(enclosing, loc);
-
-  // Move out any subexpressions to make sure that functions are
-  // called in the required order.
-  Move_ordered_evals moe(b);
-  this->val_->traverse_subexpressions(&moe);
-  this->present_->traverse_subexpressions(&moe);
-
-  // Copy the key value into a temporary so that we can take its
-  // address without pushing the value onto the heap.
-
-  // var key_temp KEY_TYPE = MAP_INDEX
-  Temporary_statement* key_temp =
-    Statement::make_temporary(map_type->key_type(), map_index->index(), loc);
-  b->add_statement(key_temp);
-
-  // var val_temp VAL_TYPE
-  Temporary_statement* val_temp =
-    Statement::make_temporary(map_type->val_type(), NULL, loc);
-  b->add_statement(val_temp);
-
-  // var present_temp bool
-  Temporary_statement* present_temp =
-    Statement::make_temporary(Type::lookup_bool_type(), NULL, loc);
-  b->add_statement(present_temp);
-
-  // func mapaccess2(hmap map[k]v, key *k, val *v) bool
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("hmap", map_type, bloc));
-  Type* pkey_type = Type::make_pointer_type(map_type->key_type());
-  param_types->push_back(Typed_identifier("key", pkey_type, bloc));
-  Type* pval_type = Type::make_pointer_type(map_type->val_type());
-  param_types->push_back(Typed_identifier("val", pval_type, bloc));
-
-  Typed_identifier_list* ret_types = new Typed_identifier_list();
-  ret_types->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
-
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  ret_types, bloc);
-  Named_object* mapaccess2 =
-    Named_object::make_function_declaration("mapaccess2", NULL, fntype, bloc);
-  mapaccess2->func_declaration_value()->set_asm_name("runtime.mapaccess2");
-
-  // present_temp = mapaccess2(MAP, &key_temp, &val_temp)
-  Expression* func = Expression::make_func_reference(mapaccess2, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(map_index->map());
-  Expression* ref = Expression::make_temporary_reference(key_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  Expression* call = Expression::make_call(func, params, false, loc);
-
-  ref = Expression::make_temporary_reference(present_temp, loc);
-  Statement* s = Statement::make_assignment(ref, call, loc);
-  b->add_statement(s);
-
-  // val = val_temp
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  s = Statement::make_assignment(this->val_, ref, loc);
-  b->add_statement(s);
-
-  // present = present_temp
-  ref = Expression::make_temporary_reference(present_temp, loc);
-  s = Statement::make_assignment(this->present_, ref, loc);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a map assignment statement which returns a pair of values.
-
-Statement*
-Statement::make_tuple_map_assignment(Expression* val, Expression* present,
-                                    Expression* map_index,
-                                    source_location location)
-{
-  return new Tuple_map_assignment_statement(val, present, map_index, location);
-}
-
-// Assign a pair of entries to a map.
-//   m[k] = v, p
-
-class Map_assignment_statement : public Statement
-{
- public:
-  Map_assignment_statement(Expression* map_index,
-                          Expression* val, Expression* should_set,
-                          source_location location)
-    : Statement(STATEMENT_MAP_ASSIGNMENT, location),
-      map_index_(map_index), val_(val), should_set_(should_set)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // A reference to the map index which should be set or deleted.
-  Expression* map_index_;
-  // The value to add to the map.
-  Expression* val_;
-  // Whether or not to add the value.
-  Expression* should_set_;
-};
-
-// Traverse a map assignment.
-
-int
-Map_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->map_index_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->should_set_);
-}
-
-// Lower a map assignment to a function call.
-
-Statement*
-Map_assignment_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Map_index_expression* map_index = this->map_index_->map_index_expression();
-  if (map_index == NULL)
-    {
-      this->report_error(_("expected map index on left hand side"));
-      return Statement::make_error_statement(loc);
-    }
-  Map_type* map_type = map_index->get_map_type();
-  if (map_type == NULL)
-    return Statement::make_error_statement(loc);
-
-  Block* b = new Block(enclosing, loc);
-
-  // Evaluate the map first to get order of evaluation right.
-  // map_temp := m // we are evaluating m[k] = v, p
-  Temporary_statement* map_temp = Statement::make_temporary(map_type,
-                                                           map_index->map(),
-                                                           loc);
-  b->add_statement(map_temp);
-
-  // var key_temp MAP_KEY_TYPE = k
-  Temporary_statement* key_temp =
-    Statement::make_temporary(map_type->key_type(), map_index->index(), loc);
-  b->add_statement(key_temp);
-
-  // var val_temp MAP_VAL_TYPE = v
-  Temporary_statement* val_temp =
-    Statement::make_temporary(map_type->val_type(), this->val_, loc);
-  b->add_statement(val_temp);
-
-  // func mapassign2(hmap map[k]v, key *k, val *v, p)
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("hmap", map_type, bloc));
-  Type* pkey_type = Type::make_pointer_type(map_type->key_type());
-  param_types->push_back(Typed_identifier("key", pkey_type, bloc));
-  Type* pval_type = Type::make_pointer_type(map_type->val_type());
-  param_types->push_back(Typed_identifier("val", pval_type, bloc));
-  param_types->push_back(Typed_identifier("p", Type::lookup_bool_type(), bloc));
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  NULL, bloc);
-  Named_object* mapassign2 =
-    Named_object::make_function_declaration("mapassign2", NULL, fntype, bloc);
-  mapassign2->func_declaration_value()->set_asm_name("runtime.mapassign2");
-
-  // mapassign2(map_temp, &key_temp, &val_temp, p)
-  Expression* func = Expression::make_func_reference(mapassign2, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(Expression::make_temporary_reference(map_temp, loc));
-  Expression* ref = Expression::make_temporary_reference(key_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  params->push_back(this->should_set_);
-  Expression* call = Expression::make_call(func, params, false, loc);
-  Statement* s = Statement::make_statement(call);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a statement which assigns a pair of entries to a map.
-
-Statement*
-Statement::make_map_assignment(Expression* map_index,
-                              Expression* val, Expression* should_set,
-                              source_location location)
-{
-  return new Map_assignment_statement(map_index, val, should_set, location);
-}
-
-// A tuple assignment from a receive statement.
-
-class Tuple_receive_assignment_statement : public Statement
-{
- public:
-  Tuple_receive_assignment_statement(Expression* val, Expression* closed,
-                                    Expression* channel, bool for_select,
-                                    source_location location)
-    : Statement(STATEMENT_TUPLE_RECEIVE_ASSIGNMENT, location),
-      val_(val), closed_(closed), channel_(channel), for_select_(for_select)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // Lvalue which receives the value from the channel.
-  Expression* val_;
-  // Lvalue which receives whether the channel is closed.
-  Expression* closed_;
-  // The channel on which we receive the value.
-  Expression* channel_;
-  // Whether this is for a select statement.
-  bool for_select_;
-};
-
-// Traversal.
-
-int
-Tuple_receive_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->closed_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->channel_);
-}
-
-// Lower to a function call.
-
-Statement*
-Tuple_receive_assignment_statement::do_lower(Gogo*, Named_object*,
-                                            Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  if (channel_type == NULL)
-    {
-      this->report_error(_("expected channel"));
-      return Statement::make_error_statement(loc);
-    }
-  if (!channel_type->may_receive())
-    {
-      this->report_error(_("invalid receive on send-only channel"));
-      return Statement::make_error_statement(loc);
-    }
-
-  Block* b = new Block(enclosing, loc);
-
-  // Make sure that any subexpressions on the left hand side are
-  // evaluated in the right order.
-  Move_ordered_evals moe(b);
-  this->val_->traverse_subexpressions(&moe);
-  this->closed_->traverse_subexpressions(&moe);
-
-  // var val_temp ELEMENT_TYPE
-  Temporary_statement* val_temp =
-    Statement::make_temporary(channel_type->element_type(), NULL, loc);
-  b->add_statement(val_temp);
-
-  // var closed_temp bool
-  Temporary_statement* closed_temp =
-    Statement::make_temporary(Type::lookup_bool_type(), NULL, loc);
-  b->add_statement(closed_temp);
-
-  // func chanrecv2(c chan T, val *T) bool
-  // func chanrecv3(c chan T, val *T) bool (if for_select)
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("c", channel_type, bloc));
-  Type* pelement_type = Type::make_pointer_type(channel_type->element_type());
-  param_types->push_back(Typed_identifier("val", pelement_type, bloc));
-
-  Typed_identifier_list* ret_types = new Typed_identifier_list();
-  ret_types->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
-
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  ret_types, bloc);
-  Named_object* chanrecv;
-  if (!this->for_select_)
-    {
-      chanrecv = Named_object::make_function_declaration("chanrecv2", NULL,
-                                                        fntype, bloc);
-      chanrecv->func_declaration_value()->set_asm_name("runtime.chanrecv2");
-    }
-  else
-    {
-      chanrecv = Named_object::make_function_declaration("chanrecv3", NULL,
-                                                        fntype, bloc);
-      chanrecv->func_declaration_value()->set_asm_name("runtime.chanrecv3");
-    }
-
-  // closed_temp = chanrecv[23](channel, &val_temp)
-  Expression* func = Expression::make_func_reference(chanrecv, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(this->channel_);
-  Expression* ref = Expression::make_temporary_reference(val_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  Expression* call = Expression::make_call(func, params, false, loc);
-  ref = Expression::make_temporary_reference(closed_temp, loc);
-  Statement* s = Statement::make_assignment(ref, call, loc);
-  b->add_statement(s);
-
-  // val = val_temp
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  s = Statement::make_assignment(this->val_, ref, loc);
-  b->add_statement(s);
-
-  // closed = closed_temp
-  ref = Expression::make_temporary_reference(closed_temp, loc);
-  s = Statement::make_assignment(this->closed_, ref, loc);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Make a nonblocking receive statement.
-
-Statement*
-Statement::make_tuple_receive_assignment(Expression* val, Expression* closed,
-                                        Expression* channel,
-                                        bool for_select,
-                                        source_location location)
-{
-  return new Tuple_receive_assignment_statement(val, closed, channel,
-                                               for_select, location);
-}
-
-// An assignment to a pair of values from a type guard.  This is a
-// conditional type guard.  v, ok = i.(type).
-
-class Tuple_type_guard_assignment_statement : public Statement
-{
- public:
-  Tuple_type_guard_assignment_statement(Expression* val, Expression* ok,
-                                       Expression* expr, Type* type,
-                                       source_location location)
-    : Statement(STATEMENT_TUPLE_TYPE_GUARD_ASSIGNMENT, location),
-      val_(val), ok_(ok), expr_(expr), type_(type)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  Call_expression*
-  lower_to_empty_interface(const char*);
-
-  Call_expression*
-  lower_to_type(const char*);
-
-  void
-  lower_to_object_type(Block*, const char*);
-
-  // The variable which recieves the converted value.
-  Expression* val_;
-  // The variable which receives the indication of success.
-  Expression* ok_;
-  // The expression being converted.
-  Expression* expr_;
-  // The type to which the expression is being converted.
-  Type* type_;
-};
-
-// Traverse a type guard tuple assignment.
-
-int
-Tuple_type_guard_assignment_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT
-      || this->traverse_expression(traverse, &this->ok_) == TRAVERSE_EXIT
-      || this->traverse_type(traverse, this->type_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->expr_);
-}
-
-// Lower to a function call.
-
-Statement*
-Tuple_type_guard_assignment_statement::do_lower(Gogo*, Named_object*,
-                                               Block* enclosing)
-{
-  source_location loc = this->location();
-
-  Type* expr_type = this->expr_->type();
-  if (expr_type->interface_type() == NULL)
-    {
-      if (!expr_type->is_error_type() && !this->type_->is_error_type())
-       this->report_error(_("type assertion only valid for interface types"));
-      return Statement::make_error_statement(loc);
-    }
-
-  Block* b = new Block(enclosing, loc);
-
-  // Make sure that any subexpressions on the left hand side are
-  // evaluated in the right order.
-  Move_ordered_evals moe(b);
-  this->val_->traverse_subexpressions(&moe);
-  this->ok_->traverse_subexpressions(&moe);
-
-  bool expr_is_empty = expr_type->interface_type()->is_empty();
-  Call_expression* call;
-  if (this->type_->interface_type() != NULL)
-    {
-      if (this->type_->interface_type()->is_empty())
-       call = this->lower_to_empty_interface(expr_is_empty
-                                             ? "ifaceE2E2"
-                                             : "ifaceI2E2");
-      else
-       call = this->lower_to_type(expr_is_empty ? "ifaceE2I2" : "ifaceI2I2");
-    }
-  else if (this->type_->points_to() != NULL)
-    call = this->lower_to_type(expr_is_empty ? "ifaceE2T2P" : "ifaceI2T2P");
-  else
-    {
-      this->lower_to_object_type(b, expr_is_empty ? "ifaceE2T2" : "ifaceI2T2");
-      call = NULL;
-    }
-
-  if (call != NULL)
-    {
-      Expression* res = Expression::make_call_result(call, 0);
-      Statement* s = Statement::make_assignment(this->val_, res, loc);
-      b->add_statement(s);
-
-      res = Expression::make_call_result(call, 1);
-      s = Statement::make_assignment(this->ok_, res, loc);
-      b->add_statement(s);
-    }
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Lower a conversion to an empty interface type.
-
-Call_expression*
-Tuple_type_guard_assignment_statement::lower_to_empty_interface(
-    const char *fnname)
-{
-  source_location loc = this->location();
-
-  // func FNNAME(interface) (empty, bool)
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("i", this->expr_->type(), bloc));
-  Typed_identifier_list* ret_types = new Typed_identifier_list();
-  ret_types->push_back(Typed_identifier("ret", this->type_, bloc));
-  ret_types->push_back(Typed_identifier("ok", Type::lookup_bool_type(), bloc));
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  ret_types, bloc);
-  Named_object* fn =
-    Named_object::make_function_declaration(fnname, NULL, fntype, bloc);
-  std::string asm_name = "runtime.";
-  asm_name += fnname;
-  fn->func_declaration_value()->set_asm_name(asm_name);
-
-  // val, ok = FNNAME(expr)
-  Expression* func = Expression::make_func_reference(fn, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(this->expr_);
-  return Expression::make_call(func, params, false, loc);
-}
-
-// Lower a conversion to a non-empty interface type or a pointer type.
-
-Call_expression*
-Tuple_type_guard_assignment_statement::lower_to_type(const char* fnname)
-{
-  source_location loc = this->location();
-
-  // func FNNAME(*descriptor, interface) (interface, bool)
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("inter",
-                                         Type::make_type_descriptor_ptr_type(),
-                                         bloc));
-  param_types->push_back(Typed_identifier("i", this->expr_->type(), bloc));
-  Typed_identifier_list* ret_types = new Typed_identifier_list();
-  ret_types->push_back(Typed_identifier("ret", this->type_, bloc));
-  ret_types->push_back(Typed_identifier("ok", Type::lookup_bool_type(), bloc));
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  ret_types, bloc);
-  Named_object* fn =
-    Named_object::make_function_declaration(fnname, NULL, fntype, bloc);
-  std::string asm_name = "runtime.";
-  asm_name += fnname;
-  fn->func_declaration_value()->set_asm_name(asm_name);
-
-  // val, ok = FNNAME(type_descriptor, expr)
-  Expression* func = Expression::make_func_reference(fn, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(Expression::make_type_descriptor(this->type_, loc));
-  params->push_back(this->expr_);
-  return Expression::make_call(func, params, false, loc);
-}
-
-// Lower a conversion to a non-interface non-pointer type.
-
-void
-Tuple_type_guard_assignment_statement::lower_to_object_type(Block* b,
-                                                           const char *fnname)
-{
-  source_location loc = this->location();
-
-  // var val_temp TYPE
-  Temporary_statement* val_temp = Statement::make_temporary(this->type_,
-                                                           NULL, loc);
-  b->add_statement(val_temp);
-
-  // func FNNAME(*descriptor, interface, *T) bool
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("inter",
-                                         Type::make_type_descriptor_ptr_type(),
-                                         bloc));
-  param_types->push_back(Typed_identifier("i", this->expr_->type(), bloc));
-  Type* ptype = Type::make_pointer_type(this->type_);
-  param_types->push_back(Typed_identifier("v", ptype, bloc));
-  Typed_identifier_list* ret_types = new Typed_identifier_list();
-  ret_types->push_back(Typed_identifier("ok", Type::lookup_bool_type(), bloc));
-  Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                  ret_types, bloc);
-  Named_object* fn =
-    Named_object::make_function_declaration(fnname, NULL, fntype, bloc);
-  std::string asm_name = "runtime.";
-  asm_name += fnname;
-  fn->func_declaration_value()->set_asm_name(asm_name);
-
-  // ok = FNNAME(type_descriptor, expr, &val_temp)
-  Expression* func = Expression::make_func_reference(fn, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(Expression::make_type_descriptor(this->type_, loc));
-  params->push_back(this->expr_);
-  Expression* ref = Expression::make_temporary_reference(val_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  Expression* call = Expression::make_call(func, params, false, loc);
-  Statement* s = Statement::make_assignment(this->ok_, call, loc);
-  b->add_statement(s);
-
-  // val = val_temp
-  ref = Expression::make_temporary_reference(val_temp, loc);
-  s = Statement::make_assignment(this->val_, ref, loc);
-  b->add_statement(s);
-}
-
-// Make an assignment from a type guard to a pair of variables.
-
-Statement*
-Statement::make_tuple_type_guard_assignment(Expression* val, Expression* ok,
-                                           Expression* expr, Type* type,
-                                           source_location location)
-{
-  return new Tuple_type_guard_assignment_statement(val, ok, expr, type,
-                                                  location);
-}
-
-// An expression statement.
-
-class Expression_statement : public Statement
-{
- public:
-  Expression_statement(Expression* expr)
-    : Statement(STATEMENT_EXPRESSION, expr->location()),
-      expr_(expr)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->traverse_expression(traverse, &this->expr_); }
-
-  void
-  do_determine_types()
-  { this->expr_->determine_type_no_context(); }
-
-  bool
-  do_may_fall_through() const;
-
-  tree
-  do_get_tree(Translate_context* context)
-  { return this->expr_->get_tree(context); }
-
- private:
-  Expression* expr_;
-};
-
-// An expression statement may fall through unless it is a call to a
-// function which does not return.
-
-bool
-Expression_statement::do_may_fall_through() const
-{
-  const Call_expression* call = this->expr_->call_expression();
-  if (call != NULL)
-    {
-      const Expression* fn = call->fn();
-      const Func_expression* fe = fn->func_expression();
-      if (fe != NULL)
-       {
-         const Named_object* no = fe->named_object();
-
-         Function_type* fntype;
-         if (no->is_function())
-           fntype = no->func_value()->type();
-         else if (no->is_function_declaration())
-           fntype = no->func_declaration_value()->type();
-         else
-           fntype = NULL;
-
-         // The builtin function panic does not return.
-         if (fntype != NULL && fntype->is_builtin() && no->name() == "panic")
-           return false;
-       }
-    }
-  return true;
-}
-
-// Make an expression statement from an Expression.
-
-Statement*
-Statement::make_statement(Expression* expr)
-{
-  return new Expression_statement(expr);
-}
-
-// A block statement--a list of statements which may include variable
-// definitions.
-
-class Block_statement : public Statement
-{
- public:
-  Block_statement(Block* block, source_location location)
-    : Statement(STATEMENT_BLOCK, location),
-      block_(block)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->block_->traverse(traverse); }
-
-  void
-  do_determine_types()
-  { this->block_->determine_types(); }
-
-  bool
-  do_may_fall_through() const
-  { return this->block_->may_fall_through(); }
-
-  tree
-  do_get_tree(Translate_context* context)
-  { return this->block_->get_tree(context); }
-
- private:
-  Block* block_;
-};
-
-// Make a block statement.
-
-Statement*
-Statement::make_block_statement(Block* block, source_location location)
-{
-  return new Block_statement(block, location);
-}
-
-// An increment or decrement statement.
-
-class Inc_dec_statement : public Statement
-{
- public:
-  Inc_dec_statement(bool is_inc, Expression* expr)
-    : Statement(STATEMENT_INCDEC, expr->location()),
-      expr_(expr), is_inc_(is_inc)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->traverse_expression(traverse, &this->expr_); }
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // The l-value to increment or decrement.
-  Expression* expr_;
-  // Whether to increment or decrement.
-  bool is_inc_;
-};
-
-// Lower to += or -=.
-
-Statement*
-Inc_dec_statement::do_lower(Gogo*, Named_object*, Block*)
-{
-  source_location loc = this->location();
-
-  mpz_t oval;
-  mpz_init_set_ui(oval, 1UL);
-  Expression* oexpr = Expression::make_integer(&oval, NULL, loc);
-  mpz_clear(oval);
-
-  Operator op = this->is_inc_ ? OPERATOR_PLUSEQ : OPERATOR_MINUSEQ;
-  return Statement::make_assignment_operation(op, this->expr_, oexpr, loc);
-}
-
-// Make an increment statement.
-
-Statement*
-Statement::make_inc_statement(Expression* expr)
-{
-  return new Inc_dec_statement(true, expr);
-}
-
-// Make a decrement statement.
-
-Statement*
-Statement::make_dec_statement(Expression* expr)
-{
-  return new Inc_dec_statement(false, expr);
-}
-
-// Class Thunk_statement.  This is the base class for go and defer
-// statements.
-
-const char* const Thunk_statement::thunk_field_fn = "fn";
-
-const char* const Thunk_statement::thunk_field_receiver = "receiver";
-
-// Constructor.
-
-Thunk_statement::Thunk_statement(Statement_classification classification,
-                                Call_expression* call,
-                                source_location location)
-    : Statement(classification, location),
-      call_(call), struct_type_(NULL)
-{
-}
-
-// Return whether this is a simple statement which does not require a
-// thunk.
-
-bool
-Thunk_statement::is_simple(Function_type* fntype) const
-{
-  // We need a thunk to call a method, or to pass a variable number of
-  // arguments.
-  if (fntype->is_method() || fntype->is_varargs())
-    return false;
-
-  // A defer statement requires a thunk to set up for whether the
-  // function can call recover.
-  if (this->classification() == STATEMENT_DEFER)
-    return false;
-
-  // We can only permit a single parameter of pointer type.
-  const Typed_identifier_list* parameters = fntype->parameters();
-  if (parameters != NULL
-      && (parameters->size() > 1
-         || (parameters->size() == 1
-             && parameters->begin()->type()->points_to() == NULL)))
-    return false;
-
-  // If the function returns multiple values, or returns a type other
-  // than integer, floating point, or pointer, then it may get a
-  // hidden first parameter, in which case we need the more
-  // complicated approach.  This is true even though we are going to
-  // ignore the return value.
-  const Typed_identifier_list* results = fntype->results();
-  if (results != NULL
-      && (results->size() > 1
-         || (results->size() == 1
-             && !results->begin()->type()->is_basic_type()
-             && results->begin()->type()->points_to() == NULL)))
-    return false;
-
-  // If this calls something which is not a simple function, then we
-  // need a thunk.
-  Expression* fn = this->call_->call_expression()->fn();
-  if (fn->bound_method_expression() != NULL
-      || fn->interface_field_reference_expression() != NULL)
-    return false;
-
-  return true;
-}
-
-// Traverse a thunk statement.
-
-int
-Thunk_statement::do_traverse(Traverse* traverse)
-{
-  return this->traverse_expression(traverse, &this->call_);
-}
-
-// We implement traverse_assignment for a thunk statement because it
-// effectively copies the function call.
-
-bool
-Thunk_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  Expression* fn = this->call_->call_expression()->fn();
-  Expression* fn2 = fn;
-  tassign->value(&fn2, true, false);
-  return true;
-}
-
-// Determine types in a thunk statement.
-
-void
-Thunk_statement::do_determine_types()
-{
-  this->call_->determine_type_no_context();
-
-  // Now that we know the types of the call, build the struct used to
-  // pass parameters.
-  Call_expression* ce = this->call_->call_expression();
-  if (ce == NULL)
-    return;
-  Function_type* fntype = ce->get_function_type();
-  if (fntype != NULL && !this->is_simple(fntype))
-    this->struct_type_ = this->build_struct(fntype);
-}
-
-// Check types in a thunk statement.
-
-void
-Thunk_statement::do_check_types(Gogo*)
-{
-  Call_expression* ce = this->call_->call_expression();
-  if (ce == NULL)
-    {
-      if (!this->call_->is_error_expression())
-       this->report_error("expected call expression");
-      return;
-    }
-  Function_type* fntype = ce->get_function_type();
-  if (fntype != NULL && fntype->is_method())
-    {
-      Expression* fn = ce->fn();
-      if (fn->bound_method_expression() == NULL
-         && fn->interface_field_reference_expression() == NULL)
-       this->report_error(_("no object for method call"));
-    }
-}
-
-// The Traverse class used to find and simplify thunk statements.
-
-class Simplify_thunk_traverse : public Traverse
-{
- public:
-  Simplify_thunk_traverse(Gogo* gogo)
-    : Traverse(traverse_blocks),
-      gogo_(gogo)
-  { }
-
-  int
-  block(Block*);
-
- private:
-  Gogo* gogo_;
-};
-
-int
-Simplify_thunk_traverse::block(Block* b)
-{
-  // The parser ensures that thunk statements always appear at the end
-  // of a block.
-  if (b->statements()->size() < 1)
-    return TRAVERSE_CONTINUE;
-  Thunk_statement* stat = b->statements()->back()->thunk_statement();
-  if (stat == NULL)
-    return TRAVERSE_CONTINUE;
-  if (stat->simplify_statement(this->gogo_, b))
-    return TRAVERSE_SKIP_COMPONENTS;
-  return TRAVERSE_CONTINUE;
-}
-
-// Simplify all thunk statements.
-
-void
-Gogo::simplify_thunk_statements()
-{
-  Simplify_thunk_traverse thunk_traverse(this);
-  this->traverse(&thunk_traverse);
-}
-
-// Simplify complex thunk statements into simple ones.  A complicated
-// thunk statement is one which takes anything other than zero
-// parameters or a single pointer parameter.  We rewrite it into code
-// which allocates a struct, stores the parameter values into the
-// struct, and does a simple go or defer statement which passes the
-// struct to a thunk.  The thunk does the real call.
-
-bool
-Thunk_statement::simplify_statement(Gogo* gogo, Block* block)
-{
-  if (this->classification() == STATEMENT_ERROR)
-    return false;
-  if (this->call_->is_error_expression())
-    return false;
-
-  Call_expression* ce = this->call_->call_expression();
-  Function_type* fntype = ce->get_function_type();
-  if (fntype == NULL)
-    {
-      gcc_assert(saw_errors());
-      this->set_is_error();
-      return false;
-    }
-  if (this->is_simple(fntype))
-    return false;
-
-  Expression* fn = ce->fn();
-  Bound_method_expression* bound_method = fn->bound_method_expression();
-  Interface_field_reference_expression* interface_method =
-    fn->interface_field_reference_expression();
-  const bool is_method = bound_method != NULL || interface_method != NULL;
-
-  source_location location = this->location();
-
-  std::string thunk_name = Gogo::thunk_name();
-
-  // Build the thunk.
-  this->build_thunk(gogo, thunk_name, fntype);
-
-  // Generate code to call the thunk.
-
-  // Get the values to store into the struct which is the single
-  // argument to the thunk.
-
-  Expression_list* vals = new Expression_list();
-  if (fntype->is_builtin())
-    ;
-  else if (!is_method)
-    vals->push_back(fn);
-  else if (interface_method != NULL)
-    vals->push_back(interface_method->expr());
-  else if (bound_method != NULL)
-    {
-      vals->push_back(bound_method->method());
-      Expression* first_arg = bound_method->first_argument();
-
-      // We always pass a pointer when calling a method.
-      if (first_arg->type()->points_to() == NULL)
-       first_arg = Expression::make_unary(OPERATOR_AND, first_arg, location);
-
-      // If we are calling a method which was inherited from an
-      // embedded struct, and the method did not get a stub, then the
-      // first type may be wrong.
-      Type* fatype = bound_method->first_argument_type();
-      if (fatype != NULL)
-       {
-         if (fatype->points_to() == NULL)
-           fatype = Type::make_pointer_type(fatype);
-         Type* unsafe = Type::make_pointer_type(Type::make_void_type());
-         first_arg = Expression::make_cast(unsafe, first_arg, location);
-         first_arg = Expression::make_cast(fatype, first_arg, location);
-       }
-
-      vals->push_back(first_arg);
-    }
-  else
-    gcc_unreachable();
-
-  if (ce->args() != NULL)
-    {
-      for (Expression_list::const_iterator p = ce->args()->begin();
-          p != ce->args()->end();
-          ++p)
-       vals->push_back(*p);
-    }
-
-  // Build the struct.
-  Expression* constructor =
-    Expression::make_struct_composite_literal(this->struct_type_, vals,
-                                             location);
-
-  // Allocate the initialized struct on the heap.
-  constructor = Expression::make_heap_composite(constructor, location);
-
-  // Look up the thunk.
-  Named_object* named_thunk = gogo->lookup(thunk_name, NULL);
-  gcc_assert(named_thunk != NULL && named_thunk->is_function());
-
-  // Build the call.
-  Expression* func = Expression::make_func_reference(named_thunk, NULL,
-                                                    location);
-  Expression_list* params = new Expression_list();
-  params->push_back(constructor);
-  Call_expression* call = Expression::make_call(func, params, false, location);
-
-  // Build the simple go or defer statement.
-  Statement* s;
-  if (this->classification() == STATEMENT_GO)
-    s = Statement::make_go_statement(call, location);
-  else if (this->classification() == STATEMENT_DEFER)
-    s = Statement::make_defer_statement(call, location);
-  else
-    gcc_unreachable();
-
-  // The current block should end with the go statement.
-  gcc_assert(block->statements()->size() >= 1);
-  gcc_assert(block->statements()->back() == this);
-  block->replace_statement(block->statements()->size() - 1, s);
-
-  // We already ran the determine_types pass, so we need to run it now
-  // for the new statement.
-  s->determine_types();
-
-  // Sanity check.
-  gogo->check_types_in_block(block);
-
-  // Return true to tell the block not to keep looking at statements.
-  return true;
-}
-
-// Set the name to use for thunk parameter N.
-
-void
-Thunk_statement::thunk_field_param(int n, char* buf, size_t buflen)
-{
-  snprintf(buf, buflen, "a%d", n);
-}
-
-// Build a new struct type to hold the parameters for a complicated
-// thunk statement.  FNTYPE is the type of the function call.
-
-Struct_type*
-Thunk_statement::build_struct(Function_type* fntype)
-{
-  source_location location = this->location();
-
-  Struct_field_list* fields = new Struct_field_list();
-
-  Call_expression* ce = this->call_->call_expression();
-  Expression* fn = ce->fn();
-
-  Interface_field_reference_expression* interface_method =
-    fn->interface_field_reference_expression();
-  if (interface_method != NULL)
-    {
-      // If this thunk statement calls a method on an interface, we
-      // pass the interface object to the thunk.
-      Typed_identifier tid(Thunk_statement::thunk_field_fn,
-                          interface_method->expr()->type(),
-                          location);
-      fields->push_back(Struct_field(tid));
-    }
-  else if (!fntype->is_builtin())
-    {
-      // The function to call.
-      Typed_identifier tid(Go_statement::thunk_field_fn, fntype, location);
-      fields->push_back(Struct_field(tid));
-    }
-  else if (ce->is_recover_call())
-    {
-      // The predeclared recover function has no argument.  However,
-      // we add an argument when building recover thunks.  Handle that
-      // here.
-      fields->push_back(Struct_field(Typed_identifier("can_recover",
-                                                     Type::lookup_bool_type(),
-                                                     location)));
-    }
-
-  if (fn->bound_method_expression() != NULL)
-    {
-      gcc_assert(fntype->is_method());
-      Type* rtype = fntype->receiver()->type();
-      // We always pass the receiver as a pointer.
-      if (rtype->points_to() == NULL)
-       rtype = Type::make_pointer_type(rtype);
-      Typed_identifier tid(Thunk_statement::thunk_field_receiver, rtype,
-                          location);
-      fields->push_back(Struct_field(tid));
-    }
-
-  const Expression_list* args = ce->args();
-  if (args != NULL)
-    {
-      int i = 0;
-      for (Expression_list::const_iterator p = args->begin();
-          p != args->end();
-          ++p, ++i)
-       {
-         char buf[50];
-         this->thunk_field_param(i, buf, sizeof buf);
-         fields->push_back(Struct_field(Typed_identifier(buf, (*p)->type(),
-                                                         location)));
-       }
-    }
-
-  return Type::make_struct_type(fields, location);
-}
-
-// Build the thunk we are going to call.  This is a brand new, albeit
-// artificial, function.
-
-void
-Thunk_statement::build_thunk(Gogo* gogo, const std::string& thunk_name,
-                            Function_type* fntype)
-{
-  source_location location = this->location();
-
-  Call_expression* ce = this->call_->call_expression();
-
-  bool may_call_recover = false;
-  if (this->classification() == STATEMENT_DEFER)
-    {
-      Func_expression* fn = ce->fn()->func_expression();
-      if (fn == NULL)
-       may_call_recover = true;
-      else
-       {
-         const Named_object* no = fn->named_object();
-         if (!no->is_function())
-           may_call_recover = true;
-         else
-           may_call_recover = no->func_value()->calls_recover();
-       }
-    }
-
-  // Build the type of the thunk.  The thunk takes a single parameter,
-  // which is a pointer to the special structure we build.
-  const char* const parameter_name = "__go_thunk_parameter";
-  Typed_identifier_list* thunk_parameters = new Typed_identifier_list();
-  Type* pointer_to_struct_type = Type::make_pointer_type(this->struct_type_);
-  thunk_parameters->push_back(Typed_identifier(parameter_name,
-                                              pointer_to_struct_type,
-                                              location));
-
-  Typed_identifier_list* thunk_results = NULL;
-  if (may_call_recover)
-    {
-      // When deferring a function which may call recover, add a
-      // return value, to disable tail call optimizations which will
-      // break the way we check whether recover is permitted.
-      thunk_results = new Typed_identifier_list();
-      thunk_results->push_back(Typed_identifier("", Type::lookup_bool_type(),
-                                               location));
-    }
-
-  Function_type* thunk_type = Type::make_function_type(NULL, thunk_parameters,
-                                                      thunk_results,
-                                                      location);
-
-  // Start building the thunk.
-  Named_object* function = gogo->start_function(thunk_name, thunk_type, true,
-                                               location);
-
-  // For a defer statement, start with a call to
-  // __go_set_defer_retaddr.  */
-  Label* retaddr_label = NULL; 
-  if (may_call_recover)
-    {
-      retaddr_label = gogo->add_label_reference("retaddr");
-      Expression* arg = Expression::make_label_addr(retaddr_label, location);
-      Expression_list* args = new Expression_list();
-      args->push_back(arg);
-
-      static Named_object* set_defer_retaddr;
-      if (set_defer_retaddr == NULL)
-       {
-         const source_location bloc = BUILTINS_LOCATION;
-         Typed_identifier_list* param_types = new Typed_identifier_list();
-         Type *voidptr_type = Type::make_pointer_type(Type::make_void_type());
-         param_types->push_back(Typed_identifier("r", voidptr_type, bloc));
-
-         Typed_identifier_list* result_types = new Typed_identifier_list();
-         result_types->push_back(Typed_identifier("",
-                                                  Type::lookup_bool_type(),
-                                                  bloc));
-
-         Function_type* t = Type::make_function_type(NULL, param_types,
-                                                     result_types, bloc);
-         set_defer_retaddr =
-           Named_object::make_function_declaration("__go_set_defer_retaddr",
-                                                   NULL, t, bloc);
-         const char* n = "__go_set_defer_retaddr";
-         set_defer_retaddr->func_declaration_value()->set_asm_name(n);
-       }
-
-      Expression* fn = Expression::make_func_reference(set_defer_retaddr,
-                                                      NULL, location);
-      Expression* call = Expression::make_call(fn, args, false, location);
-
-      // This is a hack to prevent the middle-end from deleting the
-      // label.
-      gogo->start_block(location);
-      gogo->add_statement(Statement::make_goto_statement(retaddr_label,
-                                                        location));
-      Block* then_block = gogo->finish_block(location);
-      then_block->determine_types();
-
-      Statement* s = Statement::make_if_statement(call, then_block, NULL,
-                                                 location);
-      s->determine_types();
-      gogo->add_statement(s);
-    }
-
-  // Get a reference to the parameter.
-  Named_object* named_parameter = gogo->lookup(parameter_name, NULL);
-  gcc_assert(named_parameter != NULL && named_parameter->is_variable());
-
-  // Build the call.  Note that the field names are the same as the
-  // ones used in build_struct.
-  Expression* thunk_parameter = Expression::make_var_reference(named_parameter,
-                                                              location);
-  thunk_parameter = Expression::make_unary(OPERATOR_MULT, thunk_parameter,
-                                          location);
-
-  Bound_method_expression* bound_method = ce->fn()->bound_method_expression();
-  Interface_field_reference_expression* interface_method =
-    ce->fn()->interface_field_reference_expression();
-
-  Expression* func_to_call;
-  unsigned int next_index;
-  if (!fntype->is_builtin())
-    {
-      func_to_call = Expression::make_field_reference(thunk_parameter,
-                                                     0, location);
-      next_index = 1;
-    }
-  else
-    {
-      gcc_assert(bound_method == NULL && interface_method == NULL);
-      func_to_call = ce->fn();
-      next_index = 0;
-    }
-
-  if (bound_method != NULL)
-    {
-      Expression* r = Expression::make_field_reference(thunk_parameter, 1,
-                                                      location);
-      // The main program passes in a function pointer from the
-      // interface expression, so here we can make a bound method in
-      // all cases.
-      func_to_call = Expression::make_bound_method(r, func_to_call,
-                                                  location);
-      next_index = 2;
-    }
-  else if (interface_method != NULL)
-    {
-      // The main program passes the interface object.
-      const std::string& name(interface_method->name());
-      func_to_call = Expression::make_interface_field_reference(func_to_call,
-                                                               name,
-                                                               location);
-    }
-
-  Expression_list* call_params = new Expression_list();
-  const Struct_field_list* fields = this->struct_type_->fields();
-  Struct_field_list::const_iterator p = fields->begin();
-  for (unsigned int i = 0; i < next_index; ++i)
-    ++p;
-  bool is_recover_call = ce->is_recover_call();
-  Expression* recover_arg = NULL;
-  for (; p != fields->end(); ++p, ++next_index)
-    {
-      Expression* thunk_param = Expression::make_var_reference(named_parameter,
-                                                              location);
-      thunk_param = Expression::make_unary(OPERATOR_MULT, thunk_param,
-                                          location);
-      Expression* param = Expression::make_field_reference(thunk_param,
-                                                          next_index,
-                                                          location);
-      if (!is_recover_call)
-       call_params->push_back(param);
-      else
-       {
-         gcc_assert(call_params->empty());
-         recover_arg = param;
-       }
-    }
-
-  if (call_params->empty())
-    {
-      delete call_params;
-      call_params = NULL;
-    }
-
-  Expression* call = Expression::make_call(func_to_call, call_params, false,
-                                          location);
-  // We need to lower in case this is a builtin function.
-  call = call->lower(gogo, function, -1);
-  Call_expression* call_ce = call->call_expression();
-  if (call_ce != NULL && may_call_recover)
-    call_ce->set_is_deferred();
-
-  Statement* call_statement = Statement::make_statement(call);
-
-  // We already ran the determine_types pass, so we need to run it
-  // just for this statement now.
-  call_statement->determine_types();
-
-  // Sanity check.
-  call->check_types(gogo);
-
-  if (call_ce != NULL && recover_arg != NULL)
-    call_ce->set_recover_arg(recover_arg);
-
-  gogo->add_statement(call_statement);
-
-  // If this is a defer statement, the label comes immediately after
-  // the call.
-  if (may_call_recover)
-    {
-      gogo->add_label_definition("retaddr", location);
-
-      Expression_list* vals = new Expression_list();
-      vals->push_back(Expression::make_boolean(false, location));
-      const Typed_identifier_list* results =
-       function->func_value()->type()->results();
-      gogo->add_statement(Statement::make_return_statement(results, vals,
-                                                         location));
-    }
-
-  // That is all the thunk has to do.
-  gogo->finish_function(location);
-}
-
-// Get the function and argument trees.
-
-void
-Thunk_statement::get_fn_and_arg(Translate_context* context, tree* pfn,
-                               tree* parg)
-{
-  if (this->call_->is_error_expression())
-    {
-      *pfn = error_mark_node;
-      *parg = error_mark_node;
-      return;
-    }
-
-  Call_expression* ce = this->call_->call_expression();
-
-  Expression* fn = ce->fn();
-  *pfn = fn->get_tree(context);
-
-  const Expression_list* args = ce->args();
-  if (args == NULL || args->empty())
-    *parg = null_pointer_node;
-  else
-    {
-      gcc_assert(args->size() == 1);
-      *parg = args->front()->get_tree(context);
-    }
-}
-
-// Class Go_statement.
-
-tree
-Go_statement::do_get_tree(Translate_context* context)
-{
-  tree fn_tree;
-  tree arg_tree;
-  this->get_fn_and_arg(context, &fn_tree, &arg_tree);
-
-  static tree go_fndecl;
-
-  tree fn_arg_type = NULL_TREE;
-  if (go_fndecl == NULL_TREE)
-    {
-      // Only build FN_ARG_TYPE if we need it.
-      tree subargtypes = tree_cons(NULL_TREE, ptr_type_node, void_list_node);
-      tree subfntype = build_function_type(ptr_type_node, subargtypes);
-      fn_arg_type = build_pointer_type(subfntype);
-    }
-
-  return Gogo::call_builtin(&go_fndecl,
-                           this->location(),
-                           "__go_go",
-                           2,
-                           void_type_node,
-                           fn_arg_type,
-                           fn_tree,
-                           ptr_type_node,
-                           arg_tree);
-}
-
-// Make a go statement.
-
-Statement*
-Statement::make_go_statement(Call_expression* call, source_location location)
-{
-  return new Go_statement(call, location);
-}
-
-// Class Defer_statement.
-
-tree
-Defer_statement::do_get_tree(Translate_context* context)
-{
-  source_location loc = this->location();
-
-  tree fn_tree;
-  tree arg_tree;
-  this->get_fn_and_arg(context, &fn_tree, &arg_tree);
-  if (fn_tree == error_mark_node || arg_tree == error_mark_node)
-    return error_mark_node;
-
-  static tree defer_fndecl;
-
-  tree fn_arg_type = NULL_TREE;
-  if (defer_fndecl == NULL_TREE)
-    {
-      // Only build FN_ARG_TYPE if we need it.
-      tree subargtypes = tree_cons(NULL_TREE, ptr_type_node, void_list_node);
-      tree subfntype = build_function_type(ptr_type_node, subargtypes);
-      fn_arg_type = build_pointer_type(subfntype);
-    }
-
-  tree defer_stack = context->function()->func_value()->defer_stack(loc);
-
-  return Gogo::call_builtin(&defer_fndecl,
-                           loc,
-                           "__go_defer",
-                           3,
-                           void_type_node,
-                           ptr_type_node,
-                           defer_stack,
-                           fn_arg_type,
-                           fn_tree,
-                           ptr_type_node,
-                           arg_tree);
-}
-
-// Make a defer statement.
-
-Statement*
-Statement::make_defer_statement(Call_expression* call,
-                               source_location location)
-{
-  return new Defer_statement(call, location);
-}
-
-// Class Return_statement.
-
-// Traverse assignments.  We treat each return value as a top level
-// RHS in an expression.
-
-bool
-Return_statement::do_traverse_assignments(Traverse_assignments* tassign)
-{
-  Expression_list* vals = this->vals_;
-  if (vals != NULL)
-    {
-      for (Expression_list::iterator p = vals->begin();
-          p != vals->end();
-          ++p)
-       tassign->value(&*p, true, true);
-    }
-  return true;
-}
-
-// Lower a return statement.  If we are returning a function call
-// which returns multiple values which match the current function,
-// split up the call's results.  If the function has named result
-// variables, and the return statement lists explicit values, then
-// implement it by assigning the values to the result variables and
-// changing the statement to not list any values.  This lets
-// panic/recover work correctly.
-
-Statement*
-Return_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  if (this->vals_ == NULL)
-    return this;
-
-  const Typed_identifier_list* results = this->results_;
-  if (results == NULL || results->empty())
-    return this;
-
-  // If the current function has multiple return values, and we are
-  // returning a single call expression, split up the call expression.
-  size_t results_count = results->size();
-  if (results_count > 1
-      && this->vals_->size() == 1
-      && this->vals_->front()->call_expression() != NULL)
-    {
-      Call_expression* call = this->vals_->front()->call_expression();
-      size_t count = results->size();
-      Expression_list* vals = new Expression_list;
-      for (size_t i = 0; i < count; ++i)
-       vals->push_back(Expression::make_call_result(call, i));
-      delete this->vals_;
-      this->vals_ = vals;
-    }
-
-  if (results->front().name().empty())
-    return this;
-
-  if (results_count != this->vals_->size())
-    {
-      // Presumably an error which will be reported in check_types.
-      return this;
-    }
-
-  // Assign to named return values and then return them.
-
-  source_location loc = this->location();
-  const Block* top = enclosing;
-  while (top->enclosing() != NULL)
-    top = top->enclosing();
-
-  const Bindings *bindings = top->bindings();
-  Block* b = new Block(enclosing, loc);
-
-  Expression_list* lhs = new Expression_list();
-  Expression_list* rhs = new Expression_list();
-
-  Expression_list::const_iterator pe = this->vals_->begin();
-  int i = 1;
-  for (Typed_identifier_list::const_iterator pr = results->begin();
-       pr != results->end();
-       ++pr, ++pe, ++i)
-    {
-      Named_object* rv = bindings->lookup_local(pr->name());
-      if (rv == NULL || !rv->is_result_variable())
-       {
-         // Presumably an error.
-         delete b;
-         delete lhs;
-         delete rhs;
-         return this;
-       }
-
-      Expression* e = *pe;
-
-      // Check types now so that we give a good error message.  The
-      // result type is known.  We determine the expression type
-      // early.
-
-      Type *rvtype = rv->result_var_value()->type();
-      Type_context type_context(rvtype, false);
-      e->determine_type(&type_context);
-
-      std::string reason;
-      if (Type::are_assignable(rvtype, e->type(), &reason))
-       {
-         Expression* ve = Expression::make_var_reference(rv, e->location());
-         lhs->push_back(ve);
-         rhs->push_back(e);
-       }
-      else
-       {
-         if (reason.empty())
-           error_at(e->location(), "incompatible type for return value %d", i);
-         else
-           error_at(e->location(),
-                    "incompatible type for return value %d (%s)",
-                    i, reason.c_str());
-       }
-    }
-  gcc_assert(lhs->size() == rhs->size());
-
-  if (lhs->empty())
-    ;
-  else if (lhs->size() == 1)
-    {
-      b->add_statement(Statement::make_assignment(lhs->front(), rhs->front(),
-                                                 loc));
-      delete lhs;
-      delete rhs;
-    }
-  else
-    b->add_statement(Statement::make_tuple_assignment(lhs, rhs, loc));
-
-  b->add_statement(Statement::make_return_statement(this->results_, NULL,
-                                                   loc));
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Determine types.
-
-void
-Return_statement::do_determine_types()
-{
-  if (this->vals_ == NULL)
-    return;
-  const Typed_identifier_list* results = this->results_;
-
-  Typed_identifier_list::const_iterator pt;
-  if (results != NULL)
-    pt = results->begin();
-  for (Expression_list::iterator pe = this->vals_->begin();
-       pe != this->vals_->end();
-       ++pe)
-    {
-      if (results == NULL || pt == results->end())
-       (*pe)->determine_type_no_context();
-      else
-       {
-         Type_context context(pt->type(), false);
-         (*pe)->determine_type(&context);
-         ++pt;
-       }
-    }
-}
-
-// Check types.
-
-void
-Return_statement::do_check_types(Gogo*)
-{
-  if (this->vals_ == NULL)
-    return;
-
-  const Typed_identifier_list* results = this->results_;
-  if (results == NULL)
-    {
-      this->report_error(_("return with value in function "
-                          "with no return type"));
-      return;
-    }
-
-  int i = 1;
-  Typed_identifier_list::const_iterator pt = results->begin();
-  for (Expression_list::const_iterator pe = this->vals_->begin();
-       pe != this->vals_->end();
-       ++pe, ++pt, ++i)
-    {
-      if (pt == results->end())
-       {
-         this->report_error(_("too many values in return statement"));
-         return;
-       }
-      std::string reason;
-      if (!Type::are_assignable(pt->type(), (*pe)->type(), &reason))
-       {
-         if (reason.empty())
-           error_at(this->location(),
-                    "incompatible type for return value %d",
-                    i);
-         else
-           error_at(this->location(),
-                    "incompatible type for return value %d (%s)",
-                    i, reason.c_str());
-         this->set_is_error();
-       }
-      else if (pt->type()->is_error_type()
-              || (*pe)->type()->is_error_type()
-              || pt->type()->is_undefined()
-              || (*pe)->type()->is_undefined())
-       {
-         // Make sure we get the error for an undefined type.
-         pt->type()->base();
-         (*pe)->type()->base();
-         this->set_is_error();
-       }
-    }
-
-  if (pt != results->end())
-    this->report_error(_("not enough values in return statement"));
-}
-
-// Build a RETURN_EXPR tree.
-
-tree
-Return_statement::do_get_tree(Translate_context* context)
-{
-  Function* function = context->function()->func_value();
-  tree fndecl = function->get_decl();
-  if (fndecl == error_mark_node || DECL_RESULT(fndecl) == error_mark_node)
-    return error_mark_node;
-
-  const Typed_identifier_list* results = this->results_;
-
-  if (this->vals_ == NULL)
-    {
-      tree stmt_list = NULL_TREE;
-      tree retval = function->return_value(context->gogo(),
-                                          context->function(),
-                                          this->location(),
-                                          &stmt_list);
-      tree set;
-      if (retval == NULL_TREE)
-       set = NULL_TREE;
-      else if (retval == error_mark_node)
-       return error_mark_node;
-      else
-       set = fold_build2_loc(this->location(), MODIFY_EXPR, void_type_node,
-                             DECL_RESULT(fndecl), retval);
-      append_to_statement_list(this->build_stmt_1(RETURN_EXPR, set),
-                              &stmt_list);
-      return stmt_list;
-    }
-  else if (this->vals_->size() == 1)
-    {
-      gcc_assert(!VOID_TYPE_P(TREE_TYPE(TREE_TYPE(fndecl))));
-      tree val = (*this->vals_->begin())->get_tree(context);
-      gcc_assert(results != NULL && results->size() == 1);
-      val = Expression::convert_for_assignment(context,
-                                              results->begin()->type(),
-                                              (*this->vals_->begin())->type(),
-                                              val, this->location());
-      if (val == error_mark_node)
-       return error_mark_node;
-      tree set = build2(MODIFY_EXPR, void_type_node,
-                       DECL_RESULT(fndecl), val);
-      SET_EXPR_LOCATION(set, this->location());
-      return this->build_stmt_1(RETURN_EXPR, set);
-    }
-  else
-    {
-      gcc_assert(!VOID_TYPE_P(TREE_TYPE(TREE_TYPE(fndecl))));
-      tree stmt_list = NULL_TREE;
-      tree rettype = TREE_TYPE(DECL_RESULT(fndecl));
-      tree retvar = create_tmp_var(rettype, "RESULT");
-      gcc_assert(results != NULL && results->size() == this->vals_->size());
-      Expression_list::const_iterator pv = this->vals_->begin();
-      Typed_identifier_list::const_iterator pr = results->begin();
-      for (tree field = TYPE_FIELDS(rettype);
-          field != NULL_TREE;
-          ++pv, ++pr, field = DECL_CHAIN(field))
-       {
-         gcc_assert(pv != this->vals_->end());
-         tree val = (*pv)->get_tree(context);
-         val = Expression::convert_for_assignment(context, pr->type(),
-                                                  (*pv)->type(), val,
-                                                  this->location());
-         if (val == error_mark_node)
-           return error_mark_node;
-         tree set = build2(MODIFY_EXPR, void_type_node,
-                           build3(COMPONENT_REF, TREE_TYPE(field),
-                                  retvar, field, NULL_TREE),
-                           val);
-         SET_EXPR_LOCATION(set, this->location());
-         append_to_statement_list(set, &stmt_list);
-       }
-      tree set = build2(MODIFY_EXPR, void_type_node, DECL_RESULT(fndecl),
-                       retvar);
-      append_to_statement_list(this->build_stmt_1(RETURN_EXPR, set),
-                              &stmt_list);
-      return stmt_list;
-    }
-}
-
-// Make a return statement.
-
-Statement*
-Statement::make_return_statement(const Typed_identifier_list* results,
-                                Expression_list* vals,
-                                source_location location)
-{
-  return new Return_statement(results, vals, location);
-}
-
-// A break or continue statement.
-
-class Bc_statement : public Statement
-{
- public:
-  Bc_statement(bool is_break, Unnamed_label* label, source_location location)
-    : Statement(STATEMENT_BREAK_OR_CONTINUE, location),
-      label_(label), is_break_(is_break)
-  { }
-
-  bool
-  is_break() const
-  { return this->is_break_; }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->label_->get_goto(this->location()); }
-
- private:
-  // The label that this branches to.
-  Unnamed_label* label_;
-  // True if this is "break", false if it is "continue".
-  bool is_break_;
-};
-
-// Make a break statement.
-
-Statement*
-Statement::make_break_statement(Unnamed_label* label, source_location location)
-{
-  return new Bc_statement(true, label, location);
-}
-
-// Make a continue statement.
-
-Statement*
-Statement::make_continue_statement(Unnamed_label* label,
-                                  source_location location)
-{
-  return new Bc_statement(false, label, location);
-}
-
-// A goto statement.
-
-class Goto_statement : public Statement
-{
- public:
-  Goto_statement(Label* label, source_location location)
-    : Statement(STATEMENT_GOTO, location),
-      label_(label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  Label* label_;
-};
-
-// Check types for a label.  There aren't any types per se, but we use
-// this to give an error if the label was never defined.
-
-void
-Goto_statement::do_check_types(Gogo*)
-{
-  if (!this->label_->is_defined())
-    {
-      error_at(this->location(), "reference to undefined label %qs",
-              Gogo::message_name(this->label_->name()).c_str());
-      this->set_is_error();
-    }
-}
-
-// Return the tree for the goto statement.
-
-tree
-Goto_statement::do_get_tree(Translate_context*)
-{
-  return this->build_stmt_1(GOTO_EXPR, this->label_->get_decl());
-}
-
-// Make a goto statement.
-
-Statement*
-Statement::make_goto_statement(Label* label, source_location location)
-{
-  return new Goto_statement(label, location);
-}
-
-// A goto statement to an unnamed label.
-
-class Goto_unnamed_statement : public Statement
-{
- public:
-  Goto_unnamed_statement(Unnamed_label* label, source_location location)
-    : Statement(STATEMENT_GOTO_UNNAMED, location),
-      label_(label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->label_->get_goto(this->location()); }
-
- private:
-  Unnamed_label* label_;
-};
-
-// Make a goto statement to an unnamed label.
-
-Statement*
-Statement::make_goto_unnamed_statement(Unnamed_label* label,
-                                      source_location location)
-{
-  return new Goto_unnamed_statement(label, location);
-}
-
-// Class Label_statement.
-
-// Traversal.
-
-int
-Label_statement::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// Return a tree defining this label.
-
-tree
-Label_statement::do_get_tree(Translate_context*)
-{
-  return this->build_stmt_1(LABEL_EXPR, this->label_->get_decl());
-}
-
-// Make a label statement.
-
-Statement*
-Statement::make_label_statement(Label* label, source_location location)
-{
-  return new Label_statement(label, location);
-}
-
-// An unnamed label statement.
-
-class Unnamed_label_statement : public Statement
-{
- public:
-  Unnamed_label_statement(Unnamed_label* label)
-    : Statement(STATEMENT_UNNAMED_LABEL, label->location()),
-      label_(label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*)
-  { return TRAVERSE_CONTINUE; }
-
-  tree
-  do_get_tree(Translate_context*)
-  { return this->label_->get_definition(); }
-
- private:
-  // The label.
-  Unnamed_label* label_;
-};
-
-// Make an unnamed label statement.
-
-Statement*
-Statement::make_unnamed_label_statement(Unnamed_label* label)
-{
-  return new Unnamed_label_statement(label);
-}
-
-// An if statement.
-
-class If_statement : public Statement
-{
- public:
-  If_statement(Expression* cond, Block* then_block, Block* else_block,
-              source_location location)
-    : Statement(STATEMENT_IF, location),
-      cond_(cond), then_block_(then_block), else_block_(else_block)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const;
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  Expression* cond_;
-  Block* then_block_;
-  Block* else_block_;
-};
-
-// Traversal.
-
-int
-If_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->cond_) == TRAVERSE_EXIT
-      || this->then_block_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->else_block_ != NULL)
-    {
-      if (this->else_block_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-void
-If_statement::do_determine_types()
-{
-  Type_context context(Type::lookup_bool_type(), false);
-  this->cond_->determine_type(&context);
-  this->then_block_->determine_types();
-  if (this->else_block_ != NULL)
-    this->else_block_->determine_types();
-}
-
-// Check types.
-
-void
-If_statement::do_check_types(Gogo*)
-{
-  Type* type = this->cond_->type();
-  if (type->is_error_type())
-    this->set_is_error();
-  else if (!type->is_boolean_type())
-    this->report_error(_("expected boolean expression"));
-}
-
-// Whether the overall statement may fall through.
-
-bool
-If_statement::do_may_fall_through() const
-{
-  return (this->else_block_ == NULL
-         || this->then_block_->may_fall_through()
-         || this->else_block_->may_fall_through());
-}
-
-// Get tree.
-
-tree
-If_statement::do_get_tree(Translate_context* context)
-{
-  gcc_assert(this->cond_->type()->is_boolean_type()
-            || this->cond_->type()->is_error_type());
-  tree cond_tree = this->cond_->get_tree(context);
-  tree then_tree = this->then_block_->get_tree(context);
-  tree else_tree = (this->else_block_ == NULL
-                   ? NULL_TREE
-                   : this->else_block_->get_tree(context));
-  if (cond_tree == error_mark_node
-      || then_tree == error_mark_node
-      || else_tree == error_mark_node)
-    return error_mark_node;
-  tree ret = build3(COND_EXPR, void_type_node, cond_tree, then_tree,
-                   else_tree);
-  SET_EXPR_LOCATION(ret, this->location());
-  return ret;
-}
-
-// Make an if statement.
-
-Statement*
-Statement::make_if_statement(Expression* cond, Block* then_block,
-                            Block* else_block, source_location location)
-{
-  return new If_statement(cond, then_block, else_block, location);
-}
-
-// Class Case_clauses::Case_clause.
-
-// Traversal.
-
-int
-Case_clauses::Case_clause::traverse(Traverse* traverse)
-{
-  if (this->cases_ != NULL
-      && (traverse->traverse_mask()
-         & (Traverse::traverse_types | Traverse::traverse_expressions)) != 0)
-    {
-      if (this->cases_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->statements_ != NULL)
-    {
-      if (this->statements_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check whether all the case expressions are integer constants.
-
-bool
-Case_clauses::Case_clause::is_constant() const
-{
-  if (this->cases_ != NULL)
-    {
-      for (Expression_list::const_iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       if (!(*p)->is_constant() || (*p)->type()->integer_type() == NULL)
-         return false;
-    }
-  return true;
-}
-
-// Lower a case clause for a nonconstant switch.  VAL_TEMP is the
-// value we are switching on; it may be NULL.  If START_LABEL is not
-// NULL, it goes at the start of the statements, after the condition
-// test.  We branch to FINISH_LABEL at the end of the statements.
-
-void
-Case_clauses::Case_clause::lower(Block* b, Temporary_statement* val_temp,
-                                Unnamed_label* start_label,
-                                Unnamed_label* finish_label) const
-{
-  source_location loc = this->location_;
-  Unnamed_label* next_case_label;
-  if (this->cases_ == NULL || this->cases_->empty())
-    {
-      gcc_assert(this->is_default_);
-      next_case_label = NULL;
-    }
-  else
-    {
-      Expression* cond = NULL;
-
-      for (Expression_list::const_iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       {
-         Expression* this_cond;
-         if (val_temp == NULL)
-           this_cond = *p;
-         else
-           {
-             Expression* ref = Expression::make_temporary_reference(val_temp,
-                                                                    loc);
-             this_cond = Expression::make_binary(OPERATOR_EQEQ, ref, *p, loc);
-           }
-
-         if (cond == NULL)
-           cond = this_cond;
-         else
-           cond = Expression::make_binary(OPERATOR_OROR, cond, this_cond, loc);
-       }
-
-      Block* then_block = new Block(b, loc);
-      next_case_label = new Unnamed_label(UNKNOWN_LOCATION);
-      Statement* s = Statement::make_goto_unnamed_statement(next_case_label,
-                                                           loc);
-      then_block->add_statement(s);
-
-      // if !COND { goto NEXT_CASE_LABEL }
-      cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
-      s = Statement::make_if_statement(cond, then_block, NULL, loc);
-      b->add_statement(s);
-    }
-
-  if (start_label != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(start_label));
-
-  if (this->statements_ != NULL)
-    b->add_statement(Statement::make_block_statement(this->statements_, loc));
-
-  Statement* s = Statement::make_goto_unnamed_statement(finish_label, loc);
-  b->add_statement(s);
-
-  if (next_case_label != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(next_case_label));
-}
-
-// Determine types.
-
-void
-Case_clauses::Case_clause::determine_types(Type* type)
-{
-  if (this->cases_ != NULL)
-    {
-      Type_context case_context(type, false);
-      for (Expression_list::iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       (*p)->determine_type(&case_context);
-    }
-  if (this->statements_ != NULL)
-    this->statements_->determine_types();
-}
-
-// Check types.  Returns false if there was an error.
-
-bool
-Case_clauses::Case_clause::check_types(Type* type)
-{
-  if (this->cases_ != NULL)
-    {
-      for (Expression_list::iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       {
-         if (!Type::are_assignable(type, (*p)->type(), NULL)
-             && !Type::are_assignable((*p)->type(), type, NULL))
-           {
-             error_at((*p)->location(),
-                      "type mismatch between switch value and case clause");
-             return false;
-           }
-       }
-    }
-  return true;
-}
-
-// Return true if this clause may fall through to the following
-// statements.  Note that this is not the same as whether the case
-// uses the "fallthrough" keyword.
-
-bool
-Case_clauses::Case_clause::may_fall_through() const
-{
-  if (this->statements_ == NULL)
-    return true;
-  return this->statements_->may_fall_through();
-}
-
-// Build up the body of a SWITCH_EXPR.
-
-void
-Case_clauses::Case_clause::get_constant_tree(Translate_context* context,
-                                            Unnamed_label* break_label,
-                                            Case_constants* case_constants,
-                                            tree* stmt_list) const
-{
-  if (this->cases_ != NULL)
-    {
-      for (Expression_list::const_iterator p = this->cases_->begin();
-          p != this->cases_->end();
-          ++p)
-       {
-         Type* itype;
-         mpz_t ival;
-         mpz_init(ival);
-         if (!(*p)->integer_constant_value(true, ival, &itype))
-           {
-             // Something went wrong.  This can happen with a
-             // negative constant and an unsigned switch value.
-             gcc_assert(saw_errors());
-             continue;
-           }
-         gcc_assert(itype != NULL);
-         tree type_tree = itype->get_tree(context->gogo());
-         tree val = Expression::integer_constant_tree(ival, type_tree);
-         mpz_clear(ival);
-
-         if (val != error_mark_node)
-           {
-             gcc_assert(TREE_CODE(val) == INTEGER_CST);
-
-             std::pair<Case_constants::iterator, bool> ins =
-               case_constants->insert(val);
-             if (!ins.second)
-               {
-                 // Value was already present.
-                 warning_at(this->location_, 0,
-                            "duplicate case value will never match");
-                 continue;
-               }
-
-             tree label = create_artificial_label(this->location_);
-             append_to_statement_list(build3(CASE_LABEL_EXPR, void_type_node,
-                                             val, NULL_TREE, label),
-                                      stmt_list);
-           }
-       }
-    }
-
-  if (this->is_default_)
-    {
-      tree label = create_artificial_label(this->location_);
-      append_to_statement_list(build3(CASE_LABEL_EXPR, void_type_node,
-                                     NULL_TREE, NULL_TREE, label),
-                              stmt_list);
-    }
-
-  if (this->statements_ != NULL)
-    {
-      tree block_tree = this->statements_->get_tree(context);
-      if (block_tree != error_mark_node)
-       append_to_statement_list(block_tree, stmt_list);
-    }
-
-  if (!this->is_fallthrough_)
-    append_to_statement_list(break_label->get_goto(this->location_), stmt_list);
-}
-
-// Class Case_clauses.
-
-// Traversal.
-
-int
-Case_clauses::traverse(Traverse* traverse)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check whether all the case expressions are constant.
-
-bool
-Case_clauses::is_constant() const
-{
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    if (!p->is_constant())
-      return false;
-  return true;
-}
-
-// Lower case clauses for a nonconstant switch.
-
-void
-Case_clauses::lower(Block* b, Temporary_statement* val_temp,
-                   Unnamed_label* break_label) const
-{
-  // The default case.
-  const Case_clause* default_case = NULL;
-
-  // The label for the fallthrough of the previous case.
-  Unnamed_label* last_fallthrough_label = NULL;
-
-  // The label for the start of the default case.  This is used if the
-  // case before the default case falls through.
-  Unnamed_label* default_start_label = NULL;
-
-  // The label for the end of the default case.  This normally winds
-  // up as BREAK_LABEL, but it will be different if the default case
-  // falls through.
-  Unnamed_label* default_finish_label = NULL;
-
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      // The label to use for the start of the statements for this
-      // case.  This is NULL unless the previous case falls through.
-      Unnamed_label* start_label = last_fallthrough_label;
-
-      // The label to jump to after the end of the statements for this
-      // case.
-      Unnamed_label* finish_label = break_label;
-
-      last_fallthrough_label = NULL;
-      if (p->is_fallthrough() && p + 1 != this->clauses_.end())
-       {
-         finish_label = new Unnamed_label(p->location());
-         last_fallthrough_label = finish_label;
-       }
-
-      if (!p->is_default())
-       p->lower(b, val_temp, start_label, finish_label);
-      else
-       {
-         // We have to move the default case to the end, so that we
-         // only use it if all the other tests fail.
-         default_case = &*p;
-         default_start_label = start_label;
-         default_finish_label = finish_label;
-       }
-    }
-
-  if (default_case != NULL)
-    default_case->lower(b, val_temp, default_start_label,
-                       default_finish_label);
-      
-}
-
-// Determine types.
-
-void
-Case_clauses::determine_types(Type* type)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->determine_types(type);
-}
-
-// Check types.  Returns false if there was an error.
-
-bool
-Case_clauses::check_types(Type* type)
-{
-  bool ret = true;
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (!p->check_types(type))
-       ret = false;
-    }
-  return ret;
-}
-
-// Return true if these clauses may fall through to the statements
-// following the switch statement.
-
-bool
-Case_clauses::may_fall_through() const
-{
-  bool found_default = false;
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->may_fall_through() && !p->is_fallthrough())
-       return true;
-      if (p->is_default())
-       found_default = true;
-    }
-  return !found_default;
-}
-
-// Return a tree when all case expressions are constants.
-
-tree
-Case_clauses::get_constant_tree(Translate_context* context,
-                               Unnamed_label* break_label) const
-{
-  Case_constants case_constants;
-  tree stmt_list = NULL_TREE;
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->get_constant_tree(context, break_label, &case_constants,
-                        &stmt_list);
-  return stmt_list;
-}
-
-// A constant switch statement.  A Switch_statement is lowered to this
-// when all the cases are constants.
-
-class Constant_switch_statement : public Statement
-{
- public:
-  Constant_switch_statement(Expression* val, Case_clauses* clauses,
-                           Unnamed_label* break_label,
-                           source_location location)
-    : Statement(STATEMENT_CONSTANT_SWITCH, location),
-      val_(val), clauses_(clauses), break_label_(break_label)
-  { }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const;
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The value to switch on.
-  Expression* val_;
-  // The case clauses.
-  Case_clauses* clauses_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-};
-
-// Traversal.
-
-int
-Constant_switch_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->clauses_->traverse(traverse);
-}
-
-// Determine types.
-
-void
-Constant_switch_statement::do_determine_types()
-{
-  this->val_->determine_type_no_context();
-  this->clauses_->determine_types(this->val_->type());
-}
-
-// Check types.
-
-void
-Constant_switch_statement::do_check_types(Gogo*)
-{
-  if (!this->clauses_->check_types(this->val_->type()))
-    this->set_is_error();
-}
-
-// Return whether this switch may fall through.
-
-bool
-Constant_switch_statement::do_may_fall_through() const
-{
-  if (this->clauses_ == NULL)
-    return true;
-
-  // If we have a break label, then some case needed it.  That implies
-  // that the switch statement as a whole can fall through.
-  if (this->break_label_ != NULL)
-    return true;
-
-  return this->clauses_->may_fall_through();
-}
-
-// Convert to GENERIC.
-
-tree
-Constant_switch_statement::do_get_tree(Translate_context* context)
-{
-  tree switch_val_tree = this->val_->get_tree(context);
-
-  Unnamed_label* break_label = this->break_label_;
-  if (break_label == NULL)
-    break_label = new Unnamed_label(this->location());
-
-  tree stmt_list = NULL_TREE;
-  tree s = build3(SWITCH_EXPR, void_type_node, switch_val_tree,
-                 this->clauses_->get_constant_tree(context, break_label),
-                 NULL_TREE);
-  SET_EXPR_LOCATION(s, this->location());
-  append_to_statement_list(s, &stmt_list);
-
-  append_to_statement_list(break_label->get_definition(), &stmt_list);
-
-  return stmt_list;
-}
-
-// Class Switch_statement.
-
-// Traversal.
-
-int
-Switch_statement::do_traverse(Traverse* traverse)
-{
-  if (this->val_ != NULL)
-    {
-      if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return this->clauses_->traverse(traverse);
-}
-
-// Lower a Switch_statement to a Constant_switch_statement or a series
-// of if statements.
-
-Statement*
-Switch_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  source_location loc = this->location();
-
-  if (this->val_ != NULL
-      && (this->val_->is_error_expression()
-         || this->val_->type()->is_error_type()))
-    return Statement::make_error_statement(loc);
-
-  if (this->val_ != NULL
-      && this->val_->type()->integer_type() != NULL
-      && !this->clauses_->empty()
-      && this->clauses_->is_constant())
-    return new Constant_switch_statement(this->val_, this->clauses_,
-                                        this->break_label_, loc);
-
-  Block* b = new Block(enclosing, loc);
-
-  if (this->clauses_->empty())
-    {
-      Expression* val = this->val_;
-      if (val == NULL)
-       val = Expression::make_boolean(true, loc);
-      return Statement::make_statement(val);
-    }
-
-  Temporary_statement* val_temp;
-  if (this->val_ == NULL)
-    val_temp = NULL;
-  else
-    {
-      // var val_temp VAL_TYPE = VAL
-      val_temp = Statement::make_temporary(NULL, this->val_, loc);
-      b->add_statement(val_temp);
-    }
-
-  this->clauses_->lower(b, val_temp, this->break_label());
-
-  Statement* s = Statement::make_unnamed_label_statement(this->break_label_);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Return the break label for this switch statement, creating it if
-// necessary.
-
-Unnamed_label*
-Switch_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Make a switch statement.
-
-Switch_statement*
-Statement::make_switch_statement(Expression* val, source_location location)
-{
-  return new Switch_statement(val, location);
-}
-
-// Class Type_case_clauses::Type_case_clause.
-
-// Traversal.
-
-int
-Type_case_clauses::Type_case_clause::traverse(Traverse* traverse)
-{
-  if (!this->is_default_
-      && ((traverse->traverse_mask()
-          & (Traverse::traverse_types | Traverse::traverse_expressions)) != 0)
-      && Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->statements_ != NULL)
-    return this->statements_->traverse(traverse);
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower one clause in a type switch.  Add statements to the block B.
-// The type descriptor we are switching on is in DESCRIPTOR_TEMP.
-// BREAK_LABEL is the label at the end of the type switch.
-// *STMTS_LABEL, if not NULL, is a label to put at the start of the
-// statements.
-
-void
-Type_case_clauses::Type_case_clause::lower(Block* b,
-                                          Temporary_statement* descriptor_temp,
-                                          Unnamed_label* break_label,
-                                          Unnamed_label** stmts_label) const
-{
-  source_location loc = this->location_;
-
-  Unnamed_label* next_case_label = NULL;
-  if (!this->is_default_)
-    {
-      Type* type = this->type_;
-
-      Expression* cond;
-      // The language permits case nil, which is of course a constant
-      // rather than a type.  It will appear here as an invalid
-      // forwarding type.
-      if (type->is_nil_constant_as_type())
-       {
-         Expression* ref =
-           Expression::make_temporary_reference(descriptor_temp, loc);
-         cond = Expression::make_binary(OPERATOR_EQEQ, ref,
-                                        Expression::make_nil(loc),
-                                        loc);
-       }
-      else
-       {
-         Expression* func;
-         if (type->interface_type() == NULL)
-           {
-             // func ifacetypeeq(*descriptor, *descriptor) bool
-             static Named_object* ifacetypeeq;
-             if (ifacetypeeq == NULL)
-               {
-                 const source_location bloc = BUILTINS_LOCATION;
-                 Typed_identifier_list* param_types =
-                   new Typed_identifier_list();
-                 Type* descriptor_type = Type::make_type_descriptor_ptr_type();
-                 param_types->push_back(Typed_identifier("a", descriptor_type,
-                                                         bloc));
-                 param_types->push_back(Typed_identifier("b", descriptor_type,
-                                                         bloc));
-                 Typed_identifier_list* ret_types =
-                   new Typed_identifier_list();
-                 Type* bool_type = Type::lookup_bool_type();
-                 ret_types->push_back(Typed_identifier("", bool_type, bloc));
-                 Function_type* fntype = Type::make_function_type(NULL,
-                                                                  param_types,
-                                                                  ret_types,
-                                                                  bloc);
-                 ifacetypeeq =
-                   Named_object::make_function_declaration("ifacetypeeq", NULL,
-                                                           fntype, bloc);
-                 const char* n = "runtime.ifacetypeeq";
-                 ifacetypeeq->func_declaration_value()->set_asm_name(n);
-               }
-
-             // ifacetypeeq(descriptor_temp, DESCRIPTOR)
-             func = Expression::make_func_reference(ifacetypeeq, NULL, loc);
-           }
-         else
-           {
-             // func ifaceI2Tp(*descriptor, *descriptor) bool
-             static Named_object* ifaceI2Tp;
-             if (ifaceI2Tp == NULL)
-               {
-                 const source_location bloc = BUILTINS_LOCATION;
-                 Typed_identifier_list* param_types =
-                   new Typed_identifier_list();
-                 Type* descriptor_type = Type::make_type_descriptor_ptr_type();
-                 param_types->push_back(Typed_identifier("a", descriptor_type,
-                                                         bloc));
-                 param_types->push_back(Typed_identifier("b", descriptor_type,
-                                                         bloc));
-                 Typed_identifier_list* ret_types =
-                   new Typed_identifier_list();
-                 Type* bool_type = Type::lookup_bool_type();
-                 ret_types->push_back(Typed_identifier("", bool_type, bloc));
-                 Function_type* fntype = Type::make_function_type(NULL,
-                                                                  param_types,
-                                                                  ret_types,
-                                                                  bloc);
-                 ifaceI2Tp =
-                   Named_object::make_function_declaration("ifaceI2Tp", NULL,
-                                                           fntype, bloc);
-                 const char* n = "runtime.ifaceI2Tp";
-                 ifaceI2Tp->func_declaration_value()->set_asm_name(n);
-               }
-
-             // ifaceI2Tp(descriptor_temp, DESCRIPTOR)
-             func = Expression::make_func_reference(ifaceI2Tp, NULL, loc);
-           }
-         Expression_list* params = new Expression_list();
-         params->push_back(Expression::make_type_descriptor(type, loc));
-         Expression* ref =
-           Expression::make_temporary_reference(descriptor_temp, loc);
-         params->push_back(ref);
-         cond = Expression::make_call(func, params, false, loc);
-       }
-
-      Unnamed_label* dest;
-      if (!this->is_fallthrough_)
-       {
-         // if !COND { goto NEXT_CASE_LABEL }
-         next_case_label = new Unnamed_label(UNKNOWN_LOCATION);
-         dest = next_case_label;
-         cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
-       }
-      else
-       {
-         // if COND { goto STMTS_LABEL }
-         gcc_assert(stmts_label != NULL);
-         if (*stmts_label == NULL)
-           *stmts_label = new Unnamed_label(UNKNOWN_LOCATION);
-         dest = *stmts_label;
-       }
-      Block* then_block = new Block(b, loc);
-      Statement* s = Statement::make_goto_unnamed_statement(dest, loc);
-      then_block->add_statement(s);
-      s = Statement::make_if_statement(cond, then_block, NULL, loc);
-      b->add_statement(s);
-    }
-
-  if (this->statements_ != NULL
-      || (!this->is_fallthrough_
-         && stmts_label != NULL
-         && *stmts_label != NULL))
-    {
-      gcc_assert(!this->is_fallthrough_);
-      if (stmts_label != NULL && *stmts_label != NULL)
-       {
-         gcc_assert(!this->is_default_);
-         if (this->statements_ != NULL)
-           (*stmts_label)->set_location(this->statements_->start_location());
-         Statement* s = Statement::make_unnamed_label_statement(*stmts_label);
-         b->add_statement(s);
-         *stmts_label = NULL;
-       }
-      if (this->statements_ != NULL)
-       b->add_statement(Statement::make_block_statement(this->statements_,
-                                                        loc));
-    }
-
-  if (this->is_fallthrough_)
-    gcc_assert(next_case_label == NULL);
-  else
-    {
-      source_location gloc = (this->statements_ == NULL
-                             ? loc
-                             : this->statements_->end_location());
-      b->add_statement(Statement::make_goto_unnamed_statement(break_label,
-                                                             gloc));
-      if (next_case_label != NULL)
-       {
-         Statement* s =
-           Statement::make_unnamed_label_statement(next_case_label);
-         b->add_statement(s);
-       }
-    }
-}
-
-// Class Type_case_clauses.
-
-// Traversal.
-
-int
-Type_case_clauses::traverse(Traverse* traverse)
-{
-  for (Type_clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Check for duplicate types.
-
-void
-Type_case_clauses::check_duplicates() const
-{
-  typedef Unordered_set_hash(const Type*, Type_hash_identical,
-                            Type_identical) Types_seen;
-  Types_seen types_seen;
-  for (Type_clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      Type* t = p->type();
-      if (t == NULL)
-       continue;
-      if (t->is_nil_constant_as_type())
-       t = Type::make_nil_type();
-      std::pair<Types_seen::iterator, bool> ins = types_seen.insert(t);
-      if (!ins.second)
-       error_at(p->location(), "duplicate type in switch");
-    }
-}
-
-// Lower the clauses in a type switch.  Add statements to the block B.
-// The type descriptor we are switching on is in DESCRIPTOR_TEMP.
-// BREAK_LABEL is the label at the end of the type switch.
-
-void
-Type_case_clauses::lower(Block* b, Temporary_statement* descriptor_temp,
-                        Unnamed_label* break_label) const
-{
-  const Type_case_clause* default_case = NULL;
-
-  Unnamed_label* stmts_label = NULL;
-  for (Type_clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (!p->is_default())
-       p->lower(b, descriptor_temp, break_label, &stmts_label);
-      else
-       {
-         // We are generating a series of tests, which means that we
-         // need to move the default case to the end.
-         default_case = &*p;
-       }
-    }
-  gcc_assert(stmts_label == NULL);
-
-  if (default_case != NULL)
-    default_case->lower(b, descriptor_temp, break_label, NULL);
-}
-
-// Class Type_switch_statement.
-
-// Traversal.
-
-int
-Type_switch_statement::do_traverse(Traverse* traverse)
-{
-  if (this->var_ == NULL)
-    {
-      if (this->traverse_expression(traverse, &this->expr_) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->clauses_ != NULL)
-    return this->clauses_->traverse(traverse);
-  return TRAVERSE_CONTINUE;
-}
-
-// Lower a type switch statement to a series of if statements.  The gc
-// compiler is able to generate a table in some cases.  However, that
-// does not work for us because we may have type descriptors in
-// different shared libraries, so we can't compare them with simple
-// equality testing.
-
-Statement*
-Type_switch_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  const source_location loc = this->location();
-
-  if (this->clauses_ != NULL)
-    this->clauses_->check_duplicates();
-
-  Block* b = new Block(enclosing, loc);
-
-  Type* val_type = (this->var_ != NULL
-                   ? this->var_->var_value()->type()
-                   : this->expr_->type());
-
-  // var descriptor_temp DESCRIPTOR_TYPE
-  Type* descriptor_type = Type::make_type_descriptor_ptr_type();
-  Temporary_statement* descriptor_temp =
-    Statement::make_temporary(descriptor_type, NULL, loc);
-  b->add_statement(descriptor_temp);
-
-  if (val_type->interface_type() == NULL)
-    {
-      // Doing a type switch on a non-interface type.  Should we issue
-      // a warning for this case?
-      Expression* lhs = Expression::make_temporary_reference(descriptor_temp,
-                                                            loc);
-      Expression* rhs;
-      if (val_type->is_nil_type())
-       rhs = Expression::make_nil(loc);
-      else
-       {
-         if (val_type->is_abstract())
-           val_type = val_type->make_non_abstract_type();
-         rhs = Expression::make_type_descriptor(val_type, loc);
-       }
-      Statement* s = Statement::make_assignment(lhs, rhs, loc);
-      b->add_statement(s);
-    }
-  else
-    {
-      const source_location bloc = BUILTINS_LOCATION;
-
-      // func {efacetype,ifacetype}(*interface) *descriptor
-      // FIXME: This should be inlined.
-      Typed_identifier_list* param_types = new Typed_identifier_list();
-      param_types->push_back(Typed_identifier("i", val_type, bloc));
-      Typed_identifier_list* ret_types = new Typed_identifier_list();
-      ret_types->push_back(Typed_identifier("", descriptor_type, bloc));
-      Function_type* fntype = Type::make_function_type(NULL, param_types,
-                                                      ret_types, bloc);
-      bool is_empty = val_type->interface_type()->is_empty();
-      const char* fnname = is_empty ? "efacetype" : "ifacetype";
-      Named_object* fn =
-       Named_object::make_function_declaration(fnname, NULL, fntype, bloc);
-      const char* asm_name = (is_empty
-                             ? "runtime.efacetype"
-                             : "runtime.ifacetype");
-      fn->func_declaration_value()->set_asm_name(asm_name);
-
-      // descriptor_temp = ifacetype(val_temp)
-      Expression* func = Expression::make_func_reference(fn, NULL, loc);
-      Expression_list* params = new Expression_list();
-      Expression* ref;
-      if (this->var_ == NULL)
-       ref = this->expr_;
-      else
-       ref = Expression::make_var_reference(this->var_, loc);
-      params->push_back(ref);
-      Expression* call = Expression::make_call(func, params, false, loc);
-      Expression* lhs = Expression::make_temporary_reference(descriptor_temp,
-                                                            loc);
-      Statement* s = Statement::make_assignment(lhs, call, loc);
-      b->add_statement(s);
-    }
-
-  if (this->clauses_ != NULL)
-    this->clauses_->lower(b, descriptor_temp, this->break_label());
-
-  Statement* s = Statement::make_unnamed_label_statement(this->break_label_);
-  b->add_statement(s);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Return the break label for this type switch statement, creating it
-// if necessary.
-
-Unnamed_label*
-Type_switch_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Make a type switch statement.
-
-Type_switch_statement*
-Statement::make_type_switch_statement(Named_object* var, Expression* expr,
-                                     source_location location)
-{
-  return new Type_switch_statement(var, expr, location);
-}
-
-// Class Send_statement.
-
-// Traversal.
-
-int
-Send_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->channel_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->traverse_expression(traverse, &this->val_);
-}
-
-// Determine types.
-
-void
-Send_statement::do_determine_types()
-{
-  this->channel_->determine_type_no_context();
-  Type* type = this->channel_->type();
-  Type_context context;
-  if (type->channel_type() != NULL)
-    context.type = type->channel_type()->element_type();
-  this->val_->determine_type(&context);
-}
-
-// Check types.
-
-void
-Send_statement::do_check_types(Gogo*)
-{
-  Type* type = this->channel_->type();
-  if (type->is_error_type())
-    {
-      this->set_is_error();
-      return;
-    }
-  Channel_type* channel_type = type->channel_type();
-  if (channel_type == NULL)
-    {
-      error_at(this->location(), "left operand of %<<-%> must be channel");
-      this->set_is_error();
-      return;
-    }
-  Type* element_type = channel_type->element_type();
-  if (!Type::are_assignable(element_type, this->val_->type(), NULL))
-    {
-      this->report_error(_("incompatible types in send"));
-      return;
-    }
-  if (!channel_type->may_send())
-    {
-      this->report_error(_("invalid send on receive-only channel"));
-      return;
-    }
-}
-
-// Get a tree for a send statement.
-
-tree
-Send_statement::do_get_tree(Translate_context* context)
-{
-  tree channel = this->channel_->get_tree(context);
-  tree val = this->val_->get_tree(context);
-  if (channel == error_mark_node || val == error_mark_node)
-    return error_mark_node;
-  Channel_type* channel_type = this->channel_->type()->channel_type();
-  val = Expression::convert_for_assignment(context,
-                                          channel_type->element_type(),
-                                          this->val_->type(),
-                                          val,
-                                          this->location());
-  return Gogo::send_on_channel(channel, val, true, this->for_select_,
-                              this->location());
-}
-
-// Make a send statement.
-
-Send_statement*
-Statement::make_send_statement(Expression* channel, Expression* val,
-                              source_location location)
-{
-  return new Send_statement(channel, val, location);
-}
-
-// Class Select_clauses::Select_clause.
-
-// Traversal.
-
-int
-Select_clauses::Select_clause::traverse(Traverse* traverse)
-{
-  if (!this->is_lowered_
-      && (traverse->traverse_mask()
-         & (Traverse::traverse_types | Traverse::traverse_expressions)) != 0)
-    {
-      if (this->channel_ != NULL)
-       {
-         if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-      if (this->val_ != NULL)
-       {
-         if (Expression::traverse(&this->val_, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-      if (this->closed_ != NULL)
-       {
-         if (Expression::traverse(&this->closed_, traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-    }
-  if (this->statements_ != NULL)
-    {
-      if (this->statements_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lowering.  Here we pull out the channel and the send values, to
-// enforce the order of evaluation.  We also add explicit send and
-// receive statements to the clauses.
-
-void
-Select_clauses::Select_clause::lower(Gogo* gogo, Named_object* function,
-                                    Block* b)
-{
-  if (this->is_default_)
-    {
-      gcc_assert(this->channel_ == NULL && this->val_ == NULL);
-      this->is_lowered_ = true;
-      return;
-    }
-
-  source_location loc = this->location_;
-
-  // Evaluate the channel before the select statement.
-  Temporary_statement* channel_temp = Statement::make_temporary(NULL,
-                                                               this->channel_,
-                                                               loc);
-  b->add_statement(channel_temp);
-  this->channel_ = Expression::make_temporary_reference(channel_temp, loc);
-
-  // If this is a send clause, evaluate the value to send before the
-  // select statement.
-  Temporary_statement* val_temp = NULL;
-  if (this->is_send_ && !this->val_->is_constant())
-    {
-      val_temp = Statement::make_temporary(NULL, this->val_, loc);
-      b->add_statement(val_temp);
-    }
-
-  // Add the send or receive before the rest of the statements if any.
-  Block *init = new Block(b, loc);
-  Expression* ref = Expression::make_temporary_reference(channel_temp, loc);
-  if (this->is_send_)
-    {
-      Expression* ref2;
-      if (val_temp == NULL)
-       ref2 = this->val_;
-      else
-       ref2 = Expression::make_temporary_reference(val_temp, loc);
-      Send_statement* send = Statement::make_send_statement(ref, ref2, loc);
-      send->set_for_select();
-      init->add_statement(send);
-    }
-  else if (this->closed_ != NULL && !this->closed_->is_sink_expression())
-    {
-      gcc_assert(this->var_ == NULL && this->closedvar_ == NULL);
-      if (this->val_ == NULL)
-       this->val_ = Expression::make_sink(loc);
-      Statement* s = Statement::make_tuple_receive_assignment(this->val_,
-                                                             this->closed_,
-                                                             ref, true, loc);
-      init->add_statement(s);
-    }
-  else if (this->closedvar_ != NULL)
-    {
-      gcc_assert(this->val_ == NULL);
-      Expression* val;
-      if (this->var_ == NULL)
-       val = Expression::make_sink(loc);
-      else
-       val = Expression::make_var_reference(this->var_, loc);
-      Expression* closed = Expression::make_var_reference(this->closedvar_,
-                                                         loc);
-      Statement* s = Statement::make_tuple_receive_assignment(val, closed, ref,
-                                                             true, loc);
-      // We have to put S in STATEMENTS_, because that is where the
-      // variables are declared.
-      gcc_assert(this->statements_ != NULL);
-      this->statements_->add_statement_at_front(s);
-      // We have to lower STATEMENTS_ again, to lower the tuple
-      // receive assignment we just added.
-      gogo->lower_block(function, this->statements_);
-    }
-  else
-    {
-      Receive_expression* recv = Expression::make_receive(ref, loc);
-      recv->set_for_select();
-      if (this->val_ != NULL)
-       {
-         gcc_assert(this->var_ == NULL);
-         init->add_statement(Statement::make_assignment(this->val_, recv,
-                                                        loc));
-       }
-      else if (this->var_ != NULL)
-       {
-         this->var_->var_value()->set_init(recv);
-         this->var_->var_value()->clear_type_from_chan_element();
-       }
-      else
-       {
-         init->add_statement(Statement::make_statement(recv));
-       }
-    }
-
-  // Lower any statements we just created.
-  gogo->lower_block(function, init);
-
-  if (this->statements_ != NULL)
-    init->add_statement(Statement::make_block_statement(this->statements_,
-                                                       loc));
-
-  this->statements_ = init;
-
-  // Now all references should be handled through the statements, not
-  // through here.
-  this->is_lowered_ = true;
-  this->val_ = NULL;
-  this->var_ = NULL;
-}
-
-// Determine types.
-
-void
-Select_clauses::Select_clause::determine_types()
-{
-  gcc_assert(this->is_lowered_);
-  if (this->statements_ != NULL)
-    this->statements_->determine_types();
-}
-
-// Whether this clause may fall through to the statement which follows
-// the overall select statement.
-
-bool
-Select_clauses::Select_clause::may_fall_through() const
-{
-  if (this->statements_ == NULL)
-    return true;
-  return this->statements_->may_fall_through();
-}
-
-// Return a tree for the statements to execute.
-
-tree
-Select_clauses::Select_clause::get_statements_tree(Translate_context* context)
-{
-  if (this->statements_ == NULL)
-    return NULL_TREE;
-  return this->statements_->get_tree(context);
-}
-
-// Class Select_clauses.
-
-// Traversal.
-
-int
-Select_clauses::traverse(Traverse* traverse)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Lowering.  Here we pull out the channel and the send values, to
-// enforce the order of evaluation.  We also add explicit send and
-// receive statements to the clauses.
-
-void
-Select_clauses::lower(Gogo* gogo, Named_object* function, Block* b)
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->lower(gogo, function, b);
-}
-
-// Determine types.
-
-void
-Select_clauses::determine_types()
-{
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    p->determine_types();
-}
-
-// Return whether these select clauses fall through to the statement
-// following the overall select statement.
-
-bool
-Select_clauses::may_fall_through() const
-{
-  for (Clauses::const_iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    if (p->may_fall_through())
-      return true;
-  return false;
-}
-
-// Return a tree.  We build a call to
-//   size_t __go_select(size_t count, _Bool has_default,
-//                      channel* channels, _Bool* is_send)
-//
-// There are COUNT entries in the CHANNELS and IS_SEND arrays.  The
-// value in the IS_SEND array is true for send, false for receive.
-// __go_select returns an integer from 0 to COUNT, inclusive.  A
-// return of 0 means that the default case should be run; this only
-// happens if HAS_DEFAULT is non-zero.  Otherwise the number indicates
-// the case to run.
-
-// FIXME: This doesn't handle channels which send interface types
-// where the receiver has a static type which matches that interface.
-
-tree
-Select_clauses::get_tree(Translate_context* context,
-                        Unnamed_label *break_label,
-                        source_location location)
-{
-  size_t count = this->clauses_.size();
-  VEC(constructor_elt, gc)* chan_init = VEC_alloc(constructor_elt, gc, count);
-  VEC(constructor_elt, gc)* is_send_init = VEC_alloc(constructor_elt, gc,
-                                                    count);
-  Select_clause* default_clause = NULL;
-  tree final_stmt_list = NULL_TREE;
-  tree channel_type_tree = NULL_TREE;
-
-  size_t i = 0;
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (p->is_default())
-       {
-         default_clause = &*p;
-         --count;
-         continue;
-       }
-
-      if (p->channel()->type()->channel_type() == NULL)
-       {
-         // We should have given an error in the send or receive
-         // statement we created via lowering.
-         gcc_assert(saw_errors());
-         return error_mark_node;
-       }
-
-      tree channel_tree = p->channel()->get_tree(context);
-      if (channel_tree == error_mark_node)
-       return error_mark_node;
-      channel_type_tree = TREE_TYPE(channel_tree);
-
-      constructor_elt* elt = VEC_quick_push(constructor_elt, chan_init, NULL);
-      elt->index = build_int_cstu(sizetype, i);
-      elt->value = channel_tree;
-
-      elt = VEC_quick_push(constructor_elt, is_send_init, NULL);
-      elt->index = build_int_cstu(sizetype, i);
-      elt->value = p->is_send() ? boolean_true_node : boolean_false_node;
-
-      ++i;
-    }
-  gcc_assert(i == count);
-
-  if (i == 0 && default_clause != NULL)
-    {
-      // There is only a default clause.
-      gcc_assert(final_stmt_list == NULL_TREE);
-      tree stmt_list = NULL_TREE;
-      append_to_statement_list(default_clause->get_statements_tree(context),
-                              &stmt_list);
-      append_to_statement_list(break_label->get_definition(), &stmt_list);
-      return stmt_list;
-    }
-
-  tree pointer_chan_type_tree = (channel_type_tree == NULL_TREE
-                                ? ptr_type_node
-                                : build_pointer_type(channel_type_tree));
-  tree chans_arg;
-  tree pointer_boolean_type_tree = build_pointer_type(boolean_type_node);
-  tree is_sends_arg;
-
-  if (i == 0)
-    {
-      chans_arg = fold_convert_loc(location, pointer_chan_type_tree,
-                                  null_pointer_node);
-      is_sends_arg = fold_convert_loc(location, pointer_boolean_type_tree,
-                                     null_pointer_node);
-    }
-  else
-    {
-      tree index_type_tree = build_index_type(size_int(count - 1));
-      tree chan_array_type_tree = build_array_type(channel_type_tree,
-                                                  index_type_tree);
-      tree chan_constructor = build_constructor(chan_array_type_tree,
-                                               chan_init);
-      tree chan_var = create_tmp_var(chan_array_type_tree, "CHAN");
-      DECL_IGNORED_P(chan_var) = 0;
-      DECL_INITIAL(chan_var) = chan_constructor;
-      DECL_SOURCE_LOCATION(chan_var) = location;
-      TREE_ADDRESSABLE(chan_var) = 1;
-      tree decl_expr = build1(DECL_EXPR, void_type_node, chan_var);
-      SET_EXPR_LOCATION(decl_expr, location);
-      append_to_statement_list(decl_expr, &final_stmt_list);
-
-      tree is_send_array_type_tree = build_array_type(boolean_type_node,
-                                                     index_type_tree);
-      tree is_send_constructor = build_constructor(is_send_array_type_tree,
-                                                  is_send_init);
-      tree is_send_var = create_tmp_var(is_send_array_type_tree, "ISSEND");
-      DECL_IGNORED_P(is_send_var) = 0;
-      DECL_INITIAL(is_send_var) = is_send_constructor;
-      DECL_SOURCE_LOCATION(is_send_var) = location;
-      TREE_ADDRESSABLE(is_send_var) = 1;
-      decl_expr = build1(DECL_EXPR, void_type_node, is_send_var);
-      SET_EXPR_LOCATION(decl_expr, location);
-      append_to_statement_list(decl_expr, &final_stmt_list);
-
-      chans_arg = fold_convert_loc(location, pointer_chan_type_tree,
-                                  build_fold_addr_expr_loc(location,
-                                                           chan_var));
-      is_sends_arg = fold_convert_loc(location, pointer_boolean_type_tree,
-                                     build_fold_addr_expr_loc(location,
-                                                              is_send_var));
-    }
-
-  static tree select_fndecl;
-  tree call = Gogo::call_builtin(&select_fndecl,
-                                location,
-                                "__go_select",
-                                4,
-                                sizetype,
-                                sizetype,
-                                size_int(count),
-                                boolean_type_node,
-                                (default_clause == NULL
-                                 ? boolean_false_node
-                                 : boolean_true_node),
-                                pointer_chan_type_tree,
-                                chans_arg,
-                                pointer_boolean_type_tree,
-                                is_sends_arg);
-  if (call == error_mark_node)
-    return error_mark_node;
-
-  tree stmt_list = NULL_TREE;
-
-  if (default_clause != NULL)
-    this->add_clause_tree(context, 0, default_clause, break_label, &stmt_list);
-
-  i = 1;
-  for (Clauses::iterator p = this->clauses_.begin();
-       p != this->clauses_.end();
-       ++p)
-    {
-      if (!p->is_default())
-       {
-         this->add_clause_tree(context, i, &*p, break_label, &stmt_list);
-         ++i;
-       }
-    }
-
-  append_to_statement_list(break_label->get_definition(), &stmt_list);
-
-  tree switch_stmt = build3(SWITCH_EXPR, sizetype, call, stmt_list, NULL_TREE);
-  SET_EXPR_LOCATION(switch_stmt, location);
-  append_to_statement_list(switch_stmt, &final_stmt_list);
-
-  return final_stmt_list;
-}
-
-// Add the tree for CLAUSE to STMT_LIST.
-
-void
-Select_clauses::add_clause_tree(Translate_context* context, int case_index,
-                               Select_clause* clause,
-                               Unnamed_label* bottom_label, tree* stmt_list)
-{
-  tree label = create_artificial_label(clause->location());
-  append_to_statement_list(build3(CASE_LABEL_EXPR, void_type_node,
-                                 build_int_cst(sizetype, case_index),
-                                 NULL_TREE, label),
-                          stmt_list);
-  append_to_statement_list(clause->get_statements_tree(context), stmt_list);
-  tree g = bottom_label->get_goto(clause->statements() == NULL
-                                 ? clause->location()
-                                 : clause->statements()->end_location());
-  append_to_statement_list(g, stmt_list);
-}
-
-// Class Select_statement.
-
-// Return the break label for this switch statement, creating it if
-// necessary.
-
-Unnamed_label*
-Select_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Lower a select statement.  This will still return a select
-// statement, but it will be modified to implement the order of
-// evaluation rules, and to include the send and receive statements as
-// explicit statements in the clauses.
-
-Statement*
-Select_statement::do_lower(Gogo* gogo, Named_object* function,
-                          Block* enclosing)
-{
-  if (this->is_lowered_)
-    return this;
-  Block* b = new Block(enclosing, this->location());
-  this->clauses_->lower(gogo, function, b);
-  this->is_lowered_ = true;
-  b->add_statement(this);
-  return Statement::make_block_statement(b, this->location());
-}
-
-// Return the tree for a select statement.
-
-tree
-Select_statement::do_get_tree(Translate_context* context)
-{
-  return this->clauses_->get_tree(context, this->break_label(),
-                                 this->location());
-}
-
-// Make a select statement.
-
-Select_statement*
-Statement::make_select_statement(source_location location)
-{
-  return new Select_statement(location);
-}
-
-// Class For_statement.
-
-// Traversal.
-
-int
-For_statement::do_traverse(Traverse* traverse)
-{
-  if (this->init_ != NULL)
-    {
-      if (this->init_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->cond_ != NULL)
-    {
-      if (this->traverse_expression(traverse, &this->cond_) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->post_ != NULL)
-    {
-      if (this->post_->traverse(traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return this->statements_->traverse(traverse);
-}
-
-// Lower a For_statement into if statements and gotos.  Getting rid of
-// complex statements make it easier to handle garbage collection.
-
-Statement*
-For_statement::do_lower(Gogo*, Named_object*, Block* enclosing)
-{
-  Statement* s;
-  source_location loc = this->location();
-
-  Block* b = new Block(enclosing, this->location());
-  if (this->init_ != NULL)
-    {
-      s = Statement::make_block_statement(this->init_,
-                                         this->init_->start_location());
-      b->add_statement(s);
-    }
-
-  Unnamed_label* entry = NULL;
-  if (this->cond_ != NULL)
-    {
-      entry = new Unnamed_label(this->location());
-      b->add_statement(Statement::make_goto_unnamed_statement(entry, loc));
-    }
-
-  Unnamed_label* top = new Unnamed_label(this->location());
-  b->add_statement(Statement::make_unnamed_label_statement(top));
-
-  s = Statement::make_block_statement(this->statements_,
-                                     this->statements_->start_location());
-  b->add_statement(s);
-
-  source_location end_loc = this->statements_->end_location();
-
-  Unnamed_label* cont = this->continue_label_;
-  if (cont != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(cont));
-
-  if (this->post_ != NULL)
-    {
-      s = Statement::make_block_statement(this->post_,
-                                         this->post_->start_location());
-      b->add_statement(s);
-      end_loc = this->post_->end_location();
-    }
-
-  if (this->cond_ == NULL)
-    b->add_statement(Statement::make_goto_unnamed_statement(top, end_loc));
-  else
-    {
-      b->add_statement(Statement::make_unnamed_label_statement(entry));
-
-      source_location cond_loc = this->cond_->location();
-      Block* then_block = new Block(b, cond_loc);
-      s = Statement::make_goto_unnamed_statement(top, cond_loc);
-      then_block->add_statement(s);
-
-      s = Statement::make_if_statement(this->cond_, then_block, NULL, cond_loc);
-      b->add_statement(s);
-    }
-
-  Unnamed_label* brk = this->break_label_;
-  if (brk != NULL)
-    b->add_statement(Statement::make_unnamed_label_statement(brk));
-
-  b->set_end_location(end_loc);
-
-  return Statement::make_block_statement(b, loc);
-}
-
-// Return the break label, creating it if necessary.
-
-Unnamed_label*
-For_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Return the continue LABEL_EXPR.
-
-Unnamed_label*
-For_statement::continue_label()
-{
-  if (this->continue_label_ == NULL)
-    this->continue_label_ = new Unnamed_label(this->location());
-  return this->continue_label_;
-}
-
-// Set the break and continue labels a for statement.  This is used
-// when lowering a for range statement.
-
-void
-For_statement::set_break_continue_labels(Unnamed_label* break_label,
-                                        Unnamed_label* continue_label)
-{
-  gcc_assert(this->break_label_ == NULL && this->continue_label_ == NULL);
-  this->break_label_ = break_label;
-  this->continue_label_ = continue_label;
-}
-
-// Make a for statement.
-
-For_statement*
-Statement::make_for_statement(Block* init, Expression* cond, Block* post,
-                             source_location location)
-{
-  return new For_statement(init, cond, post, location);
-}
-
-// Class For_range_statement.
-
-// Traversal.
-
-int
-For_range_statement::do_traverse(Traverse* traverse)
-{
-  if (this->traverse_expression(traverse, &this->index_var_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->value_var_ != NULL)
-    {
-      if (this->traverse_expression(traverse, &this->value_var_)
-         == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  if (this->traverse_expression(traverse, &this->range_) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return this->statements_->traverse(traverse);
-}
-
-// Lower a for range statement.  For simplicity we lower this into a
-// for statement, which will then be lowered in turn to goto
-// statements.
-
-Statement*
-For_range_statement::do_lower(Gogo* gogo, Named_object*, Block* enclosing)
-{
-  Type* range_type = this->range_->type();
-  if (range_type->points_to() != NULL
-      && range_type->points_to()->array_type() != NULL
-      && !range_type->points_to()->is_open_array_type())
-    range_type = range_type->points_to();
-
-  Type* index_type;
-  Type* value_type = NULL;
-  if (range_type->array_type() != NULL)
-    {
-      index_type = Type::lookup_integer_type("int");
-      value_type = range_type->array_type()->element_type();
-    }
-  else if (range_type->is_string_type())
-    {
-      index_type = Type::lookup_integer_type("int");
-      value_type = index_type;
-    }
-  else if (range_type->map_type() != NULL)
-    {
-      index_type = range_type->map_type()->key_type();
-      value_type = range_type->map_type()->val_type();
-    }
-  else if (range_type->channel_type() != NULL)
-    {
-      index_type = range_type->channel_type()->element_type();
-      if (this->value_var_ != NULL)
-       {
-         if (!this->value_var_->type()->is_error_type())
-           this->report_error(_("too many variables for range clause "
-                                "with channel"));
-         return Statement::make_error_statement(this->location());
-       }
-    }
-  else
-    {
-      this->report_error(_("range clause must have "
-                          "array, slice, setring, map, or channel type"));
-      return Statement::make_error_statement(this->location());
-    }
-
-  source_location loc = this->location();
-  Block* temp_block = new Block(enclosing, loc);
-
-  Named_object* range_object = NULL;
-  Temporary_statement* range_temp = NULL;
-  Var_expression* ve = this->range_->var_expression();
-  if (ve != NULL)
-    range_object = ve->named_object();
-  else
-    {
-      range_temp = Statement::make_temporary(NULL, this->range_, loc);
-      temp_block->add_statement(range_temp);
-    }
-
-  Temporary_statement* index_temp = Statement::make_temporary(index_type,
-                                                             NULL, loc);
-  temp_block->add_statement(index_temp);
-
-  Temporary_statement* value_temp = NULL;
-  if (this->value_var_ != NULL)
-    {
-      value_temp = Statement::make_temporary(value_type, NULL, loc);
-      temp_block->add_statement(value_temp);
-    }
-
-  Block* body = new Block(temp_block, loc);
-
-  Block* init;
-  Expression* cond;
-  Block* iter_init;
-  Block* post;
-
-  // Arrange to do a loop appropriate for the type.  We will produce
-  //   for INIT ; COND ; POST {
-  //           ITER_INIT
-  //           INDEX = INDEX_TEMP
-  //           VALUE = VALUE_TEMP // If there is a value
-  //           original statements
-  //   }
-
-  if (range_type->array_type() != NULL)
-    this->lower_range_array(gogo, temp_block, body, range_object, range_temp,
-                           index_temp, value_temp, &init, &cond, &iter_init,
-                           &post);
-  else if (range_type->is_string_type())
-    this->lower_range_string(gogo, temp_block, body, range_object, range_temp,
-                            index_temp, value_temp, &init, &cond, &iter_init,
-                            &post);
-  else if (range_type->map_type() != NULL)
-    this->lower_range_map(gogo, temp_block, body, range_object, range_temp,
-                         index_temp, value_temp, &init, &cond, &iter_init,
-                         &post);
-  else if (range_type->channel_type() != NULL)
-    this->lower_range_channel(gogo, temp_block, body, range_object, range_temp,
-                             index_temp, value_temp, &init, &cond, &iter_init,
-                             &post);
-  else
-    gcc_unreachable();
-
-  if (iter_init != NULL)
-    body->add_statement(Statement::make_block_statement(iter_init, loc));
-
-  Statement* assign;
-  Expression* index_ref = Expression::make_temporary_reference(index_temp, loc);
-  if (this->value_var_ == NULL)
-    {
-      assign = Statement::make_assignment(this->index_var_, index_ref, loc);
-    }
-  else
-    {
-      Expression_list* lhs = new Expression_list();
-      lhs->push_back(this->index_var_);
-      lhs->push_back(this->value_var_);
-
-      Expression_list* rhs = new Expression_list();
-      rhs->push_back(index_ref);
-      rhs->push_back(Expression::make_temporary_reference(value_temp, loc));
-
-      assign = Statement::make_tuple_assignment(lhs, rhs, loc);
-    }
-  body->add_statement(assign);
-
-  body->add_statement(Statement::make_block_statement(this->statements_, loc));
-
-  body->set_end_location(this->statements_->end_location());
-
-  For_statement* loop = Statement::make_for_statement(init, cond, post,
-                                                     this->location());
-  loop->add_statements(body);
-  loop->set_break_continue_labels(this->break_label_, this->continue_label_);
-
-  temp_block->add_statement(loop);
-
-  return Statement::make_block_statement(temp_block, loc);
-}
-
-// Return a reference to the range, which may be in RANGE_OBJECT or in
-// RANGE_TEMP.
-
-Expression*
-For_range_statement::make_range_ref(Named_object* range_object,
-                                   Temporary_statement* range_temp,
-                                   source_location loc)
-{
-  if (range_object != NULL)
-    return Expression::make_var_reference(range_object, loc);
-  else
-    return Expression::make_temporary_reference(range_temp, loc);
-}
-
-// Return a call to the predeclared function FUNCNAME passing a
-// reference to the temporary variable ARG.
-
-Expression*
-For_range_statement::call_builtin(Gogo* gogo, const char* funcname,
-                                 Expression* arg,
-                                 source_location loc)
-{
-  Named_object* no = gogo->lookup_global(funcname);
-  gcc_assert(no != NULL && no->is_function_declaration());
-  Expression* func = Expression::make_func_reference(no, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(arg);
-  return Expression::make_call(func, params, false, loc);
-}
-
-// Lower a for range over an array or slice.
-
-void
-For_range_statement::lower_range_array(Gogo* gogo,
-                                      Block* enclosing,
-                                      Block* body_block,
-                                      Named_object* range_object,
-                                      Temporary_statement* range_temp,
-                                      Temporary_statement* index_temp,
-                                      Temporary_statement* value_temp,
-                                      Block** pinit,
-                                      Expression** pcond,
-                                      Block** piter_init,
-                                      Block** ppost)
-{
-  source_location loc = this->location();
-
-  // The loop we generate:
-  //   len_temp := len(range)
-  //   for index_temp = 0; index_temp < len_temp; index_temp++ {
-  //           value_temp = range[index_temp]
-  //           index = index_temp
-  //           value = value_temp
-  //           original body
-  //   }
-
-  // Set *PINIT to
-  //   var len_temp int
-  //   len_temp = len(range)
-  //   index_temp = 0
-
-  Block* init = new Block(enclosing, loc);
-
-  Expression* ref = this->make_range_ref(range_object, range_temp, loc);
-  Expression* len_call = this->call_builtin(gogo, "len", ref, loc);
-  Temporary_statement* len_temp = Statement::make_temporary(index_temp->type(),
-                                                           len_call, loc);
-  init->add_statement(len_temp);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, loc);
-  mpz_clear(zval);
-
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  Statement* s = Statement::make_assignment(ref, zexpr, loc);
-  init->add_statement(s);
-
-  *pinit = init;
-
-  // Set *PCOND to
-  //   index_temp < len_temp
-
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  Expression* ref2 = Expression::make_temporary_reference(len_temp, loc);
-  Expression* lt = Expression::make_binary(OPERATOR_LT, ref, ref2, loc);
-
-  *pcond = lt;
-
-  // Set *PITER_INIT to
-  //   value_temp = range[index_temp]
-
-  Block* iter_init = NULL;
-  if (value_temp != NULL)
-    {
-      iter_init = new Block(body_block, loc);
-
-      ref = this->make_range_ref(range_object, range_temp, loc);
-      Expression* ref2 = Expression::make_temporary_reference(index_temp, loc);
-      Expression* index = Expression::make_index(ref, ref2, NULL, loc);
-
-      ref = Expression::make_temporary_reference(value_temp, loc);
-      s = Statement::make_assignment(ref, index, loc);
-
-      iter_init->add_statement(s);
-    }
-  *piter_init = iter_init;
-
-  // Set *PPOST to
-  //   index_temp++
-
-  Block* post = new Block(enclosing, loc);
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  s = Statement::make_inc_statement(ref);
-  post->add_statement(s);
-  *ppost = post;
-}
-
-// Lower a for range over a string.
-
-void
-For_range_statement::lower_range_string(Gogo* gogo,
-                                       Block* enclosing,
-                                       Block* body_block,
-                                       Named_object* range_object,
-                                       Temporary_statement* range_temp,
-                                       Temporary_statement* index_temp,
-                                       Temporary_statement* value_temp,
-                                       Block** pinit,
-                                       Expression** pcond,
-                                       Block** piter_init,
-                                       Block** ppost)
-{
-  source_location loc = this->location();
-
-  // The loop we generate:
-  //   var next_index_temp int
-  //   for index_temp = 0; ; index_temp = next_index_temp {
-  //           next_index_temp, value_temp = stringiter2(range, index_temp)
-  //           if next_index_temp == 0 {
-  //                   break
-  //           }
-  //           index = index_temp
-  //           value = value_temp
-  //           original body
-  //   }
-
-  // Set *PINIT to
-  //   var next_index_temp int
-  //   index_temp = 0
-
-  Block* init = new Block(enclosing, loc);
-
-  Temporary_statement* next_index_temp =
-    Statement::make_temporary(index_temp->type(), NULL, loc);
-  init->add_statement(next_index_temp);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, loc);
-
-  Expression* ref = Expression::make_temporary_reference(index_temp, loc);
-  Statement* s = Statement::make_assignment(ref, zexpr, loc);
-
-  init->add_statement(s);
-  *pinit = init;
-
-  // The loop has no condition.
-
-  *pcond = NULL;
-
-  // Set *PITER_INIT to
-  //   next_index_temp = runtime.stringiter(range, index_temp)
-  // or
-  //   next_index_temp, value_temp = runtime.stringiter2(range, index_temp)
-  // followed by
-  //   if next_index_temp == 0 {
-  //           break
-  //   }
-
-  Block* iter_init = new Block(body_block, loc);
-
-  Named_object* no;
-  if (value_temp == NULL)
-    {
-      static Named_object* stringiter;
-      if (stringiter == NULL)
-       {
-         source_location bloc = BUILTINS_LOCATION;
-         Type* int_type = gogo->lookup_global("int")->type_value();
-
-         Typed_identifier_list* params = new Typed_identifier_list();
-         params->push_back(Typed_identifier("s", Type::make_string_type(),
-                                            bloc));
-         params->push_back(Typed_identifier("k", int_type, bloc));
-
-         Typed_identifier_list* results = new Typed_identifier_list();
-         results->push_back(Typed_identifier("", int_type, bloc));
-
-         Function_type* fntype = Type::make_function_type(NULL, params,
-                                                          results, bloc);
-         stringiter = Named_object::make_function_declaration("stringiter",
-                                                              NULL, fntype,
-                                                              bloc);
-         const char* n = "runtime.stringiter";
-         stringiter->func_declaration_value()->set_asm_name(n);
-       }
-      no = stringiter;
-    }
-  else
-    {
-      static Named_object* stringiter2;
-      if (stringiter2 == NULL)
-       {
-         source_location bloc = BUILTINS_LOCATION;
-         Type* int_type = gogo->lookup_global("int")->type_value();
-
-         Typed_identifier_list* params = new Typed_identifier_list();
-         params->push_back(Typed_identifier("s", Type::make_string_type(),
-                                            bloc));
-         params->push_back(Typed_identifier("k", int_type, bloc));
-
-         Typed_identifier_list* results = new Typed_identifier_list();
-         results->push_back(Typed_identifier("", int_type, bloc));
-         results->push_back(Typed_identifier("", int_type, bloc));
-
-         Function_type* fntype = Type::make_function_type(NULL, params,
-                                                          results, bloc);
-         stringiter2 = Named_object::make_function_declaration("stringiter",
-                                                               NULL, fntype,
-                                                               bloc);
-         const char* n = "runtime.stringiter2";
-         stringiter2->func_declaration_value()->set_asm_name(n);
-       }
-      no = stringiter2;
-    }
-
-  Expression* func = Expression::make_func_reference(no, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(this->make_range_ref(range_object, range_temp, loc));
-  params->push_back(Expression::make_temporary_reference(index_temp, loc));
-  Call_expression* call = Expression::make_call(func, params, false, loc);
-
-  if (value_temp == NULL)
-    {
-      ref = Expression::make_temporary_reference(next_index_temp, loc);
-      s = Statement::make_assignment(ref, call, loc);
-    }
-  else
-    {
-      Expression_list* lhs = new Expression_list();
-      lhs->push_back(Expression::make_temporary_reference(next_index_temp,
-                                                         loc));
-      lhs->push_back(Expression::make_temporary_reference(value_temp, loc));
-
-      Expression_list* rhs = new Expression_list();
-      rhs->push_back(Expression::make_call_result(call, 0));
-      rhs->push_back(Expression::make_call_result(call, 1));
-
-      s = Statement::make_tuple_assignment(lhs, rhs, loc);
-    }
-  iter_init->add_statement(s);
-
-  ref = Expression::make_temporary_reference(next_index_temp, loc);
-  zexpr = Expression::make_integer(&zval, NULL, loc);
-  mpz_clear(zval);
-  Expression* equals = Expression::make_binary(OPERATOR_EQEQ, ref, zexpr, loc);
-
-  Block* then_block = new Block(iter_init, loc);
-  s = Statement::make_break_statement(this->break_label(), loc);
-  then_block->add_statement(s);
-
-  s = Statement::make_if_statement(equals, then_block, NULL, loc);
-  iter_init->add_statement(s);
-
-  *piter_init = iter_init;
-
-  // Set *PPOST to
-  //   index_temp = next_index_temp
-
-  Block* post = new Block(enclosing, loc);
-
-  Expression* lhs = Expression::make_temporary_reference(index_temp, loc);
-  Expression* rhs = Expression::make_temporary_reference(next_index_temp, loc);
-  s = Statement::make_assignment(lhs, rhs, loc);
-
-  post->add_statement(s);
-  *ppost = post;
-}
-
-// Lower a for range over a map.
-
-void
-For_range_statement::lower_range_map(Gogo* gogo,
-                                    Block* enclosing,
-                                    Block* body_block,
-                                    Named_object* range_object,
-                                    Temporary_statement* range_temp,
-                                    Temporary_statement* index_temp,
-                                    Temporary_statement* value_temp,
-                                    Block** pinit,
-                                    Expression** pcond,
-                                    Block** piter_init,
-                                    Block** ppost)
-{
-  source_location loc = this->location();
-
-  // The runtime uses a struct to handle ranges over a map.  The
-  // struct is four pointers long.  The first pointer is NULL when we
-  // have completed the iteration.
-
-  // The loop we generate:
-  //   var hiter map_iteration_struct
-  //   for mapiterinit(range, &hiter); hiter[0] != nil; mapiternext(&hiter) {
-  //           mapiter2(hiter, &index_temp, &value_temp)
-  //           index = index_temp
-  //           value = value_temp
-  //           original body
-  //   }
-
-  // Set *PINIT to
-  //   var hiter map_iteration_struct
-  //   runtime.mapiterinit(range, &hiter)
-
-  Block* init = new Block(enclosing, loc);
-
-  const unsigned long map_iteration_size = 4;
-
-  mpz_t ival;
-  mpz_init_set_ui(ival, map_iteration_size);
-  Expression* iexpr = Expression::make_integer(&ival, NULL, loc);
-  mpz_clear(ival);
-
-  Type* byte_type = gogo->lookup_global("byte")->type_value();
-  Type* ptr_type = Type::make_pointer_type(byte_type);
-
-  Type* map_iteration_type = Type::make_array_type(ptr_type, iexpr);
-  Type* map_iteration_ptr = Type::make_pointer_type(map_iteration_type);
-
-  Temporary_statement* hiter = Statement::make_temporary(map_iteration_type,
-                                                        NULL, loc);
-  init->add_statement(hiter);
-
-  source_location bloc = BUILTINS_LOCATION;
-  Typed_identifier_list* param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("map", this->range_->type(), bloc));
-  param_types->push_back(Typed_identifier("it", map_iteration_ptr, bloc));
-  Function_type* fntype = Type::make_function_type(NULL, param_types, NULL,
-                                                  bloc);
-
-  Named_object* mapiterinit =
-    Named_object::make_function_declaration("mapiterinit", NULL, fntype, bloc);
-  const char* n = "runtime.mapiterinit";
-  mapiterinit->func_declaration_value()->set_asm_name(n);
-
-  Expression* func = Expression::make_func_reference(mapiterinit, NULL, loc);
-  Expression_list* params = new Expression_list();
-  params->push_back(this->make_range_ref(range_object, range_temp, loc));
-  Expression* ref = Expression::make_temporary_reference(hiter, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  Expression* call = Expression::make_call(func, params, false, loc);
-  init->add_statement(Statement::make_statement(call));
-
-  *pinit = init;
-
-  // Set *PCOND to
-  //   hiter[0] != nil
-
-  ref = Expression::make_temporary_reference(hiter, loc);
-
-  mpz_t zval;
-  mpz_init_set_ui(zval, 0UL);
-  Expression* zexpr = Expression::make_integer(&zval, NULL, loc);
-  mpz_clear(zval);
-
-  Expression* index = Expression::make_index(ref, zexpr, NULL, loc);
-
-  Expression* ne = Expression::make_binary(OPERATOR_NOTEQ, index,
-                                          Expression::make_nil(loc),
-                                          loc);
-
-  *pcond = ne;
-
-  // Set *PITER_INIT to
-  //   mapiter1(hiter, &index_temp)
-  // or
-  //   mapiter2(hiter, &index_temp, &value_temp)
-
-  Block* iter_init = new Block(body_block, loc);
-
-  param_types = new Typed_identifier_list();
-  param_types->push_back(Typed_identifier("hiter", map_iteration_ptr, bloc));
-  Type* pkey_type = Type::make_pointer_type(index_temp->type());
-  param_types->push_back(Typed_identifier("key", pkey_type, bloc));
-  if (value_temp != NULL)
-    {
-      Type* pval_type = Type::make_pointer_type(value_temp->type());
-      param_types->push_back(Typed_identifier("val", pval_type, bloc));
-    }
-  fntype = Type::make_function_type(NULL, param_types, NULL, bloc);
-  n = value_temp == NULL ? "mapiter1" : "mapiter2";
-  Named_object* mapiter = Named_object::make_function_declaration(n, NULL,
-                                                                 fntype, bloc);
-  n = value_temp == NULL ? "runtime.mapiter1" : "runtime.mapiter2";
-  mapiter->func_declaration_value()->set_asm_name(n);
-
-  func = Expression::make_func_reference(mapiter, NULL, loc);
-  params = new Expression_list();
-  ref = Expression::make_temporary_reference(hiter, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  ref = Expression::make_temporary_reference(index_temp, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  if (value_temp != NULL)
-    {
-      ref = Expression::make_temporary_reference(value_temp, loc);
-      params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-    }
-  call = Expression::make_call(func, params, false, loc);
-  iter_init->add_statement(Statement::make_statement(call));
-
-  *piter_init = iter_init;
-
-  // Set *PPOST to
-  //   mapiternext(&hiter)
-
-  Block* post = new Block(enclosing, loc);
-
-  static Named_object* mapiternext;
-  if (mapiternext == NULL)
-    {
-      param_types = new Typed_identifier_list();
-      param_types->push_back(Typed_identifier("it", map_iteration_ptr, bloc));
-      fntype = Type::make_function_type(NULL, param_types, NULL, bloc);
-      mapiternext = Named_object::make_function_declaration("mapiternext",
-                                                           NULL, fntype,
-                                                           bloc);
-      const char* n = "runtime.mapiternext";
-      mapiternext->func_declaration_value()->set_asm_name(n);
-    }
-
-  func = Expression::make_func_reference(mapiternext, NULL, loc);
-  params = new Expression_list();
-  ref = Expression::make_temporary_reference(hiter, loc);
-  params->push_back(Expression::make_unary(OPERATOR_AND, ref, loc));
-  call = Expression::make_call(func, params, false, loc);
-  post->add_statement(Statement::make_statement(call));
-
-  *ppost = post;
-}
-
-// Lower a for range over a channel.
-
-void
-For_range_statement::lower_range_channel(Gogo*,
-                                        Block*,
-                                        Block* body_block,
-                                        Named_object* range_object,
-                                        Temporary_statement* range_temp,
-                                        Temporary_statement* index_temp,
-                                        Temporary_statement* value_temp,
-                                        Block** pinit,
-                                        Expression** pcond,
-                                        Block** piter_init,
-                                        Block** ppost)
-{
-  gcc_assert(value_temp == NULL);
-
-  source_location loc = this->location();
-
-  // The loop we generate:
-  //   for {
-  //           index_temp, ok_temp = <-range
-  //           if !ok_temp {
-  //                   break
-  //           }
-  //           index = index_temp
-  //           original body
-  //   }
-
-  // We have no initialization code, no condition, and no post code.
-
-  *pinit = NULL;
-  *pcond = NULL;
-  *ppost = NULL;
-
-  // Set *PITER_INIT to
-  //   index_temp, ok_temp = <-range
-  //   if !ok_temp {
-  //           break
-  //   }
-
-  Block* iter_init = new Block(body_block, loc);
-
-  Temporary_statement* ok_temp =
-    Statement::make_temporary(Type::lookup_bool_type(), NULL, loc);
-  iter_init->add_statement(ok_temp);
-
-  Expression* cref = this->make_range_ref(range_object, range_temp, loc);
-  Expression* iref = Expression::make_temporary_reference(index_temp, loc);
-  Expression* oref = Expression::make_temporary_reference(ok_temp, loc);
-  Statement* s = Statement::make_tuple_receive_assignment(iref, oref, cref,
-                                                         false, loc);
-  iter_init->add_statement(s);
-
-  Block* then_block = new Block(iter_init, loc);
-  s = Statement::make_break_statement(this->break_label(), loc);
-  then_block->add_statement(s);
-
-  oref = Expression::make_temporary_reference(ok_temp, loc);
-  Expression* cond = Expression::make_unary(OPERATOR_NOT, oref, loc);
-  s = Statement::make_if_statement(cond, then_block, NULL, loc);
-  iter_init->add_statement(s);
-
-  *piter_init = iter_init;
-}
-
-// Return the break LABEL_EXPR.
-
-Unnamed_label*
-For_range_statement::break_label()
-{
-  if (this->break_label_ == NULL)
-    this->break_label_ = new Unnamed_label(this->location());
-  return this->break_label_;
-}
-
-// Return the continue LABEL_EXPR.
-
-Unnamed_label*
-For_range_statement::continue_label()
-{
-  if (this->continue_label_ == NULL)
-    this->continue_label_ = new Unnamed_label(this->location());
-  return this->continue_label_;
-}
-
-// Make a for statement with a range clause.
-
-For_range_statement*
-Statement::make_for_range_statement(Expression* index_var,
-                                   Expression* value_var,
-                                   Expression* range,
-                                   source_location location)
-{
-  return new For_range_statement(index_var, value_var, range, location);
-}
diff --git a/gcc/go/gofrontend/statements.h.merge-left.r167407 b/gcc/go/gofrontend/statements.h.merge-left.r167407
deleted file mode 100644 (file)
index 6ca586f..0000000
+++ /dev/null
@@ -1,1420 +0,0 @@
-// statements.h -- Go frontend statements.     -*- C++ -*-
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#ifndef GO_STATEMENTS_H
-#define GO_STATEMENTS_H
-
-#include "operator.h"
-
-class Gogo;
-class Traverse;
-class Block;
-class Function;
-class Unnamed_label;
-class Temporary_statement;
-class Variable_declaration_statement;
-class Return_statement;
-class Thunk_statement;
-class Label_statement;
-class For_statement;
-class For_range_statement;
-class Switch_statement;
-class Type_switch_statement;
-class Select_statement;
-class Variable;
-class Named_object;
-class Label;
-class Translate_context;
-class Expression;
-class Expression_list;
-class Struct_type;
-class Call_expression;
-class Map_index_expression;
-class Receive_expression;
-class Case_clauses;
-class Type_case_clauses;
-class Select_clauses;
-class Typed_identifier_list;
-
-// This class is used to traverse assignments made by a statement
-// which makes assignments.
-
-class Traverse_assignments
-{
- public:
-  Traverse_assignments()
-  { }
-
-  virtual ~Traverse_assignments()
-  { }
-
-  // This is called for a variable initialization.
-  virtual void
-  initialize_variable(Named_object*) = 0;
-
-  // This is called for each assignment made by the statement.  PLHS
-  // points to the left hand side, and PRHS points to the right hand
-  // side.  PRHS may be NULL if there is no associated expression, as
-  // in the bool set by a non-blocking receive.
-  virtual void
-  assignment(Expression** plhs, Expression** prhs) = 0;
-
-  // This is called for each expression which is not passed to the
-  // assignment function.  This is used for some of the statements
-  // which assign two values, for which there is no expression which
-  // describes the value.  For ++ and -- the value is passed to both
-  // the assignment method and the rhs method.  IS_STORED is true if
-  // this value is being stored directly.  It is false if the value is
-  // computed but not stored.  IS_LOCAL is true if the value is being
-  // stored in a local variable or this is being called by a return
-  // statement.
-  virtual void
-  value(Expression**, bool is_stored, bool is_local) = 0;
-};
-
-// A single statement.
-
-class Statement
-{
- public:
-  // The types of statements.
-  enum Statement_classification
-  {
-    STATEMENT_ERROR,
-    STATEMENT_VARIABLE_DECLARATION,
-    STATEMENT_TEMPORARY,
-    STATEMENT_ASSIGNMENT,
-    STATEMENT_EXPRESSION,
-    STATEMENT_BLOCK,
-    STATEMENT_GO,
-    STATEMENT_DEFER,
-    STATEMENT_RETURN,
-    STATEMENT_BREAK_OR_CONTINUE,
-    STATEMENT_GOTO,
-    STATEMENT_GOTO_UNNAMED,
-    STATEMENT_LABEL,
-    STATEMENT_UNNAMED_LABEL,
-    STATEMENT_IF,
-    STATEMENT_CONSTANT_SWITCH,
-    STATEMENT_SELECT,
-
-    // These statements types are created by the parser, but they
-    // disappear during the lowering pass.
-    STATEMENT_ASSIGNMENT_OPERATION,
-    STATEMENT_TUPLE_ASSIGNMENT,
-    STATEMENT_TUPLE_MAP_ASSIGNMENT,
-    STATEMENT_MAP_ASSIGNMENT,
-    STATEMENT_TUPLE_RECEIVE_ASSIGNMENT,
-    STATEMENT_TUPLE_TYPE_GUARD_ASSIGNMENT,
-    STATEMENT_INCDEC,
-    STATEMENT_FOR,
-    STATEMENT_FOR_RANGE,
-    STATEMENT_SWITCH,
-    STATEMENT_TYPE_SWITCH
-  };
-
-  Statement(Statement_classification, source_location);
-
-  virtual ~Statement();
-
-  // Make a variable declaration.
-  static Statement*
-  make_variable_declaration(Named_object*);
-
-  // Make a statement which creates a temporary variable and
-  // initializes it to an expression.  The block is used if the
-  // temporary variable has to be explicitly destroyed; the variable
-  // must still be added to the block.  References to the temporary
-  // variable may be constructed using make_temporary_reference.
-  // Either the type or the initialization expression may be NULL, but
-  // not both.
-  static Temporary_statement*
-  make_temporary(Type*, Expression*, source_location);
-
-  // Make an assignment statement.
-  static Statement*
-  make_assignment(Expression*, Expression*, source_location);
-
-  // Make an assignment operation (+=, etc.).
-  static Statement*
-  make_assignment_operation(Operator, Expression*, Expression*,
-                           source_location);
-
-  // Make a tuple assignment statement.
-  static Statement*
-  make_tuple_assignment(Expression_list*, Expression_list*, source_location);
-
-  // Make an assignment from a map index to a pair of variables.
-  static Statement*
-  make_tuple_map_assignment(Expression* val, Expression* present,
-                           Expression*, source_location);
-
-  // Make a statement which assigns a pair of values to a map.
-  static Statement*
-  make_map_assignment(Expression*, Expression* val,
-                     Expression* should_set, source_location);
-
-  // Make an assignment from a nonblocking receive to a pair of
-  // variables.
-  static Statement*
-  make_tuple_receive_assignment(Expression* val, Expression* success,
-                               Expression* channel, source_location);
-
-  // Make an assignment from a type guard to a pair of variables.
-  static Statement*
-  make_tuple_type_guard_assignment(Expression* val, Expression* ok,
-                                  Expression* expr, Type* type,
-                                  source_location);
-
-  // Make an expression statement from an Expression.
-  static Statement*
-  make_statement(Expression*);
-
-  // Make a block statement from a Block.  This is an embedded list of
-  // statements which may also include variable definitions.
-  static Statement*
-  make_block_statement(Block*, source_location);
-
-  // Make an increment statement.
-  static Statement*
-  make_inc_statement(Expression*);
-
-  // Make a decrement statement.
-  static Statement*
-  make_dec_statement(Expression*);
-
-  // Make a go statement.
-  static Statement*
-  make_go_statement(Call_expression* call, source_location);
-
-  // Make a defer statement.
-  static Statement*
-  make_defer_statement(Call_expression* call, source_location);
-
-  // Make a return statement.
-  static Statement*
-  make_return_statement(const Typed_identifier_list*, Expression_list*,
-                       source_location);
-
-  // Make a break statement.
-  static Statement*
-  make_break_statement(Unnamed_label* label, source_location);
-
-  // Make a continue statement.
-  static Statement*
-  make_continue_statement(Unnamed_label* label, source_location);
-
-  // Make a goto statement.
-  static Statement*
-  make_goto_statement(Label* label, source_location);
-
-  // Make a goto statement to an unnamed label.
-  static Statement*
-  make_goto_unnamed_statement(Unnamed_label* label, source_location);
-
-  // Make a label statement--where the label is defined.
-  static Statement*
-  make_label_statement(Label* label, source_location);
-
-  // Make an unnamed label statement--where the label is defined.
-  static Statement*
-  make_unnamed_label_statement(Unnamed_label* label);
-
-  // Make an if statement.
-  static Statement*
-  make_if_statement(Expression* cond, Block* then_block, Block* else_block,
-                   source_location);
-
-  // Make a switch statement.
-  static Switch_statement*
-  make_switch_statement(Expression* switch_val, source_location);
-
-  // Make a type switch statement.
-  static Type_switch_statement*
-  make_type_switch_statement(Named_object* var, Expression*, source_location);
-
-  // Make a select statement.
-  static Select_statement*
-  make_select_statement(source_location);
-
-  // Make a for statement.
-  static For_statement*
-  make_for_statement(Block* init, Expression* cond, Block* post,
-                    source_location location);
-
-  // Make a for statement with a range clause.
-  static For_range_statement*
-  make_for_range_statement(Expression* index_var, Expression* value_var,
-                          Expression* range, source_location);
-
-  // Return the statement classification.
-  Statement_classification
-  classification() const
-  { return this->classification_; }
-
-  // Get the statement location.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Traverse the tree.
-  int
-  traverse(Block*, size_t* index, Traverse*);
-
-  // Traverse the contents of this statement--the expressions and
-  // statements which it contains.
-  int
-  traverse_contents(Traverse*);
-
-  // If this statement assigns some values, it calls a function for
-  // each value to which this statement assigns a value, and returns
-  // true.  If this statement does not assign any values, it returns
-  // false.
-  bool
-  traverse_assignments(Traverse_assignments* tassign);
-
-  // Lower a statement.  This is called immediately after parsing to
-  // simplify statements for further processing.  It returns the same
-  // Statement or a new one.  BLOCK is the block containing this
-  // statement.
-  Statement*
-  lower(Gogo* gogo, Block* block)
-  { return this->do_lower(gogo, block); }
-
-  // Set type information for unnamed constants.
-  void
-  determine_types();
-
-  // Check types in a statement.  This simply checks that any
-  // expressions used by the statement have the right type.
-  void
-  check_types(Gogo* gogo)
-  { this->do_check_types(gogo); }
-
-  // Return whether this is a block statement.
-  bool
-  is_block_statement() const
-  { return this->classification_ == STATEMENT_BLOCK; }
-
-  // If this is a variable declaration statement, return it.
-  // Otherwise return NULL.
-  Variable_declaration_statement*
-  variable_declaration_statement()
-  {
-    return this->convert<Variable_declaration_statement,
-                        STATEMENT_VARIABLE_DECLARATION>();
-  }
-
-  // If this is a return statement, return it.  Otherwise return NULL.
-  Return_statement*
-  return_statement()
-  { return this->convert<Return_statement, STATEMENT_RETURN>(); }
-
-  // If this is a thunk statement (a go or defer statement), return
-  // it.  Otherwise return NULL.
-  Thunk_statement*
-  thunk_statement();
-
-  // If this is a label statement, return it.  Otherwise return NULL.
-  Label_statement*
-  label_statement()
-  { return this->convert<Label_statement, STATEMENT_LABEL>(); }
-
-  // If this is a for statement, return it.  Otherwise return NULL.
-  For_statement*
-  for_statement()
-  { return this->convert<For_statement, STATEMENT_FOR>(); }
-
-  // If this is a for statement over a range clause, return it.
-  // Otherwise return NULL.
-  For_range_statement*
-  for_range_statement()
-  { return this->convert<For_range_statement, STATEMENT_FOR_RANGE>(); }
-
-  // If this is a switch statement, return it.  Otherwise return NULL.
-  Switch_statement*
-  switch_statement()
-  { return this->convert<Switch_statement, STATEMENT_SWITCH>(); }
-
-  // If this is a type switch statement, return it.  Otherwise return
-  // NULL.
-  Type_switch_statement*
-  type_switch_statement()
-  { return this->convert<Type_switch_statement, STATEMENT_TYPE_SWITCH>(); }
-
-  // If this is a select statement, return it.  Otherwise return NULL.
-  Select_statement*
-  select_statement()
-  { return this->convert<Select_statement, STATEMENT_SELECT>(); }
-
-  // Return true if this statement may fall through--if after
-  // executing this statement we may go on to execute the following
-  // statement, if any.
-  bool
-  may_fall_through() const
-  { return this->do_may_fall_through(); }
-
-  // Return the tree for a statement.  BLOCK is the enclosing block.
-  tree
-  get_tree(Translate_context*);
-
- protected:
-  // Implemented by child class: traverse the tree.
-  virtual int
-  do_traverse(Traverse*) = 0;
-
-  // Implemented by child class: traverse assignments.  Any statement
-  // which includes an assignment should implement this.
-  virtual bool
-  do_traverse_assignments(Traverse_assignments*)
-  { return false; }
-
-  // Implemented by the child class: lower this statement to a simpler
-  // one.
-  virtual Statement*
-  do_lower(Gogo*, Block*)
-  { return this; }
-
-  // Implemented by child class: set type information for unnamed
-  // constants.  Any statement which includes an expression needs to
-  // implement this.
-  virtual void
-  do_determine_types()
-  { }
-
-  // Implemented by child class: check types of expressions used in a
-  // statement.
-  virtual void
-  do_check_types(Gogo*)
-  { }
-
-  // Implemented by child class: return true if this statement may
-  // fall through.
-  virtual bool
-  do_may_fall_through() const
-  { return true; }
-
-  // Implemented by child class: return a tree.
-  virtual tree
-  do_get_tree(Translate_context*) = 0;
-
-  // Traverse an expression in a statement.
-  int
-  traverse_expression(Traverse*, Expression**);
-
-  // Traverse an expression list in a statement.  The Expression_list
-  // may be NULL.
-  int
-  traverse_expression_list(Traverse*, Expression_list*);
-
-  // Traverse a type in a statement.
-  int
-  traverse_type(Traverse*, Type*);
-
-  // Build a tree node with one operand, setting the location.  The
-  // first operand really has type "enum tree_code", but that enum is
-  // not defined here.
-  tree
-  build_stmt_1(int tree_code_value, tree);
-
-  // For children to call when they detect that they are in error.
-  void
-  set_is_error();
-
-  // For children to call to report an error conveniently.
-  void
-  report_error(const char*);
-
-  // For children to return an error statement from lower().
-  static Statement*
-  make_error_statement(source_location);
-
- private:
-  // Convert to the desired statement classification, or return NULL.
-  // This is a controlled dynamic cast.
-  template<typename Statement_class, Statement_classification sc>
-  Statement_class*
-  convert()
-  {
-    return (this->classification_ == sc
-           ? static_cast<Statement_class*>(this)
-           : NULL);
-  }
-
-  template<typename Statement_class, Statement_classification sc>
-  const Statement_class*
-  convert() const
-  {
-    return (this->classification_ == sc
-           ? static_cast<const Statement_class*>(this)
-           : NULL);
-  }
-
-  // The statement classification.
-  Statement_classification classification_;
-  // The location in the input file of the start of this statement.
-  source_location location_;
-};
-
-// A statement which creates and initializes a temporary variable.
-
-class Temporary_statement : public Statement
-{
- public:
-  Temporary_statement(Type* type, Expression* init, source_location location)
-    : Statement(STATEMENT_TEMPORARY, location),
-      type_(type), init_(init), decl_(NULL), is_address_taken_(false)
-  { }
-
-  // Return the type of the temporary variable.
-  Type*
-  type() const;
-
-  // Return the initialization expression.
-  Expression*
-  init() const
-  { return this->init_; }
-
-  // Record that something takes the address of this temporary
-  // variable.
-  void
-  set_is_address_taken()
-  { this->is_address_taken_ = true; }
-
-  // Return the tree for the temporary variable itself.  This should
-  // not be called until after the statement itself has been expanded.
-  tree
-  get_decl() const
-  {
-    gcc_assert(this->decl_ != NULL);
-    return this->decl_;
-  }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type of the temporary variable.
-  Type* type_;
-  // The initial value of the temporary variable.  This may be NULL.
-  Expression* init_;
-  // The DECL for the temporary variable.
-  tree decl_;
-  // True if something takes the address of this temporary variable.
-  bool is_address_taken_;
-};
-
-// A variable declaration.  This marks the point in the code where a
-// variable is declared.  The Variable is also attached to a Block.
-
-class Variable_declaration_statement : public Statement
-{
- public:
-  Variable_declaration_statement(Named_object* var);
-
-  // The variable being declared.
-  Named_object*
-  var()
-  { return this->var_; }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  Named_object* var_;
-};
-
-// A return statement.
-
-class Return_statement : public Statement
-{
- public:
-  Return_statement(const Typed_identifier_list* results, Expression_list* vals,
-                  source_location location)
-    : Statement(STATEMENT_RETURN, location),
-      results_(results), vals_(vals)
-  { }
-
-  // The list of values being returned.  This may be NULL.
-  const Expression_list*
-  vals() const
-  { return this->vals_; }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->traverse_expression_list(traverse, this->vals_); }
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The result types of the function we are returning from.  This is
-  // here because in some of the traversals it is inconvenient to get
-  // it.
-  const Typed_identifier_list* results_;
-  // Return values.  This may be NULL.
-  Expression_list* vals_;
-};
-
-// Select_clauses holds the clauses of a select statement.  This is
-// built by the parser.
-
-class Select_clauses
-{
- public:
-  Select_clauses()
-    : clauses_()
-  { }
-
-  // Add a new clause.  IS_SEND is true if this is a send clause,
-  // false for a receive clause.  For a send clause CHANNEL is the
-  // channel and VAL is the value to send.  For a receive clause
-  // CHANNEL is the channel and VAL is either NULL or a Var_expression
-  // for the variable to set; if VAL is NULL, VAR may be a variable
-  // which is initialized with the received value.  IS_DEFAULT is true
-  // if this is the default clause.  STATEMENTS is the list of
-  // statements to execute.
-  void
-  add(bool is_send, Expression* channel, Expression* val, Named_object* var,
-      bool is_default, Block* statements, source_location location)
-  {
-    this->clauses_.push_back(Select_clause(is_send, channel, val, var,
-                                          is_default, statements, location));
-  }
-
-  // Traverse the select clauses.
-  int
-  traverse(Traverse*);
-
-  // Lower statements.
-  void
-  lower(Block*);
-
-  // Determine types.
-  void
-  determine_types();
-
-  // Whether the select clauses may fall through to the statement
-  // which follows the overall select statement.
-  bool
-  may_fall_through() const;
-
-  // Return a tree implementing the select statement.
-  tree
-  get_tree(Translate_context*, Unnamed_label* break_label, source_location);
-
- private:
-  // A single clause.
-  class Select_clause
-  {
-   public:
-    Select_clause()
-      : channel_(NULL), val_(NULL), var_(NULL), statements_(NULL),
-       is_send_(false), is_default_(false)
-    { }
-
-    Select_clause(bool is_send, Expression* channel, Expression* val,
-                 Named_object* var, bool is_default, Block* statements,
-                 source_location location)
-      : channel_(channel), val_(val), var_(var), statements_(statements),
-       location_(location), is_send_(is_send), is_default_(is_default),
-       is_lowered_(false)
-    { gcc_assert(is_default ? channel == NULL : channel != NULL); }
-
-    // Traverse the select clause.
-    int
-    traverse(Traverse*);
-
-    // Lower statements.
-    void
-    lower(Block*);
-
-    // Determine types.
-    void
-    determine_types();
-
-    // Return true if this is the default clause.
-    bool
-    is_default() const
-    { return this->is_default_; }
-
-    // Return the channel.  This will return NULL for the default
-    // clause.
-    Expression*
-    channel() const
-    { return this->channel_; }
-
-    // Return the value.  This will return NULL for the default
-    // clause, or for a receive clause for which no value was given.
-    Expression*
-    val() const
-    { return this->val_; }
-
-    // Return the variable to set when a receive clause is also a
-    // variable definition (v := <- ch).  This will return NULL for
-    // the default case, or for a send clause, or for a receive clause
-    // which does not define a variable.
-    Named_object*
-    var() const
-    { return this->var_; }
-
-    // Return true for a send, false for a receive.
-    bool
-    is_send() const
-    {
-      gcc_assert(!this->is_default_);
-      return this->is_send_;
-    }
-
-    // Return the statements.
-    const Block*
-    statements() const
-    { return this->statements_; }
-
-    // Return the location.
-    source_location
-    location() const
-    { return this->location_; }
-
-    // Whether this clause may fall through to the statement which
-    // follows the overall select statement.
-    bool
-    may_fall_through() const;
-
-    // Return a tree for the statements to execute.
-    tree
-    get_statements_tree(Translate_context*);
-
-   private:
-    // The channel.
-    Expression* channel_;
-    // The value to send or the variable to set.
-    Expression* val_;
-    // The variable to initialize, for "case a := <- ch".
-    Named_object* var_;
-    // The statements to execute.
-    Block* statements_;
-    // The location of this clause.
-    source_location location_;
-    // Whether this is a send or a receive.
-    bool is_send_;
-    // Whether this is the default.
-    bool is_default_;
-    // Whether this has been lowered.
-    bool is_lowered_;
-  };
-
-  void
-  add_clause_tree(Translate_context*, int, Select_clause*, Unnamed_label*,
-                 tree*);
-
-  typedef std::vector<Select_clause> Clauses;
-
-  Clauses clauses_;
-};
-
-// A select statement.
-
-class Select_statement : public Statement
-{
- public:
-  Select_statement(source_location location)
-    : Statement(STATEMENT_SELECT, location),
-      clauses_(NULL), break_label_(NULL), is_lowered_(false)
-  { }
-
-  // Add the clauses.
-  void
-  add_clauses(Select_clauses* clauses)
-  {
-    gcc_assert(this->clauses_ == NULL);
-    this->clauses_ = clauses;
-  }
-
-  // Return the break label for this select statement.
-  Unnamed_label*
-  break_label();
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->clauses_->traverse(traverse); }
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  void
-  do_determine_types()
-  { this->clauses_->determine_types(); }
-
-  bool
-  do_may_fall_through() const
-  { return this->clauses_->may_fall_through(); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The select clauses.
-  Select_clauses* clauses_;
-  // The break label.
-  Unnamed_label* break_label_;
-  // Whether this statement has been lowered.
-  bool is_lowered_;
-};
-
-// A statement which requires a thunk: go or defer.
-
-class Thunk_statement : public Statement
-{
- public:
-  Thunk_statement(Statement_classification, Call_expression*,
-                 source_location);
-
-  // Return the call expression.
-  Expression*
-  call()
-  { return this->call_; }
-
-  // Simplify a go or defer statement so that it only uses a single
-  // parameter.
-  bool
-  simplify_statement(Gogo*, Block*);
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  // Return the function and argument trees for the call.
-  void
-  get_fn_and_arg(Translate_context*, tree* pfn, tree* parg);
-
- private:
-  // Return whether this is a simple go statement.
-  bool
-  is_simple(Function_type*) const;
-
-  // Build the struct to use for a complex case.
-  Struct_type*
-  build_struct(Function_type* fntype);
-
-  // Build the thunk.
-  void
-  build_thunk(Gogo*, const std::string&, Function_type* fntype);
-
-  // The field name used in the thunk structure for the function
-  // pointer.
-  static const char* const thunk_field_fn;
-
-  // The field name used in the thunk structure for the receiver, if
-  // there is one.
-  static const char* const thunk_field_receiver;
-
-  // Set the name to use for thunk field N.
-  void
-  thunk_field_param(int n, char* buf, size_t buflen);
-
-  // The function call to be executed in a separate thread (go) or
-  // later (defer).
-  Expression* call_;
-  // The type used for a struct to pass to a thunk, if this is not a
-  // simple call.
-  Struct_type* struct_type_;
-};
-
-// A go statement.
-
-class Go_statement : public Thunk_statement
-{
- public:
-  Go_statement(Call_expression* call, source_location location)
-    : Thunk_statement(STATEMENT_GO, call, location)
-  { }
-
- protected:
-  tree
-  do_get_tree(Translate_context*);
-};
-
-// A defer statement.
-
-class Defer_statement : public Thunk_statement
-{
- public:
-  Defer_statement(Call_expression* call, source_location location)
-    : Thunk_statement(STATEMENT_DEFER, call, location)
-  { }
-
- protected:
-  tree
-  do_get_tree(Translate_context*);
-};
-
-// A label statement.
-
-class Label_statement : public Statement
-{
- public:
-  Label_statement(Label* label, source_location location)
-    : Statement(STATEMENT_LABEL, location),
-      label_(label)
-  { }
-
-  // Return the label itself.
-  const Label*
-  label() const
-  { return this->label_; }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The label.
-  Label* label_;
-};
-
-// A for statement.
-
-class For_statement : public Statement
-{
- public:
-  For_statement(Block* init, Expression* cond, Block* post,
-               source_location location)
-    : Statement(STATEMENT_FOR, location),
-      init_(init), cond_(cond), post_(post), statements_(NULL),
-      break_label_(NULL), continue_label_(NULL)
-  { }
-
-  // Add the statements.
-  void
-  add_statements(Block* statements)
-  {
-    gcc_assert(this->statements_ == NULL);
-    this->statements_ = statements;
-  }
-
-  // Return the break label for this for statement.
-  Unnamed_label*
-  break_label();
-
-  // Return the continue label for this for statement.
-  Unnamed_label*
-  continue_label();
-
-  // Set the break and continue labels for this statement.
-  void
-  set_break_continue_labels(Unnamed_label* break_label,
-                           Unnamed_label* continue_label);
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // The initialization statements.  This may be NULL.
-  Block* init_;
-  // The condition.  This may be NULL.
-  Expression* cond_;
-  // The statements to run after each iteration.  This may be NULL.
-  Block* post_;
-  // The statements in the loop itself.
-  Block* statements_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-  // The continue label, if needed.
-  Unnamed_label* continue_label_;
-};
-
-// A for statement over a range clause.
-
-class For_range_statement : public Statement
-{
- public:
-  For_range_statement(Expression* index_var, Expression* value_var,
-                     Expression* range, source_location location)
-    : Statement(STATEMENT_FOR_RANGE, location),
-      index_var_(index_var), value_var_(value_var), range_(range),
-      statements_(NULL), break_label_(NULL), continue_label_(NULL)
-  { }
-
-  // Add the statements.
-  void
-  add_statements(Block* statements)
-  {
-    gcc_assert(this->statements_ == NULL);
-    this->statements_ = statements;
-  }
-
-  // Return the break label for this for statement.
-  Unnamed_label*
-  break_label();
-
-  // Return the continue label for this for statement.
-  Unnamed_label*
-  continue_label();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  Expression*
-  make_range_ref(Named_object*, Temporary_statement*, source_location);
-
-  Expression*
-  call_builtin(Gogo*, const char* funcname, Expression* arg, source_location);
-
-  void
-  lower_range_array(Gogo*, Block*, Block*, Named_object*, Temporary_statement*,
-                   Temporary_statement*, Temporary_statement*,
-                   Block**, Expression**, Block**, Block**);
-
-  void
-  lower_range_string(Gogo*, Block*, Block*, Named_object*, Temporary_statement*,
-                    Temporary_statement*, Temporary_statement*,
-                    Block**, Expression**, Block**, Block**);
-
-  void
-  lower_range_map(Gogo*, Block*, Block*, Named_object*, Temporary_statement*,
-                 Temporary_statement*, Temporary_statement*,
-                 Block**, Expression**, Block**, Block**);
-
-  void
-  lower_range_channel(Gogo*, Block*, Block*, Named_object*,
-                     Temporary_statement*, Temporary_statement*,
-                     Temporary_statement*, Block**, Expression**, Block**,
-                     Block**);
-
-  // The variable which is set to the index value.
-  Expression* index_var_;
-  // The variable which is set to the element value.  This may be
-  // NULL.
-  Expression* value_var_;
-  // The expression we are ranging over.
-  Expression* range_;
-  // The statements in the block.
-  Block* statements_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-  // The continue label, if needed.
-  Unnamed_label* continue_label_;
-};
-
-// Class Case_clauses holds the clauses of a switch statement.  This
-// is built by the parser.
-
-class Case_clauses
-{
- public:
-  Case_clauses()
-    : clauses_()
-  { }
-
-  // Add a new clause.  CASES is a list of case expressions; it may be
-  // NULL.  IS_DEFAULT is true if this is the default case.
-  // STATEMENTS is a block of statements.  IS_FALLTHROUGH is true if
-  // after the statements the case clause should fall through to the
-  // next clause.
-  void
-  add(Expression_list* cases, bool is_default, Block* statements,
-      bool is_fallthrough, source_location location)
-  {
-    this->clauses_.push_back(Case_clause(cases, is_default, statements,
-                                        is_fallthrough, location));
-  }
-
-  // Return whether there are no clauses.
-  bool
-  empty() const
-  { return this->clauses_.empty(); }
-
-  // Traverse the case clauses.
-  int
-  traverse(Traverse*);
-
-  // Lower for a nonconstant switch.
-  void
-  lower(Block*, Temporary_statement*, Unnamed_label*) const;
-
-  // Determine types of expressions.  The Type parameter is the type
-  // of the switch value.
-  void
-  determine_types(Type*);
-
-  // Check types.  The Type parameter is the type of the switch value.
-  bool
-  check_types(Type*);
-
-  // Return true if all the clauses are constant values.
-  bool
-  is_constant() const;
-
-  // Return true if these clauses may fall through to the statements
-  // following the switch statement.
-  bool
-  may_fall_through() const;
-
-  // Return the body of a SWITCH_EXPR when all the clauses are
-  // constants.
-  tree
-  get_constant_tree(Translate_context*, Unnamed_label* break_label) const;
-
- private:
-  // For a constant tree we need to keep a record of constants we have
-  // already seen.  Note that INTEGER_CST trees are interned.
-  typedef Unordered_set(tree) Case_constants;
-
-  // One case clause.
-  class Case_clause
-  {
-   public:
-    Case_clause()
-      : cases_(NULL), statements_(NULL), is_default_(false),
-       is_fallthrough_(false), location_(UNKNOWN_LOCATION)
-    { }
-
-    Case_clause(Expression_list* cases, bool is_default, Block* statements,
-               bool is_fallthrough, source_location location)
-      : cases_(cases), statements_(statements), is_default_(is_default),
-       is_fallthrough_(is_fallthrough), location_(location)
-    { }
-
-    // Whether this clause falls through to the next clause.
-    bool
-    is_fallthrough() const
-    { return this->is_fallthrough_; }
-
-    // Whether this is the default.
-    bool
-    is_default() const
-    { return this->is_default_; }
-
-    // The location of this clause.
-    source_location
-    location() const
-    { return this->location_; }
-
-    // Traversal.
-    int
-    traverse(Traverse*);
-
-    // Lower for a nonconstant switch.
-    void
-    lower(Block*, Temporary_statement*, Unnamed_label*, Unnamed_label*) const;
-
-    // Determine types.
-    void
-    determine_types(Type*);
-
-    // Check types.
-    bool
-    check_types(Type*);
-
-    // Return true if all the case expressions are constant.
-    bool
-    is_constant() const;
-
-    // Return true if this clause may fall through to execute the
-    // statements following the switch statement.  This is not the
-    // same as whether this clause falls through to the next clause.
-    bool
-    may_fall_through() const;
-
-    // Build up the body of a SWITCH_EXPR when the case expressions
-    // are constant.
-    void
-    get_constant_tree(Translate_context*, Unnamed_label* break_label,
-                     Case_constants* case_constants, tree* stmt_list) const;
-
-   private:
-    // The list of case expressions.
-    Expression_list* cases_;
-    // The statements to execute.
-    Block* statements_;
-    // Whether this is the default case.
-    bool is_default_;
-    // Whether this falls through after the statements.
-    bool is_fallthrough_;
-    // The location of this case clause.
-    source_location location_;
-  };
-
-  friend class Case_clause;
-
-  // The type of the list of clauses.
-  typedef std::vector<Case_clause> Clauses;
-
-  // All the case clauses.
-  Clauses clauses_;
-};
-
-// A switch statement.
-
-class Switch_statement : public Statement
-{
- public:
-  Switch_statement(Expression* val, source_location location)
-    : Statement(STATEMENT_SWITCH, location),
-      val_(val), clauses_(NULL), break_label_(NULL)
-  { }
-
-  // Add the clauses.
-  void
-  add_clauses(Case_clauses* clauses)
-  {
-    gcc_assert(this->clauses_ == NULL);
-    this->clauses_ = clauses;
-  }
-
-  // Return the break label for this switch statement.
-  Unnamed_label*
-  break_label();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // The value to switch on.  This may be NULL.
-  Expression* val_;
-  // The case clauses.
-  Case_clauses* clauses_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-};
-
-// Class Type_case_clauses holds the clauses of a type switch
-// statement.  This is built by the parser.
-
-class Type_case_clauses
-{
- public:
-  Type_case_clauses()
-    : clauses_()
-  { }
-
-  // Add a new clause.  TYPE is the type for this clause; it may be
-  // NULL.  IS_FALLTHROUGH is true if this falls through to the next
-  // clause; in this case STATEMENTS will be NULL.  IS_DEFAULT is true
-  // if this is the default case.  STATEMENTS is a block of
-  // statements; it may be NULL.
-  void
-  add(Type* type, bool is_fallthrough, bool is_default, Block* statements,
-      source_location location)
-  {
-    this->clauses_.push_back(Type_case_clause(type, is_fallthrough, is_default,
-                                             statements, location));
-  }
-
-  // Return whether there are no clauses.
-  bool
-  empty() const
-  { return this->clauses_.empty(); }
-
-  // Traverse the type case clauses.
-  int
-  traverse(Traverse*);
-
-  // Check for duplicates.
-  void
-  check_duplicates() const;
-
-  // Lower to if and goto statements.
-  void
-  lower(Block*, Temporary_statement* descriptor_temp,
-       Unnamed_label* break_label) const;
-
- private:
-  // One type case clause.
-  class Type_case_clause
-  {
-   public:
-    Type_case_clause()
-      : type_(NULL), statements_(NULL), is_default_(false),
-       location_(UNKNOWN_LOCATION)
-    { }
-
-    Type_case_clause(Type* type, bool is_fallthrough, bool is_default,
-                    Block* statements, source_location location)
-      : type_(type), statements_(statements), is_fallthrough_(is_fallthrough),
-       is_default_(is_default), location_(location)
-    { }
-
-    // The type.
-    Type*
-    type() const
-    { return this->type_; }
-
-    // Whether this is the default.
-    bool
-    is_default() const
-    { return this->is_default_; }
-
-    // The location of this type clause.
-    source_location
-    location() const
-    { return this->location_; }
-
-    // Traversal.
-    int
-    traverse(Traverse*);
-
-    // Lower to if and goto statements.
-    void
-    lower(Block*, Temporary_statement* descriptor_temp,
-         Unnamed_label* break_label, Unnamed_label** stmts_label) const;
-
-   private:
-    // The type for this type clause.
-    Type* type_;
-    // The statements to execute.
-    Block* statements_;
-    // Whether this falls through--this is true for "case T1, T2".
-    bool is_fallthrough_;
-    // Whether this is the default case.
-    bool is_default_;
-    // The location of this type case clause.
-    source_location location_;
-  };
-
-  friend class Type_case_clause;
-
-  // The type of the list of type clauses.
-  typedef std::vector<Type_case_clause> Type_clauses;
-
-  // All the type case clauses.
-  Type_clauses clauses_;
-};
-
-// A type switch statement.
-
-class Type_switch_statement : public Statement
-{
- public:
-  Type_switch_statement(Named_object* var, Expression* expr,
-                       source_location location)
-    : Statement(STATEMENT_TYPE_SWITCH, location),
-      var_(var), expr_(expr), clauses_(NULL), break_label_(NULL)
-  { gcc_assert(var == NULL || expr == NULL); }
-
-  // Add the clauses.
-  void
-  add_clauses(Type_case_clauses* clauses)
-  {
-    gcc_assert(this->clauses_ == NULL);
-    this->clauses_ = clauses;
-  }
-
-  // Return the break label for this type switch statement.
-  Unnamed_label*
-  break_label();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Statement*
-  do_lower(Gogo*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // Get the type descriptor.
-  tree
-  get_type_descriptor(Translate_context*, Type*, tree);
-
-  // The variable holding the value we are switching on.
-  Named_object* var_;
-  // The expression we are switching on if there is no variable.
-  Expression* expr_;
-  // The type case clauses.
-  Type_case_clauses* clauses_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-};
-
-#endif // !defined(GO_STATEMENTS_H)
diff --git a/gcc/go/gofrontend/statements.h.merge-right.r172891 b/gcc/go/gofrontend/statements.h.merge-right.r172891
deleted file mode 100644 (file)
index 5c27c11..0000000
+++ /dev/null
@@ -1,1446 +0,0 @@
-// statements.h -- Go frontend statements.     -*- C++ -*-
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#ifndef GO_STATEMENTS_H
-#define GO_STATEMENTS_H
-
-#include "operator.h"
-
-class Gogo;
-class Traverse;
-class Block;
-class Function;
-class Unnamed_label;
-class Temporary_statement;
-class Variable_declaration_statement;
-class Return_statement;
-class Thunk_statement;
-class Label_statement;
-class For_statement;
-class For_range_statement;
-class Switch_statement;
-class Type_switch_statement;
-class Send_statement;
-class Select_statement;
-class Variable;
-class Named_object;
-class Label;
-class Translate_context;
-class Expression;
-class Expression_list;
-class Struct_type;
-class Call_expression;
-class Map_index_expression;
-class Receive_expression;
-class Case_clauses;
-class Type_case_clauses;
-class Select_clauses;
-class Typed_identifier_list;
-class Bexpression;
-class Bstatement;
-class Bvariable;
-
-// This class is used to traverse assignments made by a statement
-// which makes assignments.
-
-class Traverse_assignments
-{
- public:
-  Traverse_assignments()
-  { }
-
-  virtual ~Traverse_assignments()
-  { }
-
-  // This is called for a variable initialization.
-  virtual void
-  initialize_variable(Named_object*) = 0;
-
-  // This is called for each assignment made by the statement.  PLHS
-  // points to the left hand side, and PRHS points to the right hand
-  // side.  PRHS may be NULL if there is no associated expression, as
-  // in the bool set by a non-blocking receive.
-  virtual void
-  assignment(Expression** plhs, Expression** prhs) = 0;
-
-  // This is called for each expression which is not passed to the
-  // assignment function.  This is used for some of the statements
-  // which assign two values, for which there is no expression which
-  // describes the value.  For ++ and -- the value is passed to both
-  // the assignment method and the rhs method.  IS_STORED is true if
-  // this value is being stored directly.  It is false if the value is
-  // computed but not stored.  IS_LOCAL is true if the value is being
-  // stored in a local variable or this is being called by a return
-  // statement.
-  virtual void
-  value(Expression**, bool is_stored, bool is_local) = 0;
-};
-
-// A single statement.
-
-class Statement
-{
- public:
-  // The types of statements.
-  enum Statement_classification
-  {
-    STATEMENT_ERROR,
-    STATEMENT_VARIABLE_DECLARATION,
-    STATEMENT_TEMPORARY,
-    STATEMENT_ASSIGNMENT,
-    STATEMENT_EXPRESSION,
-    STATEMENT_BLOCK,
-    STATEMENT_GO,
-    STATEMENT_DEFER,
-    STATEMENT_RETURN,
-    STATEMENT_BREAK_OR_CONTINUE,
-    STATEMENT_GOTO,
-    STATEMENT_GOTO_UNNAMED,
-    STATEMENT_LABEL,
-    STATEMENT_UNNAMED_LABEL,
-    STATEMENT_IF,
-    STATEMENT_CONSTANT_SWITCH,
-    STATEMENT_SEND,
-    STATEMENT_SELECT,
-
-    // These statements types are created by the parser, but they
-    // disappear during the lowering pass.
-    STATEMENT_ASSIGNMENT_OPERATION,
-    STATEMENT_TUPLE_ASSIGNMENT,
-    STATEMENT_TUPLE_MAP_ASSIGNMENT,
-    STATEMENT_MAP_ASSIGNMENT,
-    STATEMENT_TUPLE_RECEIVE_ASSIGNMENT,
-    STATEMENT_TUPLE_TYPE_GUARD_ASSIGNMENT,
-    STATEMENT_INCDEC,
-    STATEMENT_FOR,
-    STATEMENT_FOR_RANGE,
-    STATEMENT_SWITCH,
-    STATEMENT_TYPE_SWITCH
-  };
-
-  Statement(Statement_classification, source_location);
-
-  virtual ~Statement();
-
-  // Make a variable declaration.
-  static Statement*
-  make_variable_declaration(Named_object*);
-
-  // Make a statement which creates a temporary variable and
-  // initializes it to an expression.  The block is used if the
-  // temporary variable has to be explicitly destroyed; the variable
-  // must still be added to the block.  References to the temporary
-  // variable may be constructed using make_temporary_reference.
-  // Either the type or the initialization expression may be NULL, but
-  // not both.
-  static Temporary_statement*
-  make_temporary(Type*, Expression*, source_location);
-
-  // Make an assignment statement.
-  static Statement*
-  make_assignment(Expression*, Expression*, source_location);
-
-  // Make an assignment operation (+=, etc.).
-  static Statement*
-  make_assignment_operation(Operator, Expression*, Expression*,
-                           source_location);
-
-  // Make a tuple assignment statement.
-  static Statement*
-  make_tuple_assignment(Expression_list*, Expression_list*, source_location);
-
-  // Make an assignment from a map index to a pair of variables.
-  static Statement*
-  make_tuple_map_assignment(Expression* val, Expression* present,
-                           Expression*, source_location);
-
-  // Make a statement which assigns a pair of values to a map.
-  static Statement*
-  make_map_assignment(Expression*, Expression* val,
-                     Expression* should_set, source_location);
-
-  // Make an assignment from a nonblocking receive to a pair of
-  // variables.  FOR_SELECT is true is this is being created for a
-  // case x, ok := <-c in a select statement.
-  static Statement*
-  make_tuple_receive_assignment(Expression* val, Expression* closed,
-                               Expression* channel, bool for_select,
-                               source_location);
-
-  // Make an assignment from a type guard to a pair of variables.
-  static Statement*
-  make_tuple_type_guard_assignment(Expression* val, Expression* ok,
-                                  Expression* expr, Type* type,
-                                  source_location);
-
-  // Make an expression statement from an Expression.
-  static Statement*
-  make_statement(Expression*);
-
-  // Make a block statement from a Block.  This is an embedded list of
-  // statements which may also include variable definitions.
-  static Statement*
-  make_block_statement(Block*, source_location);
-
-  // Make an increment statement.
-  static Statement*
-  make_inc_statement(Expression*);
-
-  // Make a decrement statement.
-  static Statement*
-  make_dec_statement(Expression*);
-
-  // Make a go statement.
-  static Statement*
-  make_go_statement(Call_expression* call, source_location);
-
-  // Make a defer statement.
-  static Statement*
-  make_defer_statement(Call_expression* call, source_location);
-
-  // Make a return statement.
-  static Statement*
-  make_return_statement(Expression_list*, source_location);
-
-  // Make a break statement.
-  static Statement*
-  make_break_statement(Unnamed_label* label, source_location);
-
-  // Make a continue statement.
-  static Statement*
-  make_continue_statement(Unnamed_label* label, source_location);
-
-  // Make a goto statement.
-  static Statement*
-  make_goto_statement(Label* label, source_location);
-
-  // Make a goto statement to an unnamed label.
-  static Statement*
-  make_goto_unnamed_statement(Unnamed_label* label, source_location);
-
-  // Make a label statement--where the label is defined.
-  static Statement*
-  make_label_statement(Label* label, source_location);
-
-  // Make an unnamed label statement--where the label is defined.
-  static Statement*
-  make_unnamed_label_statement(Unnamed_label* label);
-
-  // Make an if statement.
-  static Statement*
-  make_if_statement(Expression* cond, Block* then_block, Block* else_block,
-                   source_location);
-
-  // Make a switch statement.
-  static Switch_statement*
-  make_switch_statement(Expression* switch_val, source_location);
-
-  // Make a type switch statement.
-  static Type_switch_statement*
-  make_type_switch_statement(Named_object* var, Expression*, source_location);
-
-  // Make a send statement.
-  static Send_statement*
-  make_send_statement(Expression* channel, Expression* val, source_location);
-
-  // Make a select statement.
-  static Select_statement*
-  make_select_statement(source_location);
-
-  // Make a for statement.
-  static For_statement*
-  make_for_statement(Block* init, Expression* cond, Block* post,
-                    source_location location);
-
-  // Make a for statement with a range clause.
-  static For_range_statement*
-  make_for_range_statement(Expression* index_var, Expression* value_var,
-                          Expression* range, source_location);
-
-  // Return the statement classification.
-  Statement_classification
-  classification() const
-  { return this->classification_; }
-
-  // Get the statement location.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Traverse the tree.
-  int
-  traverse(Block*, size_t* index, Traverse*);
-
-  // Traverse the contents of this statement--the expressions and
-  // statements which it contains.
-  int
-  traverse_contents(Traverse*);
-
-  // If this statement assigns some values, it calls a function for
-  // each value to which this statement assigns a value, and returns
-  // true.  If this statement does not assign any values, it returns
-  // false.
-  bool
-  traverse_assignments(Traverse_assignments* tassign);
-
-  // Lower a statement.  This is called immediately after parsing to
-  // simplify statements for further processing.  It returns the same
-  // Statement or a new one.  FUNCTION is the function containing this
-  // statement.  BLOCK is the block containing this statement.
-  Statement*
-  lower(Gogo* gogo, Named_object* function, Block* block)
-  { return this->do_lower(gogo, function, block); }
-
-  // Set type information for unnamed constants.
-  void
-  determine_types();
-
-  // Check types in a statement.  This simply checks that any
-  // expressions used by the statement have the right type.
-  void
-  check_types(Gogo* gogo)
-  { this->do_check_types(gogo); }
-
-  // Return whether this is a block statement.
-  bool
-  is_block_statement() const
-  { return this->classification_ == STATEMENT_BLOCK; }
-
-  // If this is a variable declaration statement, return it.
-  // Otherwise return NULL.
-  Variable_declaration_statement*
-  variable_declaration_statement()
-  {
-    return this->convert<Variable_declaration_statement,
-                        STATEMENT_VARIABLE_DECLARATION>();
-  }
-
-  // If this is a return statement, return it.  Otherwise return NULL.
-  Return_statement*
-  return_statement()
-  { return this->convert<Return_statement, STATEMENT_RETURN>(); }
-
-  // If this is a thunk statement (a go or defer statement), return
-  // it.  Otherwise return NULL.
-  Thunk_statement*
-  thunk_statement();
-
-  // If this is a label statement, return it.  Otherwise return NULL.
-  Label_statement*
-  label_statement()
-  { return this->convert<Label_statement, STATEMENT_LABEL>(); }
-
-  // If this is a for statement, return it.  Otherwise return NULL.
-  For_statement*
-  for_statement()
-  { return this->convert<For_statement, STATEMENT_FOR>(); }
-
-  // If this is a for statement over a range clause, return it.
-  // Otherwise return NULL.
-  For_range_statement*
-  for_range_statement()
-  { return this->convert<For_range_statement, STATEMENT_FOR_RANGE>(); }
-
-  // If this is a switch statement, return it.  Otherwise return NULL.
-  Switch_statement*
-  switch_statement()
-  { return this->convert<Switch_statement, STATEMENT_SWITCH>(); }
-
-  // If this is a type switch statement, return it.  Otherwise return
-  // NULL.
-  Type_switch_statement*
-  type_switch_statement()
-  { return this->convert<Type_switch_statement, STATEMENT_TYPE_SWITCH>(); }
-
-  // If this is a select statement, return it.  Otherwise return NULL.
-  Select_statement*
-  select_statement()
-  { return this->convert<Select_statement, STATEMENT_SELECT>(); }
-
-  // Return true if this statement may fall through--if after
-  // executing this statement we may go on to execute the following
-  // statement, if any.
-  bool
-  may_fall_through() const
-  { return this->do_may_fall_through(); }
-
-  // Convert the statement to the backend representation.
-  Bstatement*
-  get_backend(Translate_context*);
-
- protected:
-  // Implemented by child class: traverse the tree.
-  virtual int
-  do_traverse(Traverse*) = 0;
-
-  // Implemented by child class: traverse assignments.  Any statement
-  // which includes an assignment should implement this.
-  virtual bool
-  do_traverse_assignments(Traverse_assignments*)
-  { return false; }
-
-  // Implemented by the child class: lower this statement to a simpler
-  // one.
-  virtual Statement*
-  do_lower(Gogo*, Named_object*, Block*)
-  { return this; }
-
-  // Implemented by child class: set type information for unnamed
-  // constants.  Any statement which includes an expression needs to
-  // implement this.
-  virtual void
-  do_determine_types()
-  { }
-
-  // Implemented by child class: check types of expressions used in a
-  // statement.
-  virtual void
-  do_check_types(Gogo*)
-  { }
-
-  // Implemented by child class: return true if this statement may
-  // fall through.
-  virtual bool
-  do_may_fall_through() const
-  { return true; }
-
-  // Implemented by child class: convert to backend representation.
-  virtual Bstatement*
-  do_get_backend(Translate_context*) = 0;
-
-  // Traverse an expression in a statement.
-  int
-  traverse_expression(Traverse*, Expression**);
-
-  // Traverse an expression list in a statement.  The Expression_list
-  // may be NULL.
-  int
-  traverse_expression_list(Traverse*, Expression_list*);
-
-  // Traverse a type in a statement.
-  int
-  traverse_type(Traverse*, Type*);
-
-  // For children to call when they detect that they are in error.
-  void
-  set_is_error();
-
-  // For children to call to report an error conveniently.
-  void
-  report_error(const char*);
-
-  // For children to return an error statement from lower().
-  static Statement*
-  make_error_statement(source_location);
-
- private:
-  // Convert to the desired statement classification, or return NULL.
-  // This is a controlled dynamic cast.
-  template<typename Statement_class, Statement_classification sc>
-  Statement_class*
-  convert()
-  {
-    return (this->classification_ == sc
-           ? static_cast<Statement_class*>(this)
-           : NULL);
-  }
-
-  template<typename Statement_class, Statement_classification sc>
-  const Statement_class*
-  convert() const
-  {
-    return (this->classification_ == sc
-           ? static_cast<const Statement_class*>(this)
-           : NULL);
-  }
-
-  // The statement classification.
-  Statement_classification classification_;
-  // The location in the input file of the start of this statement.
-  source_location location_;
-};
-
-// A statement which creates and initializes a temporary variable.
-
-class Temporary_statement : public Statement
-{
- public:
-  Temporary_statement(Type* type, Expression* init, source_location location)
-    : Statement(STATEMENT_TEMPORARY, location),
-      type_(type), init_(init), bvariable_(NULL), is_address_taken_(false)
-  { }
-
-  // Return the type of the temporary variable.
-  Type*
-  type() const;
-
-  // Record that something takes the address of this temporary
-  // variable.
-  void
-  set_is_address_taken()
-  { this->is_address_taken_ = true; }
-
-  // Return the temporary variable.  This should not be called until
-  // after the statement itself has been converted.
-  Bvariable*
-  get_backend_variable(Translate_context*) const;
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  Bstatement*
-  do_get_backend(Translate_context*);
-
- private:
-  // The type of the temporary variable.
-  Type* type_;
-  // The initial value of the temporary variable.  This may be NULL.
-  Expression* init_;
-  // The backend representation of the temporary variable.
-  Bvariable* bvariable_;
-  // True if something takes the address of this temporary variable.
-  bool is_address_taken_;
-};
-
-// A variable declaration.  This marks the point in the code where a
-// variable is declared.  The Variable is also attached to a Block.
-
-class Variable_declaration_statement : public Statement
-{
- public:
-  Variable_declaration_statement(Named_object* var);
-
-  // The variable being declared.
-  Named_object*
-  var()
-  { return this->var_; }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  Bstatement*
-  do_get_backend(Translate_context*);
-
- private:
-  Named_object* var_;
-};
-
-// A return statement.
-
-class Return_statement : public Statement
-{
- public:
-  Return_statement(Expression_list* vals, source_location location)
-    : Statement(STATEMENT_RETURN, location),
-      vals_(vals), is_lowered_(false)
-  { }
-
-  // The list of values being returned.  This may be NULL.
-  const Expression_list*
-  vals() const
-  { return this->vals_; }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->traverse_expression_list(traverse, this->vals_); }
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  Bstatement*
-  do_get_backend(Translate_context*);
-
- private:
-  // Return values.  This may be NULL.
-  Expression_list* vals_;
-  // True if this statement has been lowered.
-  bool is_lowered_;
-};
-
-// A send statement.
-
-class Send_statement : public Statement
-{
- public:
-  Send_statement(Expression* channel, Expression* val,
-                source_location location)
-    : Statement(STATEMENT_SEND, location),
-      channel_(channel), val_(val), for_select_(false)
-  { }
-
-  // Note that this is for a select statement.
-  void
-  set_for_select()
-  { this->for_select_ = true; }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  Bstatement*
-  do_get_backend(Translate_context*);
-
- private:
-  // The channel on which to send the value.
-  Expression* channel_;
-  // The value to send.
-  Expression* val_;
-  // Whether this is for a select statement.
-  bool for_select_;
-};
-
-// Select_clauses holds the clauses of a select statement.  This is
-// built by the parser.
-
-class Select_clauses
-{
- public:
-  Select_clauses()
-    : clauses_()
-  { }
-
-  // Add a new clause.  IS_SEND is true if this is a send clause,
-  // false for a receive clause.  For a send clause CHANNEL is the
-  // channel and VAL is the value to send.  For a receive clause
-  // CHANNEL is the channel, VAL is either NULL or a Var_expression
-  // for the variable to set, and CLOSED is either NULL or a
-  // Var_expression to set to whether the channel is closed.  If VAL
-  // is NULL, VAR may be a variable to be initialized with the
-  // received value, and CLOSEDVAR ma be a variable to be initialized
-  // with whether the channel is closed.  IS_DEFAULT is true if this
-  // is the default clause.  STATEMENTS is the list of statements to
-  // execute.
-  void
-  add(bool is_send, Expression* channel, Expression* val, Expression* closed,
-      Named_object* var, Named_object* closedvar, bool is_default,
-      Block* statements, source_location location)
-  {
-    this->clauses_.push_back(Select_clause(is_send, channel, val, closed, var,
-                                          closedvar, is_default, statements,
-                                          location));
-  }
-
-  // Traverse the select clauses.
-  int
-  traverse(Traverse*);
-
-  // Lower statements.
-  void
-  lower(Gogo*, Named_object*, Block*);
-
-  // Determine types.
-  void
-  determine_types();
-
-  // Whether the select clauses may fall through to the statement
-  // which follows the overall select statement.
-  bool
-  may_fall_through() const;
-
-  // Convert to the backend representation.
-  Bstatement*
-  get_backend(Translate_context*, Unnamed_label* break_label, source_location);
-
- private:
-  // A single clause.
-  class Select_clause
-  {
-   public:
-    Select_clause()
-      : channel_(NULL), val_(NULL), closed_(NULL), var_(NULL),
-       closedvar_(NULL), statements_(NULL), is_send_(false),
-       is_default_(false)
-    { }
-
-    Select_clause(bool is_send, Expression* channel, Expression* val,
-                 Expression* closed, Named_object* var,
-                 Named_object* closedvar, bool is_default, Block* statements,
-                 source_location location)
-      : channel_(channel), val_(val), closed_(closed), var_(var),
-       closedvar_(closedvar), statements_(statements), location_(location),
-       is_send_(is_send), is_default_(is_default), is_lowered_(false)
-    { go_assert(is_default ? channel == NULL : channel != NULL); }
-
-    // Traverse the select clause.
-    int
-    traverse(Traverse*);
-
-    // Lower statements.
-    void
-    lower(Gogo*, Named_object*, Block*);
-
-    // Determine types.
-    void
-    determine_types();
-
-    // Return true if this is the default clause.
-    bool
-    is_default() const
-    { return this->is_default_; }
-
-    // Return the channel.  This will return NULL for the default
-    // clause.
-    Expression*
-    channel() const
-    { return this->channel_; }
-
-    // Return true for a send, false for a receive.
-    bool
-    is_send() const
-    {
-      go_assert(!this->is_default_);
-      return this->is_send_;
-    }
-
-    // Return the statements.
-    const Block*
-    statements() const
-    { return this->statements_; }
-
-    // Return the location.
-    source_location
-    location() const
-    { return this->location_; }
-
-    // Whether this clause may fall through to the statement which
-    // follows the overall select statement.
-    bool
-    may_fall_through() const;
-
-    // Convert the statements to the backend representation.
-    Bstatement*
-    get_statements_backend(Translate_context*);
-
-   private:
-    // The channel.
-    Expression* channel_;
-    // The value to send or the lvalue to receive into.
-    Expression* val_;
-    // The lvalue to set to whether the channel is closed on a
-    // receive.
-    Expression* closed_;
-    // The variable to initialize, for "case a := <-ch".
-    Named_object* var_;
-    // The variable to initialize to whether the channel is closed,
-    // for "case a, c := <-ch".
-    Named_object* closedvar_;
-    // The statements to execute.
-    Block* statements_;
-    // The location of this clause.
-    source_location location_;
-    // Whether this is a send or a receive.
-    bool is_send_;
-    // Whether this is the default.
-    bool is_default_;
-    // Whether this has been lowered.
-    bool is_lowered_;
-  };
-
-  void
-  add_clause_backend(Translate_context*, source_location, int index,
-                    int case_value, Select_clause*, Unnamed_label*,
-                    std::vector<std::vector<Bexpression*> >* cases,
-                    std::vector<Bstatement*>* clauses);
-
-  typedef std::vector<Select_clause> Clauses;
-
-  Clauses clauses_;
-};
-
-// A select statement.
-
-class Select_statement : public Statement
-{
- public:
-  Select_statement(source_location location)
-    : Statement(STATEMENT_SELECT, location),
-      clauses_(NULL), break_label_(NULL), is_lowered_(false)
-  { }
-
-  // Add the clauses.
-  void
-  add_clauses(Select_clauses* clauses)
-  {
-    go_assert(this->clauses_ == NULL);
-    this->clauses_ = clauses;
-  }
-
-  // Return the break label for this select statement.
-  Unnamed_label*
-  break_label();
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->clauses_->traverse(traverse); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  void
-  do_determine_types()
-  { this->clauses_->determine_types(); }
-
-  bool
-  do_may_fall_through() const
-  { return this->clauses_->may_fall_through(); }
-
-  Bstatement*
-  do_get_backend(Translate_context*);
-
- private:
-  // The select clauses.
-  Select_clauses* clauses_;
-  // The break label.
-  Unnamed_label* break_label_;
-  // Whether this statement has been lowered.
-  bool is_lowered_;
-};
-
-// A statement which requires a thunk: go or defer.
-
-class Thunk_statement : public Statement
-{
- public:
-  Thunk_statement(Statement_classification, Call_expression*,
-                 source_location);
-
-  // Return the call expression.
-  Expression*
-  call()
-  { return this->call_; }
-
-  // Simplify a go or defer statement so that it only uses a single
-  // parameter.
-  bool
-  simplify_statement(Gogo*, Named_object*, Block*);
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  // Return the function and argument for the call.
-  bool
-  get_fn_and_arg(Expression** pfn, Expression** parg);
-
- private:
-  // Return whether this is a simple go statement.
-  bool
-  is_simple(Function_type*) const;
-
-  // Build the struct to use for a complex case.
-  Struct_type*
-  build_struct(Function_type* fntype);
-
-  // Build the thunk.
-  void
-  build_thunk(Gogo*, const std::string&, Function_type* fntype);
-
-  // The field name used in the thunk structure for the function
-  // pointer.
-  static const char* const thunk_field_fn;
-
-  // The field name used in the thunk structure for the receiver, if
-  // there is one.
-  static const char* const thunk_field_receiver;
-
-  // Set the name to use for thunk field N.
-  void
-  thunk_field_param(int n, char* buf, size_t buflen);
-
-  // The function call to be executed in a separate thread (go) or
-  // later (defer).
-  Expression* call_;
-  // The type used for a struct to pass to a thunk, if this is not a
-  // simple call.
-  Struct_type* struct_type_;
-};
-
-// A go statement.
-
-class Go_statement : public Thunk_statement
-{
- public:
-  Go_statement(Call_expression* call, source_location location)
-    : Thunk_statement(STATEMENT_GO, call, location)
-  { }
-
- protected:
-  Bstatement*
-  do_get_backend(Translate_context*);
-};
-
-// A defer statement.
-
-class Defer_statement : public Thunk_statement
-{
- public:
-  Defer_statement(Call_expression* call, source_location location)
-    : Thunk_statement(STATEMENT_DEFER, call, location)
-  { }
-
- protected:
-  Bstatement*
-  do_get_backend(Translate_context*);
-};
-
-// A label statement.
-
-class Label_statement : public Statement
-{
- public:
-  Label_statement(Label* label, source_location location)
-    : Statement(STATEMENT_LABEL, location),
-      label_(label)
-  { }
-
-  // Return the label itself.
-  const Label*
-  label() const
-  { return this->label_; }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Bstatement*
-  do_get_backend(Translate_context*);
-
- private:
-  // The label.
-  Label* label_;
-};
-
-// A for statement.
-
-class For_statement : public Statement
-{
- public:
-  For_statement(Block* init, Expression* cond, Block* post,
-               source_location location)
-    : Statement(STATEMENT_FOR, location),
-      init_(init), cond_(cond), post_(post), statements_(NULL),
-      break_label_(NULL), continue_label_(NULL)
-  { }
-
-  // Add the statements.
-  void
-  add_statements(Block* statements)
-  {
-    go_assert(this->statements_ == NULL);
-    this->statements_ = statements;
-  }
-
-  // Return the break label for this for statement.
-  Unnamed_label*
-  break_label();
-
-  // Return the continue label for this for statement.
-  Unnamed_label*
-  continue_label();
-
-  // Set the break and continue labels for this statement.
-  void
-  set_break_continue_labels(Unnamed_label* break_label,
-                           Unnamed_label* continue_label);
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { go_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  // The initialization statements.  This may be NULL.
-  Block* init_;
-  // The condition.  This may be NULL.
-  Expression* cond_;
-  // The statements to run after each iteration.  This may be NULL.
-  Block* post_;
-  // The statements in the loop itself.
-  Block* statements_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-  // The continue label, if needed.
-  Unnamed_label* continue_label_;
-};
-
-// A for statement over a range clause.
-
-class For_range_statement : public Statement
-{
- public:
-  For_range_statement(Expression* index_var, Expression* value_var,
-                     Expression* range, source_location location)
-    : Statement(STATEMENT_FOR_RANGE, location),
-      index_var_(index_var), value_var_(value_var), range_(range),
-      statements_(NULL), break_label_(NULL), continue_label_(NULL)
-  { }
-
-  // Add the statements.
-  void
-  add_statements(Block* statements)
-  {
-    go_assert(this->statements_ == NULL);
-    this->statements_ = statements;
-  }
-
-  // Return the break label for this for statement.
-  Unnamed_label*
-  break_label();
-
-  // Return the continue label for this for statement.
-  Unnamed_label*
-  continue_label();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { go_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  Expression*
-  make_range_ref(Named_object*, Temporary_statement*, source_location);
-
-  Expression*
-  call_builtin(Gogo*, const char* funcname, Expression* arg, source_location);
-
-  void
-  lower_range_array(Gogo*, Block*, Block*, Named_object*, Temporary_statement*,
-                   Temporary_statement*, Temporary_statement*,
-                   Block**, Expression**, Block**, Block**);
-
-  void
-  lower_range_string(Gogo*, Block*, Block*, Named_object*, Temporary_statement*,
-                    Temporary_statement*, Temporary_statement*,
-                    Block**, Expression**, Block**, Block**);
-
-  void
-  lower_range_map(Gogo*, Block*, Block*, Named_object*, Temporary_statement*,
-                 Temporary_statement*, Temporary_statement*,
-                 Block**, Expression**, Block**, Block**);
-
-  void
-  lower_range_channel(Gogo*, Block*, Block*, Named_object*,
-                     Temporary_statement*, Temporary_statement*,
-                     Temporary_statement*, Block**, Expression**, Block**,
-                     Block**);
-
-  // The variable which is set to the index value.
-  Expression* index_var_;
-  // The variable which is set to the element value.  This may be
-  // NULL.
-  Expression* value_var_;
-  // The expression we are ranging over.
-  Expression* range_;
-  // The statements in the block.
-  Block* statements_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-  // The continue label, if needed.
-  Unnamed_label* continue_label_;
-};
-
-// Class Case_clauses holds the clauses of a switch statement.  This
-// is built by the parser.
-
-class Case_clauses
-{
- public:
-  Case_clauses()
-    : clauses_()
-  { }
-
-  // Add a new clause.  CASES is a list of case expressions; it may be
-  // NULL.  IS_DEFAULT is true if this is the default case.
-  // STATEMENTS is a block of statements.  IS_FALLTHROUGH is true if
-  // after the statements the case clause should fall through to the
-  // next clause.
-  void
-  add(Expression_list* cases, bool is_default, Block* statements,
-      bool is_fallthrough, source_location location)
-  {
-    this->clauses_.push_back(Case_clause(cases, is_default, statements,
-                                        is_fallthrough, location));
-  }
-
-  // Return whether there are no clauses.
-  bool
-  empty() const
-  { return this->clauses_.empty(); }
-
-  // Traverse the case clauses.
-  int
-  traverse(Traverse*);
-
-  // Lower for a nonconstant switch.
-  void
-  lower(Block*, Temporary_statement*, Unnamed_label*) const;
-
-  // Determine types of expressions.  The Type parameter is the type
-  // of the switch value.
-  void
-  determine_types(Type*);
-
-  // Check types.  The Type parameter is the type of the switch value.
-  bool
-  check_types(Type*);
-
-  // Return true if all the clauses are constant values.
-  bool
-  is_constant() const;
-
-  // Return true if these clauses may fall through to the statements
-  // following the switch statement.
-  bool
-  may_fall_through() const;
-
-  // Return the body of a SWITCH_EXPR when all the clauses are
-  // constants.
-  void
-  get_backend(Translate_context*, Unnamed_label* break_label,
-             std::vector<std::vector<Bexpression*> >* all_cases,
-             std::vector<Bstatement*>* all_statements) const;
-
- private:
-  // For a constant switch we need to keep a record of constants we
-  // have already seen.
-  class Hash_integer_value;
-  class Eq_integer_value;
-  typedef Unordered_set_hash(Expression*, Hash_integer_value,
-                            Eq_integer_value) Case_constants;
-
-  // One case clause.
-  class Case_clause
-  {
-   public:
-    Case_clause()
-      : cases_(NULL), statements_(NULL), is_default_(false),
-       is_fallthrough_(false), location_(UNKNOWN_LOCATION)
-    { }
-
-    Case_clause(Expression_list* cases, bool is_default, Block* statements,
-               bool is_fallthrough, source_location location)
-      : cases_(cases), statements_(statements), is_default_(is_default),
-       is_fallthrough_(is_fallthrough), location_(location)
-    { }
-
-    // Whether this clause falls through to the next clause.
-    bool
-    is_fallthrough() const
-    { return this->is_fallthrough_; }
-
-    // Whether this is the default.
-    bool
-    is_default() const
-    { return this->is_default_; }
-
-    // The location of this clause.
-    source_location
-    location() const
-    { return this->location_; }
-
-    // Traversal.
-    int
-    traverse(Traverse*);
-
-    // Lower for a nonconstant switch.
-    void
-    lower(Block*, Temporary_statement*, Unnamed_label*, Unnamed_label*) const;
-
-    // Determine types.
-    void
-    determine_types(Type*);
-
-    // Check types.
-    bool
-    check_types(Type*);
-
-    // Return true if all the case expressions are constant.
-    bool
-    is_constant() const;
-
-    // Return true if this clause may fall through to execute the
-    // statements following the switch statement.  This is not the
-    // same as whether this clause falls through to the next clause.
-    bool
-    may_fall_through() const;
-
-    // Convert the case values and statements to the backend
-    // representation.
-    Bstatement*
-    get_backend(Translate_context*, Unnamed_label* break_label,
-               Case_constants*, std::vector<Bexpression*>* cases) const;
-
-   private:
-    // The list of case expressions.
-    Expression_list* cases_;
-    // The statements to execute.
-    Block* statements_;
-    // Whether this is the default case.
-    bool is_default_;
-    // Whether this falls through after the statements.
-    bool is_fallthrough_;
-    // The location of this case clause.
-    source_location location_;
-  };
-
-  friend class Case_clause;
-
-  // The type of the list of clauses.
-  typedef std::vector<Case_clause> Clauses;
-
-  // All the case clauses.
-  Clauses clauses_;
-};
-
-// A switch statement.
-
-class Switch_statement : public Statement
-{
- public:
-  Switch_statement(Expression* val, source_location location)
-    : Statement(STATEMENT_SWITCH, location),
-      val_(val), clauses_(NULL), break_label_(NULL)
-  { }
-
-  // Add the clauses.
-  void
-  add_clauses(Case_clauses* clauses)
-  {
-    go_assert(this->clauses_ == NULL);
-    this->clauses_ = clauses;
-  }
-
-  // Return the break label for this switch statement.
-  Unnamed_label*
-  break_label();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  // The value to switch on.  This may be NULL.
-  Expression* val_;
-  // The case clauses.
-  Case_clauses* clauses_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-};
-
-// Class Type_case_clauses holds the clauses of a type switch
-// statement.  This is built by the parser.
-
-class Type_case_clauses
-{
- public:
-  Type_case_clauses()
-    : clauses_()
-  { }
-
-  // Add a new clause.  TYPE is the type for this clause; it may be
-  // NULL.  IS_FALLTHROUGH is true if this falls through to the next
-  // clause; in this case STATEMENTS will be NULL.  IS_DEFAULT is true
-  // if this is the default case.  STATEMENTS is a block of
-  // statements; it may be NULL.
-  void
-  add(Type* type, bool is_fallthrough, bool is_default, Block* statements,
-      source_location location)
-  {
-    this->clauses_.push_back(Type_case_clause(type, is_fallthrough, is_default,
-                                             statements, location));
-  }
-
-  // Return whether there are no clauses.
-  bool
-  empty() const
-  { return this->clauses_.empty(); }
-
-  // Traverse the type case clauses.
-  int
-  traverse(Traverse*);
-
-  // Check for duplicates.
-  void
-  check_duplicates() const;
-
-  // Lower to if and goto statements.
-  void
-  lower(Block*, Temporary_statement* descriptor_temp,
-       Unnamed_label* break_label) const;
-
- private:
-  // One type case clause.
-  class Type_case_clause
-  {
-   public:
-    Type_case_clause()
-      : type_(NULL), statements_(NULL), is_default_(false),
-       location_(UNKNOWN_LOCATION)
-    { }
-
-    Type_case_clause(Type* type, bool is_fallthrough, bool is_default,
-                    Block* statements, source_location location)
-      : type_(type), statements_(statements), is_fallthrough_(is_fallthrough),
-       is_default_(is_default), location_(location)
-    { }
-
-    // The type.
-    Type*
-    type() const
-    { return this->type_; }
-
-    // Whether this is the default.
-    bool
-    is_default() const
-    { return this->is_default_; }
-
-    // The location of this type clause.
-    source_location
-    location() const
-    { return this->location_; }
-
-    // Traversal.
-    int
-    traverse(Traverse*);
-
-    // Lower to if and goto statements.
-    void
-    lower(Block*, Temporary_statement* descriptor_temp,
-         Unnamed_label* break_label, Unnamed_label** stmts_label) const;
-
-   private:
-    // The type for this type clause.
-    Type* type_;
-    // The statements to execute.
-    Block* statements_;
-    // Whether this falls through--this is true for "case T1, T2".
-    bool is_fallthrough_;
-    // Whether this is the default case.
-    bool is_default_;
-    // The location of this type case clause.
-    source_location location_;
-  };
-
-  friend class Type_case_clause;
-
-  // The type of the list of type clauses.
-  typedef std::vector<Type_case_clause> Type_clauses;
-
-  // All the type case clauses.
-  Type_clauses clauses_;
-};
-
-// A type switch statement.
-
-class Type_switch_statement : public Statement
-{
- public:
-  Type_switch_statement(Named_object* var, Expression* expr,
-                       source_location location)
-    : Statement(STATEMENT_TYPE_SWITCH, location),
-      var_(var), expr_(expr), clauses_(NULL), break_label_(NULL)
-  { go_assert(var == NULL || expr == NULL); }
-
-  // Add the clauses.
-  void
-  add_clauses(Type_case_clauses* clauses)
-  {
-    go_assert(this->clauses_ == NULL);
-    this->clauses_ = clauses;
-  }
-
-  // Return the break label for this type switch statement.
-  Unnamed_label*
-  break_label();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  Bstatement*
-  do_get_backend(Translate_context*)
-  { go_unreachable(); }
-
- private:
-  // The variable holding the value we are switching on.
-  Named_object* var_;
-  // The expression we are switching on if there is no variable.
-  Expression* expr_;
-  // The type case clauses.
-  Type_case_clauses* clauses_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-};
-
-#endif // !defined(GO_STATEMENTS_H)
diff --git a/gcc/go/gofrontend/statements.h.working b/gcc/go/gofrontend/statements.h.working
deleted file mode 100644 (file)
index 5199981..0000000
+++ /dev/null
@@ -1,1461 +0,0 @@
-// statements.h -- Go frontend statements.     -*- C++ -*-
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#ifndef GO_STATEMENTS_H
-#define GO_STATEMENTS_H
-
-#include "operator.h"
-
-class Gogo;
-class Traverse;
-class Block;
-class Function;
-class Unnamed_label;
-class Temporary_statement;
-class Variable_declaration_statement;
-class Return_statement;
-class Thunk_statement;
-class Label_statement;
-class For_statement;
-class For_range_statement;
-class Switch_statement;
-class Type_switch_statement;
-class Send_statement;
-class Select_statement;
-class Variable;
-class Named_object;
-class Label;
-class Translate_context;
-class Expression;
-class Expression_list;
-class Struct_type;
-class Call_expression;
-class Map_index_expression;
-class Receive_expression;
-class Case_clauses;
-class Type_case_clauses;
-class Select_clauses;
-class Typed_identifier_list;
-
-// This class is used to traverse assignments made by a statement
-// which makes assignments.
-
-class Traverse_assignments
-{
- public:
-  Traverse_assignments()
-  { }
-
-  virtual ~Traverse_assignments()
-  { }
-
-  // This is called for a variable initialization.
-  virtual void
-  initialize_variable(Named_object*) = 0;
-
-  // This is called for each assignment made by the statement.  PLHS
-  // points to the left hand side, and PRHS points to the right hand
-  // side.  PRHS may be NULL if there is no associated expression, as
-  // in the bool set by a non-blocking receive.
-  virtual void
-  assignment(Expression** plhs, Expression** prhs) = 0;
-
-  // This is called for each expression which is not passed to the
-  // assignment function.  This is used for some of the statements
-  // which assign two values, for which there is no expression which
-  // describes the value.  For ++ and -- the value is passed to both
-  // the assignment method and the rhs method.  IS_STORED is true if
-  // this value is being stored directly.  It is false if the value is
-  // computed but not stored.  IS_LOCAL is true if the value is being
-  // stored in a local variable or this is being called by a return
-  // statement.
-  virtual void
-  value(Expression**, bool is_stored, bool is_local) = 0;
-};
-
-// A single statement.
-
-class Statement
-{
- public:
-  // The types of statements.
-  enum Statement_classification
-  {
-    STATEMENT_ERROR,
-    STATEMENT_VARIABLE_DECLARATION,
-    STATEMENT_TEMPORARY,
-    STATEMENT_ASSIGNMENT,
-    STATEMENT_EXPRESSION,
-    STATEMENT_BLOCK,
-    STATEMENT_GO,
-    STATEMENT_DEFER,
-    STATEMENT_RETURN,
-    STATEMENT_BREAK_OR_CONTINUE,
-    STATEMENT_GOTO,
-    STATEMENT_GOTO_UNNAMED,
-    STATEMENT_LABEL,
-    STATEMENT_UNNAMED_LABEL,
-    STATEMENT_IF,
-    STATEMENT_CONSTANT_SWITCH,
-    STATEMENT_SEND,
-    STATEMENT_SELECT,
-
-    // These statements types are created by the parser, but they
-    // disappear during the lowering pass.
-    STATEMENT_ASSIGNMENT_OPERATION,
-    STATEMENT_TUPLE_ASSIGNMENT,
-    STATEMENT_TUPLE_MAP_ASSIGNMENT,
-    STATEMENT_MAP_ASSIGNMENT,
-    STATEMENT_TUPLE_RECEIVE_ASSIGNMENT,
-    STATEMENT_TUPLE_TYPE_GUARD_ASSIGNMENT,
-    STATEMENT_INCDEC,
-    STATEMENT_FOR,
-    STATEMENT_FOR_RANGE,
-    STATEMENT_SWITCH,
-    STATEMENT_TYPE_SWITCH
-  };
-
-  Statement(Statement_classification, source_location);
-
-  virtual ~Statement();
-
-  // Make a variable declaration.
-  static Statement*
-  make_variable_declaration(Named_object*);
-
-  // Make a statement which creates a temporary variable and
-  // initializes it to an expression.  The block is used if the
-  // temporary variable has to be explicitly destroyed; the variable
-  // must still be added to the block.  References to the temporary
-  // variable may be constructed using make_temporary_reference.
-  // Either the type or the initialization expression may be NULL, but
-  // not both.
-  static Temporary_statement*
-  make_temporary(Type*, Expression*, source_location);
-
-  // Make an assignment statement.
-  static Statement*
-  make_assignment(Expression*, Expression*, source_location);
-
-  // Make an assignment operation (+=, etc.).
-  static Statement*
-  make_assignment_operation(Operator, Expression*, Expression*,
-                           source_location);
-
-  // Make a tuple assignment statement.
-  static Statement*
-  make_tuple_assignment(Expression_list*, Expression_list*, source_location);
-
-  // Make an assignment from a map index to a pair of variables.
-  static Statement*
-  make_tuple_map_assignment(Expression* val, Expression* present,
-                           Expression*, source_location);
-
-  // Make a statement which assigns a pair of values to a map.
-  static Statement*
-  make_map_assignment(Expression*, Expression* val,
-                     Expression* should_set, source_location);
-
-  // Make an assignment from a nonblocking receive to a pair of
-  // variables.  FOR_SELECT is true is this is being created for a
-  // case x, ok := <-c in a select statement.
-  static Statement*
-  make_tuple_receive_assignment(Expression* val, Expression* closed,
-                               Expression* channel, bool for_select,
-                               source_location);
-
-  // Make an assignment from a type guard to a pair of variables.
-  static Statement*
-  make_tuple_type_guard_assignment(Expression* val, Expression* ok,
-                                  Expression* expr, Type* type,
-                                  source_location);
-
-  // Make an expression statement from an Expression.
-  static Statement*
-  make_statement(Expression*);
-
-  // Make a block statement from a Block.  This is an embedded list of
-  // statements which may also include variable definitions.
-  static Statement*
-  make_block_statement(Block*, source_location);
-
-  // Make an increment statement.
-  static Statement*
-  make_inc_statement(Expression*);
-
-  // Make a decrement statement.
-  static Statement*
-  make_dec_statement(Expression*);
-
-  // Make a go statement.
-  static Statement*
-  make_go_statement(Call_expression* call, source_location);
-
-  // Make a defer statement.
-  static Statement*
-  make_defer_statement(Call_expression* call, source_location);
-
-  // Make a return statement.
-  static Statement*
-  make_return_statement(const Typed_identifier_list*, Expression_list*,
-                       source_location);
-
-  // Make a break statement.
-  static Statement*
-  make_break_statement(Unnamed_label* label, source_location);
-
-  // Make a continue statement.
-  static Statement*
-  make_continue_statement(Unnamed_label* label, source_location);
-
-  // Make a goto statement.
-  static Statement*
-  make_goto_statement(Label* label, source_location);
-
-  // Make a goto statement to an unnamed label.
-  static Statement*
-  make_goto_unnamed_statement(Unnamed_label* label, source_location);
-
-  // Make a label statement--where the label is defined.
-  static Statement*
-  make_label_statement(Label* label, source_location);
-
-  // Make an unnamed label statement--where the label is defined.
-  static Statement*
-  make_unnamed_label_statement(Unnamed_label* label);
-
-  // Make an if statement.
-  static Statement*
-  make_if_statement(Expression* cond, Block* then_block, Block* else_block,
-                   source_location);
-
-  // Make a switch statement.
-  static Switch_statement*
-  make_switch_statement(Expression* switch_val, source_location);
-
-  // Make a type switch statement.
-  static Type_switch_statement*
-  make_type_switch_statement(Named_object* var, Expression*, source_location);
-
-  // Make a send statement.
-  static Send_statement*
-  make_send_statement(Expression* channel, Expression* val, source_location);
-
-  // Make a select statement.
-  static Select_statement*
-  make_select_statement(source_location);
-
-  // Make a for statement.
-  static For_statement*
-  make_for_statement(Block* init, Expression* cond, Block* post,
-                    source_location location);
-
-  // Make a for statement with a range clause.
-  static For_range_statement*
-  make_for_range_statement(Expression* index_var, Expression* value_var,
-                          Expression* range, source_location);
-
-  // Return the statement classification.
-  Statement_classification
-  classification() const
-  { return this->classification_; }
-
-  // Get the statement location.
-  source_location
-  location() const
-  { return this->location_; }
-
-  // Traverse the tree.
-  int
-  traverse(Block*, size_t* index, Traverse*);
-
-  // Traverse the contents of this statement--the expressions and
-  // statements which it contains.
-  int
-  traverse_contents(Traverse*);
-
-  // If this statement assigns some values, it calls a function for
-  // each value to which this statement assigns a value, and returns
-  // true.  If this statement does not assign any values, it returns
-  // false.
-  bool
-  traverse_assignments(Traverse_assignments* tassign);
-
-  // Lower a statement.  This is called immediately after parsing to
-  // simplify statements for further processing.  It returns the same
-  // Statement or a new one.  FUNCTION is the function containing this
-  // statement.  BLOCK is the block containing this statement.
-  Statement*
-  lower(Gogo* gogo, Named_object* function, Block* block)
-  { return this->do_lower(gogo, function, block); }
-
-  // Set type information for unnamed constants.
-  void
-  determine_types();
-
-  // Check types in a statement.  This simply checks that any
-  // expressions used by the statement have the right type.
-  void
-  check_types(Gogo* gogo)
-  { this->do_check_types(gogo); }
-
-  // Return whether this is a block statement.
-  bool
-  is_block_statement() const
-  { return this->classification_ == STATEMENT_BLOCK; }
-
-  // If this is a variable declaration statement, return it.
-  // Otherwise return NULL.
-  Variable_declaration_statement*
-  variable_declaration_statement()
-  {
-    return this->convert<Variable_declaration_statement,
-                        STATEMENT_VARIABLE_DECLARATION>();
-  }
-
-  // If this is a return statement, return it.  Otherwise return NULL.
-  Return_statement*
-  return_statement()
-  { return this->convert<Return_statement, STATEMENT_RETURN>(); }
-
-  // If this is a thunk statement (a go or defer statement), return
-  // it.  Otherwise return NULL.
-  Thunk_statement*
-  thunk_statement();
-
-  // If this is a label statement, return it.  Otherwise return NULL.
-  Label_statement*
-  label_statement()
-  { return this->convert<Label_statement, STATEMENT_LABEL>(); }
-
-  // If this is a for statement, return it.  Otherwise return NULL.
-  For_statement*
-  for_statement()
-  { return this->convert<For_statement, STATEMENT_FOR>(); }
-
-  // If this is a for statement over a range clause, return it.
-  // Otherwise return NULL.
-  For_range_statement*
-  for_range_statement()
-  { return this->convert<For_range_statement, STATEMENT_FOR_RANGE>(); }
-
-  // If this is a switch statement, return it.  Otherwise return NULL.
-  Switch_statement*
-  switch_statement()
-  { return this->convert<Switch_statement, STATEMENT_SWITCH>(); }
-
-  // If this is a type switch statement, return it.  Otherwise return
-  // NULL.
-  Type_switch_statement*
-  type_switch_statement()
-  { return this->convert<Type_switch_statement, STATEMENT_TYPE_SWITCH>(); }
-
-  // If this is a select statement, return it.  Otherwise return NULL.
-  Select_statement*
-  select_statement()
-  { return this->convert<Select_statement, STATEMENT_SELECT>(); }
-
-  // Return true if this statement may fall through--if after
-  // executing this statement we may go on to execute the following
-  // statement, if any.
-  bool
-  may_fall_through() const
-  { return this->do_may_fall_through(); }
-
-  // Return the tree for a statement.  BLOCK is the enclosing block.
-  tree
-  get_tree(Translate_context*);
-
- protected:
-  // Implemented by child class: traverse the tree.
-  virtual int
-  do_traverse(Traverse*) = 0;
-
-  // Implemented by child class: traverse assignments.  Any statement
-  // which includes an assignment should implement this.
-  virtual bool
-  do_traverse_assignments(Traverse_assignments*)
-  { return false; }
-
-  // Implemented by the child class: lower this statement to a simpler
-  // one.
-  virtual Statement*
-  do_lower(Gogo*, Named_object*, Block*)
-  { return this; }
-
-  // Implemented by child class: set type information for unnamed
-  // constants.  Any statement which includes an expression needs to
-  // implement this.
-  virtual void
-  do_determine_types()
-  { }
-
-  // Implemented by child class: check types of expressions used in a
-  // statement.
-  virtual void
-  do_check_types(Gogo*)
-  { }
-
-  // Implemented by child class: return true if this statement may
-  // fall through.
-  virtual bool
-  do_may_fall_through() const
-  { return true; }
-
-  // Implemented by child class: return a tree.
-  virtual tree
-  do_get_tree(Translate_context*) = 0;
-
-  // Traverse an expression in a statement.
-  int
-  traverse_expression(Traverse*, Expression**);
-
-  // Traverse an expression list in a statement.  The Expression_list
-  // may be NULL.
-  int
-  traverse_expression_list(Traverse*, Expression_list*);
-
-  // Traverse a type in a statement.
-  int
-  traverse_type(Traverse*, Type*);
-
-  // Build a tree node with one operand, setting the location.  The
-  // first operand really has type "enum tree_code", but that enum is
-  // not defined here.
-  tree
-  build_stmt_1(int tree_code_value, tree);
-
-  // For children to call when they detect that they are in error.
-  void
-  set_is_error();
-
-  // For children to call to report an error conveniently.
-  void
-  report_error(const char*);
-
-  // For children to return an error statement from lower().
-  static Statement*
-  make_error_statement(source_location);
-
- private:
-  // Convert to the desired statement classification, or return NULL.
-  // This is a controlled dynamic cast.
-  template<typename Statement_class, Statement_classification sc>
-  Statement_class*
-  convert()
-  {
-    return (this->classification_ == sc
-           ? static_cast<Statement_class*>(this)
-           : NULL);
-  }
-
-  template<typename Statement_class, Statement_classification sc>
-  const Statement_class*
-  convert() const
-  {
-    return (this->classification_ == sc
-           ? static_cast<const Statement_class*>(this)
-           : NULL);
-  }
-
-  // The statement classification.
-  Statement_classification classification_;
-  // The location in the input file of the start of this statement.
-  source_location location_;
-};
-
-// A statement which creates and initializes a temporary variable.
-
-class Temporary_statement : public Statement
-{
- public:
-  Temporary_statement(Type* type, Expression* init, source_location location)
-    : Statement(STATEMENT_TEMPORARY, location),
-      type_(type), init_(init), decl_(NULL), is_address_taken_(false)
-  { }
-
-  // Return the type of the temporary variable.
-  Type*
-  type() const;
-
-  // Return the initialization expression.
-  Expression*
-  init() const
-  { return this->init_; }
-
-  // Record that something takes the address of this temporary
-  // variable.
-  void
-  set_is_address_taken()
-  { this->is_address_taken_ = true; }
-
-  // Return the tree for the temporary variable itself.  This should
-  // not be called until after the statement itself has been expanded.
-  tree
-  get_decl() const;
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The type of the temporary variable.
-  Type* type_;
-  // The initial value of the temporary variable.  This may be NULL.
-  Expression* init_;
-  // The DECL for the temporary variable.
-  tree decl_;
-  // True if something takes the address of this temporary variable.
-  bool is_address_taken_;
-};
-
-// A variable declaration.  This marks the point in the code where a
-// variable is declared.  The Variable is also attached to a Block.
-
-class Variable_declaration_statement : public Statement
-{
- public:
-  Variable_declaration_statement(Named_object* var);
-
-  // The variable being declared.
-  Named_object*
-  var()
-  { return this->var_; }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  Named_object* var_;
-};
-
-// A return statement.
-
-class Return_statement : public Statement
-{
- public:
-  Return_statement(const Typed_identifier_list* results, Expression_list* vals,
-                  source_location location)
-    : Statement(STATEMENT_RETURN, location),
-      results_(results), vals_(vals)
-  { }
-
-  // The list of values being returned.  This may be NULL.
-  const Expression_list*
-  vals() const
-  { return this->vals_; }
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->traverse_expression_list(traverse, this->vals_); }
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  bool
-  do_may_fall_through() const
-  { return false; }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The result types of the function we are returning from.  This is
-  // here because in some of the traversals it is inconvenient to get
-  // it.
-  const Typed_identifier_list* results_;
-  // Return values.  This may be NULL.
-  Expression_list* vals_;
-};
-
-// A send statement.
-
-class Send_statement : public Statement
-{
- public:
-  Send_statement(Expression* channel, Expression* val,
-                source_location location)
-    : Statement(STATEMENT_SEND, location),
-      channel_(channel), val_(val), for_select_(false)
-  { }
-
-  // Note that this is for a select statement.
-  void
-  set_for_select()
-  { this->for_select_ = true; }
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The channel on which to send the value.
-  Expression* channel_;
-  // The value to send.
-  Expression* val_;
-  // Whether this is for a select statement.
-  bool for_select_;
-};
-
-// Select_clauses holds the clauses of a select statement.  This is
-// built by the parser.
-
-class Select_clauses
-{
- public:
-  Select_clauses()
-    : clauses_()
-  { }
-
-  // Add a new clause.  IS_SEND is true if this is a send clause,
-  // false for a receive clause.  For a send clause CHANNEL is the
-  // channel and VAL is the value to send.  For a receive clause
-  // CHANNEL is the channel, VAL is either NULL or a Var_expression
-  // for the variable to set, and CLOSED is either NULL or a
-  // Var_expression to set to whether the channel is closed.  If VAL
-  // is NULL, VAR may be a variable to be initialized with the
-  // received value, and CLOSEDVAR ma be a variable to be initialized
-  // with whether the channel is closed.  IS_DEFAULT is true if this
-  // is the default clause.  STATEMENTS is the list of statements to
-  // execute.
-  void
-  add(bool is_send, Expression* channel, Expression* val, Expression* closed,
-      Named_object* var, Named_object* closedvar, bool is_default,
-      Block* statements, source_location location)
-  {
-    this->clauses_.push_back(Select_clause(is_send, channel, val, closed, var,
-                                          closedvar, is_default, statements,
-                                          location));
-  }
-
-  // Traverse the select clauses.
-  int
-  traverse(Traverse*);
-
-  // Lower statements.
-  void
-  lower(Gogo*, Named_object*, Block*);
-
-  // Determine types.
-  void
-  determine_types();
-
-  // Whether the select clauses may fall through to the statement
-  // which follows the overall select statement.
-  bool
-  may_fall_through() const;
-
-  // Return a tree implementing the select statement.
-  tree
-  get_tree(Translate_context*, Unnamed_label* break_label, source_location);
-
- private:
-  // A single clause.
-  class Select_clause
-  {
-   public:
-    Select_clause()
-      : channel_(NULL), val_(NULL), closed_(NULL), var_(NULL),
-       closedvar_(NULL), statements_(NULL), is_send_(false),
-       is_default_(false)
-    { }
-
-    Select_clause(bool is_send, Expression* channel, Expression* val,
-                 Expression* closed, Named_object* var,
-                 Named_object* closedvar, bool is_default, Block* statements,
-                 source_location location)
-      : channel_(channel), val_(val), closed_(closed), var_(var),
-       closedvar_(closedvar), statements_(statements), location_(location),
-       is_send_(is_send), is_default_(is_default), is_lowered_(false)
-    { gcc_assert(is_default ? channel == NULL : channel != NULL); }
-
-    // Traverse the select clause.
-    int
-    traverse(Traverse*);
-
-    // Lower statements.
-    void
-    lower(Gogo*, Named_object*, Block*);
-
-    // Determine types.
-    void
-    determine_types();
-
-    // Return true if this is the default clause.
-    bool
-    is_default() const
-    { return this->is_default_; }
-
-    // Return the channel.  This will return NULL for the default
-    // clause.
-    Expression*
-    channel() const
-    { return this->channel_; }
-
-    // Return true for a send, false for a receive.
-    bool
-    is_send() const
-    {
-      gcc_assert(!this->is_default_);
-      return this->is_send_;
-    }
-
-    // Return the statements.
-    const Block*
-    statements() const
-    { return this->statements_; }
-
-    // Return the location.
-    source_location
-    location() const
-    { return this->location_; }
-
-    // Whether this clause may fall through to the statement which
-    // follows the overall select statement.
-    bool
-    may_fall_through() const;
-
-    // Return a tree for the statements to execute.
-    tree
-    get_statements_tree(Translate_context*);
-
-   private:
-    // The channel.
-    Expression* channel_;
-    // The value to send or the lvalue to receive into.
-    Expression* val_;
-    // The lvalue to set to whether the channel is closed on a
-    // receive.
-    Expression* closed_;
-    // The variable to initialize, for "case a := <-ch".
-    Named_object* var_;
-    // The variable to initialize to whether the channel is closed,
-    // for "case a, c := <-ch".
-    Named_object* closedvar_;
-    // The statements to execute.
-    Block* statements_;
-    // The location of this clause.
-    source_location location_;
-    // Whether this is a send or a receive.
-    bool is_send_;
-    // Whether this is the default.
-    bool is_default_;
-    // Whether this has been lowered.
-    bool is_lowered_;
-  };
-
-  void
-  add_clause_tree(Translate_context*, int, Select_clause*, Unnamed_label*,
-                 tree*);
-
-  typedef std::vector<Select_clause> Clauses;
-
-  Clauses clauses_;
-};
-
-// A select statement.
-
-class Select_statement : public Statement
-{
- public:
-  Select_statement(source_location location)
-    : Statement(STATEMENT_SELECT, location),
-      clauses_(NULL), break_label_(NULL), is_lowered_(false)
-  { }
-
-  // Add the clauses.
-  void
-  add_clauses(Select_clauses* clauses)
-  {
-    gcc_assert(this->clauses_ == NULL);
-    this->clauses_ = clauses;
-  }
-
-  // Return the break label for this select statement.
-  Unnamed_label*
-  break_label();
-
- protected:
-  int
-  do_traverse(Traverse* traverse)
-  { return this->clauses_->traverse(traverse); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  void
-  do_determine_types()
-  { this->clauses_->determine_types(); }
-
-  bool
-  do_may_fall_through() const
-  { return this->clauses_->may_fall_through(); }
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The select clauses.
-  Select_clauses* clauses_;
-  // The break label.
-  Unnamed_label* break_label_;
-  // Whether this statement has been lowered.
-  bool is_lowered_;
-};
-
-// A statement which requires a thunk: go or defer.
-
-class Thunk_statement : public Statement
-{
- public:
-  Thunk_statement(Statement_classification, Call_expression*,
-                 source_location);
-
-  // Return the call expression.
-  Expression*
-  call()
-  { return this->call_; }
-
-  // Simplify a go or defer statement so that it only uses a single
-  // parameter.
-  bool
-  simplify_statement(Gogo*, Block*);
-
- protected:
-  int
-  do_traverse(Traverse* traverse);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*);
-
-  void
-  do_determine_types();
-
-  void
-  do_check_types(Gogo*);
-
-  // Return the function and argument trees for the call.
-  void
-  get_fn_and_arg(Translate_context*, tree* pfn, tree* parg);
-
- private:
-  // Return whether this is a simple go statement.
-  bool
-  is_simple(Function_type*) const;
-
-  // Build the struct to use for a complex case.
-  Struct_type*
-  build_struct(Function_type* fntype);
-
-  // Build the thunk.
-  void
-  build_thunk(Gogo*, const std::string&, Function_type* fntype);
-
-  // The field name used in the thunk structure for the function
-  // pointer.
-  static const char* const thunk_field_fn;
-
-  // The field name used in the thunk structure for the receiver, if
-  // there is one.
-  static const char* const thunk_field_receiver;
-
-  // Set the name to use for thunk field N.
-  void
-  thunk_field_param(int n, char* buf, size_t buflen);
-
-  // The function call to be executed in a separate thread (go) or
-  // later (defer).
-  Expression* call_;
-  // The type used for a struct to pass to a thunk, if this is not a
-  // simple call.
-  Struct_type* struct_type_;
-};
-
-// A go statement.
-
-class Go_statement : public Thunk_statement
-{
- public:
-  Go_statement(Call_expression* call, source_location location)
-    : Thunk_statement(STATEMENT_GO, call, location)
-  { }
-
- protected:
-  tree
-  do_get_tree(Translate_context*);
-};
-
-// A defer statement.
-
-class Defer_statement : public Thunk_statement
-{
- public:
-  Defer_statement(Call_expression* call, source_location location)
-    : Thunk_statement(STATEMENT_DEFER, call, location)
-  { }
-
- protected:
-  tree
-  do_get_tree(Translate_context*);
-};
-
-// A label statement.
-
-class Label_statement : public Statement
-{
- public:
-  Label_statement(Label* label, source_location location)
-    : Statement(STATEMENT_LABEL, location),
-      label_(label)
-  { }
-
-  // Return the label itself.
-  const Label*
-  label() const
-  { return this->label_; }
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  tree
-  do_get_tree(Translate_context*);
-
- private:
-  // The label.
-  Label* label_;
-};
-
-// A for statement.
-
-class For_statement : public Statement
-{
- public:
-  For_statement(Block* init, Expression* cond, Block* post,
-               source_location location)
-    : Statement(STATEMENT_FOR, location),
-      init_(init), cond_(cond), post_(post), statements_(NULL),
-      break_label_(NULL), continue_label_(NULL)
-  { }
-
-  // Add the statements.
-  void
-  add_statements(Block* statements)
-  {
-    gcc_assert(this->statements_ == NULL);
-    this->statements_ = statements;
-  }
-
-  // Return the break label for this for statement.
-  Unnamed_label*
-  break_label();
-
-  // Return the continue label for this for statement.
-  Unnamed_label*
-  continue_label();
-
-  // Set the break and continue labels for this statement.
-  void
-  set_break_continue_labels(Unnamed_label* break_label,
-                           Unnamed_label* continue_label);
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // The initialization statements.  This may be NULL.
-  Block* init_;
-  // The condition.  This may be NULL.
-  Expression* cond_;
-  // The statements to run after each iteration.  This may be NULL.
-  Block* post_;
-  // The statements in the loop itself.
-  Block* statements_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-  // The continue label, if needed.
-  Unnamed_label* continue_label_;
-};
-
-// A for statement over a range clause.
-
-class For_range_statement : public Statement
-{
- public:
-  For_range_statement(Expression* index_var, Expression* value_var,
-                     Expression* range, source_location location)
-    : Statement(STATEMENT_FOR_RANGE, location),
-      index_var_(index_var), value_var_(value_var), range_(range),
-      statements_(NULL), break_label_(NULL), continue_label_(NULL)
-  { }
-
-  // Add the statements.
-  void
-  add_statements(Block* statements)
-  {
-    gcc_assert(this->statements_ == NULL);
-    this->statements_ = statements;
-  }
-
-  // Return the break label for this for statement.
-  Unnamed_label*
-  break_label();
-
-  // Return the continue label for this for statement.
-  Unnamed_label*
-  continue_label();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  bool
-  do_traverse_assignments(Traverse_assignments*)
-  { gcc_unreachable(); }
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  Expression*
-  make_range_ref(Named_object*, Temporary_statement*, source_location);
-
-  Expression*
-  call_builtin(Gogo*, const char* funcname, Expression* arg, source_location);
-
-  void
-  lower_range_array(Gogo*, Block*, Block*, Named_object*, Temporary_statement*,
-                   Temporary_statement*, Temporary_statement*,
-                   Block**, Expression**, Block**, Block**);
-
-  void
-  lower_range_string(Gogo*, Block*, Block*, Named_object*, Temporary_statement*,
-                    Temporary_statement*, Temporary_statement*,
-                    Block**, Expression**, Block**, Block**);
-
-  void
-  lower_range_map(Gogo*, Block*, Block*, Named_object*, Temporary_statement*,
-                 Temporary_statement*, Temporary_statement*,
-                 Block**, Expression**, Block**, Block**);
-
-  void
-  lower_range_channel(Gogo*, Block*, Block*, Named_object*,
-                     Temporary_statement*, Temporary_statement*,
-                     Temporary_statement*, Block**, Expression**, Block**,
-                     Block**);
-
-  // The variable which is set to the index value.
-  Expression* index_var_;
-  // The variable which is set to the element value.  This may be
-  // NULL.
-  Expression* value_var_;
-  // The expression we are ranging over.
-  Expression* range_;
-  // The statements in the block.
-  Block* statements_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-  // The continue label, if needed.
-  Unnamed_label* continue_label_;
-};
-
-// Class Case_clauses holds the clauses of a switch statement.  This
-// is built by the parser.
-
-class Case_clauses
-{
- public:
-  Case_clauses()
-    : clauses_()
-  { }
-
-  // Add a new clause.  CASES is a list of case expressions; it may be
-  // NULL.  IS_DEFAULT is true if this is the default case.
-  // STATEMENTS is a block of statements.  IS_FALLTHROUGH is true if
-  // after the statements the case clause should fall through to the
-  // next clause.
-  void
-  add(Expression_list* cases, bool is_default, Block* statements,
-      bool is_fallthrough, source_location location)
-  {
-    this->clauses_.push_back(Case_clause(cases, is_default, statements,
-                                        is_fallthrough, location));
-  }
-
-  // Return whether there are no clauses.
-  bool
-  empty() const
-  { return this->clauses_.empty(); }
-
-  // Traverse the case clauses.
-  int
-  traverse(Traverse*);
-
-  // Lower for a nonconstant switch.
-  void
-  lower(Block*, Temporary_statement*, Unnamed_label*) const;
-
-  // Determine types of expressions.  The Type parameter is the type
-  // of the switch value.
-  void
-  determine_types(Type*);
-
-  // Check types.  The Type parameter is the type of the switch value.
-  bool
-  check_types(Type*);
-
-  // Return true if all the clauses are constant values.
-  bool
-  is_constant() const;
-
-  // Return true if these clauses may fall through to the statements
-  // following the switch statement.
-  bool
-  may_fall_through() const;
-
-  // Return the body of a SWITCH_EXPR when all the clauses are
-  // constants.
-  tree
-  get_constant_tree(Translate_context*, Unnamed_label* break_label) const;
-
- private:
-  // For a constant tree we need to keep a record of constants we have
-  // already seen.  Note that INTEGER_CST trees are interned.
-  typedef Unordered_set(tree) Case_constants;
-
-  // One case clause.
-  class Case_clause
-  {
-   public:
-    Case_clause()
-      : cases_(NULL), statements_(NULL), is_default_(false),
-       is_fallthrough_(false), location_(UNKNOWN_LOCATION)
-    { }
-
-    Case_clause(Expression_list* cases, bool is_default, Block* statements,
-               bool is_fallthrough, source_location location)
-      : cases_(cases), statements_(statements), is_default_(is_default),
-       is_fallthrough_(is_fallthrough), location_(location)
-    { }
-
-    // Whether this clause falls through to the next clause.
-    bool
-    is_fallthrough() const
-    { return this->is_fallthrough_; }
-
-    // Whether this is the default.
-    bool
-    is_default() const
-    { return this->is_default_; }
-
-    // The location of this clause.
-    source_location
-    location() const
-    { return this->location_; }
-
-    // Traversal.
-    int
-    traverse(Traverse*);
-
-    // Lower for a nonconstant switch.
-    void
-    lower(Block*, Temporary_statement*, Unnamed_label*, Unnamed_label*) const;
-
-    // Determine types.
-    void
-    determine_types(Type*);
-
-    // Check types.
-    bool
-    check_types(Type*);
-
-    // Return true if all the case expressions are constant.
-    bool
-    is_constant() const;
-
-    // Return true if this clause may fall through to execute the
-    // statements following the switch statement.  This is not the
-    // same as whether this clause falls through to the next clause.
-    bool
-    may_fall_through() const;
-
-    // Build up the body of a SWITCH_EXPR when the case expressions
-    // are constant.
-    void
-    get_constant_tree(Translate_context*, Unnamed_label* break_label,
-                     Case_constants* case_constants, tree* stmt_list) const;
-
-   private:
-    // The list of case expressions.
-    Expression_list* cases_;
-    // The statements to execute.
-    Block* statements_;
-    // Whether this is the default case.
-    bool is_default_;
-    // Whether this falls through after the statements.
-    bool is_fallthrough_;
-    // The location of this case clause.
-    source_location location_;
-  };
-
-  friend class Case_clause;
-
-  // The type of the list of clauses.
-  typedef std::vector<Case_clause> Clauses;
-
-  // All the case clauses.
-  Clauses clauses_;
-};
-
-// A switch statement.
-
-class Switch_statement : public Statement
-{
- public:
-  Switch_statement(Expression* val, source_location location)
-    : Statement(STATEMENT_SWITCH, location),
-      val_(val), clauses_(NULL), break_label_(NULL)
-  { }
-
-  // Add the clauses.
-  void
-  add_clauses(Case_clauses* clauses)
-  {
-    gcc_assert(this->clauses_ == NULL);
-    this->clauses_ = clauses;
-  }
-
-  // Return the break label for this switch statement.
-  Unnamed_label*
-  break_label();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // The value to switch on.  This may be NULL.
-  Expression* val_;
-  // The case clauses.
-  Case_clauses* clauses_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-};
-
-// Class Type_case_clauses holds the clauses of a type switch
-// statement.  This is built by the parser.
-
-class Type_case_clauses
-{
- public:
-  Type_case_clauses()
-    : clauses_()
-  { }
-
-  // Add a new clause.  TYPE is the type for this clause; it may be
-  // NULL.  IS_FALLTHROUGH is true if this falls through to the next
-  // clause; in this case STATEMENTS will be NULL.  IS_DEFAULT is true
-  // if this is the default case.  STATEMENTS is a block of
-  // statements; it may be NULL.
-  void
-  add(Type* type, bool is_fallthrough, bool is_default, Block* statements,
-      source_location location)
-  {
-    this->clauses_.push_back(Type_case_clause(type, is_fallthrough, is_default,
-                                             statements, location));
-  }
-
-  // Return whether there are no clauses.
-  bool
-  empty() const
-  { return this->clauses_.empty(); }
-
-  // Traverse the type case clauses.
-  int
-  traverse(Traverse*);
-
-  // Check for duplicates.
-  void
-  check_duplicates() const;
-
-  // Lower to if and goto statements.
-  void
-  lower(Block*, Temporary_statement* descriptor_temp,
-       Unnamed_label* break_label) const;
-
- private:
-  // One type case clause.
-  class Type_case_clause
-  {
-   public:
-    Type_case_clause()
-      : type_(NULL), statements_(NULL), is_default_(false),
-       location_(UNKNOWN_LOCATION)
-    { }
-
-    Type_case_clause(Type* type, bool is_fallthrough, bool is_default,
-                    Block* statements, source_location location)
-      : type_(type), statements_(statements), is_fallthrough_(is_fallthrough),
-       is_default_(is_default), location_(location)
-    { }
-
-    // The type.
-    Type*
-    type() const
-    { return this->type_; }
-
-    // Whether this is the default.
-    bool
-    is_default() const
-    { return this->is_default_; }
-
-    // The location of this type clause.
-    source_location
-    location() const
-    { return this->location_; }
-
-    // Traversal.
-    int
-    traverse(Traverse*);
-
-    // Lower to if and goto statements.
-    void
-    lower(Block*, Temporary_statement* descriptor_temp,
-         Unnamed_label* break_label, Unnamed_label** stmts_label) const;
-
-   private:
-    // The type for this type clause.
-    Type* type_;
-    // The statements to execute.
-    Block* statements_;
-    // Whether this falls through--this is true for "case T1, T2".
-    bool is_fallthrough_;
-    // Whether this is the default case.
-    bool is_default_;
-    // The location of this type case clause.
-    source_location location_;
-  };
-
-  friend class Type_case_clause;
-
-  // The type of the list of type clauses.
-  typedef std::vector<Type_case_clause> Type_clauses;
-
-  // All the type case clauses.
-  Type_clauses clauses_;
-};
-
-// A type switch statement.
-
-class Type_switch_statement : public Statement
-{
- public:
-  Type_switch_statement(Named_object* var, Expression* expr,
-                       source_location location)
-    : Statement(STATEMENT_TYPE_SWITCH, location),
-      var_(var), expr_(expr), clauses_(NULL), break_label_(NULL)
-  { gcc_assert(var == NULL || expr == NULL); }
-
-  // Add the clauses.
-  void
-  add_clauses(Type_case_clauses* clauses)
-  {
-    gcc_assert(this->clauses_ == NULL);
-    this->clauses_ = clauses;
-  }
-
-  // Return the break label for this type switch statement.
-  Unnamed_label*
-  break_label();
-
- protected:
-  int
-  do_traverse(Traverse*);
-
-  Statement*
-  do_lower(Gogo*, Named_object*, Block*);
-
-  tree
-  do_get_tree(Translate_context*)
-  { gcc_unreachable(); }
-
- private:
-  // Get the type descriptor.
-  tree
-  get_type_descriptor(Translate_context*, Type*, tree);
-
-  // The variable holding the value we are switching on.
-  Named_object* var_;
-  // The expression we are switching on if there is no variable.
-  Expression* expr_;
-  // The type case clauses.
-  Type_case_clauses* clauses_;
-  // The break label, if needed.
-  Unnamed_label* break_label_;
-};
-
-#endif // !defined(GO_STATEMENTS_H)
diff --git a/gcc/go/gofrontend/types.cc.merge-left.r167407 b/gcc/go/gofrontend/types.cc.merge-left.r167407
deleted file mode 100644 (file)
index b030a42..0000000
+++ /dev/null
@@ -1,8078 +0,0 @@
-// types.cc -- Go frontend types.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "toplev.h"
-#include "intl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "real.h"
-#include "convert.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "gogo.h"
-#include "operator.h"
-#include "expressions.h"
-#include "statements.h"
-#include "export.h"
-#include "import.h"
-#include "types.h"
-
-// Class Type.
-
-Type::Type(Type_classification classification)
-  : classification_(classification), tree_(NULL_TREE),
-    type_descriptor_decl_(NULL_TREE)
-{
-}
-
-Type::~Type()
-{
-}
-
-// Get the base type for a type--skip names and forward declarations.
-
-Type*
-Type::base()
-{
-  switch (this->classification_)
-    {
-    case TYPE_NAMED:
-      return static_cast<Named_type*>(this)->real_type()->base();
-    case TYPE_FORWARD:
-      return static_cast<Forward_declaration_type*>(this)->real_type()->base();
-    default:
-      return this;
-    }
-}
-
-const Type*
-Type::base() const
-{
-  switch (this->classification_)
-    {
-    case TYPE_NAMED:
-      return static_cast<const Named_type*>(this)->real_type()->base();
-    case TYPE_FORWARD:
-      {
-       const Forward_declaration_type* ftype =
-         static_cast<const Forward_declaration_type*>(this);
-       return ftype->real_type()->base();
-      }
-    default:
-      return this;
-    }
-}
-
-// Skip defined forward declarations.
-
-Type*
-Type::forwarded()
-{
-  Type* t = this;
-  Forward_declaration_type* ftype = t->forward_declaration_type();
-  while (ftype != NULL && ftype->is_defined())
-    {
-      t = ftype->real_type();
-      ftype = t->forward_declaration_type();
-    }
-  return t;
-}
-
-const Type*
-Type::forwarded() const
-{
-  const Type* t = this;
-  const Forward_declaration_type* ftype = t->forward_declaration_type();
-  while (ftype != NULL && ftype->is_defined())
-    {
-      t = ftype->real_type();
-      ftype = t->forward_declaration_type();
-    }
-  return t;
-}
-
-// If this is a named type, return it.  Otherwise, return NULL.
-
-Named_type*
-Type::named_type()
-{
-  return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
-}
-
-const Named_type*
-Type::named_type() const
-{
-  return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
-}
-
-// Return true if this type is not defined.
-
-bool
-Type::is_undefined() const
-{
-  return this->forwarded()->forward_declaration_type() != NULL;
-}
-
-// Return true if this is a basic type: a type which is not composed
-// of other types, and is not void.
-
-bool
-Type::is_basic_type() const
-{
-  switch (this->classification_)
-    {
-    case TYPE_INTEGER:
-    case TYPE_FLOAT:
-    case TYPE_COMPLEX:
-    case TYPE_BOOLEAN:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      return true;
-
-    case TYPE_ERROR:
-    case TYPE_VOID:
-    case TYPE_FUNCTION:
-    case TYPE_POINTER:
-    case TYPE_STRUCT:
-    case TYPE_ARRAY:
-    case TYPE_MAP:
-    case TYPE_CHANNEL:
-    case TYPE_INTERFACE:
-      return false;
-
-    case TYPE_NAMED:
-    case TYPE_FORWARD:
-      return this->base()->is_basic_type();
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return true if this is an abstract type.
-
-bool
-Type::is_abstract() const
-{
-  switch (this->classification())
-    {
-    case TYPE_INTEGER:
-      return this->integer_type()->is_abstract();
-    case TYPE_FLOAT:
-      return this->float_type()->is_abstract();
-    case TYPE_COMPLEX:
-      return this->complex_type()->is_abstract();
-    case TYPE_STRING:
-      return this->is_abstract_string_type();
-    case TYPE_BOOLEAN:
-      return this->is_abstract_boolean_type();
-    default:
-      return false;
-    }
-}
-
-// Return a non-abstract version of an abstract type.
-
-Type*
-Type::make_non_abstract_type()
-{
-  gcc_assert(this->is_abstract());
-  switch (this->classification())
-    {
-    case TYPE_INTEGER:
-      return Type::lookup_integer_type("int");
-    case TYPE_FLOAT:
-      return Type::lookup_float_type("float");
-    case TYPE_COMPLEX:
-      return Type::lookup_complex_type("complex");
-    case TYPE_STRING:
-      return Type::lookup_string_type();
-    case TYPE_BOOLEAN:
-      return Type::lookup_bool_type();
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return true if this is an error type.  Don't give an error if we
-// try to dereference an undefined forwarding type, as this is called
-// in the parser when the type may legitimately be undefined.
-
-bool
-Type::is_error_type() const
-{
-  const Type* t = this->forwarded();
-  // Note that we return false for an undefined forward type.
-  switch (t->classification_)
-    {
-    case TYPE_ERROR:
-      return true;
-    case TYPE_NAMED:
-      return t->named_type()->real_type()->is_error_type();
-    default:
-      return false;
-    }
-}
-
-// If this is a pointer type, return the type to which it points.
-// Otherwise, return NULL.
-
-Type*
-Type::points_to() const
-{
-  const Pointer_type* ptype = this->convert<const Pointer_type,
-                                           TYPE_POINTER>();
-  return ptype == NULL ? NULL : ptype->points_to();
-}
-
-// Return whether this is an open array type.
-
-bool
-Type::is_open_array_type() const
-{
-  return this->array_type() != NULL && this->array_type()->length() == NULL;
-}
-
-// Return whether this is the predeclared constant nil being used as a
-// type.
-
-bool
-Type::is_nil_constant_as_type() const
-{
-  const Type* t = this->forwarded();
-  if (t->forward_declaration_type() != NULL)
-    {
-      const Named_object* no = t->forward_declaration_type()->named_object();
-      if (no->is_unknown())
-       no = no->unknown_value()->real_named_object();
-      if (no != NULL
-         && no->is_const()
-         && no->const_value()->expr()->is_nil_expression())
-       return true;
-    }
-  return false;
-}
-
-// Traverse a type.
-
-int
-Type::traverse(Type* type, Traverse* traverse)
-{
-  gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
-            || (traverse->traverse_mask()
-                & Traverse::traverse_expressions) != 0);
-  if (traverse->remember_type(type))
-    {
-      // We have already traversed this type.
-      return TRAVERSE_CONTINUE;
-    }
-  if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
-    {
-      int t = traverse->type(type);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-  // An array type has an expression which we need to traverse if
-  // traverse_expressions is set.
-  if (type->do_traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Default implementation for do_traverse for child class.
-
-int
-Type::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// Return whether two types are identical.  If REASON is not NULL,
-// optionally set *REASON to the reason the types are not identical.
-
-bool
-Type::are_identical(const Type* t1, const Type* t2, std::string* reason)
-{
-  if (t1 == NULL || t2 == NULL)
-    {
-      // Something is wrong.  Return true to avoid cascading errors.
-      return true;
-    }
-
-  // Skip defined forward declarations.
-  t1 = t1->forwarded();
-  t2 = t2->forwarded();
-
-  if (t1 == t2)
-    return true;
-
-  // An undefined forward declaration is an error, so we return true
-  // to avoid cascading errors.
-  if (t1->forward_declaration_type() != NULL
-      || t2->forward_declaration_type() != NULL)
-    return true;
-
-  // Avoid cascading errors with error types.
-  if (t1->is_error_type() || t2->is_error_type())
-    return true;
-
-  // Get a good reason for the sink type.  Note that the sink type on
-  // the left hand side of an assignment is handled in are_assignable.
-  if (t1->is_sink_type() || t2->is_sink_type())
-    {
-      if (reason != NULL)
-       *reason = "invalid use of _";
-      return false;
-    }
-
-  // A named type is only identical to itself.
-  if (t1->named_type() != NULL || t2->named_type() != NULL)
-    return false;
-
-  // Check type shapes.
-  if (t1->classification() != t2->classification())
-    return false;
-
-  switch (t1->classification())
-    {
-    case TYPE_VOID:
-    case TYPE_BOOLEAN:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      // These types are always identical.
-      return true;
-
-    case TYPE_INTEGER:
-      return t1->integer_type()->is_identical(t2->integer_type());
-
-    case TYPE_FLOAT:
-      return t1->float_type()->is_identical(t2->float_type());
-
-    case TYPE_COMPLEX:
-      return t1->complex_type()->is_identical(t2->complex_type());
-
-    case TYPE_FUNCTION:
-      return t1->function_type()->is_identical(t2->function_type(),
-                                              false,
-                                              reason);
-
-    case TYPE_POINTER:
-      return Type::are_identical(t1->points_to(), t2->points_to(), reason);
-
-    case TYPE_STRUCT:
-      return t1->struct_type()->is_identical(t2->struct_type());
-
-    case TYPE_ARRAY:
-      return t1->array_type()->is_identical(t2->array_type());
-
-    case TYPE_MAP:
-      return t1->map_type()->is_identical(t2->map_type());
-
-    case TYPE_CHANNEL:
-      return t1->channel_type()->is_identical(t2->channel_type());
-
-    case TYPE_INTERFACE:
-      return t1->interface_type()->is_identical(t2->interface_type());
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return true if it's OK to have a binary operation with types LHS
-// and RHS.  This is not used for shifts or comparisons.
-
-bool
-Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
-{
-  if (Type::are_identical(lhs, rhs, NULL))
-    return true;
-
-  // A constant of abstract bool type may be mixed with any bool type.
-  if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
-      || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
-    return true;
-
-  // A constant of abstract string type may be mixed with any string
-  // type.
-  if ((rhs->is_abstract_string_type() && lhs->is_string_type())
-      || (lhs->is_abstract_string_type() && rhs->is_string_type()))
-    return true;
-
-  lhs = lhs->base();
-  rhs = rhs->base();
-
-  // A constant of abstract integer, float, or complex type may be
-  // mixed with an integer, float, or complex type.
-  if ((rhs->is_abstract()
-       && (rhs->integer_type() != NULL
-          || rhs->float_type() != NULL
-          || rhs->complex_type() != NULL)
-       && (lhs->integer_type() != NULL
-          || lhs->float_type() != NULL
-          || lhs->complex_type() != NULL))
-      || (lhs->is_abstract()
-         && (lhs->integer_type() != NULL
-             || lhs->float_type() != NULL
-             || lhs->complex_type() != NULL)
-         && (rhs->integer_type() != NULL
-             || rhs->float_type() != NULL
-             || rhs->complex_type() != NULL)))
-    return true;
-
-  // The nil type may be compared to a pointer, an interface type, a
-  // slice type, a channel type, a map type, or a function type.
-  if (lhs->is_nil_type()
-      && (rhs->points_to() != NULL
-         || rhs->interface_type() != NULL
-         || rhs->is_open_array_type()
-         || rhs->map_type() != NULL
-         || rhs->channel_type() != NULL
-         || rhs->function_type() != NULL))
-    return true;
-  if (rhs->is_nil_type()
-      && (lhs->points_to() != NULL
-         || lhs->interface_type() != NULL
-         || lhs->is_open_array_type()
-         || lhs->map_type() != NULL
-         || lhs->channel_type() != NULL
-         || lhs->function_type() != NULL))
-    return true;
-
-  return false;
-}
-
-// Return true if a value with type RHS may be assigned to a variable
-// with type LHS.  If REASON is not NULL, set *REASON to the reason
-// the types are not assignable.
-
-bool
-Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
-{
-  // Do some checks first.  Make sure the types are defined.
-  if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
-    {
-      // Any value may be assigned to the blank identifier.
-      if (lhs->is_sink_type())
-       return true;
-
-      // All fields of a struct must be exported, or the assignment
-      // must be in the same package.
-      if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
-       {
-         if (lhs->has_hidden_fields(NULL, reason)
-             || rhs->has_hidden_fields(NULL, reason))
-           return false;
-       }
-    }
-
-  // Identical types are assignable.
-  if (Type::are_identical(lhs, rhs, reason))
-    return true;
-
-  // The types are assignable if they have identical underlying types
-  // and either LHS or RHS is not a named type.
-  if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
-       || (rhs->named_type() != NULL && lhs->named_type() == NULL))
-      && Type::are_identical(lhs->base(), rhs->base(), reason))
-    return true;
-
-  // The types are assignable if LHS is an interface type and RHS
-  // implements the required methods.
-  const Interface_type* lhs_interface_type = lhs->interface_type();
-  if (lhs_interface_type != NULL)
-    {
-      if (lhs_interface_type->implements_interface(rhs, reason))
-       return true;
-      const Interface_type* rhs_interface_type = rhs->interface_type();
-      if (rhs_interface_type != NULL
-         && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
-                                                         reason))
-       return true;
-    }
-
-  // The type are assignable if RHS is a bidirectional channel type,
-  // LHS is a channel type, they have identical element types, and
-  // either LHS or RHS is not a named type.
-  if (lhs->channel_type() != NULL
-      && rhs->channel_type() != NULL
-      && rhs->channel_type()->may_send()
-      && rhs->channel_type()->may_receive()
-      && (lhs->named_type() == NULL || rhs->named_type() == NULL)
-      && Type::are_identical(lhs->channel_type()->element_type(),
-                            rhs->channel_type()->element_type(),
-                            reason))
-    return true;
-
-  // The nil type may be assigned to a pointer, function, slice, map,
-  // channel, or interface type.
-  if (rhs->is_nil_type()
-      && (lhs->points_to() != NULL
-         || lhs->function_type() != NULL
-         || lhs->is_open_array_type()
-         || lhs->map_type() != NULL
-         || lhs->channel_type() != NULL
-         || lhs->interface_type() != NULL))
-    return true;
-
-  // An untyped constant may be assigned to a numeric type if it is
-  // representable in that type.
-  if (rhs->is_abstract()
-      && (lhs->integer_type() != NULL
-         || lhs->float_type() != NULL
-         || lhs->complex_type() != NULL))
-    return true;
-
-
-  // Give some better error messages.
-  if (reason != NULL && reason->empty())
-    {
-      if (rhs->interface_type() != NULL)
-       reason->assign(_("need explicit conversion"));
-      else if (rhs->is_call_multiple_result_type())
-       reason->assign(_("multiple value function call in "
-                        "single value context"));
-      else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
-       {
-         size_t len = (lhs->named_type()->name().length()
-                       + rhs->named_type()->name().length()
-                       + 100);
-         char* buf = new char[len];
-         snprintf(buf, len, _("cannot use type %s as type %s"),
-                  rhs->named_type()->message_name().c_str(),
-                  lhs->named_type()->message_name().c_str());
-         reason->assign(buf);
-         delete[] buf;
-       }
-    }
-
-  return false;
-}
-
-// Return true if a value with type RHS may be converted to type LHS.
-// If REASON is not NULL, set *REASON to the reason the types are not
-// convertible.
-
-bool
-Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
-{
-  // The types are convertible if they are assignable.
-  if (Type::are_assignable(lhs, rhs, reason))
-    return true;
-
-  // The types are convertible if they have identical underlying
-  // types.
-  if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
-      && Type::are_identical(lhs->base(), rhs->base(), reason))
-    return true;
-
-  // The types are convertible if they are both unnamed pointer types
-  // and their pointer base types have identical underlying types.
-  if (lhs->named_type() == NULL
-      && rhs->named_type() == NULL
-      && lhs->points_to() != NULL
-      && rhs->points_to() != NULL
-      && (lhs->points_to()->named_type() != NULL
-         || rhs->points_to()->named_type() != NULL)
-      && Type::are_identical(lhs->points_to()->base(),
-                            rhs->points_to()->base(),
-                            reason))
-    return true;
-
-  // Integer and floating point types are convertible to each other.
-  if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
-      && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
-    return true;
-
-  // Complex types are convertible to each other.
-  if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
-    return true;
-
-  // An integer, or []byte, or []int, may be converted to a string.
-  if (lhs->is_string_type())
-    {
-      if (rhs->integer_type() != NULL)
-       return true;
-      if (rhs->is_open_array_type() && rhs->named_type() == NULL)
-       {
-         const Type* e = rhs->array_type()->element_type()->forwarded();
-         if (e->integer_type() != NULL
-             && (e == Type::lookup_integer_type("uint8")
-                 || e == Type::lookup_integer_type("int")))
-           return true;
-       }
-    }
-
-  // A string may be converted to []byte or []int.
-  if (rhs->is_string_type()
-      && lhs->is_open_array_type()
-      && lhs->named_type() == NULL)
-    {
-      const Type* e = lhs->array_type()->element_type()->forwarded();
-      if (e->integer_type() != NULL
-         && (e == Type::lookup_integer_type("uint8")
-             || e == Type::lookup_integer_type("int")))
-       return true;
-    }
-
-  // An unsafe.Pointer type may be converted to any pointer type or to
-  // uintptr, and vice-versa.
-  if (lhs->is_unsafe_pointer_type()
-      && (rhs->points_to() != NULL
-         || (rhs->integer_type() != NULL
-             && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
-    return true;
-  if (rhs->is_unsafe_pointer_type()
-      && (lhs->points_to() != NULL
-         || (lhs->integer_type() != NULL
-             && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
-    return true;
-
-  // Give a better error message.
-  if (reason != NULL)
-    {
-      if (reason->empty())
-       *reason = "invalid type conversion";
-      else
-       {
-         std::string s = "invalid type conversion (";
-         s += *reason;
-         s += ')';
-         *reason = s;
-       }
-    }
-
-  return false;
-}
-
-// Return whether this type has any hidden fields.  This is only a
-// possibility for a few types.
-
-bool
-Type::has_hidden_fields(const Named_type* within, std::string* reason) const
-{
-  switch (this->forwarded()->classification_)
-    {
-    case TYPE_NAMED:
-      return this->named_type()->named_type_has_hidden_fields(reason);
-    case TYPE_STRUCT:
-      return this->struct_type()->struct_has_hidden_fields(within, reason);
-    case TYPE_ARRAY:
-      return this->array_type()->array_has_hidden_fields(within, reason);
-    default:
-      return false;
-    }
-}
-
-// Return a hash code for the type to be used for method lookup.
-
-unsigned int
-Type::hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->classification_ != TYPE_FORWARD)
-    ret += this->classification_;
-  return ret + this->do_hash_for_method(gogo);
-}
-
-// Default implementation of do_hash_for_method.  This is appropriate
-// for types with no subfields.
-
-unsigned int
-Type::do_hash_for_method(Gogo*) const
-{
-  return 0;
-}
-
-// Return a hash code for a string, given a starting hash.
-
-unsigned int
-Type::hash_string(const std::string& s, unsigned int h)
-{
-  const char* p = s.data();
-  size_t len = s.length();
-  for (; len > 0; --len)
-    {
-      h ^= *p++;
-      h*= 16777619;
-    }
-  return h;
-}
-
-// Default check for the expression passed to make.  Any type which
-// may be used with make implements its own version of this.
-
-bool
-Type::do_check_make_expression(Expression_list*, source_location)
-{
-  gcc_unreachable();
-}
-
-// Return whether an expression has an integer value.  Report an error
-// if not.  This is used when handling calls to the predeclared make
-// function.
-
-bool
-Type::check_int_value(Expression* e, const char* errmsg,
-                     source_location location)
-{
-  if (e->type()->integer_type() != NULL)
-    return true;
-
-  // Check for a floating point constant with integer value.
-  mpfr_t fval;
-  mpfr_init(fval);
-
-  Type* dummy;
-  if (e->float_constant_value(fval, &dummy))
-    {
-      mpz_t ival;
-      mpz_init(ival);
-
-      bool ok = false;
-
-      mpfr_clear_overflow();
-      mpfr_clear_erangeflag();
-      mpfr_get_z(ival, fval, GMP_RNDN);
-      if (!mpfr_overflow_p()
-         && !mpfr_erangeflag_p()
-         && mpz_sgn(ival) >= 0)
-       {
-         Named_type* ntype = Type::lookup_integer_type("int");
-         Integer_type* inttype = ntype->integer_type();
-         mpz_t max;
-         mpz_init_set_ui(max, 1);
-         mpz_mul_2exp(max, max, inttype->bits() - 1);
-         ok = mpz_cmp(ival, max) < 0;
-         mpz_clear(max);
-       }
-      mpz_clear(ival);
-
-      if (ok)
-       {
-         mpfr_clear(fval);
-         return true;
-       }
-    }
-
-  mpfr_clear(fval);
-
-  error_at(location, "%s", errmsg);
-  return false;
-}
-
-// A hash table mapping unnamed types to trees.
-
-Type::Type_trees Type::type_trees;
-
-// Return a tree representing this type.
-
-tree
-Type::get_tree(Gogo* gogo)
-{
-  if (this->tree_ != NULL)
-    return this->tree_;
-
-  if (this->forward_declaration_type() != NULL
-      || this->named_type() != NULL)
-    return this->get_tree_without_hash(gogo);
-
-  // To avoid confusing GIMPLE, we need to translate all identical Go
-  // types to the same GIMPLE type.  We use a hash table to do that.
-  // There is no need to use the hash table for named types, as named
-  // types are only identical to themselves.
-
-  std::pair<Type*, tree> val(this, NULL);
-  std::pair<Type_trees::iterator, bool> ins =
-    Type::type_trees.insert(val);
-  if (!ins.second && ins.first->second != NULL_TREE)
-    {
-      this->tree_ = ins.first->second;
-      return this->tree_;
-    }
-
-  tree t = this->get_tree_without_hash(gogo);
-
-  if (ins.first->second == NULL_TREE)
-    ins.first->second = t;
-  else
-    {
-      // We have already created a tree for this type.  This can
-      // happen when an unnamed type is defined using a named type
-      // which in turns uses an identical unnamed type.  Use the tree
-      // we created earlier and ignore the one we just built.
-      t = ins.first->second;
-      this->tree_ = t;
-    }
-
-  return t;
-}
-
-// Return a tree for a type without looking in the hash table for
-// identical types.  This is used for named types, since there is no
-// point to looking in the hash table for them.
-
-tree
-Type::get_tree_without_hash(Gogo* gogo)
-{
-  if (this->tree_ == NULL_TREE)
-    {
-      tree t = this->do_get_tree(gogo);
-
-      // For a recursive function or pointer type, we will temporarily
-      // return ptr_type_node during the recursion.  We don't want to
-      // record that for a forwarding type, as it may confuse us
-      // later.
-      if (t == ptr_type_node && this->forward_declaration_type() != NULL)
-       return t;
-
-      this->tree_ = t;
-      go_preserve_from_gc(t);
-    }
-
-  return this->tree_;
-}
-
-// Return a tree representing a zero initialization for this type.
-
-tree
-Type::get_init_tree(Gogo* gogo, bool is_clear)
-{
-  tree type_tree = this->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-  return this->do_get_init_tree(gogo, type_tree, is_clear);
-}
-
-// Any type which supports the builtin make function must implement
-// this.
-
-tree
-Type::do_make_expression_tree(Translate_context*, Expression_list*,
-                             source_location)
-{
-  gcc_unreachable();
-}
-
-// Return a pointer to the type descriptor for this type.
-
-tree
-Type::type_descriptor_pointer(Gogo* gogo)
-{
-  Type* t = this->forwarded();
-  if (t->type_descriptor_decl_ == NULL_TREE)
-    {
-      Expression* e = t->do_type_descriptor(gogo, NULL);
-      gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
-      gcc_assert(t->type_descriptor_decl_ != NULL_TREE
-                && (t->type_descriptor_decl_ == error_mark_node
-                    || DECL_P(t->type_descriptor_decl_)));
-    }
-  if (t->type_descriptor_decl_ == error_mark_node)
-    return error_mark_node;
-  return build_fold_addr_expr(t->type_descriptor_decl_);
-}
-
-// Return a composite literal for a type descriptor.
-
-Expression*
-Type::type_descriptor(Gogo* gogo, Type* type)
-{
-  return type->do_type_descriptor(gogo, NULL);
-}
-
-// Return a composite literal for a type descriptor with a name.
-
-Expression*
-Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
-{
-  gcc_assert(name != NULL && type->named_type() != name);
-  return type->do_type_descriptor(gogo, name);
-}
-
-// Make a builtin struct type from a list of fields.  The fields are
-// pairs of a name and a type.
-
-Struct_type*
-Type::make_builtin_struct_type(int nfields, ...)
-{
-  va_list ap;
-  va_start(ap, nfields);
-
-  source_location bloc = BUILTINS_LOCATION;
-  Struct_field_list* sfl = new Struct_field_list();
-  for (int i = 0; i < nfields; i++)
-    {
-      const char* field_name = va_arg(ap, const char *);
-      Type* type = va_arg(ap, Type*);
-      sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
-    }
-
-  va_end(ap);
-
-  return Type::make_struct_type(sfl, bloc);
-}
-
-// Make a builtin named type.
-
-Named_type*
-Type::make_builtin_named_type(const char* name, Type* type)
-{
-  source_location bloc = BUILTINS_LOCATION;
-  Named_object* no = Named_object::make_type(name, NULL, type, bloc);
-  return no->type_value();
-}
-
-// Return the type of a type descriptor.  We should really tie this to
-// runtime.Type rather than copying it.  This must match commonType in
-// libgo/go/runtime/type.go.
-
-Type*
-Type::make_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      source_location bloc = BUILTINS_LOCATION;
-
-      Type* uint8_type = Type::lookup_integer_type("uint8");
-      Type* uint32_type = Type::lookup_integer_type("uint32");
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-      Type* string_type = Type::lookup_string_type();
-      Type* pointer_string_type = Type::make_pointer_type(string_type);
-
-      // This is an unnamed version of unsafe.Pointer.  Perhaps we
-      // should use the named version instead, although that would
-      // require us to create the unsafe package if it has not been
-      // imported.  It probably doesn't matter.
-      Type* void_type = Type::make_void_type();
-      Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
-
-      // Forward declaration for the type descriptor type.
-      Named_object* named_type_descriptor_type =
-       Named_object::make_type_declaration("commonType", NULL, bloc);
-      Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
-      Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
-
-      // The type of a method on a concrete type.
-      Struct_type* method_type =
-       Type::make_builtin_struct_type(5,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "mtyp", pointer_type_descriptor_type,
-                                      "typ", pointer_type_descriptor_type,
-                                      "tfn", unsafe_pointer_type);
-      Named_type* named_method_type =
-       Type::make_builtin_named_type("method", method_type);
-
-      // Information for types with a name or methods.
-      Type* slice_named_method_type =
-       Type::make_array_type(named_method_type, NULL);
-      Struct_type* uncommon_type =
-       Type::make_builtin_struct_type(3,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "methods", slice_named_method_type);
-      Named_type* named_uncommon_type =
-       Type::make_builtin_named_type("uncommonType", uncommon_type);
-
-      Type* pointer_uncommon_type =
-       Type::make_pointer_type(named_uncommon_type);
-
-      // The type descriptor type.
-
-      Typed_identifier_list* params = new Typed_identifier_list();
-      params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
-      params->push_back(Typed_identifier("", uintptr_type, bloc));
-
-      Typed_identifier_list* results = new Typed_identifier_list();
-      results->push_back(Typed_identifier("", uintptr_type, bloc));
-
-      Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
-
-      params = new Typed_identifier_list();
-      params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
-      params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
-      params->push_back(Typed_identifier("", uintptr_type, bloc));
-
-      results = new Typed_identifier_list();
-      results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
-
-      Type* equalfn_type = Type::make_function_type(NULL, params, results,
-                                                   bloc);
-
-      Struct_type* type_descriptor_type =
-       Type::make_builtin_struct_type(9,
-                                      "Kind", uint8_type,
-                                      "align", uint8_type,
-                                      "fieldAlign", uint8_type,
-                                      "size", uintptr_type,
-                                      "hash", uint32_type,
-                                      "hashfn", hashfn_type,
-                                      "equalfn", equalfn_type,
-                                      "string", pointer_string_type,
-                                      "", pointer_uncommon_type);
-
-      Named_type* named = Type::make_builtin_named_type("commonType",
-                                                       type_descriptor_type);
-
-      named_type_descriptor_type->set_type_value(named);
-
-      ret = named;
-    }
-
-  return ret;
-}
-
-// Make the type of a pointer to a type descriptor as represented in
-// Go.
-
-Type*
-Type::make_type_descriptor_ptr_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    ret = Type::make_pointer_type(Type::make_type_descriptor_type());
-  return ret;
-}
-
-// Return the names of runtime functions which compute a hash code for
-// this type and which compare whether two values of this type are
-// equal.
-
-void
-Type::type_functions(const char** hash_fn, const char** equal_fn) const
-{
-  switch (this->base()->classification())
-    {
-    case Type::TYPE_ERROR:
-    case Type::TYPE_VOID:
-    case Type::TYPE_NIL:
-      // These types can not be hashed or compared.
-      *hash_fn = "__go_type_hash_error";
-      *equal_fn = "__go_type_equal_error";
-      break;
-
-    case Type::TYPE_BOOLEAN:
-    case Type::TYPE_INTEGER:
-    case Type::TYPE_FLOAT:
-    case Type::TYPE_COMPLEX:
-    case Type::TYPE_POINTER:
-    case Type::TYPE_FUNCTION:
-    case Type::TYPE_MAP:
-    case Type::TYPE_CHANNEL:
-      *hash_fn = "__go_type_hash_identity";
-      *equal_fn = "__go_type_equal_identity";
-      break;
-
-    case Type::TYPE_STRING:
-      *hash_fn = "__go_type_hash_string";
-      *equal_fn = "__go_type_equal_string";
-      break;
-
-    case Type::TYPE_STRUCT:
-    case Type::TYPE_ARRAY:
-      // These types can not be hashed or compared.
-      *hash_fn = "__go_type_hash_error";
-      *equal_fn = "__go_type_equal_error";
-      break;
-
-    case Type::TYPE_INTERFACE:
-      if (this->interface_type()->is_empty())
-       {
-         *hash_fn = "__go_type_hash_empty_interface";
-         *equal_fn = "__go_type_equal_empty_interface";
-       }
-      else
-       {
-         *hash_fn = "__go_type_hash_interface";
-         *equal_fn = "__go_type_equal_interface";
-       }
-      break;
-
-    case Type::TYPE_NAMED:
-    case Type::TYPE_FORWARD:
-      gcc_unreachable();
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return a composite literal for the type descriptor for a plain type
-// of kind RUNTIME_TYPE_KIND named NAME.
-
-Expression*
-Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
-                                 Named_type* name, const Methods* methods,
-                                 bool only_value_methods)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* td_type = Type::make_type_descriptor_type();
-  const Struct_field_list* fields = td_type->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(9);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "Kind");
-  mpz_t iv;
-  mpz_init_set_ui(iv, runtime_type_kind);
-  vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "align");
-  Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
-  vals->push_back(Expression::make_type_info(this, type_info));
-
-  ++p;
-  gcc_assert(p->field_name() == "fieldAlign");
-  type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
-  vals->push_back(Expression::make_type_info(this, type_info));
-
-  ++p;
-  gcc_assert(p->field_name() == "size");
-  type_info = Expression::TYPE_INFO_SIZE;
-  vals->push_back(Expression::make_type_info(this, type_info));
-
-  ++p;
-  gcc_assert(p->field_name() == "hash");
-  mpz_set_ui(iv, this->hash_for_method(gogo));
-  vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
-
-  const char* hash_fn;
-  const char* equal_fn;
-  this->type_functions(&hash_fn, &equal_fn);
-
-  ++p;
-  gcc_assert(p->field_name() == "hashfn");
-  Function_type* fntype = p->type()->function_type();
-  Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
-                                                            fntype,
-                                                            bloc);
-  no->func_declaration_value()->set_asm_name(hash_fn);
-  vals->push_back(Expression::make_func_reference(no, NULL, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "equalfn");
-  fntype = p->type()->function_type();
-  no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
-  no->func_declaration_value()->set_asm_name(equal_fn);
-  vals->push_back(Expression::make_func_reference(no, NULL, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "string");
-  Expression* s = Expression::make_string((name != NULL
-                                          ? name->reflection(gogo)
-                                          : this->reflection(gogo)),
-                                         bloc);
-  vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "uncommonType");
-  if (name == NULL && methods == NULL)
-    vals->push_back(Expression::make_nil(bloc));
-  else
-    {
-      if (methods == NULL)
-       methods = name->methods();
-      vals->push_back(this->uncommon_type_constructor(gogo,
-                                                     p->type()->deref(),
-                                                     name, methods,
-                                                     only_value_methods));
-    }
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  mpz_clear(iv);
-
-  return Expression::make_struct_composite_literal(td_type, vals, bloc);
-}
-
-// Return a composite literal for the uncommon type information for
-// this type.  UNCOMMON_STRUCT_TYPE is the type of the uncommon type
-// struct.  If name is not NULL, it is the name of the type.  If
-// METHODS is not NULL, it is the list of methods.  ONLY_VALUE_METHODS
-// is true if only value methods should be included.  At least one of
-// NAME and METHODS must not be NULL.
-
-Expression*
-Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
-                               Named_type* name, const Methods* methods,
-                               bool only_value_methods) const
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  const Struct_field_list* fields = uncommon_type->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "name");
-
-  ++p;
-  gcc_assert(p->field_name() == "pkgPath");
-
-  if (name == NULL)
-    {
-      vals->push_back(Expression::make_nil(bloc));
-      vals->push_back(Expression::make_nil(bloc));
-    }
-  else
-    {
-      Named_object* no = name->named_object();
-      std::string n = Gogo::unpack_hidden_name(no->name());
-      Expression* s = Expression::make_string(n, bloc);
-      vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-
-      if (name->is_builtin())
-       vals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         const Package* package = no->package();
-         const std::string& unique_prefix(package == NULL
-                                          ? gogo->unique_prefix()
-                                          : package->unique_prefix());
-         const std::string& package_name(package == NULL
-                                         ? gogo->package_name()
-                                         : package->name());
-         n.assign(unique_prefix);
-         n.append(1, '.');
-         n.append(package_name);
-         if (name->in_function() != NULL)
-           {
-             n.append(1, '.');
-             n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
-           }
-         s = Expression::make_string(n, bloc);
-         vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-    }
-
-  ++p;
-  gcc_assert(p->field_name() == "methods");
-  vals->push_back(this->methods_constructor(gogo, p->type(), methods,
-                                           only_value_methods));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  Expression* r = Expression::make_struct_composite_literal(uncommon_type,
-                                                           vals, bloc);
-  return Expression::make_unary(OPERATOR_AND, r, bloc);
-}
-
-// Sort methods by name.
-
-class Sort_methods
-{
- public:
-  bool
-  operator()(const std::pair<std::string, const Method*>& m1,
-            const std::pair<std::string, const Method*>& m2) const
-  { return m1.first < m2.first; }
-};
-
-// Return a composite literal for the type method table for this type.
-// METHODS_TYPE is the type of the table, and is a slice type.
-// METHODS is the list of methods.  If ONLY_VALUE_METHODS is true,
-// then only value methods are used.
-
-Expression*
-Type::methods_constructor(Gogo* gogo, Type* methods_type,
-                         const Methods* methods,
-                         bool only_value_methods) const
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  std::vector<std::pair<std::string, const Method*> > smethods;
-  if (methods != NULL)
-    {
-      smethods.reserve(methods->count());
-      for (Methods::const_iterator p = methods->begin();
-          p != methods->end();
-          ++p)
-       {
-         if (p->second->is_ambiguous())
-           continue;
-         if (only_value_methods && !p->second->is_value_method())
-           continue;
-         smethods.push_back(std::make_pair(p->first, p->second));
-       }
-    }
-
-  if (smethods.empty())
-    return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
-
-  std::sort(smethods.begin(), smethods.end(), Sort_methods());
-
-  Type* method_type = methods_type->array_type()->element_type();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(smethods.size());
-  for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
-        = smethods.begin();
-       p != smethods.end();
-       ++p)
-    vals->push_back(this->method_constructor(gogo, method_type, p->first,
-                                            p->second));
-
-  return Expression::make_slice_composite_literal(methods_type, vals, bloc);
-}
-
-// Return a composite literal for a single method.  METHOD_TYPE is the
-// type of the entry.  METHOD_NAME is the name of the method and M is
-// the method information.
-
-Expression*
-Type::method_constructor(Gogo*, Type* method_type,
-                        const std::string& method_name,
-                        const Method* m) const
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  const Struct_field_list* fields = method_type->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(5);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "name");
-  const std::string n = Gogo::unpack_hidden_name(method_name);
-  Expression* s = Expression::make_string(n, bloc);
-  vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "pkgPath");
-  if (!Gogo::is_hidden_name(method_name))
-    vals->push_back(Expression::make_nil(bloc));
-  else
-    {
-      s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
-      vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-    }
-
-  Named_object* no = (m->needs_stub_method()
-                     ? m->stub_object()
-                     : m->named_object());
-
-  Function_type* mtype;
-  if (no->is_function())
-    mtype = no->func_value()->type();
-  else
-    mtype = no->func_declaration_value()->type();
-  gcc_assert(mtype->is_method());
-  Type* nonmethod_type = mtype->copy_without_receiver();
-
-  ++p;
-  gcc_assert(p->field_name() == "mtyp");
-  vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "typ");
-  vals->push_back(Expression::make_type_descriptor(mtype, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "tfn");
-  vals->push_back(Expression::make_func_reference(no, NULL, bloc));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(method_type, vals, bloc);
-}
-
-// Return a composite literal for the type descriptor of a plain type.
-// RUNTIME_TYPE_KIND is the value of the kind field.  If NAME is not
-// NULL, it is the name to use as well as the list of methods.
-
-Expression*
-Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
-                           Named_type* name)
-{
-  return this->type_descriptor_constructor(gogo, runtime_type_kind,
-                                          name, NULL, true);
-}
-
-// Return the type reflection string for this type.
-
-std::string
-Type::reflection(Gogo* gogo) const
-{
-  std::string ret;
-
-  // The do_reflection virtual function should set RET to the
-  // reflection string.
-  this->do_reflection(gogo, &ret);
-
-  return ret;
-}
-
-// Return a mangled name for the type.
-
-std::string
-Type::mangled_name(Gogo* gogo) const
-{
-  std::string ret;
-
-  // The do_mangled_name virtual function should set RET to the
-  // mangled name.  For a composite type it should append a code for
-  // the composition and then call do_mangled_name on the components.
-  this->do_mangled_name(gogo, &ret);
-
-  return ret;
-}
-
-// Default function to export a type.
-
-void
-Type::do_export(Export*) const
-{
-  gcc_unreachable();
-}
-
-// Import a type.
-
-Type*
-Type::import_type(Import* imp)
-{
-  if (imp->match_c_string("("))
-    return Function_type::do_import(imp);
-  else if (imp->match_c_string("*"))
-    return Pointer_type::do_import(imp);
-  else if (imp->match_c_string("struct "))
-    return Struct_type::do_import(imp);
-  else if (imp->match_c_string("["))
-    return Array_type::do_import(imp);
-  else if (imp->match_c_string("map "))
-    return Map_type::do_import(imp);
-  else if (imp->match_c_string("chan "))
-    return Channel_type::do_import(imp);
-  else if (imp->match_c_string("interface"))
-    return Interface_type::do_import(imp);
-  else
-    {
-      error_at(imp->location(), "import error: expected type");
-      return Type::make_error_type();
-    }
-}
-
-// A type used to indicate a parsing error.  This exists to simplify
-// later error detection.
-
-class Error_type : public Type
-{
- public:
-  Error_type()
-    : Type(TYPE_ERROR)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return error_mark_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  { return error_mark_node; }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { return Expression::make_error(BUILTINS_LOCATION); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { gcc_assert(saw_errors()); }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('E'); }
-};
-
-Type*
-Type::make_error_type()
-{
-  static Error_type singleton_error_type;
-  return &singleton_error_type;
-}
-
-// The void type.
-
-class Void_type : public Type
-{
- public:
-  Void_type()
-    : Type(TYPE_VOID)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return void_type_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  { gcc_unreachable(); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { gcc_unreachable(); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('v'); }
-};
-
-Type*
-Type::make_void_type()
-{
-  static Void_type singleton_void_type;
-  return &singleton_void_type;
-}
-
-// The boolean type.
-
-class Boolean_type : public Type
-{
- public:
-  Boolean_type()
-    : Type(TYPE_BOOLEAN)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return boolean_type_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-  { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type* name);
-
-  // We should not be asked for the reflection string of a basic type.
-  void
-  do_reflection(Gogo*, std::string* ret) const
-  { ret->append("bool"); }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('b'); }
-};
-
-// Make the type descriptor.
-
-Expression*
-Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (name != NULL)
-    return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
-  else
-    {
-      Named_object* no = gogo->lookup_global("bool");
-      gcc_assert(no != NULL);
-      return Type::type_descriptor(gogo, no->type_value());
-    }
-}
-
-Type*
-Type::make_boolean_type()
-{
-  static Boolean_type boolean_type;
-  return &boolean_type;
-}
-
-// The named type "bool".
-
-static Named_type* named_bool_type;
-
-// Get the named type "bool".
-
-Named_type*
-Type::lookup_bool_type()
-{
-  return named_bool_type;
-}
-
-// Make the named type "bool".
-
-Named_type*
-Type::make_named_bool_type()
-{
-  Type* bool_type = Type::make_boolean_type();
-  Named_object* named_object = Named_object::make_type("bool", NULL,
-                                                      bool_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  named_bool_type = named_type;
-  return named_type;
-}
-
-// Class Integer_type.
-
-Integer_type::Named_integer_types Integer_type::named_integer_types;
-
-// Create a new integer type.  Non-abstract integer types always have
-// names.
-
-Named_type*
-Integer_type::create_integer_type(const char* name, bool is_unsigned,
-                                 int bits, int runtime_type_kind)
-{
-  Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
-                                               runtime_type_kind);
-  std::string sname(name);
-  Named_object* named_object = Named_object::make_type(sname, NULL,
-                                                      integer_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  std::pair<Named_integer_types::iterator, bool> ins =
-    Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
-  gcc_assert(ins.second);
-  return named_type;
-}
-
-// Look up an existing integer type.
-
-Named_type*
-Integer_type::lookup_integer_type(const char* name)
-{
-  Named_integer_types::const_iterator p =
-    Integer_type::named_integer_types.find(name);
-  gcc_assert(p != Integer_type::named_integer_types.end());
-  return p->second;
-}
-
-// Create a new abstract integer type.
-
-Integer_type*
-Integer_type::create_abstract_integer_type()
-{
-  static Integer_type* abstract_type;
-  if (abstract_type == NULL)
-    abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
-                                    RUNTIME_TYPE_KIND_INT);
-  return abstract_type;
-}
-
-// Integer type compatibility.
-
-bool
-Integer_type::is_identical(const Integer_type* t) const
-{
-  if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
-    return false;
-  return this->is_abstract_ == t->is_abstract_;
-}
-
-// Hash code.
-
-unsigned int
-Integer_type::do_hash_for_method(Gogo*) const
-{
-  return ((this->bits_ << 4)
-         + ((this->is_unsigned_ ? 1 : 0) << 8)
-         + ((this->is_abstract_ ? 1 : 0) << 9));
-}
-
-// Get the tree for an Integer_type.
-
-tree
-Integer_type::do_get_tree(Gogo*)
-{
-  gcc_assert(!this->is_abstract_);
-  if (this->is_unsigned_)
-    {
-      if (this->bits_ == INT_TYPE_SIZE)
-       return unsigned_type_node;
-      else if (this->bits_ == CHAR_TYPE_SIZE)
-       return unsigned_char_type_node;
-      else if (this->bits_ == SHORT_TYPE_SIZE)
-       return short_unsigned_type_node;
-      else if (this->bits_ == LONG_TYPE_SIZE)
-       return long_unsigned_type_node;
-      else if (this->bits_ == LONG_LONG_TYPE_SIZE)
-       return long_long_unsigned_type_node;
-      else
-       return make_unsigned_type(this->bits_);
-    }
-  else
-    {
-      if (this->bits_ == INT_TYPE_SIZE)
-       return integer_type_node;
-      else if (this->bits_ == CHAR_TYPE_SIZE)
-       return signed_char_type_node;
-      else if (this->bits_ == SHORT_TYPE_SIZE)
-       return short_integer_type_node;
-      else if (this->bits_ == LONG_TYPE_SIZE)
-       return long_integer_type_node;
-      else if (this->bits_ == LONG_LONG_TYPE_SIZE)
-       return long_long_integer_type_node;
-      else
-       return make_signed_type(this->bits_);
-    }
-}
-
-tree
-Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  return is_clear ? NULL : build_int_cst(type_tree, 0);
-}
-
-// The type descriptor for an integer type.  Integer types are always
-// named.
-
-Expression*
-Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  gcc_assert(name != NULL);
-  return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-Integer_type::do_reflection(Gogo*, std::string*) const
-{
-  gcc_unreachable();
-}
-
-// Mangled name.
-
-void
-Integer_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  char buf[100];
-  snprintf(buf, sizeof buf, "i%s%s%de",
-          this->is_abstract_ ? "a" : "",
-          this->is_unsigned_ ? "u" : "",
-          this->bits_);
-  ret->append(buf);
-}
-
-// Make an integer type.
-
-Named_type*
-Type::make_integer_type(const char* name, bool is_unsigned, int bits,
-                       int runtime_type_kind)
-{
-  return Integer_type::create_integer_type(name, is_unsigned, bits,
-                                          runtime_type_kind);
-}
-
-// Make an abstract integer type.
-
-Integer_type*
-Type::make_abstract_integer_type()
-{
-  return Integer_type::create_abstract_integer_type();
-}
-
-// Look up an integer type.
-
-Named_type*
-Type::lookup_integer_type(const char* name)
-{
-  return Integer_type::lookup_integer_type(name);
-}
-
-// Class Float_type.
-
-Float_type::Named_float_types Float_type::named_float_types;
-
-// Create a new float type.  Non-abstract float types always have
-// names.
-
-Named_type*
-Float_type::create_float_type(const char* name, int bits,
-                             int runtime_type_kind)
-{
-  Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
-  std::string sname(name);
-  Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  std::pair<Named_float_types::iterator, bool> ins =
-    Float_type::named_float_types.insert(std::make_pair(sname, named_type));
-  gcc_assert(ins.second);
-  return named_type;
-}
-
-// Look up an existing float type.
-
-Named_type*
-Float_type::lookup_float_type(const char* name)
-{
-  Named_float_types::const_iterator p =
-    Float_type::named_float_types.find(name);
-  gcc_assert(p != Float_type::named_float_types.end());
-  return p->second;
-}
-
-// Create a new abstract float type.
-
-Float_type*
-Float_type::create_abstract_float_type()
-{
-  static Float_type* abstract_type;
-  if (abstract_type == NULL)
-    abstract_type = new Float_type(true, FLOAT_TYPE_SIZE,
-                                  RUNTIME_TYPE_KIND_FLOAT);
-  return abstract_type;
-}
-
-// Whether this type is identical with T.
-
-bool
-Float_type::is_identical(const Float_type* t) const
-{
-  if (this->bits_ != t->bits_)
-    return false;
-  return this->is_abstract_ == t->is_abstract_;
-}
-
-// Hash code.
-
-unsigned int
-Float_type::do_hash_for_method(Gogo*) const
-{
-  return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
-}
-
-// Get a tree without using a Gogo*.
-
-tree
-Float_type::type_tree() const
-{
-  if (this->bits_ == FLOAT_TYPE_SIZE)
-    return float_type_node;
-  else if (this->bits_ == DOUBLE_TYPE_SIZE)
-    return double_type_node;
-  else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
-    return long_double_type_node;
-  else
-    {
-      tree ret = make_node(REAL_TYPE);
-      TYPE_PRECISION(ret) = this->bits_;
-      layout_type(ret);
-      return ret;
-    }
-}
-
-// Get a tree.
-
-tree
-Float_type::do_get_tree(Gogo*)
-{
-  return this->type_tree();
-}
-
-tree
-Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  REAL_VALUE_TYPE r;
-  real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
-  return build_real(type_tree, r);
-}
-
-// The type descriptor for a float type.  Float types are always named.
-
-Expression*
-Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  gcc_assert(name != NULL);
-  return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-Float_type::do_reflection(Gogo*, std::string*) const
-{
-  gcc_unreachable();
-}
-
-// Mangled name.
-
-void
-Float_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  char buf[100];
-  snprintf(buf, sizeof buf, "f%s%de",
-          this->is_abstract_ ? "a" : "",
-          this->bits_);
-  ret->append(buf);
-}
-
-// Make a floating point type.
-
-Named_type*
-Type::make_float_type(const char* name, int bits, int runtime_type_kind)
-{
-  return Float_type::create_float_type(name, bits, runtime_type_kind);
-}
-
-// Make an abstract float type.
-
-Float_type*
-Type::make_abstract_float_type()
-{
-  return Float_type::create_abstract_float_type();
-}
-
-// Look up a float type.
-
-Named_type*
-Type::lookup_float_type(const char* name)
-{
-  return Float_type::lookup_float_type(name);
-}
-
-// Class Complex_type.
-
-Complex_type::Named_complex_types Complex_type::named_complex_types;
-
-// Create a new complex type.  Non-abstract complex types always have
-// names.
-
-Named_type*
-Complex_type::create_complex_type(const char* name, int bits,
-                                 int runtime_type_kind)
-{
-  Complex_type* complex_type = new Complex_type(false, bits,
-                                               runtime_type_kind);
-  std::string sname(name);
-  Named_object* named_object = Named_object::make_type(sname, NULL,
-                                                      complex_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  std::pair<Named_complex_types::iterator, bool> ins =
-    Complex_type::named_complex_types.insert(std::make_pair(sname,
-                                                           named_type));
-  gcc_assert(ins.second);
-  return named_type;
-}
-
-// Look up an existing complex type.
-
-Named_type*
-Complex_type::lookup_complex_type(const char* name)
-{
-  Named_complex_types::const_iterator p =
-    Complex_type::named_complex_types.find(name);
-  gcc_assert(p != Complex_type::named_complex_types.end());
-  return p->second;
-}
-
-// Create a new abstract complex type.
-
-Complex_type*
-Complex_type::create_abstract_complex_type()
-{
-  static Complex_type* abstract_type;
-  if (abstract_type == NULL)
-    abstract_type = new Complex_type(true, FLOAT_TYPE_SIZE * 2,
-                                    RUNTIME_TYPE_KIND_FLOAT);
-  return abstract_type;
-}
-
-// Whether this type is identical with T.
-
-bool
-Complex_type::is_identical(const Complex_type *t) const
-{
-  if (this->bits_ != t->bits_)
-    return false;
-  return this->is_abstract_ == t->is_abstract_;
-}
-
-// Hash code.
-
-unsigned int
-Complex_type::do_hash_for_method(Gogo*) const
-{
-  return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
-}
-
-// Get a tree without using a Gogo*.
-
-tree
-Complex_type::type_tree() const
-{
-  if (this->bits_ == FLOAT_TYPE_SIZE * 2)
-    return complex_float_type_node;
-  else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
-    return complex_double_type_node;
-  else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
-    return complex_long_double_type_node;
-  else
-    {
-      tree ret = make_node(REAL_TYPE);
-      TYPE_PRECISION(ret) = this->bits_ / 2;
-      layout_type(ret);
-      return build_complex_type(ret);
-    }
-}
-
-// Get a tree.
-
-tree
-Complex_type::do_get_tree(Gogo*)
-{
-  return this->type_tree();
-}
-
-// Zero initializer.
-
-tree
-Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  REAL_VALUE_TYPE r;
-  real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
-  return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
-                      build_real(TREE_TYPE(type_tree), r));
-}
-
-// The type descriptor for a complex type.  Complex types are always
-// named.
-
-Expression*
-Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  gcc_assert(name != NULL);
-  return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-Complex_type::do_reflection(Gogo*, std::string*) const
-{
-  gcc_unreachable();
-}
-
-// Mangled name.
-
-void
-Complex_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  char buf[100];
-  snprintf(buf, sizeof buf, "c%s%de",
-          this->is_abstract_ ? "a" : "",
-          this->bits_);
-  ret->append(buf);
-}
-
-// Make a complex type.
-
-Named_type*
-Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
-{
-  return Complex_type::create_complex_type(name, bits, runtime_type_kind);
-}
-
-// Make an abstract complex type.
-
-Complex_type*
-Type::make_abstract_complex_type()
-{
-  return Complex_type::create_abstract_complex_type();
-}
-
-// Look up a complex type.
-
-Named_type*
-Type::lookup_complex_type(const char* name)
-{
-  return Complex_type::lookup_complex_type(name);
-}
-
-// Class String_type.
-
-// Return the tree for String_type.  A string is a struct with two
-// fields: a pointer to the characters and a length.
-
-tree
-String_type::do_get_tree(Gogo*)
-{
-  static tree struct_type;
-  return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
-                             "__data",
-                             build_pointer_type(unsigned_char_type_node),
-                             "__length",
-                             integer_type_node);
-}
-
-// Return a tree for the length of STRING.
-
-tree
-String_type::length_tree(Gogo*, tree string)
-{
-  tree string_type = TREE_TYPE(string);
-  gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
-  tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
-                   "__length") == 0);
-  return fold_build3(COMPONENT_REF, integer_type_node, string,
-                    length_field, NULL_TREE);
-}
-
-// Return a tree for a pointer to the bytes of STRING.
-
-tree
-String_type::bytes_tree(Gogo*, tree string)
-{
-  tree string_type = TREE_TYPE(string);
-  gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
-  tree bytes_field = TYPE_FIELDS(string_type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
-                   "__data") == 0);
-  return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
-                    bytes_field, NULL_TREE);
-}
-
-// We initialize a string to { NULL, 0 }.
-
-tree
-String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL_TREE;
-
-  gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  for (tree field = TYPE_FIELDS(type_tree);
-       field != NULL_TREE;
-       field = DECL_CHAIN(field))
-    {
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
-    }
-
-  tree ret = build_constructor(type_tree, init);
-  TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// The type descriptor for the string type.
-
-Expression*
-String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (name != NULL)
-    return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
-  else
-    {
-      Named_object* no = gogo->lookup_global("string");
-      gcc_assert(no != NULL);
-      return Type::type_descriptor(gogo, no->type_value());
-    }
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-String_type::do_reflection(Gogo*, std::string* ret) const
-{
-  ret->append("string");
-}
-
-// Mangled name of a string type.
-
-void
-String_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  ret->push_back('z');
-}
-
-// Make a string type.
-
-Type*
-Type::make_string_type()
-{
-  static String_type string_type;
-  return &string_type;
-}
-
-// The named type "string".
-
-static Named_type* named_string_type;
-
-// Get the named type "string".
-
-Named_type*
-Type::lookup_string_type()
-{
-  return named_string_type;
-}
-
-// Make the named type string.
-
-Named_type*
-Type::make_named_string_type()
-{
-  Type* string_type = Type::make_string_type();
-  Named_object* named_object = Named_object::make_type("string", NULL,
-                                                      string_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  named_string_type = named_type;
-  return named_type;
-}
-
-// The sink type.  This is the type of the blank identifier _.  Any
-// type may be assigned to it.
-
-class Sink_type : public Type
-{
- public:
-  Sink_type()
-    : Type(TYPE_SINK)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { gcc_unreachable(); }
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  { gcc_unreachable(); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { gcc_unreachable(); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { gcc_unreachable(); }
-
-  void
-  do_mangled_name(Gogo*, std::string*) const
-  { gcc_unreachable(); }
-};
-
-// Make the sink type.
-
-Type*
-Type::make_sink_type()
-{
-  static Sink_type sink_type;
-  return &sink_type;
-}
-
-// Class Function_type.
-
-// Traversal.
-
-int
-Function_type::do_traverse(Traverse* traverse)
-{
-  if (this->receiver_ != NULL
-      && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->parameters_ != NULL
-      && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->results_ != NULL
-      && this->results_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Returns whether T is a valid redeclaration of this type.  If this
-// returns false, and REASON is not NULL, *REASON may be set to a
-// brief explanation of why it returned false.
-
-bool
-Function_type::is_valid_redeclaration(const Function_type* t,
-                                     std::string* reason) const
-{
-  if (!this->is_identical(t, false, reason))
-    return false;
-
-  // A redeclaration of a function is required to use the same names
-  // for the receiver and parameters.
-  if (this->receiver() != NULL
-      && this->receiver()->name() != t->receiver()->name()
-      && this->receiver()->name() != Import::import_marker
-      && t->receiver()->name() != Import::import_marker)
-    {
-      if (reason != NULL)
-       *reason = "receiver name changed";
-      return false;
-    }
-
-  const Typed_identifier_list* parms1 = this->parameters();
-  const Typed_identifier_list* parms2 = t->parameters();
-  if (parms1 != NULL)
-    {
-      Typed_identifier_list::const_iterator p1 = parms1->begin();
-      for (Typed_identifier_list::const_iterator p2 = parms2->begin();
-          p2 != parms2->end();
-          ++p2, ++p1)
-       {
-         if (p1->name() != p2->name()
-             && p1->name() != Import::import_marker
-             && p2->name() != Import::import_marker)
-           {
-             if (reason != NULL)
-               *reason = "parameter name changed";
-             return false;
-           }
-
-         // This is called at parse time, so we may have unknown
-         // types.
-         Type* t1 = p1->type()->forwarded();
-         Type* t2 = p2->type()->forwarded();
-         if (t1 != t2
-             && t1->forward_declaration_type() != NULL
-             && (t2->forward_declaration_type() == NULL
-                 || (t1->forward_declaration_type()->named_object()
-                     != t2->forward_declaration_type()->named_object())))
-           return false;
-       }
-    }
-
-  const Typed_identifier_list* results1 = this->results();
-  const Typed_identifier_list* results2 = t->results();
-  if (results1 != NULL)
-    {
-      Typed_identifier_list::const_iterator res1 = results1->begin();
-      for (Typed_identifier_list::const_iterator res2 = results2->begin();
-          res2 != results2->end();
-          ++res2, ++res1)
-       {
-         if (res1->name() != res2->name()
-             && res1->name() != Import::import_marker
-             && res2->name() != Import::import_marker)
-           {
-             if (reason != NULL)
-               *reason = "result name changed";
-             return false;
-           }
-
-         // This is called at parse time, so we may have unknown
-         // types.
-         Type* t1 = res1->type()->forwarded();
-         Type* t2 = res2->type()->forwarded();
-         if (t1 != t2
-             && t1->forward_declaration_type() != NULL
-             && (t2->forward_declaration_type() == NULL
-                 || (t1->forward_declaration_type()->named_object()
-                     != t2->forward_declaration_type()->named_object())))
-           return false;
-       }
-    }
-
-  return true;
-}
-
-// Check whether T is the same as this type.
-
-bool
-Function_type::is_identical(const Function_type* t, bool ignore_receiver,
-                           std::string* reason) const
-{
-  if (!ignore_receiver)
-    {
-      const Typed_identifier* r1 = this->receiver();
-      const Typed_identifier* r2 = t->receiver();
-      if ((r1 != NULL) != (r2 != NULL))
-       {
-         if (reason != NULL)
-           *reason = _("different receiver types");
-         return false;
-       }
-      if (r1 != NULL)
-       {
-         if (!Type::are_identical(r1->type(), r2->type(), reason))
-           {
-             if (reason != NULL && !reason->empty())
-               *reason = "receiver: " + *reason;
-             return false;
-           }
-       }
-    }
-
-  const Typed_identifier_list* parms1 = this->parameters();
-  const Typed_identifier_list* parms2 = t->parameters();
-  if ((parms1 != NULL) != (parms2 != NULL))
-    {
-      if (reason != NULL)
-       *reason = _("different number of parameters");
-      return false;
-    }
-  if (parms1 != NULL)
-    {
-      Typed_identifier_list::const_iterator p1 = parms1->begin();
-      for (Typed_identifier_list::const_iterator p2 = parms2->begin();
-          p2 != parms2->end();
-          ++p2, ++p1)
-       {
-         if (p1 == parms1->end())
-           {
-             if (reason != NULL)
-               *reason = _("different number of parameters");
-             return false;
-           }
-
-         if (!Type::are_identical(p1->type(), p2->type(), NULL))
-           {
-             if (reason != NULL)
-               *reason = _("different parameter types");
-             return false;
-           }
-       }
-      if (p1 != parms1->end())
-       {
-         if (reason != NULL)
-           *reason = _("different number of parameters");
-       return false;
-       }
-    }
-
-  if (this->is_varargs() != t->is_varargs())
-    {
-      if (reason != NULL)
-       *reason = _("different varargs");
-      return false;
-    }
-
-  const Typed_identifier_list* results1 = this->results();
-  const Typed_identifier_list* results2 = t->results();
-  if ((results1 != NULL) != (results2 != NULL))
-    {
-      if (reason != NULL)
-       *reason = _("different number of results");
-      return false;
-    }
-  if (results1 != NULL)
-    {
-      Typed_identifier_list::const_iterator res1 = results1->begin();
-      for (Typed_identifier_list::const_iterator res2 = results2->begin();
-          res2 != results2->end();
-          ++res2, ++res1)
-       {
-         if (res1 == results1->end())
-           {
-             if (reason != NULL)
-               *reason = _("different number of results");
-             return false;
-           }
-
-         if (!Type::are_identical(res1->type(), res2->type(), NULL))
-           {
-             if (reason != NULL)
-               *reason = _("different result types");
-             return false;
-           }
-       }
-      if (res1 != results1->end())
-       {
-         if (reason != NULL)
-           *reason = _("different number of results");
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Hash code.
-
-unsigned int
-Function_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  // We ignore the receiver type for hash codes, because we need to
-  // get the same hash code for a method in an interface and a method
-  // declared for a type.  The former will not have a receiver.
-  if (this->parameters_ != NULL)
-    {
-      int shift = 1;
-      for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
-          p != this->parameters_->end();
-          ++p, ++shift)
-       ret += p->type()->hash_for_method(gogo) << shift;
-    }
-  if (this->results_ != NULL)
-    {
-      int shift = 2;
-      for (Typed_identifier_list::const_iterator p = this->results_->begin();
-          p != this->results_->end();
-          ++p, ++shift)
-       ret += p->type()->hash_for_method(gogo) << shift;
-    }
-  if (this->is_varargs_)
-    ret += 1;
-  ret <<= 4;
-  return ret;
-}
-
-// Get the tree for a function type.
-
-tree
-Function_type::do_get_tree(Gogo* gogo)
-{
-  tree args = NULL_TREE;
-  tree* pp = &args;
-
-  if (this->receiver_ != NULL)
-    {
-      Type* rtype = this->receiver_->type();
-      tree ptype = rtype->get_tree(gogo);
-      if (ptype == error_mark_node)
-       return error_mark_node;
-
-      // We always pass the address of the receiver parameter, in
-      // order to make interface calls work with unknown types.
-      if (rtype->points_to() == NULL)
-       ptype = build_pointer_type(ptype);
-
-      *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
-      pp = &TREE_CHAIN (*pp);
-    }
-
-  if (this->parameters_ != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
-          p != this->parameters_->end();
-          ++p)
-       {
-         tree ptype = p->type()->get_tree(gogo);
-         if (ptype == error_mark_node)
-           return error_mark_node;
-         *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
-         pp = &TREE_CHAIN (*pp);
-       }
-    }
-
-  // Varargs is handled entirely at the Go level.  At the tree level,
-  // functions are not varargs.
-  *pp = void_list_node;
-
-  tree result;
-  if (this->results_ == NULL)
-    result = void_type_node;
-  else if (this->results_->size() == 1)
-    result = this->results_->begin()->type()->get_tree(gogo);
-  else
-    {
-      result = make_node(RECORD_TYPE);
-      tree field_trees = NULL_TREE;
-      tree* pp = &field_trees;
-      for (Typed_identifier_list::const_iterator p = this->results_->begin();
-          p != this->results_->end();
-          ++p)
-       {
-         const std::string name = (p->name().empty()
-                                   ? "UNNAMED"
-                                   : Gogo::unpack_hidden_name(p->name()));
-         tree name_tree = get_identifier_with_length(name.data(),
-                                                     name.length());
-         tree field_type_tree = p->type()->get_tree(gogo);
-         if (field_type_tree == error_mark_node)
-           return error_mark_node;
-         tree field = build_decl(this->location_, FIELD_DECL, name_tree,
-                                 field_type_tree);
-         DECL_CONTEXT(field) = result;
-         *pp = field;
-         pp = &DECL_CHAIN(field);
-       }
-      TYPE_FIELDS(result) = field_trees;
-      layout_type(result);
-    }
-
-  if (result == error_mark_node)
-    return error_mark_node;
-
-  tree fntype = build_function_type(result, args);
-  if (fntype == error_mark_node)
-    return fntype;
-
-  return build_pointer_type(fntype);
-}
-
-// Functions are initialized to NULL.
-
-tree
-Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// The type of a function type descriptor.
-
-Type*
-Function_type::make_function_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* bool_type = Type::lookup_bool_type();
-
-      Type* slice_type = Type::make_array_type(ptdt, NULL);
-
-      Struct_type* s = Type::make_builtin_struct_type(4,
-                                                     "", tdt,
-                                                     "dotdotdot", bool_type,
-                                                     "in", slice_type,
-                                                     "out", slice_type);
-
-      ret = Type::make_builtin_named_type("FuncType", s);
-    }
-
-  return ret;
-}
-
-// The type descriptor for a function type.
-
-Expression*
-Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* ftdt = Function_type::make_function_type_descriptor_type();
-
-  const Struct_field_list* fields = ftdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(4);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_FUNC,
-                                                   name, NULL, true));
-
-  ++p;
-  gcc_assert(p->field_name() == "dotdotdot");
-  vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "in");
-  vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
-                                              this->parameters()));
-
-  ++p;
-  gcc_assert(p->field_name() == "out");
-  vals->push_back(this->type_descriptor_params(p->type(), NULL,
-                                              this->results()));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(ftdt, vals, bloc);
-}
-
-// Return a composite literal for the parameters or results of a type
-// descriptor.
-
-Expression*
-Function_type::type_descriptor_params(Type* params_type,
-                                     const Typed_identifier* receiver,
-                                     const Typed_identifier_list* params)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  if (receiver == NULL && params == NULL)
-    return Expression::make_slice_composite_literal(params_type, NULL, bloc);
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve((params == NULL ? 0 : params->size())
-               + (receiver != NULL ? 1 : 0));
-
-  if (receiver != NULL)
-    {
-      Type* rtype = receiver->type();
-      // The receiver is always passed as a pointer.  FIXME: Is this
-      // right?  Should that fact affect the type descriptor?
-      if (rtype->points_to() == NULL)
-       rtype = Type::make_pointer_type(rtype);
-      vals->push_back(Expression::make_type_descriptor(rtype, bloc));
-    }
-
-  if (params != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
-    }
-
-  return Expression::make_slice_composite_literal(params_type, vals, bloc);
-}
-
-// The reflection string.
-
-void
-Function_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  // FIXME: Turn this off until we straighten out the type of the
-  // struct field used in a go statement which calls a method.
-  // gcc_assert(this->receiver_ == NULL);
-
-  ret->append("func");
-
-  if (this->receiver_ != NULL)
-    {
-      ret->push_back('(');
-      this->append_reflection(this->receiver_->type(), gogo, ret);
-      ret->push_back(')');
-    }
-
-  ret->push_back('(');
-  const Typed_identifier_list* params = this->parameters();
-  if (params != NULL)
-    {
-      bool is_varargs = this->is_varargs_;
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       {
-         if (p != params->begin())
-           ret->append(", ");
-         if (!is_varargs || p + 1 != params->end())
-           this->append_reflection(p->type(), gogo, ret);
-         else
-           {
-             ret->append("...");
-             this->append_reflection(p->type()->array_type()->element_type(),
-                                     gogo, ret);
-           }
-       }
-    }
-  ret->push_back(')');
-
-  const Typed_identifier_list* results = this->results();
-  if (results != NULL && !results->empty())
-    {
-      if (results->size() == 1)
-       ret->push_back(' ');
-      else
-       ret->append(" (");
-      for (Typed_identifier_list::const_iterator p = results->begin();
-          p != results->end();
-          ++p)
-       {
-         if (p != results->begin())
-           ret->append(", ");
-         this->append_reflection(p->type(), gogo, ret);
-       }
-      if (results->size() > 1)
-       ret->push_back(')');
-    }
-}
-
-// Mangled name.
-
-void
-Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('F');
-
-  if (this->receiver_ != NULL)
-    {
-      ret->push_back('m');
-      this->append_mangled_name(this->receiver_->type(), gogo, ret);
-    }
-
-  const Typed_identifier_list* params = this->parameters();
-  if (params != NULL)
-    {
-      ret->push_back('p');
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       this->append_mangled_name(p->type(), gogo, ret);
-      if (this->is_varargs_)
-       ret->push_back('V');
-      ret->push_back('e');
-    }
-
-  const Typed_identifier_list* results = this->results();
-  if (results != NULL)
-    {
-      ret->push_back('r');
-      for (Typed_identifier_list::const_iterator p = results->begin();
-          p != results->end();
-          ++p)
-       this->append_mangled_name(p->type(), gogo, ret);
-      ret->push_back('e');
-    }
-
-  ret->push_back('e');
-}
-
-// Export a function type.
-
-void
-Function_type::do_export(Export* exp) const
-{
-  // We don't write out the receiver.  The only function types which
-  // should have a receiver are the ones associated with explicitly
-  // defined methods.  For those the receiver type is written out by
-  // Function::export_func.
-
-  exp->write_c_string("(");
-  bool first = true;
-  if (this->parameters_ != NULL)
-    {
-      bool is_varargs = this->is_varargs_;
-      for (Typed_identifier_list::const_iterator p =
-            this->parameters_->begin();
-          p != this->parameters_->end();
-          ++p)
-       {
-         if (first)
-           first = false;
-         else
-           exp->write_c_string(", ");
-         if (!is_varargs || p + 1 != this->parameters_->end())
-           exp->write_type(p->type());
-         else
-           {
-             exp->write_c_string("...");
-             exp->write_type(p->type()->array_type()->element_type());
-           }
-       }
-    }
-  exp->write_c_string(")");
-
-  const Typed_identifier_list* results = this->results_;
-  if (results != NULL)
-    {
-      exp->write_c_string(" ");
-      if (results->size() == 1)
-       exp->write_type(results->begin()->type());
-      else
-       {
-         first = true;
-         exp->write_c_string("(");
-         for (Typed_identifier_list::const_iterator p = results->begin();
-              p != results->end();
-              ++p)
-           {
-             if (first)
-               first = false;
-             else
-               exp->write_c_string(", ");
-             exp->write_type(p->type());
-           }
-         exp->write_c_string(")");
-       }
-    }
-}
-
-// Import a function type.
-
-Function_type*
-Function_type::do_import(Import* imp)
-{
-  imp->require_c_string("(");
-  Typed_identifier_list* parameters;
-  bool is_varargs = false;
-  if (imp->peek_char() == ')')
-    parameters = NULL;
-  else
-    {
-      parameters = new Typed_identifier_list();
-      while (true)
-       {
-         if (imp->match_c_string("..."))
-           {
-             imp->advance(3);
-             is_varargs = true;
-           }
-
-         Type* ptype = imp->read_type();
-         if (is_varargs)
-           ptype = Type::make_array_type(ptype, NULL);
-         parameters->push_back(Typed_identifier(Import::import_marker,
-                                                ptype, imp->location()));
-         if (imp->peek_char() != ',')
-           break;
-         gcc_assert(!is_varargs);
-         imp->require_c_string(", ");
-       }
-    }
-  imp->require_c_string(")");
-
-  Typed_identifier_list* results;
-  if (imp->peek_char() != ' ')
-    results = NULL;
-  else
-    {
-      imp->advance(1);
-      results = new Typed_identifier_list;
-      if (imp->peek_char() != '(')
-       {
-         Type* rtype = imp->read_type();
-         results->push_back(Typed_identifier(Import::import_marker, rtype,
-                                             imp->location()));
-       }
-      else
-       {
-         imp->advance(1);
-         while (true)
-           {
-             Type* rtype = imp->read_type();
-             results->push_back(Typed_identifier(Import::import_marker,
-                                                 rtype, imp->location()));
-             if (imp->peek_char() != ',')
-               break;
-             imp->require_c_string(", ");
-           }
-         imp->require_c_string(")");
-       }
-    }
-
-  Function_type* ret = Type::make_function_type(NULL, parameters, results,
-                                               imp->location());
-  if (is_varargs)
-    ret->set_is_varargs();
-  return ret;
-}
-
-// Make a copy of a function type without a receiver.
-
-Function_type*
-Function_type::copy_without_receiver() const
-{
-  gcc_assert(this->is_method());
-  Function_type *ret = Type::make_function_type(NULL, this->parameters_,
-                                               this->results_,
-                                               this->location_);
-  if (this->is_varargs())
-    ret->set_is_varargs();
-  if (this->is_builtin())
-    ret->set_is_builtin();
-  return ret;
-}
-
-// Make a copy of a function type with a receiver.
-
-Function_type*
-Function_type::copy_with_receiver(Type* receiver_type) const
-{
-  gcc_assert(!this->is_method());
-  Typed_identifier* receiver = new Typed_identifier("", receiver_type,
-                                                   this->location_);
-  return Type::make_function_type(receiver, this->parameters_,
-                                 this->results_, this->location_);
-}
-
-// Make a function type.
-
-Function_type*
-Type::make_function_type(Typed_identifier* receiver,
-                        Typed_identifier_list* parameters,
-                        Typed_identifier_list* results,
-                        source_location location)
-{
-  return new Function_type(receiver, parameters, results, location);
-}
-
-// Class Pointer_type.
-
-// Traversal.
-
-int
-Pointer_type::do_traverse(Traverse* traverse)
-{
-  return Type::traverse(this->to_type_, traverse);
-}
-
-// Hash code.
-
-unsigned int
-Pointer_type::do_hash_for_method(Gogo* gogo) const
-{
-  return this->to_type_->hash_for_method(gogo) << 4;
-}
-
-// The tree for a pointer type.
-
-tree
-Pointer_type::do_get_tree(Gogo* gogo)
-{
-  return build_pointer_type(this->to_type_->get_tree(gogo));
-}
-
-// Initialize a pointer type.
-
-tree
-Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// The type of a pointer type descriptor.
-
-Type*
-Pointer_type::make_pointer_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Struct_type* s = Type::make_builtin_struct_type(2,
-                                                     "", tdt,
-                                                     "elem", ptdt);
-
-      ret = Type::make_builtin_named_type("PtrType", s);
-    }
-
-  return ret;
-}
-
-// The type descriptor for a pointer type.
-
-Expression*
-Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (this->is_unsafe_pointer_type())
-    {
-      gcc_assert(name != NULL);
-      return this->plain_type_descriptor(gogo,
-                                        RUNTIME_TYPE_KIND_UNSAFE_POINTER,
-                                        name);
-    }
-  else
-    {
-      source_location bloc = BUILTINS_LOCATION;
-
-      const Methods* methods;
-      Type* deref = this->points_to();
-      if (deref->named_type() != NULL)
-       methods = deref->named_type()->methods();
-      else if (deref->struct_type() != NULL)
-       methods = deref->struct_type()->methods();
-      else
-       methods = NULL;
-
-      Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
-
-      const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
-
-      Expression_list* vals = new Expression_list();
-      vals->reserve(2);
-
-      Struct_field_list::const_iterator p = fields->begin();
-      gcc_assert(p->field_name() == "commonType");
-      vals->push_back(this->type_descriptor_constructor(gogo,
-                                                       RUNTIME_TYPE_KIND_PTR,
-                                                       name, methods, false));
-
-      ++p;
-      gcc_assert(p->field_name() == "elem");
-      vals->push_back(Expression::make_type_descriptor(deref, bloc));
-
-      return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
-    }
-}
-
-// Reflection string.
-
-void
-Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('*');
-  this->append_reflection(this->to_type_, gogo, ret);
-}
-
-// Mangled name.
-
-void
-Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('p');
-  this->append_mangled_name(this->to_type_, gogo, ret);
-}
-
-// Export.
-
-void
-Pointer_type::do_export(Export* exp) const
-{
-  exp->write_c_string("*");
-  if (this->is_unsafe_pointer_type())
-    exp->write_c_string("any");
-  else
-    exp->write_type(this->to_type_);
-}
-
-// Import.
-
-Pointer_type*
-Pointer_type::do_import(Import* imp)
-{
-  imp->require_c_string("*");
-  if (imp->match_c_string("any"))
-    {
-      imp->advance(3);
-      return Type::make_pointer_type(Type::make_void_type());
-    }
-  Type* to = imp->read_type();
-  return Type::make_pointer_type(to);
-}
-
-// Make a pointer type.
-
-Pointer_type*
-Type::make_pointer_type(Type* to_type)
-{
-  typedef Unordered_map(Type*, Pointer_type*) Hashtable;
-  static Hashtable pointer_types;
-  Hashtable::const_iterator p = pointer_types.find(to_type);
-  if (p != pointer_types.end())
-    return p->second;
-  Pointer_type* ret = new Pointer_type(to_type);
-  pointer_types[to_type] = ret;
-  return ret;
-}
-
-// The nil type.  We use a special type for nil because it is not the
-// same as any other type.  In C term nil has type void*, but there is
-// no such type in Go.
-
-class Nil_type : public Type
-{
- public:
-  Nil_type()
-    : Type(TYPE_NIL)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return ptr_type_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-  { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { gcc_unreachable(); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { gcc_unreachable(); }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('n'); }
-};
-
-// Make the nil type.
-
-Type*
-Type::make_nil_type()
-{
-  static Nil_type singleton_nil_type;
-  return &singleton_nil_type;
-}
-
-// The type of a function call which returns multiple values.  This is
-// really a struct, but we don't want to confuse a function call which
-// returns a struct with a function call which returns multiple
-// values.
-
-class Call_multiple_result_type : public Type
-{
- public:
-  Call_multiple_result_type(Call_expression* call)
-    : Type(TYPE_CALL_MULTIPLE_RESULT),
-      call_(call)
-  { }
-
- protected:
-  bool
-  do_has_pointer() const
-  { gcc_unreachable(); }
-
-  tree
-  do_get_tree(Gogo*);
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  { gcc_unreachable(); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { gcc_unreachable(); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { gcc_unreachable(); }
-
-  void
-  do_mangled_name(Gogo*, std::string*) const
-  { gcc_unreachable(); }
-
- private:
-  // The expression being called.
-  Call_expression* call_;
-};
-
-// Return the tree for a call result.
-
-tree
-Call_multiple_result_type::do_get_tree(Gogo* gogo)
-{
-  Function_type* fntype = this->call_->get_function_type();
-  gcc_assert(fntype != NULL);
-  const Typed_identifier_list* results = fntype->results();
-  gcc_assert(results != NULL && results->size() > 1);
-
-  Struct_field_list* sfl = new Struct_field_list;
-  for (Typed_identifier_list::const_iterator p = results->begin();
-       p != results->end();
-       ++p)
-    {
-      const std::string name = ((p->name().empty()
-                                || p->name() == Import::import_marker)
-                               ? "UNNAMED"
-                               : p->name());
-      sfl->push_back(Struct_field(Typed_identifier(name, p->type(),
-                                                  this->call_->location())));
-    }
-  return Type::make_struct_type(sfl, this->call_->location())->get_tree(gogo);
-}
-
-// Make a call result type.
-
-Type*
-Type::make_call_multiple_result_type(Call_expression* call)
-{
-  return new Call_multiple_result_type(call);
-}
-
-// Class Struct_field.
-
-// Get the name of a field.
-
-const std::string&
-Struct_field::field_name() const
-{
-  const std::string& name(this->typed_identifier_.name());
-  if (!name.empty())
-    return name;
-  else
-    {
-      // This is called during parsing, before anything is lowered, so
-      // we have to be pretty careful to avoid dereferencing an
-      // unknown type name.
-      Type* t = this->typed_identifier_.type();
-      Type* dt = t;
-      if (t->classification() == Type::TYPE_POINTER)
-       {
-         // Very ugly.
-         Pointer_type* ptype = static_cast<Pointer_type*>(t);
-         dt = ptype->points_to();
-       }
-      if (dt->forward_declaration_type() != NULL)
-       return dt->forward_declaration_type()->name();
-      else if (dt->named_type() != NULL)
-       return dt->named_type()->name();
-      else if (t->is_error_type() || dt->is_error_type())
-       {
-         static const std::string error_string = "*error*";
-         return error_string;
-       }
-      else
-       {
-         // Avoid crashing in the erroneous case where T is named but
-         // DT is not.
-         gcc_assert(t != dt);
-         if (t->forward_declaration_type() != NULL)
-           return t->forward_declaration_type()->name();
-         else if (t->named_type() != NULL)
-           return t->named_type()->name();
-         else
-           gcc_unreachable();
-       }
-    }
-}
-
-// Class Struct_type.
-
-// Traversal.
-
-int
-Struct_type::do_traverse(Traverse* traverse)
-{
-  Struct_field_list* fields = this->fields_;
-  if (fields != NULL)
-    {
-      for (Struct_field_list::iterator p = fields->begin();
-          p != fields->end();
-          ++p)
-       {
-         if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Verify that the struct type is complete and valid.
-
-bool
-Struct_type::do_verify()
-{
-  Struct_field_list* fields = this->fields_;
-  if (fields == NULL)
-    return true;
-  for (Struct_field_list::iterator p = fields->begin();
-       p != fields->end();
-       ++p)
-    {
-      Type* t = p->type();
-      if (t->is_undefined())
-       {
-         error_at(p->location(), "struct field type is incomplete");
-         p->set_type(Type::make_error_type());
-         return false;
-       }
-      else if (p->is_anonymous())
-       {
-         if (t->named_type() != NULL && t->points_to() != NULL)
-           {
-             error_at(p->location(), "embedded type may not be a pointer");
-             p->set_type(Type::make_error_type());
-             return false;
-           }
-       }
-    }
-  return true;
-}
-
-// Whether this contains a pointer.
-
-bool
-Struct_type::do_has_pointer() const
-{
-  const Struct_field_list* fields = this->fields();
-  if (fields == NULL)
-    return false;
-  for (Struct_field_list::const_iterator p = fields->begin();
-       p != fields->end();
-       ++p)
-    {
-      if (p->type()->has_pointer())
-       return true;
-    }
-  return false;
-}
-
-// Whether this type is identical to T.
-
-bool
-Struct_type::is_identical(const Struct_type* t) const
-{
-  const Struct_field_list* fields1 = this->fields();
-  const Struct_field_list* fields2 = t->fields();
-  if (fields1 == NULL || fields2 == NULL)
-    return fields1 == fields2;
-  Struct_field_list::const_iterator pf2 = fields2->begin();
-  for (Struct_field_list::const_iterator pf1 = fields1->begin();
-       pf1 != fields1->end();
-       ++pf1, ++pf2)
-    {
-      if (pf2 == fields2->end())
-       return false;
-      if (pf1->field_name() != pf2->field_name())
-       return false;
-      if (pf1->is_anonymous() != pf2->is_anonymous()
-         || !Type::are_identical(pf1->type(), pf2->type(), NULL))
-       return false;
-      if (!pf1->has_tag())
-       {
-         if (pf2->has_tag())
-           return false;
-       }
-      else
-       {
-         if (!pf2->has_tag())
-           return false;
-         if (pf1->tag() != pf2->tag())
-           return false;
-       }
-    }
-  if (pf2 != fields2->end())
-    return false;
-  return true;
-}
-
-// Whether this struct type has any hidden fields.
-
-bool
-Struct_type::struct_has_hidden_fields(const Named_type* within,
-                                     std::string* reason) const
-{
-  const Struct_field_list* fields = this->fields();
-  if (fields == NULL)
-    return false;
-  const Package* within_package = (within == NULL
-                                  ? NULL
-                                  : within->named_object()->package());
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      if (within_package != NULL
-         && !pf->is_anonymous()
-         && Gogo::is_hidden_name(pf->field_name()))
-       {
-         if (reason != NULL)
-           {
-             std::string within_name = within->named_object()->message_name();
-             std::string name = Gogo::message_name(pf->field_name());
-             size_t bufsize = 200 + within_name.length() + name.length();
-             char* buf = new char[bufsize];
-             snprintf(buf, bufsize,
-                      _("implicit assignment of %s%s%s hidden field %s%s%s"),
-                      open_quote, within_name.c_str(), close_quote,
-                      open_quote, name.c_str(), close_quote);
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return true;
-       }
-
-      if (pf->type()->has_hidden_fields(within, reason))
-       return true;
-    }
-
-  return false;
-}
-
-// Hash code.
-
-unsigned int
-Struct_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->fields() != NULL)
-    {
-      for (Struct_field_list::const_iterator pf = this->fields()->begin();
-          pf != this->fields()->end();
-          ++pf)
-       ret = (ret << 1) + pf->type()->hash_for_method(gogo);
-    }
-  return ret <<= 2;
-}
-
-// Find the local field NAME.
-
-const Struct_field*
-Struct_type::find_local_field(const std::string& name,
-                             unsigned int *pindex) const
-{
-  const Struct_field_list* fields = this->fields_;
-  if (fields == NULL)
-    return NULL;
-  unsigned int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (pf->field_name() == name)
-       {
-         if (pindex != NULL)
-           *pindex = i;
-         return &*pf;
-       }
-    }
-  return NULL;
-}
-
-// Return an expression for field NAME in STRUCT_EXPR, or NULL.
-
-Field_reference_expression*
-Struct_type::field_reference(Expression* struct_expr, const std::string& name,
-                            source_location location) const
-{
-  unsigned int depth;
-  return this->field_reference_depth(struct_expr, name, location, &depth);
-}
-
-// Return an expression for a field, along with the depth at which it
-// was found.
-
-Field_reference_expression*
-Struct_type::field_reference_depth(Expression* struct_expr,
-                                  const std::string& name,
-                                  source_location location,
-                                  unsigned int* depth) const
-{
-  const Struct_field_list* fields = this->fields_;
-  if (fields == NULL)
-    return NULL;
-
-  // Look for a field with this name.
-  unsigned int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (pf->field_name() == name)
-       {
-         *depth = 0;
-         return Expression::make_field_reference(struct_expr, i, location);
-       }
-    }
-
-  // Look for an anonymous field which contains a field with this
-  // name.
-  unsigned int found_depth = 0;
-  Field_reference_expression* ret = NULL;
-  i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (!pf->is_anonymous())
-       continue;
-
-      Struct_type* st = pf->type()->deref()->struct_type();
-      if (st == NULL)
-       continue;
-
-      // Look for a reference using a NULL struct expression.  If we
-      // find one, fill in the struct expression with a reference to
-      // this field.
-      unsigned int subdepth;
-      Field_reference_expression* sub = st->field_reference_depth(NULL, name,
-                                                                 location,
-                                                                 &subdepth);
-      if (sub == NULL)
-       continue;
-
-      if (ret == NULL || subdepth < found_depth)
-       {
-         if (ret != NULL)
-           delete ret;
-         ret = sub;
-         found_depth = subdepth;
-         Expression* here = Expression::make_field_reference(struct_expr, i,
-                                                             location);
-         if (pf->type()->points_to() != NULL)
-           here = Expression::make_unary(OPERATOR_MULT, here, location);
-         while (sub->expr() != NULL)
-           {
-             sub = sub->expr()->deref()->field_reference_expression();
-             gcc_assert(sub != NULL);
-           }
-         sub->set_struct_expression(here);
-       }
-      else if (subdepth > found_depth)
-       delete sub;
-      else
-       {
-         // We do not handle ambiguity here--it should be handled by
-         // Type::bind_field_or_method.
-         delete sub;
-         found_depth = 0;
-         ret = NULL;
-       }
-    }
-
-  if (ret != NULL)
-    *depth = found_depth + 1;
-
-  return ret;
-}
-
-// Return the total number of fields, including embedded fields.
-
-unsigned int
-Struct_type::total_field_count() const
-{
-  if (this->fields_ == NULL)
-    return 0;
-  unsigned int ret = 0;
-  for (Struct_field_list::const_iterator pf = this->fields_->begin();
-       pf != this->fields_->end();
-       ++pf)
-    {
-      if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
-       ++ret;
-      else
-       ret += pf->type()->struct_type()->total_field_count();
-    }
-  return ret;
-}
-
-// Return whether NAME is an unexported field, for better error reporting.
-
-bool
-Struct_type::is_unexported_local_field(Gogo* gogo,
-                                      const std::string& name) const
-{
-  const Struct_field_list* fields = this->fields_;
-  if (fields != NULL)
-    {
-      for (Struct_field_list::const_iterator pf = fields->begin();
-          pf != fields->end();
-          ++pf)
-       {
-         const std::string& field_name(pf->field_name());
-         if (Gogo::is_hidden_name(field_name)
-             && name == Gogo::unpack_hidden_name(field_name)
-             && gogo->pack_hidden_name(name, false) != field_name)
-           return true;
-       }
-    }
-  return false;
-}
-
-// Finalize the methods of an unnamed struct.
-
-void
-Struct_type::finalize_methods(Gogo* gogo)
-{
-  Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
-}
-
-// Return the method NAME, or NULL if there isn't one or if it is
-// ambiguous.  Set *IS_AMBIGUOUS if the method exists but is
-// ambiguous.
-
-Method*
-Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
-{
-  return Type::method_function(this->all_methods_, name, is_ambiguous);
-}
-
-// Get the tree for a struct type.
-
-tree
-Struct_type::do_get_tree(Gogo* gogo)
-{
-  tree type = make_node(RECORD_TYPE);
-  return this->fill_in_tree(gogo, type);
-}
-
-// Fill in the fields for a struct type.
-
-tree
-Struct_type::fill_in_tree(Gogo* gogo, tree type)
-{
-  tree field_trees = NULL_TREE;
-  tree* pp = &field_trees;
-  for (Struct_field_list::const_iterator p = this->fields_->begin();
-       p != this->fields_->end();
-       ++p)
-    {
-      std::string name = Gogo::unpack_hidden_name(p->field_name());
-      tree name_tree = get_identifier_with_length(name.data(), name.length());
-      tree field_type_tree = p->type()->get_tree(gogo);
-      if (field_type_tree == error_mark_node)
-       return error_mark_node;
-      tree field = build_decl(p->location(), FIELD_DECL, name_tree,
-                             field_type_tree);
-      DECL_CONTEXT(field) = type;
-      *pp = field;
-      pp = &DECL_CHAIN(field);
-    }
-
-  TYPE_FIELDS(type) = field_trees;
-
-  layout_type(type);
-
-  return type;
-}
-
-// Initialize struct fields.
-
-tree
-Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
-{
-  if (this->fields_ == NULL || this->fields_->empty())
-    {
-      if (is_clear)
-       return NULL;
-      else
-       {
-         tree ret = build_constructor(type_tree,
-                                      VEC_alloc(constructor_elt, gc, 0));
-         TREE_CONSTANT(ret) = 1;
-         return ret;
-       }
-    }
-
-  bool is_constant = true;
-  bool any_fields_set = false;
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
-                                           this->fields_->size());
-  Struct_field_list::const_iterator p = this->fields_->begin();
-  for (tree field = TYPE_FIELDS(type_tree);
-       field != NULL_TREE;
-       field = DECL_CHAIN(field), ++p)
-    {
-      gcc_assert(p != this->fields_->end());
-      tree value = p->type()->get_init_tree(gogo, is_clear);
-      if (value != NULL)
-       {
-         constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-         elt->index = field;
-         elt->value = value;
-         any_fields_set = true;
-         if (!TREE_CONSTANT(value))
-           is_constant = false;
-       }
-    }
-  gcc_assert(p == this->fields_->end());
-
-  if (!any_fields_set)
-    {
-      gcc_assert(is_clear);
-      VEC_free(constructor_elt, gc, init);
-      return NULL;
-    }
-
-  tree ret = build_constructor(type_tree, init);
-  if (is_constant)
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// The type of a struct type descriptor.
-
-Type*
-Struct_type::make_struct_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-      Type* string_type = Type::lookup_string_type();
-      Type* pointer_string_type = Type::make_pointer_type(string_type);
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(5,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "typ", ptdt,
-                                      "tag", pointer_string_type,
-                                      "offset", uintptr_type);
-      Type* nsf = Type::make_builtin_named_type("structField", sf);
-
-      Type* slice_type = Type::make_array_type(nsf, NULL);
-
-      Struct_type* s = Type::make_builtin_struct_type(2,
-                                                     "", tdt,
-                                                     "fields", slice_type);
-
-      ret = Type::make_builtin_named_type("StructType", s);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for a struct type.
-
-Expression*
-Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* stdt = Struct_type::make_struct_type_descriptor_type();
-
-  const Struct_field_list* fields = stdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(2);
-
-  const Methods* methods = this->methods();
-  // A named struct should not have methods--the methods should attach
-  // to the named type.
-  gcc_assert(methods == NULL || name == NULL);
-
-  Struct_field_list::const_iterator ps = fields->begin();
-  gcc_assert(ps->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_STRUCT,
-                                                   name, methods, true));
-
-  ++ps;
-  gcc_assert(ps->field_name() == "fields");
-
-  Expression_list* elements = new Expression_list();
-  elements->reserve(this->fields_->size());
-  Type* element_type = ps->type()->array_type()->element_type();
-  for (Struct_field_list::const_iterator pf = this->fields_->begin();
-       pf != this->fields_->end();
-       ++pf)
-    {
-      const Struct_field_list* f = element_type->struct_type()->fields();
-
-      Expression_list* fvals = new Expression_list();
-      fvals->reserve(5);
-
-      Struct_field_list::const_iterator q = f->begin();
-      gcc_assert(q->field_name() == "name");
-      if (pf->is_anonymous())
-       fvals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         std::string n = Gogo::unpack_hidden_name(pf->field_name());
-         Expression* s = Expression::make_string(n, bloc);
-         fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-
-      ++q;
-      gcc_assert(q->field_name() == "pkgPath");
-      if (!Gogo::is_hidden_name(pf->field_name()))
-       fvals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         std::string n = Gogo::hidden_name_prefix(pf->field_name());
-         Expression* s = Expression::make_string(n, bloc);
-         fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-
-      ++q;
-      gcc_assert(q->field_name() == "typ");
-      fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
-
-      ++q;
-      gcc_assert(q->field_name() == "tag");
-      if (!pf->has_tag())
-       fvals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         Expression* s = Expression::make_string(pf->tag(), bloc);
-         fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-
-      ++q;
-      gcc_assert(q->field_name() == "offset");
-      fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
-
-      Expression* v = Expression::make_struct_composite_literal(element_type,
-                                                               fvals, bloc);
-      elements->push_back(v);
-    }
-
-  vals->push_back(Expression::make_slice_composite_literal(ps->type(),
-                                                          elements, bloc));
-
-  return Expression::make_struct_composite_literal(stdt, vals, bloc);
-}
-
-// Reflection string.
-
-void
-Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->append("struct { ");
-
-  for (Struct_field_list::const_iterator p = this->fields_->begin();
-       p != this->fields_->end();
-       ++p)
-    {
-      if (p != this->fields_->begin())
-       ret->append("; ");
-      if (p->is_anonymous())
-       ret->push_back('?');
-      else
-       ret->append(Gogo::unpack_hidden_name(p->field_name()));
-      ret->push_back(' ');
-      this->append_reflection(p->type(), gogo, ret);
-
-      if (p->has_tag())
-       {
-         const std::string& tag(p->tag());
-         ret->append(" \"");
-         for (std::string::const_iterator p = tag.begin();
-              p != tag.end();
-              ++p)
-           {
-             if (*p == '\0')
-               ret->append("\\x00");
-             else if (*p == '\n')
-               ret->append("\\n");
-             else if (*p == '\t')
-               ret->append("\\t");
-             else if (*p == '"')
-               ret->append("\\\"");
-             else if (*p == '\\')
-               ret->append("\\\\");
-             else
-               ret->push_back(*p);
-           }
-         ret->push_back('"');
-       }
-    }
-
-  ret->append(" }");
-}
-
-// Mangled name.
-
-void
-Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('S');
-
-  const Struct_field_list* fields = this->fields_;
-  if (fields != NULL)
-    {
-      for (Struct_field_list::const_iterator p = fields->begin();
-          p != fields->end();
-          ++p)
-       {
-         if (p->is_anonymous())
-           ret->append("0_");
-         else
-           {
-             std::string n = Gogo::unpack_hidden_name(p->field_name());
-             char buf[20];
-             snprintf(buf, sizeof buf, "%u_",
-                      static_cast<unsigned int>(n.length()));
-             ret->append(buf);
-             ret->append(n);
-           }
-         this->append_mangled_name(p->type(), gogo, ret);
-         if (p->has_tag())
-           {
-             const std::string& tag(p->tag());
-             std::string out;
-             for (std::string::const_iterator p = tag.begin();
-                  p != tag.end();
-                  ++p)
-               {
-                 if (ISALNUM(*p) || *p == '_')
-                   out.push_back(*p);
-                 else
-                   {
-                     char buf[20];
-                     snprintf(buf, sizeof buf, ".%x.",
-                              static_cast<unsigned int>(*p));
-                     out.append(buf);
-                   }
-               }
-             char buf[20];
-             snprintf(buf, sizeof buf, "T%u_",
-                      static_cast<unsigned int>(out.length()));
-             ret->append(buf);
-             ret->append(out);
-           }
-       }
-    }
-
-  ret->push_back('e');
-}
-
-// Export.
-
-void
-Struct_type::do_export(Export* exp) const
-{
-  exp->write_c_string("struct { ");
-  const Struct_field_list* fields = this->fields_;
-  gcc_assert(fields != NULL);
-  for (Struct_field_list::const_iterator p = fields->begin();
-       p != fields->end();
-       ++p)
-    {
-      if (p->is_anonymous())
-       exp->write_string("? ");
-      else
-       {
-         exp->write_string(p->field_name());
-         exp->write_c_string(" ");
-       }
-      exp->write_type(p->type());
-
-      if (p->has_tag())
-       {
-         exp->write_c_string(" ");
-         Expression* expr = Expression::make_string(p->tag(),
-                                                    BUILTINS_LOCATION);
-         expr->export_expression(exp);
-         delete expr;
-       }
-
-      exp->write_c_string("; ");
-    }
-  exp->write_c_string("}");
-}
-
-// Import.
-
-Struct_type*
-Struct_type::do_import(Import* imp)
-{
-  imp->require_c_string("struct { ");
-  Struct_field_list* fields = new Struct_field_list;
-  if (imp->peek_char() != '}')
-    {
-      while (true)
-       {
-         std::string name;
-         if (imp->match_c_string("? "))
-           imp->advance(2);
-         else
-           {
-             name = imp->read_identifier();
-             imp->require_c_string(" ");
-           }
-         Type* ftype = imp->read_type();
-
-         Struct_field sf(Typed_identifier(name, ftype, imp->location()));
-
-         if (imp->peek_char() == ' ')
-           {
-             imp->advance(1);
-             Expression* expr = Expression::import_expression(imp);
-             String_expression* sexpr = expr->string_expression();
-             gcc_assert(sexpr != NULL);
-             sf.set_tag(sexpr->val());
-             delete sexpr;
-           }
-
-         imp->require_c_string("; ");
-         fields->push_back(sf);
-         if (imp->peek_char() == '}')
-           break;
-       }
-    }
-  imp->require_c_string("}");
-
-  return Type::make_struct_type(fields, imp->location());
-}
-
-// Make a struct type.
-
-Struct_type*
-Type::make_struct_type(Struct_field_list* fields,
-                      source_location location)
-{
-  return new Struct_type(fields, location);
-}
-
-// Class Array_type.
-
-// Whether two array types are identical.
-
-bool
-Array_type::is_identical(const Array_type* t) const
-{
-  if (!Type::are_identical(this->element_type(), t->element_type(), NULL))
-    return false;
-
-  Expression* l1 = this->length();
-  Expression* l2 = t->length();
-
-  // Slices of the same element type are identical.
-  if (l1 == NULL && l2 == NULL)
-    return true;
-
-  // Arrays of the same element type are identical if they have the
-  // same length.
-  if (l1 != NULL && l2 != NULL)
-    {
-      if (l1 == l2)
-       return true;
-
-      // Try to determine the lengths.  If we can't, assume the arrays
-      // are not identical.
-      bool ret = false;
-      mpz_t v1;
-      mpz_init(v1);
-      Type* type1;
-      mpz_t v2;
-      mpz_init(v2);
-      Type* type2;
-      if (l1->integer_constant_value(true, v1, &type1)
-         && l2->integer_constant_value(true, v2, &type2))
-       ret = mpz_cmp(v1, v2) == 0;
-      mpz_clear(v1);
-      mpz_clear(v2);
-      return ret;
-    }
-
-  // Otherwise the arrays are not identical.
-  return false;
-}
-
-// Traversal.
-
-int
-Array_type::do_traverse(Traverse* traverse)
-{
-  if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->length_ != NULL
-      && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that the length is valid.
-
-bool
-Array_type::verify_length()
-{
-  if (this->length_ == NULL)
-    return true;
-  if (!this->length_->is_constant())
-    {
-      error_at(this->length_->location(), "array bound is not constant");
-      return false;
-    }
-
-  mpz_t val;
-
-  Type* t = this->length_->type();
-  if (t->integer_type() != NULL)
-    {
-      Type* vt;
-      mpz_init(val);
-      if (!this->length_->integer_constant_value(true, val, &vt))
-       {
-         error_at(this->length_->location(),
-                  "array bound is not constant");
-         mpz_clear(val);
-         return false;
-       }
-    }
-  else if (t->float_type() != NULL)
-    {
-      Type* vt;
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (!this->length_->float_constant_value(fval, &vt))
-       {
-         error_at(this->length_->location(),
-                  "array bound is not constant");
-         mpfr_clear(fval);
-         return false;
-       }
-      if (!mpfr_integer_p(fval))
-       {
-         error_at(this->length_->location(),
-                  "array bound truncated to integer");
-         mpfr_clear(fval);
-         return false;
-       }
-      mpz_init(val);
-      mpfr_get_z(val, fval, GMP_RNDN);
-      mpfr_clear(fval);
-    }
-  else
-    {
-      if (!t->is_error_type())
-       error_at(this->length_->location(), "array bound is not numeric");
-      return false;
-    }
-
-  if (mpz_sgn(val) < 0)
-    {
-      error_at(this->length_->location(), "negative array bound");
-      mpz_clear(val);
-      return false;
-    }
-
-  Type* int_type = Type::lookup_integer_type("int");
-  int tbits = int_type->integer_type()->bits();
-  int vbits = mpz_sizeinbase(val, 2);
-  if (vbits + 1 > tbits)
-    {
-      error_at(this->length_->location(), "array bound overflows");
-      mpz_clear(val);
-      return false;
-    }
-
-  mpz_clear(val);
-
-  return true;
-}
-
-// Verify the type.
-
-bool
-Array_type::do_verify()
-{
-  if (!this->verify_length())
-    {
-      this->length_ = Expression::make_error(this->length_->location());
-      return false;
-    }
-  return true;
-}
-
-// Array type hash code.
-
-unsigned int
-Array_type::do_hash_for_method(Gogo* gogo) const
-{
-  // There is no very convenient way to get a hash code for the
-  // length.
-  return this->element_type_->hash_for_method(gogo) + 1;
-}
-
-// See if the expression passed to make is suitable.  The first
-// argument is required, and gives the length.  An optional second
-// argument is permitted for the capacity.
-
-bool
-Array_type::do_check_make_expression(Expression_list* args,
-                                    source_location location)
-{
-  gcc_assert(this->length_ == NULL);
-  if (args == NULL || args->empty())
-    {
-      error_at(location, "length required when allocating a slice");
-      return false;
-    }
-  else if (args->size() > 2)
-    {
-      error_at(location, "too many expressions passed to make");
-      return false;
-    }
-  else
-    {
-      if (!Type::check_int_value(args->front(),
-                                _("bad length when making slice"), location))
-       return false;
-
-      if (args->size() > 1)
-       {
-         if (!Type::check_int_value(args->back(),
-                                    _("bad capacity when making slice"),
-                                    location))
-           return false;
-       }
-
-      return true;
-    }
-}
-
-// Get a tree for the length of a fixed array.  The length may be
-// computed using a function call, so we must only evaluate it once.
-
-tree
-Array_type::get_length_tree(Gogo* gogo)
-{
-  gcc_assert(this->length_ != NULL);
-  if (this->length_tree_ == NULL_TREE)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* t;
-      if (this->length_->integer_constant_value(true, val, &t))
-       {
-         if (t == NULL)
-           t = Type::lookup_integer_type("int");
-         else if (t->is_abstract())
-           t = t->make_non_abstract_type();
-         tree tt = t->get_tree(gogo);
-         this->length_tree_ = Expression::integer_constant_tree(val, tt);
-         mpz_clear(val);
-       }
-      else
-       {
-         mpz_clear(val);
-
-         // Make up a translation context for the array length
-         // expression.  FIXME: This won't work in general.
-         Translate_context context(gogo, NULL, NULL, NULL_TREE);
-         tree len = this->length_->get_tree(&context);
-         len = convert_to_integer(integer_type_node, len);
-         this->length_tree_ = save_expr(len);
-       }
-    }
-  return this->length_tree_;
-}
-
-// Get a tree for the type of this array.  A fixed array is simply
-// represented as ARRAY_TYPE with the appropriate index--i.e., it is
-// just like an array in C.  An open array is a struct with three
-// fields: a data pointer, the length, and the capacity.
-
-tree
-Array_type::do_get_tree(Gogo* gogo)
-{
-  if (this->length_ == NULL)
-    {
-      tree struct_type = gogo->slice_type_tree(void_type_node);
-      return this->fill_in_tree(gogo, struct_type);
-    }
-  else
-    {
-      tree element_type_tree = this->element_type_->get_tree(gogo);
-      tree length_tree = this->get_length_tree(gogo);
-      if (element_type_tree == error_mark_node
-         || length_tree == error_mark_node)
-       return error_mark_node;
-
-      length_tree = fold_convert(sizetype, length_tree);
-
-      // build_index_type takes the maximum index, which is one less
-      // than the length.
-      tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
-                                                    length_tree,
-                                                    size_one_node));
-
-      return build_array_type(element_type_tree, index_type);
-    }
-}
-
-// Fill in the fields for a slice type.  This is used for named slice
-// types.
-
-tree
-Array_type::fill_in_tree(Gogo* gogo, tree struct_type)
-{
-  gcc_assert(this->length_ == NULL);
-
-  tree element_type_tree = this->element_type_->get_tree(gogo);
-  tree field = TYPE_FIELDS(struct_type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
-            && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
-  TREE_TYPE(field) = build_pointer_type(element_type_tree);
-
-  return struct_type;
-}
-
-// Return an initializer for an array type.
-
-tree
-Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
-{
-  if (this->length_ == NULL)
-    {
-      // Open array.
-
-      if (is_clear)
-       return NULL;
-
-      gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-      VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-      for (tree field = TYPE_FIELDS(type_tree);
-          field != NULL_TREE;
-          field = DECL_CHAIN(field))
-       {
-         constructor_elt* elt = VEC_quick_push(constructor_elt, init,
-                                               NULL);
-         elt->index = field;
-         elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
-       }
-
-      tree ret = build_constructor(type_tree, init);
-      TREE_CONSTANT(ret) = 1;
-      return ret;
-    }
-  else
-    {
-      // Fixed array.
-
-      tree value = this->element_type_->get_init_tree(gogo, is_clear);
-      if (value == NULL)
-       return NULL;
-
-      tree length_tree = this->get_length_tree(gogo);
-      length_tree = fold_convert(sizetype, length_tree);
-      tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
-                         fold_build2(MINUS_EXPR, sizetype,
-                                     length_tree, size_one_node));
-      tree ret = build_constructor_single(type_tree, range, value);
-      if (TREE_CONSTANT(value))
-       TREE_CONSTANT(ret) = 1;
-      return ret;
-    }
-}
-
-// Handle the builtin make function for a slice.
-
-tree
-Array_type::do_make_expression_tree(Translate_context* context,
-                                   Expression_list* args,
-                                   source_location location)
-{
-  gcc_assert(this->length_ == NULL);
-
-  Gogo* gogo = context->gogo();
-  tree type_tree = this->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree values_field = TYPE_FIELDS(type_tree);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
-                   "__values") == 0);
-
-  tree count_field = DECL_CHAIN(values_field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
-                   "__count") == 0);
-
-  tree element_type_tree = this->element_type_->get_tree(gogo);
-  if (element_type_tree == error_mark_node)
-    return error_mark_node;
-  tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
-
-  tree value = this->element_type_->get_init_tree(gogo, true);
-
-  // The first argument is the number of elements, the optional second
-  // argument is the capacity.
-  gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
-
-  tree length_tree = args->front()->get_tree(context);
-  if (length_tree == error_mark_node)
-    return error_mark_node;
-  if (!DECL_P(length_tree))
-    length_tree = save_expr(length_tree);
-  if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
-    length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
-
-  tree bad_index = Expression::check_bounds(length_tree,
-                                           TREE_TYPE(count_field),
-                                           NULL_TREE, location);
-
-  length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
-  tree capacity_tree;
-  if (args->size() == 1)
-    capacity_tree = length_tree;
-  else
-    {
-      capacity_tree = args->back()->get_tree(context);
-      if (capacity_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(capacity_tree))
-       capacity_tree = save_expr(capacity_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
-       capacity_tree = convert_to_integer(TREE_TYPE(count_field),
-                                          capacity_tree);
-
-      bad_index = Expression::check_bounds(capacity_tree,
-                                          TREE_TYPE(count_field),
-                                          bad_index, location);
-
-      tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
-                       > TYPE_SIZE(TREE_TYPE(length_tree)))
-                      || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
-                           == TYPE_SIZE(TREE_TYPE(length_tree)))
-                          && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
-                     ? TREE_TYPE(capacity_tree)
-                     : TREE_TYPE(length_tree));
-      tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
-                                fold_convert_loc(location, chktype,
-                                                 capacity_tree),
-                                fold_convert_loc(location, chktype,
-                                                 length_tree));
-      if (bad_index == NULL_TREE)
-       bad_index = chk;
-      else
-       bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
-                                   bad_index, chk);
-
-      capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
-                                      capacity_tree);
-    }
-
-  tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
-                                  element_size_tree,
-                                  fold_convert_loc(location, sizetype,
-                                                   capacity_tree));
-
-  tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
-                            fold_build2_loc(location, GT_EXPR,
-                                            boolean_type_node,
-                                            fold_convert_loc(location,
-                                                             sizetype,
-                                                             capacity_tree),
-                                            size_zero_node),
-                            fold_build2_loc(location, LT_EXPR,
-                                            boolean_type_node,
-                                            size_tree, element_size_tree));
-  if (bad_index == NULL_TREE)
-    bad_index = chk;
-  else
-    bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
-                               bad_index, chk);
-
-  tree space = context->gogo()->allocate_memory(this->element_type_,
-                                               size_tree, location);
-
-  if (value != NULL_TREE)
-    space = save_expr(space);
-
-  space = fold_convert(TREE_TYPE(values_field), space);
-
-  if (bad_index != NULL_TREE && bad_index != boolean_false_node)
-    {
-      tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
-                                      location);
-      space = build2(COMPOUND_EXPR, TREE_TYPE(space),
-                    build3(COND_EXPR, void_type_node,
-                           bad_index, crash, NULL_TREE),
-                    space);
-    }
-
-  tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
-                                            capacity_tree);
-
-  if (value == NULL_TREE)
-    {
-      // The array contents are zero initialized.
-      return constructor;
-    }
-
-  // The elements must be initialized.
-
-  tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
-                            capacity_tree,
-                            fold_convert_loc(location, TREE_TYPE(count_field),
-                                             integer_one_node));
-
-  tree array_type = build_array_type(element_type_tree,
-                                    build_index_type(max));
-
-  tree value_pointer = fold_convert_loc(location,
-                                       build_pointer_type(array_type),
-                                       space);
-
-  tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
-  tree space_init = build_constructor_single(array_type, range, value);
-
-  return build2(COMPOUND_EXPR, TREE_TYPE(space),
-               build2(MODIFY_EXPR, void_type_node,
-                      build_fold_indirect_ref(value_pointer),
-                      space_init),
-               constructor);
-}
-
-// Return a tree for a pointer to the values in ARRAY.
-
-tree
-Array_type::value_pointer_tree(Gogo*, tree array) const
-{
-  tree ret;
-  if (this->length() != NULL)
-    {
-      // Fixed array.
-      ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
-                        build_fold_addr_expr(array));
-    }
-  else
-    {
-      // Open array.
-      tree field = TYPE_FIELDS(TREE_TYPE(array));
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__values") == 0);
-      ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
-                       NULL_TREE);
-    }
-  if (TREE_CONSTANT(array))
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Return a tree for the length of the array ARRAY which has this
-// type.
-
-tree
-Array_type::length_tree(Gogo* gogo, tree array)
-{
-  if (this->length_ != NULL)
-    {
-      if (TREE_CODE(array) == SAVE_EXPR)
-       return fold_convert(integer_type_node, this->get_length_tree(gogo));
-      else
-       return omit_one_operand(integer_type_node,
-                               this->get_length_tree(gogo), array);
-    }
-
-  // This is an open array.  We need to read the length field.
-
-  tree type = TREE_TYPE(array);
-  gcc_assert(TREE_CODE(type) == RECORD_TYPE);
-
-  tree field = DECL_CHAIN(TYPE_FIELDS(type));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-
-  tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
-  if (TREE_CONSTANT(array))
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Return a tree for the capacity of the array ARRAY which has this
-// type.
-
-tree
-Array_type::capacity_tree(Gogo* gogo, tree array)
-{
-  if (this->length_ != NULL)
-    return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
-
-  // This is an open array.  We need to read the capacity field.
-
-  tree type = TREE_TYPE(array);
-  gcc_assert(TREE_CODE(type) == RECORD_TYPE);
-
-  tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
-
-  return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
-}
-
-// Export.
-
-void
-Array_type::do_export(Export* exp) const
-{
-  exp->write_c_string("[");
-  if (this->length_ != NULL)
-    this->length_->export_expression(exp);
-  exp->write_c_string("] ");
-  exp->write_type(this->element_type_);
-}
-
-// Import.
-
-Array_type*
-Array_type::do_import(Import* imp)
-{
-  imp->require_c_string("[");
-  Expression* length;
-  if (imp->peek_char() == ']')
-    length = NULL;
-  else
-    length = Expression::import_expression(imp);
-  imp->require_c_string("] ");
-  Type* element_type = imp->read_type();
-  return Type::make_array_type(element_type, length);
-}
-
-// The type of an array type descriptor.
-
-Type*
-Array_type::make_array_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(3,
-                                      "", tdt,
-                                      "elem", ptdt,
-                                      "len", uintptr_type);
-
-      ret = Type::make_builtin_named_type("ArrayType", sf);
-    }
-
-  return ret;
-}
-
-// The type of an slice type descriptor.
-
-Type*
-Array_type::make_slice_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(2,
-                                      "", tdt,
-                                      "elem", ptdt);
-
-      ret = Type::make_builtin_named_type("SliceType", sf);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for an array/slice type.
-
-Expression*
-Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (this->length_ != NULL)
-    return this->array_type_descriptor(gogo, name);
-  else
-    return this->slice_type_descriptor(gogo, name);
-}
-
-// Build a type descriptor for an array type.
-
-Expression*
-Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* atdt = Array_type::make_array_type_descriptor_type();
-
-  const Struct_field_list* fields = atdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_ARRAY,
-                                                   name, NULL, true));
-
-  ++p;
-  gcc_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "len");
-  vals->push_back(this->length_);
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(atdt, vals, bloc);
-}
-
-// Build a type descriptor for a slice type.
-
-Expression*
-Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* stdt = Array_type::make_slice_type_descriptor_type();
-
-  const Struct_field_list* fields = stdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(2);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_SLICE,
-                                                   name, NULL, true));
-
-  ++p;
-  gcc_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(stdt, vals, bloc);
-}
-
-// Reflection string.
-
-void
-Array_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('[');
-  if (this->length_ != NULL)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* type;
-      if (!this->length_->integer_constant_value(true, val, &type))
-       error_at(this->length_->location(),
-                "array length must be integer constant expression");
-      else if (mpz_cmp_si(val, 0) < 0)
-       error_at(this->length_->location(), "array length is negative");
-      else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
-       error_at(this->length_->location(), "array length is too large");
-      else
-       {
-         char buf[50];
-         snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
-         ret->append(buf);
-       }
-      mpz_clear(val);
-    }
-  ret->push_back(']');
-
-  this->append_reflection(this->element_type_, gogo, ret);
-}
-
-// Mangled name.
-
-void
-Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('A');
-  this->append_mangled_name(this->element_type_, gogo, ret);
-  if (this->length_ != NULL)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* type;
-      if (!this->length_->integer_constant_value(true, val, &type))
-       error_at(this->length_->location(),
-                "array length must be integer constant expression");
-      else if (mpz_cmp_si(val, 0) < 0)
-       error_at(this->length_->location(), "array length is negative");
-      else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
-       error_at(this->length_->location(), "array size is too large");
-      else
-       {
-         char buf[50];
-         snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
-         ret->append(buf);
-       }
-      mpz_clear(val);
-    }
-  ret->push_back('e');
-}
-
-// Make an array type.
-
-Array_type*
-Type::make_array_type(Type* element_type, Expression* length)
-{
-  return new Array_type(element_type, length);
-}
-
-// Class Map_type.
-
-// Traversal.
-
-int
-Map_type::do_traverse(Traverse* traverse)
-{
-  if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
-      || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that the map type is OK.
-
-bool
-Map_type::do_verify()
-{
-  if (this->key_type_->struct_type() != NULL
-      || this->key_type_->array_type() != NULL)
-    {
-      error_at(this->location_, "invalid map key type");
-      return false;
-    }
-  return true;
-}
-
-// Whether two map types are identical.
-
-bool
-Map_type::is_identical(const Map_type* t) const
-{
-  return (Type::are_identical(this->key_type(), t->key_type(), NULL)
-         && Type::are_identical(this->val_type(), t->val_type(), NULL));
-}
-
-// Hash code.
-
-unsigned int
-Map_type::do_hash_for_method(Gogo* gogo) const
-{
-  return (this->key_type_->hash_for_method(gogo)
-         + this->val_type_->hash_for_method(gogo)
-         + 2);
-}
-
-// Check that a call to the builtin make function is valid.  For a map
-// the optional argument is the number of spaces to preallocate for
-// values.
-
-bool
-Map_type::do_check_make_expression(Expression_list* args,
-                                  source_location location)
-{
-  if (args != NULL && !args->empty())
-    {
-      if (!Type::check_int_value(args->front(), _("bad size when making map"),
-                                location))
-       return false;
-      else if (args->size() > 1)
-       {
-         error_at(location, "too many arguments when making map");
-         return false;
-       }
-    }
-  return true;
-}
-
-// Get a tree for a map type.  A map type is represented as a pointer
-// to a struct.  The struct is __go_map in libgo/map.h.
-
-tree
-Map_type::do_get_tree(Gogo* gogo)
-{
-  static tree type_tree;
-  if (type_tree == NULL_TREE)
-    {
-      tree struct_type = make_node(RECORD_TYPE);
-
-      tree map_descriptor_type = gogo->map_descriptor_type();
-      tree const_map_descriptor_type =
-       build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
-      tree name = get_identifier("__descriptor");
-      tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
-                             build_pointer_type(const_map_descriptor_type));
-      DECL_CONTEXT(field) = struct_type;
-      TYPE_FIELDS(struct_type) = field;
-      tree last_field = field;
-
-      name = get_identifier("__element_count");
-      field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
-      DECL_CONTEXT(field) = struct_type;
-      DECL_CHAIN(last_field) = field;
-      last_field = field;
-
-      name = get_identifier("__bucket_count");
-      field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
-      DECL_CONTEXT(field) = struct_type;
-      DECL_CHAIN(last_field) = field;
-      last_field = field;
-
-      name = get_identifier("__buckets");
-      field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
-                        build_pointer_type(ptr_type_node));
-      DECL_CONTEXT(field) = struct_type;
-      DECL_CHAIN(last_field) = field;
-
-      layout_type(struct_type);
-
-      // Give the struct a name for better debugging info.
-      name = get_identifier("__go_map");
-      tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
-                                 struct_type);
-      DECL_ARTIFICIAL(type_decl) = 1;
-      TYPE_NAME(struct_type) = type_decl;
-      go_preserve_from_gc(type_decl);
-      rest_of_decl_compilation(type_decl, 1, 0);
-
-      type_tree = build_pointer_type(struct_type);
-      go_preserve_from_gc(type_tree);
-    }
-
-  return type_tree;
-}
-
-// Initialize a map.
-
-tree
-Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// Return an expression for a newly allocated map.
-
-tree
-Map_type::do_make_expression_tree(Translate_context* context,
-                                 Expression_list* args,
-                                 source_location location)
-{
-  tree bad_index = NULL_TREE;
-
-  tree expr_tree;
-  if (args == NULL || args->empty())
-    expr_tree = size_zero_node;
-  else
-    {
-      expr_tree = args->front()->get_tree(context);
-      if (expr_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(expr_tree))
-       expr_tree = save_expr(expr_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
-       expr_tree = convert_to_integer(sizetype, expr_tree);
-      bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
-                                          location);
-    }
-
-  tree map_type = this->get_tree(context->gogo());
-
-  static tree new_map_fndecl;
-  tree ret = Gogo::call_builtin(&new_map_fndecl,
-                               location,
-                               "__go_new_map",
-                               2,
-                               map_type,
-                               TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
-                               context->gogo()->map_descriptor(this),
-                               sizetype,
-                               expr_tree);
-  // This can panic if the capacity is out of range.
-  TREE_NOTHROW(new_map_fndecl) = 0;
-
-  if (bad_index == NULL_TREE)
-    return ret;
-  else
-    {
-      tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
-                                      location);
-      return build2(COMPOUND_EXPR, TREE_TYPE(ret),
-                   build3(COND_EXPR, void_type_node,
-                          bad_index, crash, NULL_TREE),
-                   ret);
-    }
-}
-
-// The type of a map type descriptor.
-
-Type*
-Map_type::make_map_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(3,
-                                      "", tdt,
-                                      "key", ptdt,
-                                      "elem", ptdt);
-
-      ret = Type::make_builtin_named_type("MapType", sf);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for a map type.
-
-Expression*
-Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* mtdt = Map_type::make_map_type_descriptor_type();
-
-  const Struct_field_list* fields = mtdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_MAP,
-                                                   name, NULL, true));
-
-  ++p;
-  gcc_assert(p->field_name() == "key");
-  vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(mtdt, vals, bloc);
-}
-
-// Reflection string for a map.
-
-void
-Map_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->append("map[");
-  this->append_reflection(this->key_type_, gogo, ret);
-  ret->append("] ");
-  this->append_reflection(this->val_type_, gogo, ret);
-}
-
-// Mangled name for a map.
-
-void
-Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('M');
-  this->append_mangled_name(this->key_type_, gogo, ret);
-  ret->append("__");
-  this->append_mangled_name(this->val_type_, gogo, ret);
-}
-
-// Export a map type.
-
-void
-Map_type::do_export(Export* exp) const
-{
-  exp->write_c_string("map [");
-  exp->write_type(this->key_type_);
-  exp->write_c_string("] ");
-  exp->write_type(this->val_type_);
-}
-
-// Import a map type.
-
-Map_type*
-Map_type::do_import(Import* imp)
-{
-  imp->require_c_string("map [");
-  Type* key_type = imp->read_type();
-  imp->require_c_string("] ");
-  Type* val_type = imp->read_type();
-  return Type::make_map_type(key_type, val_type, imp->location());
-}
-
-// Make a map type.
-
-Map_type*
-Type::make_map_type(Type* key_type, Type* val_type, source_location location)
-{
-  return new Map_type(key_type, val_type, location);
-}
-
-// Class Channel_type.
-
-// Hash code.
-
-unsigned int
-Channel_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->may_send_)
-    ret += 1;
-  if (this->may_receive_)
-    ret += 2;
-  if (this->element_type_ != NULL)
-    ret += this->element_type_->hash_for_method(gogo) << 2;
-  return ret << 3;
-}
-
-// Whether this type is the same as T.
-
-bool
-Channel_type::is_identical(const Channel_type* t) const
-{
-  if (!Type::are_identical(this->element_type(), t->element_type(), NULL))
-    return false;
-  return (this->may_send_ == t->may_send_
-         && this->may_receive_ == t->may_receive_);
-}
-
-// Check whether the parameters for a call to the builtin function
-// make are OK for a channel.  A channel can take an optional single
-// parameter which is the buffer size.
-
-bool
-Channel_type::do_check_make_expression(Expression_list* args,
-                                     source_location location)
-{
-  if (args != NULL && !args->empty())
-    {
-      if (!Type::check_int_value(args->front(),
-                                _("bad buffer size when making channel"),
-                                location))
-       return false;
-      else if (args->size() > 1)
-       {
-         error_at(location, "too many arguments when making channel");
-         return false;
-       }
-    }
-  return true;
-}
-
-// Return the tree for a channel type.  A channel is a pointer to a
-// __go_channel struct.  The __go_channel struct is defined in
-// libgo/runtime/channel.h.
-
-tree
-Channel_type::do_get_tree(Gogo*)
-{
-  static tree type_tree;
-  if (type_tree == NULL_TREE)
-    {
-      tree ret = make_node(RECORD_TYPE);
-      TYPE_NAME(ret) = get_identifier("__go_channel");
-      TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
-                                      ret);
-      type_tree = build_pointer_type(ret);
-      go_preserve_from_gc(type_tree);
-    }
-  return type_tree;
-}
-
-// Initialize a channel variable.
-
-tree
-Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// Handle the builtin function make for a channel.
-
-tree
-Channel_type::do_make_expression_tree(Translate_context* context,
-                                     Expression_list* args,
-                                     source_location location)
-{
-  Gogo* gogo = context->gogo();
-  tree channel_type = this->get_tree(gogo);
-
-  tree element_tree = this->element_type_->get_tree(gogo);
-  tree element_size_tree = size_in_bytes(element_tree);
-
-  tree bad_index = NULL_TREE;
-
-  tree expr_tree;
-  if (args == NULL || args->empty())
-    expr_tree = size_zero_node;
-  else
-    {
-      expr_tree = args->front()->get_tree(context);
-      if (expr_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(expr_tree))
-       expr_tree = save_expr(expr_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
-       expr_tree = convert_to_integer(sizetype, expr_tree);
-      bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
-                                          location);
-    }
-
-  static tree new_channel_fndecl;
-  tree ret = Gogo::call_builtin(&new_channel_fndecl,
-                               location,
-                               "__go_new_channel",
-                               2,
-                               channel_type,
-                               sizetype,
-                               element_size_tree,
-                               sizetype,
-                               expr_tree);
-  // This can panic if the capacity is out of range.
-  TREE_NOTHROW(new_channel_fndecl) = 0;
-
-  if (bad_index == NULL_TREE)
-    return ret;
-  else
-    {
-      tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
-                                      location);
-      return build2(COMPOUND_EXPR, TREE_TYPE(ret),
-                   build3(COND_EXPR, void_type_node,
-                          bad_index, crash, NULL_TREE),
-                   ret);
-    }
-}
-
-// Build a type descriptor for a channel type.
-
-Type*
-Channel_type::make_chan_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(3,
-                                      "", tdt,
-                                      "elem", ptdt,
-                                      "dir", uintptr_type);
-
-      ret = Type::make_builtin_named_type("ChanType", sf);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for a map type.
-
-Expression*
-Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* ctdt = Channel_type::make_chan_type_descriptor_type();
-
-  const Struct_field_list* fields = ctdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_CHAN,
-                                                   name, NULL, true));
-
-  ++p;
-  gcc_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "dir");
-  // These bits must match the ones in libgo/runtime/go-type.h.
-  int val = 0;
-  if (this->may_receive_)
-    val |= 1;
-  if (this->may_send_)
-    val |= 2;
-  mpz_t iv;
-  mpz_init_set_ui(iv, val);
-  vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
-  mpz_clear(iv);
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(ctdt, vals, bloc);
-}
-
-// Reflection string.
-
-void
-Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  if (!this->may_send_)
-    ret->append("<-");
-  ret->append("chan");
-  if (!this->may_receive_)
-    ret->append("<-");
-  ret->push_back(' ');
-  this->append_reflection(this->element_type_, gogo, ret);
-}
-
-// Mangled name.
-
-void
-Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('C');
-  this->append_mangled_name(this->element_type_, gogo, ret);
-  if (this->may_send_)
-    ret->push_back('s');
-  if (this->may_receive_)
-    ret->push_back('r');
-  ret->push_back('e');
-}
-
-// Export.
-
-void
-Channel_type::do_export(Export* exp) const
-{
-  exp->write_c_string("chan ");
-  if (this->may_send_ && !this->may_receive_)
-    exp->write_c_string("-< ");
-  else if (this->may_receive_ && !this->may_send_)
-    exp->write_c_string("<- ");
-  exp->write_type(this->element_type_);
-}
-
-// Import.
-
-Channel_type*
-Channel_type::do_import(Import* imp)
-{
-  imp->require_c_string("chan ");
-
-  bool may_send;
-  bool may_receive;
-  if (imp->match_c_string("-< "))
-    {
-      imp->advance(3);
-      may_send = true;
-      may_receive = false;
-    }
-  else if (imp->match_c_string("<- "))
-    {
-      imp->advance(3);
-      may_receive = true;
-      may_send = false;
-    }
-  else
-    {
-      may_send = true;
-      may_receive = true;
-    }
-
-  Type* element_type = imp->read_type();
-
-  return Type::make_channel_type(may_send, may_receive, element_type);
-}
-
-// Make a new channel type.
-
-Channel_type*
-Type::make_channel_type(bool send, bool receive, Type* element_type)
-{
-  return new Channel_type(send, receive, element_type);
-}
-
-// Class Interface_type.
-
-// Traversal.
-
-int
-Interface_type::do_traverse(Traverse* traverse)
-{
-  if (this->methods_ == NULL)
-    return TRAVERSE_CONTINUE;
-  return this->methods_->traverse(traverse);
-}
-
-// Finalize the methods.  This handles interface inheritance.
-
-void
-Interface_type::finalize_methods()
-{
-  if (this->methods_ == NULL)
-    return;
-  bool is_recursive = false;
-  size_t from = 0;
-  size_t to = 0;
-  while (from < this->methods_->size())
-    {
-      const Typed_identifier* p = &this->methods_->at(from);
-      if (!p->name().empty())
-       {
-         if (from != to)
-           this->methods_->set(to, *p);
-         ++from;
-         ++to;
-         continue;
-       }
-      Interface_type* it = p->type()->interface_type();
-      if (it == NULL)
-       {
-         error_at(p->location(), "interface contains embedded non-interface");
-         ++from;
-         continue;
-       }
-      if (it == this)
-       {
-         if (!is_recursive)
-           {
-             error_at(p->location(), "invalid recursive interface");
-             is_recursive = true;
-           }
-         ++from;
-         continue;
-       }
-      const Typed_identifier_list* methods = it->methods();
-      if (methods == NULL)
-       {
-         ++from;
-         continue;
-       }
-      for (Typed_identifier_list::const_iterator q = methods->begin();
-          q != methods->end();
-          ++q)
-       {
-         if (q->name().empty() || this->find_method(q->name()) == NULL)
-           this->methods_->push_back(Typed_identifier(q->name(), q->type(),
-                                                      p->location()));
-         else
-           {
-             if (!is_recursive)
-               error_at(p->location(), "inherited method %qs is ambiguous",
-                        Gogo::message_name(q->name()).c_str());
-           }
-       }
-      ++from;
-    }
-  if (to == 0)
-    {
-      delete this->methods_;
-      this->methods_ = NULL;
-    }
-  else
-    {
-      this->methods_->resize(to);
-      this->methods_->sort_by_name();
-    }
-}
-
-// Return the method NAME, or NULL.
-
-const Typed_identifier*
-Interface_type::find_method(const std::string& name) const
-{
-  if (this->methods_ == NULL)
-    return NULL;
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    if (p->name() == name)
-      return &*p;
-  return NULL;
-}
-
-// Return the method index.
-
-size_t
-Interface_type::method_index(const std::string& name) const
-{
-  gcc_assert(this->methods_ != NULL);
-  size_t ret = 0;
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p, ++ret)
-    if (p->name() == name)
-      return ret;
-  gcc_unreachable();
-}
-
-// Return whether NAME is an unexported method, for better error
-// reporting.
-
-bool
-Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
-{
-  if (this->methods_ == NULL)
-    return false;
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    {
-      const std::string& method_name(p->name());
-      if (Gogo::is_hidden_name(method_name)
-         && name == Gogo::unpack_hidden_name(method_name)
-         && gogo->pack_hidden_name(name, false) != method_name)
-       return true;
-    }
-  return false;
-}
-
-// Whether this type is identical with T.
-
-bool
-Interface_type::is_identical(const Interface_type* t) const
-{
-  // We require the same methods with the same types.  The methods
-  // have already been sorted.
-  if (this->methods() == NULL || t->methods() == NULL)
-    return this->methods() == t->methods();
-
-  Typed_identifier_list::const_iterator p1 = this->methods()->begin();
-  for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
-       p2 != t->methods()->end();
-       ++p1, ++p2)
-    {
-      if (p1 == this->methods()->end())
-       return false;
-      if (p1->name() != p2->name()
-         || !Type::are_identical(p1->type(), p2->type(), NULL))
-       return false;
-    }
-  if (p1 != this->methods()->end())
-    return false;
-  return true;
-}
-
-// Whether we can assign the interface type T to this type.  The types
-// are known to not be identical.  An interface assignment is only
-// permitted if T is known to implement all methods in THIS.
-// Otherwise a type guard is required.
-
-bool
-Interface_type::is_compatible_for_assign(const Interface_type* t,
-                                        std::string* reason) const
-{
-  if (this->methods() == NULL)
-    return true;
-  for (Typed_identifier_list::const_iterator p = this->methods()->begin();
-       p != this->methods()->end();
-       ++p)
-    {
-      const Typed_identifier* m = t->find_method(p->name());
-      if (m == NULL)
-       {
-         if (reason != NULL)
-           {
-             char buf[200];
-             snprintf(buf, sizeof buf,
-                      _("need explicit conversion; missing method %s%s%s"),
-                      open_quote, Gogo::message_name(p->name()).c_str(),
-                      close_quote);
-             reason->assign(buf);
-           }
-         return false;
-       }
-
-      std::string subreason;
-      if (!Type::are_identical(p->type(), m->type(), &subreason))
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = 100 + n.length() + subreason.length();
-             char* buf = new char[len];
-             if (subreason.empty())
-               snprintf(buf, len, _("incompatible type for method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             else
-               snprintf(buf, len,
-                        _("incompatible type for method %s%s%s (%s)"),
-                        open_quote, n.c_str(), close_quote,
-                        subreason.c_str());
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Hash code.
-
-unsigned int
-Interface_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->methods_ != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-          p != this->methods_->end();
-          ++p)
-       {
-         ret = Type::hash_string(p->name(), ret);
-         ret += p->type()->hash_for_method(gogo);
-         ret <<= 1;
-       }
-    }
-  return ret;
-}
-
-// Return true if T implements the interface.  If it does not, and
-// REASON is not NULL, set *REASON to a useful error message.
-
-bool
-Interface_type::implements_interface(const Type* t, std::string* reason) const
-{
-  if (this->methods_ == NULL)
-    return true;
-
-  bool is_pointer = false;
-  const Named_type* nt = t->named_type();
-  const Struct_type* st = t->struct_type();
-  // If we start with a named type, we don't dereference it to find
-  // methods.
-  if (nt == NULL)
-    {
-      const Type* pt = t->points_to();
-      if (pt != NULL)
-       {
-         // If T is a pointer to a named type, then we need to look at
-         // the type to which it points.
-         is_pointer = true;
-         nt = pt->named_type();
-         st = pt->struct_type();
-       }
-    }
-
-  // If we have a named type, get the methods from it rather than from
-  // any struct type.
-  if (nt != NULL)
-    st = NULL;
-
-  // Only named and struct types have methods.
-  if (nt == NULL && st == NULL)
-    {
-      if (reason != NULL)
-       {
-         if (t->points_to() != NULL
-             && t->points_to()->interface_type() != NULL)
-           reason->assign(_("pointer to interface type has no methods"));
-         else
-           reason->assign(_("type has no methods"));
-       }
-      return false;
-    }
-
-  if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
-    {
-      if (reason != NULL)
-       {
-         if (t->points_to() != NULL
-             && t->points_to()->interface_type() != NULL)
-           reason->assign(_("pointer to interface type has no methods"));
-         else
-           reason->assign(_("type has no methods"));
-       }
-      return false;
-    }
-
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    {
-      bool is_ambiguous = false;
-      Method* m = (nt != NULL
-                  ? nt->method_function(p->name(), &is_ambiguous)
-                  : st->method_function(p->name(), &is_ambiguous));
-      if (m == NULL)
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = n.length() + 100;
-             char* buf = new char[len];
-             if (is_ambiguous)
-               snprintf(buf, len, _("ambiguous method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             else
-               snprintf(buf, len, _("missing method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-
-      Function_type *p_fn_type = p->type()->function_type();
-      Function_type* m_fn_type = m->type()->function_type();
-      gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
-      std::string subreason;
-      if (!p_fn_type->is_identical(m_fn_type, true, &subreason))
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = 100 + n.length() + subreason.length();
-             char* buf = new char[len];
-             if (subreason.empty())
-               snprintf(buf, len, _("incompatible type for method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             else
-               snprintf(buf, len,
-                        _("incompatible type for method %s%s%s (%s)"),
-                        open_quote, n.c_str(), close_quote,
-                        subreason.c_str());
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-
-      if (!is_pointer && !m->is_value_method())
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = 100 + n.length();
-             char* buf = new char[len];
-             snprintf(buf, len, _("method %s%s%s requires a pointer"),
-                      open_quote, n.c_str(), close_quote);
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Return a tree for an interface type.  An interface is a pointer to
-// a struct.  The struct has three fields.  The first field is a
-// pointer to the type descriptor for the dynamic type of the object.
-// The second field is a pointer to a table of methods for the
-// interface to be used with the object.  The third field is the value
-// of the object itself.
-
-tree
-Interface_type::do_get_tree(Gogo* gogo)
-{
-  if (this->methods_ == NULL)
-    {
-      // At the tree level, use the same type for all empty
-      // interfaces.  This lets us assign them to each other directly
-      // without triggering GIMPLE type errors.
-      tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
-      dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
-      static tree empty_interface;
-      return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
-                                 NULL_TREE, 2,
-                                 "__type_descriptor",
-                                 dtype,
-                                 "__object",
-                                 ptr_type_node);
-    }
-
-  return this->fill_in_tree(gogo, make_node(RECORD_TYPE));
-}
-
-// Fill in the tree for an interface type.  This is used for named
-// interface types.
-
-tree
-Interface_type::fill_in_tree(Gogo* gogo, tree type)
-{
-  gcc_assert(this->methods_ != NULL);
-
-  // Build the type of the table of methods.
-
-  tree method_table = make_node(RECORD_TYPE);
-
-  // The first field is a pointer to the type descriptor.
-  tree name_tree = get_identifier("__type_descriptor");
-  tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
-  dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
-  tree field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
-  DECL_CONTEXT(field) = method_table;
-  TYPE_FIELDS(method_table) = field;
-
-  std::string last_name = "";
-  tree* pp = &DECL_CHAIN(field);
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    {
-      std::string name = Gogo::unpack_hidden_name(p->name());
-      name_tree = get_identifier_with_length(name.data(), name.length());
-      tree field_type = p->type()->get_tree(gogo);
-      if (field_type == error_mark_node)
-       return error_mark_node;
-      field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
-      DECL_CONTEXT(field) = method_table;
-      *pp = field;
-      pp = &DECL_CHAIN(field);
-      // Sanity check: the names should be sorted.
-      gcc_assert(p->name() > last_name);
-      last_name = p->name();
-    }
-  layout_type(method_table);
-
-  tree mtype = build_pointer_type(method_table);
-
-  tree field_trees = NULL_TREE;
-  pp = &field_trees;
-
-  name_tree = get_identifier("__methods");
-  field = build_decl(this->location_, FIELD_DECL, name_tree, mtype);
-  DECL_CONTEXT(field) = type;
-  *pp = field;
-  pp = &DECL_CHAIN(field);
-
-  name_tree = get_identifier("__object");
-  field = build_decl(this->location_, FIELD_DECL, name_tree, ptr_type_node);
-  DECL_CONTEXT(field) = type;
-  *pp = field;
-
-  TYPE_FIELDS(type) = field_trees;
-
-  layout_type(type);
-
-  return type;
-}
-
-// Initialization value.
-
-tree
-Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-  for (tree field = TYPE_FIELDS(type_tree);
-       field != NULL_TREE;
-       field = DECL_CHAIN(field))
-    {
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-    }
-
-  tree ret = build_constructor(type_tree, init);
-  TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// The type of an interface type descriptor.
-
-Type*
-Interface_type::make_interface_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* string_type = Type::lookup_string_type();
-      Type* pointer_string_type = Type::make_pointer_type(string_type);
-
-      Struct_type* sm =
-       Type::make_builtin_struct_type(3,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "typ", ptdt);
-
-      Type* nsm = Type::make_builtin_named_type("imethod", sm);
-
-      Type* slice_nsm = Type::make_array_type(nsm, NULL);
-
-      Struct_type* s = Type::make_builtin_struct_type(2,
-                                                     "", tdt,
-                                                     "methods", slice_nsm);
-
-      ret = Type::make_builtin_named_type("InterfaceType", s);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for an interface type.
-
-Expression*
-Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* itdt = Interface_type::make_interface_type_descriptor_type();
-
-  const Struct_field_list* ifields = itdt->struct_type()->fields();
-
-  Expression_list* ivals = new Expression_list();
-  ivals->reserve(2);
-
-  Struct_field_list::const_iterator pif = ifields->begin();
-  gcc_assert(pif->field_name() == "commonType");
-  ivals->push_back(this->type_descriptor_constructor(gogo,
-                                                    RUNTIME_TYPE_KIND_INTERFACE,
-                                                    name, NULL, true));
-
-  ++pif;
-  gcc_assert(pif->field_name() == "methods");
-
-  Expression_list* methods = new Expression_list();
-  if (this->methods_ != NULL && !this->methods_->empty())
-    {
-      Type* elemtype = pif->type()->array_type()->element_type();
-
-      methods->reserve(this->methods_->size());
-      for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
-          pm != this->methods_->end();
-          ++pm)
-       {
-         const Struct_field_list* mfields = elemtype->struct_type()->fields();
-
-         Expression_list* mvals = new Expression_list();
-         mvals->reserve(3);
-
-         Struct_field_list::const_iterator pmf = mfields->begin();
-         gcc_assert(pmf->field_name() == "name");
-         std::string s = Gogo::unpack_hidden_name(pm->name());
-         Expression* e = Expression::make_string(s, bloc);
-         mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
-
-         ++pmf;
-         gcc_assert(pmf->field_name() == "pkgPath");
-         if (!Gogo::is_hidden_name(pm->name()))
-           mvals->push_back(Expression::make_nil(bloc));
-         else
-           {
-             s = Gogo::hidden_name_prefix(pm->name());
-             e = Expression::make_string(s, bloc);
-             mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
-           }
-
-         ++pmf;
-         gcc_assert(pmf->field_name() == "typ");
-         mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
-
-         ++pmf;
-         gcc_assert(pmf == mfields->end());
-
-         e = Expression::make_struct_composite_literal(elemtype, mvals,
-                                                       bloc);
-         methods->push_back(e);
-       }
-    }
-
-  ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
-                                                           methods, bloc));
-
-  ++pif;
-  gcc_assert(pif == ifields->end());
-
-  return Expression::make_struct_composite_literal(itdt, ivals, bloc);
-}
-
-// Reflection string.
-
-void
-Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->append("interface {");
-  if (this->methods_ != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-          p != this->methods_->end();
-          ++p)
-       {
-         if (p != this->methods_->begin())
-           ret->append(";");
-         ret->push_back(' ');
-         ret->append(Gogo::unpack_hidden_name(p->name()));
-         std::string sub = p->type()->reflection(gogo);
-         gcc_assert(sub.compare(0, 4, "func") == 0);
-         sub = sub.substr(4);
-         ret->append(sub);
-       }
-    }
-  ret->append(" }");
-}
-
-// Mangled name.
-
-void
-Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('I');
-
-  const Typed_identifier_list* methods = this->methods_;
-  if (methods != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = methods->begin();
-          p != methods->end();
-          ++p)
-       {
-         std::string n = Gogo::unpack_hidden_name(p->name());
-         char buf[20];
-         snprintf(buf, sizeof buf, "%u_",
-                  static_cast<unsigned int>(n.length()));
-         ret->append(buf);
-         ret->append(n);
-         this->append_mangled_name(p->type(), gogo, ret);
-       }
-    }
-
-  ret->push_back('e');
-}
-
-// Export.
-
-void
-Interface_type::do_export(Export* exp) const
-{
-  exp->write_c_string("interface { ");
-
-  const Typed_identifier_list* methods = this->methods_;
-  if (methods != NULL)
-    {
-      for (Typed_identifier_list::const_iterator pm = methods->begin();
-          pm != methods->end();
-          ++pm)
-       {
-         exp->write_string(pm->name());
-         exp->write_c_string(" (");
-
-         const Function_type* fntype = pm->type()->function_type();
-
-         bool first = true;
-         const Typed_identifier_list* parameters = fntype->parameters();
-         if (parameters != NULL)
-           {
-             bool is_varargs = fntype->is_varargs();
-             for (Typed_identifier_list::const_iterator pp =
-                    parameters->begin();
-                  pp != parameters->end();
-                  ++pp)
-               {
-                 if (first)
-                   first = false;
-                 else
-                   exp->write_c_string(", ");
-                 if (!is_varargs || pp + 1 != parameters->end())
-                   exp->write_type(pp->type());
-                 else
-                   {
-                     exp->write_c_string("...");
-                     Type *pptype = pp->type();
-                     exp->write_type(pptype->array_type()->element_type());
-                   }
-               }
-           }
-
-         exp->write_c_string(")");
-
-         const Typed_identifier_list* results = fntype->results();
-         if (results != NULL)
-           {
-             exp->write_c_string(" ");
-             if (results->size() == 1)
-               exp->write_type(results->begin()->type());
-             else
-               {
-                 first = true;
-                 exp->write_c_string("(");
-                 for (Typed_identifier_list::const_iterator p =
-                        results->begin();
-                      p != results->end();
-                      ++p)
-                   {
-                     if (first)
-                       first = false;
-                     else
-                       exp->write_c_string(", ");
-                     exp->write_type(p->type());
-                   }
-                 exp->write_c_string(")");
-               }
-           }
-
-         exp->write_c_string("; ");
-       }
-    }
-
-  exp->write_c_string("}");
-}
-
-// Import an interface type.
-
-Interface_type*
-Interface_type::do_import(Import* imp)
-{
-  imp->require_c_string("interface { ");
-
-  Typed_identifier_list* methods = new Typed_identifier_list;
-  while (imp->peek_char() != '}')
-    {
-      std::string name = imp->read_identifier();
-      imp->require_c_string(" (");
-
-      Typed_identifier_list* parameters;
-      bool is_varargs = false;
-      if (imp->peek_char() == ')')
-       parameters = NULL;
-      else
-       {
-         parameters = new Typed_identifier_list;
-         while (true)
-           {
-             if (imp->match_c_string("..."))
-               {
-                 imp->advance(3);
-                 is_varargs = true;
-               }
-
-             Type* ptype = imp->read_type();
-             if (is_varargs)
-               ptype = Type::make_array_type(ptype, NULL);
-             parameters->push_back(Typed_identifier(Import::import_marker,
-                                                    ptype, imp->location()));
-             if (imp->peek_char() != ',')
-               break;
-             gcc_assert(!is_varargs);
-             imp->require_c_string(", ");
-           }
-       }
-      imp->require_c_string(")");
-
-      Typed_identifier_list* results;
-      if (imp->peek_char() != ' ')
-       results = NULL;
-      else
-       {
-         results = new Typed_identifier_list;
-         imp->advance(1);
-         if (imp->peek_char() != '(')
-           {
-             Type* rtype = imp->read_type();
-             results->push_back(Typed_identifier(Import::import_marker,
-                                                 rtype, imp->location()));
-           }
-         else
-           {
-             imp->advance(1);
-             while (true)
-               {
-                 Type* rtype = imp->read_type();
-                 results->push_back(Typed_identifier(Import::import_marker,
-                                                     rtype, imp->location()));
-                 if (imp->peek_char() != ',')
-                   break;
-                 imp->require_c_string(", ");
-               }
-             imp->require_c_string(")");
-           }
-       }
-
-      Function_type* fntype = Type::make_function_type(NULL, parameters,
-                                                      results,
-                                                      imp->location());
-      if (is_varargs)
-       fntype->set_is_varargs();
-      methods->push_back(Typed_identifier(name, fntype, imp->location()));
-
-      imp->require_c_string("; ");
-    }
-
-  imp->require_c_string("}");
-
-  if (methods->empty())
-    {
-      delete methods;
-      methods = NULL;
-    }
-
-  return Type::make_interface_type(methods, imp->location());
-}
-
-// Make an interface type.
-
-Interface_type*
-Type::make_interface_type(Typed_identifier_list* methods,
-                         source_location location)
-{
-  return new Interface_type(methods, location);
-}
-
-// Class Method.
-
-// Bind a method to an object.
-
-Expression*
-Method::bind_method(Expression* expr, source_location location) const
-{
-  if (this->stub_ == NULL)
-    {
-      // When there is no stub object, the binding is determined by
-      // the child class.
-      return this->do_bind_method(expr, location);
-    }
-
-  Expression* func = Expression::make_func_reference(this->stub_, NULL,
-                                                    location);
-  return Expression::make_bound_method(expr, func, location);
-}
-
-// Return the named object associated with a method.  This may only be
-// called after methods are finalized.
-
-Named_object*
-Method::named_object() const
-{
-  if (this->stub_ != NULL)
-    return this->stub_;
-  return this->do_named_object();
-}
-
-// Class Named_method.
-
-// The type of the method.
-
-Function_type*
-Named_method::do_type() const
-{
-  if (this->named_object_->is_function())
-    return this->named_object_->func_value()->type();
-  else if (this->named_object_->is_function_declaration())
-    return this->named_object_->func_declaration_value()->type();
-  else
-    gcc_unreachable();
-}
-
-// Return the location of the method receiver.
-
-source_location
-Named_method::do_receiver_location() const
-{
-  return this->do_type()->receiver()->location();
-}
-
-// Bind a method to an object.
-
-Expression*
-Named_method::do_bind_method(Expression* expr, source_location location) const
-{
-  Expression* func = Expression::make_func_reference(this->named_object_, NULL,
-                                                    location);
-  Bound_method_expression* bme = Expression::make_bound_method(expr, func,
-                                                              location);
-  // If this is not a local method, and it does not use a stub, then
-  // the real method expects a different type.  We need to cast the
-  // first argument.
-  if (this->depth() > 0 && !this->needs_stub_method())
-    {
-      Function_type* ftype = this->do_type();
-      gcc_assert(ftype->is_method());
-      Type* frtype = ftype->receiver()->type();
-      bme->set_first_argument_type(frtype);
-    }
-  return bme;
-}
-
-// Class Interface_method.
-
-// Bind a method to an object.
-
-Expression*
-Interface_method::do_bind_method(Expression* expr,
-                                source_location location) const
-{
-  return Expression::make_interface_field_reference(expr, this->name_,
-                                                   location);
-}
-
-// Class Methods.
-
-// Insert a new method.  Return true if it was inserted, false
-// otherwise.
-
-bool
-Methods::insert(const std::string& name, Method* m)
-{
-  std::pair<Method_map::iterator, bool> ins =
-    this->methods_.insert(std::make_pair(name, m));
-  if (ins.second)
-    return true;
-  else
-    {
-      Method* old_method = ins.first->second;
-      if (m->depth() < old_method->depth())
-       {
-         delete old_method;
-         ins.first->second = m;
-         return true;
-       }
-      else
-       {
-         if (m->depth() == old_method->depth())
-           old_method->set_is_ambiguous();
-         return false;
-       }
-    }
-}
-
-// Return the number of unambiguous methods.
-
-size_t
-Methods::count() const
-{
-  size_t ret = 0;
-  for (Method_map::const_iterator p = this->methods_.begin();
-       p != this->methods_.end();
-       ++p)
-    if (!p->second->is_ambiguous())
-      ++ret;
-  return ret;
-}
-
-// Class Named_type.
-
-// Return the name of the type.
-
-const std::string&
-Named_type::name() const
-{
-  return this->named_object_->name();
-}
-
-// Return the name of the type to use in an error message.
-
-std::string
-Named_type::message_name() const
-{
-  return this->named_object_->message_name();
-}
-
-// Add a method to this type.
-
-Named_object*
-Named_type::add_method(const std::string& name, Function* function)
-{
-  if (this->local_methods_ == NULL)
-    this->local_methods_ = new Bindings(NULL);
-  return this->local_methods_->add_function(name, NULL, function);
-}
-
-// Add a method declaration to this type.
-
-Named_object*
-Named_type::add_method_declaration(const std::string& name, Package* package,
-                                  Function_type* type,
-                                  source_location location)
-{
-  if (this->local_methods_ == NULL)
-    this->local_methods_ = new Bindings(NULL);
-  return this->local_methods_->add_function_declaration(name, package, type,
-                                                       location);
-}
-
-// Add an existing method to this type.
-
-void
-Named_type::add_existing_method(Named_object* no)
-{
-  if (this->local_methods_ == NULL)
-    this->local_methods_ = new Bindings(NULL);
-  this->local_methods_->add_named_object(no);
-}
-
-// Look for a local method NAME, and returns its named object, or NULL
-// if not there.
-
-Named_object*
-Named_type::find_local_method(const std::string& name) const
-{
-  if (this->local_methods_ == NULL)
-    return NULL;
-  return this->local_methods_->lookup(name);
-}
-
-// Return whether NAME is an unexported field or method, for better
-// error reporting.
-
-bool
-Named_type::is_unexported_local_method(Gogo* gogo,
-                                      const std::string& name) const
-{
-  Bindings* methods = this->local_methods_;
-  if (methods != NULL)
-    {
-      for (Bindings::const_declarations_iterator p =
-            methods->begin_declarations();
-          p != methods->end_declarations();
-          ++p)
-       {
-         if (Gogo::is_hidden_name(p->first)
-             && name == Gogo::unpack_hidden_name(p->first)
-             && gogo->pack_hidden_name(name, false) != p->first)
-           return true;
-       }
-    }
-  return false;
-}
-
-// Build the complete list of methods for this type, which means
-// recursively including all methods for anonymous fields.  Create all
-// stub methods.
-
-void
-Named_type::finalize_methods(Gogo* gogo)
-{
-  if (this->local_methods_ != NULL
-      && (this->points_to() != NULL || this->interface_type() != NULL))
-    {
-      const Bindings* lm = this->local_methods_;
-      for (Bindings::const_declarations_iterator p = lm->begin_declarations();
-          p != lm->end_declarations();
-          ++p)
-       error_at(p->second->location(),
-                "invalid pointer or interface receiver type");
-      delete this->local_methods_;
-      this->local_methods_ = NULL;
-      return;
-    }
-
-  Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
-}
-
-// Return the method NAME, or NULL if there isn't one or if it is
-// ambiguous.  Set *IS_AMBIGUOUS if the method exists but is
-// ambiguous.
-
-Method*
-Named_type::method_function(const std::string& name, bool* is_ambiguous) const
-{
-  return Type::method_function(this->all_methods_, name, is_ambiguous);
-}
-
-// Return a pointer to the interface method table for this type for
-// the interface INTERFACE.  IS_POINTER is true if this is for a
-// pointer to THIS.
-
-tree
-Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
-                                  bool is_pointer)
-{
-  gcc_assert(!interface->is_empty());
-
-  Interface_method_tables** pimt = (is_pointer
-                                   ? &this->interface_method_tables_
-                                   : &this->pointer_interface_method_tables_);
-
-  if (*pimt == NULL)
-    *pimt = new Interface_method_tables(5);
-
-  std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
-  std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
-
-  if (ins.second)
-    {
-      // This is a new entry in the hash table.
-      gcc_assert(ins.first->second == NULL_TREE);
-      ins.first->second = gogo->interface_method_table_for_type(interface,
-                                                               this,
-                                                               is_pointer);
-    }
-
-  tree decl = ins.first->second;
-  if (decl == error_mark_node)
-    return error_mark_node;
-  gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
-  return build_fold_addr_expr(decl);
-}
-
-// Return whether a named type has any hidden fields.
-
-bool
-Named_type::named_type_has_hidden_fields(std::string* reason) const
-{
-  if (this->seen_)
-    return false;
-  this->seen_ = true;
-  bool ret = this->type_->has_hidden_fields(this, reason);
-  this->seen_ = false;
-  return ret;
-}
-
-// Look for a use of a complete type within another type.  This is
-// used to check that we don't try to use a type within itself.
-
-class Find_type_use : public Traverse
-{
- public:
-  Find_type_use(Type* find_type)
-    : Traverse(traverse_types),
-      find_type_(find_type), found_(false)
-  { }
-
-  // Whether we found the type.
-  bool
-  found() const
-  { return this->found_; }
-
- protected:
-  int
-  type(Type*);
-
- private:
-  // The type we are looking for.
-  Type* find_type_;
-  // Whether we found the type.
-  bool found_;
-};
-
-// Check for FIND_TYPE in TYPE.
-
-int
-Find_type_use::type(Type* type)
-{
-  if (this->find_type_ == type)
-    {
-      this->found_ = true;
-      return TRAVERSE_EXIT;
-    }
-  // It's OK if we see a reference to the type in any type which is
-  // essentially a pointer: a pointer, a slice, a function, a map, or
-  // a channel.
-  if (type->points_to() != NULL
-      || type->is_open_array_type()
-      || type->function_type() != NULL
-      || type->map_type() != NULL
-      || type->channel_type() != NULL)
-    return TRAVERSE_SKIP_COMPONENTS;
-
-  // For an interface, a reference to the type in a method type should
-  // be ignored, but we have to consider direct inheritance.  When
-  // this is called, there may be cases of direct inheritance
-  // represented as a method with no name.
-  if (type->interface_type() != NULL)
-    {
-      const Typed_identifier_list* methods = type->interface_type()->methods();
-      if (methods != NULL)
-       {
-         for (Typed_identifier_list::const_iterator p = methods->begin();
-              p != methods->end();
-              ++p)
-           {
-             if (p->name().empty())
-               {
-                 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-           }
-       }
-      return TRAVERSE_SKIP_COMPONENTS;
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Verify that a named type does not refer to itself.
-
-bool
-Named_type::do_verify()
-{
-  Find_type_use find(this);
-  Type::traverse(this->type_, &find);
-  if (find.found())
-    {
-      error_at(this->location_, "invalid recursive type %qs",
-              this->message_name().c_str());
-      this->is_error_ = true;
-      return false;
-    }
-
-  // Check whether any of the local methods overloads an existing
-  // struct field or interface method.  We don't need to check the
-  // list of methods against itself: that is handled by the Bindings
-  // code.
-  if (this->local_methods_ != NULL)
-    {
-      Struct_type* st = this->type_->struct_type();
-      Interface_type* it = this->type_->interface_type();
-      bool found_dup = false;
-      if (st != NULL || it != NULL)
-       {
-         for (Bindings::const_declarations_iterator p =
-                this->local_methods_->begin_declarations();
-              p != this->local_methods_->end_declarations();
-              ++p)
-           {
-             const std::string& name(p->first);
-             if (st != NULL && st->find_local_field(name, NULL) != NULL)
-               {
-                 error_at(p->second->location(),
-                          "method %qs redeclares struct field name",
-                          Gogo::message_name(name).c_str());
-                 found_dup = true;
-               }
-             if (it != NULL && it->find_method(name) != NULL)
-               {
-                 error_at(p->second->location(),
-                          "method %qs redeclares interface method name",
-                          Gogo::message_name(name).c_str());
-                 found_dup = true;
-               }
-           }
-       }
-      if (found_dup)
-       return false;
-    }
-
-  return true;
-}
-
-// Return a hash code.  This is used for method lookup.  We simply
-// hash on the name itself.
-
-unsigned int
-Named_type::do_hash_for_method(Gogo* gogo) const
-{
-  const std::string& name(this->named_object()->name());
-  unsigned int ret = Type::hash_string(name, 0);
-
-  // GOGO will be NULL here when called from Type_hash_identical.
-  // That is OK because that is only used for internal hash tables
-  // where we are going to be comparing named types for equality.  In
-  // other cases, which are cases where the runtime is going to
-  // compare hash codes to see if the types are the same, we need to
-  // include the package prefix and name in the hash.
-  if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
-    {
-      const Package* package = this->named_object()->package();
-      if (package == NULL)
-       {
-         ret = Type::hash_string(gogo->unique_prefix(), ret);
-         ret = Type::hash_string(gogo->package_name(), ret);
-       }
-      else
-       {
-         ret = Type::hash_string(package->unique_prefix(), ret);
-         ret = Type::hash_string(package->name(), ret);
-       }
-    }
-
-  return ret;
-}
-
-// Get a tree for a named type.
-
-tree
-Named_type::do_get_tree(Gogo* gogo)
-{
-  if (this->is_error_)
-    return error_mark_node;
-
-  // Go permits types to refer to themselves in various ways.  Break
-  // the recursion here.
-  tree t;
-  switch (this->type_->forwarded()->classification())
-    {
-    case TYPE_ERROR:
-      return error_mark_node;
-
-    case TYPE_VOID:
-    case TYPE_BOOLEAN:
-    case TYPE_INTEGER:
-    case TYPE_FLOAT:
-    case TYPE_COMPLEX:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      // These types can not refer to themselves.
-    case TYPE_MAP:
-    case TYPE_CHANNEL:
-      // All maps and channels have the same type in GENERIC.
-      t = Type::get_named_type_tree(gogo, this->type_);
-      if (t == error_mark_node)
-       return error_mark_node;
-      // Build a copy to set TYPE_NAME.
-      t = build_variant_type_copy(t);
-      break;
-
-    case TYPE_FUNCTION:
-      // GENERIC can't handle a pointer to a function type whose
-      // return type is a pointer to the function type itself.  It
-      // does into infinite loops when walking the types.
-      if (this->seen_
-         && this->function_type()->results() != NULL
-         && this->function_type()->results()->size() == 1
-         && (this->function_type()->results()->front().type()->forwarded()
-             == this))
-       return ptr_type_node;
-      this->seen_ = true;
-      t = Type::get_named_type_tree(gogo, this->type_);
-      this->seen_ = false;
-      if (t == error_mark_node)
-       return error_mark_node;
-      t = build_variant_type_copy(t);
-      break;
-
-    case TYPE_POINTER:
-      // GENERIC can't handle a pointer type which points to itself.
-      // It goes into infinite loops when walking the types.
-      if (this->seen_ && this->points_to()->forwarded() == this)
-       return ptr_type_node;
-      this->seen_ = true;
-      t = Type::get_named_type_tree(gogo, this->type_);
-      this->seen_ = false;
-      if (t == error_mark_node)
-       return error_mark_node;
-      t = build_variant_type_copy(t);
-      break;
-
-    case TYPE_STRUCT:
-      if (this->named_tree_ != NULL_TREE)
-       return this->named_tree_;
-      t = make_node(RECORD_TYPE);
-      this->named_tree_ = t;
-      this->type_->struct_type()->fill_in_tree(gogo, t);
-      break;
-
-    case TYPE_ARRAY:
-      if (!this->is_open_array_type())
-       t = Type::get_named_type_tree(gogo, this->type_);
-      else
-       {
-         if (this->named_tree_ != NULL_TREE)
-           return this->named_tree_;
-         t = gogo->slice_type_tree(void_type_node);
-         this->named_tree_ = t;
-         t = this->type_->array_type()->fill_in_tree(gogo, t);
-       }
-      if (t == error_mark_node)
-       return error_mark_node;
-      t = build_variant_type_copy(t);
-      break;
-
-    case TYPE_INTERFACE:
-      if (this->type_->interface_type()->is_empty())
-       {
-         t = Type::get_named_type_tree(gogo, this->type_);
-         if (t == error_mark_node)
-           return error_mark_node;
-         t = build_variant_type_copy(t);
-       }
-      else
-       {
-         if (this->named_tree_ != NULL_TREE)
-           return this->named_tree_;
-         t = make_node(RECORD_TYPE);
-         this->named_tree_ = t;
-         t = this->type_->interface_type()->fill_in_tree(gogo, t);
-       }
-      break;
-
-    case TYPE_NAMED:
-      {
-       // When a named type T1 is defined as another named type T2,
-       // the definition must simply be "type T1 T2".  If the
-       // definition of T2 may refer to T1, then we must simply
-       // return the type for T2 here.  It's not precisely correct,
-       // but it's as close as we can get with GENERIC.
-       bool was_seen = this->seen_;
-       this->seen_ = true;
-       t = Type::get_named_type_tree(gogo, this->type_);
-       this->seen_ = was_seen;
-       if (was_seen)
-         return t;
-       if (t == error_mark_node)
-         return error_mark_node;
-       t = build_variant_type_copy(t);
-      }
-      break;
-
-    case TYPE_FORWARD:
-      // An undefined forwarding type.  Make sure the error is
-      // emitted.
-      this->type_->forward_declaration_type()->real_type();
-      return error_mark_node;
-
-    default:
-    case TYPE_SINK:
-    case TYPE_CALL_MULTIPLE_RESULT:
-      gcc_unreachable();
-    }
-
-  tree id = this->named_object_->get_id(gogo);
-  tree decl = build_decl(this->location_, TYPE_DECL, id, t);
-  TYPE_NAME(t) = decl;
-
-  return t;
-}
-
-// Build a type descriptor for a named type.
-
-Expression*
-Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  // If NAME is not NULL, then we don't really want the type
-  // descriptor for this type; we want the descriptor for the
-  // underlying type, giving it the name NAME.
-  return this->named_type_descriptor(gogo, this->type_,
-                                    name == NULL ? this : name);
-}
-
-// Add to the reflection string.  This is used mostly for the name of
-// the type used in a type descriptor, not for actual reflection
-// strings.
-
-void
-Named_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  if (this->location() != BUILTINS_LOCATION)
-    {
-      const Package* package = this->named_object_->package();
-      if (package != NULL)
-       ret->append(package->name());
-      else
-       ret->append(gogo->package_name());
-      ret->push_back('.');
-    }
-  if (this->in_function_ != NULL)
-    {
-      ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
-      ret->push_back('$');
-    }
-  ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
-}
-
-// Get the mangled name.
-
-void
-Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  Named_object* no = this->named_object_;
-  std::string name;
-  if (this->location() == BUILTINS_LOCATION)
-    gcc_assert(this->in_function_ == NULL);
-  else
-    {
-      const std::string& unique_prefix(no->package() == NULL
-                                      ? gogo->unique_prefix()
-                                      : no->package()->unique_prefix());
-      const std::string& package_name(no->package() == NULL
-                                     ? gogo->package_name()
-                                     : no->package()->name());
-      name = unique_prefix;
-      name.append(1, '.');
-      name.append(package_name);
-      name.append(1, '.');
-      if (this->in_function_ != NULL)
-       {
-         name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
-         name.append(1, '$');
-       }
-    }
-  name.append(Gogo::unpack_hidden_name(no->name()));
-  char buf[20];
-  snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
-  ret->append(buf);
-  ret->append(name);
-}
-
-// Export the type.  This is called to export a global type.
-
-void
-Named_type::export_named_type(Export* exp, const std::string&) const
-{
-  // We don't need to write the name of the type here, because it will
-  // be written by Export::write_type anyhow.
-  exp->write_c_string("type ");
-  exp->write_type(this);
-  exp->write_c_string(";\n");
-}
-
-// Import a named type.
-
-void
-Named_type::import_named_type(Import* imp, Named_type** ptype)
-{
-  imp->require_c_string("type ");
-  Type *type = imp->read_type();
-  *ptype = type->named_type();
-  gcc_assert(*ptype != NULL);
-  imp->require_c_string(";\n");
-}
-
-// Export the type when it is referenced by another type.  In this
-// case Export::export_type will already have issued the name.
-
-void
-Named_type::do_export(Export* exp) const
-{
-  exp->write_type(this->type_);
-
-  // To save space, we only export the methods directly attached to
-  // this type.
-  Bindings* methods = this->local_methods_;
-  if (methods == NULL)
-    return;
-
-  exp->write_c_string("\n");
-  for (Bindings::const_definitions_iterator p = methods->begin_definitions();
-       p != methods->end_definitions();
-       ++p)
-    {
-      exp->write_c_string(" ");
-      (*p)->export_named_object(exp);
-    }
-
-  for (Bindings::const_declarations_iterator p = methods->begin_declarations();
-       p != methods->end_declarations();
-       ++p)
-    {
-      if (p->second->is_function_declaration())
-       {
-         exp->write_c_string(" ");
-         p->second->export_named_object(exp);
-       }
-    }
-}
-
-// Make a named type.
-
-Named_type*
-Type::make_named_type(Named_object* named_object, Type* type,
-                     source_location location)
-{
-  return new Named_type(named_object, type, location);
-}
-
-// Finalize the methods for TYPE.  It will be a named type or a struct
-// type.  This sets *ALL_METHODS to the list of methods, and builds
-// all required stubs.
-
-void
-Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
-                      Methods** all_methods)
-{
-  *all_methods = NULL;
-  Types_seen types_seen;
-  Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
-                            all_methods);
-  Type::build_stub_methods(gogo, type, *all_methods, location);
-}
-
-// Add the methods for TYPE to *METHODS.  FIELD_INDEXES is used to
-// build up the struct field indexes as we go.  DEPTH is the depth of
-// the field within TYPE.  IS_EMBEDDED_POINTER is true if we are
-// adding these methods for an anonymous field with pointer type.
-// NEEDS_STUB_METHOD is true if we need to use a stub method which
-// calls the real method.  TYPES_SEEN is used to avoid infinite
-// recursion.
-
-void
-Type::add_methods_for_type(const Type* type,
-                          const Method::Field_indexes* field_indexes,
-                          unsigned int depth,
-                          bool is_embedded_pointer,
-                          bool needs_stub_method,
-                          Types_seen* types_seen,
-                          Methods** methods)
-{
-  // Pointer types may not have methods.
-  if (type->points_to() != NULL)
-    return;
-
-  const Named_type* nt = type->named_type();
-  if (nt != NULL)
-    {
-      std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
-      if (!ins.second)
-       return;
-    }
-
-  if (nt != NULL)
-    Type::add_local_methods_for_type(nt, field_indexes, depth,
-                                    is_embedded_pointer, needs_stub_method,
-                                    methods);
-
-  Type::add_embedded_methods_for_type(type, field_indexes, depth,
-                                     is_embedded_pointer, needs_stub_method,
-                                     types_seen, methods);
-
-  // If we are called with depth > 0, then we are looking at an
-  // anonymous field of a struct.  If such a field has interface type,
-  // then we need to add the interface methods.  We don't want to add
-  // them when depth == 0, because we will already handle them
-  // following the usual rules for an interface type.
-  if (depth > 0)
-    Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
-}
-
-// Add the local methods for the named type NT to *METHODS.  The
-// parameters are as for add_methods_to_type.
-
-void
-Type::add_local_methods_for_type(const Named_type* nt,
-                                const Method::Field_indexes* field_indexes,
-                                unsigned int depth,
-                                bool is_embedded_pointer,
-                                bool needs_stub_method,
-                                Methods** methods)
-{
-  const Bindings* local_methods = nt->local_methods();
-  if (local_methods == NULL)
-    return;
-
-  if (*methods == NULL)
-    *methods = new Methods();
-
-  for (Bindings::const_declarations_iterator p =
-        local_methods->begin_declarations();
-       p != local_methods->end_declarations();
-       ++p)
-    {
-      Named_object* no = p->second;
-      bool is_value_method = (is_embedded_pointer
-                             || !Type::method_expects_pointer(no));
-      Method* m = new Named_method(no, field_indexes, depth, is_value_method,
-                                  (needs_stub_method
-                                   || (depth > 0 && is_value_method)));
-      if (!(*methods)->insert(no->name(), m))
-       delete m;
-    }
-}
-
-// Add the embedded methods for TYPE to *METHODS.  These are the
-// methods attached to anonymous fields.  The parameters are as for
-// add_methods_to_type.
-
-void
-Type::add_embedded_methods_for_type(const Type* type,
-                                   const Method::Field_indexes* field_indexes,
-                                   unsigned int depth,
-                                   bool is_embedded_pointer,
-                                   bool needs_stub_method,
-                                   Types_seen* types_seen,
-                                   Methods** methods)
-{
-  // Look for anonymous fields in TYPE.  TYPE has fields if it is a
-  // struct.
-  const Struct_type* st = type->struct_type();
-  if (st == NULL)
-    return;
-
-  const Struct_field_list* fields = st->fields();
-  if (fields == NULL)
-    return;
-
-  unsigned int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (!pf->is_anonymous())
-       continue;
-
-      Type* ftype = pf->type();
-      bool is_pointer = false;
-      if (ftype->points_to() != NULL)
-       {
-         ftype = ftype->points_to();
-         is_pointer = true;
-       }
-      Named_type* fnt = ftype->named_type();
-      if (fnt == NULL)
-       {
-         // This is an error, but it will be diagnosed elsewhere.
-         continue;
-       }
-
-      Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
-      sub_field_indexes->next = field_indexes;
-      sub_field_indexes->field_index = i;
-
-      Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
-                                (is_embedded_pointer || is_pointer),
-                                (needs_stub_method
-                                 || is_pointer
-                                 || i > 0),
-                                types_seen,
-                                methods);
-    }
-}
-
-// If TYPE is an interface type, then add its method to *METHODS.
-// This is for interface methods attached to an anonymous field.  The
-// parameters are as for add_methods_for_type.
-
-void
-Type::add_interface_methods_for_type(const Type* type,
-                                    const Method::Field_indexes* field_indexes,
-                                    unsigned int depth,
-                                    Methods** methods)
-{
-  const Interface_type* it = type->interface_type();
-  if (it == NULL)
-    return;
-
-  const Typed_identifier_list* imethods = it->methods();
-  if (imethods == NULL)
-    return;
-
-  if (*methods == NULL)
-    *methods = new Methods();
-
-  for (Typed_identifier_list::const_iterator pm = imethods->begin();
-       pm != imethods->end();
-       ++pm)
-    {
-      Function_type* fntype = pm->type()->function_type();
-      gcc_assert(fntype != NULL && !fntype->is_method());
-      fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
-      Method* m = new Interface_method(pm->name(), pm->location(), fntype,
-                                      field_indexes, depth);
-      if (!(*methods)->insert(pm->name(), m))
-       delete m;
-    }
-}
-
-// Build stub methods for TYPE as needed.  METHODS is the set of
-// methods for the type.  A stub method may be needed when a type
-// inherits a method from an anonymous field.  When we need the
-// address of the method, as in a type descriptor, we need to build a
-// little stub which does the required field dereferences and jumps to
-// the real method.  LOCATION is the location of the type definition.
-
-void
-Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
-                        source_location location)
-{
-  if (methods == NULL)
-    return;
-  for (Methods::const_iterator p = methods->begin();
-       p != methods->end();
-       ++p)
-    {
-      Method* m = p->second;
-      if (m->is_ambiguous() || !m->needs_stub_method())
-       continue;
-
-      const std::string& name(p->first);
-
-      // Build a stub method.
-
-      const Function_type* fntype = m->type();
-
-      static unsigned int counter;
-      char buf[100];
-      snprintf(buf, sizeof buf, "$this%u", counter);
-      ++counter;
-
-      Type* receiver_type = const_cast<Type*>(type);
-      if (!m->is_value_method())
-       receiver_type = Type::make_pointer_type(receiver_type);
-      source_location receiver_location = m->receiver_location();
-      Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
-                                                       receiver_location);
-
-      const Typed_identifier_list* fnparams = fntype->parameters();
-      Typed_identifier_list* stub_params;
-      if (fnparams == NULL || fnparams->empty())
-       stub_params = NULL;
-      else
-       {
-         // We give each stub parameter a unique name.
-         stub_params = new Typed_identifier_list();
-         for (Typed_identifier_list::const_iterator pp = fnparams->begin();
-              pp != fnparams->end();
-              ++pp)
-           {
-             char pbuf[100];
-             snprintf(pbuf, sizeof pbuf, "$p%u", counter);
-             stub_params->push_back(Typed_identifier(pbuf, pp->type(),
-                                                     pp->location()));
-             ++counter;
-           }
-       }
-
-      const Typed_identifier_list* fnresults = fntype->results();
-      Typed_identifier_list* stub_results;
-      if (fnresults == NULL || fnresults->empty())
-       stub_results = NULL;
-      else
-       {
-         // We create the result parameters without any names, since
-         // we won't refer to them.
-         stub_results = new Typed_identifier_list();
-         for (Typed_identifier_list::const_iterator pr = fnresults->begin();
-              pr != fnresults->end();
-              ++pr)
-           stub_results->push_back(Typed_identifier("", pr->type(),
-                                                    pr->location()));
-       }
-
-      Function_type* stub_type = Type::make_function_type(receiver,
-                                                         stub_params,
-                                                         stub_results,
-                                                         fntype->location());
-      if (fntype->is_varargs())
-       stub_type->set_is_varargs();
-
-      // We only create the function in the package which creates the
-      // type.
-      const Package* package;
-      if (type->named_type() == NULL)
-       package = NULL;
-      else
-       package = type->named_type()->named_object()->package();
-      Named_object* stub;
-      if (package != NULL)
-       stub = Named_object::make_function_declaration(name, package,
-                                                      stub_type, location);
-      else
-       {
-         stub = gogo->start_function(name, stub_type, false,
-                                     fntype->location());
-         Type::build_one_stub_method(gogo, m, buf, stub_params,
-                                     fntype->is_varargs(), location);
-         gogo->finish_function(fntype->location());
-       }
-
-      m->set_stub_object(stub);
-    }
-}
-
-// Build a stub method which adjusts the receiver as required to call
-// METHOD.  RECEIVER_NAME is the name we used for the receiver.
-// PARAMS is the list of function parameters.
-
-void
-Type::build_one_stub_method(Gogo* gogo, Method* method,
-                           const char* receiver_name,
-                           const Typed_identifier_list* params,
-                           bool is_varargs,
-                           source_location location)
-{
-  Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
-  gcc_assert(receiver_object != NULL);
-
-  Expression* expr = Expression::make_var_reference(receiver_object, location);
-  expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
-  if (expr->type()->points_to() == NULL)
-    expr = Expression::make_unary(OPERATOR_AND, expr, location);
-
-  Expression_list* arguments;
-  if (params == NULL || params->empty())
-    arguments = NULL;
-  else
-    {
-      arguments = new Expression_list();
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       {
-         Named_object* param = gogo->lookup(p->name(), NULL);
-         gcc_assert(param != NULL);
-         Expression* param_ref = Expression::make_var_reference(param,
-                                                                location);
-         arguments->push_back(param_ref);
-       }
-    }
-
-  Expression* func = method->bind_method(expr, location);
-  gcc_assert(func != NULL);
-  Call_expression* call = Expression::make_call(func, arguments, is_varargs,
-                                               location);
-  size_t count = call->result_count();
-  if (count == 0)
-    gogo->add_statement(Statement::make_statement(call));
-  else
-    {
-      Expression_list* retvals = new Expression_list();
-      if (count <= 1)
-       retvals->push_back(call);
-      else
-       {
-         for (size_t i = 0; i < count; ++i)
-           retvals->push_back(Expression::make_call_result(call, i));
-       }
-      const Function* function = gogo->current_function()->func_value();
-      const Typed_identifier_list* results = function->type()->results();
-      Statement* retstat = Statement::make_return_statement(results, retvals,
-                                                           location);
-      gogo->add_statement(retstat);
-    }
-}
-
-// Apply FIELD_INDEXES to EXPR.  The field indexes have to be applied
-// in reverse order.
-
-Expression*
-Type::apply_field_indexes(Expression* expr,
-                         const Method::Field_indexes* field_indexes,
-                         source_location location)
-{
-  if (field_indexes == NULL)
-    return expr;
-  expr = Type::apply_field_indexes(expr, field_indexes->next, location);
-  Struct_type* stype = expr->type()->deref()->struct_type();
-  gcc_assert(stype != NULL
-            && field_indexes->field_index < stype->field_count());
-  if (expr->type()->struct_type() == NULL)
-    {
-      gcc_assert(expr->type()->points_to() != NULL);
-      expr = Expression::make_unary(OPERATOR_MULT, expr, location);
-      gcc_assert(expr->type()->struct_type() == stype);
-    }
-  return Expression::make_field_reference(expr, field_indexes->field_index,
-                                         location);
-}
-
-// Return whether NO is a method for which the receiver is a pointer.
-
-bool
-Type::method_expects_pointer(const Named_object* no)
-{
-  const Function_type *fntype;
-  if (no->is_function())
-    fntype = no->func_value()->type();
-  else if (no->is_function_declaration())
-    fntype = no->func_declaration_value()->type();
-  else
-    gcc_unreachable();
-  return fntype->receiver()->type()->points_to() != NULL;
-}
-
-// Given a set of methods for a type, METHODS, return the method NAME,
-// or NULL if there isn't one or if it is ambiguous.  If IS_AMBIGUOUS
-// is not NULL, then set *IS_AMBIGUOUS to true if the method exists
-// but is ambiguous (and return NULL).
-
-Method*
-Type::method_function(const Methods* methods, const std::string& name,
-                     bool* is_ambiguous)
-{
-  if (is_ambiguous != NULL)
-    *is_ambiguous = false;
-  if (methods == NULL)
-    return NULL;
-  Methods::const_iterator p = methods->find(name);
-  if (p == methods->end())
-    return NULL;
-  Method* m = p->second;
-  if (m->is_ambiguous())
-    {
-      if (is_ambiguous != NULL)
-       *is_ambiguous = true;
-      return NULL;
-    }
-  return m;
-}
-
-// Look for field or method NAME for TYPE.  Return an Expression for
-// the field or method bound to EXPR.  If there is no such field or
-// method, give an appropriate error and return an error expression.
-
-Expression*
-Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
-                          const std::string& name,
-                          source_location location)
-{
-  if (type->is_error_type())
-    return Expression::make_error(location);
-
-  const Named_type* nt = type->named_type();
-  if (nt == NULL)
-    nt = type->deref()->named_type();
-  const Struct_type* st = type->deref()->struct_type();
-  const Interface_type* it = type->deref()->interface_type();
-
-  // If this is a pointer to a pointer, then it is possible that the
-  // pointed-to type has methods.
-  if (nt == NULL
-      && st == NULL
-      && it == NULL
-      && type->points_to() != NULL
-      && type->points_to()->points_to() != NULL)
-    {
-      expr = Expression::make_unary(OPERATOR_MULT, expr, location);
-      type = type->points_to();
-      nt = type->points_to()->named_type();
-      st = type->points_to()->struct_type();
-      it = type->points_to()->interface_type();
-    }
-
-  bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
-                                 || expr->is_addressable());
-  bool is_method = false;
-  bool found_pointer_method = false;
-  std::string ambig1;
-  std::string ambig2;
-  if (Type::find_field_or_method(type, name, receiver_can_be_pointer, NULL,
-                                &is_method, &found_pointer_method,
-                                &ambig1, &ambig2))
-    {
-      Expression* ret;
-      if (!is_method)
-       {
-         gcc_assert(st != NULL);
-         if (type->struct_type() == NULL)
-           {
-             gcc_assert(type->points_to() != NULL);
-             expr = Expression::make_unary(OPERATOR_MULT, expr,
-                                           location);
-             gcc_assert(expr->type()->struct_type() == st);
-           }
-         ret = st->field_reference(expr, name, location);
-       }
-      else if (it != NULL && it->find_method(name) != NULL)
-       ret = Expression::make_interface_field_reference(expr, name,
-                                                        location);
-      else
-       {
-         Method* m;
-         if (nt != NULL)
-           m = nt->method_function(name, NULL);
-         else if (st != NULL)
-           m = st->method_function(name, NULL);
-         else
-           gcc_unreachable();
-         gcc_assert(m != NULL);
-         if (!m->is_value_method() && expr->type()->points_to() == NULL)
-           expr = Expression::make_unary(OPERATOR_AND, expr, location);
-         ret = m->bind_method(expr, location);
-       }
-      gcc_assert(ret != NULL);
-      return ret;
-    }
-  else
-    {
-      if (!ambig1.empty())
-       error_at(location, "%qs is ambiguous via %qs and %qs",
-                Gogo::message_name(name).c_str(),
-                Gogo::message_name(ambig1).c_str(),
-                Gogo::message_name(ambig2).c_str());
-      else if (found_pointer_method)
-       error_at(location, "method requires a pointer");
-      else if (nt == NULL && st == NULL && it == NULL)
-       error_at(location,
-                ("reference to field %qs in object which "
-                 "has no fields or methods"),
-                Gogo::message_name(name).c_str());
-      else
-       {
-         bool is_unexported;
-         if (!Gogo::is_hidden_name(name))
-           is_unexported = false;
-         else
-           {
-             std::string unpacked = Gogo::unpack_hidden_name(name);
-             is_unexported = Type::is_unexported_field_or_method(gogo, type,
-                                                                 unpacked);
-           }
-         if (is_unexported)
-           error_at(location, "reference to unexported field or method %qs",
-                    Gogo::message_name(name).c_str());
-         else
-           error_at(location, "reference to undefined field or method %qs",
-                    Gogo::message_name(name).c_str());
-       }
-      return Expression::make_error(location);
-    }
-}
-
-// Look in TYPE for a field or method named NAME, return true if one
-// is found.  This looks through embedded anonymous fields and handles
-// ambiguity.  If a method is found, sets *IS_METHOD to true;
-// otherwise, if a field is found, set it to false.  If
-// RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
-// whose address can not be taken.  When returning false, this sets
-// *FOUND_POINTER_METHOD if we found a method we couldn't use because
-// it requires a pointer.  LEVEL is used for recursive calls, and can
-// be NULL for a non-recursive call.  When this function returns false
-// because it finds that the name is ambiguous, it will store a path
-// to the ambiguous names in *AMBIG1 and *AMBIG2.  If the name is not
-// found at all, *AMBIG1 and *AMBIG2 will be unchanged.
-
-// This function just returns whether or not there is a field or
-// method, and whether it is a field or method.  It doesn't build an
-// expression to refer to it.  If it is a method, we then look in the
-// list of all methods for the type.  If it is a field, the search has
-// to be done again, looking only for fields, and building up the
-// expression as we go.
-
-bool
-Type::find_field_or_method(const Type* type,
-                          const std::string& name,
-                          bool receiver_can_be_pointer,
-                          int* level,
-                          bool* is_method,
-                          bool* found_pointer_method,
-                          std::string* ambig1,
-                          std::string* ambig2)
-{
-  // Named types can have locally defined methods.
-  const Named_type* nt = type->named_type();
-  if (nt == NULL && type->points_to() != NULL)
-    nt = type->points_to()->named_type();
-  if (nt != NULL)
-    {
-      Named_object* no = nt->find_local_method(name);
-      if (no != NULL)
-       {
-         if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
-           {
-             *is_method = true;
-             return true;
-           }
-
-         // Record that we have found a pointer method in order to
-         // give a better error message if we don't find anything
-         // else.
-         *found_pointer_method = true;
-       }
-    }
-
-  // Interface types can have methods.
-  const Interface_type* it = type->deref()->interface_type();
-  if (it != NULL && it->find_method(name) != NULL)
-    {
-      *is_method = true;
-      return true;
-    }
-
-  // Struct types can have fields.  They can also inherit fields and
-  // methods from anonymous fields.
-  const Struct_type* st = type->deref()->struct_type();
-  if (st == NULL)
-    return false;
-  const Struct_field_list* fields = st->fields();
-  if (fields == NULL)
-    return false;
-
-  int found_level = 0;
-  bool found_is_method = false;
-  std::string found_ambig1;
-  std::string found_ambig2;
-  const Struct_field* found_parent = NULL;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      if (pf->field_name() == name)
-       {
-         *is_method = false;
-         return true;
-       }
-
-      if (!pf->is_anonymous())
-       continue;
-
-      Named_type* fnt = pf->type()->deref()->named_type();
-      gcc_assert(fnt != NULL);
-
-      int sublevel = level == NULL ? 1 : *level + 1;
-      bool sub_is_method;
-      std::string subambig1;
-      std::string subambig2;
-      bool subfound = Type::find_field_or_method(fnt,
-                                                name,
-                                                receiver_can_be_pointer,
-                                                &sublevel,
-                                                &sub_is_method,
-                                                found_pointer_method,
-                                                &subambig1,
-                                                &subambig2);
-      if (!subfound)
-       {
-         if (!subambig1.empty())
-           {
-             // The name was found via this field, but is ambiguous.
-             // if the ambiguity is lower or at the same level as
-             // anything else we have already found, then we want to
-             // pass the ambiguity back to the caller.
-             if (found_level == 0 || sublevel <= found_level)
-               {
-                 found_ambig1 = pf->field_name() + '.' + subambig1;
-                 found_ambig2 = pf->field_name() + '.' + subambig2;
-                 found_level = sublevel;
-               }
-           }
-       }
-      else
-       {
-         // The name was found via this field.  Use the level to see
-         // if we want to use this one, or whether it introduces an
-         // ambiguity.
-         if (found_level == 0 || sublevel < found_level)
-           {
-             found_level = sublevel;
-             found_is_method = sub_is_method;
-             found_ambig1.clear();
-             found_ambig2.clear();
-             found_parent = &*pf;
-           }
-         else if (sublevel > found_level)
-           ;
-         else if (found_ambig1.empty())
-           {
-             // We found an ambiguity.
-             gcc_assert(found_parent != NULL);
-             found_ambig1 = found_parent->field_name();
-             found_ambig2 = pf->field_name();
-           }
-         else
-           {
-             // We found an ambiguity, but we already know of one.
-             // Just report the earlier one.
-           }
-       }
-    }
-
-  // Here if we didn't find anything FOUND_LEVEL is 0.  If we found
-  // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
-  // FOUND_AMBIG2 are not empty.  If we found the field, FOUND_LEVEL
-  // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
-
-  if (found_level == 0)
-    return false;
-  else if (!found_ambig1.empty())
-    {
-      gcc_assert(!found_ambig1.empty());
-      ambig1->assign(found_ambig1);
-      ambig2->assign(found_ambig2);
-      if (level != NULL)
-       *level = found_level;
-      return false;
-    }
-  else
-    {
-      if (level != NULL)
-       *level = found_level;
-      *is_method = found_is_method;
-      return true;
-    }
-}
-
-// Return whether NAME is an unexported field or method for TYPE.
-
-bool
-Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
-                                   const std::string& name)
-{
-  type = type->deref();
-
-  const Named_type* nt = type->named_type();
-  if (nt != NULL && nt->is_unexported_local_method(gogo, name))
-    return true;
-
-  const Interface_type* it = type->interface_type();
-  if (it != NULL && it->is_unexported_method(gogo, name))
-    return true;
-
-  const Struct_type* st = type->struct_type();
-  if (st != NULL && st->is_unexported_local_field(gogo, name))
-    return true;
-
-  if (st == NULL)
-    return false;
-
-  const Struct_field_list* fields = st->fields();
-  if (fields == NULL)
-    return false;
-
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      if (pf->is_anonymous())
-       {
-         Named_type* subtype = pf->type()->deref()->named_type();
-         gcc_assert(subtype != NULL);
-         if (Type::is_unexported_field_or_method(gogo, subtype, name))
-           return true;
-       }
-    }
-
-  return false;
-}
-
-// Class Forward_declaration.
-
-Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
-  : Type(TYPE_FORWARD),
-    named_object_(named_object->resolve()), warned_(false)
-{
-  gcc_assert(this->named_object_->is_unknown()
-            || this->named_object_->is_type_declaration());
-}
-
-// Return the named object.
-
-Named_object*
-Forward_declaration_type::named_object()
-{
-  return this->named_object_->resolve();
-}
-
-const Named_object*
-Forward_declaration_type::named_object() const
-{
-  return this->named_object_->resolve();
-}
-
-// Return the name of the forward declared type.
-
-const std::string&
-Forward_declaration_type::name() const
-{
-  return this->named_object()->name();
-}
-
-// Warn about a use of a type which has been declared but not defined.
-
-void
-Forward_declaration_type::warn() const
-{
-  Named_object* no = this->named_object_->resolve();
-  if (no->is_unknown())
-    {
-      // The name was not defined anywhere.
-      if (!this->warned_)
-       {
-         error_at(this->named_object_->location(),
-                  "use of undefined type %qs",
-                  no->message_name().c_str());
-         this->warned_ = true;
-       }
-    }
-  else if (no->is_type_declaration())
-    {
-      // The name was seen as a type, but the type was never defined.
-      if (no->type_declaration_value()->using_type())
-       {
-         error_at(this->named_object_->location(),
-                  "use of undefined type %qs",
-                  no->message_name().c_str());
-         this->warned_ = true;
-       }
-    }
-  else
-    {
-      // The name was defined, but not as a type.
-      if (!this->warned_)
-       {
-         error_at(this->named_object_->location(), "expected type");
-         this->warned_ = true;
-       }
-    }
-}
-
-// Get the base type of a declaration.  This gives an error if the
-// type has not yet been defined.
-
-Type*
-Forward_declaration_type::real_type()
-{
-  if (this->is_defined())
-    return this->named_object()->type_value();
-  else
-    {
-      this->warn();
-      return Type::make_error_type();
-    }
-}
-
-const Type*
-Forward_declaration_type::real_type() const
-{
-  if (this->is_defined())
-    return this->named_object()->type_value();
-  else
-    {
-      this->warn();
-      return Type::make_error_type();
-    }
-}
-
-// Return whether the base type is defined.
-
-bool
-Forward_declaration_type::is_defined() const
-{
-  return this->named_object()->is_type();
-}
-
-// Add a method.  This is used when methods are defined before the
-// type.
-
-Named_object*
-Forward_declaration_type::add_method(const std::string& name,
-                                    Function* function)
-{
-  Named_object* no = this->named_object();
-  gcc_assert(no->is_type_declaration());
-  return no->type_declaration_value()->add_method(name, function);
-}
-
-// Add a method declaration.  This is used when methods are declared
-// before the type.
-
-Named_object*
-Forward_declaration_type::add_method_declaration(const std::string& name,
-                                                Function_type* type,
-                                                source_location location)
-{
-  Named_object* no = this->named_object();
-  gcc_assert(no->is_type_declaration());
-  Type_declaration* td = no->type_declaration_value();
-  return td->add_method_declaration(name, type, location);
-}
-
-// Traversal.
-
-int
-Forward_declaration_type::do_traverse(Traverse* traverse)
-{
-  if (this->is_defined()
-      && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Get a tree for the type.
-
-tree
-Forward_declaration_type::do_get_tree(Gogo* gogo)
-{
-  if (this->is_defined())
-    return Type::get_named_type_tree(gogo, this->real_type());
-
-  if (this->warned_)
-    return error_mark_node;
-
-  // We represent an undefined type as a struct with no fields.  That
-  // should work fine for the middle-end, since the same case can
-  // arise in C.
-  Named_object* no = this->named_object();
-  tree type_tree = make_node(RECORD_TYPE);
-  tree id = no->get_id(gogo);
-  tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
-  TYPE_NAME(type_tree) = decl;
-  return type_tree;
-}
-
-// Build a type descriptor for a forwarded type.
-
-Expression*
-Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (!this->is_defined())
-    return Expression::make_nil(BUILTINS_LOCATION);
-  else
-    {
-      Type* t = this->real_type();
-      if (name != NULL)
-       return this->named_type_descriptor(gogo, t, name);
-      else
-       return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
-    }
-}
-
-// The reflection string.
-
-void
-Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  this->append_reflection(this->real_type(), gogo, ret);
-}
-
-// The mangled name.
-
-void
-Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  if (this->is_defined())
-    this->append_mangled_name(this->real_type(), gogo, ret);
-  else
-    {
-      const Named_object* no = this->named_object();
-      std::string name;
-      if (no->package() == NULL)
-       name = gogo->package_name();
-      else
-       name = no->package()->name();
-      name += '.';
-      name += Gogo::unpack_hidden_name(no->name());
-      char buf[20];
-      snprintf(buf, sizeof buf, "N%u_",
-              static_cast<unsigned int>(name.length()));
-      ret->append(buf);
-      ret->append(name);
-    }
-}
-
-// Export a forward declaration.  This can happen when a defined type
-// refers to a type which is only declared (and is presumably defined
-// in some other file in the same package).
-
-void
-Forward_declaration_type::do_export(Export*) const
-{
-  // If there is a base type, that should be exported instead of this.
-  gcc_assert(!this->is_defined());
-
-  // We don't output anything.
-}
-
-// Make a forward declaration.
-
-Type*
-Type::make_forward_declaration(Named_object* named_object)
-{
-  return new Forward_declaration_type(named_object);
-}
-
-// Class Typed_identifier_list.
-
-// Sort the entries by name.
-
-struct Typed_identifier_list_sort
-{
- public:
-  bool
-  operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
-  { return t1.name() < t2.name(); }
-};
-
-void
-Typed_identifier_list::sort_by_name()
-{
-  std::sort(this->entries_.begin(), this->entries_.end(),
-           Typed_identifier_list_sort());
-}
-
-// Traverse types.
-
-int
-Typed_identifier_list::traverse(Traverse* traverse)
-{
-  for (Typed_identifier_list::const_iterator p = this->begin();
-       p != this->end();
-       ++p)
-    {
-      if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Copy the list.
-
-Typed_identifier_list*
-Typed_identifier_list::copy() const
-{
-  Typed_identifier_list* ret = new Typed_identifier_list();
-  for (Typed_identifier_list::const_iterator p = this->begin();
-       p != this->end();
-       ++p)
-    ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
-  return ret;
-}
diff --git a/gcc/go/gofrontend/types.cc.merge-right.r172891 b/gcc/go/gofrontend/types.cc.merge-right.r172891
deleted file mode 100644 (file)
index 86d65c1..0000000
+++ /dev/null
@@ -1,8676 +0,0 @@
-// types.cc -- Go frontend types.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "toplev.h"
-#include "intl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "real.h"
-#include "convert.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "gogo.h"
-#include "operator.h"
-#include "expressions.h"
-#include "statements.h"
-#include "export.h"
-#include "import.h"
-#include "types.h"
-
-// Class Type.
-
-Type::Type(Type_classification classification)
-  : classification_(classification), tree_(NULL_TREE),
-    type_descriptor_decl_(NULL_TREE)
-{
-}
-
-Type::~Type()
-{
-}
-
-// Get the base type for a type--skip names and forward declarations.
-
-Type*
-Type::base()
-{
-  switch (this->classification_)
-    {
-    case TYPE_NAMED:
-      return this->named_type()->named_base();
-    case TYPE_FORWARD:
-      return this->forward_declaration_type()->real_type()->base();
-    default:
-      return this;
-    }
-}
-
-const Type*
-Type::base() const
-{
-  switch (this->classification_)
-    {
-    case TYPE_NAMED:
-      return this->named_type()->named_base();
-    case TYPE_FORWARD:
-      return this->forward_declaration_type()->real_type()->base();
-    default:
-      return this;
-    }
-}
-
-// Skip defined forward declarations.
-
-Type*
-Type::forwarded()
-{
-  Type* t = this;
-  Forward_declaration_type* ftype = t->forward_declaration_type();
-  while (ftype != NULL && ftype->is_defined())
-    {
-      t = ftype->real_type();
-      ftype = t->forward_declaration_type();
-    }
-  return t;
-}
-
-const Type*
-Type::forwarded() const
-{
-  const Type* t = this;
-  const Forward_declaration_type* ftype = t->forward_declaration_type();
-  while (ftype != NULL && ftype->is_defined())
-    {
-      t = ftype->real_type();
-      ftype = t->forward_declaration_type();
-    }
-  return t;
-}
-
-// If this is a named type, return it.  Otherwise, return NULL.
-
-Named_type*
-Type::named_type()
-{
-  return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
-}
-
-const Named_type*
-Type::named_type() const
-{
-  return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
-}
-
-// Return true if this type is not defined.
-
-bool
-Type::is_undefined() const
-{
-  return this->forwarded()->forward_declaration_type() != NULL;
-}
-
-// Return true if this is a basic type: a type which is not composed
-// of other types, and is not void.
-
-bool
-Type::is_basic_type() const
-{
-  switch (this->classification_)
-    {
-    case TYPE_INTEGER:
-    case TYPE_FLOAT:
-    case TYPE_COMPLEX:
-    case TYPE_BOOLEAN:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      return true;
-
-    case TYPE_ERROR:
-    case TYPE_VOID:
-    case TYPE_FUNCTION:
-    case TYPE_POINTER:
-    case TYPE_STRUCT:
-    case TYPE_ARRAY:
-    case TYPE_MAP:
-    case TYPE_CHANNEL:
-    case TYPE_INTERFACE:
-      return false;
-
-    case TYPE_NAMED:
-    case TYPE_FORWARD:
-      return this->base()->is_basic_type();
-
-    default:
-      go_unreachable();
-    }
-}
-
-// Return true if this is an abstract type.
-
-bool
-Type::is_abstract() const
-{
-  switch (this->classification())
-    {
-    case TYPE_INTEGER:
-      return this->integer_type()->is_abstract();
-    case TYPE_FLOAT:
-      return this->float_type()->is_abstract();
-    case TYPE_COMPLEX:
-      return this->complex_type()->is_abstract();
-    case TYPE_STRING:
-      return this->is_abstract_string_type();
-    case TYPE_BOOLEAN:
-      return this->is_abstract_boolean_type();
-    default:
-      return false;
-    }
-}
-
-// Return a non-abstract version of an abstract type.
-
-Type*
-Type::make_non_abstract_type()
-{
-  go_assert(this->is_abstract());
-  switch (this->classification())
-    {
-    case TYPE_INTEGER:
-      return Type::lookup_integer_type("int");
-    case TYPE_FLOAT:
-      return Type::lookup_float_type("float64");
-    case TYPE_COMPLEX:
-      return Type::lookup_complex_type("complex128");
-    case TYPE_STRING:
-      return Type::lookup_string_type();
-    case TYPE_BOOLEAN:
-      return Type::lookup_bool_type();
-    default:
-      go_unreachable();
-    }
-}
-
-// Return true if this is an error type.  Don't give an error if we
-// try to dereference an undefined forwarding type, as this is called
-// in the parser when the type may legitimately be undefined.
-
-bool
-Type::is_error_type() const
-{
-  const Type* t = this->forwarded();
-  // Note that we return false for an undefined forward type.
-  switch (t->classification_)
-    {
-    case TYPE_ERROR:
-      return true;
-    case TYPE_NAMED:
-      return t->named_type()->is_named_error_type();
-    default:
-      return false;
-    }
-}
-
-// If this is a pointer type, return the type to which it points.
-// Otherwise, return NULL.
-
-Type*
-Type::points_to() const
-{
-  const Pointer_type* ptype = this->convert<const Pointer_type,
-                                           TYPE_POINTER>();
-  return ptype == NULL ? NULL : ptype->points_to();
-}
-
-// Return whether this is an open array type.
-
-bool
-Type::is_open_array_type() const
-{
-  return this->array_type() != NULL && this->array_type()->length() == NULL;
-}
-
-// Return whether this is the predeclared constant nil being used as a
-// type.
-
-bool
-Type::is_nil_constant_as_type() const
-{
-  const Type* t = this->forwarded();
-  if (t->forward_declaration_type() != NULL)
-    {
-      const Named_object* no = t->forward_declaration_type()->named_object();
-      if (no->is_unknown())
-       no = no->unknown_value()->real_named_object();
-      if (no != NULL
-         && no->is_const()
-         && no->const_value()->expr()->is_nil_expression())
-       return true;
-    }
-  return false;
-}
-
-// Traverse a type.
-
-int
-Type::traverse(Type* type, Traverse* traverse)
-{
-  go_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
-            || (traverse->traverse_mask()
-                & Traverse::traverse_expressions) != 0);
-  if (traverse->remember_type(type))
-    {
-      // We have already traversed this type.
-      return TRAVERSE_CONTINUE;
-    }
-  if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
-    {
-      int t = traverse->type(type);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-  // An array type has an expression which we need to traverse if
-  // traverse_expressions is set.
-  if (type->do_traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Default implementation for do_traverse for child class.
-
-int
-Type::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// Return whether two types are identical.  If ERRORS_ARE_IDENTICAL,
-// then return true for all erroneous types; this is used to avoid
-// cascading errors.  If REASON is not NULL, optionally set *REASON to
-// the reason the types are not identical.
-
-bool
-Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical,
-                   std::string* reason)
-{
-  if (t1 == NULL || t2 == NULL)
-    {
-      // Something is wrong.
-      return errors_are_identical ? true : t1 == t2;
-    }
-
-  // Skip defined forward declarations.
-  t1 = t1->forwarded();
-  t2 = t2->forwarded();
-
-  if (t1 == t2)
-    return true;
-
-  // An undefined forward declaration is an error.
-  if (t1->forward_declaration_type() != NULL
-      || t2->forward_declaration_type() != NULL)
-    return errors_are_identical;
-
-  // Avoid cascading errors with error types.
-  if (t1->is_error_type() || t2->is_error_type())
-    {
-      if (errors_are_identical)
-       return true;
-      return t1->is_error_type() && t2->is_error_type();
-    }
-
-  // Get a good reason for the sink type.  Note that the sink type on
-  // the left hand side of an assignment is handled in are_assignable.
-  if (t1->is_sink_type() || t2->is_sink_type())
-    {
-      if (reason != NULL)
-       *reason = "invalid use of _";
-      return false;
-    }
-
-  // A named type is only identical to itself.
-  if (t1->named_type() != NULL || t2->named_type() != NULL)
-    return false;
-
-  // Check type shapes.
-  if (t1->classification() != t2->classification())
-    return false;
-
-  switch (t1->classification())
-    {
-    case TYPE_VOID:
-    case TYPE_BOOLEAN:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      // These types are always identical.
-      return true;
-
-    case TYPE_INTEGER:
-      return t1->integer_type()->is_identical(t2->integer_type());
-
-    case TYPE_FLOAT:
-      return t1->float_type()->is_identical(t2->float_type());
-
-    case TYPE_COMPLEX:
-      return t1->complex_type()->is_identical(t2->complex_type());
-
-    case TYPE_FUNCTION:
-      return t1->function_type()->is_identical(t2->function_type(),
-                                              false,
-                                              errors_are_identical,
-                                              reason);
-
-    case TYPE_POINTER:
-      return Type::are_identical(t1->points_to(), t2->points_to(),
-                                errors_are_identical, reason);
-
-    case TYPE_STRUCT:
-      return t1->struct_type()->is_identical(t2->struct_type(),
-                                            errors_are_identical);
-
-    case TYPE_ARRAY:
-      return t1->array_type()->is_identical(t2->array_type(),
-                                           errors_are_identical);
-
-    case TYPE_MAP:
-      return t1->map_type()->is_identical(t2->map_type(),
-                                         errors_are_identical);
-
-    case TYPE_CHANNEL:
-      return t1->channel_type()->is_identical(t2->channel_type(),
-                                             errors_are_identical);
-
-    case TYPE_INTERFACE:
-      return t1->interface_type()->is_identical(t2->interface_type(),
-                                               errors_are_identical);
-
-    case TYPE_CALL_MULTIPLE_RESULT:
-      if (reason != NULL)
-       *reason = "invalid use of multiple value function call";
-      return false;
-
-    default:
-      go_unreachable();
-    }
-}
-
-// Return true if it's OK to have a binary operation with types LHS
-// and RHS.  This is not used for shifts or comparisons.
-
-bool
-Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
-{
-  if (Type::are_identical(lhs, rhs, true, NULL))
-    return true;
-
-  // A constant of abstract bool type may be mixed with any bool type.
-  if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
-      || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
-    return true;
-
-  // A constant of abstract string type may be mixed with any string
-  // type.
-  if ((rhs->is_abstract_string_type() && lhs->is_string_type())
-      || (lhs->is_abstract_string_type() && rhs->is_string_type()))
-    return true;
-
-  lhs = lhs->base();
-  rhs = rhs->base();
-
-  // A constant of abstract integer, float, or complex type may be
-  // mixed with an integer, float, or complex type.
-  if ((rhs->is_abstract()
-       && (rhs->integer_type() != NULL
-          || rhs->float_type() != NULL
-          || rhs->complex_type() != NULL)
-       && (lhs->integer_type() != NULL
-          || lhs->float_type() != NULL
-          || lhs->complex_type() != NULL))
-      || (lhs->is_abstract()
-         && (lhs->integer_type() != NULL
-             || lhs->float_type() != NULL
-             || lhs->complex_type() != NULL)
-         && (rhs->integer_type() != NULL
-             || rhs->float_type() != NULL
-             || rhs->complex_type() != NULL)))
-    return true;
-
-  // The nil type may be compared to a pointer, an interface type, a
-  // slice type, a channel type, a map type, or a function type.
-  if (lhs->is_nil_type()
-      && (rhs->points_to() != NULL
-         || rhs->interface_type() != NULL
-         || rhs->is_open_array_type()
-         || rhs->map_type() != NULL
-         || rhs->channel_type() != NULL
-         || rhs->function_type() != NULL))
-    return true;
-  if (rhs->is_nil_type()
-      && (lhs->points_to() != NULL
-         || lhs->interface_type() != NULL
-         || lhs->is_open_array_type()
-         || lhs->map_type() != NULL
-         || lhs->channel_type() != NULL
-         || lhs->function_type() != NULL))
-    return true;
-
-  return false;
-}
-
-// Return true if a value with type RHS may be assigned to a variable
-// with type LHS.  If CHECK_HIDDEN_FIELDS is true, check whether any
-// hidden fields are modified.  If REASON is not NULL, set *REASON to
-// the reason the types are not assignable.
-
-bool
-Type::are_assignable_check_hidden(const Type* lhs, const Type* rhs,
-                                 bool check_hidden_fields,
-                                 std::string* reason)
-{
-  // Do some checks first.  Make sure the types are defined.
-  if (rhs != NULL
-      && rhs->forwarded()->forward_declaration_type() == NULL
-      && rhs->is_void_type())
-    {
-      if (reason != NULL)
-       *reason = "non-value used as value";
-      return false;
-    }
-
-  if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
-    {
-      // Any value may be assigned to the blank identifier.
-      if (lhs->is_sink_type())
-       return true;
-
-      // All fields of a struct must be exported, or the assignment
-      // must be in the same package.
-      if (check_hidden_fields
-         && rhs != NULL
-         && rhs->forwarded()->forward_declaration_type() == NULL)
-       {
-         if (lhs->has_hidden_fields(NULL, reason)
-             || rhs->has_hidden_fields(NULL, reason))
-           return false;
-       }
-    }
-
-  // Identical types are assignable.
-  if (Type::are_identical(lhs, rhs, true, reason))
-    return true;
-
-  // The types are assignable if they have identical underlying types
-  // and either LHS or RHS is not a named type.
-  if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
-       || (rhs->named_type() != NULL && lhs->named_type() == NULL))
-      && Type::are_identical(lhs->base(), rhs->base(), true, reason))
-    return true;
-
-  // The types are assignable if LHS is an interface type and RHS
-  // implements the required methods.
-  const Interface_type* lhs_interface_type = lhs->interface_type();
-  if (lhs_interface_type != NULL)
-    {
-      if (lhs_interface_type->implements_interface(rhs, reason))
-       return true;
-      const Interface_type* rhs_interface_type = rhs->interface_type();
-      if (rhs_interface_type != NULL
-         && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
-                                                         reason))
-       return true;
-    }
-
-  // The type are assignable if RHS is a bidirectional channel type,
-  // LHS is a channel type, they have identical element types, and
-  // either LHS or RHS is not a named type.
-  if (lhs->channel_type() != NULL
-      && rhs->channel_type() != NULL
-      && rhs->channel_type()->may_send()
-      && rhs->channel_type()->may_receive()
-      && (lhs->named_type() == NULL || rhs->named_type() == NULL)
-      && Type::are_identical(lhs->channel_type()->element_type(),
-                            rhs->channel_type()->element_type(),
-                            true,
-                            reason))
-    return true;
-
-  // The nil type may be assigned to a pointer, function, slice, map,
-  // channel, or interface type.
-  if (rhs->is_nil_type()
-      && (lhs->points_to() != NULL
-         || lhs->function_type() != NULL
-         || lhs->is_open_array_type()
-         || lhs->map_type() != NULL
-         || lhs->channel_type() != NULL
-         || lhs->interface_type() != NULL))
-    return true;
-
-  // An untyped numeric constant may be assigned to a numeric type if
-  // it is representable in that type.
-  if ((rhs->is_abstract()
-       && (rhs->integer_type() != NULL
-          || rhs->float_type() != NULL
-          || rhs->complex_type() != NULL))
-      && (lhs->integer_type() != NULL
-         || lhs->float_type() != NULL
-         || lhs->complex_type() != NULL))
-    return true;
-
-  // Give some better error messages.
-  if (reason != NULL && reason->empty())
-    {
-      if (rhs->interface_type() != NULL)
-       reason->assign(_("need explicit conversion"));
-      else if (rhs->is_call_multiple_result_type())
-       reason->assign(_("multiple value function call in "
-                        "single value context"));
-      else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
-       {
-         size_t len = (lhs->named_type()->name().length()
-                       + rhs->named_type()->name().length()
-                       + 100);
-         char* buf = new char[len];
-         snprintf(buf, len, _("cannot use type %s as type %s"),
-                  rhs->named_type()->message_name().c_str(),
-                  lhs->named_type()->message_name().c_str());
-         reason->assign(buf);
-         delete[] buf;
-       }
-    }
-
-  return false;
-}
-
-// Return true if a value with type RHS may be assigned to a variable
-// with type LHS.  If REASON is not NULL, set *REASON to the reason
-// the types are not assignable.
-
-bool
-Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
-{
-  return Type::are_assignable_check_hidden(lhs, rhs, true, reason);
-}
-
-// Like are_assignable but don't check for hidden fields.
-
-bool
-Type::are_assignable_hidden_ok(const Type* lhs, const Type* rhs,
-                              std::string* reason)
-{
-  return Type::are_assignable_check_hidden(lhs, rhs, false, reason);
-}
-
-// Return true if a value with type RHS may be converted to type LHS.
-// If REASON is not NULL, set *REASON to the reason the types are not
-// convertible.
-
-bool
-Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
-{
-  // The types are convertible if they are assignable.
-  if (Type::are_assignable(lhs, rhs, reason))
-    return true;
-
-  // The types are convertible if they have identical underlying
-  // types.
-  if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
-      && Type::are_identical(lhs->base(), rhs->base(), true, reason))
-    return true;
-
-  // The types are convertible if they are both unnamed pointer types
-  // and their pointer base types have identical underlying types.
-  if (lhs->named_type() == NULL
-      && rhs->named_type() == NULL
-      && lhs->points_to() != NULL
-      && rhs->points_to() != NULL
-      && (lhs->points_to()->named_type() != NULL
-         || rhs->points_to()->named_type() != NULL)
-      && Type::are_identical(lhs->points_to()->base(),
-                            rhs->points_to()->base(),
-                            true,
-                            reason))
-    return true;
-
-  // Integer and floating point types are convertible to each other.
-  if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
-      && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
-    return true;
-
-  // Complex types are convertible to each other.
-  if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
-    return true;
-
-  // An integer, or []byte, or []int, may be converted to a string.
-  if (lhs->is_string_type())
-    {
-      if (rhs->integer_type() != NULL)
-       return true;
-      if (rhs->is_open_array_type() && rhs->named_type() == NULL)
-       {
-         const Type* e = rhs->array_type()->element_type()->forwarded();
-         if (e->integer_type() != NULL
-             && (e == Type::lookup_integer_type("uint8")
-                 || e == Type::lookup_integer_type("int")))
-           return true;
-       }
-    }
-
-  // A string may be converted to []byte or []int.
-  if (rhs->is_string_type()
-      && lhs->is_open_array_type()
-      && lhs->named_type() == NULL)
-    {
-      const Type* e = lhs->array_type()->element_type()->forwarded();
-      if (e->integer_type() != NULL
-         && (e == Type::lookup_integer_type("uint8")
-             || e == Type::lookup_integer_type("int")))
-       return true;
-    }
-
-  // An unsafe.Pointer type may be converted to any pointer type or to
-  // uintptr, and vice-versa.
-  if (lhs->is_unsafe_pointer_type()
-      && (rhs->points_to() != NULL
-         || (rhs->integer_type() != NULL
-             && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
-    return true;
-  if (rhs->is_unsafe_pointer_type()
-      && (lhs->points_to() != NULL
-         || (lhs->integer_type() != NULL
-             && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
-    return true;
-
-  // Give a better error message.
-  if (reason != NULL)
-    {
-      if (reason->empty())
-       *reason = "invalid type conversion";
-      else
-       {
-         std::string s = "invalid type conversion (";
-         s += *reason;
-         s += ')';
-         *reason = s;
-       }
-    }
-
-  return false;
-}
-
-// Return whether this type has any hidden fields.  This is only a
-// possibility for a few types.
-
-bool
-Type::has_hidden_fields(const Named_type* within, std::string* reason) const
-{
-  switch (this->forwarded()->classification_)
-    {
-    case TYPE_NAMED:
-      return this->named_type()->named_type_has_hidden_fields(reason);
-    case TYPE_STRUCT:
-      return this->struct_type()->struct_has_hidden_fields(within, reason);
-    case TYPE_ARRAY:
-      return this->array_type()->array_has_hidden_fields(within, reason);
-    default:
-      return false;
-    }
-}
-
-// Return a hash code for the type to be used for method lookup.
-
-unsigned int
-Type::hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->classification_ != TYPE_FORWARD)
-    ret += this->classification_;
-  return ret + this->do_hash_for_method(gogo);
-}
-
-// Default implementation of do_hash_for_method.  This is appropriate
-// for types with no subfields.
-
-unsigned int
-Type::do_hash_for_method(Gogo*) const
-{
-  return 0;
-}
-
-// Return a hash code for a string, given a starting hash.
-
-unsigned int
-Type::hash_string(const std::string& s, unsigned int h)
-{
-  const char* p = s.data();
-  size_t len = s.length();
-  for (; len > 0; --len)
-    {
-      h ^= *p++;
-      h*= 16777619;
-    }
-  return h;
-}
-
-// Default check for the expression passed to make.  Any type which
-// may be used with make implements its own version of this.
-
-bool
-Type::do_check_make_expression(Expression_list*, source_location)
-{
-  go_unreachable();
-}
-
-// Return whether an expression has an integer value.  Report an error
-// if not.  This is used when handling calls to the predeclared make
-// function.
-
-bool
-Type::check_int_value(Expression* e, const char* errmsg,
-                     source_location location)
-{
-  if (e->type()->integer_type() != NULL)
-    return true;
-
-  // Check for a floating point constant with integer value.
-  mpfr_t fval;
-  mpfr_init(fval);
-
-  Type* dummy;
-  if (e->float_constant_value(fval, &dummy) && mpfr_integer_p(fval))
-    {
-      mpz_t ival;
-      mpz_init(ival);
-
-      bool ok = false;
-
-      mpfr_clear_overflow();
-      mpfr_clear_erangeflag();
-      mpfr_get_z(ival, fval, GMP_RNDN);
-      if (!mpfr_overflow_p()
-         && !mpfr_erangeflag_p()
-         && mpz_sgn(ival) >= 0)
-       {
-         Named_type* ntype = Type::lookup_integer_type("int");
-         Integer_type* inttype = ntype->integer_type();
-         mpz_t max;
-         mpz_init_set_ui(max, 1);
-         mpz_mul_2exp(max, max, inttype->bits() - 1);
-         ok = mpz_cmp(ival, max) < 0;
-         mpz_clear(max);
-       }
-      mpz_clear(ival);
-
-      if (ok)
-       {
-         mpfr_clear(fval);
-         return true;
-       }
-    }
-
-  mpfr_clear(fval);
-
-  error_at(location, "%s", errmsg);
-  return false;
-}
-
-// A hash table mapping unnamed types to trees.
-
-Type::Type_trees Type::type_trees;
-
-// Return a tree representing this type.
-
-tree
-Type::get_tree(Gogo* gogo)
-{
-  if (this->tree_ != NULL)
-    return this->tree_;
-
-  if (this->forward_declaration_type() != NULL
-      || this->named_type() != NULL)
-    return this->get_tree_without_hash(gogo);
-
-  if (this->is_error_type())
-    return error_mark_node;
-
-  // To avoid confusing GIMPLE, we need to translate all identical Go
-  // types to the same GIMPLE type.  We use a hash table to do that.
-  // There is no need to use the hash table for named types, as named
-  // types are only identical to themselves.
-
-  std::pair<Type*, tree> val(this, NULL);
-  std::pair<Type_trees::iterator, bool> ins =
-    Type::type_trees.insert(val);
-  if (!ins.second && ins.first->second != NULL_TREE)
-    {
-      if (gogo != NULL && gogo->named_types_are_converted())
-       this->tree_ = ins.first->second;
-      return ins.first->second;
-    }
-
-  tree t = this->get_tree_without_hash(gogo);
-
-  if (ins.first->second == NULL_TREE)
-    ins.first->second = t;
-  else
-    {
-      // We have already created a tree for this type.  This can
-      // happen when an unnamed type is defined using a named type
-      // which in turns uses an identical unnamed type.  Use the tree
-      // we created earlier and ignore the one we just built.
-      t = ins.first->second;
-      if (gogo == NULL || !gogo->named_types_are_converted())
-       return t;
-      this->tree_ = t;
-    }
-
-  return t;
-}
-
-// Return a tree for a type without looking in the hash table for
-// identical types.  This is used for named types, since there is no
-// point to looking in the hash table for them.
-
-tree
-Type::get_tree_without_hash(Gogo* gogo)
-{
-  if (this->tree_ == NULL_TREE)
-    {
-      tree t = this->do_get_tree(gogo);
-
-      // For a recursive function or pointer type, we will temporarily
-      // return ptr_type_node during the recursion.  We don't want to
-      // record that for a forwarding type, as it may confuse us
-      // later.
-      if (t == ptr_type_node && this->forward_declaration_type() != NULL)
-       return t;
-
-      if (gogo == NULL || !gogo->named_types_are_converted())
-       return t;
-
-      this->tree_ = t;
-      go_preserve_from_gc(t);
-    }
-
-  return this->tree_;
-}
-
-// Return a tree representing a zero initialization for this type.
-
-tree
-Type::get_init_tree(Gogo* gogo, bool is_clear)
-{
-  tree type_tree = this->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-  return this->do_get_init_tree(gogo, type_tree, is_clear);
-}
-
-// Any type which supports the builtin make function must implement
-// this.
-
-tree
-Type::do_make_expression_tree(Translate_context*, Expression_list*,
-                             source_location)
-{
-  go_unreachable();
-}
-
-// Return a pointer to the type descriptor for this type.
-
-tree
-Type::type_descriptor_pointer(Gogo* gogo)
-{
-  Type* t = this->forwarded();
-  if (t->type_descriptor_decl_ == NULL_TREE)
-    {
-      Expression* e = t->do_type_descriptor(gogo, NULL);
-      gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
-      go_assert(t->type_descriptor_decl_ != NULL_TREE
-                && (t->type_descriptor_decl_ == error_mark_node
-                    || DECL_P(t->type_descriptor_decl_)));
-    }
-  if (t->type_descriptor_decl_ == error_mark_node)
-    return error_mark_node;
-  return build_fold_addr_expr(t->type_descriptor_decl_);
-}
-
-// Return a composite literal for a type descriptor.
-
-Expression*
-Type::type_descriptor(Gogo* gogo, Type* type)
-{
-  return type->do_type_descriptor(gogo, NULL);
-}
-
-// Return a composite literal for a type descriptor with a name.
-
-Expression*
-Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
-{
-  go_assert(name != NULL && type->named_type() != name);
-  return type->do_type_descriptor(gogo, name);
-}
-
-// Make a builtin struct type from a list of fields.  The fields are
-// pairs of a name and a type.
-
-Struct_type*
-Type::make_builtin_struct_type(int nfields, ...)
-{
-  va_list ap;
-  va_start(ap, nfields);
-
-  source_location bloc = BUILTINS_LOCATION;
-  Struct_field_list* sfl = new Struct_field_list();
-  for (int i = 0; i < nfields; i++)
-    {
-      const char* field_name = va_arg(ap, const char *);
-      Type* type = va_arg(ap, Type*);
-      sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
-    }
-
-  va_end(ap);
-
-  return Type::make_struct_type(sfl, bloc);
-}
-
-// A list of builtin named types.
-
-std::vector<Named_type*> Type::named_builtin_types;
-
-// Make a builtin named type.
-
-Named_type*
-Type::make_builtin_named_type(const char* name, Type* type)
-{
-  source_location bloc = BUILTINS_LOCATION;
-  Named_object* no = Named_object::make_type(name, NULL, type, bloc);
-  Named_type* ret = no->type_value();
-  Type::named_builtin_types.push_back(ret);
-  return ret;
-}
-
-// Convert the named builtin types.
-
-void
-Type::convert_builtin_named_types(Gogo* gogo)
-{
-  for (std::vector<Named_type*>::const_iterator p =
-        Type::named_builtin_types.begin();
-       p != Type::named_builtin_types.end();
-       ++p)
-    {
-      bool r = (*p)->verify();
-      go_assert(r);
-      (*p)->convert(gogo);
-    }
-}
-
-// Return the type of a type descriptor.  We should really tie this to
-// runtime.Type rather than copying it.  This must match commonType in
-// libgo/go/runtime/type.go.
-
-Type*
-Type::make_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      source_location bloc = BUILTINS_LOCATION;
-
-      Type* uint8_type = Type::lookup_integer_type("uint8");
-      Type* uint32_type = Type::lookup_integer_type("uint32");
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-      Type* string_type = Type::lookup_string_type();
-      Type* pointer_string_type = Type::make_pointer_type(string_type);
-
-      // This is an unnamed version of unsafe.Pointer.  Perhaps we
-      // should use the named version instead, although that would
-      // require us to create the unsafe package if it has not been
-      // imported.  It probably doesn't matter.
-      Type* void_type = Type::make_void_type();
-      Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
-
-      // Forward declaration for the type descriptor type.
-      Named_object* named_type_descriptor_type =
-       Named_object::make_type_declaration("commonType", NULL, bloc);
-      Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
-      Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
-
-      // The type of a method on a concrete type.
-      Struct_type* method_type =
-       Type::make_builtin_struct_type(5,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "mtyp", pointer_type_descriptor_type,
-                                      "typ", pointer_type_descriptor_type,
-                                      "tfn", unsafe_pointer_type);
-      Named_type* named_method_type =
-       Type::make_builtin_named_type("method", method_type);
-
-      // Information for types with a name or methods.
-      Type* slice_named_method_type =
-       Type::make_array_type(named_method_type, NULL);
-      Struct_type* uncommon_type =
-       Type::make_builtin_struct_type(3,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "methods", slice_named_method_type);
-      Named_type* named_uncommon_type =
-       Type::make_builtin_named_type("uncommonType", uncommon_type);
-
-      Type* pointer_uncommon_type =
-       Type::make_pointer_type(named_uncommon_type);
-
-      // The type descriptor type.
-
-      Typed_identifier_list* params = new Typed_identifier_list();
-      params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
-      params->push_back(Typed_identifier("", uintptr_type, bloc));
-
-      Typed_identifier_list* results = new Typed_identifier_list();
-      results->push_back(Typed_identifier("", uintptr_type, bloc));
-
-      Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
-
-      params = new Typed_identifier_list();
-      params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
-      params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
-      params->push_back(Typed_identifier("", uintptr_type, bloc));
-
-      results = new Typed_identifier_list();
-      results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
-
-      Type* equalfn_type = Type::make_function_type(NULL, params, results,
-                                                   bloc);
-
-      Struct_type* type_descriptor_type =
-       Type::make_builtin_struct_type(10,
-                                      "Kind", uint8_type,
-                                      "align", uint8_type,
-                                      "fieldAlign", uint8_type,
-                                      "size", uintptr_type,
-                                      "hash", uint32_type,
-                                      "hashfn", hashfn_type,
-                                      "equalfn", equalfn_type,
-                                      "string", pointer_string_type,
-                                      "", pointer_uncommon_type,
-                                      "ptrToThis",
-                                      pointer_type_descriptor_type);
-
-      Named_type* named = Type::make_builtin_named_type("commonType",
-                                                       type_descriptor_type);
-
-      named_type_descriptor_type->set_type_value(named);
-
-      ret = named;
-    }
-
-  return ret;
-}
-
-// Make the type of a pointer to a type descriptor as represented in
-// Go.
-
-Type*
-Type::make_type_descriptor_ptr_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    ret = Type::make_pointer_type(Type::make_type_descriptor_type());
-  return ret;
-}
-
-// Return the names of runtime functions which compute a hash code for
-// this type and which compare whether two values of this type are
-// equal.
-
-void
-Type::type_functions(const char** hash_fn, const char** equal_fn) const
-{
-  switch (this->base()->classification())
-    {
-    case Type::TYPE_ERROR:
-    case Type::TYPE_VOID:
-    case Type::TYPE_NIL:
-      // These types can not be hashed or compared.
-      *hash_fn = "__go_type_hash_error";
-      *equal_fn = "__go_type_equal_error";
-      break;
-
-    case Type::TYPE_BOOLEAN:
-    case Type::TYPE_INTEGER:
-    case Type::TYPE_FLOAT:
-    case Type::TYPE_COMPLEX:
-    case Type::TYPE_POINTER:
-    case Type::TYPE_FUNCTION:
-    case Type::TYPE_MAP:
-    case Type::TYPE_CHANNEL:
-      *hash_fn = "__go_type_hash_identity";
-      *equal_fn = "__go_type_equal_identity";
-      break;
-
-    case Type::TYPE_STRING:
-      *hash_fn = "__go_type_hash_string";
-      *equal_fn = "__go_type_equal_string";
-      break;
-
-    case Type::TYPE_STRUCT:
-    case Type::TYPE_ARRAY:
-      // These types can not be hashed or compared.
-      *hash_fn = "__go_type_hash_error";
-      *equal_fn = "__go_type_equal_error";
-      break;
-
-    case Type::TYPE_INTERFACE:
-      if (this->interface_type()->is_empty())
-       {
-         *hash_fn = "__go_type_hash_empty_interface";
-         *equal_fn = "__go_type_equal_empty_interface";
-       }
-      else
-       {
-         *hash_fn = "__go_type_hash_interface";
-         *equal_fn = "__go_type_equal_interface";
-       }
-      break;
-
-    case Type::TYPE_NAMED:
-    case Type::TYPE_FORWARD:
-      go_unreachable();
-
-    default:
-      go_unreachable();
-    }
-}
-
-// Return a composite literal for the type descriptor for a plain type
-// of kind RUNTIME_TYPE_KIND named NAME.
-
-Expression*
-Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
-                                 Named_type* name, const Methods* methods,
-                                 bool only_value_methods)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* td_type = Type::make_type_descriptor_type();
-  const Struct_field_list* fields = td_type->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(9);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  go_assert(p->field_name() == "Kind");
-  mpz_t iv;
-  mpz_init_set_ui(iv, runtime_type_kind);
-  vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
-
-  ++p;
-  go_assert(p->field_name() == "align");
-  Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
-  vals->push_back(Expression::make_type_info(this, type_info));
-
-  ++p;
-  go_assert(p->field_name() == "fieldAlign");
-  type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
-  vals->push_back(Expression::make_type_info(this, type_info));
-
-  ++p;
-  go_assert(p->field_name() == "size");
-  type_info = Expression::TYPE_INFO_SIZE;
-  vals->push_back(Expression::make_type_info(this, type_info));
-
-  ++p;
-  go_assert(p->field_name() == "hash");
-  mpz_set_ui(iv, this->hash_for_method(gogo));
-  vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
-
-  const char* hash_fn;
-  const char* equal_fn;
-  this->type_functions(&hash_fn, &equal_fn);
-
-  ++p;
-  go_assert(p->field_name() == "hashfn");
-  Function_type* fntype = p->type()->function_type();
-  Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
-                                                            fntype,
-                                                            bloc);
-  no->func_declaration_value()->set_asm_name(hash_fn);
-  vals->push_back(Expression::make_func_reference(no, NULL, bloc));
-
-  ++p;
-  go_assert(p->field_name() == "equalfn");
-  fntype = p->type()->function_type();
-  no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
-  no->func_declaration_value()->set_asm_name(equal_fn);
-  vals->push_back(Expression::make_func_reference(no, NULL, bloc));
-
-  ++p;
-  go_assert(p->field_name() == "string");
-  Expression* s = Expression::make_string((name != NULL
-                                          ? name->reflection(gogo)
-                                          : this->reflection(gogo)),
-                                         bloc);
-  vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-
-  ++p;
-  go_assert(p->field_name() == "uncommonType");
-  if (name == NULL && methods == NULL)
-    vals->push_back(Expression::make_nil(bloc));
-  else
-    {
-      if (methods == NULL)
-       methods = name->methods();
-      vals->push_back(this->uncommon_type_constructor(gogo,
-                                                     p->type()->deref(),
-                                                     name, methods,
-                                                     only_value_methods));
-    }
-
-  ++p;
-  go_assert(p->field_name() == "ptrToThis");
-  if (name == NULL)
-    vals->push_back(Expression::make_nil(bloc));
-  else
-    {
-      Type* pt = Type::make_pointer_type(name);
-      vals->push_back(Expression::make_type_descriptor(pt, bloc));
-    }
-
-  ++p;
-  go_assert(p == fields->end());
-
-  mpz_clear(iv);
-
-  return Expression::make_struct_composite_literal(td_type, vals, bloc);
-}
-
-// Return a composite literal for the uncommon type information for
-// this type.  UNCOMMON_STRUCT_TYPE is the type of the uncommon type
-// struct.  If name is not NULL, it is the name of the type.  If
-// METHODS is not NULL, it is the list of methods.  ONLY_VALUE_METHODS
-// is true if only value methods should be included.  At least one of
-// NAME and METHODS must not be NULL.
-
-Expression*
-Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
-                               Named_type* name, const Methods* methods,
-                               bool only_value_methods) const
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  const Struct_field_list* fields = uncommon_type->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  go_assert(p->field_name() == "name");
-
-  ++p;
-  go_assert(p->field_name() == "pkgPath");
-
-  if (name == NULL)
-    {
-      vals->push_back(Expression::make_nil(bloc));
-      vals->push_back(Expression::make_nil(bloc));
-    }
-  else
-    {
-      Named_object* no = name->named_object();
-      std::string n = Gogo::unpack_hidden_name(no->name());
-      Expression* s = Expression::make_string(n, bloc);
-      vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-
-      if (name->is_builtin())
-       vals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         const Package* package = no->package();
-         const std::string& unique_prefix(package == NULL
-                                          ? gogo->unique_prefix()
-                                          : package->unique_prefix());
-         const std::string& package_name(package == NULL
-                                         ? gogo->package_name()
-                                         : package->name());
-         n.assign(unique_prefix);
-         n.append(1, '.');
-         n.append(package_name);
-         if (name->in_function() != NULL)
-           {
-             n.append(1, '.');
-             n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
-           }
-         s = Expression::make_string(n, bloc);
-         vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-    }
-
-  ++p;
-  go_assert(p->field_name() == "methods");
-  vals->push_back(this->methods_constructor(gogo, p->type(), methods,
-                                           only_value_methods));
-
-  ++p;
-  go_assert(p == fields->end());
-
-  Expression* r = Expression::make_struct_composite_literal(uncommon_type,
-                                                           vals, bloc);
-  return Expression::make_unary(OPERATOR_AND, r, bloc);
-}
-
-// Sort methods by name.
-
-class Sort_methods
-{
- public:
-  bool
-  operator()(const std::pair<std::string, const Method*>& m1,
-            const std::pair<std::string, const Method*>& m2) const
-  { return m1.first < m2.first; }
-};
-
-// Return a composite literal for the type method table for this type.
-// METHODS_TYPE is the type of the table, and is a slice type.
-// METHODS is the list of methods.  If ONLY_VALUE_METHODS is true,
-// then only value methods are used.
-
-Expression*
-Type::methods_constructor(Gogo* gogo, Type* methods_type,
-                         const Methods* methods,
-                         bool only_value_methods) const
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  std::vector<std::pair<std::string, const Method*> > smethods;
-  if (methods != NULL)
-    {
-      smethods.reserve(methods->count());
-      for (Methods::const_iterator p = methods->begin();
-          p != methods->end();
-          ++p)
-       {
-         if (p->second->is_ambiguous())
-           continue;
-         if (only_value_methods && !p->second->is_value_method())
-           continue;
-         smethods.push_back(std::make_pair(p->first, p->second));
-       }
-    }
-
-  if (smethods.empty())
-    return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
-
-  std::sort(smethods.begin(), smethods.end(), Sort_methods());
-
-  Type* method_type = methods_type->array_type()->element_type();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(smethods.size());
-  for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
-        = smethods.begin();
-       p != smethods.end();
-       ++p)
-    vals->push_back(this->method_constructor(gogo, method_type, p->first,
-                                            p->second));
-
-  return Expression::make_slice_composite_literal(methods_type, vals, bloc);
-}
-
-// Return a composite literal for a single method.  METHOD_TYPE is the
-// type of the entry.  METHOD_NAME is the name of the method and M is
-// the method information.
-
-Expression*
-Type::method_constructor(Gogo*, Type* method_type,
-                        const std::string& method_name,
-                        const Method* m) const
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  const Struct_field_list* fields = method_type->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(5);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  go_assert(p->field_name() == "name");
-  const std::string n = Gogo::unpack_hidden_name(method_name);
-  Expression* s = Expression::make_string(n, bloc);
-  vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-
-  ++p;
-  go_assert(p->field_name() == "pkgPath");
-  if (!Gogo::is_hidden_name(method_name))
-    vals->push_back(Expression::make_nil(bloc));
-  else
-    {
-      s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
-      vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-    }
-
-  Named_object* no = (m->needs_stub_method()
-                     ? m->stub_object()
-                     : m->named_object());
-
-  Function_type* mtype;
-  if (no->is_function())
-    mtype = no->func_value()->type();
-  else
-    mtype = no->func_declaration_value()->type();
-  go_assert(mtype->is_method());
-  Type* nonmethod_type = mtype->copy_without_receiver();
-
-  ++p;
-  go_assert(p->field_name() == "mtyp");
-  vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
-
-  ++p;
-  go_assert(p->field_name() == "typ");
-  vals->push_back(Expression::make_type_descriptor(mtype, bloc));
-
-  ++p;
-  go_assert(p->field_name() == "tfn");
-  vals->push_back(Expression::make_func_reference(no, NULL, bloc));
-
-  ++p;
-  go_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(method_type, vals, bloc);
-}
-
-// Return a composite literal for the type descriptor of a plain type.
-// RUNTIME_TYPE_KIND is the value of the kind field.  If NAME is not
-// NULL, it is the name to use as well as the list of methods.
-
-Expression*
-Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
-                           Named_type* name)
-{
-  return this->type_descriptor_constructor(gogo, runtime_type_kind,
-                                          name, NULL, true);
-}
-
-// Return the type reflection string for this type.
-
-std::string
-Type::reflection(Gogo* gogo) const
-{
-  std::string ret;
-
-  // The do_reflection virtual function should set RET to the
-  // reflection string.
-  this->do_reflection(gogo, &ret);
-
-  return ret;
-}
-
-// Return a mangled name for the type.
-
-std::string
-Type::mangled_name(Gogo* gogo) const
-{
-  std::string ret;
-
-  // The do_mangled_name virtual function should set RET to the
-  // mangled name.  For a composite type it should append a code for
-  // the composition and then call do_mangled_name on the components.
-  this->do_mangled_name(gogo, &ret);
-
-  return ret;
-}
-
-// Default function to export a type.
-
-void
-Type::do_export(Export*) const
-{
-  go_unreachable();
-}
-
-// Import a type.
-
-Type*
-Type::import_type(Import* imp)
-{
-  if (imp->match_c_string("("))
-    return Function_type::do_import(imp);
-  else if (imp->match_c_string("*"))
-    return Pointer_type::do_import(imp);
-  else if (imp->match_c_string("struct "))
-    return Struct_type::do_import(imp);
-  else if (imp->match_c_string("["))
-    return Array_type::do_import(imp);
-  else if (imp->match_c_string("map "))
-    return Map_type::do_import(imp);
-  else if (imp->match_c_string("chan "))
-    return Channel_type::do_import(imp);
-  else if (imp->match_c_string("interface"))
-    return Interface_type::do_import(imp);
-  else
-    {
-      error_at(imp->location(), "import error: expected type");
-      return Type::make_error_type();
-    }
-}
-
-// A type used to indicate a parsing error.  This exists to simplify
-// later error detection.
-
-class Error_type : public Type
-{
- public:
-  Error_type()
-    : Type(TYPE_ERROR)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return error_mark_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  { return error_mark_node; }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { return Expression::make_error(BUILTINS_LOCATION); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { go_assert(saw_errors()); }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('E'); }
-};
-
-Type*
-Type::make_error_type()
-{
-  static Error_type singleton_error_type;
-  return &singleton_error_type;
-}
-
-// The void type.
-
-class Void_type : public Type
-{
- public:
-  Void_type()
-    : Type(TYPE_VOID)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return void_type_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  { go_unreachable(); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { go_unreachable(); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('v'); }
-};
-
-Type*
-Type::make_void_type()
-{
-  static Void_type singleton_void_type;
-  return &singleton_void_type;
-}
-
-// The boolean type.
-
-class Boolean_type : public Type
-{
- public:
-  Boolean_type()
-    : Type(TYPE_BOOLEAN)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return boolean_type_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-  { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type* name);
-
-  // We should not be asked for the reflection string of a basic type.
-  void
-  do_reflection(Gogo*, std::string* ret) const
-  { ret->append("bool"); }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('b'); }
-};
-
-// Make the type descriptor.
-
-Expression*
-Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (name != NULL)
-    return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
-  else
-    {
-      Named_object* no = gogo->lookup_global("bool");
-      go_assert(no != NULL);
-      return Type::type_descriptor(gogo, no->type_value());
-    }
-}
-
-Type*
-Type::make_boolean_type()
-{
-  static Boolean_type boolean_type;
-  return &boolean_type;
-}
-
-// The named type "bool".
-
-static Named_type* named_bool_type;
-
-// Get the named type "bool".
-
-Named_type*
-Type::lookup_bool_type()
-{
-  return named_bool_type;
-}
-
-// Make the named type "bool".
-
-Named_type*
-Type::make_named_bool_type()
-{
-  Type* bool_type = Type::make_boolean_type();
-  Named_object* named_object = Named_object::make_type("bool", NULL,
-                                                      bool_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  named_bool_type = named_type;
-  return named_type;
-}
-
-// Class Integer_type.
-
-Integer_type::Named_integer_types Integer_type::named_integer_types;
-
-// Create a new integer type.  Non-abstract integer types always have
-// names.
-
-Named_type*
-Integer_type::create_integer_type(const char* name, bool is_unsigned,
-                                 int bits, int runtime_type_kind)
-{
-  Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
-                                               runtime_type_kind);
-  std::string sname(name);
-  Named_object* named_object = Named_object::make_type(sname, NULL,
-                                                      integer_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  std::pair<Named_integer_types::iterator, bool> ins =
-    Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
-  go_assert(ins.second);
-  return named_type;
-}
-
-// Look up an existing integer type.
-
-Named_type*
-Integer_type::lookup_integer_type(const char* name)
-{
-  Named_integer_types::const_iterator p =
-    Integer_type::named_integer_types.find(name);
-  go_assert(p != Integer_type::named_integer_types.end());
-  return p->second;
-}
-
-// Create a new abstract integer type.
-
-Integer_type*
-Integer_type::create_abstract_integer_type()
-{
-  static Integer_type* abstract_type;
-  if (abstract_type == NULL)
-    abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
-                                    RUNTIME_TYPE_KIND_INT);
-  return abstract_type;
-}
-
-// Integer type compatibility.
-
-bool
-Integer_type::is_identical(const Integer_type* t) const
-{
-  if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
-    return false;
-  return this->is_abstract_ == t->is_abstract_;
-}
-
-// Hash code.
-
-unsigned int
-Integer_type::do_hash_for_method(Gogo*) const
-{
-  return ((this->bits_ << 4)
-         + ((this->is_unsigned_ ? 1 : 0) << 8)
-         + ((this->is_abstract_ ? 1 : 0) << 9));
-}
-
-// Get the tree for an Integer_type.
-
-tree
-Integer_type::do_get_tree(Gogo*)
-{
-  if (this->is_abstract_)
-    {
-      go_assert(saw_errors());
-      return error_mark_node;
-    }
-
-  if (this->is_unsigned_)
-    {
-      if (this->bits_ == INT_TYPE_SIZE)
-       return unsigned_type_node;
-      else if (this->bits_ == CHAR_TYPE_SIZE)
-       return unsigned_char_type_node;
-      else if (this->bits_ == SHORT_TYPE_SIZE)
-       return short_unsigned_type_node;
-      else if (this->bits_ == LONG_TYPE_SIZE)
-       return long_unsigned_type_node;
-      else if (this->bits_ == LONG_LONG_TYPE_SIZE)
-       return long_long_unsigned_type_node;
-      else
-       return make_unsigned_type(this->bits_);
-    }
-  else
-    {
-      if (this->bits_ == INT_TYPE_SIZE)
-       return integer_type_node;
-      else if (this->bits_ == CHAR_TYPE_SIZE)
-       return signed_char_type_node;
-      else if (this->bits_ == SHORT_TYPE_SIZE)
-       return short_integer_type_node;
-      else if (this->bits_ == LONG_TYPE_SIZE)
-       return long_integer_type_node;
-      else if (this->bits_ == LONG_LONG_TYPE_SIZE)
-       return long_long_integer_type_node;
-      else
-       return make_signed_type(this->bits_);
-    }
-}
-
-tree
-Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  return is_clear ? NULL : build_int_cst(type_tree, 0);
-}
-
-// The type descriptor for an integer type.  Integer types are always
-// named.
-
-Expression*
-Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  go_assert(name != NULL);
-  return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-Integer_type::do_reflection(Gogo*, std::string*) const
-{
-  go_assert(saw_errors());
-}
-
-// Mangled name.
-
-void
-Integer_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  char buf[100];
-  snprintf(buf, sizeof buf, "i%s%s%de",
-          this->is_abstract_ ? "a" : "",
-          this->is_unsigned_ ? "u" : "",
-          this->bits_);
-  ret->append(buf);
-}
-
-// Make an integer type.
-
-Named_type*
-Type::make_integer_type(const char* name, bool is_unsigned, int bits,
-                       int runtime_type_kind)
-{
-  return Integer_type::create_integer_type(name, is_unsigned, bits,
-                                          runtime_type_kind);
-}
-
-// Make an abstract integer type.
-
-Integer_type*
-Type::make_abstract_integer_type()
-{
-  return Integer_type::create_abstract_integer_type();
-}
-
-// Look up an integer type.
-
-Named_type*
-Type::lookup_integer_type(const char* name)
-{
-  return Integer_type::lookup_integer_type(name);
-}
-
-// Class Float_type.
-
-Float_type::Named_float_types Float_type::named_float_types;
-
-// Create a new float type.  Non-abstract float types always have
-// names.
-
-Named_type*
-Float_type::create_float_type(const char* name, int bits,
-                             int runtime_type_kind)
-{
-  Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
-  std::string sname(name);
-  Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  std::pair<Named_float_types::iterator, bool> ins =
-    Float_type::named_float_types.insert(std::make_pair(sname, named_type));
-  go_assert(ins.second);
-  return named_type;
-}
-
-// Look up an existing float type.
-
-Named_type*
-Float_type::lookup_float_type(const char* name)
-{
-  Named_float_types::const_iterator p =
-    Float_type::named_float_types.find(name);
-  go_assert(p != Float_type::named_float_types.end());
-  return p->second;
-}
-
-// Create a new abstract float type.
-
-Float_type*
-Float_type::create_abstract_float_type()
-{
-  static Float_type* abstract_type;
-  if (abstract_type == NULL)
-    abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64);
-  return abstract_type;
-}
-
-// Whether this type is identical with T.
-
-bool
-Float_type::is_identical(const Float_type* t) const
-{
-  if (this->bits_ != t->bits_)
-    return false;
-  return this->is_abstract_ == t->is_abstract_;
-}
-
-// Hash code.
-
-unsigned int
-Float_type::do_hash_for_method(Gogo*) const
-{
-  return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
-}
-
-// Get a tree without using a Gogo*.
-
-tree
-Float_type::type_tree() const
-{
-  if (this->bits_ == FLOAT_TYPE_SIZE)
-    return float_type_node;
-  else if (this->bits_ == DOUBLE_TYPE_SIZE)
-    return double_type_node;
-  else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
-    return long_double_type_node;
-  else
-    {
-      tree ret = make_node(REAL_TYPE);
-      TYPE_PRECISION(ret) = this->bits_;
-      layout_type(ret);
-      return ret;
-    }
-}
-
-// Get a tree.
-
-tree
-Float_type::do_get_tree(Gogo*)
-{
-  return this->type_tree();
-}
-
-tree
-Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  REAL_VALUE_TYPE r;
-  real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
-  return build_real(type_tree, r);
-}
-
-// The type descriptor for a float type.  Float types are always named.
-
-Expression*
-Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  go_assert(name != NULL);
-  return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-Float_type::do_reflection(Gogo*, std::string*) const
-{
-  go_assert(saw_errors());
-}
-
-// Mangled name.
-
-void
-Float_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  char buf[100];
-  snprintf(buf, sizeof buf, "f%s%de",
-          this->is_abstract_ ? "a" : "",
-          this->bits_);
-  ret->append(buf);
-}
-
-// Make a floating point type.
-
-Named_type*
-Type::make_float_type(const char* name, int bits, int runtime_type_kind)
-{
-  return Float_type::create_float_type(name, bits, runtime_type_kind);
-}
-
-// Make an abstract float type.
-
-Float_type*
-Type::make_abstract_float_type()
-{
-  return Float_type::create_abstract_float_type();
-}
-
-// Look up a float type.
-
-Named_type*
-Type::lookup_float_type(const char* name)
-{
-  return Float_type::lookup_float_type(name);
-}
-
-// Class Complex_type.
-
-Complex_type::Named_complex_types Complex_type::named_complex_types;
-
-// Create a new complex type.  Non-abstract complex types always have
-// names.
-
-Named_type*
-Complex_type::create_complex_type(const char* name, int bits,
-                                 int runtime_type_kind)
-{
-  Complex_type* complex_type = new Complex_type(false, bits,
-                                               runtime_type_kind);
-  std::string sname(name);
-  Named_object* named_object = Named_object::make_type(sname, NULL,
-                                                      complex_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  std::pair<Named_complex_types::iterator, bool> ins =
-    Complex_type::named_complex_types.insert(std::make_pair(sname,
-                                                           named_type));
-  go_assert(ins.second);
-  return named_type;
-}
-
-// Look up an existing complex type.
-
-Named_type*
-Complex_type::lookup_complex_type(const char* name)
-{
-  Named_complex_types::const_iterator p =
-    Complex_type::named_complex_types.find(name);
-  go_assert(p != Complex_type::named_complex_types.end());
-  return p->second;
-}
-
-// Create a new abstract complex type.
-
-Complex_type*
-Complex_type::create_abstract_complex_type()
-{
-  static Complex_type* abstract_type;
-  if (abstract_type == NULL)
-    abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128);
-  return abstract_type;
-}
-
-// Whether this type is identical with T.
-
-bool
-Complex_type::is_identical(const Complex_type *t) const
-{
-  if (this->bits_ != t->bits_)
-    return false;
-  return this->is_abstract_ == t->is_abstract_;
-}
-
-// Hash code.
-
-unsigned int
-Complex_type::do_hash_for_method(Gogo*) const
-{
-  return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
-}
-
-// Get a tree without using a Gogo*.
-
-tree
-Complex_type::type_tree() const
-{
-  if (this->bits_ == FLOAT_TYPE_SIZE * 2)
-    return complex_float_type_node;
-  else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
-    return complex_double_type_node;
-  else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
-    return complex_long_double_type_node;
-  else
-    {
-      tree ret = make_node(REAL_TYPE);
-      TYPE_PRECISION(ret) = this->bits_ / 2;
-      layout_type(ret);
-      return build_complex_type(ret);
-    }
-}
-
-// Get a tree.
-
-tree
-Complex_type::do_get_tree(Gogo*)
-{
-  return this->type_tree();
-}
-
-// Zero initializer.
-
-tree
-Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  REAL_VALUE_TYPE r;
-  real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
-  return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
-                      build_real(TREE_TYPE(type_tree), r));
-}
-
-// The type descriptor for a complex type.  Complex types are always
-// named.
-
-Expression*
-Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  go_assert(name != NULL);
-  return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-Complex_type::do_reflection(Gogo*, std::string*) const
-{
-  go_assert(saw_errors());
-}
-
-// Mangled name.
-
-void
-Complex_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  char buf[100];
-  snprintf(buf, sizeof buf, "c%s%de",
-          this->is_abstract_ ? "a" : "",
-          this->bits_);
-  ret->append(buf);
-}
-
-// Make a complex type.
-
-Named_type*
-Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
-{
-  return Complex_type::create_complex_type(name, bits, runtime_type_kind);
-}
-
-// Make an abstract complex type.
-
-Complex_type*
-Type::make_abstract_complex_type()
-{
-  return Complex_type::create_abstract_complex_type();
-}
-
-// Look up a complex type.
-
-Named_type*
-Type::lookup_complex_type(const char* name)
-{
-  return Complex_type::lookup_complex_type(name);
-}
-
-// Class String_type.
-
-// Return the tree for String_type.  A string is a struct with two
-// fields: a pointer to the characters and a length.
-
-tree
-String_type::do_get_tree(Gogo*)
-{
-  static tree struct_type;
-  return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
-                             "__data",
-                             build_pointer_type(unsigned_char_type_node),
-                             "__length",
-                             integer_type_node);
-}
-
-// Return a tree for the length of STRING.
-
-tree
-String_type::length_tree(Gogo*, tree string)
-{
-  tree string_type = TREE_TYPE(string);
-  go_assert(TREE_CODE(string_type) == RECORD_TYPE);
-  tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
-                   "__length") == 0);
-  return fold_build3(COMPONENT_REF, integer_type_node, string,
-                    length_field, NULL_TREE);
-}
-
-// Return a tree for a pointer to the bytes of STRING.
-
-tree
-String_type::bytes_tree(Gogo*, tree string)
-{
-  tree string_type = TREE_TYPE(string);
-  go_assert(TREE_CODE(string_type) == RECORD_TYPE);
-  tree bytes_field = TYPE_FIELDS(string_type);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
-                   "__data") == 0);
-  return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
-                    bytes_field, NULL_TREE);
-}
-
-// We initialize a string to { NULL, 0 }.
-
-tree
-String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL_TREE;
-
-  go_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  for (tree field = TYPE_FIELDS(type_tree);
-       field != NULL_TREE;
-       field = DECL_CHAIN(field))
-    {
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
-    }
-
-  tree ret = build_constructor(type_tree, init);
-  TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// The type descriptor for the string type.
-
-Expression*
-String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (name != NULL)
-    return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
-  else
-    {
-      Named_object* no = gogo->lookup_global("string");
-      go_assert(no != NULL);
-      return Type::type_descriptor(gogo, no->type_value());
-    }
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-String_type::do_reflection(Gogo*, std::string* ret) const
-{
-  ret->append("string");
-}
-
-// Mangled name of a string type.
-
-void
-String_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  ret->push_back('z');
-}
-
-// Make a string type.
-
-Type*
-Type::make_string_type()
-{
-  static String_type string_type;
-  return &string_type;
-}
-
-// The named type "string".
-
-static Named_type* named_string_type;
-
-// Get the named type "string".
-
-Named_type*
-Type::lookup_string_type()
-{
-  return named_string_type;
-}
-
-// Make the named type string.
-
-Named_type*
-Type::make_named_string_type()
-{
-  Type* string_type = Type::make_string_type();
-  Named_object* named_object = Named_object::make_type("string", NULL,
-                                                      string_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  named_string_type = named_type;
-  return named_type;
-}
-
-// The sink type.  This is the type of the blank identifier _.  Any
-// type may be assigned to it.
-
-class Sink_type : public Type
-{
- public:
-  Sink_type()
-    : Type(TYPE_SINK)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { go_unreachable(); }
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  { go_unreachable(); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { go_unreachable(); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { go_unreachable(); }
-
-  void
-  do_mangled_name(Gogo*, std::string*) const
-  { go_unreachable(); }
-};
-
-// Make the sink type.
-
-Type*
-Type::make_sink_type()
-{
-  static Sink_type sink_type;
-  return &sink_type;
-}
-
-// Class Function_type.
-
-// Traversal.
-
-int
-Function_type::do_traverse(Traverse* traverse)
-{
-  if (this->receiver_ != NULL
-      && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->parameters_ != NULL
-      && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->results_ != NULL
-      && this->results_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Returns whether T is a valid redeclaration of this type.  If this
-// returns false, and REASON is not NULL, *REASON may be set to a
-// brief explanation of why it returned false.
-
-bool
-Function_type::is_valid_redeclaration(const Function_type* t,
-                                     std::string* reason) const
-{
-  if (!this->is_identical(t, false, true, reason))
-    return false;
-
-  // A redeclaration of a function is required to use the same names
-  // for the receiver and parameters.
-  if (this->receiver() != NULL
-      && this->receiver()->name() != t->receiver()->name()
-      && this->receiver()->name() != Import::import_marker
-      && t->receiver()->name() != Import::import_marker)
-    {
-      if (reason != NULL)
-       *reason = "receiver name changed";
-      return false;
-    }
-
-  const Typed_identifier_list* parms1 = this->parameters();
-  const Typed_identifier_list* parms2 = t->parameters();
-  if (parms1 != NULL)
-    {
-      Typed_identifier_list::const_iterator p1 = parms1->begin();
-      for (Typed_identifier_list::const_iterator p2 = parms2->begin();
-          p2 != parms2->end();
-          ++p2, ++p1)
-       {
-         if (p1->name() != p2->name()
-             && p1->name() != Import::import_marker
-             && p2->name() != Import::import_marker)
-           {
-             if (reason != NULL)
-               *reason = "parameter name changed";
-             return false;
-           }
-
-         // This is called at parse time, so we may have unknown
-         // types.
-         Type* t1 = p1->type()->forwarded();
-         Type* t2 = p2->type()->forwarded();
-         if (t1 != t2
-             && t1->forward_declaration_type() != NULL
-             && (t2->forward_declaration_type() == NULL
-                 || (t1->forward_declaration_type()->named_object()
-                     != t2->forward_declaration_type()->named_object())))
-           return false;
-       }
-    }
-
-  const Typed_identifier_list* results1 = this->results();
-  const Typed_identifier_list* results2 = t->results();
-  if (results1 != NULL)
-    {
-      Typed_identifier_list::const_iterator res1 = results1->begin();
-      for (Typed_identifier_list::const_iterator res2 = results2->begin();
-          res2 != results2->end();
-          ++res2, ++res1)
-       {
-         if (res1->name() != res2->name()
-             && res1->name() != Import::import_marker
-             && res2->name() != Import::import_marker)
-           {
-             if (reason != NULL)
-               *reason = "result name changed";
-             return false;
-           }
-
-         // This is called at parse time, so we may have unknown
-         // types.
-         Type* t1 = res1->type()->forwarded();
-         Type* t2 = res2->type()->forwarded();
-         if (t1 != t2
-             && t1->forward_declaration_type() != NULL
-             && (t2->forward_declaration_type() == NULL
-                 || (t1->forward_declaration_type()->named_object()
-                     != t2->forward_declaration_type()->named_object())))
-           return false;
-       }
-    }
-
-  return true;
-}
-
-// Check whether T is the same as this type.
-
-bool
-Function_type::is_identical(const Function_type* t, bool ignore_receiver,
-                           bool errors_are_identical,
-                           std::string* reason) const
-{
-  if (!ignore_receiver)
-    {
-      const Typed_identifier* r1 = this->receiver();
-      const Typed_identifier* r2 = t->receiver();
-      if ((r1 != NULL) != (r2 != NULL))
-       {
-         if (reason != NULL)
-           *reason = _("different receiver types");
-         return false;
-       }
-      if (r1 != NULL)
-       {
-         if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical,
-                                  reason))
-           {
-             if (reason != NULL && !reason->empty())
-               *reason = "receiver: " + *reason;
-             return false;
-           }
-       }
-    }
-
-  const Typed_identifier_list* parms1 = this->parameters();
-  const Typed_identifier_list* parms2 = t->parameters();
-  if ((parms1 != NULL) != (parms2 != NULL))
-    {
-      if (reason != NULL)
-       *reason = _("different number of parameters");
-      return false;
-    }
-  if (parms1 != NULL)
-    {
-      Typed_identifier_list::const_iterator p1 = parms1->begin();
-      for (Typed_identifier_list::const_iterator p2 = parms2->begin();
-          p2 != parms2->end();
-          ++p2, ++p1)
-       {
-         if (p1 == parms1->end())
-           {
-             if (reason != NULL)
-               *reason = _("different number of parameters");
-             return false;
-           }
-
-         if (!Type::are_identical(p1->type(), p2->type(),
-                                  errors_are_identical, NULL))
-           {
-             if (reason != NULL)
-               *reason = _("different parameter types");
-             return false;
-           }
-       }
-      if (p1 != parms1->end())
-       {
-         if (reason != NULL)
-           *reason = _("different number of parameters");
-       return false;
-       }
-    }
-
-  if (this->is_varargs() != t->is_varargs())
-    {
-      if (reason != NULL)
-       *reason = _("different varargs");
-      return false;
-    }
-
-  const Typed_identifier_list* results1 = this->results();
-  const Typed_identifier_list* results2 = t->results();
-  if ((results1 != NULL) != (results2 != NULL))
-    {
-      if (reason != NULL)
-       *reason = _("different number of results");
-      return false;
-    }
-  if (results1 != NULL)
-    {
-      Typed_identifier_list::const_iterator res1 = results1->begin();
-      for (Typed_identifier_list::const_iterator res2 = results2->begin();
-          res2 != results2->end();
-          ++res2, ++res1)
-       {
-         if (res1 == results1->end())
-           {
-             if (reason != NULL)
-               *reason = _("different number of results");
-             return false;
-           }
-
-         if (!Type::are_identical(res1->type(), res2->type(),
-                                  errors_are_identical, NULL))
-           {
-             if (reason != NULL)
-               *reason = _("different result types");
-             return false;
-           }
-       }
-      if (res1 != results1->end())
-       {
-         if (reason != NULL)
-           *reason = _("different number of results");
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Hash code.
-
-unsigned int
-Function_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  // We ignore the receiver type for hash codes, because we need to
-  // get the same hash code for a method in an interface and a method
-  // declared for a type.  The former will not have a receiver.
-  if (this->parameters_ != NULL)
-    {
-      int shift = 1;
-      for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
-          p != this->parameters_->end();
-          ++p, ++shift)
-       ret += p->type()->hash_for_method(gogo) << shift;
-    }
-  if (this->results_ != NULL)
-    {
-      int shift = 2;
-      for (Typed_identifier_list::const_iterator p = this->results_->begin();
-          p != this->results_->end();
-          ++p, ++shift)
-       ret += p->type()->hash_for_method(gogo) << shift;
-    }
-  if (this->is_varargs_)
-    ret += 1;
-  ret <<= 4;
-  return ret;
-}
-
-// Get the tree for a function type.
-
-tree
-Function_type::do_get_tree(Gogo* gogo)
-{
-  tree args = NULL_TREE;
-  tree* pp = &args;
-
-  if (this->receiver_ != NULL)
-    {
-      Type* rtype = this->receiver_->type();
-      tree ptype = rtype->get_tree(gogo);
-      if (ptype == error_mark_node)
-       return error_mark_node;
-
-      // We always pass the address of the receiver parameter, in
-      // order to make interface calls work with unknown types.
-      if (rtype->points_to() == NULL)
-       ptype = build_pointer_type(ptype);
-
-      *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
-      pp = &TREE_CHAIN (*pp);
-    }
-
-  if (this->parameters_ != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
-          p != this->parameters_->end();
-          ++p)
-       {
-         tree ptype = p->type()->get_tree(gogo);
-         if (ptype == error_mark_node)
-           return error_mark_node;
-         *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
-         pp = &TREE_CHAIN (*pp);
-       }
-    }
-
-  // Varargs is handled entirely at the Go level.  At the tree level,
-  // functions are not varargs.
-  *pp = void_list_node;
-
-  tree result;
-  if (this->results_ == NULL)
-    result = void_type_node;
-  else if (this->results_->size() == 1)
-    result = this->results_->begin()->type()->get_tree(gogo);
-  else
-    {
-      result = make_node(RECORD_TYPE);
-      tree field_trees = NULL_TREE;
-      tree* pp = &field_trees;
-      for (Typed_identifier_list::const_iterator p = this->results_->begin();
-          p != this->results_->end();
-          ++p)
-       {
-         const std::string name = (p->name().empty()
-                                   ? "UNNAMED"
-                                   : Gogo::unpack_hidden_name(p->name()));
-         tree name_tree = get_identifier_with_length(name.data(),
-                                                     name.length());
-         tree field_type_tree = p->type()->get_tree(gogo);
-         if (field_type_tree == error_mark_node)
-           return error_mark_node;
-         tree field = build_decl(this->location_, FIELD_DECL, name_tree,
-                                 field_type_tree);
-         DECL_CONTEXT(field) = result;
-         *pp = field;
-         pp = &DECL_CHAIN(field);
-       }
-      TYPE_FIELDS(result) = field_trees;
-      layout_type(result);
-    }
-
-  if (result == error_mark_node)
-    return error_mark_node;
-
-  tree fntype = build_function_type(result, args);
-  if (fntype == error_mark_node)
-    return fntype;
-
-  return build_pointer_type(fntype);
-}
-
-// Functions are initialized to NULL.
-
-tree
-Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// The type of a function type descriptor.
-
-Type*
-Function_type::make_function_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* bool_type = Type::lookup_bool_type();
-
-      Type* slice_type = Type::make_array_type(ptdt, NULL);
-
-      Struct_type* s = Type::make_builtin_struct_type(4,
-                                                     "", tdt,
-                                                     "dotdotdot", bool_type,
-                                                     "in", slice_type,
-                                                     "out", slice_type);
-
-      ret = Type::make_builtin_named_type("FuncType", s);
-    }
-
-  return ret;
-}
-
-// The type descriptor for a function type.
-
-Expression*
-Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* ftdt = Function_type::make_function_type_descriptor_type();
-
-  const Struct_field_list* fields = ftdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(4);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  go_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_FUNC,
-                                                   name, NULL, true));
-
-  ++p;
-  go_assert(p->field_name() == "dotdotdot");
-  vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
-
-  ++p;
-  go_assert(p->field_name() == "in");
-  vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
-                                              this->parameters()));
-
-  ++p;
-  go_assert(p->field_name() == "out");
-  vals->push_back(this->type_descriptor_params(p->type(), NULL,
-                                              this->results()));
-
-  ++p;
-  go_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(ftdt, vals, bloc);
-}
-
-// Return a composite literal for the parameters or results of a type
-// descriptor.
-
-Expression*
-Function_type::type_descriptor_params(Type* params_type,
-                                     const Typed_identifier* receiver,
-                                     const Typed_identifier_list* params)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  if (receiver == NULL && params == NULL)
-    return Expression::make_slice_composite_literal(params_type, NULL, bloc);
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve((params == NULL ? 0 : params->size())
-               + (receiver != NULL ? 1 : 0));
-
-  if (receiver != NULL)
-    {
-      Type* rtype = receiver->type();
-      // The receiver is always passed as a pointer.  FIXME: Is this
-      // right?  Should that fact affect the type descriptor?
-      if (rtype->points_to() == NULL)
-       rtype = Type::make_pointer_type(rtype);
-      vals->push_back(Expression::make_type_descriptor(rtype, bloc));
-    }
-
-  if (params != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
-    }
-
-  return Expression::make_slice_composite_literal(params_type, vals, bloc);
-}
-
-// The reflection string.
-
-void
-Function_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  // FIXME: Turn this off until we straighten out the type of the
-  // struct field used in a go statement which calls a method.
-  // go_assert(this->receiver_ == NULL);
-
-  ret->append("func");
-
-  if (this->receiver_ != NULL)
-    {
-      ret->push_back('(');
-      this->append_reflection(this->receiver_->type(), gogo, ret);
-      ret->push_back(')');
-    }
-
-  ret->push_back('(');
-  const Typed_identifier_list* params = this->parameters();
-  if (params != NULL)
-    {
-      bool is_varargs = this->is_varargs_;
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       {
-         if (p != params->begin())
-           ret->append(", ");
-         if (!is_varargs || p + 1 != params->end())
-           this->append_reflection(p->type(), gogo, ret);
-         else
-           {
-             ret->append("...");
-             this->append_reflection(p->type()->array_type()->element_type(),
-                                     gogo, ret);
-           }
-       }
-    }
-  ret->push_back(')');
-
-  const Typed_identifier_list* results = this->results();
-  if (results != NULL && !results->empty())
-    {
-      if (results->size() == 1)
-       ret->push_back(' ');
-      else
-       ret->append(" (");
-      for (Typed_identifier_list::const_iterator p = results->begin();
-          p != results->end();
-          ++p)
-       {
-         if (p != results->begin())
-           ret->append(", ");
-         this->append_reflection(p->type(), gogo, ret);
-       }
-      if (results->size() > 1)
-       ret->push_back(')');
-    }
-}
-
-// Mangled name.
-
-void
-Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('F');
-
-  if (this->receiver_ != NULL)
-    {
-      ret->push_back('m');
-      this->append_mangled_name(this->receiver_->type(), gogo, ret);
-    }
-
-  const Typed_identifier_list* params = this->parameters();
-  if (params != NULL)
-    {
-      ret->push_back('p');
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       this->append_mangled_name(p->type(), gogo, ret);
-      if (this->is_varargs_)
-       ret->push_back('V');
-      ret->push_back('e');
-    }
-
-  const Typed_identifier_list* results = this->results();
-  if (results != NULL)
-    {
-      ret->push_back('r');
-      for (Typed_identifier_list::const_iterator p = results->begin();
-          p != results->end();
-          ++p)
-       this->append_mangled_name(p->type(), gogo, ret);
-      ret->push_back('e');
-    }
-
-  ret->push_back('e');
-}
-
-// Export a function type.
-
-void
-Function_type::do_export(Export* exp) const
-{
-  // We don't write out the receiver.  The only function types which
-  // should have a receiver are the ones associated with explicitly
-  // defined methods.  For those the receiver type is written out by
-  // Function::export_func.
-
-  exp->write_c_string("(");
-  bool first = true;
-  if (this->parameters_ != NULL)
-    {
-      bool is_varargs = this->is_varargs_;
-      for (Typed_identifier_list::const_iterator p =
-            this->parameters_->begin();
-          p != this->parameters_->end();
-          ++p)
-       {
-         if (first)
-           first = false;
-         else
-           exp->write_c_string(", ");
-         if (!is_varargs || p + 1 != this->parameters_->end())
-           exp->write_type(p->type());
-         else
-           {
-             exp->write_c_string("...");
-             exp->write_type(p->type()->array_type()->element_type());
-           }
-       }
-    }
-  exp->write_c_string(")");
-
-  const Typed_identifier_list* results = this->results_;
-  if (results != NULL)
-    {
-      exp->write_c_string(" ");
-      if (results->size() == 1)
-       exp->write_type(results->begin()->type());
-      else
-       {
-         first = true;
-         exp->write_c_string("(");
-         for (Typed_identifier_list::const_iterator p = results->begin();
-              p != results->end();
-              ++p)
-           {
-             if (first)
-               first = false;
-             else
-               exp->write_c_string(", ");
-             exp->write_type(p->type());
-           }
-         exp->write_c_string(")");
-       }
-    }
-}
-
-// Import a function type.
-
-Function_type*
-Function_type::do_import(Import* imp)
-{
-  imp->require_c_string("(");
-  Typed_identifier_list* parameters;
-  bool is_varargs = false;
-  if (imp->peek_char() == ')')
-    parameters = NULL;
-  else
-    {
-      parameters = new Typed_identifier_list();
-      while (true)
-       {
-         if (imp->match_c_string("..."))
-           {
-             imp->advance(3);
-             is_varargs = true;
-           }
-
-         Type* ptype = imp->read_type();
-         if (is_varargs)
-           ptype = Type::make_array_type(ptype, NULL);
-         parameters->push_back(Typed_identifier(Import::import_marker,
-                                                ptype, imp->location()));
-         if (imp->peek_char() != ',')
-           break;
-         go_assert(!is_varargs);
-         imp->require_c_string(", ");
-       }
-    }
-  imp->require_c_string(")");
-
-  Typed_identifier_list* results;
-  if (imp->peek_char() != ' ')
-    results = NULL;
-  else
-    {
-      imp->advance(1);
-      results = new Typed_identifier_list;
-      if (imp->peek_char() != '(')
-       {
-         Type* rtype = imp->read_type();
-         results->push_back(Typed_identifier(Import::import_marker, rtype,
-                                             imp->location()));
-       }
-      else
-       {
-         imp->advance(1);
-         while (true)
-           {
-             Type* rtype = imp->read_type();
-             results->push_back(Typed_identifier(Import::import_marker,
-                                                 rtype, imp->location()));
-             if (imp->peek_char() != ',')
-               break;
-             imp->require_c_string(", ");
-           }
-         imp->require_c_string(")");
-       }
-    }
-
-  Function_type* ret = Type::make_function_type(NULL, parameters, results,
-                                               imp->location());
-  if (is_varargs)
-    ret->set_is_varargs();
-  return ret;
-}
-
-// Make a copy of a function type without a receiver.
-
-Function_type*
-Function_type::copy_without_receiver() const
-{
-  go_assert(this->is_method());
-  Function_type *ret = Type::make_function_type(NULL, this->parameters_,
-                                               this->results_,
-                                               this->location_);
-  if (this->is_varargs())
-    ret->set_is_varargs();
-  if (this->is_builtin())
-    ret->set_is_builtin();
-  return ret;
-}
-
-// Make a copy of a function type with a receiver.
-
-Function_type*
-Function_type::copy_with_receiver(Type* receiver_type) const
-{
-  go_assert(!this->is_method());
-  Typed_identifier* receiver = new Typed_identifier("", receiver_type,
-                                                   this->location_);
-  return Type::make_function_type(receiver, this->parameters_,
-                                 this->results_, this->location_);
-}
-
-// Make a function type.
-
-Function_type*
-Type::make_function_type(Typed_identifier* receiver,
-                        Typed_identifier_list* parameters,
-                        Typed_identifier_list* results,
-                        source_location location)
-{
-  return new Function_type(receiver, parameters, results, location);
-}
-
-// Class Pointer_type.
-
-// Traversal.
-
-int
-Pointer_type::do_traverse(Traverse* traverse)
-{
-  return Type::traverse(this->to_type_, traverse);
-}
-
-// Hash code.
-
-unsigned int
-Pointer_type::do_hash_for_method(Gogo* gogo) const
-{
-  return this->to_type_->hash_for_method(gogo) << 4;
-}
-
-// The tree for a pointer type.
-
-tree
-Pointer_type::do_get_tree(Gogo* gogo)
-{
-  return build_pointer_type(this->to_type_->get_tree(gogo));
-}
-
-// Initialize a pointer type.
-
-tree
-Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// The type of a pointer type descriptor.
-
-Type*
-Pointer_type::make_pointer_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Struct_type* s = Type::make_builtin_struct_type(2,
-                                                     "", tdt,
-                                                     "elem", ptdt);
-
-      ret = Type::make_builtin_named_type("PtrType", s);
-    }
-
-  return ret;
-}
-
-// The type descriptor for a pointer type.
-
-Expression*
-Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (this->is_unsafe_pointer_type())
-    {
-      go_assert(name != NULL);
-      return this->plain_type_descriptor(gogo,
-                                        RUNTIME_TYPE_KIND_UNSAFE_POINTER,
-                                        name);
-    }
-  else
-    {
-      source_location bloc = BUILTINS_LOCATION;
-
-      const Methods* methods;
-      Type* deref = this->points_to();
-      if (deref->named_type() != NULL)
-       methods = deref->named_type()->methods();
-      else if (deref->struct_type() != NULL)
-       methods = deref->struct_type()->methods();
-      else
-       methods = NULL;
-
-      Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
-
-      const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
-
-      Expression_list* vals = new Expression_list();
-      vals->reserve(2);
-
-      Struct_field_list::const_iterator p = fields->begin();
-      go_assert(p->field_name() == "commonType");
-      vals->push_back(this->type_descriptor_constructor(gogo,
-                                                       RUNTIME_TYPE_KIND_PTR,
-                                                       name, methods, false));
-
-      ++p;
-      go_assert(p->field_name() == "elem");
-      vals->push_back(Expression::make_type_descriptor(deref, bloc));
-
-      return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
-    }
-}
-
-// Reflection string.
-
-void
-Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('*');
-  this->append_reflection(this->to_type_, gogo, ret);
-}
-
-// Mangled name.
-
-void
-Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('p');
-  this->append_mangled_name(this->to_type_, gogo, ret);
-}
-
-// Export.
-
-void
-Pointer_type::do_export(Export* exp) const
-{
-  exp->write_c_string("*");
-  if (this->is_unsafe_pointer_type())
-    exp->write_c_string("any");
-  else
-    exp->write_type(this->to_type_);
-}
-
-// Import.
-
-Pointer_type*
-Pointer_type::do_import(Import* imp)
-{
-  imp->require_c_string("*");
-  if (imp->match_c_string("any"))
-    {
-      imp->advance(3);
-      return Type::make_pointer_type(Type::make_void_type());
-    }
-  Type* to = imp->read_type();
-  return Type::make_pointer_type(to);
-}
-
-// Make a pointer type.
-
-Pointer_type*
-Type::make_pointer_type(Type* to_type)
-{
-  typedef Unordered_map(Type*, Pointer_type*) Hashtable;
-  static Hashtable pointer_types;
-  Hashtable::const_iterator p = pointer_types.find(to_type);
-  if (p != pointer_types.end())
-    return p->second;
-  Pointer_type* ret = new Pointer_type(to_type);
-  pointer_types[to_type] = ret;
-  return ret;
-}
-
-// The nil type.  We use a special type for nil because it is not the
-// same as any other type.  In C term nil has type void*, but there is
-// no such type in Go.
-
-class Nil_type : public Type
-{
- public:
-  Nil_type()
-    : Type(TYPE_NIL)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return ptr_type_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-  { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { go_unreachable(); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { go_unreachable(); }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('n'); }
-};
-
-// Make the nil type.
-
-Type*
-Type::make_nil_type()
-{
-  static Nil_type singleton_nil_type;
-  return &singleton_nil_type;
-}
-
-// The type of a function call which returns multiple values.  This is
-// really a struct, but we don't want to confuse a function call which
-// returns a struct with a function call which returns multiple
-// values.
-
-class Call_multiple_result_type : public Type
-{
- public:
-  Call_multiple_result_type(Call_expression* call)
-    : Type(TYPE_CALL_MULTIPLE_RESULT),
-      call_(call)
-  { }
-
- protected:
-  bool
-  do_has_pointer() const
-  {
-    go_assert(saw_errors());
-    return false;
-  }
-
-  tree
-  do_get_tree(Gogo*);
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  {
-    go_assert(saw_errors());
-    return error_mark_node;
-  }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  {
-    go_assert(saw_errors());
-    return Expression::make_error(UNKNOWN_LOCATION);
-  }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { go_assert(saw_errors()); }
-
-  void
-  do_mangled_name(Gogo*, std::string*) const
-  { go_assert(saw_errors()); }
-
- private:
-  // The expression being called.
-  Call_expression* call_;
-};
-
-// Return the tree for a call result.
-
-tree
-Call_multiple_result_type::do_get_tree(Gogo* gogo)
-{
-  Function_type* fntype = this->call_->get_function_type();
-  go_assert(fntype != NULL);
-  const Typed_identifier_list* results = fntype->results();
-  go_assert(results != NULL && results->size() > 1);
-  tree fntype_tree = fntype->get_tree(gogo);
-  if (fntype_tree == error_mark_node)
-    return error_mark_node;
-  return TREE_TYPE(fntype_tree);
-}
-
-// Make a call result type.
-
-Type*
-Type::make_call_multiple_result_type(Call_expression* call)
-{
-  return new Call_multiple_result_type(call);
-}
-
-// Class Struct_field.
-
-// Get the name of a field.
-
-const std::string&
-Struct_field::field_name() const
-{
-  const std::string& name(this->typed_identifier_.name());
-  if (!name.empty())
-    return name;
-  else
-    {
-      // This is called during parsing, before anything is lowered, so
-      // we have to be pretty careful to avoid dereferencing an
-      // unknown type name.
-      Type* t = this->typed_identifier_.type();
-      Type* dt = t;
-      if (t->classification() == Type::TYPE_POINTER)
-       {
-         // Very ugly.
-         Pointer_type* ptype = static_cast<Pointer_type*>(t);
-         dt = ptype->points_to();
-       }
-      if (dt->forward_declaration_type() != NULL)
-       return dt->forward_declaration_type()->name();
-      else if (dt->named_type() != NULL)
-       return dt->named_type()->name();
-      else if (t->is_error_type() || dt->is_error_type())
-       {
-         static const std::string error_string = "*error*";
-         return error_string;
-       }
-      else
-       {
-         // Avoid crashing in the erroneous case where T is named but
-         // DT is not.
-         go_assert(t != dt);
-         if (t->forward_declaration_type() != NULL)
-           return t->forward_declaration_type()->name();
-         else if (t->named_type() != NULL)
-           return t->named_type()->name();
-         else
-           go_unreachable();
-       }
-    }
-}
-
-// Class Struct_type.
-
-// Traversal.
-
-int
-Struct_type::do_traverse(Traverse* traverse)
-{
-  Struct_field_list* fields = this->fields_;
-  if (fields != NULL)
-    {
-      for (Struct_field_list::iterator p = fields->begin();
-          p != fields->end();
-          ++p)
-       {
-         if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Verify that the struct type is complete and valid.
-
-bool
-Struct_type::do_verify()
-{
-  Struct_field_list* fields = this->fields_;
-  if (fields == NULL)
-    return true;
-  bool ret = true;
-  for (Struct_field_list::iterator p = fields->begin();
-       p != fields->end();
-       ++p)
-    {
-      Type* t = p->type();
-      if (t->is_undefined())
-       {
-         error_at(p->location(), "struct field type is incomplete");
-         p->set_type(Type::make_error_type());
-         ret = false;
-       }
-      else if (p->is_anonymous())
-       {
-         if (t->named_type() != NULL && t->points_to() != NULL)
-           {
-             error_at(p->location(), "embedded type may not be a pointer");
-             p->set_type(Type::make_error_type());
-             return false;
-           }
-         if (t->points_to() != NULL
-             && t->points_to()->interface_type() != NULL)
-           {
-             error_at(p->location(),
-                      "embedded type may not be pointer to interface");
-             p->set_type(Type::make_error_type());
-             return false;
-           }
-       }
-    }
-  return ret;
-}
-
-// Whether this contains a pointer.
-
-bool
-Struct_type::do_has_pointer() const
-{
-  const Struct_field_list* fields = this->fields();
-  if (fields == NULL)
-    return false;
-  for (Struct_field_list::const_iterator p = fields->begin();
-       p != fields->end();
-       ++p)
-    {
-      if (p->type()->has_pointer())
-       return true;
-    }
-  return false;
-}
-
-// Whether this type is identical to T.
-
-bool
-Struct_type::is_identical(const Struct_type* t,
-                         bool errors_are_identical) const
-{
-  const Struct_field_list* fields1 = this->fields();
-  const Struct_field_list* fields2 = t->fields();
-  if (fields1 == NULL || fields2 == NULL)
-    return fields1 == fields2;
-  Struct_field_list::const_iterator pf2 = fields2->begin();
-  for (Struct_field_list::const_iterator pf1 = fields1->begin();
-       pf1 != fields1->end();
-       ++pf1, ++pf2)
-    {
-      if (pf2 == fields2->end())
-       return false;
-      if (pf1->field_name() != pf2->field_name())
-       return false;
-      if (pf1->is_anonymous() != pf2->is_anonymous()
-         || !Type::are_identical(pf1->type(), pf2->type(),
-                                 errors_are_identical, NULL))
-       return false;
-      if (!pf1->has_tag())
-       {
-         if (pf2->has_tag())
-           return false;
-       }
-      else
-       {
-         if (!pf2->has_tag())
-           return false;
-         if (pf1->tag() != pf2->tag())
-           return false;
-       }
-    }
-  if (pf2 != fields2->end())
-    return false;
-  return true;
-}
-
-// Whether this struct type has any hidden fields.
-
-bool
-Struct_type::struct_has_hidden_fields(const Named_type* within,
-                                     std::string* reason) const
-{
-  const Struct_field_list* fields = this->fields();
-  if (fields == NULL)
-    return false;
-  const Package* within_package = (within == NULL
-                                  ? NULL
-                                  : within->named_object()->package());
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      if (within_package != NULL
-         && !pf->is_anonymous()
-         && Gogo::is_hidden_name(pf->field_name()))
-       {
-         if (reason != NULL)
-           {
-             std::string within_name = within->named_object()->message_name();
-             std::string name = Gogo::message_name(pf->field_name());
-             size_t bufsize = 200 + within_name.length() + name.length();
-             char* buf = new char[bufsize];
-             snprintf(buf, bufsize,
-                      _("implicit assignment of %s%s%s hidden field %s%s%s"),
-                      open_quote, within_name.c_str(), close_quote,
-                      open_quote, name.c_str(), close_quote);
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return true;
-       }
-
-      if (pf->type()->has_hidden_fields(within, reason))
-       return true;
-    }
-
-  return false;
-}
-
-// Hash code.
-
-unsigned int
-Struct_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->fields() != NULL)
-    {
-      for (Struct_field_list::const_iterator pf = this->fields()->begin();
-          pf != this->fields()->end();
-          ++pf)
-       ret = (ret << 1) + pf->type()->hash_for_method(gogo);
-    }
-  return ret <<= 2;
-}
-
-// Find the local field NAME.
-
-const Struct_field*
-Struct_type::find_local_field(const std::string& name,
-                             unsigned int *pindex) const
-{
-  const Struct_field_list* fields = this->fields_;
-  if (fields == NULL)
-    return NULL;
-  unsigned int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (pf->field_name() == name)
-       {
-         if (pindex != NULL)
-           *pindex = i;
-         return &*pf;
-       }
-    }
-  return NULL;
-}
-
-// Return an expression for field NAME in STRUCT_EXPR, or NULL.
-
-Field_reference_expression*
-Struct_type::field_reference(Expression* struct_expr, const std::string& name,
-                            source_location location) const
-{
-  unsigned int depth;
-  return this->field_reference_depth(struct_expr, name, location, NULL,
-                                    &depth);
-}
-
-// Return an expression for a field, along with the depth at which it
-// was found.
-
-Field_reference_expression*
-Struct_type::field_reference_depth(Expression* struct_expr,
-                                  const std::string& name,
-                                  source_location location,
-                                  Saw_named_type* saw,
-                                  unsigned int* depth) const
-{
-  const Struct_field_list* fields = this->fields_;
-  if (fields == NULL)
-    return NULL;
-
-  // Look for a field with this name.
-  unsigned int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (pf->field_name() == name)
-       {
-         *depth = 0;
-         return Expression::make_field_reference(struct_expr, i, location);
-       }
-    }
-
-  // Look for an anonymous field which contains a field with this
-  // name.
-  unsigned int found_depth = 0;
-  Field_reference_expression* ret = NULL;
-  i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (!pf->is_anonymous())
-       continue;
-
-      Struct_type* st = pf->type()->deref()->struct_type();
-      if (st == NULL)
-       continue;
-
-      Saw_named_type* hold_saw = saw;
-      Saw_named_type saw_here;
-      Named_type* nt = pf->type()->named_type();
-      if (nt == NULL)
-       nt = pf->type()->deref()->named_type();
-      if (nt != NULL)
-       {
-         Saw_named_type* q;
-         for (q = saw; q != NULL; q = q->next)
-           {
-             if (q->nt == nt)
-               {
-                 // If this is an error, it will be reported
-                 // elsewhere.
-                 break;
-               }
-           }
-         if (q != NULL)
-           continue;
-         saw_here.next = saw;
-         saw_here.nt = nt;
-         saw = &saw_here;
-       }
-
-      // Look for a reference using a NULL struct expression.  If we
-      // find one, fill in the struct expression with a reference to
-      // this field.
-      unsigned int subdepth;
-      Field_reference_expression* sub = st->field_reference_depth(NULL, name,
-                                                                 location,
-                                                                 saw,
-                                                                 &subdepth);
-
-      saw = hold_saw;
-
-      if (sub == NULL)
-       continue;
-
-      if (ret == NULL || subdepth < found_depth)
-       {
-         if (ret != NULL)
-           delete ret;
-         ret = sub;
-         found_depth = subdepth;
-         Expression* here = Expression::make_field_reference(struct_expr, i,
-                                                             location);
-         if (pf->type()->points_to() != NULL)
-           here = Expression::make_unary(OPERATOR_MULT, here, location);
-         while (sub->expr() != NULL)
-           {
-             sub = sub->expr()->deref()->field_reference_expression();
-             go_assert(sub != NULL);
-           }
-         sub->set_struct_expression(here);
-       }
-      else if (subdepth > found_depth)
-       delete sub;
-      else
-       {
-         // We do not handle ambiguity here--it should be handled by
-         // Type::bind_field_or_method.
-         delete sub;
-         found_depth = 0;
-         ret = NULL;
-       }
-    }
-
-  if (ret != NULL)
-    *depth = found_depth + 1;
-
-  return ret;
-}
-
-// Return the total number of fields, including embedded fields.
-
-unsigned int
-Struct_type::total_field_count() const
-{
-  if (this->fields_ == NULL)
-    return 0;
-  unsigned int ret = 0;
-  for (Struct_field_list::const_iterator pf = this->fields_->begin();
-       pf != this->fields_->end();
-       ++pf)
-    {
-      if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
-       ++ret;
-      else
-       ret += pf->type()->struct_type()->total_field_count();
-    }
-  return ret;
-}
-
-// Return whether NAME is an unexported field, for better error reporting.
-
-bool
-Struct_type::is_unexported_local_field(Gogo* gogo,
-                                      const std::string& name) const
-{
-  const Struct_field_list* fields = this->fields_;
-  if (fields != NULL)
-    {
-      for (Struct_field_list::const_iterator pf = fields->begin();
-          pf != fields->end();
-          ++pf)
-       {
-         const std::string& field_name(pf->field_name());
-         if (Gogo::is_hidden_name(field_name)
-             && name == Gogo::unpack_hidden_name(field_name)
-             && gogo->pack_hidden_name(name, false) != field_name)
-           return true;
-       }
-    }
-  return false;
-}
-
-// Finalize the methods of an unnamed struct.
-
-void
-Struct_type::finalize_methods(Gogo* gogo)
-{
-  if (this->all_methods_ != NULL)
-    return;
-  Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
-}
-
-// Return the method NAME, or NULL if there isn't one or if it is
-// ambiguous.  Set *IS_AMBIGUOUS if the method exists but is
-// ambiguous.
-
-Method*
-Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
-{
-  return Type::method_function(this->all_methods_, name, is_ambiguous);
-}
-
-// Get the tree for a struct type.
-
-tree
-Struct_type::do_get_tree(Gogo* gogo)
-{
-  tree type = make_node(RECORD_TYPE);
-  return this->fill_in_tree(gogo, type);
-}
-
-// Fill in the fields for a struct type.
-
-tree
-Struct_type::fill_in_tree(Gogo* gogo, tree type)
-{
-  tree field_trees = NULL_TREE;
-  tree* pp = &field_trees;
-  for (Struct_field_list::const_iterator p = this->fields_->begin();
-       p != this->fields_->end();
-       ++p)
-    {
-      std::string name = Gogo::unpack_hidden_name(p->field_name());
-      tree name_tree = get_identifier_with_length(name.data(), name.length());
-
-      tree field_type_tree = p->type()->get_tree(gogo);
-      if (field_type_tree == error_mark_node)
-       return error_mark_node;
-      go_assert(TYPE_SIZE(field_type_tree) != NULL_TREE);
-
-      tree field = build_decl(p->location(), FIELD_DECL, name_tree,
-                             field_type_tree);
-      DECL_CONTEXT(field) = type;
-      *pp = field;
-      pp = &DECL_CHAIN(field);
-    }
-
-  TYPE_FIELDS(type) = field_trees;
-
-  layout_type(type);
-
-  return type;
-}
-
-// Initialize struct fields.
-
-tree
-Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
-{
-  if (this->fields_ == NULL || this->fields_->empty())
-    {
-      if (is_clear)
-       return NULL;
-      else
-       {
-         tree ret = build_constructor(type_tree,
-                                      VEC_alloc(constructor_elt, gc, 0));
-         TREE_CONSTANT(ret) = 1;
-         return ret;
-       }
-    }
-
-  bool is_constant = true;
-  bool any_fields_set = false;
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
-                                           this->fields_->size());
-
-  tree field = TYPE_FIELDS(type_tree);
-  for (Struct_field_list::const_iterator p = this->fields_->begin();
-       p != this->fields_->end();
-       ++p, field = DECL_CHAIN(field))
-    {
-      tree value = p->type()->get_init_tree(gogo, is_clear);
-      if (value == error_mark_node)
-       return error_mark_node;
-      go_assert(field != NULL_TREE);
-      if (value != NULL)
-       {
-         constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-         elt->index = field;
-         elt->value = value;
-         any_fields_set = true;
-         if (!TREE_CONSTANT(value))
-           is_constant = false;
-       }
-    }
-  go_assert(field == NULL_TREE);
-
-  if (!any_fields_set)
-    {
-      go_assert(is_clear);
-      VEC_free(constructor_elt, gc, init);
-      return NULL;
-    }
-
-  tree ret = build_constructor(type_tree, init);
-  if (is_constant)
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// The type of a struct type descriptor.
-
-Type*
-Struct_type::make_struct_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-      Type* string_type = Type::lookup_string_type();
-      Type* pointer_string_type = Type::make_pointer_type(string_type);
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(5,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "typ", ptdt,
-                                      "tag", pointer_string_type,
-                                      "offset", uintptr_type);
-      Type* nsf = Type::make_builtin_named_type("structField", sf);
-
-      Type* slice_type = Type::make_array_type(nsf, NULL);
-
-      Struct_type* s = Type::make_builtin_struct_type(2,
-                                                     "", tdt,
-                                                     "fields", slice_type);
-
-      ret = Type::make_builtin_named_type("StructType", s);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for a struct type.
-
-Expression*
-Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* stdt = Struct_type::make_struct_type_descriptor_type();
-
-  const Struct_field_list* fields = stdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(2);
-
-  const Methods* methods = this->methods();
-  // A named struct should not have methods--the methods should attach
-  // to the named type.
-  go_assert(methods == NULL || name == NULL);
-
-  Struct_field_list::const_iterator ps = fields->begin();
-  go_assert(ps->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_STRUCT,
-                                                   name, methods, true));
-
-  ++ps;
-  go_assert(ps->field_name() == "fields");
-
-  Expression_list* elements = new Expression_list();
-  elements->reserve(this->fields_->size());
-  Type* element_type = ps->type()->array_type()->element_type();
-  for (Struct_field_list::const_iterator pf = this->fields_->begin();
-       pf != this->fields_->end();
-       ++pf)
-    {
-      const Struct_field_list* f = element_type->struct_type()->fields();
-
-      Expression_list* fvals = new Expression_list();
-      fvals->reserve(5);
-
-      Struct_field_list::const_iterator q = f->begin();
-      go_assert(q->field_name() == "name");
-      if (pf->is_anonymous())
-       fvals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         std::string n = Gogo::unpack_hidden_name(pf->field_name());
-         Expression* s = Expression::make_string(n, bloc);
-         fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-
-      ++q;
-      go_assert(q->field_name() == "pkgPath");
-      if (!Gogo::is_hidden_name(pf->field_name()))
-       fvals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         std::string n = Gogo::hidden_name_prefix(pf->field_name());
-         Expression* s = Expression::make_string(n, bloc);
-         fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-
-      ++q;
-      go_assert(q->field_name() == "typ");
-      fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
-
-      ++q;
-      go_assert(q->field_name() == "tag");
-      if (!pf->has_tag())
-       fvals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         Expression* s = Expression::make_string(pf->tag(), bloc);
-         fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-
-      ++q;
-      go_assert(q->field_name() == "offset");
-      fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
-
-      Expression* v = Expression::make_struct_composite_literal(element_type,
-                                                               fvals, bloc);
-      elements->push_back(v);
-    }
-
-  vals->push_back(Expression::make_slice_composite_literal(ps->type(),
-                                                          elements, bloc));
-
-  return Expression::make_struct_composite_literal(stdt, vals, bloc);
-}
-
-// Reflection string.
-
-void
-Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->append("struct { ");
-
-  for (Struct_field_list::const_iterator p = this->fields_->begin();
-       p != this->fields_->end();
-       ++p)
-    {
-      if (p != this->fields_->begin())
-       ret->append("; ");
-      if (p->is_anonymous())
-       ret->push_back('?');
-      else
-       ret->append(Gogo::unpack_hidden_name(p->field_name()));
-      ret->push_back(' ');
-      this->append_reflection(p->type(), gogo, ret);
-
-      if (p->has_tag())
-       {
-         const std::string& tag(p->tag());
-         ret->append(" \"");
-         for (std::string::const_iterator p = tag.begin();
-              p != tag.end();
-              ++p)
-           {
-             if (*p == '\0')
-               ret->append("\\x00");
-             else if (*p == '\n')
-               ret->append("\\n");
-             else if (*p == '\t')
-               ret->append("\\t");
-             else if (*p == '"')
-               ret->append("\\\"");
-             else if (*p == '\\')
-               ret->append("\\\\");
-             else
-               ret->push_back(*p);
-           }
-         ret->push_back('"');
-       }
-    }
-
-  ret->append(" }");
-}
-
-// Mangled name.
-
-void
-Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('S');
-
-  const Struct_field_list* fields = this->fields_;
-  if (fields != NULL)
-    {
-      for (Struct_field_list::const_iterator p = fields->begin();
-          p != fields->end();
-          ++p)
-       {
-         if (p->is_anonymous())
-           ret->append("0_");
-         else
-           {
-             std::string n = Gogo::unpack_hidden_name(p->field_name());
-             char buf[20];
-             snprintf(buf, sizeof buf, "%u_",
-                      static_cast<unsigned int>(n.length()));
-             ret->append(buf);
-             ret->append(n);
-           }
-         this->append_mangled_name(p->type(), gogo, ret);
-         if (p->has_tag())
-           {
-             const std::string& tag(p->tag());
-             std::string out;
-             for (std::string::const_iterator p = tag.begin();
-                  p != tag.end();
-                  ++p)
-               {
-                 if (ISALNUM(*p) || *p == '_')
-                   out.push_back(*p);
-                 else
-                   {
-                     char buf[20];
-                     snprintf(buf, sizeof buf, ".%x.",
-                              static_cast<unsigned int>(*p));
-                     out.append(buf);
-                   }
-               }
-             char buf[20];
-             snprintf(buf, sizeof buf, "T%u_",
-                      static_cast<unsigned int>(out.length()));
-             ret->append(buf);
-             ret->append(out);
-           }
-       }
-    }
-
-  ret->push_back('e');
-}
-
-// Export.
-
-void
-Struct_type::do_export(Export* exp) const
-{
-  exp->write_c_string("struct { ");
-  const Struct_field_list* fields = this->fields_;
-  go_assert(fields != NULL);
-  for (Struct_field_list::const_iterator p = fields->begin();
-       p != fields->end();
-       ++p)
-    {
-      if (p->is_anonymous())
-       exp->write_string("? ");
-      else
-       {
-         exp->write_string(p->field_name());
-         exp->write_c_string(" ");
-       }
-      exp->write_type(p->type());
-
-      if (p->has_tag())
-       {
-         exp->write_c_string(" ");
-         Expression* expr = Expression::make_string(p->tag(),
-                                                    BUILTINS_LOCATION);
-         expr->export_expression(exp);
-         delete expr;
-       }
-
-      exp->write_c_string("; ");
-    }
-  exp->write_c_string("}");
-}
-
-// Import.
-
-Struct_type*
-Struct_type::do_import(Import* imp)
-{
-  imp->require_c_string("struct { ");
-  Struct_field_list* fields = new Struct_field_list;
-  if (imp->peek_char() != '}')
-    {
-      while (true)
-       {
-         std::string name;
-         if (imp->match_c_string("? "))
-           imp->advance(2);
-         else
-           {
-             name = imp->read_identifier();
-             imp->require_c_string(" ");
-           }
-         Type* ftype = imp->read_type();
-
-         Struct_field sf(Typed_identifier(name, ftype, imp->location()));
-
-         if (imp->peek_char() == ' ')
-           {
-             imp->advance(1);
-             Expression* expr = Expression::import_expression(imp);
-             String_expression* sexpr = expr->string_expression();
-             go_assert(sexpr != NULL);
-             sf.set_tag(sexpr->val());
-             delete sexpr;
-           }
-
-         imp->require_c_string("; ");
-         fields->push_back(sf);
-         if (imp->peek_char() == '}')
-           break;
-       }
-    }
-  imp->require_c_string("}");
-
-  return Type::make_struct_type(fields, imp->location());
-}
-
-// Make a struct type.
-
-Struct_type*
-Type::make_struct_type(Struct_field_list* fields,
-                      source_location location)
-{
-  return new Struct_type(fields, location);
-}
-
-// Class Array_type.
-
-// Whether two array types are identical.
-
-bool
-Array_type::is_identical(const Array_type* t, bool errors_are_identical) const
-{
-  if (!Type::are_identical(this->element_type(), t->element_type(),
-                          errors_are_identical, NULL))
-    return false;
-
-  Expression* l1 = this->length();
-  Expression* l2 = t->length();
-
-  // Slices of the same element type are identical.
-  if (l1 == NULL && l2 == NULL)
-    return true;
-
-  // Arrays of the same element type are identical if they have the
-  // same length.
-  if (l1 != NULL && l2 != NULL)
-    {
-      if (l1 == l2)
-       return true;
-
-      // Try to determine the lengths.  If we can't, assume the arrays
-      // are not identical.
-      bool ret = false;
-      mpz_t v1;
-      mpz_init(v1);
-      Type* type1;
-      mpz_t v2;
-      mpz_init(v2);
-      Type* type2;
-      if (l1->integer_constant_value(true, v1, &type1)
-         && l2->integer_constant_value(true, v2, &type2))
-       ret = mpz_cmp(v1, v2) == 0;
-      mpz_clear(v1);
-      mpz_clear(v2);
-      return ret;
-    }
-
-  // Otherwise the arrays are not identical.
-  return false;
-}
-
-// Traversal.
-
-int
-Array_type::do_traverse(Traverse* traverse)
-{
-  if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->length_ != NULL
-      && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that the length is valid.
-
-bool
-Array_type::verify_length()
-{
-  if (this->length_ == NULL)
-    return true;
-
-  Type_context context(Type::lookup_integer_type("int"), false);
-  this->length_->determine_type(&context);
-
-  if (!this->length_->is_constant())
-    {
-      error_at(this->length_->location(), "array bound is not constant");
-      return false;
-    }
-
-  mpz_t val;
-  mpz_init(val);
-  Type* vt;
-  if (!this->length_->integer_constant_value(true, val, &vt))
-    {
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (!this->length_->float_constant_value(fval, &vt))
-       {
-         if (this->length_->type()->integer_type() != NULL
-             || this->length_->type()->float_type() != NULL)
-           error_at(this->length_->location(),
-                    "array bound is not constant");
-         else
-           error_at(this->length_->location(),
-                    "array bound is not numeric");
-         mpfr_clear(fval);
-         mpz_clear(val);
-         return false;
-       }
-      if (!mpfr_integer_p(fval))
-       {
-         error_at(this->length_->location(),
-                  "array bound truncated to integer");
-         mpfr_clear(fval);
-         mpz_clear(val);
-         return false;
-       }
-      mpz_init(val);
-      mpfr_get_z(val, fval, GMP_RNDN);
-      mpfr_clear(fval);
-    }
-
-  if (mpz_sgn(val) < 0)
-    {
-      error_at(this->length_->location(), "negative array bound");
-      mpz_clear(val);
-      return false;
-    }
-
-  Type* int_type = Type::lookup_integer_type("int");
-  int tbits = int_type->integer_type()->bits();
-  int vbits = mpz_sizeinbase(val, 2);
-  if (vbits + 1 > tbits)
-    {
-      error_at(this->length_->location(), "array bound overflows");
-      mpz_clear(val);
-      return false;
-    }
-
-  mpz_clear(val);
-
-  return true;
-}
-
-// Verify the type.
-
-bool
-Array_type::do_verify()
-{
-  if (!this->verify_length())
-    {
-      this->length_ = Expression::make_error(this->length_->location());
-      return false;
-    }
-  return true;
-}
-
-// Array type hash code.
-
-unsigned int
-Array_type::do_hash_for_method(Gogo* gogo) const
-{
-  // There is no very convenient way to get a hash code for the
-  // length.
-  return this->element_type_->hash_for_method(gogo) + 1;
-}
-
-// See if the expression passed to make is suitable.  The first
-// argument is required, and gives the length.  An optional second
-// argument is permitted for the capacity.
-
-bool
-Array_type::do_check_make_expression(Expression_list* args,
-                                    source_location location)
-{
-  go_assert(this->length_ == NULL);
-  if (args == NULL || args->empty())
-    {
-      error_at(location, "length required when allocating a slice");
-      return false;
-    }
-  else if (args->size() > 2)
-    {
-      error_at(location, "too many expressions passed to make");
-      return false;
-    }
-  else
-    {
-      if (!Type::check_int_value(args->front(),
-                                _("bad length when making slice"), location))
-       return false;
-
-      if (args->size() > 1)
-       {
-         if (!Type::check_int_value(args->back(),
-                                    _("bad capacity when making slice"),
-                                    location))
-           return false;
-       }
-
-      return true;
-    }
-}
-
-// Get a tree for the length of a fixed array.  The length may be
-// computed using a function call, so we must only evaluate it once.
-
-tree
-Array_type::get_length_tree(Gogo* gogo)
-{
-  go_assert(this->length_ != NULL);
-  if (this->length_tree_ == NULL_TREE)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* t;
-      if (this->length_->integer_constant_value(true, val, &t))
-       {
-         if (t == NULL)
-           t = Type::lookup_integer_type("int");
-         else if (t->is_abstract())
-           t = t->make_non_abstract_type();
-         tree tt = t->get_tree(gogo);
-         this->length_tree_ = Expression::integer_constant_tree(val, tt);
-         mpz_clear(val);
-       }
-      else
-       {
-         mpz_clear(val);
-
-         // Make up a translation context for the array length
-         // expression.  FIXME: This won't work in general.
-         Translate_context context(gogo, NULL, NULL, NULL);
-         tree len = this->length_->get_tree(&context);
-         if (len != error_mark_node)
-           {
-             len = convert_to_integer(integer_type_node, len);
-             len = save_expr(len);
-           }
-         this->length_tree_ = len;
-       }
-    }
-  return this->length_tree_;
-}
-
-// Get a tree for the type of this array.  A fixed array is simply
-// represented as ARRAY_TYPE with the appropriate index--i.e., it is
-// just like an array in C.  An open array is a struct with three
-// fields: a data pointer, the length, and the capacity.
-
-tree
-Array_type::do_get_tree(Gogo* gogo)
-{
-  if (this->length_ == NULL)
-    {
-      tree struct_type = gogo->slice_type_tree(void_type_node);
-      return this->fill_in_slice_tree(gogo, struct_type);
-    }
-  else
-    {
-      tree array_type = make_node(ARRAY_TYPE);
-      return this->fill_in_array_tree(gogo, array_type);
-    }
-}
-
-// Fill in the fields for an array type.  This is used for named array
-// types.
-
-tree
-Array_type::fill_in_array_tree(Gogo* gogo, tree array_type)
-{
-  go_assert(this->length_ != NULL);
-
-  tree element_type_tree = this->element_type_->get_tree(gogo);
-  tree length_tree = this->get_length_tree(gogo);
-  if (element_type_tree == error_mark_node
-      || length_tree == error_mark_node)
-    return error_mark_node;
-
-  go_assert(TYPE_SIZE(element_type_tree) != NULL_TREE);
-
-  length_tree = fold_convert(sizetype, length_tree);
-
-  // build_index_type takes the maximum index, which is one less than
-  // the length.
-  tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
-                                                length_tree,
-                                                size_one_node));
-
-  TREE_TYPE(array_type) = element_type_tree;
-  TYPE_DOMAIN(array_type) = index_type;
-  TYPE_ADDR_SPACE(array_type) = TYPE_ADDR_SPACE(element_type_tree);
-  layout_type(array_type);
-
-  if (TYPE_STRUCTURAL_EQUALITY_P(element_type_tree)
-      || TYPE_STRUCTURAL_EQUALITY_P(index_type))
-    SET_TYPE_STRUCTURAL_EQUALITY(array_type);
-  else if (TYPE_CANONICAL(element_type_tree) != element_type_tree
-          || TYPE_CANONICAL(index_type) != index_type)
-    TYPE_CANONICAL(array_type) =
-      build_array_type(TYPE_CANONICAL(element_type_tree),
-                      TYPE_CANONICAL(index_type));
-
-  return array_type;
-}
-
-// Fill in the fields for a slice type.  This is used for named slice
-// types.
-
-tree
-Array_type::fill_in_slice_tree(Gogo* gogo, tree struct_type)
-{
-  go_assert(this->length_ == NULL);
-
-  tree element_type_tree = this->element_type_->get_tree(gogo);
-  if (element_type_tree == error_mark_node)
-    return error_mark_node;
-  tree field = TYPE_FIELDS(struct_type);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  go_assert(POINTER_TYPE_P(TREE_TYPE(field))
-            && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
-  TREE_TYPE(field) = build_pointer_type(element_type_tree);
-
-  return struct_type;
-}
-
-// Return an initializer for an array type.
-
-tree
-Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
-{
-  if (this->length_ == NULL)
-    {
-      // Open array.
-
-      if (is_clear)
-       return NULL;
-
-      go_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-      VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-      for (tree field = TYPE_FIELDS(type_tree);
-          field != NULL_TREE;
-          field = DECL_CHAIN(field))
-       {
-         constructor_elt* elt = VEC_quick_push(constructor_elt, init,
-                                               NULL);
-         elt->index = field;
-         elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
-       }
-
-      tree ret = build_constructor(type_tree, init);
-      TREE_CONSTANT(ret) = 1;
-      return ret;
-    }
-  else
-    {
-      // Fixed array.
-
-      tree value = this->element_type_->get_init_tree(gogo, is_clear);
-      if (value == NULL)
-       return NULL;
-      if (value == error_mark_node)
-       return error_mark_node;
-
-      tree length_tree = this->get_length_tree(gogo);
-      if (length_tree == error_mark_node)
-       return error_mark_node;
-
-      length_tree = fold_convert(sizetype, length_tree);
-      tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
-                         fold_build2(MINUS_EXPR, sizetype,
-                                     length_tree, size_one_node));
-      tree ret = build_constructor_single(type_tree, range, value);
-      if (TREE_CONSTANT(value))
-       TREE_CONSTANT(ret) = 1;
-      return ret;
-    }
-}
-
-// Handle the builtin make function for a slice.
-
-tree
-Array_type::do_make_expression_tree(Translate_context* context,
-                                   Expression_list* args,
-                                   source_location location)
-{
-  go_assert(this->length_ == NULL);
-
-  Gogo* gogo = context->gogo();
-  tree type_tree = this->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree values_field = TYPE_FIELDS(type_tree);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
-                   "__values") == 0);
-
-  tree count_field = DECL_CHAIN(values_field);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
-                   "__count") == 0);
-
-  tree element_type_tree = this->element_type_->get_tree(gogo);
-  if (element_type_tree == error_mark_node)
-    return error_mark_node;
-  tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
-
-  tree value = this->element_type_->get_init_tree(gogo, true);
-  if (value == error_mark_node)
-    return error_mark_node;
-
-  // The first argument is the number of elements, the optional second
-  // argument is the capacity.
-  go_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
-
-  tree length_tree = args->front()->get_tree(context);
-  if (length_tree == error_mark_node)
-    return error_mark_node;
-  if (!DECL_P(length_tree))
-    length_tree = save_expr(length_tree);
-  if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
-    length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
-
-  tree bad_index = Expression::check_bounds(length_tree,
-                                           TREE_TYPE(count_field),
-                                           NULL_TREE, location);
-
-  length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
-  tree capacity_tree;
-  if (args->size() == 1)
-    capacity_tree = length_tree;
-  else
-    {
-      capacity_tree = args->back()->get_tree(context);
-      if (capacity_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(capacity_tree))
-       capacity_tree = save_expr(capacity_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
-       capacity_tree = convert_to_integer(TREE_TYPE(count_field),
-                                          capacity_tree);
-
-      bad_index = Expression::check_bounds(capacity_tree,
-                                          TREE_TYPE(count_field),
-                                          bad_index, location);
-
-      tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
-                       > TYPE_SIZE(TREE_TYPE(length_tree)))
-                      || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
-                           == TYPE_SIZE(TREE_TYPE(length_tree)))
-                          && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
-                     ? TREE_TYPE(capacity_tree)
-                     : TREE_TYPE(length_tree));
-      tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
-                                fold_convert_loc(location, chktype,
-                                                 capacity_tree),
-                                fold_convert_loc(location, chktype,
-                                                 length_tree));
-      if (bad_index == NULL_TREE)
-       bad_index = chk;
-      else
-       bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
-                                   bad_index, chk);
-
-      capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
-                                      capacity_tree);
-    }
-
-  tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
-                                  element_size_tree,
-                                  fold_convert_loc(location, sizetype,
-                                                   capacity_tree));
-
-  tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
-                            fold_build2_loc(location, GT_EXPR,
-                                            boolean_type_node,
-                                            fold_convert_loc(location,
-                                                             sizetype,
-                                                             capacity_tree),
-                                            size_zero_node),
-                            fold_build2_loc(location, LT_EXPR,
-                                            boolean_type_node,
-                                            size_tree, element_size_tree));
-  if (bad_index == NULL_TREE)
-    bad_index = chk;
-  else
-    bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
-                               bad_index, chk);
-
-  tree space = context->gogo()->allocate_memory(this->element_type_,
-                                               size_tree, location);
-
-  if (value != NULL_TREE)
-    space = save_expr(space);
-
-  space = fold_convert(TREE_TYPE(values_field), space);
-
-  if (bad_index != NULL_TREE && bad_index != boolean_false_node)
-    {
-      tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
-                                      location);
-      space = build2(COMPOUND_EXPR, TREE_TYPE(space),
-                    build3(COND_EXPR, void_type_node,
-                           bad_index, crash, NULL_TREE),
-                    space);
-    }
-
-  tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
-                                            capacity_tree);
-
-  if (value == NULL_TREE)
-    {
-      // The array contents are zero initialized.
-      return constructor;
-    }
-
-  // The elements must be initialized.
-
-  tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
-                            capacity_tree,
-                            fold_convert_loc(location, TREE_TYPE(count_field),
-                                             integer_one_node));
-
-  tree array_type = build_array_type(element_type_tree,
-                                    build_index_type(max));
-
-  tree value_pointer = fold_convert_loc(location,
-                                       build_pointer_type(array_type),
-                                       space);
-
-  tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
-  tree space_init = build_constructor_single(array_type, range, value);
-
-  return build2(COMPOUND_EXPR, TREE_TYPE(constructor),
-               build2(MODIFY_EXPR, void_type_node,
-                      build_fold_indirect_ref(value_pointer),
-                      space_init),
-               constructor);
-}
-
-// Return a tree for a pointer to the values in ARRAY.
-
-tree
-Array_type::value_pointer_tree(Gogo*, tree array) const
-{
-  tree ret;
-  if (this->length() != NULL)
-    {
-      // Fixed array.
-      ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
-                        build_fold_addr_expr(array));
-    }
-  else
-    {
-      // Open array.
-      tree field = TYPE_FIELDS(TREE_TYPE(array));
-      go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__values") == 0);
-      ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
-                       NULL_TREE);
-    }
-  if (TREE_CONSTANT(array))
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Return a tree for the length of the array ARRAY which has this
-// type.
-
-tree
-Array_type::length_tree(Gogo* gogo, tree array)
-{
-  if (this->length_ != NULL)
-    {
-      if (TREE_CODE(array) == SAVE_EXPR)
-       return fold_convert(integer_type_node, this->get_length_tree(gogo));
-      else
-       return omit_one_operand(integer_type_node,
-                               this->get_length_tree(gogo), array);
-    }
-
-  // This is an open array.  We need to read the length field.
-
-  tree type = TREE_TYPE(array);
-  go_assert(TREE_CODE(type) == RECORD_TYPE);
-
-  tree field = DECL_CHAIN(TYPE_FIELDS(type));
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-
-  tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
-  if (TREE_CONSTANT(array))
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Return a tree for the capacity of the array ARRAY which has this
-// type.
-
-tree
-Array_type::capacity_tree(Gogo* gogo, tree array)
-{
-  if (this->length_ != NULL)
-    return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
-
-  // This is an open array.  We need to read the capacity field.
-
-  tree type = TREE_TYPE(array);
-  go_assert(TREE_CODE(type) == RECORD_TYPE);
-
-  tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
-
-  return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
-}
-
-// Export.
-
-void
-Array_type::do_export(Export* exp) const
-{
-  exp->write_c_string("[");
-  if (this->length_ != NULL)
-    this->length_->export_expression(exp);
-  exp->write_c_string("] ");
-  exp->write_type(this->element_type_);
-}
-
-// Import.
-
-Array_type*
-Array_type::do_import(Import* imp)
-{
-  imp->require_c_string("[");
-  Expression* length;
-  if (imp->peek_char() == ']')
-    length = NULL;
-  else
-    length = Expression::import_expression(imp);
-  imp->require_c_string("] ");
-  Type* element_type = imp->read_type();
-  return Type::make_array_type(element_type, length);
-}
-
-// The type of an array type descriptor.
-
-Type*
-Array_type::make_array_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(3,
-                                      "", tdt,
-                                      "elem", ptdt,
-                                      "len", uintptr_type);
-
-      ret = Type::make_builtin_named_type("ArrayType", sf);
-    }
-
-  return ret;
-}
-
-// The type of an slice type descriptor.
-
-Type*
-Array_type::make_slice_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(2,
-                                      "", tdt,
-                                      "elem", ptdt);
-
-      ret = Type::make_builtin_named_type("SliceType", sf);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for an array/slice type.
-
-Expression*
-Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (this->length_ != NULL)
-    return this->array_type_descriptor(gogo, name);
-  else
-    return this->slice_type_descriptor(gogo, name);
-}
-
-// Build a type descriptor for an array type.
-
-Expression*
-Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* atdt = Array_type::make_array_type_descriptor_type();
-
-  const Struct_field_list* fields = atdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  go_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_ARRAY,
-                                                   name, NULL, true));
-
-  ++p;
-  go_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
-
-  ++p;
-  go_assert(p->field_name() == "len");
-  vals->push_back(Expression::make_cast(p->type(), this->length_, bloc));
-
-  ++p;
-  go_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(atdt, vals, bloc);
-}
-
-// Build a type descriptor for a slice type.
-
-Expression*
-Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* stdt = Array_type::make_slice_type_descriptor_type();
-
-  const Struct_field_list* fields = stdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(2);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  go_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_SLICE,
-                                                   name, NULL, true));
-
-  ++p;
-  go_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
-
-  ++p;
-  go_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(stdt, vals, bloc);
-}
-
-// Reflection string.
-
-void
-Array_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('[');
-  if (this->length_ != NULL)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* type;
-      if (!this->length_->integer_constant_value(true, val, &type))
-       error_at(this->length_->location(),
-                "array length must be integer constant expression");
-      else if (mpz_cmp_si(val, 0) < 0)
-       error_at(this->length_->location(), "array length is negative");
-      else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
-       error_at(this->length_->location(), "array length is too large");
-      else
-       {
-         char buf[50];
-         snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
-         ret->append(buf);
-       }
-      mpz_clear(val);
-    }
-  ret->push_back(']');
-
-  this->append_reflection(this->element_type_, gogo, ret);
-}
-
-// Mangled name.
-
-void
-Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('A');
-  this->append_mangled_name(this->element_type_, gogo, ret);
-  if (this->length_ != NULL)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* type;
-      if (!this->length_->integer_constant_value(true, val, &type))
-       error_at(this->length_->location(),
-                "array length must be integer constant expression");
-      else if (mpz_cmp_si(val, 0) < 0)
-       error_at(this->length_->location(), "array length is negative");
-      else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
-       error_at(this->length_->location(), "array size is too large");
-      else
-       {
-         char buf[50];
-         snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
-         ret->append(buf);
-       }
-      mpz_clear(val);
-    }
-  ret->push_back('e');
-}
-
-// Make an array type.
-
-Array_type*
-Type::make_array_type(Type* element_type, Expression* length)
-{
-  return new Array_type(element_type, length);
-}
-
-// Class Map_type.
-
-// Traversal.
-
-int
-Map_type::do_traverse(Traverse* traverse)
-{
-  if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
-      || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that the map type is OK.
-
-bool
-Map_type::do_verify()
-{
-  if (this->key_type_->struct_type() != NULL
-      || this->key_type_->array_type() != NULL)
-    {
-      error_at(this->location_, "invalid map key type");
-      return false;
-    }
-  return true;
-}
-
-// Whether two map types are identical.
-
-bool
-Map_type::is_identical(const Map_type* t, bool errors_are_identical) const
-{
-  return (Type::are_identical(this->key_type(), t->key_type(),
-                             errors_are_identical, NULL)
-         && Type::are_identical(this->val_type(), t->val_type(),
-                                errors_are_identical, NULL));
-}
-
-// Hash code.
-
-unsigned int
-Map_type::do_hash_for_method(Gogo* gogo) const
-{
-  return (this->key_type_->hash_for_method(gogo)
-         + this->val_type_->hash_for_method(gogo)
-         + 2);
-}
-
-// Check that a call to the builtin make function is valid.  For a map
-// the optional argument is the number of spaces to preallocate for
-// values.
-
-bool
-Map_type::do_check_make_expression(Expression_list* args,
-                                  source_location location)
-{
-  if (args != NULL && !args->empty())
-    {
-      if (!Type::check_int_value(args->front(), _("bad size when making map"),
-                                location))
-       return false;
-      else if (args->size() > 1)
-       {
-         error_at(location, "too many arguments when making map");
-         return false;
-       }
-    }
-  return true;
-}
-
-// Get a tree for a map type.  A map type is represented as a pointer
-// to a struct.  The struct is __go_map in libgo/map.h.
-
-tree
-Map_type::do_get_tree(Gogo* gogo)
-{
-  static tree type_tree;
-  if (type_tree == NULL_TREE)
-    {
-      tree struct_type = make_node(RECORD_TYPE);
-
-      tree map_descriptor_type = gogo->map_descriptor_type();
-      tree const_map_descriptor_type =
-       build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
-      tree name = get_identifier("__descriptor");
-      tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
-                             build_pointer_type(const_map_descriptor_type));
-      DECL_CONTEXT(field) = struct_type;
-      TYPE_FIELDS(struct_type) = field;
-      tree last_field = field;
-
-      name = get_identifier("__element_count");
-      field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
-      DECL_CONTEXT(field) = struct_type;
-      DECL_CHAIN(last_field) = field;
-      last_field = field;
-
-      name = get_identifier("__bucket_count");
-      field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
-      DECL_CONTEXT(field) = struct_type;
-      DECL_CHAIN(last_field) = field;
-      last_field = field;
-
-      name = get_identifier("__buckets");
-      field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
-                        build_pointer_type(ptr_type_node));
-      DECL_CONTEXT(field) = struct_type;
-      DECL_CHAIN(last_field) = field;
-
-      layout_type(struct_type);
-
-      // Give the struct a name for better debugging info.
-      name = get_identifier("__go_map");
-      tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
-                                 struct_type);
-      DECL_ARTIFICIAL(type_decl) = 1;
-      TYPE_NAME(struct_type) = type_decl;
-      go_preserve_from_gc(type_decl);
-      rest_of_decl_compilation(type_decl, 1, 0);
-
-      type_tree = build_pointer_type(struct_type);
-      go_preserve_from_gc(type_tree);
-    }
-
-  return type_tree;
-}
-
-// Initialize a map.
-
-tree
-Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// Return an expression for a newly allocated map.
-
-tree
-Map_type::do_make_expression_tree(Translate_context* context,
-                                 Expression_list* args,
-                                 source_location location)
-{
-  tree bad_index = NULL_TREE;
-
-  tree expr_tree;
-  if (args == NULL || args->empty())
-    expr_tree = size_zero_node;
-  else
-    {
-      expr_tree = args->front()->get_tree(context);
-      if (expr_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(expr_tree))
-       expr_tree = save_expr(expr_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
-       expr_tree = convert_to_integer(sizetype, expr_tree);
-      bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
-                                          location);
-    }
-
-  tree map_type = this->get_tree(context->gogo());
-
-  static tree new_map_fndecl;
-  tree ret = Gogo::call_builtin(&new_map_fndecl,
-                               location,
-                               "__go_new_map",
-                               2,
-                               map_type,
-                               TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
-                               context->gogo()->map_descriptor(this),
-                               sizetype,
-                               expr_tree);
-  if (ret == error_mark_node)
-    return error_mark_node;
-  // This can panic if the capacity is out of range.
-  TREE_NOTHROW(new_map_fndecl) = 0;
-
-  if (bad_index == NULL_TREE)
-    return ret;
-  else
-    {
-      tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
-                                      location);
-      return build2(COMPOUND_EXPR, TREE_TYPE(ret),
-                   build3(COND_EXPR, void_type_node,
-                          bad_index, crash, NULL_TREE),
-                   ret);
-    }
-}
-
-// The type of a map type descriptor.
-
-Type*
-Map_type::make_map_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(3,
-                                      "", tdt,
-                                      "key", ptdt,
-                                      "elem", ptdt);
-
-      ret = Type::make_builtin_named_type("MapType", sf);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for a map type.
-
-Expression*
-Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* mtdt = Map_type::make_map_type_descriptor_type();
-
-  const Struct_field_list* fields = mtdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  go_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_MAP,
-                                                   name, NULL, true));
-
-  ++p;
-  go_assert(p->field_name() == "key");
-  vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
-
-  ++p;
-  go_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
-
-  ++p;
-  go_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(mtdt, vals, bloc);
-}
-
-// Reflection string for a map.
-
-void
-Map_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->append("map[");
-  this->append_reflection(this->key_type_, gogo, ret);
-  ret->append("] ");
-  this->append_reflection(this->val_type_, gogo, ret);
-}
-
-// Mangled name for a map.
-
-void
-Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('M');
-  this->append_mangled_name(this->key_type_, gogo, ret);
-  ret->append("__");
-  this->append_mangled_name(this->val_type_, gogo, ret);
-}
-
-// Export a map type.
-
-void
-Map_type::do_export(Export* exp) const
-{
-  exp->write_c_string("map [");
-  exp->write_type(this->key_type_);
-  exp->write_c_string("] ");
-  exp->write_type(this->val_type_);
-}
-
-// Import a map type.
-
-Map_type*
-Map_type::do_import(Import* imp)
-{
-  imp->require_c_string("map [");
-  Type* key_type = imp->read_type();
-  imp->require_c_string("] ");
-  Type* val_type = imp->read_type();
-  return Type::make_map_type(key_type, val_type, imp->location());
-}
-
-// Make a map type.
-
-Map_type*
-Type::make_map_type(Type* key_type, Type* val_type, source_location location)
-{
-  return new Map_type(key_type, val_type, location);
-}
-
-// Class Channel_type.
-
-// Hash code.
-
-unsigned int
-Channel_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->may_send_)
-    ret += 1;
-  if (this->may_receive_)
-    ret += 2;
-  if (this->element_type_ != NULL)
-    ret += this->element_type_->hash_for_method(gogo) << 2;
-  return ret << 3;
-}
-
-// Whether this type is the same as T.
-
-bool
-Channel_type::is_identical(const Channel_type* t,
-                          bool errors_are_identical) const
-{
-  if (!Type::are_identical(this->element_type(), t->element_type(),
-                          errors_are_identical, NULL))
-    return false;
-  return (this->may_send_ == t->may_send_
-         && this->may_receive_ == t->may_receive_);
-}
-
-// Check whether the parameters for a call to the builtin function
-// make are OK for a channel.  A channel can take an optional single
-// parameter which is the buffer size.
-
-bool
-Channel_type::do_check_make_expression(Expression_list* args,
-                                     source_location location)
-{
-  if (args != NULL && !args->empty())
-    {
-      if (!Type::check_int_value(args->front(),
-                                _("bad buffer size when making channel"),
-                                location))
-       return false;
-      else if (args->size() > 1)
-       {
-         error_at(location, "too many arguments when making channel");
-         return false;
-       }
-    }
-  return true;
-}
-
-// Return the tree for a channel type.  A channel is a pointer to a
-// __go_channel struct.  The __go_channel struct is defined in
-// libgo/runtime/channel.h.
-
-tree
-Channel_type::do_get_tree(Gogo*)
-{
-  static tree type_tree;
-  if (type_tree == NULL_TREE)
-    {
-      tree ret = make_node(RECORD_TYPE);
-      TYPE_NAME(ret) = get_identifier("__go_channel");
-      TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
-                                      ret);
-      type_tree = build_pointer_type(ret);
-      go_preserve_from_gc(type_tree);
-    }
-  return type_tree;
-}
-
-// Initialize a channel variable.
-
-tree
-Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// Handle the builtin function make for a channel.
-
-tree
-Channel_type::do_make_expression_tree(Translate_context* context,
-                                     Expression_list* args,
-                                     source_location location)
-{
-  Gogo* gogo = context->gogo();
-  tree channel_type = this->get_tree(gogo);
-
-  tree element_tree = this->element_type_->get_tree(gogo);
-  tree element_size_tree = size_in_bytes(element_tree);
-
-  tree bad_index = NULL_TREE;
-
-  tree expr_tree;
-  if (args == NULL || args->empty())
-    expr_tree = size_zero_node;
-  else
-    {
-      expr_tree = args->front()->get_tree(context);
-      if (expr_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(expr_tree))
-       expr_tree = save_expr(expr_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
-       expr_tree = convert_to_integer(sizetype, expr_tree);
-      bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
-                                          location);
-    }
-
-  static tree new_channel_fndecl;
-  tree ret = Gogo::call_builtin(&new_channel_fndecl,
-                               location,
-                               "__go_new_channel",
-                               2,
-                               channel_type,
-                               sizetype,
-                               element_size_tree,
-                               sizetype,
-                               expr_tree);
-  if (ret == error_mark_node)
-    return error_mark_node;
-  // This can panic if the capacity is out of range.
-  TREE_NOTHROW(new_channel_fndecl) = 0;
-
-  if (bad_index == NULL_TREE)
-    return ret;
-  else
-    {
-      tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
-                                      location);
-      return build2(COMPOUND_EXPR, TREE_TYPE(ret),
-                   build3(COND_EXPR, void_type_node,
-                          bad_index, crash, NULL_TREE),
-                   ret);
-    }
-}
-
-// Build a type descriptor for a channel type.
-
-Type*
-Channel_type::make_chan_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(3,
-                                      "", tdt,
-                                      "elem", ptdt,
-                                      "dir", uintptr_type);
-
-      ret = Type::make_builtin_named_type("ChanType", sf);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for a map type.
-
-Expression*
-Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* ctdt = Channel_type::make_chan_type_descriptor_type();
-
-  const Struct_field_list* fields = ctdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  go_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_CHAN,
-                                                   name, NULL, true));
-
-  ++p;
-  go_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
-
-  ++p;
-  go_assert(p->field_name() == "dir");
-  // These bits must match the ones in libgo/runtime/go-type.h.
-  int val = 0;
-  if (this->may_receive_)
-    val |= 1;
-  if (this->may_send_)
-    val |= 2;
-  mpz_t iv;
-  mpz_init_set_ui(iv, val);
-  vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
-  mpz_clear(iv);
-
-  ++p;
-  go_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(ctdt, vals, bloc);
-}
-
-// Reflection string.
-
-void
-Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  if (!this->may_send_)
-    ret->append("<-");
-  ret->append("chan");
-  if (!this->may_receive_)
-    ret->append("<-");
-  ret->push_back(' ');
-  this->append_reflection(this->element_type_, gogo, ret);
-}
-
-// Mangled name.
-
-void
-Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('C');
-  this->append_mangled_name(this->element_type_, gogo, ret);
-  if (this->may_send_)
-    ret->push_back('s');
-  if (this->may_receive_)
-    ret->push_back('r');
-  ret->push_back('e');
-}
-
-// Export.
-
-void
-Channel_type::do_export(Export* exp) const
-{
-  exp->write_c_string("chan ");
-  if (this->may_send_ && !this->may_receive_)
-    exp->write_c_string("-< ");
-  else if (this->may_receive_ && !this->may_send_)
-    exp->write_c_string("<- ");
-  exp->write_type(this->element_type_);
-}
-
-// Import.
-
-Channel_type*
-Channel_type::do_import(Import* imp)
-{
-  imp->require_c_string("chan ");
-
-  bool may_send;
-  bool may_receive;
-  if (imp->match_c_string("-< "))
-    {
-      imp->advance(3);
-      may_send = true;
-      may_receive = false;
-    }
-  else if (imp->match_c_string("<- "))
-    {
-      imp->advance(3);
-      may_receive = true;
-      may_send = false;
-    }
-  else
-    {
-      may_send = true;
-      may_receive = true;
-    }
-
-  Type* element_type = imp->read_type();
-
-  return Type::make_channel_type(may_send, may_receive, element_type);
-}
-
-// Make a new channel type.
-
-Channel_type*
-Type::make_channel_type(bool send, bool receive, Type* element_type)
-{
-  return new Channel_type(send, receive, element_type);
-}
-
-// Class Interface_type.
-
-// Traversal.
-
-int
-Interface_type::do_traverse(Traverse* traverse)
-{
-  if (this->methods_ == NULL)
-    return TRAVERSE_CONTINUE;
-  return this->methods_->traverse(traverse);
-}
-
-// Finalize the methods.  This handles interface inheritance.
-
-void
-Interface_type::finalize_methods()
-{
-  if (this->methods_ == NULL)
-    return;
-  std::vector<Named_type*> seen;
-  bool is_recursive = false;
-  size_t from = 0;
-  size_t to = 0;
-  while (from < this->methods_->size())
-    {
-      const Typed_identifier* p = &this->methods_->at(from);
-      if (!p->name().empty())
-       {
-         size_t i;
-         for (i = 0; i < to; ++i)
-           {
-             if (this->methods_->at(i).name() == p->name())
-               {
-                 error_at(p->location(), "duplicate method %qs",
-                          Gogo::message_name(p->name()).c_str());
-                 break;
-               }
-           }
-         if (i == to)
-           {
-             if (from != to)
-               this->methods_->set(to, *p);
-             ++to;
-           }
-         ++from;
-         continue;
-       }
-
-      Interface_type* it = p->type()->interface_type();
-      if (it == NULL)
-       {
-         error_at(p->location(), "interface contains embedded non-interface");
-         ++from;
-         continue;
-       }
-      if (it == this)
-       {
-         if (!is_recursive)
-           {
-             error_at(p->location(), "invalid recursive interface");
-             is_recursive = true;
-           }
-         ++from;
-         continue;
-       }
-
-      Named_type* nt = p->type()->named_type();
-      if (nt != NULL)
-       {
-         std::vector<Named_type*>::const_iterator q;
-         for (q = seen.begin(); q != seen.end(); ++q)
-           {
-             if (*q == nt)
-               {
-                 error_at(p->location(), "inherited interface loop");
-                 break;
-               }
-           }
-         if (q != seen.end())
-           {
-             ++from;
-             continue;
-           }
-         seen.push_back(nt);
-       }
-
-      const Typed_identifier_list* methods = it->methods();
-      if (methods == NULL)
-       {
-         ++from;
-         continue;
-       }
-      for (Typed_identifier_list::const_iterator q = methods->begin();
-          q != methods->end();
-          ++q)
-       {
-         if (q->name().empty())
-           {
-             if (q->type()->forwarded() == p->type()->forwarded())
-               error_at(p->location(), "interface inheritance loop");
-             else
-               {
-                 size_t i;
-                 for (i = from + 1; i < this->methods_->size(); ++i)
-                   {
-                     const Typed_identifier* r = &this->methods_->at(i);
-                     if (r->name().empty()
-                         && r->type()->forwarded() == q->type()->forwarded())
-                       {
-                         error_at(p->location(),
-                                  "inherited interface listed twice");
-                         break;
-                       }
-                   }
-                 if (i == this->methods_->size())
-                   this->methods_->push_back(Typed_identifier(q->name(),
-                                                              q->type(),
-                                                              p->location()));
-               }
-           }
-         else if (this->find_method(q->name()) == NULL)
-           this->methods_->push_back(Typed_identifier(q->name(), q->type(),
-                                                      p->location()));
-         else
-           {
-             if (!is_recursive)
-               error_at(p->location(), "inherited method %qs is ambiguous",
-                        Gogo::message_name(q->name()).c_str());
-           }
-       }
-      ++from;
-    }
-  if (to == 0)
-    {
-      delete this->methods_;
-      this->methods_ = NULL;
-    }
-  else
-    {
-      this->methods_->resize(to);
-      this->methods_->sort_by_name();
-    }
-}
-
-// Return the method NAME, or NULL.
-
-const Typed_identifier*
-Interface_type::find_method(const std::string& name) const
-{
-  if (this->methods_ == NULL)
-    return NULL;
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    if (p->name() == name)
-      return &*p;
-  return NULL;
-}
-
-// Return the method index.
-
-size_t
-Interface_type::method_index(const std::string& name) const
-{
-  go_assert(this->methods_ != NULL);
-  size_t ret = 0;
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p, ++ret)
-    if (p->name() == name)
-      return ret;
-  go_unreachable();
-}
-
-// Return whether NAME is an unexported method, for better error
-// reporting.
-
-bool
-Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
-{
-  if (this->methods_ == NULL)
-    return false;
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    {
-      const std::string& method_name(p->name());
-      if (Gogo::is_hidden_name(method_name)
-         && name == Gogo::unpack_hidden_name(method_name)
-         && gogo->pack_hidden_name(name, false) != method_name)
-       return true;
-    }
-  return false;
-}
-
-// Whether this type is identical with T.
-
-bool
-Interface_type::is_identical(const Interface_type* t,
-                            bool errors_are_identical) const
-{
-  // We require the same methods with the same types.  The methods
-  // have already been sorted.
-  if (this->methods() == NULL || t->methods() == NULL)
-    return this->methods() == t->methods();
-
-  Typed_identifier_list::const_iterator p1 = this->methods()->begin();
-  for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
-       p2 != t->methods()->end();
-       ++p1, ++p2)
-    {
-      if (p1 == this->methods()->end())
-       return false;
-      if (p1->name() != p2->name()
-         || !Type::are_identical(p1->type(), p2->type(),
-                                 errors_are_identical, NULL))
-       return false;
-    }
-  if (p1 != this->methods()->end())
-    return false;
-  return true;
-}
-
-// Whether we can assign the interface type T to this type.  The types
-// are known to not be identical.  An interface assignment is only
-// permitted if T is known to implement all methods in THIS.
-// Otherwise a type guard is required.
-
-bool
-Interface_type::is_compatible_for_assign(const Interface_type* t,
-                                        std::string* reason) const
-{
-  if (this->methods() == NULL)
-    return true;
-  for (Typed_identifier_list::const_iterator p = this->methods()->begin();
-       p != this->methods()->end();
-       ++p)
-    {
-      const Typed_identifier* m = t->find_method(p->name());
-      if (m == NULL)
-       {
-         if (reason != NULL)
-           {
-             char buf[200];
-             snprintf(buf, sizeof buf,
-                      _("need explicit conversion; missing method %s%s%s"),
-                      open_quote, Gogo::message_name(p->name()).c_str(),
-                      close_quote);
-             reason->assign(buf);
-           }
-         return false;
-       }
-
-      std::string subreason;
-      if (!Type::are_identical(p->type(), m->type(), true, &subreason))
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = 100 + n.length() + subreason.length();
-             char* buf = new char[len];
-             if (subreason.empty())
-               snprintf(buf, len, _("incompatible type for method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             else
-               snprintf(buf, len,
-                        _("incompatible type for method %s%s%s (%s)"),
-                        open_quote, n.c_str(), close_quote,
-                        subreason.c_str());
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Hash code.
-
-unsigned int
-Interface_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->methods_ != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-          p != this->methods_->end();
-          ++p)
-       {
-         ret = Type::hash_string(p->name(), ret);
-         ret += p->type()->hash_for_method(gogo);
-         ret <<= 1;
-       }
-    }
-  return ret;
-}
-
-// Return true if T implements the interface.  If it does not, and
-// REASON is not NULL, set *REASON to a useful error message.
-
-bool
-Interface_type::implements_interface(const Type* t, std::string* reason) const
-{
-  if (this->methods_ == NULL)
-    return true;
-
-  bool is_pointer = false;
-  const Named_type* nt = t->named_type();
-  const Struct_type* st = t->struct_type();
-  // If we start with a named type, we don't dereference it to find
-  // methods.
-  if (nt == NULL)
-    {
-      const Type* pt = t->points_to();
-      if (pt != NULL)
-       {
-         // If T is a pointer to a named type, then we need to look at
-         // the type to which it points.
-         is_pointer = true;
-         nt = pt->named_type();
-         st = pt->struct_type();
-       }
-    }
-
-  // If we have a named type, get the methods from it rather than from
-  // any struct type.
-  if (nt != NULL)
-    st = NULL;
-
-  // Only named and struct types have methods.
-  if (nt == NULL && st == NULL)
-    {
-      if (reason != NULL)
-       {
-         if (t->points_to() != NULL
-             && t->points_to()->interface_type() != NULL)
-           reason->assign(_("pointer to interface type has no methods"));
-         else
-           reason->assign(_("type has no methods"));
-       }
-      return false;
-    }
-
-  if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
-    {
-      if (reason != NULL)
-       {
-         if (t->points_to() != NULL
-             && t->points_to()->interface_type() != NULL)
-           reason->assign(_("pointer to interface type has no methods"));
-         else
-           reason->assign(_("type has no methods"));
-       }
-      return false;
-    }
-
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    {
-      bool is_ambiguous = false;
-      Method* m = (nt != NULL
-                  ? nt->method_function(p->name(), &is_ambiguous)
-                  : st->method_function(p->name(), &is_ambiguous));
-      if (m == NULL)
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = n.length() + 100;
-             char* buf = new char[len];
-             if (is_ambiguous)
-               snprintf(buf, len, _("ambiguous method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             else
-               snprintf(buf, len, _("missing method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-
-      Function_type *p_fn_type = p->type()->function_type();
-      Function_type* m_fn_type = m->type()->function_type();
-      go_assert(p_fn_type != NULL && m_fn_type != NULL);
-      std::string subreason;
-      if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason))
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = 100 + n.length() + subreason.length();
-             char* buf = new char[len];
-             if (subreason.empty())
-               snprintf(buf, len, _("incompatible type for method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             else
-               snprintf(buf, len,
-                        _("incompatible type for method %s%s%s (%s)"),
-                        open_quote, n.c_str(), close_quote,
-                        subreason.c_str());
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-
-      if (!is_pointer && !m->is_value_method())
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = 100 + n.length();
-             char* buf = new char[len];
-             snprintf(buf, len, _("method %s%s%s requires a pointer"),
-                      open_quote, n.c_str(), close_quote);
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Return a tree for an interface type.  An interface is a pointer to
-// a struct.  The struct has three fields.  The first field is a
-// pointer to the type descriptor for the dynamic type of the object.
-// The second field is a pointer to a table of methods for the
-// interface to be used with the object.  The third field is the value
-// of the object itself.
-
-tree
-Interface_type::do_get_tree(Gogo* gogo)
-{
-  if (this->methods_ == NULL)
-    return Interface_type::empty_type_tree(gogo);
-  else
-    {
-      tree t = Interface_type::non_empty_type_tree(this->location_);
-      return this->fill_in_tree(gogo, t);
-    }
-}
-
-// Return a singleton struct for an empty interface type.  We use the
-// same type for all empty interfaces.  This lets us assign them to
-// each other directly without triggering GIMPLE type errors.
-
-tree
-Interface_type::empty_type_tree(Gogo* gogo)
-{
-  static tree empty_interface;
-  if (empty_interface != NULL_TREE)
-    return empty_interface;
-
-  tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
-  dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
-  return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
-                             NULL_TREE, 2,
-                             "__type_descriptor",
-                             dtype,
-                             "__object",
-                             ptr_type_node);
-}
-
-// Return a new struct for a non-empty interface type.  The correct
-// values are filled in by fill_in_tree.
-
-tree
-Interface_type::non_empty_type_tree(source_location location)
-{
-  tree ret = make_node(RECORD_TYPE);
-
-  tree field_trees = NULL_TREE;
-  tree* pp = &field_trees;
-
-  tree name_tree = get_identifier("__methods");
-  tree field = build_decl(location, FIELD_DECL, name_tree, ptr_type_node);
-  DECL_CONTEXT(field) = ret;
-  *pp = field;
-  pp = &DECL_CHAIN(field);
-
-  name_tree = get_identifier("__object");
-  field = build_decl(location, FIELD_DECL, name_tree, ptr_type_node);
-  DECL_CONTEXT(field) = ret;
-  *pp = field;
-
-  TYPE_FIELDS(ret) = field_trees;
-
-  layout_type(ret);
-
-  return ret;
-}
-
-// Fill in the tree for an interface type.  This is used for named
-// interface types.
-
-tree
-Interface_type::fill_in_tree(Gogo* gogo, tree type)
-{
-  go_assert(this->methods_ != NULL);
-
-  // Build the type of the table of methods.
-
-  tree method_table = make_node(RECORD_TYPE);
-
-  // The first field is a pointer to the type descriptor.
-  tree name_tree = get_identifier("__type_descriptor");
-  tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
-  dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
-  tree field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
-  DECL_CONTEXT(field) = method_table;
-  TYPE_FIELDS(method_table) = field;
-
-  std::string last_name = "";
-  tree* pp = &DECL_CHAIN(field);
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    {
-      std::string name = Gogo::unpack_hidden_name(p->name());
-      name_tree = get_identifier_with_length(name.data(), name.length());
-      tree field_type = p->type()->get_tree(gogo);
-      if (field_type == error_mark_node)
-       return error_mark_node;
-      field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
-      DECL_CONTEXT(field) = method_table;
-      *pp = field;
-      pp = &DECL_CHAIN(field);
-      // Sanity check: the names should be sorted.
-      go_assert(p->name() > last_name);
-      last_name = p->name();
-    }
-  layout_type(method_table);
-
-  // Update the type of the __methods field from a generic pointer to
-  // a pointer to the method table.
-  field = TYPE_FIELDS(type);
-  go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
-
-  TREE_TYPE(field) = build_pointer_type(method_table);
-
-  return type;
-}
-
-// Initialization value.
-
-tree
-Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-  for (tree field = TYPE_FIELDS(type_tree);
-       field != NULL_TREE;
-       field = DECL_CHAIN(field))
-    {
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-    }
-
-  tree ret = build_constructor(type_tree, init);
-  TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// The type of an interface type descriptor.
-
-Type*
-Interface_type::make_interface_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* string_type = Type::lookup_string_type();
-      Type* pointer_string_type = Type::make_pointer_type(string_type);
-
-      Struct_type* sm =
-       Type::make_builtin_struct_type(3,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "typ", ptdt);
-
-      Type* nsm = Type::make_builtin_named_type("imethod", sm);
-
-      Type* slice_nsm = Type::make_array_type(nsm, NULL);
-
-      Struct_type* s = Type::make_builtin_struct_type(2,
-                                                     "", tdt,
-                                                     "methods", slice_nsm);
-
-      ret = Type::make_builtin_named_type("InterfaceType", s);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for an interface type.
-
-Expression*
-Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* itdt = Interface_type::make_interface_type_descriptor_type();
-
-  const Struct_field_list* ifields = itdt->struct_type()->fields();
-
-  Expression_list* ivals = new Expression_list();
-  ivals->reserve(2);
-
-  Struct_field_list::const_iterator pif = ifields->begin();
-  go_assert(pif->field_name() == "commonType");
-  ivals->push_back(this->type_descriptor_constructor(gogo,
-                                                    RUNTIME_TYPE_KIND_INTERFACE,
-                                                    name, NULL, true));
-
-  ++pif;
-  go_assert(pif->field_name() == "methods");
-
-  Expression_list* methods = new Expression_list();
-  if (this->methods_ != NULL && !this->methods_->empty())
-    {
-      Type* elemtype = pif->type()->array_type()->element_type();
-
-      methods->reserve(this->methods_->size());
-      for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
-          pm != this->methods_->end();
-          ++pm)
-       {
-         const Struct_field_list* mfields = elemtype->struct_type()->fields();
-
-         Expression_list* mvals = new Expression_list();
-         mvals->reserve(3);
-
-         Struct_field_list::const_iterator pmf = mfields->begin();
-         go_assert(pmf->field_name() == "name");
-         std::string s = Gogo::unpack_hidden_name(pm->name());
-         Expression* e = Expression::make_string(s, bloc);
-         mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
-
-         ++pmf;
-         go_assert(pmf->field_name() == "pkgPath");
-         if (!Gogo::is_hidden_name(pm->name()))
-           mvals->push_back(Expression::make_nil(bloc));
-         else
-           {
-             s = Gogo::hidden_name_prefix(pm->name());
-             e = Expression::make_string(s, bloc);
-             mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
-           }
-
-         ++pmf;
-         go_assert(pmf->field_name() == "typ");
-         mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
-
-         ++pmf;
-         go_assert(pmf == mfields->end());
-
-         e = Expression::make_struct_composite_literal(elemtype, mvals,
-                                                       bloc);
-         methods->push_back(e);
-       }
-    }
-
-  ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
-                                                           methods, bloc));
-
-  ++pif;
-  go_assert(pif == ifields->end());
-
-  return Expression::make_struct_composite_literal(itdt, ivals, bloc);
-}
-
-// Reflection string.
-
-void
-Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->append("interface {");
-  if (this->methods_ != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-          p != this->methods_->end();
-          ++p)
-       {
-         if (p != this->methods_->begin())
-           ret->append(";");
-         ret->push_back(' ');
-         ret->append(Gogo::unpack_hidden_name(p->name()));
-         std::string sub = p->type()->reflection(gogo);
-         go_assert(sub.compare(0, 4, "func") == 0);
-         sub = sub.substr(4);
-         ret->append(sub);
-       }
-    }
-  ret->append(" }");
-}
-
-// Mangled name.
-
-void
-Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('I');
-
-  const Typed_identifier_list* methods = this->methods_;
-  if (methods != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = methods->begin();
-          p != methods->end();
-          ++p)
-       {
-         std::string n = Gogo::unpack_hidden_name(p->name());
-         char buf[20];
-         snprintf(buf, sizeof buf, "%u_",
-                  static_cast<unsigned int>(n.length()));
-         ret->append(buf);
-         ret->append(n);
-         this->append_mangled_name(p->type(), gogo, ret);
-       }
-    }
-
-  ret->push_back('e');
-}
-
-// Export.
-
-void
-Interface_type::do_export(Export* exp) const
-{
-  exp->write_c_string("interface { ");
-
-  const Typed_identifier_list* methods = this->methods_;
-  if (methods != NULL)
-    {
-      for (Typed_identifier_list::const_iterator pm = methods->begin();
-          pm != methods->end();
-          ++pm)
-       {
-         exp->write_string(pm->name());
-         exp->write_c_string(" (");
-
-         const Function_type* fntype = pm->type()->function_type();
-
-         bool first = true;
-         const Typed_identifier_list* parameters = fntype->parameters();
-         if (parameters != NULL)
-           {
-             bool is_varargs = fntype->is_varargs();
-             for (Typed_identifier_list::const_iterator pp =
-                    parameters->begin();
-                  pp != parameters->end();
-                  ++pp)
-               {
-                 if (first)
-                   first = false;
-                 else
-                   exp->write_c_string(", ");
-                 if (!is_varargs || pp + 1 != parameters->end())
-                   exp->write_type(pp->type());
-                 else
-                   {
-                     exp->write_c_string("...");
-                     Type *pptype = pp->type();
-                     exp->write_type(pptype->array_type()->element_type());
-                   }
-               }
-           }
-
-         exp->write_c_string(")");
-
-         const Typed_identifier_list* results = fntype->results();
-         if (results != NULL)
-           {
-             exp->write_c_string(" ");
-             if (results->size() == 1)
-               exp->write_type(results->begin()->type());
-             else
-               {
-                 first = true;
-                 exp->write_c_string("(");
-                 for (Typed_identifier_list::const_iterator p =
-                        results->begin();
-                      p != results->end();
-                      ++p)
-                   {
-                     if (first)
-                       first = false;
-                     else
-                       exp->write_c_string(", ");
-                     exp->write_type(p->type());
-                   }
-                 exp->write_c_string(")");
-               }
-           }
-
-         exp->write_c_string("; ");
-       }
-    }
-
-  exp->write_c_string("}");
-}
-
-// Import an interface type.
-
-Interface_type*
-Interface_type::do_import(Import* imp)
-{
-  imp->require_c_string("interface { ");
-
-  Typed_identifier_list* methods = new Typed_identifier_list;
-  while (imp->peek_char() != '}')
-    {
-      std::string name = imp->read_identifier();
-      imp->require_c_string(" (");
-
-      Typed_identifier_list* parameters;
-      bool is_varargs = false;
-      if (imp->peek_char() == ')')
-       parameters = NULL;
-      else
-       {
-         parameters = new Typed_identifier_list;
-         while (true)
-           {
-             if (imp->match_c_string("..."))
-               {
-                 imp->advance(3);
-                 is_varargs = true;
-               }
-
-             Type* ptype = imp->read_type();
-             if (is_varargs)
-               ptype = Type::make_array_type(ptype, NULL);
-             parameters->push_back(Typed_identifier(Import::import_marker,
-                                                    ptype, imp->location()));
-             if (imp->peek_char() != ',')
-               break;
-             go_assert(!is_varargs);
-             imp->require_c_string(", ");
-           }
-       }
-      imp->require_c_string(")");
-
-      Typed_identifier_list* results;
-      if (imp->peek_char() != ' ')
-       results = NULL;
-      else
-       {
-         results = new Typed_identifier_list;
-         imp->advance(1);
-         if (imp->peek_char() != '(')
-           {
-             Type* rtype = imp->read_type();
-             results->push_back(Typed_identifier(Import::import_marker,
-                                                 rtype, imp->location()));
-           }
-         else
-           {
-             imp->advance(1);
-             while (true)
-               {
-                 Type* rtype = imp->read_type();
-                 results->push_back(Typed_identifier(Import::import_marker,
-                                                     rtype, imp->location()));
-                 if (imp->peek_char() != ',')
-                   break;
-                 imp->require_c_string(", ");
-               }
-             imp->require_c_string(")");
-           }
-       }
-
-      Function_type* fntype = Type::make_function_type(NULL, parameters,
-                                                      results,
-                                                      imp->location());
-      if (is_varargs)
-       fntype->set_is_varargs();
-      methods->push_back(Typed_identifier(name, fntype, imp->location()));
-
-      imp->require_c_string("; ");
-    }
-
-  imp->require_c_string("}");
-
-  if (methods->empty())
-    {
-      delete methods;
-      methods = NULL;
-    }
-
-  return Type::make_interface_type(methods, imp->location());
-}
-
-// Make an interface type.
-
-Interface_type*
-Type::make_interface_type(Typed_identifier_list* methods,
-                         source_location location)
-{
-  return new Interface_type(methods, location);
-}
-
-// Class Method.
-
-// Bind a method to an object.
-
-Expression*
-Method::bind_method(Expression* expr, source_location location) const
-{
-  if (this->stub_ == NULL)
-    {
-      // When there is no stub object, the binding is determined by
-      // the child class.
-      return this->do_bind_method(expr, location);
-    }
-
-  Expression* func = Expression::make_func_reference(this->stub_, NULL,
-                                                    location);
-  return Expression::make_bound_method(expr, func, location);
-}
-
-// Return the named object associated with a method.  This may only be
-// called after methods are finalized.
-
-Named_object*
-Method::named_object() const
-{
-  if (this->stub_ != NULL)
-    return this->stub_;
-  return this->do_named_object();
-}
-
-// Class Named_method.
-
-// The type of the method.
-
-Function_type*
-Named_method::do_type() const
-{
-  if (this->named_object_->is_function())
-    return this->named_object_->func_value()->type();
-  else if (this->named_object_->is_function_declaration())
-    return this->named_object_->func_declaration_value()->type();
-  else
-    go_unreachable();
-}
-
-// Return the location of the method receiver.
-
-source_location
-Named_method::do_receiver_location() const
-{
-  return this->do_type()->receiver()->location();
-}
-
-// Bind a method to an object.
-
-Expression*
-Named_method::do_bind_method(Expression* expr, source_location location) const
-{
-  Expression* func = Expression::make_func_reference(this->named_object_, NULL,
-                                                    location);
-  Bound_method_expression* bme = Expression::make_bound_method(expr, func,
-                                                              location);
-  // If this is not a local method, and it does not use a stub, then
-  // the real method expects a different type.  We need to cast the
-  // first argument.
-  if (this->depth() > 0 && !this->needs_stub_method())
-    {
-      Function_type* ftype = this->do_type();
-      go_assert(ftype->is_method());
-      Type* frtype = ftype->receiver()->type();
-      bme->set_first_argument_type(frtype);
-    }
-  return bme;
-}
-
-// Class Interface_method.
-
-// Bind a method to an object.
-
-Expression*
-Interface_method::do_bind_method(Expression* expr,
-                                source_location location) const
-{
-  return Expression::make_interface_field_reference(expr, this->name_,
-                                                   location);
-}
-
-// Class Methods.
-
-// Insert a new method.  Return true if it was inserted, false
-// otherwise.
-
-bool
-Methods::insert(const std::string& name, Method* m)
-{
-  std::pair<Method_map::iterator, bool> ins =
-    this->methods_.insert(std::make_pair(name, m));
-  if (ins.second)
-    return true;
-  else
-    {
-      Method* old_method = ins.first->second;
-      if (m->depth() < old_method->depth())
-       {
-         delete old_method;
-         ins.first->second = m;
-         return true;
-       }
-      else
-       {
-         if (m->depth() == old_method->depth())
-           old_method->set_is_ambiguous();
-         return false;
-       }
-    }
-}
-
-// Return the number of unambiguous methods.
-
-size_t
-Methods::count() const
-{
-  size_t ret = 0;
-  for (Method_map::const_iterator p = this->methods_.begin();
-       p != this->methods_.end();
-       ++p)
-    if (!p->second->is_ambiguous())
-      ++ret;
-  return ret;
-}
-
-// Class Named_type.
-
-// Return the name of the type.
-
-const std::string&
-Named_type::name() const
-{
-  return this->named_object_->name();
-}
-
-// Return the name of the type to use in an error message.
-
-std::string
-Named_type::message_name() const
-{
-  return this->named_object_->message_name();
-}
-
-// Return the base type for this type.  We have to be careful about
-// circular type definitions, which are invalid but may be seen here.
-
-Type*
-Named_type::named_base()
-{
-  if (this->seen_ > 0)
-    return this;
-  ++this->seen_;
-  Type* ret = this->type_->base();
-  --this->seen_;
-  return ret;
-}
-
-const Type*
-Named_type::named_base() const
-{
-  if (this->seen_ > 0)
-    return this;
-  ++this->seen_;
-  const Type* ret = this->type_->base();
-  --this->seen_;
-  return ret;
-}
-
-// Return whether this is an error type.  We have to be careful about
-// circular type definitions, which are invalid but may be seen here.
-
-bool
-Named_type::is_named_error_type() const
-{
-  if (this->seen_ > 0)
-    return false;
-  ++this->seen_;
-  bool ret = this->type_->is_error_type();
-  --this->seen_;
-  return ret;
-}
-
-// Add a method to this type.
-
-Named_object*
-Named_type::add_method(const std::string& name, Function* function)
-{
-  if (this->local_methods_ == NULL)
-    this->local_methods_ = new Bindings(NULL);
-  return this->local_methods_->add_function(name, NULL, function);
-}
-
-// Add a method declaration to this type.
-
-Named_object*
-Named_type::add_method_declaration(const std::string& name, Package* package,
-                                  Function_type* type,
-                                  source_location location)
-{
-  if (this->local_methods_ == NULL)
-    this->local_methods_ = new Bindings(NULL);
-  return this->local_methods_->add_function_declaration(name, package, type,
-                                                       location);
-}
-
-// Add an existing method to this type.
-
-void
-Named_type::add_existing_method(Named_object* no)
-{
-  if (this->local_methods_ == NULL)
-    this->local_methods_ = new Bindings(NULL);
-  this->local_methods_->add_named_object(no);
-}
-
-// Look for a local method NAME, and returns its named object, or NULL
-// if not there.
-
-Named_object*
-Named_type::find_local_method(const std::string& name) const
-{
-  if (this->local_methods_ == NULL)
-    return NULL;
-  return this->local_methods_->lookup(name);
-}
-
-// Return whether NAME is an unexported field or method, for better
-// error reporting.
-
-bool
-Named_type::is_unexported_local_method(Gogo* gogo,
-                                      const std::string& name) const
-{
-  Bindings* methods = this->local_methods_;
-  if (methods != NULL)
-    {
-      for (Bindings::const_declarations_iterator p =
-            methods->begin_declarations();
-          p != methods->end_declarations();
-          ++p)
-       {
-         if (Gogo::is_hidden_name(p->first)
-             && name == Gogo::unpack_hidden_name(p->first)
-             && gogo->pack_hidden_name(name, false) != p->first)
-           return true;
-       }
-    }
-  return false;
-}
-
-// Build the complete list of methods for this type, which means
-// recursively including all methods for anonymous fields.  Create all
-// stub methods.
-
-void
-Named_type::finalize_methods(Gogo* gogo)
-{
-  if (this->all_methods_ != NULL)
-    return;
-
-  if (this->local_methods_ != NULL
-      && (this->points_to() != NULL || this->interface_type() != NULL))
-    {
-      const Bindings* lm = this->local_methods_;
-      for (Bindings::const_declarations_iterator p = lm->begin_declarations();
-          p != lm->end_declarations();
-          ++p)
-       error_at(p->second->location(),
-                "invalid pointer or interface receiver type");
-      delete this->local_methods_;
-      this->local_methods_ = NULL;
-      return;
-    }
-
-  Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
-}
-
-// Return the method NAME, or NULL if there isn't one or if it is
-// ambiguous.  Set *IS_AMBIGUOUS if the method exists but is
-// ambiguous.
-
-Method*
-Named_type::method_function(const std::string& name, bool* is_ambiguous) const
-{
-  return Type::method_function(this->all_methods_, name, is_ambiguous);
-}
-
-// Return a pointer to the interface method table for this type for
-// the interface INTERFACE.  IS_POINTER is true if this is for a
-// pointer to THIS.
-
-tree
-Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
-                                  bool is_pointer)
-{
-  go_assert(!interface->is_empty());
-
-  Interface_method_tables** pimt = (is_pointer
-                                   ? &this->interface_method_tables_
-                                   : &this->pointer_interface_method_tables_);
-
-  if (*pimt == NULL)
-    *pimt = new Interface_method_tables(5);
-
-  std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
-  std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
-
-  if (ins.second)
-    {
-      // This is a new entry in the hash table.
-      go_assert(ins.first->second == NULL_TREE);
-      ins.first->second = gogo->interface_method_table_for_type(interface,
-                                                               this,
-                                                               is_pointer);
-    }
-
-  tree decl = ins.first->second;
-  if (decl == error_mark_node)
-    return error_mark_node;
-  go_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
-  return build_fold_addr_expr(decl);
-}
-
-// Return whether a named type has any hidden fields.
-
-bool
-Named_type::named_type_has_hidden_fields(std::string* reason) const
-{
-  if (this->seen_ > 0)
-    return false;
-  ++this->seen_;
-  bool ret = this->type_->has_hidden_fields(this, reason);
-  --this->seen_;
-  return ret;
-}
-
-// Look for a use of a complete type within another type.  This is
-// used to check that we don't try to use a type within itself.
-
-class Find_type_use : public Traverse
-{
- public:
-  Find_type_use(Named_type* find_type)
-    : Traverse(traverse_types),
-      find_type_(find_type), found_(false)
-  { }
-
-  // Whether we found the type.
-  bool
-  found() const
-  { return this->found_; }
-
- protected:
-  int
-  type(Type*);
-
- private:
-  // The type we are looking for.
-  Named_type* find_type_;
-  // Whether we found the type.
-  bool found_;
-};
-
-// Check for FIND_TYPE in TYPE.
-
-int
-Find_type_use::type(Type* type)
-{
-  if (type->named_type() != NULL && this->find_type_ == type->named_type())
-    {
-      this->found_ = true;
-      return TRAVERSE_EXIT;
-    }
-
-  // It's OK if we see a reference to the type in any type which is
-  // essentially a pointer: a pointer, a slice, a function, a map, or
-  // a channel.
-  if (type->points_to() != NULL
-      || type->is_open_array_type()
-      || type->function_type() != NULL
-      || type->map_type() != NULL
-      || type->channel_type() != NULL)
-    return TRAVERSE_SKIP_COMPONENTS;
-
-  // For an interface, a reference to the type in a method type should
-  // be ignored, but we have to consider direct inheritance.  When
-  // this is called, there may be cases of direct inheritance
-  // represented as a method with no name.
-  if (type->interface_type() != NULL)
-    {
-      const Typed_identifier_list* methods = type->interface_type()->methods();
-      if (methods != NULL)
-       {
-         for (Typed_identifier_list::const_iterator p = methods->begin();
-              p != methods->end();
-              ++p)
-           {
-             if (p->name().empty())
-               {
-                 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-           }
-       }
-      return TRAVERSE_SKIP_COMPONENTS;
-    }
-
-  // Otherwise, FIND_TYPE_ depends on TYPE, in the sense that we need
-  // to convert TYPE to the backend representation before we convert
-  // FIND_TYPE_.
-  if (type->named_type() != NULL)
-    {
-      switch (type->base()->classification())
-       {
-       case Type::TYPE_ERROR:
-       case Type::TYPE_BOOLEAN:
-       case Type::TYPE_INTEGER:
-       case Type::TYPE_FLOAT:
-       case Type::TYPE_COMPLEX:
-       case Type::TYPE_STRING:
-       case Type::TYPE_NIL:
-         break;
-
-       case Type::TYPE_ARRAY:
-       case Type::TYPE_STRUCT:
-         this->find_type_->add_dependency(type->named_type());
-         break;
-
-       case Type::TYPE_VOID:
-       case Type::TYPE_SINK:
-       case Type::TYPE_FUNCTION:
-       case Type::TYPE_POINTER:
-       case Type::TYPE_CALL_MULTIPLE_RESULT:
-       case Type::TYPE_MAP:
-       case Type::TYPE_CHANNEL:
-       case Type::TYPE_INTERFACE:
-       case Type::TYPE_NAMED:
-       case Type::TYPE_FORWARD:
-       default:
-         go_unreachable();
-       }
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Verify that a named type does not refer to itself.
-
-bool
-Named_type::do_verify()
-{
-  Find_type_use find(this);
-  Type::traverse(this->type_, &find);
-  if (find.found())
-    {
-      error_at(this->location_, "invalid recursive type %qs",
-              this->message_name().c_str());
-      this->is_error_ = true;
-      return false;
-    }
-
-  // Check whether any of the local methods overloads an existing
-  // struct field or interface method.  We don't need to check the
-  // list of methods against itself: that is handled by the Bindings
-  // code.
-  if (this->local_methods_ != NULL)
-    {
-      Struct_type* st = this->type_->struct_type();
-      bool found_dup = false;
-      if (st != NULL)
-       {
-         for (Bindings::const_declarations_iterator p =
-                this->local_methods_->begin_declarations();
-              p != this->local_methods_->end_declarations();
-              ++p)
-           {
-             const std::string& name(p->first);
-             if (st != NULL && st->find_local_field(name, NULL) != NULL)
-               {
-                 error_at(p->second->location(),
-                          "method %qs redeclares struct field name",
-                          Gogo::message_name(name).c_str());
-                 found_dup = true;
-               }
-           }
-       }
-      if (found_dup)
-       return false;
-    }
-
-  return true;
-}
-
-// Return whether this type is or contains a pointer.
-
-bool
-Named_type::do_has_pointer() const
-{
-  if (this->seen_ > 0)
-    return false;
-  ++this->seen_;
-  bool ret = this->type_->has_pointer();
-  --this->seen_;
-  return ret;
-}
-
-// Return a hash code.  This is used for method lookup.  We simply
-// hash on the name itself.
-
-unsigned int
-Named_type::do_hash_for_method(Gogo* gogo) const
-{
-  const std::string& name(this->named_object()->name());
-  unsigned int ret = Type::hash_string(name, 0);
-
-  // GOGO will be NULL here when called from Type_hash_identical.
-  // That is OK because that is only used for internal hash tables
-  // where we are going to be comparing named types for equality.  In
-  // other cases, which are cases where the runtime is going to
-  // compare hash codes to see if the types are the same, we need to
-  // include the package prefix and name in the hash.
-  if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
-    {
-      const Package* package = this->named_object()->package();
-      if (package == NULL)
-       {
-         ret = Type::hash_string(gogo->unique_prefix(), ret);
-         ret = Type::hash_string(gogo->package_name(), ret);
-       }
-      else
-       {
-         ret = Type::hash_string(package->unique_prefix(), ret);
-         ret = Type::hash_string(package->name(), ret);
-       }
-    }
-
-  return ret;
-}
-
-// Convert a named type to the backend representation.  In order to
-// get dependencies right, we fill in a dummy structure for this type,
-// then convert all the dependencies, then complete this type.  When
-// this function is complete, the size of the type is known.
-
-void
-Named_type::convert(Gogo* gogo)
-{
-  if (this->is_error_ || this->is_converted_)
-    return;
-
-  this->create_placeholder(gogo);
-
-  // Convert all the dependencies.  If they refer indirectly back to
-  // this type, they will pick up the intermediate tree we just
-  // created.
-  for (std::vector<Named_type*>::const_iterator p = this->dependencies_.begin();
-       p != this->dependencies_.end();
-       ++p)
-    (*p)->convert(gogo);
-
-  // Complete this type.
-  tree t = this->named_tree_;
-  Type* base = this->type_->base();
-  switch (base->classification())
-    {
-    case TYPE_VOID:
-    case TYPE_BOOLEAN:
-    case TYPE_INTEGER:
-    case TYPE_FLOAT:
-    case TYPE_COMPLEX:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      break;
-
-    case TYPE_MAP:
-    case TYPE_CHANNEL:
-      break;
-
-    case TYPE_FUNCTION:
-    case TYPE_POINTER:
-      // The size of these types is already correct.
-      break;
-
-    case TYPE_STRUCT:
-      t = base->struct_type()->fill_in_tree(gogo, t);
-      break;
-
-    case TYPE_ARRAY:
-      if (!base->is_open_array_type())
-       t = base->array_type()->fill_in_array_tree(gogo, t);
-      break;
-
-    case TYPE_INTERFACE:
-      if (!base->interface_type()->is_empty())
-       t = base->interface_type()->fill_in_tree(gogo, t);
-      break;
-
-    case TYPE_ERROR:
-      return;
-
-    default:
-    case TYPE_SINK:
-    case TYPE_CALL_MULTIPLE_RESULT:
-    case TYPE_NAMED:
-    case TYPE_FORWARD:
-      go_unreachable();
-    }
-
-  this->named_tree_ = t;
-
-  if (t == error_mark_node)
-    this->is_error_ = true;
-  else
-    go_assert(TYPE_SIZE(t) != NULL_TREE);
-
-  this->is_converted_ = true;
-}
-
-// Create the placeholder for a named type.  This is the first step in
-// converting to the backend representation.
-
-void
-Named_type::create_placeholder(Gogo* gogo)
-{
-  if (this->is_error_)
-    this->named_tree_ = error_mark_node;
-
-  if (this->named_tree_ != NULL_TREE)
-    return;
-
-  // Create the structure for this type.  Note that because we call
-  // base() here, we don't attempt to represent a named type defined
-  // as another named type.  Instead both named types will point to
-  // different base representations.
-  Type* base = this->type_->base();
-  tree t;
-  switch (base->classification())
-    {
-    case TYPE_ERROR:
-      this->is_error_ = true;
-      this->named_tree_ = error_mark_node;
-      return;
-
-    case TYPE_VOID:
-    case TYPE_BOOLEAN:
-    case TYPE_INTEGER:
-    case TYPE_FLOAT:
-    case TYPE_COMPLEX:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      // These are simple basic types, we can just create them
-      // directly.
-      t = Type::get_named_type_tree(gogo, base);
-      if (t == error_mark_node)
-       {
-         this->is_error_ = true;
-         this->named_tree_ = error_mark_node;
-         return;
-       }
-      t = build_variant_type_copy(t);
-      break;
-
-    case TYPE_MAP:
-    case TYPE_CHANNEL:
-      // All maps and channels have the same type in GENERIC.
-      t = Type::get_named_type_tree(gogo, base);
-      if (t == error_mark_node)
-       {
-         this->is_error_ = true;
-         this->named_tree_ = error_mark_node;
-         return;
-       }
-      t = build_variant_type_copy(t);
-      break;
-
-    case TYPE_FUNCTION:
-    case TYPE_POINTER:
-      t = build_variant_type_copy(ptr_type_node);
-      break;
-
-    case TYPE_STRUCT:
-      t = make_node(RECORD_TYPE);
-      break;
-
-    case TYPE_ARRAY:
-      if (base->is_open_array_type())
-       t = gogo->slice_type_tree(void_type_node);
-      else
-       t = make_node(ARRAY_TYPE);
-      break;
-
-    case TYPE_INTERFACE:
-      if (base->interface_type()->is_empty())
-       {
-         t = Interface_type::empty_type_tree(gogo);
-         t = build_variant_type_copy(t);
-       }
-      else
-       {
-         source_location loc = base->interface_type()->location();
-         t = Interface_type::non_empty_type_tree(loc);
-       }
-      break;
-
-    default:
-    case TYPE_SINK:
-    case TYPE_CALL_MULTIPLE_RESULT:
-    case TYPE_NAMED:
-    case TYPE_FORWARD:
-      go_unreachable();
-    }
-
-  // Create the named type.
-
-  tree id = this->named_object_->get_id(gogo);
-  tree decl = build_decl(this->location_, TYPE_DECL, id, t);
-  TYPE_NAME(t) = decl;
-
-  this->named_tree_ = t;
-}
-
-// Get a tree for a named type.
-
-tree
-Named_type::do_get_tree(Gogo* gogo)
-{
-  if (this->is_error_)
-    return error_mark_node;
-
-  tree t = this->named_tree_;
-
-  // FIXME: GOGO can be NULL when called from go_type_for_size, which
-  // is only used for basic types.
-  if (gogo == NULL || !gogo->named_types_are_converted())
-    {
-      // We have not completed converting named types.  NAMED_TREE_ is
-      // a placeholder and we shouldn't do anything further.
-      if (t != NULL_TREE)
-       return t;
-
-      // We don't build dependencies for types whose sizes do not
-      // change or are not relevant, so we may see them here while
-      // converting types.
-      this->create_placeholder(gogo);
-      t = this->named_tree_;
-      go_assert(t != NULL_TREE);
-      return t;
-    }
-
-  // We are not converting types.  This should only be called if the
-  // type has already been converted.
-  if (!this->is_converted_)
-    {
-      go_assert(saw_errors());
-      return error_mark_node;
-    }
-
-  go_assert(t != NULL_TREE && TYPE_SIZE(t) != NULL_TREE);
-
-  // Complete the tree.
-  Type* base = this->type_->base();
-  tree t1;
-  switch (base->classification())
-    {
-    case TYPE_ERROR:
-      return error_mark_node;
-
-    case TYPE_VOID:
-    case TYPE_BOOLEAN:
-    case TYPE_INTEGER:
-    case TYPE_FLOAT:
-    case TYPE_COMPLEX:
-    case TYPE_STRING:
-    case TYPE_NIL:
-    case TYPE_MAP:
-    case TYPE_CHANNEL:
-    case TYPE_STRUCT:
-    case TYPE_INTERFACE:
-      return t;
-
-    case TYPE_FUNCTION:
-      // Don't build a circular data structure.  GENERIC can't handle
-      // it.
-      if (this->seen_ > 0)
-       {
-         this->is_circular_ = true;
-         return ptr_type_node;
-       }
-      ++this->seen_;
-      t1 = Type::get_named_type_tree(gogo, base);
-      --this->seen_;
-      if (t1 == error_mark_node)
-       return error_mark_node;
-      if (this->is_circular_)
-       t1 = ptr_type_node;
-      go_assert(t != NULL_TREE && TREE_CODE(t) == POINTER_TYPE);
-      go_assert(TREE_CODE(t1) == POINTER_TYPE);
-      TREE_TYPE(t) = TREE_TYPE(t1);
-      return t;
-
-    case TYPE_POINTER:
-      // Don't build a circular data structure. GENERIC can't handle
-      // it.
-      if (this->seen_ > 0)
-       {
-         this->is_circular_ = true;
-         return ptr_type_node;
-       }
-      ++this->seen_;
-      t1 = Type::get_named_type_tree(gogo, base);
-      --this->seen_;
-      if (t1 == error_mark_node)
-       return error_mark_node;
-      if (this->is_circular_)
-       t1 = ptr_type_node;
-      go_assert(t != NULL_TREE && TREE_CODE(t) == POINTER_TYPE);
-      go_assert(TREE_CODE(t1) == POINTER_TYPE);
-      TREE_TYPE(t) = TREE_TYPE(t1);
-      return t;
-
-    case TYPE_ARRAY:
-      if (base->is_open_array_type())
-       {
-         if (this->seen_ > 0)
-           return t;
-         else
-           {
-             ++this->seen_;
-             t = base->array_type()->fill_in_slice_tree(gogo, t);
-             --this->seen_;
-           }
-       }
-      return t;
-
-    default:
-    case TYPE_SINK:
-    case TYPE_CALL_MULTIPLE_RESULT:
-    case TYPE_NAMED:
-    case TYPE_FORWARD:
-      go_unreachable();
-    }
-
-  go_unreachable();
-}
-
-// Build a type descriptor for a named type.
-
-Expression*
-Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  // If NAME is not NULL, then we don't really want the type
-  // descriptor for this type; we want the descriptor for the
-  // underlying type, giving it the name NAME.
-  return this->named_type_descriptor(gogo, this->type_,
-                                    name == NULL ? this : name);
-}
-
-// Add to the reflection string.  This is used mostly for the name of
-// the type used in a type descriptor, not for actual reflection
-// strings.
-
-void
-Named_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  if (this->location() != BUILTINS_LOCATION)
-    {
-      const Package* package = this->named_object_->package();
-      if (package != NULL)
-       ret->append(package->name());
-      else
-       ret->append(gogo->package_name());
-      ret->push_back('.');
-    }
-  if (this->in_function_ != NULL)
-    {
-      ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
-      ret->push_back('$');
-    }
-  ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
-}
-
-// Get the mangled name.
-
-void
-Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  Named_object* no = this->named_object_;
-  std::string name;
-  if (this->location() == BUILTINS_LOCATION)
-    go_assert(this->in_function_ == NULL);
-  else
-    {
-      const std::string& unique_prefix(no->package() == NULL
-                                      ? gogo->unique_prefix()
-                                      : no->package()->unique_prefix());
-      const std::string& package_name(no->package() == NULL
-                                     ? gogo->package_name()
-                                     : no->package()->name());
-      name = unique_prefix;
-      name.append(1, '.');
-      name.append(package_name);
-      name.append(1, '.');
-      if (this->in_function_ != NULL)
-       {
-         name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
-         name.append(1, '$');
-       }
-    }
-  name.append(Gogo::unpack_hidden_name(no->name()));
-  char buf[20];
-  snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
-  ret->append(buf);
-  ret->append(name);
-}
-
-// Export the type.  This is called to export a global type.
-
-void
-Named_type::export_named_type(Export* exp, const std::string&) const
-{
-  // We don't need to write the name of the type here, because it will
-  // be written by Export::write_type anyhow.
-  exp->write_c_string("type ");
-  exp->write_type(this);
-  exp->write_c_string(";\n");
-}
-
-// Import a named type.
-
-void
-Named_type::import_named_type(Import* imp, Named_type** ptype)
-{
-  imp->require_c_string("type ");
-  Type *type = imp->read_type();
-  *ptype = type->named_type();
-  go_assert(*ptype != NULL);
-  imp->require_c_string(";\n");
-}
-
-// Export the type when it is referenced by another type.  In this
-// case Export::export_type will already have issued the name.
-
-void
-Named_type::do_export(Export* exp) const
-{
-  exp->write_type(this->type_);
-
-  // To save space, we only export the methods directly attached to
-  // this type.
-  Bindings* methods = this->local_methods_;
-  if (methods == NULL)
-    return;
-
-  exp->write_c_string("\n");
-  for (Bindings::const_definitions_iterator p = methods->begin_definitions();
-       p != methods->end_definitions();
-       ++p)
-    {
-      exp->write_c_string(" ");
-      (*p)->export_named_object(exp);
-    }
-
-  for (Bindings::const_declarations_iterator p = methods->begin_declarations();
-       p != methods->end_declarations();
-       ++p)
-    {
-      if (p->second->is_function_declaration())
-       {
-         exp->write_c_string(" ");
-         p->second->export_named_object(exp);
-       }
-    }
-}
-
-// Make a named type.
-
-Named_type*
-Type::make_named_type(Named_object* named_object, Type* type,
-                     source_location location)
-{
-  return new Named_type(named_object, type, location);
-}
-
-// Finalize the methods for TYPE.  It will be a named type or a struct
-// type.  This sets *ALL_METHODS to the list of methods, and builds
-// all required stubs.
-
-void
-Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
-                      Methods** all_methods)
-{
-  *all_methods = NULL;
-  Types_seen types_seen;
-  Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
-                            all_methods);
-  Type::build_stub_methods(gogo, type, *all_methods, location);
-}
-
-// Add the methods for TYPE to *METHODS.  FIELD_INDEXES is used to
-// build up the struct field indexes as we go.  DEPTH is the depth of
-// the field within TYPE.  IS_EMBEDDED_POINTER is true if we are
-// adding these methods for an anonymous field with pointer type.
-// NEEDS_STUB_METHOD is true if we need to use a stub method which
-// calls the real method.  TYPES_SEEN is used to avoid infinite
-// recursion.
-
-void
-Type::add_methods_for_type(const Type* type,
-                          const Method::Field_indexes* field_indexes,
-                          unsigned int depth,
-                          bool is_embedded_pointer,
-                          bool needs_stub_method,
-                          Types_seen* types_seen,
-                          Methods** methods)
-{
-  // Pointer types may not have methods.
-  if (type->points_to() != NULL)
-    return;
-
-  const Named_type* nt = type->named_type();
-  if (nt != NULL)
-    {
-      std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
-      if (!ins.second)
-       return;
-    }
-
-  if (nt != NULL)
-    Type::add_local_methods_for_type(nt, field_indexes, depth,
-                                    is_embedded_pointer, needs_stub_method,
-                                    methods);
-
-  Type::add_embedded_methods_for_type(type, field_indexes, depth,
-                                     is_embedded_pointer, needs_stub_method,
-                                     types_seen, methods);
-
-  // If we are called with depth > 0, then we are looking at an
-  // anonymous field of a struct.  If such a field has interface type,
-  // then we need to add the interface methods.  We don't want to add
-  // them when depth == 0, because we will already handle them
-  // following the usual rules for an interface type.
-  if (depth > 0)
-    Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
-}
-
-// Add the local methods for the named type NT to *METHODS.  The
-// parameters are as for add_methods_to_type.
-
-void
-Type::add_local_methods_for_type(const Named_type* nt,
-                                const Method::Field_indexes* field_indexes,
-                                unsigned int depth,
-                                bool is_embedded_pointer,
-                                bool needs_stub_method,
-                                Methods** methods)
-{
-  const Bindings* local_methods = nt->local_methods();
-  if (local_methods == NULL)
-    return;
-
-  if (*methods == NULL)
-    *methods = new Methods();
-
-  for (Bindings::const_declarations_iterator p =
-        local_methods->begin_declarations();
-       p != local_methods->end_declarations();
-       ++p)
-    {
-      Named_object* no = p->second;
-      bool is_value_method = (is_embedded_pointer
-                             || !Type::method_expects_pointer(no));
-      Method* m = new Named_method(no, field_indexes, depth, is_value_method,
-                                  (needs_stub_method
-                                   || (depth > 0 && is_value_method)));
-      if (!(*methods)->insert(no->name(), m))
-       delete m;
-    }
-}
-
-// Add the embedded methods for TYPE to *METHODS.  These are the
-// methods attached to anonymous fields.  The parameters are as for
-// add_methods_to_type.
-
-void
-Type::add_embedded_methods_for_type(const Type* type,
-                                   const Method::Field_indexes* field_indexes,
-                                   unsigned int depth,
-                                   bool is_embedded_pointer,
-                                   bool needs_stub_method,
-                                   Types_seen* types_seen,
-                                   Methods** methods)
-{
-  // Look for anonymous fields in TYPE.  TYPE has fields if it is a
-  // struct.
-  const Struct_type* st = type->struct_type();
-  if (st == NULL)
-    return;
-
-  const Struct_field_list* fields = st->fields();
-  if (fields == NULL)
-    return;
-
-  unsigned int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (!pf->is_anonymous())
-       continue;
-
-      Type* ftype = pf->type();
-      bool is_pointer = false;
-      if (ftype->points_to() != NULL)
-       {
-         ftype = ftype->points_to();
-         is_pointer = true;
-       }
-      Named_type* fnt = ftype->named_type();
-      if (fnt == NULL)
-       {
-         // This is an error, but it will be diagnosed elsewhere.
-         continue;
-       }
-
-      Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
-      sub_field_indexes->next = field_indexes;
-      sub_field_indexes->field_index = i;
-
-      Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
-                                (is_embedded_pointer || is_pointer),
-                                (needs_stub_method
-                                 || is_pointer
-                                 || i > 0),
-                                types_seen,
-                                methods);
-    }
-}
-
-// If TYPE is an interface type, then add its method to *METHODS.
-// This is for interface methods attached to an anonymous field.  The
-// parameters are as for add_methods_for_type.
-
-void
-Type::add_interface_methods_for_type(const Type* type,
-                                    const Method::Field_indexes* field_indexes,
-                                    unsigned int depth,
-                                    Methods** methods)
-{
-  const Interface_type* it = type->interface_type();
-  if (it == NULL)
-    return;
-
-  const Typed_identifier_list* imethods = it->methods();
-  if (imethods == NULL)
-    return;
-
-  if (*methods == NULL)
-    *methods = new Methods();
-
-  for (Typed_identifier_list::const_iterator pm = imethods->begin();
-       pm != imethods->end();
-       ++pm)
-    {
-      Function_type* fntype = pm->type()->function_type();
-      if (fntype == NULL)
-       {
-         // This is an error, but it should be reported elsewhere
-         // when we look at the methods for IT.
-         continue;
-       }
-      go_assert(!fntype->is_method());
-      fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
-      Method* m = new Interface_method(pm->name(), pm->location(), fntype,
-                                      field_indexes, depth);
-      if (!(*methods)->insert(pm->name(), m))
-       delete m;
-    }
-}
-
-// Build stub methods for TYPE as needed.  METHODS is the set of
-// methods for the type.  A stub method may be needed when a type
-// inherits a method from an anonymous field.  When we need the
-// address of the method, as in a type descriptor, we need to build a
-// little stub which does the required field dereferences and jumps to
-// the real method.  LOCATION is the location of the type definition.
-
-void
-Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
-                        source_location location)
-{
-  if (methods == NULL)
-    return;
-  for (Methods::const_iterator p = methods->begin();
-       p != methods->end();
-       ++p)
-    {
-      Method* m = p->second;
-      if (m->is_ambiguous() || !m->needs_stub_method())
-       continue;
-
-      const std::string& name(p->first);
-
-      // Build a stub method.
-
-      const Function_type* fntype = m->type();
-
-      static unsigned int counter;
-      char buf[100];
-      snprintf(buf, sizeof buf, "$this%u", counter);
-      ++counter;
-
-      Type* receiver_type = const_cast<Type*>(type);
-      if (!m->is_value_method())
-       receiver_type = Type::make_pointer_type(receiver_type);
-      source_location receiver_location = m->receiver_location();
-      Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
-                                                       receiver_location);
-
-      const Typed_identifier_list* fnparams = fntype->parameters();
-      Typed_identifier_list* stub_params;
-      if (fnparams == NULL || fnparams->empty())
-       stub_params = NULL;
-      else
-       {
-         // We give each stub parameter a unique name.
-         stub_params = new Typed_identifier_list();
-         for (Typed_identifier_list::const_iterator pp = fnparams->begin();
-              pp != fnparams->end();
-              ++pp)
-           {
-             char pbuf[100];
-             snprintf(pbuf, sizeof pbuf, "$p%u", counter);
-             stub_params->push_back(Typed_identifier(pbuf, pp->type(),
-                                                     pp->location()));
-             ++counter;
-           }
-       }
-
-      const Typed_identifier_list* fnresults = fntype->results();
-      Typed_identifier_list* stub_results;
-      if (fnresults == NULL || fnresults->empty())
-       stub_results = NULL;
-      else
-       {
-         // We create the result parameters without any names, since
-         // we won't refer to them.
-         stub_results = new Typed_identifier_list();
-         for (Typed_identifier_list::const_iterator pr = fnresults->begin();
-              pr != fnresults->end();
-              ++pr)
-           stub_results->push_back(Typed_identifier("", pr->type(),
-                                                    pr->location()));
-       }
-
-      Function_type* stub_type = Type::make_function_type(receiver,
-                                                         stub_params,
-                                                         stub_results,
-                                                         fntype->location());
-      if (fntype->is_varargs())
-       stub_type->set_is_varargs();
-
-      // We only create the function in the package which creates the
-      // type.
-      const Package* package;
-      if (type->named_type() == NULL)
-       package = NULL;
-      else
-       package = type->named_type()->named_object()->package();
-      Named_object* stub;
-      if (package != NULL)
-       stub = Named_object::make_function_declaration(name, package,
-                                                      stub_type, location);
-      else
-       {
-         stub = gogo->start_function(name, stub_type, false,
-                                     fntype->location());
-         Type::build_one_stub_method(gogo, m, buf, stub_params,
-                                     fntype->is_varargs(), location);
-         gogo->finish_function(fntype->location());
-       }
-
-      m->set_stub_object(stub);
-    }
-}
-
-// Build a stub method which adjusts the receiver as required to call
-// METHOD.  RECEIVER_NAME is the name we used for the receiver.
-// PARAMS is the list of function parameters.
-
-void
-Type::build_one_stub_method(Gogo* gogo, Method* method,
-                           const char* receiver_name,
-                           const Typed_identifier_list* params,
-                           bool is_varargs,
-                           source_location location)
-{
-  Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
-  go_assert(receiver_object != NULL);
-
-  Expression* expr = Expression::make_var_reference(receiver_object, location);
-  expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
-  if (expr->type()->points_to() == NULL)
-    expr = Expression::make_unary(OPERATOR_AND, expr, location);
-
-  Expression_list* arguments;
-  if (params == NULL || params->empty())
-    arguments = NULL;
-  else
-    {
-      arguments = new Expression_list();
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       {
-         Named_object* param = gogo->lookup(p->name(), NULL);
-         go_assert(param != NULL);
-         Expression* param_ref = Expression::make_var_reference(param,
-                                                                location);
-         arguments->push_back(param_ref);
-       }
-    }
-
-  Expression* func = method->bind_method(expr, location);
-  go_assert(func != NULL);
-  Call_expression* call = Expression::make_call(func, arguments, is_varargs,
-                                               location);
-  size_t count = call->result_count();
-  if (count == 0)
-    gogo->add_statement(Statement::make_statement(call));
-  else
-    {
-      Expression_list* retvals = new Expression_list();
-      if (count <= 1)
-       retvals->push_back(call);
-      else
-       {
-         for (size_t i = 0; i < count; ++i)
-           retvals->push_back(Expression::make_call_result(call, i));
-       }
-      Statement* retstat = Statement::make_return_statement(retvals, location);
-      gogo->add_statement(retstat);
-    }
-}
-
-// Apply FIELD_INDEXES to EXPR.  The field indexes have to be applied
-// in reverse order.
-
-Expression*
-Type::apply_field_indexes(Expression* expr,
-                         const Method::Field_indexes* field_indexes,
-                         source_location location)
-{
-  if (field_indexes == NULL)
-    return expr;
-  expr = Type::apply_field_indexes(expr, field_indexes->next, location);
-  Struct_type* stype = expr->type()->deref()->struct_type();
-  go_assert(stype != NULL
-            && field_indexes->field_index < stype->field_count());
-  if (expr->type()->struct_type() == NULL)
-    {
-      go_assert(expr->type()->points_to() != NULL);
-      expr = Expression::make_unary(OPERATOR_MULT, expr, location);
-      go_assert(expr->type()->struct_type() == stype);
-    }
-  return Expression::make_field_reference(expr, field_indexes->field_index,
-                                         location);
-}
-
-// Return whether NO is a method for which the receiver is a pointer.
-
-bool
-Type::method_expects_pointer(const Named_object* no)
-{
-  const Function_type *fntype;
-  if (no->is_function())
-    fntype = no->func_value()->type();
-  else if (no->is_function_declaration())
-    fntype = no->func_declaration_value()->type();
-  else
-    go_unreachable();
-  return fntype->receiver()->type()->points_to() != NULL;
-}
-
-// Given a set of methods for a type, METHODS, return the method NAME,
-// or NULL if there isn't one or if it is ambiguous.  If IS_AMBIGUOUS
-// is not NULL, then set *IS_AMBIGUOUS to true if the method exists
-// but is ambiguous (and return NULL).
-
-Method*
-Type::method_function(const Methods* methods, const std::string& name,
-                     bool* is_ambiguous)
-{
-  if (is_ambiguous != NULL)
-    *is_ambiguous = false;
-  if (methods == NULL)
-    return NULL;
-  Methods::const_iterator p = methods->find(name);
-  if (p == methods->end())
-    return NULL;
-  Method* m = p->second;
-  if (m->is_ambiguous())
-    {
-      if (is_ambiguous != NULL)
-       *is_ambiguous = true;
-      return NULL;
-    }
-  return m;
-}
-
-// Look for field or method NAME for TYPE.  Return an Expression for
-// the field or method bound to EXPR.  If there is no such field or
-// method, give an appropriate error and return an error expression.
-
-Expression*
-Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
-                          const std::string& name,
-                          source_location location)
-{
-  if (type->deref()->is_error_type())
-    return Expression::make_error(location);
-
-  const Named_type* nt = type->deref()->named_type();
-  const Struct_type* st = type->deref()->struct_type();
-  const Interface_type* it = type->interface_type();
-
-  // If this is a pointer to a pointer, then it is possible that the
-  // pointed-to type has methods.
-  if (nt == NULL
-      && st == NULL
-      && it == NULL
-      && type->points_to() != NULL
-      && type->points_to()->points_to() != NULL)
-    {
-      expr = Expression::make_unary(OPERATOR_MULT, expr, location);
-      type = type->points_to();
-      if (type->deref()->is_error_type())
-       return Expression::make_error(location);
-      nt = type->points_to()->named_type();
-      st = type->points_to()->struct_type();
-    }
-
-  bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
-                                 || expr->is_addressable());
-  std::vector<const Named_type*> seen;
-  bool is_method = false;
-  bool found_pointer_method = false;
-  std::string ambig1;
-  std::string ambig2;
-  if (Type::find_field_or_method(type, name, receiver_can_be_pointer,
-                                &seen, NULL, &is_method,
-                                &found_pointer_method, &ambig1, &ambig2))
-    {
-      Expression* ret;
-      if (!is_method)
-       {
-         go_assert(st != NULL);
-         if (type->struct_type() == NULL)
-           {
-             go_assert(type->points_to() != NULL);
-             expr = Expression::make_unary(OPERATOR_MULT, expr,
-                                           location);
-             go_assert(expr->type()->struct_type() == st);
-           }
-         ret = st->field_reference(expr, name, location);
-       }
-      else if (it != NULL && it->find_method(name) != NULL)
-       ret = Expression::make_interface_field_reference(expr, name,
-                                                        location);
-      else
-       {
-         Method* m;
-         if (nt != NULL)
-           m = nt->method_function(name, NULL);
-         else if (st != NULL)
-           m = st->method_function(name, NULL);
-         else
-           go_unreachable();
-         go_assert(m != NULL);
-         if (!m->is_value_method() && expr->type()->points_to() == NULL)
-           expr = Expression::make_unary(OPERATOR_AND, expr, location);
-         ret = m->bind_method(expr, location);
-       }
-      go_assert(ret != NULL);
-      return ret;
-    }
-  else
-    {
-      if (!ambig1.empty())
-       error_at(location, "%qs is ambiguous via %qs and %qs",
-                Gogo::message_name(name).c_str(),
-                Gogo::message_name(ambig1).c_str(),
-                Gogo::message_name(ambig2).c_str());
-      else if (found_pointer_method)
-       error_at(location, "method requires a pointer");
-      else if (nt == NULL && st == NULL && it == NULL)
-       error_at(location,
-                ("reference to field %qs in object which "
-                 "has no fields or methods"),
-                Gogo::message_name(name).c_str());
-      else
-       {
-         bool is_unexported;
-         if (!Gogo::is_hidden_name(name))
-           is_unexported = false;
-         else
-           {
-             std::string unpacked = Gogo::unpack_hidden_name(name);
-             seen.clear();
-             is_unexported = Type::is_unexported_field_or_method(gogo, type,
-                                                                 unpacked,
-                                                                 &seen);
-           }
-         if (is_unexported)
-           error_at(location, "reference to unexported field or method %qs",
-                    Gogo::message_name(name).c_str());
-         else
-           error_at(location, "reference to undefined field or method %qs",
-                    Gogo::message_name(name).c_str());
-       }
-      return Expression::make_error(location);
-    }
-}
-
-// Look in TYPE for a field or method named NAME, return true if one
-// is found.  This looks through embedded anonymous fields and handles
-// ambiguity.  If a method is found, sets *IS_METHOD to true;
-// otherwise, if a field is found, set it to false.  If
-// RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
-// whose address can not be taken.  SEEN is used to avoid infinite
-// recursion on invalid types.
-
-// When returning false, this sets *FOUND_POINTER_METHOD if we found a
-// method we couldn't use because it requires a pointer.  LEVEL is
-// used for recursive calls, and can be NULL for a non-recursive call.
-// When this function returns false because it finds that the name is
-// ambiguous, it will store a path to the ambiguous names in *AMBIG1
-// and *AMBIG2.  If the name is not found at all, *AMBIG1 and *AMBIG2
-// will be unchanged.
-
-// This function just returns whether or not there is a field or
-// method, and whether it is a field or method.  It doesn't build an
-// expression to refer to it.  If it is a method, we then look in the
-// list of all methods for the type.  If it is a field, the search has
-// to be done again, looking only for fields, and building up the
-// expression as we go.
-
-bool
-Type::find_field_or_method(const Type* type,
-                          const std::string& name,
-                          bool receiver_can_be_pointer,
-                          std::vector<const Named_type*>* seen,
-                          int* level,
-                          bool* is_method,
-                          bool* found_pointer_method,
-                          std::string* ambig1,
-                          std::string* ambig2)
-{
-  // Named types can have locally defined methods.
-  const Named_type* nt = type->named_type();
-  if (nt == NULL && type->points_to() != NULL)
-    nt = type->points_to()->named_type();
-  if (nt != NULL)
-    {
-      Named_object* no = nt->find_local_method(name);
-      if (no != NULL)
-       {
-         if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
-           {
-             *is_method = true;
-             return true;
-           }
-
-         // Record that we have found a pointer method in order to
-         // give a better error message if we don't find anything
-         // else.
-         *found_pointer_method = true;
-       }
-
-      for (std::vector<const Named_type*>::const_iterator p = seen->begin();
-          p != seen->end();
-          ++p)
-       {
-         if (*p == nt)
-           {
-             // We've already seen this type when searching for methods.
-             return false;
-           }
-       }
-    }
-
-  // Interface types can have methods.
-  const Interface_type* it = type->interface_type();
-  if (it != NULL && it->find_method(name) != NULL)
-    {
-      *is_method = true;
-      return true;
-    }
-
-  // Struct types can have fields.  They can also inherit fields and
-  // methods from anonymous fields.
-  const Struct_type* st = type->deref()->struct_type();
-  if (st == NULL)
-    return false;
-  const Struct_field_list* fields = st->fields();
-  if (fields == NULL)
-    return false;
-
-  if (nt != NULL)
-    seen->push_back(nt);
-
-  int found_level = 0;
-  bool found_is_method = false;
-  std::string found_ambig1;
-  std::string found_ambig2;
-  const Struct_field* found_parent = NULL;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      if (pf->field_name() == name)
-       {
-         *is_method = false;
-         if (nt != NULL)
-           seen->pop_back();
-         return true;
-       }
-
-      if (!pf->is_anonymous())
-       continue;
-
-      if (pf->type()->deref()->is_error_type()
-         || pf->type()->deref()->is_undefined())
-       continue;
-
-      Named_type* fnt = pf->type()->named_type();
-      if (fnt == NULL)
-       fnt = pf->type()->deref()->named_type();
-      go_assert(fnt != NULL);
-
-      int sublevel = level == NULL ? 1 : *level + 1;
-      bool sub_is_method;
-      std::string subambig1;
-      std::string subambig2;
-      bool subfound = Type::find_field_or_method(fnt,
-                                                name,
-                                                receiver_can_be_pointer,
-                                                seen,
-                                                &sublevel,
-                                                &sub_is_method,
-                                                found_pointer_method,
-                                                &subambig1,
-                                                &subambig2);
-      if (!subfound)
-       {
-         if (!subambig1.empty())
-           {
-             // The name was found via this field, but is ambiguous.
-             // if the ambiguity is lower or at the same level as
-             // anything else we have already found, then we want to
-             // pass the ambiguity back to the caller.
-             if (found_level == 0 || sublevel <= found_level)
-               {
-                 found_ambig1 = pf->field_name() + '.' + subambig1;
-                 found_ambig2 = pf->field_name() + '.' + subambig2;
-                 found_level = sublevel;
-               }
-           }
-       }
-      else
-       {
-         // The name was found via this field.  Use the level to see
-         // if we want to use this one, or whether it introduces an
-         // ambiguity.
-         if (found_level == 0 || sublevel < found_level)
-           {
-             found_level = sublevel;
-             found_is_method = sub_is_method;
-             found_ambig1.clear();
-             found_ambig2.clear();
-             found_parent = &*pf;
-           }
-         else if (sublevel > found_level)
-           ;
-         else if (found_ambig1.empty())
-           {
-             // We found an ambiguity.
-             go_assert(found_parent != NULL);
-             found_ambig1 = found_parent->field_name();
-             found_ambig2 = pf->field_name();
-           }
-         else
-           {
-             // We found an ambiguity, but we already know of one.
-             // Just report the earlier one.
-           }
-       }
-    }
-
-  // Here if we didn't find anything FOUND_LEVEL is 0.  If we found
-  // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
-  // FOUND_AMBIG2 are not empty.  If we found the field, FOUND_LEVEL
-  // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
-
-  if (nt != NULL)
-    seen->pop_back();
-
-  if (found_level == 0)
-    return false;
-  else if (!found_ambig1.empty())
-    {
-      go_assert(!found_ambig1.empty());
-      ambig1->assign(found_ambig1);
-      ambig2->assign(found_ambig2);
-      if (level != NULL)
-       *level = found_level;
-      return false;
-    }
-  else
-    {
-      if (level != NULL)
-       *level = found_level;
-      *is_method = found_is_method;
-      return true;
-    }
-}
-
-// Return whether NAME is an unexported field or method for TYPE.
-
-bool
-Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
-                                   const std::string& name,
-                                   std::vector<const Named_type*>* seen)
-{
-  const Named_type* nt = type->named_type();
-  if (nt == NULL)
-    nt = type->deref()->named_type();
-  if (nt != NULL)
-    {
-      if (nt->is_unexported_local_method(gogo, name))
-       return true;
-
-      for (std::vector<const Named_type*>::const_iterator p = seen->begin();
-          p != seen->end();
-          ++p)
-       {
-         if (*p == nt)
-           {
-             // We've already seen this type.
-             return false;
-           }
-       }
-    }
-
-  const Interface_type* it = type->interface_type();
-  if (it != NULL && it->is_unexported_method(gogo, name))
-    return true;
-
-  type = type->deref();
-
-  const Struct_type* st = type->struct_type();
-  if (st != NULL && st->is_unexported_local_field(gogo, name))
-    return true;
-
-  if (st == NULL)
-    return false;
-
-  const Struct_field_list* fields = st->fields();
-  if (fields == NULL)
-    return false;
-
-  if (nt != NULL)
-    seen->push_back(nt);
-
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      if (pf->is_anonymous()
-         && !pf->type()->deref()->is_error_type()
-         && !pf->type()->deref()->is_undefined())
-       {
-         Named_type* subtype = pf->type()->named_type();
-         if (subtype == NULL)
-           subtype = pf->type()->deref()->named_type();
-         if (subtype == NULL)
-           {
-             // This is an error, but it will be diagnosed elsewhere.
-             continue;
-           }
-         if (Type::is_unexported_field_or_method(gogo, subtype, name, seen))
-           {
-             if (nt != NULL)
-               seen->pop_back();
-             return true;
-           }
-       }
-    }
-
-  if (nt != NULL)
-    seen->pop_back();
-
-  return false;
-}
-
-// Class Forward_declaration.
-
-Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
-  : Type(TYPE_FORWARD),
-    named_object_(named_object->resolve()), warned_(false)
-{
-  go_assert(this->named_object_->is_unknown()
-            || this->named_object_->is_type_declaration());
-}
-
-// Return the named object.
-
-Named_object*
-Forward_declaration_type::named_object()
-{
-  return this->named_object_->resolve();
-}
-
-const Named_object*
-Forward_declaration_type::named_object() const
-{
-  return this->named_object_->resolve();
-}
-
-// Return the name of the forward declared type.
-
-const std::string&
-Forward_declaration_type::name() const
-{
-  return this->named_object()->name();
-}
-
-// Warn about a use of a type which has been declared but not defined.
-
-void
-Forward_declaration_type::warn() const
-{
-  Named_object* no = this->named_object_->resolve();
-  if (no->is_unknown())
-    {
-      // The name was not defined anywhere.
-      if (!this->warned_)
-       {
-         error_at(this->named_object_->location(),
-                  "use of undefined type %qs",
-                  no->message_name().c_str());
-         this->warned_ = true;
-       }
-    }
-  else if (no->is_type_declaration())
-    {
-      // The name was seen as a type, but the type was never defined.
-      if (no->type_declaration_value()->using_type())
-       {
-         error_at(this->named_object_->location(),
-                  "use of undefined type %qs",
-                  no->message_name().c_str());
-         this->warned_ = true;
-       }
-    }
-  else
-    {
-      // The name was defined, but not as a type.
-      if (!this->warned_)
-       {
-         error_at(this->named_object_->location(), "expected type");
-         this->warned_ = true;
-       }
-    }
-}
-
-// Get the base type of a declaration.  This gives an error if the
-// type has not yet been defined.
-
-Type*
-Forward_declaration_type::real_type()
-{
-  if (this->is_defined())
-    return this->named_object()->type_value();
-  else
-    {
-      this->warn();
-      return Type::make_error_type();
-    }
-}
-
-const Type*
-Forward_declaration_type::real_type() const
-{
-  if (this->is_defined())
-    return this->named_object()->type_value();
-  else
-    {
-      this->warn();
-      return Type::make_error_type();
-    }
-}
-
-// Return whether the base type is defined.
-
-bool
-Forward_declaration_type::is_defined() const
-{
-  return this->named_object()->is_type();
-}
-
-// Add a method.  This is used when methods are defined before the
-// type.
-
-Named_object*
-Forward_declaration_type::add_method(const std::string& name,
-                                    Function* function)
-{
-  Named_object* no = this->named_object();
-  if (no->is_unknown())
-    no->declare_as_type();
-  return no->type_declaration_value()->add_method(name, function);
-}
-
-// Add a method declaration.  This is used when methods are declared
-// before the type.
-
-Named_object*
-Forward_declaration_type::add_method_declaration(const std::string& name,
-                                                Function_type* type,
-                                                source_location location)
-{
-  Named_object* no = this->named_object();
-  if (no->is_unknown())
-    no->declare_as_type();
-  Type_declaration* td = no->type_declaration_value();
-  return td->add_method_declaration(name, type, location);
-}
-
-// Traversal.
-
-int
-Forward_declaration_type::do_traverse(Traverse* traverse)
-{
-  if (this->is_defined()
-      && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Get a tree for the type.
-
-tree
-Forward_declaration_type::do_get_tree(Gogo* gogo)
-{
-  if (this->is_defined())
-    return Type::get_named_type_tree(gogo, this->real_type());
-
-  if (this->warned_)
-    return error_mark_node;
-
-  // We represent an undefined type as a struct with no fields.  That
-  // should work fine for the middle-end, since the same case can
-  // arise in C.
-  Named_object* no = this->named_object();
-  tree type_tree = make_node(RECORD_TYPE);
-  tree id = no->get_id(gogo);
-  tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
-  TYPE_NAME(type_tree) = decl;
-  layout_type(type_tree);
-  return type_tree;
-}
-
-// Build a type descriptor for a forwarded type.
-
-Expression*
-Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (!this->is_defined())
-    return Expression::make_nil(BUILTINS_LOCATION);
-  else
-    {
-      Type* t = this->real_type();
-      if (name != NULL)
-       return this->named_type_descriptor(gogo, t, name);
-      else
-       return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
-    }
-}
-
-// The reflection string.
-
-void
-Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  this->append_reflection(this->real_type(), gogo, ret);
-}
-
-// The mangled name.
-
-void
-Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  if (this->is_defined())
-    this->append_mangled_name(this->real_type(), gogo, ret);
-  else
-    {
-      const Named_object* no = this->named_object();
-      std::string name;
-      if (no->package() == NULL)
-       name = gogo->package_name();
-      else
-       name = no->package()->name();
-      name += '.';
-      name += Gogo::unpack_hidden_name(no->name());
-      char buf[20];
-      snprintf(buf, sizeof buf, "N%u_",
-              static_cast<unsigned int>(name.length()));
-      ret->append(buf);
-      ret->append(name);
-    }
-}
-
-// Export a forward declaration.  This can happen when a defined type
-// refers to a type which is only declared (and is presumably defined
-// in some other file in the same package).
-
-void
-Forward_declaration_type::do_export(Export*) const
-{
-  // If there is a base type, that should be exported instead of this.
-  go_assert(!this->is_defined());
-
-  // We don't output anything.
-}
-
-// Make a forward declaration.
-
-Type*
-Type::make_forward_declaration(Named_object* named_object)
-{
-  return new Forward_declaration_type(named_object);
-}
-
-// Class Typed_identifier_list.
-
-// Sort the entries by name.
-
-struct Typed_identifier_list_sort
-{
- public:
-  bool
-  operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
-  { return t1.name() < t2.name(); }
-};
-
-void
-Typed_identifier_list::sort_by_name()
-{
-  std::sort(this->entries_.begin(), this->entries_.end(),
-           Typed_identifier_list_sort());
-}
-
-// Traverse types.
-
-int
-Typed_identifier_list::traverse(Traverse* traverse)
-{
-  for (Typed_identifier_list::const_iterator p = this->begin();
-       p != this->end();
-       ++p)
-    {
-      if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Copy the list.
-
-Typed_identifier_list*
-Typed_identifier_list::copy() const
-{
-  Typed_identifier_list* ret = new Typed_identifier_list();
-  for (Typed_identifier_list::const_iterator p = this->begin();
-       p != this->end();
-       ++p)
-    ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
-  return ret;
-}
diff --git a/gcc/go/gofrontend/types.cc.working b/gcc/go/gofrontend/types.cc.working
deleted file mode 100644 (file)
index 2eecafd..0000000
+++ /dev/null
@@ -1,8656 +0,0 @@
-// types.cc -- Go frontend types.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include <gmp.h>
-
-#ifndef ENABLE_BUILD_WITH_CXX
-extern "C"
-{
-#endif
-
-#include "toplev.h"
-#include "intl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "real.h"
-#include "convert.h"
-
-#ifndef ENABLE_BUILD_WITH_CXX
-}
-#endif
-
-#include "go-c.h"
-#include "gogo.h"
-#include "operator.h"
-#include "expressions.h"
-#include "statements.h"
-#include "export.h"
-#include "import.h"
-#include "types.h"
-
-// Class Type.
-
-Type::Type(Type_classification classification)
-  : classification_(classification), tree_(NULL_TREE),
-    type_descriptor_decl_(NULL_TREE)
-{
-}
-
-Type::~Type()
-{
-}
-
-// Get the base type for a type--skip names and forward declarations.
-
-Type*
-Type::base()
-{
-  switch (this->classification_)
-    {
-    case TYPE_NAMED:
-      return this->named_type()->named_base();
-    case TYPE_FORWARD:
-      return this->forward_declaration_type()->real_type()->base();
-    default:
-      return this;
-    }
-}
-
-const Type*
-Type::base() const
-{
-  switch (this->classification_)
-    {
-    case TYPE_NAMED:
-      return this->named_type()->named_base();
-    case TYPE_FORWARD:
-      return this->forward_declaration_type()->real_type()->base();
-    default:
-      return this;
-    }
-}
-
-// Skip defined forward declarations.
-
-Type*
-Type::forwarded()
-{
-  Type* t = this;
-  Forward_declaration_type* ftype = t->forward_declaration_type();
-  while (ftype != NULL && ftype->is_defined())
-    {
-      t = ftype->real_type();
-      ftype = t->forward_declaration_type();
-    }
-  return t;
-}
-
-const Type*
-Type::forwarded() const
-{
-  const Type* t = this;
-  const Forward_declaration_type* ftype = t->forward_declaration_type();
-  while (ftype != NULL && ftype->is_defined())
-    {
-      t = ftype->real_type();
-      ftype = t->forward_declaration_type();
-    }
-  return t;
-}
-
-// If this is a named type, return it.  Otherwise, return NULL.
-
-Named_type*
-Type::named_type()
-{
-  return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
-}
-
-const Named_type*
-Type::named_type() const
-{
-  return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
-}
-
-// Return true if this type is not defined.
-
-bool
-Type::is_undefined() const
-{
-  return this->forwarded()->forward_declaration_type() != NULL;
-}
-
-// Return true if this is a basic type: a type which is not composed
-// of other types, and is not void.
-
-bool
-Type::is_basic_type() const
-{
-  switch (this->classification_)
-    {
-    case TYPE_INTEGER:
-    case TYPE_FLOAT:
-    case TYPE_COMPLEX:
-    case TYPE_BOOLEAN:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      return true;
-
-    case TYPE_ERROR:
-    case TYPE_VOID:
-    case TYPE_FUNCTION:
-    case TYPE_POINTER:
-    case TYPE_STRUCT:
-    case TYPE_ARRAY:
-    case TYPE_MAP:
-    case TYPE_CHANNEL:
-    case TYPE_INTERFACE:
-      return false;
-
-    case TYPE_NAMED:
-    case TYPE_FORWARD:
-      return this->base()->is_basic_type();
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return true if this is an abstract type.
-
-bool
-Type::is_abstract() const
-{
-  switch (this->classification())
-    {
-    case TYPE_INTEGER:
-      return this->integer_type()->is_abstract();
-    case TYPE_FLOAT:
-      return this->float_type()->is_abstract();
-    case TYPE_COMPLEX:
-      return this->complex_type()->is_abstract();
-    case TYPE_STRING:
-      return this->is_abstract_string_type();
-    case TYPE_BOOLEAN:
-      return this->is_abstract_boolean_type();
-    default:
-      return false;
-    }
-}
-
-// Return a non-abstract version of an abstract type.
-
-Type*
-Type::make_non_abstract_type()
-{
-  gcc_assert(this->is_abstract());
-  switch (this->classification())
-    {
-    case TYPE_INTEGER:
-      return Type::lookup_integer_type("int");
-    case TYPE_FLOAT:
-      return Type::lookup_float_type("float64");
-    case TYPE_COMPLEX:
-      return Type::lookup_complex_type("complex128");
-    case TYPE_STRING:
-      return Type::lookup_string_type();
-    case TYPE_BOOLEAN:
-      return Type::lookup_bool_type();
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return true if this is an error type.  Don't give an error if we
-// try to dereference an undefined forwarding type, as this is called
-// in the parser when the type may legitimately be undefined.
-
-bool
-Type::is_error_type() const
-{
-  const Type* t = this->forwarded();
-  // Note that we return false for an undefined forward type.
-  switch (t->classification_)
-    {
-    case TYPE_ERROR:
-      return true;
-    case TYPE_NAMED:
-      return t->named_type()->is_named_error_type();
-    default:
-      return false;
-    }
-}
-
-// If this is a pointer type, return the type to which it points.
-// Otherwise, return NULL.
-
-Type*
-Type::points_to() const
-{
-  const Pointer_type* ptype = this->convert<const Pointer_type,
-                                           TYPE_POINTER>();
-  return ptype == NULL ? NULL : ptype->points_to();
-}
-
-// Return whether this is an open array type.
-
-bool
-Type::is_open_array_type() const
-{
-  return this->array_type() != NULL && this->array_type()->length() == NULL;
-}
-
-// Return whether this is the predeclared constant nil being used as a
-// type.
-
-bool
-Type::is_nil_constant_as_type() const
-{
-  const Type* t = this->forwarded();
-  if (t->forward_declaration_type() != NULL)
-    {
-      const Named_object* no = t->forward_declaration_type()->named_object();
-      if (no->is_unknown())
-       no = no->unknown_value()->real_named_object();
-      if (no != NULL
-         && no->is_const()
-         && no->const_value()->expr()->is_nil_expression())
-       return true;
-    }
-  return false;
-}
-
-// Traverse a type.
-
-int
-Type::traverse(Type* type, Traverse* traverse)
-{
-  gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
-            || (traverse->traverse_mask()
-                & Traverse::traverse_expressions) != 0);
-  if (traverse->remember_type(type))
-    {
-      // We have already traversed this type.
-      return TRAVERSE_CONTINUE;
-    }
-  if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
-    {
-      int t = traverse->type(type);
-      if (t == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-      else if (t == TRAVERSE_SKIP_COMPONENTS)
-       return TRAVERSE_CONTINUE;
-    }
-  // An array type has an expression which we need to traverse if
-  // traverse_expressions is set.
-  if (type->do_traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Default implementation for do_traverse for child class.
-
-int
-Type::do_traverse(Traverse*)
-{
-  return TRAVERSE_CONTINUE;
-}
-
-// Return whether two types are identical.  If ERRORS_ARE_IDENTICAL,
-// then return true for all erroneous types; this is used to avoid
-// cascading errors.  If REASON is not NULL, optionally set *REASON to
-// the reason the types are not identical.
-
-bool
-Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical,
-                   std::string* reason)
-{
-  if (t1 == NULL || t2 == NULL)
-    {
-      // Something is wrong.
-      return errors_are_identical ? true : t1 == t2;
-    }
-
-  // Skip defined forward declarations.
-  t1 = t1->forwarded();
-  t2 = t2->forwarded();
-
-  if (t1 == t2)
-    return true;
-
-  // An undefined forward declaration is an error.
-  if (t1->forward_declaration_type() != NULL
-      || t2->forward_declaration_type() != NULL)
-    return errors_are_identical;
-
-  // Avoid cascading errors with error types.
-  if (t1->is_error_type() || t2->is_error_type())
-    {
-      if (errors_are_identical)
-       return true;
-      return t1->is_error_type() && t2->is_error_type();
-    }
-
-  // Get a good reason for the sink type.  Note that the sink type on
-  // the left hand side of an assignment is handled in are_assignable.
-  if (t1->is_sink_type() || t2->is_sink_type())
-    {
-      if (reason != NULL)
-       *reason = "invalid use of _";
-      return false;
-    }
-
-  // A named type is only identical to itself.
-  if (t1->named_type() != NULL || t2->named_type() != NULL)
-    return false;
-
-  // Check type shapes.
-  if (t1->classification() != t2->classification())
-    return false;
-
-  switch (t1->classification())
-    {
-    case TYPE_VOID:
-    case TYPE_BOOLEAN:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      // These types are always identical.
-      return true;
-
-    case TYPE_INTEGER:
-      return t1->integer_type()->is_identical(t2->integer_type());
-
-    case TYPE_FLOAT:
-      return t1->float_type()->is_identical(t2->float_type());
-
-    case TYPE_COMPLEX:
-      return t1->complex_type()->is_identical(t2->complex_type());
-
-    case TYPE_FUNCTION:
-      return t1->function_type()->is_identical(t2->function_type(),
-                                              false,
-                                              errors_are_identical,
-                                              reason);
-
-    case TYPE_POINTER:
-      return Type::are_identical(t1->points_to(), t2->points_to(),
-                                errors_are_identical, reason);
-
-    case TYPE_STRUCT:
-      return t1->struct_type()->is_identical(t2->struct_type(),
-                                            errors_are_identical);
-
-    case TYPE_ARRAY:
-      return t1->array_type()->is_identical(t2->array_type(),
-                                           errors_are_identical);
-
-    case TYPE_MAP:
-      return t1->map_type()->is_identical(t2->map_type(),
-                                         errors_are_identical);
-
-    case TYPE_CHANNEL:
-      return t1->channel_type()->is_identical(t2->channel_type(),
-                                             errors_are_identical);
-
-    case TYPE_INTERFACE:
-      return t1->interface_type()->is_identical(t2->interface_type(),
-                                               errors_are_identical);
-
-    case TYPE_CALL_MULTIPLE_RESULT:
-      if (reason != NULL)
-       *reason = "invalid use of multiple value function call";
-      return false;
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return true if it's OK to have a binary operation with types LHS
-// and RHS.  This is not used for shifts or comparisons.
-
-bool
-Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
-{
-  if (Type::are_identical(lhs, rhs, true, NULL))
-    return true;
-
-  // A constant of abstract bool type may be mixed with any bool type.
-  if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
-      || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
-    return true;
-
-  // A constant of abstract string type may be mixed with any string
-  // type.
-  if ((rhs->is_abstract_string_type() && lhs->is_string_type())
-      || (lhs->is_abstract_string_type() && rhs->is_string_type()))
-    return true;
-
-  lhs = lhs->base();
-  rhs = rhs->base();
-
-  // A constant of abstract integer, float, or complex type may be
-  // mixed with an integer, float, or complex type.
-  if ((rhs->is_abstract()
-       && (rhs->integer_type() != NULL
-          || rhs->float_type() != NULL
-          || rhs->complex_type() != NULL)
-       && (lhs->integer_type() != NULL
-          || lhs->float_type() != NULL
-          || lhs->complex_type() != NULL))
-      || (lhs->is_abstract()
-         && (lhs->integer_type() != NULL
-             || lhs->float_type() != NULL
-             || lhs->complex_type() != NULL)
-         && (rhs->integer_type() != NULL
-             || rhs->float_type() != NULL
-             || rhs->complex_type() != NULL)))
-    return true;
-
-  // The nil type may be compared to a pointer, an interface type, a
-  // slice type, a channel type, a map type, or a function type.
-  if (lhs->is_nil_type()
-      && (rhs->points_to() != NULL
-         || rhs->interface_type() != NULL
-         || rhs->is_open_array_type()
-         || rhs->map_type() != NULL
-         || rhs->channel_type() != NULL
-         || rhs->function_type() != NULL))
-    return true;
-  if (rhs->is_nil_type()
-      && (lhs->points_to() != NULL
-         || lhs->interface_type() != NULL
-         || lhs->is_open_array_type()
-         || lhs->map_type() != NULL
-         || lhs->channel_type() != NULL
-         || lhs->function_type() != NULL))
-    return true;
-
-  return false;
-}
-
-// Return true if a value with type RHS may be assigned to a variable
-// with type LHS.  If REASON is not NULL, set *REASON to the reason
-// the types are not assignable.
-
-bool
-Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
-{
-  // Do some checks first.  Make sure the types are defined.
-  if (rhs != NULL
-      && rhs->forwarded()->forward_declaration_type() == NULL
-      && rhs->is_void_type())
-    {
-      if (reason != NULL)
-       *reason = "non-value used as value";
-      return false;
-    }
-
-  if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
-    {
-      // Any value may be assigned to the blank identifier.
-      if (lhs->is_sink_type())
-       return true;
-
-      // All fields of a struct must be exported, or the assignment
-      // must be in the same package.
-      if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
-       {
-         if (lhs->has_hidden_fields(NULL, reason)
-             || rhs->has_hidden_fields(NULL, reason))
-           return false;
-       }
-    }
-
-  // Identical types are assignable.
-  if (Type::are_identical(lhs, rhs, true, reason))
-    return true;
-
-  // The types are assignable if they have identical underlying types
-  // and either LHS or RHS is not a named type.
-  if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
-       || (rhs->named_type() != NULL && lhs->named_type() == NULL))
-      && Type::are_identical(lhs->base(), rhs->base(), true, reason))
-    return true;
-
-  // The types are assignable if LHS is an interface type and RHS
-  // implements the required methods.
-  const Interface_type* lhs_interface_type = lhs->interface_type();
-  if (lhs_interface_type != NULL)
-    {
-      if (lhs_interface_type->implements_interface(rhs, reason))
-       return true;
-      const Interface_type* rhs_interface_type = rhs->interface_type();
-      if (rhs_interface_type != NULL
-         && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
-                                                         reason))
-       return true;
-    }
-
-  // The type are assignable if RHS is a bidirectional channel type,
-  // LHS is a channel type, they have identical element types, and
-  // either LHS or RHS is not a named type.
-  if (lhs->channel_type() != NULL
-      && rhs->channel_type() != NULL
-      && rhs->channel_type()->may_send()
-      && rhs->channel_type()->may_receive()
-      && (lhs->named_type() == NULL || rhs->named_type() == NULL)
-      && Type::are_identical(lhs->channel_type()->element_type(),
-                            rhs->channel_type()->element_type(),
-                            true,
-                            reason))
-    return true;
-
-  // The nil type may be assigned to a pointer, function, slice, map,
-  // channel, or interface type.
-  if (rhs->is_nil_type()
-      && (lhs->points_to() != NULL
-         || lhs->function_type() != NULL
-         || lhs->is_open_array_type()
-         || lhs->map_type() != NULL
-         || lhs->channel_type() != NULL
-         || lhs->interface_type() != NULL))
-    return true;
-
-  // An untyped numeric constant may be assigned to a numeric type if
-  // it is representable in that type.
-  if ((rhs->is_abstract()
-       && (rhs->integer_type() != NULL
-          || rhs->float_type() != NULL
-          || rhs->complex_type() != NULL))
-      && (lhs->integer_type() != NULL
-         || lhs->float_type() != NULL
-         || lhs->complex_type() != NULL))
-    return true;
-
-  // Give some better error messages.
-  if (reason != NULL && reason->empty())
-    {
-      if (rhs->interface_type() != NULL)
-       reason->assign(_("need explicit conversion"));
-      else if (rhs->is_call_multiple_result_type())
-       reason->assign(_("multiple value function call in "
-                        "single value context"));
-      else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
-       {
-         size_t len = (lhs->named_type()->name().length()
-                       + rhs->named_type()->name().length()
-                       + 100);
-         char* buf = new char[len];
-         snprintf(buf, len, _("cannot use type %s as type %s"),
-                  rhs->named_type()->message_name().c_str(),
-                  lhs->named_type()->message_name().c_str());
-         reason->assign(buf);
-         delete[] buf;
-       }
-    }
-
-  return false;
-}
-
-// Return true if a value with type RHS may be converted to type LHS.
-// If REASON is not NULL, set *REASON to the reason the types are not
-// convertible.
-
-bool
-Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
-{
-  // The types are convertible if they are assignable.
-  if (Type::are_assignable(lhs, rhs, reason))
-    return true;
-
-  // The types are convertible if they have identical underlying
-  // types.
-  if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
-      && Type::are_identical(lhs->base(), rhs->base(), true, reason))
-    return true;
-
-  // The types are convertible if they are both unnamed pointer types
-  // and their pointer base types have identical underlying types.
-  if (lhs->named_type() == NULL
-      && rhs->named_type() == NULL
-      && lhs->points_to() != NULL
-      && rhs->points_to() != NULL
-      && (lhs->points_to()->named_type() != NULL
-         || rhs->points_to()->named_type() != NULL)
-      && Type::are_identical(lhs->points_to()->base(),
-                            rhs->points_to()->base(),
-                            true,
-                            reason))
-    return true;
-
-  // Integer and floating point types are convertible to each other.
-  if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
-      && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
-    return true;
-
-  // Complex types are convertible to each other.
-  if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
-    return true;
-
-  // An integer, or []byte, or []int, may be converted to a string.
-  if (lhs->is_string_type())
-    {
-      if (rhs->integer_type() != NULL)
-       return true;
-      if (rhs->is_open_array_type() && rhs->named_type() == NULL)
-       {
-         const Type* e = rhs->array_type()->element_type()->forwarded();
-         if (e->integer_type() != NULL
-             && (e == Type::lookup_integer_type("uint8")
-                 || e == Type::lookup_integer_type("int")))
-           return true;
-       }
-    }
-
-  // A string may be converted to []byte or []int.
-  if (rhs->is_string_type()
-      && lhs->is_open_array_type()
-      && lhs->named_type() == NULL)
-    {
-      const Type* e = lhs->array_type()->element_type()->forwarded();
-      if (e->integer_type() != NULL
-         && (e == Type::lookup_integer_type("uint8")
-             || e == Type::lookup_integer_type("int")))
-       return true;
-    }
-
-  // An unsafe.Pointer type may be converted to any pointer type or to
-  // uintptr, and vice-versa.
-  if (lhs->is_unsafe_pointer_type()
-      && (rhs->points_to() != NULL
-         || (rhs->integer_type() != NULL
-             && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
-    return true;
-  if (rhs->is_unsafe_pointer_type()
-      && (lhs->points_to() != NULL
-         || (lhs->integer_type() != NULL
-             && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
-    return true;
-
-  // Give a better error message.
-  if (reason != NULL)
-    {
-      if (reason->empty())
-       *reason = "invalid type conversion";
-      else
-       {
-         std::string s = "invalid type conversion (";
-         s += *reason;
-         s += ')';
-         *reason = s;
-       }
-    }
-
-  return false;
-}
-
-// Return whether this type has any hidden fields.  This is only a
-// possibility for a few types.
-
-bool
-Type::has_hidden_fields(const Named_type* within, std::string* reason) const
-{
-  switch (this->forwarded()->classification_)
-    {
-    case TYPE_NAMED:
-      return this->named_type()->named_type_has_hidden_fields(reason);
-    case TYPE_STRUCT:
-      return this->struct_type()->struct_has_hidden_fields(within, reason);
-    case TYPE_ARRAY:
-      return this->array_type()->array_has_hidden_fields(within, reason);
-    default:
-      return false;
-    }
-}
-
-// Return a hash code for the type to be used for method lookup.
-
-unsigned int
-Type::hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->classification_ != TYPE_FORWARD)
-    ret += this->classification_;
-  return ret + this->do_hash_for_method(gogo);
-}
-
-// Default implementation of do_hash_for_method.  This is appropriate
-// for types with no subfields.
-
-unsigned int
-Type::do_hash_for_method(Gogo*) const
-{
-  return 0;
-}
-
-// Return a hash code for a string, given a starting hash.
-
-unsigned int
-Type::hash_string(const std::string& s, unsigned int h)
-{
-  const char* p = s.data();
-  size_t len = s.length();
-  for (; len > 0; --len)
-    {
-      h ^= *p++;
-      h*= 16777619;
-    }
-  return h;
-}
-
-// Default check for the expression passed to make.  Any type which
-// may be used with make implements its own version of this.
-
-bool
-Type::do_check_make_expression(Expression_list*, source_location)
-{
-  gcc_unreachable();
-}
-
-// Return whether an expression has an integer value.  Report an error
-// if not.  This is used when handling calls to the predeclared make
-// function.
-
-bool
-Type::check_int_value(Expression* e, const char* errmsg,
-                     source_location location)
-{
-  if (e->type()->integer_type() != NULL)
-    return true;
-
-  // Check for a floating point constant with integer value.
-  mpfr_t fval;
-  mpfr_init(fval);
-
-  Type* dummy;
-  if (e->float_constant_value(fval, &dummy) && mpfr_integer_p(fval))
-    {
-      mpz_t ival;
-      mpz_init(ival);
-
-      bool ok = false;
-
-      mpfr_clear_overflow();
-      mpfr_clear_erangeflag();
-      mpfr_get_z(ival, fval, GMP_RNDN);
-      if (!mpfr_overflow_p()
-         && !mpfr_erangeflag_p()
-         && mpz_sgn(ival) >= 0)
-       {
-         Named_type* ntype = Type::lookup_integer_type("int");
-         Integer_type* inttype = ntype->integer_type();
-         mpz_t max;
-         mpz_init_set_ui(max, 1);
-         mpz_mul_2exp(max, max, inttype->bits() - 1);
-         ok = mpz_cmp(ival, max) < 0;
-         mpz_clear(max);
-       }
-      mpz_clear(ival);
-
-      if (ok)
-       {
-         mpfr_clear(fval);
-         return true;
-       }
-    }
-
-  mpfr_clear(fval);
-
-  error_at(location, "%s", errmsg);
-  return false;
-}
-
-// A hash table mapping unnamed types to trees.
-
-Type::Type_trees Type::type_trees;
-
-// Return a tree representing this type.
-
-tree
-Type::get_tree(Gogo* gogo)
-{
-  if (this->tree_ != NULL)
-    return this->tree_;
-
-  if (this->forward_declaration_type() != NULL
-      || this->named_type() != NULL)
-    return this->get_tree_without_hash(gogo);
-
-  if (this->is_error_type())
-    return error_mark_node;
-
-  // To avoid confusing GIMPLE, we need to translate all identical Go
-  // types to the same GIMPLE type.  We use a hash table to do that.
-  // There is no need to use the hash table for named types, as named
-  // types are only identical to themselves.
-
-  std::pair<Type*, tree> val(this, NULL);
-  std::pair<Type_trees::iterator, bool> ins =
-    Type::type_trees.insert(val);
-  if (!ins.second && ins.first->second != NULL_TREE)
-    {
-      if (gogo != NULL && gogo->named_types_are_converted())
-       this->tree_ = ins.first->second;
-      return ins.first->second;
-    }
-
-  tree t = this->get_tree_without_hash(gogo);
-
-  if (ins.first->second == NULL_TREE)
-    ins.first->second = t;
-  else
-    {
-      // We have already created a tree for this type.  This can
-      // happen when an unnamed type is defined using a named type
-      // which in turns uses an identical unnamed type.  Use the tree
-      // we created earlier and ignore the one we just built.
-      t = ins.first->second;
-      if (gogo == NULL || !gogo->named_types_are_converted())
-       return t;
-      this->tree_ = t;
-    }
-
-  return t;
-}
-
-// Return a tree for a type without looking in the hash table for
-// identical types.  This is used for named types, since there is no
-// point to looking in the hash table for them.
-
-tree
-Type::get_tree_without_hash(Gogo* gogo)
-{
-  if (this->tree_ == NULL_TREE)
-    {
-      tree t = this->do_get_tree(gogo);
-
-      // For a recursive function or pointer type, we will temporarily
-      // return ptr_type_node during the recursion.  We don't want to
-      // record that for a forwarding type, as it may confuse us
-      // later.
-      if (t == ptr_type_node && this->forward_declaration_type() != NULL)
-       return t;
-
-      if (gogo == NULL || !gogo->named_types_are_converted())
-       return t;
-
-      this->tree_ = t;
-      go_preserve_from_gc(t);
-    }
-
-  return this->tree_;
-}
-
-// Return a tree representing a zero initialization for this type.
-
-tree
-Type::get_init_tree(Gogo* gogo, bool is_clear)
-{
-  tree type_tree = this->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-  return this->do_get_init_tree(gogo, type_tree, is_clear);
-}
-
-// Any type which supports the builtin make function must implement
-// this.
-
-tree
-Type::do_make_expression_tree(Translate_context*, Expression_list*,
-                             source_location)
-{
-  gcc_unreachable();
-}
-
-// Return a pointer to the type descriptor for this type.
-
-tree
-Type::type_descriptor_pointer(Gogo* gogo)
-{
-  Type* t = this->forwarded();
-  if (t->type_descriptor_decl_ == NULL_TREE)
-    {
-      Expression* e = t->do_type_descriptor(gogo, NULL);
-      gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
-      gcc_assert(t->type_descriptor_decl_ != NULL_TREE
-                && (t->type_descriptor_decl_ == error_mark_node
-                    || DECL_P(t->type_descriptor_decl_)));
-    }
-  if (t->type_descriptor_decl_ == error_mark_node)
-    return error_mark_node;
-  return build_fold_addr_expr(t->type_descriptor_decl_);
-}
-
-// Return a composite literal for a type descriptor.
-
-Expression*
-Type::type_descriptor(Gogo* gogo, Type* type)
-{
-  return type->do_type_descriptor(gogo, NULL);
-}
-
-// Return a composite literal for a type descriptor with a name.
-
-Expression*
-Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
-{
-  gcc_assert(name != NULL && type->named_type() != name);
-  return type->do_type_descriptor(gogo, name);
-}
-
-// Make a builtin struct type from a list of fields.  The fields are
-// pairs of a name and a type.
-
-Struct_type*
-Type::make_builtin_struct_type(int nfields, ...)
-{
-  va_list ap;
-  va_start(ap, nfields);
-
-  source_location bloc = BUILTINS_LOCATION;
-  Struct_field_list* sfl = new Struct_field_list();
-  for (int i = 0; i < nfields; i++)
-    {
-      const char* field_name = va_arg(ap, const char *);
-      Type* type = va_arg(ap, Type*);
-      sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
-    }
-
-  va_end(ap);
-
-  return Type::make_struct_type(sfl, bloc);
-}
-
-// A list of builtin named types.
-
-std::vector<Named_type*> Type::named_builtin_types;
-
-// Make a builtin named type.
-
-Named_type*
-Type::make_builtin_named_type(const char* name, Type* type)
-{
-  source_location bloc = BUILTINS_LOCATION;
-  Named_object* no = Named_object::make_type(name, NULL, type, bloc);
-  Named_type* ret = no->type_value();
-  Type::named_builtin_types.push_back(ret);
-  return ret;
-}
-
-// Convert the named builtin types.
-
-void
-Type::convert_builtin_named_types(Gogo* gogo)
-{
-  for (std::vector<Named_type*>::const_iterator p =
-        Type::named_builtin_types.begin();
-       p != Type::named_builtin_types.end();
-       ++p)
-    {
-      bool r = (*p)->verify();
-      gcc_assert(r);
-      (*p)->convert(gogo);
-    }
-}
-
-// Return the type of a type descriptor.  We should really tie this to
-// runtime.Type rather than copying it.  This must match commonType in
-// libgo/go/runtime/type.go.
-
-Type*
-Type::make_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      source_location bloc = BUILTINS_LOCATION;
-
-      Type* uint8_type = Type::lookup_integer_type("uint8");
-      Type* uint32_type = Type::lookup_integer_type("uint32");
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-      Type* string_type = Type::lookup_string_type();
-      Type* pointer_string_type = Type::make_pointer_type(string_type);
-
-      // This is an unnamed version of unsafe.Pointer.  Perhaps we
-      // should use the named version instead, although that would
-      // require us to create the unsafe package if it has not been
-      // imported.  It probably doesn't matter.
-      Type* void_type = Type::make_void_type();
-      Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
-
-      // Forward declaration for the type descriptor type.
-      Named_object* named_type_descriptor_type =
-       Named_object::make_type_declaration("commonType", NULL, bloc);
-      Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
-      Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
-
-      // The type of a method on a concrete type.
-      Struct_type* method_type =
-       Type::make_builtin_struct_type(5,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "mtyp", pointer_type_descriptor_type,
-                                      "typ", pointer_type_descriptor_type,
-                                      "tfn", unsafe_pointer_type);
-      Named_type* named_method_type =
-       Type::make_builtin_named_type("method", method_type);
-
-      // Information for types with a name or methods.
-      Type* slice_named_method_type =
-       Type::make_array_type(named_method_type, NULL);
-      Struct_type* uncommon_type =
-       Type::make_builtin_struct_type(3,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "methods", slice_named_method_type);
-      Named_type* named_uncommon_type =
-       Type::make_builtin_named_type("uncommonType", uncommon_type);
-
-      Type* pointer_uncommon_type =
-       Type::make_pointer_type(named_uncommon_type);
-
-      // The type descriptor type.
-
-      Typed_identifier_list* params = new Typed_identifier_list();
-      params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
-      params->push_back(Typed_identifier("", uintptr_type, bloc));
-
-      Typed_identifier_list* results = new Typed_identifier_list();
-      results->push_back(Typed_identifier("", uintptr_type, bloc));
-
-      Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
-
-      params = new Typed_identifier_list();
-      params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
-      params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
-      params->push_back(Typed_identifier("", uintptr_type, bloc));
-
-      results = new Typed_identifier_list();
-      results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
-
-      Type* equalfn_type = Type::make_function_type(NULL, params, results,
-                                                   bloc);
-
-      Struct_type* type_descriptor_type =
-       Type::make_builtin_struct_type(10,
-                                      "Kind", uint8_type,
-                                      "align", uint8_type,
-                                      "fieldAlign", uint8_type,
-                                      "size", uintptr_type,
-                                      "hash", uint32_type,
-                                      "hashfn", hashfn_type,
-                                      "equalfn", equalfn_type,
-                                      "string", pointer_string_type,
-                                      "", pointer_uncommon_type,
-                                      "ptrToThis",
-                                      pointer_type_descriptor_type);
-
-      Named_type* named = Type::make_builtin_named_type("commonType",
-                                                       type_descriptor_type);
-
-      named_type_descriptor_type->set_type_value(named);
-
-      ret = named;
-    }
-
-  return ret;
-}
-
-// Make the type of a pointer to a type descriptor as represented in
-// Go.
-
-Type*
-Type::make_type_descriptor_ptr_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    ret = Type::make_pointer_type(Type::make_type_descriptor_type());
-  return ret;
-}
-
-// Return the names of runtime functions which compute a hash code for
-// this type and which compare whether two values of this type are
-// equal.
-
-void
-Type::type_functions(const char** hash_fn, const char** equal_fn) const
-{
-  switch (this->base()->classification())
-    {
-    case Type::TYPE_ERROR:
-    case Type::TYPE_VOID:
-    case Type::TYPE_NIL:
-      // These types can not be hashed or compared.
-      *hash_fn = "__go_type_hash_error";
-      *equal_fn = "__go_type_equal_error";
-      break;
-
-    case Type::TYPE_BOOLEAN:
-    case Type::TYPE_INTEGER:
-    case Type::TYPE_FLOAT:
-    case Type::TYPE_COMPLEX:
-    case Type::TYPE_POINTER:
-    case Type::TYPE_FUNCTION:
-    case Type::TYPE_MAP:
-    case Type::TYPE_CHANNEL:
-      *hash_fn = "__go_type_hash_identity";
-      *equal_fn = "__go_type_equal_identity";
-      break;
-
-    case Type::TYPE_STRING:
-      *hash_fn = "__go_type_hash_string";
-      *equal_fn = "__go_type_equal_string";
-      break;
-
-    case Type::TYPE_STRUCT:
-    case Type::TYPE_ARRAY:
-      // These types can not be hashed or compared.
-      *hash_fn = "__go_type_hash_error";
-      *equal_fn = "__go_type_equal_error";
-      break;
-
-    case Type::TYPE_INTERFACE:
-      if (this->interface_type()->is_empty())
-       {
-         *hash_fn = "__go_type_hash_empty_interface";
-         *equal_fn = "__go_type_equal_empty_interface";
-       }
-      else
-       {
-         *hash_fn = "__go_type_hash_interface";
-         *equal_fn = "__go_type_equal_interface";
-       }
-      break;
-
-    case Type::TYPE_NAMED:
-    case Type::TYPE_FORWARD:
-      gcc_unreachable();
-
-    default:
-      gcc_unreachable();
-    }
-}
-
-// Return a composite literal for the type descriptor for a plain type
-// of kind RUNTIME_TYPE_KIND named NAME.
-
-Expression*
-Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
-                                 Named_type* name, const Methods* methods,
-                                 bool only_value_methods)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* td_type = Type::make_type_descriptor_type();
-  const Struct_field_list* fields = td_type->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(9);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "Kind");
-  mpz_t iv;
-  mpz_init_set_ui(iv, runtime_type_kind);
-  vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "align");
-  Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
-  vals->push_back(Expression::make_type_info(this, type_info));
-
-  ++p;
-  gcc_assert(p->field_name() == "fieldAlign");
-  type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
-  vals->push_back(Expression::make_type_info(this, type_info));
-
-  ++p;
-  gcc_assert(p->field_name() == "size");
-  type_info = Expression::TYPE_INFO_SIZE;
-  vals->push_back(Expression::make_type_info(this, type_info));
-
-  ++p;
-  gcc_assert(p->field_name() == "hash");
-  mpz_set_ui(iv, this->hash_for_method(gogo));
-  vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
-
-  const char* hash_fn;
-  const char* equal_fn;
-  this->type_functions(&hash_fn, &equal_fn);
-
-  ++p;
-  gcc_assert(p->field_name() == "hashfn");
-  Function_type* fntype = p->type()->function_type();
-  Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
-                                                            fntype,
-                                                            bloc);
-  no->func_declaration_value()->set_asm_name(hash_fn);
-  vals->push_back(Expression::make_func_reference(no, NULL, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "equalfn");
-  fntype = p->type()->function_type();
-  no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
-  no->func_declaration_value()->set_asm_name(equal_fn);
-  vals->push_back(Expression::make_func_reference(no, NULL, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "string");
-  Expression* s = Expression::make_string((name != NULL
-                                          ? name->reflection(gogo)
-                                          : this->reflection(gogo)),
-                                         bloc);
-  vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "uncommonType");
-  if (name == NULL && methods == NULL)
-    vals->push_back(Expression::make_nil(bloc));
-  else
-    {
-      if (methods == NULL)
-       methods = name->methods();
-      vals->push_back(this->uncommon_type_constructor(gogo,
-                                                     p->type()->deref(),
-                                                     name, methods,
-                                                     only_value_methods));
-    }
-
-  ++p;
-  gcc_assert(p->field_name() == "ptrToThis");
-  if (name == NULL)
-    vals->push_back(Expression::make_nil(bloc));
-  else
-    {
-      Type* pt = Type::make_pointer_type(name);
-      vals->push_back(Expression::make_type_descriptor(pt, bloc));
-    }
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  mpz_clear(iv);
-
-  return Expression::make_struct_composite_literal(td_type, vals, bloc);
-}
-
-// Return a composite literal for the uncommon type information for
-// this type.  UNCOMMON_STRUCT_TYPE is the type of the uncommon type
-// struct.  If name is not NULL, it is the name of the type.  If
-// METHODS is not NULL, it is the list of methods.  ONLY_VALUE_METHODS
-// is true if only value methods should be included.  At least one of
-// NAME and METHODS must not be NULL.
-
-Expression*
-Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
-                               Named_type* name, const Methods* methods,
-                               bool only_value_methods) const
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  const Struct_field_list* fields = uncommon_type->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "name");
-
-  ++p;
-  gcc_assert(p->field_name() == "pkgPath");
-
-  if (name == NULL)
-    {
-      vals->push_back(Expression::make_nil(bloc));
-      vals->push_back(Expression::make_nil(bloc));
-    }
-  else
-    {
-      Named_object* no = name->named_object();
-      std::string n = Gogo::unpack_hidden_name(no->name());
-      Expression* s = Expression::make_string(n, bloc);
-      vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-
-      if (name->is_builtin())
-       vals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         const Package* package = no->package();
-         const std::string& unique_prefix(package == NULL
-                                          ? gogo->unique_prefix()
-                                          : package->unique_prefix());
-         const std::string& package_name(package == NULL
-                                         ? gogo->package_name()
-                                         : package->name());
-         n.assign(unique_prefix);
-         n.append(1, '.');
-         n.append(package_name);
-         if (name->in_function() != NULL)
-           {
-             n.append(1, '.');
-             n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
-           }
-         s = Expression::make_string(n, bloc);
-         vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-    }
-
-  ++p;
-  gcc_assert(p->field_name() == "methods");
-  vals->push_back(this->methods_constructor(gogo, p->type(), methods,
-                                           only_value_methods));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  Expression* r = Expression::make_struct_composite_literal(uncommon_type,
-                                                           vals, bloc);
-  return Expression::make_unary(OPERATOR_AND, r, bloc);
-}
-
-// Sort methods by name.
-
-class Sort_methods
-{
- public:
-  bool
-  operator()(const std::pair<std::string, const Method*>& m1,
-            const std::pair<std::string, const Method*>& m2) const
-  { return m1.first < m2.first; }
-};
-
-// Return a composite literal for the type method table for this type.
-// METHODS_TYPE is the type of the table, and is a slice type.
-// METHODS is the list of methods.  If ONLY_VALUE_METHODS is true,
-// then only value methods are used.
-
-Expression*
-Type::methods_constructor(Gogo* gogo, Type* methods_type,
-                         const Methods* methods,
-                         bool only_value_methods) const
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  std::vector<std::pair<std::string, const Method*> > smethods;
-  if (methods != NULL)
-    {
-      smethods.reserve(methods->count());
-      for (Methods::const_iterator p = methods->begin();
-          p != methods->end();
-          ++p)
-       {
-         if (p->second->is_ambiguous())
-           continue;
-         if (only_value_methods && !p->second->is_value_method())
-           continue;
-         smethods.push_back(std::make_pair(p->first, p->second));
-       }
-    }
-
-  if (smethods.empty())
-    return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
-
-  std::sort(smethods.begin(), smethods.end(), Sort_methods());
-
-  Type* method_type = methods_type->array_type()->element_type();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(smethods.size());
-  for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
-        = smethods.begin();
-       p != smethods.end();
-       ++p)
-    vals->push_back(this->method_constructor(gogo, method_type, p->first,
-                                            p->second));
-
-  return Expression::make_slice_composite_literal(methods_type, vals, bloc);
-}
-
-// Return a composite literal for a single method.  METHOD_TYPE is the
-// type of the entry.  METHOD_NAME is the name of the method and M is
-// the method information.
-
-Expression*
-Type::method_constructor(Gogo*, Type* method_type,
-                        const std::string& method_name,
-                        const Method* m) const
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  const Struct_field_list* fields = method_type->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(5);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "name");
-  const std::string n = Gogo::unpack_hidden_name(method_name);
-  Expression* s = Expression::make_string(n, bloc);
-  vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "pkgPath");
-  if (!Gogo::is_hidden_name(method_name))
-    vals->push_back(Expression::make_nil(bloc));
-  else
-    {
-      s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
-      vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-    }
-
-  Named_object* no = (m->needs_stub_method()
-                     ? m->stub_object()
-                     : m->named_object());
-
-  Function_type* mtype;
-  if (no->is_function())
-    mtype = no->func_value()->type();
-  else
-    mtype = no->func_declaration_value()->type();
-  gcc_assert(mtype->is_method());
-  Type* nonmethod_type = mtype->copy_without_receiver();
-
-  ++p;
-  gcc_assert(p->field_name() == "mtyp");
-  vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "typ");
-  vals->push_back(Expression::make_type_descriptor(mtype, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "tfn");
-  vals->push_back(Expression::make_func_reference(no, NULL, bloc));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(method_type, vals, bloc);
-}
-
-// Return a composite literal for the type descriptor of a plain type.
-// RUNTIME_TYPE_KIND is the value of the kind field.  If NAME is not
-// NULL, it is the name to use as well as the list of methods.
-
-Expression*
-Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
-                           Named_type* name)
-{
-  return this->type_descriptor_constructor(gogo, runtime_type_kind,
-                                          name, NULL, true);
-}
-
-// Return the type reflection string for this type.
-
-std::string
-Type::reflection(Gogo* gogo) const
-{
-  std::string ret;
-
-  // The do_reflection virtual function should set RET to the
-  // reflection string.
-  this->do_reflection(gogo, &ret);
-
-  return ret;
-}
-
-// Return a mangled name for the type.
-
-std::string
-Type::mangled_name(Gogo* gogo) const
-{
-  std::string ret;
-
-  // The do_mangled_name virtual function should set RET to the
-  // mangled name.  For a composite type it should append a code for
-  // the composition and then call do_mangled_name on the components.
-  this->do_mangled_name(gogo, &ret);
-
-  return ret;
-}
-
-// Default function to export a type.
-
-void
-Type::do_export(Export*) const
-{
-  gcc_unreachable();
-}
-
-// Import a type.
-
-Type*
-Type::import_type(Import* imp)
-{
-  if (imp->match_c_string("("))
-    return Function_type::do_import(imp);
-  else if (imp->match_c_string("*"))
-    return Pointer_type::do_import(imp);
-  else if (imp->match_c_string("struct "))
-    return Struct_type::do_import(imp);
-  else if (imp->match_c_string("["))
-    return Array_type::do_import(imp);
-  else if (imp->match_c_string("map "))
-    return Map_type::do_import(imp);
-  else if (imp->match_c_string("chan "))
-    return Channel_type::do_import(imp);
-  else if (imp->match_c_string("interface"))
-    return Interface_type::do_import(imp);
-  else
-    {
-      error_at(imp->location(), "import error: expected type");
-      return Type::make_error_type();
-    }
-}
-
-// A type used to indicate a parsing error.  This exists to simplify
-// later error detection.
-
-class Error_type : public Type
-{
- public:
-  Error_type()
-    : Type(TYPE_ERROR)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return error_mark_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  { return error_mark_node; }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { return Expression::make_error(BUILTINS_LOCATION); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { gcc_assert(saw_errors()); }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('E'); }
-};
-
-Type*
-Type::make_error_type()
-{
-  static Error_type singleton_error_type;
-  return &singleton_error_type;
-}
-
-// The void type.
-
-class Void_type : public Type
-{
- public:
-  Void_type()
-    : Type(TYPE_VOID)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return void_type_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  { gcc_unreachable(); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { gcc_unreachable(); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('v'); }
-};
-
-Type*
-Type::make_void_type()
-{
-  static Void_type singleton_void_type;
-  return &singleton_void_type;
-}
-
-// The boolean type.
-
-class Boolean_type : public Type
-{
- public:
-  Boolean_type()
-    : Type(TYPE_BOOLEAN)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return boolean_type_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-  { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type* name);
-
-  // We should not be asked for the reflection string of a basic type.
-  void
-  do_reflection(Gogo*, std::string* ret) const
-  { ret->append("bool"); }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('b'); }
-};
-
-// Make the type descriptor.
-
-Expression*
-Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (name != NULL)
-    return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
-  else
-    {
-      Named_object* no = gogo->lookup_global("bool");
-      gcc_assert(no != NULL);
-      return Type::type_descriptor(gogo, no->type_value());
-    }
-}
-
-Type*
-Type::make_boolean_type()
-{
-  static Boolean_type boolean_type;
-  return &boolean_type;
-}
-
-// The named type "bool".
-
-static Named_type* named_bool_type;
-
-// Get the named type "bool".
-
-Named_type*
-Type::lookup_bool_type()
-{
-  return named_bool_type;
-}
-
-// Make the named type "bool".
-
-Named_type*
-Type::make_named_bool_type()
-{
-  Type* bool_type = Type::make_boolean_type();
-  Named_object* named_object = Named_object::make_type("bool", NULL,
-                                                      bool_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  named_bool_type = named_type;
-  return named_type;
-}
-
-// Class Integer_type.
-
-Integer_type::Named_integer_types Integer_type::named_integer_types;
-
-// Create a new integer type.  Non-abstract integer types always have
-// names.
-
-Named_type*
-Integer_type::create_integer_type(const char* name, bool is_unsigned,
-                                 int bits, int runtime_type_kind)
-{
-  Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
-                                               runtime_type_kind);
-  std::string sname(name);
-  Named_object* named_object = Named_object::make_type(sname, NULL,
-                                                      integer_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  std::pair<Named_integer_types::iterator, bool> ins =
-    Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
-  gcc_assert(ins.second);
-  return named_type;
-}
-
-// Look up an existing integer type.
-
-Named_type*
-Integer_type::lookup_integer_type(const char* name)
-{
-  Named_integer_types::const_iterator p =
-    Integer_type::named_integer_types.find(name);
-  gcc_assert(p != Integer_type::named_integer_types.end());
-  return p->second;
-}
-
-// Create a new abstract integer type.
-
-Integer_type*
-Integer_type::create_abstract_integer_type()
-{
-  static Integer_type* abstract_type;
-  if (abstract_type == NULL)
-    abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
-                                    RUNTIME_TYPE_KIND_INT);
-  return abstract_type;
-}
-
-// Integer type compatibility.
-
-bool
-Integer_type::is_identical(const Integer_type* t) const
-{
-  if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
-    return false;
-  return this->is_abstract_ == t->is_abstract_;
-}
-
-// Hash code.
-
-unsigned int
-Integer_type::do_hash_for_method(Gogo*) const
-{
-  return ((this->bits_ << 4)
-         + ((this->is_unsigned_ ? 1 : 0) << 8)
-         + ((this->is_abstract_ ? 1 : 0) << 9));
-}
-
-// Get the tree for an Integer_type.
-
-tree
-Integer_type::do_get_tree(Gogo*)
-{
-  if (this->is_abstract_)
-    {
-      gcc_assert(saw_errors());
-      return error_mark_node;
-    }
-
-  if (this->is_unsigned_)
-    {
-      if (this->bits_ == INT_TYPE_SIZE)
-       return unsigned_type_node;
-      else if (this->bits_ == CHAR_TYPE_SIZE)
-       return unsigned_char_type_node;
-      else if (this->bits_ == SHORT_TYPE_SIZE)
-       return short_unsigned_type_node;
-      else if (this->bits_ == LONG_TYPE_SIZE)
-       return long_unsigned_type_node;
-      else if (this->bits_ == LONG_LONG_TYPE_SIZE)
-       return long_long_unsigned_type_node;
-      else
-       return make_unsigned_type(this->bits_);
-    }
-  else
-    {
-      if (this->bits_ == INT_TYPE_SIZE)
-       return integer_type_node;
-      else if (this->bits_ == CHAR_TYPE_SIZE)
-       return signed_char_type_node;
-      else if (this->bits_ == SHORT_TYPE_SIZE)
-       return short_integer_type_node;
-      else if (this->bits_ == LONG_TYPE_SIZE)
-       return long_integer_type_node;
-      else if (this->bits_ == LONG_LONG_TYPE_SIZE)
-       return long_long_integer_type_node;
-      else
-       return make_signed_type(this->bits_);
-    }
-}
-
-tree
-Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  return is_clear ? NULL : build_int_cst(type_tree, 0);
-}
-
-// The type descriptor for an integer type.  Integer types are always
-// named.
-
-Expression*
-Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  gcc_assert(name != NULL);
-  return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-Integer_type::do_reflection(Gogo*, std::string*) const
-{
-  gcc_assert(saw_errors());
-}
-
-// Mangled name.
-
-void
-Integer_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  char buf[100];
-  snprintf(buf, sizeof buf, "i%s%s%de",
-          this->is_abstract_ ? "a" : "",
-          this->is_unsigned_ ? "u" : "",
-          this->bits_);
-  ret->append(buf);
-}
-
-// Make an integer type.
-
-Named_type*
-Type::make_integer_type(const char* name, bool is_unsigned, int bits,
-                       int runtime_type_kind)
-{
-  return Integer_type::create_integer_type(name, is_unsigned, bits,
-                                          runtime_type_kind);
-}
-
-// Make an abstract integer type.
-
-Integer_type*
-Type::make_abstract_integer_type()
-{
-  return Integer_type::create_abstract_integer_type();
-}
-
-// Look up an integer type.
-
-Named_type*
-Type::lookup_integer_type(const char* name)
-{
-  return Integer_type::lookup_integer_type(name);
-}
-
-// Class Float_type.
-
-Float_type::Named_float_types Float_type::named_float_types;
-
-// Create a new float type.  Non-abstract float types always have
-// names.
-
-Named_type*
-Float_type::create_float_type(const char* name, int bits,
-                             int runtime_type_kind)
-{
-  Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
-  std::string sname(name);
-  Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  std::pair<Named_float_types::iterator, bool> ins =
-    Float_type::named_float_types.insert(std::make_pair(sname, named_type));
-  gcc_assert(ins.second);
-  return named_type;
-}
-
-// Look up an existing float type.
-
-Named_type*
-Float_type::lookup_float_type(const char* name)
-{
-  Named_float_types::const_iterator p =
-    Float_type::named_float_types.find(name);
-  gcc_assert(p != Float_type::named_float_types.end());
-  return p->second;
-}
-
-// Create a new abstract float type.
-
-Float_type*
-Float_type::create_abstract_float_type()
-{
-  static Float_type* abstract_type;
-  if (abstract_type == NULL)
-    abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64);
-  return abstract_type;
-}
-
-// Whether this type is identical with T.
-
-bool
-Float_type::is_identical(const Float_type* t) const
-{
-  if (this->bits_ != t->bits_)
-    return false;
-  return this->is_abstract_ == t->is_abstract_;
-}
-
-// Hash code.
-
-unsigned int
-Float_type::do_hash_for_method(Gogo*) const
-{
-  return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
-}
-
-// Get a tree without using a Gogo*.
-
-tree
-Float_type::type_tree() const
-{
-  if (this->bits_ == FLOAT_TYPE_SIZE)
-    return float_type_node;
-  else if (this->bits_ == DOUBLE_TYPE_SIZE)
-    return double_type_node;
-  else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
-    return long_double_type_node;
-  else
-    {
-      tree ret = make_node(REAL_TYPE);
-      TYPE_PRECISION(ret) = this->bits_;
-      layout_type(ret);
-      return ret;
-    }
-}
-
-// Get a tree.
-
-tree
-Float_type::do_get_tree(Gogo*)
-{
-  return this->type_tree();
-}
-
-tree
-Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  REAL_VALUE_TYPE r;
-  real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
-  return build_real(type_tree, r);
-}
-
-// The type descriptor for a float type.  Float types are always named.
-
-Expression*
-Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  gcc_assert(name != NULL);
-  return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-Float_type::do_reflection(Gogo*, std::string*) const
-{
-  gcc_assert(saw_errors());
-}
-
-// Mangled name.
-
-void
-Float_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  char buf[100];
-  snprintf(buf, sizeof buf, "f%s%de",
-          this->is_abstract_ ? "a" : "",
-          this->bits_);
-  ret->append(buf);
-}
-
-// Make a floating point type.
-
-Named_type*
-Type::make_float_type(const char* name, int bits, int runtime_type_kind)
-{
-  return Float_type::create_float_type(name, bits, runtime_type_kind);
-}
-
-// Make an abstract float type.
-
-Float_type*
-Type::make_abstract_float_type()
-{
-  return Float_type::create_abstract_float_type();
-}
-
-// Look up a float type.
-
-Named_type*
-Type::lookup_float_type(const char* name)
-{
-  return Float_type::lookup_float_type(name);
-}
-
-// Class Complex_type.
-
-Complex_type::Named_complex_types Complex_type::named_complex_types;
-
-// Create a new complex type.  Non-abstract complex types always have
-// names.
-
-Named_type*
-Complex_type::create_complex_type(const char* name, int bits,
-                                 int runtime_type_kind)
-{
-  Complex_type* complex_type = new Complex_type(false, bits,
-                                               runtime_type_kind);
-  std::string sname(name);
-  Named_object* named_object = Named_object::make_type(sname, NULL,
-                                                      complex_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  std::pair<Named_complex_types::iterator, bool> ins =
-    Complex_type::named_complex_types.insert(std::make_pair(sname,
-                                                           named_type));
-  gcc_assert(ins.second);
-  return named_type;
-}
-
-// Look up an existing complex type.
-
-Named_type*
-Complex_type::lookup_complex_type(const char* name)
-{
-  Named_complex_types::const_iterator p =
-    Complex_type::named_complex_types.find(name);
-  gcc_assert(p != Complex_type::named_complex_types.end());
-  return p->second;
-}
-
-// Create a new abstract complex type.
-
-Complex_type*
-Complex_type::create_abstract_complex_type()
-{
-  static Complex_type* abstract_type;
-  if (abstract_type == NULL)
-    abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128);
-  return abstract_type;
-}
-
-// Whether this type is identical with T.
-
-bool
-Complex_type::is_identical(const Complex_type *t) const
-{
-  if (this->bits_ != t->bits_)
-    return false;
-  return this->is_abstract_ == t->is_abstract_;
-}
-
-// Hash code.
-
-unsigned int
-Complex_type::do_hash_for_method(Gogo*) const
-{
-  return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
-}
-
-// Get a tree without using a Gogo*.
-
-tree
-Complex_type::type_tree() const
-{
-  if (this->bits_ == FLOAT_TYPE_SIZE * 2)
-    return complex_float_type_node;
-  else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
-    return complex_double_type_node;
-  else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
-    return complex_long_double_type_node;
-  else
-    {
-      tree ret = make_node(REAL_TYPE);
-      TYPE_PRECISION(ret) = this->bits_ / 2;
-      layout_type(ret);
-      return build_complex_type(ret);
-    }
-}
-
-// Get a tree.
-
-tree
-Complex_type::do_get_tree(Gogo*)
-{
-  return this->type_tree();
-}
-
-// Zero initializer.
-
-tree
-Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  REAL_VALUE_TYPE r;
-  real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
-  return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
-                      build_real(TREE_TYPE(type_tree), r));
-}
-
-// The type descriptor for a complex type.  Complex types are always
-// named.
-
-Expression*
-Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  gcc_assert(name != NULL);
-  return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-Complex_type::do_reflection(Gogo*, std::string*) const
-{
-  gcc_assert(saw_errors());
-}
-
-// Mangled name.
-
-void
-Complex_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  char buf[100];
-  snprintf(buf, sizeof buf, "c%s%de",
-          this->is_abstract_ ? "a" : "",
-          this->bits_);
-  ret->append(buf);
-}
-
-// Make a complex type.
-
-Named_type*
-Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
-{
-  return Complex_type::create_complex_type(name, bits, runtime_type_kind);
-}
-
-// Make an abstract complex type.
-
-Complex_type*
-Type::make_abstract_complex_type()
-{
-  return Complex_type::create_abstract_complex_type();
-}
-
-// Look up a complex type.
-
-Named_type*
-Type::lookup_complex_type(const char* name)
-{
-  return Complex_type::lookup_complex_type(name);
-}
-
-// Class String_type.
-
-// Return the tree for String_type.  A string is a struct with two
-// fields: a pointer to the characters and a length.
-
-tree
-String_type::do_get_tree(Gogo*)
-{
-  static tree struct_type;
-  return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
-                             "__data",
-                             build_pointer_type(unsigned_char_type_node),
-                             "__length",
-                             integer_type_node);
-}
-
-// Return a tree for the length of STRING.
-
-tree
-String_type::length_tree(Gogo*, tree string)
-{
-  tree string_type = TREE_TYPE(string);
-  gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
-  tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
-                   "__length") == 0);
-  return fold_build3(COMPONENT_REF, integer_type_node, string,
-                    length_field, NULL_TREE);
-}
-
-// Return a tree for a pointer to the bytes of STRING.
-
-tree
-String_type::bytes_tree(Gogo*, tree string)
-{
-  tree string_type = TREE_TYPE(string);
-  gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
-  tree bytes_field = TYPE_FIELDS(string_type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
-                   "__data") == 0);
-  return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
-                    bytes_field, NULL_TREE);
-}
-
-// We initialize a string to { NULL, 0 }.
-
-tree
-String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL_TREE;
-
-  gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-  VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
-
-  for (tree field = TYPE_FIELDS(type_tree);
-       field != NULL_TREE;
-       field = DECL_CHAIN(field))
-    {
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
-    }
-
-  tree ret = build_constructor(type_tree, init);
-  TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// The type descriptor for the string type.
-
-Expression*
-String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (name != NULL)
-    return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
-  else
-    {
-      Named_object* no = gogo->lookup_global("string");
-      gcc_assert(no != NULL);
-      return Type::type_descriptor(gogo, no->type_value());
-    }
-}
-
-// We should not be asked for the reflection string of a basic type.
-
-void
-String_type::do_reflection(Gogo*, std::string* ret) const
-{
-  ret->append("string");
-}
-
-// Mangled name of a string type.
-
-void
-String_type::do_mangled_name(Gogo*, std::string* ret) const
-{
-  ret->push_back('z');
-}
-
-// Make a string type.
-
-Type*
-Type::make_string_type()
-{
-  static String_type string_type;
-  return &string_type;
-}
-
-// The named type "string".
-
-static Named_type* named_string_type;
-
-// Get the named type "string".
-
-Named_type*
-Type::lookup_string_type()
-{
-  return named_string_type;
-}
-
-// Make the named type string.
-
-Named_type*
-Type::make_named_string_type()
-{
-  Type* string_type = Type::make_string_type();
-  Named_object* named_object = Named_object::make_type("string", NULL,
-                                                      string_type,
-                                                      BUILTINS_LOCATION);
-  Named_type* named_type = named_object->type_value();
-  named_string_type = named_type;
-  return named_type;
-}
-
-// The sink type.  This is the type of the blank identifier _.  Any
-// type may be assigned to it.
-
-class Sink_type : public Type
-{
- public:
-  Sink_type()
-    : Type(TYPE_SINK)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { gcc_unreachable(); }
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  { gcc_unreachable(); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { gcc_unreachable(); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { gcc_unreachable(); }
-
-  void
-  do_mangled_name(Gogo*, std::string*) const
-  { gcc_unreachable(); }
-};
-
-// Make the sink type.
-
-Type*
-Type::make_sink_type()
-{
-  static Sink_type sink_type;
-  return &sink_type;
-}
-
-// Class Function_type.
-
-// Traversal.
-
-int
-Function_type::do_traverse(Traverse* traverse)
-{
-  if (this->receiver_ != NULL
-      && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->parameters_ != NULL
-      && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->results_ != NULL
-      && this->results_->traverse(traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Returns whether T is a valid redeclaration of this type.  If this
-// returns false, and REASON is not NULL, *REASON may be set to a
-// brief explanation of why it returned false.
-
-bool
-Function_type::is_valid_redeclaration(const Function_type* t,
-                                     std::string* reason) const
-{
-  if (!this->is_identical(t, false, true, reason))
-    return false;
-
-  // A redeclaration of a function is required to use the same names
-  // for the receiver and parameters.
-  if (this->receiver() != NULL
-      && this->receiver()->name() != t->receiver()->name()
-      && this->receiver()->name() != Import::import_marker
-      && t->receiver()->name() != Import::import_marker)
-    {
-      if (reason != NULL)
-       *reason = "receiver name changed";
-      return false;
-    }
-
-  const Typed_identifier_list* parms1 = this->parameters();
-  const Typed_identifier_list* parms2 = t->parameters();
-  if (parms1 != NULL)
-    {
-      Typed_identifier_list::const_iterator p1 = parms1->begin();
-      for (Typed_identifier_list::const_iterator p2 = parms2->begin();
-          p2 != parms2->end();
-          ++p2, ++p1)
-       {
-         if (p1->name() != p2->name()
-             && p1->name() != Import::import_marker
-             && p2->name() != Import::import_marker)
-           {
-             if (reason != NULL)
-               *reason = "parameter name changed";
-             return false;
-           }
-
-         // This is called at parse time, so we may have unknown
-         // types.
-         Type* t1 = p1->type()->forwarded();
-         Type* t2 = p2->type()->forwarded();
-         if (t1 != t2
-             && t1->forward_declaration_type() != NULL
-             && (t2->forward_declaration_type() == NULL
-                 || (t1->forward_declaration_type()->named_object()
-                     != t2->forward_declaration_type()->named_object())))
-           return false;
-       }
-    }
-
-  const Typed_identifier_list* results1 = this->results();
-  const Typed_identifier_list* results2 = t->results();
-  if (results1 != NULL)
-    {
-      Typed_identifier_list::const_iterator res1 = results1->begin();
-      for (Typed_identifier_list::const_iterator res2 = results2->begin();
-          res2 != results2->end();
-          ++res2, ++res1)
-       {
-         if (res1->name() != res2->name()
-             && res1->name() != Import::import_marker
-             && res2->name() != Import::import_marker)
-           {
-             if (reason != NULL)
-               *reason = "result name changed";
-             return false;
-           }
-
-         // This is called at parse time, so we may have unknown
-         // types.
-         Type* t1 = res1->type()->forwarded();
-         Type* t2 = res2->type()->forwarded();
-         if (t1 != t2
-             && t1->forward_declaration_type() != NULL
-             && (t2->forward_declaration_type() == NULL
-                 || (t1->forward_declaration_type()->named_object()
-                     != t2->forward_declaration_type()->named_object())))
-           return false;
-       }
-    }
-
-  return true;
-}
-
-// Check whether T is the same as this type.
-
-bool
-Function_type::is_identical(const Function_type* t, bool ignore_receiver,
-                           bool errors_are_identical,
-                           std::string* reason) const
-{
-  if (!ignore_receiver)
-    {
-      const Typed_identifier* r1 = this->receiver();
-      const Typed_identifier* r2 = t->receiver();
-      if ((r1 != NULL) != (r2 != NULL))
-       {
-         if (reason != NULL)
-           *reason = _("different receiver types");
-         return false;
-       }
-      if (r1 != NULL)
-       {
-         if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical,
-                                  reason))
-           {
-             if (reason != NULL && !reason->empty())
-               *reason = "receiver: " + *reason;
-             return false;
-           }
-       }
-    }
-
-  const Typed_identifier_list* parms1 = this->parameters();
-  const Typed_identifier_list* parms2 = t->parameters();
-  if ((parms1 != NULL) != (parms2 != NULL))
-    {
-      if (reason != NULL)
-       *reason = _("different number of parameters");
-      return false;
-    }
-  if (parms1 != NULL)
-    {
-      Typed_identifier_list::const_iterator p1 = parms1->begin();
-      for (Typed_identifier_list::const_iterator p2 = parms2->begin();
-          p2 != parms2->end();
-          ++p2, ++p1)
-       {
-         if (p1 == parms1->end())
-           {
-             if (reason != NULL)
-               *reason = _("different number of parameters");
-             return false;
-           }
-
-         if (!Type::are_identical(p1->type(), p2->type(),
-                                  errors_are_identical, NULL))
-           {
-             if (reason != NULL)
-               *reason = _("different parameter types");
-             return false;
-           }
-       }
-      if (p1 != parms1->end())
-       {
-         if (reason != NULL)
-           *reason = _("different number of parameters");
-       return false;
-       }
-    }
-
-  if (this->is_varargs() != t->is_varargs())
-    {
-      if (reason != NULL)
-       *reason = _("different varargs");
-      return false;
-    }
-
-  const Typed_identifier_list* results1 = this->results();
-  const Typed_identifier_list* results2 = t->results();
-  if ((results1 != NULL) != (results2 != NULL))
-    {
-      if (reason != NULL)
-       *reason = _("different number of results");
-      return false;
-    }
-  if (results1 != NULL)
-    {
-      Typed_identifier_list::const_iterator res1 = results1->begin();
-      for (Typed_identifier_list::const_iterator res2 = results2->begin();
-          res2 != results2->end();
-          ++res2, ++res1)
-       {
-         if (res1 == results1->end())
-           {
-             if (reason != NULL)
-               *reason = _("different number of results");
-             return false;
-           }
-
-         if (!Type::are_identical(res1->type(), res2->type(),
-                                  errors_are_identical, NULL))
-           {
-             if (reason != NULL)
-               *reason = _("different result types");
-             return false;
-           }
-       }
-      if (res1 != results1->end())
-       {
-         if (reason != NULL)
-           *reason = _("different number of results");
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Hash code.
-
-unsigned int
-Function_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  // We ignore the receiver type for hash codes, because we need to
-  // get the same hash code for a method in an interface and a method
-  // declared for a type.  The former will not have a receiver.
-  if (this->parameters_ != NULL)
-    {
-      int shift = 1;
-      for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
-          p != this->parameters_->end();
-          ++p, ++shift)
-       ret += p->type()->hash_for_method(gogo) << shift;
-    }
-  if (this->results_ != NULL)
-    {
-      int shift = 2;
-      for (Typed_identifier_list::const_iterator p = this->results_->begin();
-          p != this->results_->end();
-          ++p, ++shift)
-       ret += p->type()->hash_for_method(gogo) << shift;
-    }
-  if (this->is_varargs_)
-    ret += 1;
-  ret <<= 4;
-  return ret;
-}
-
-// Get the tree for a function type.
-
-tree
-Function_type::do_get_tree(Gogo* gogo)
-{
-  tree args = NULL_TREE;
-  tree* pp = &args;
-
-  if (this->receiver_ != NULL)
-    {
-      Type* rtype = this->receiver_->type();
-      tree ptype = rtype->get_tree(gogo);
-      if (ptype == error_mark_node)
-       return error_mark_node;
-
-      // We always pass the address of the receiver parameter, in
-      // order to make interface calls work with unknown types.
-      if (rtype->points_to() == NULL)
-       ptype = build_pointer_type(ptype);
-
-      *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
-      pp = &TREE_CHAIN (*pp);
-    }
-
-  if (this->parameters_ != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
-          p != this->parameters_->end();
-          ++p)
-       {
-         tree ptype = p->type()->get_tree(gogo);
-         if (ptype == error_mark_node)
-           return error_mark_node;
-         *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
-         pp = &TREE_CHAIN (*pp);
-       }
-    }
-
-  // Varargs is handled entirely at the Go level.  At the tree level,
-  // functions are not varargs.
-  *pp = void_list_node;
-
-  tree result;
-  if (this->results_ == NULL)
-    result = void_type_node;
-  else if (this->results_->size() == 1)
-    result = this->results_->begin()->type()->get_tree(gogo);
-  else
-    {
-      result = make_node(RECORD_TYPE);
-      tree field_trees = NULL_TREE;
-      tree* pp = &field_trees;
-      for (Typed_identifier_list::const_iterator p = this->results_->begin();
-          p != this->results_->end();
-          ++p)
-       {
-         const std::string name = (p->name().empty()
-                                   ? "UNNAMED"
-                                   : Gogo::unpack_hidden_name(p->name()));
-         tree name_tree = get_identifier_with_length(name.data(),
-                                                     name.length());
-         tree field_type_tree = p->type()->get_tree(gogo);
-         if (field_type_tree == error_mark_node)
-           return error_mark_node;
-         tree field = build_decl(this->location_, FIELD_DECL, name_tree,
-                                 field_type_tree);
-         DECL_CONTEXT(field) = result;
-         *pp = field;
-         pp = &DECL_CHAIN(field);
-       }
-      TYPE_FIELDS(result) = field_trees;
-      layout_type(result);
-    }
-
-  if (result == error_mark_node)
-    return error_mark_node;
-
-  tree fntype = build_function_type(result, args);
-  if (fntype == error_mark_node)
-    return fntype;
-
-  return build_pointer_type(fntype);
-}
-
-// Functions are initialized to NULL.
-
-tree
-Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// The type of a function type descriptor.
-
-Type*
-Function_type::make_function_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* bool_type = Type::lookup_bool_type();
-
-      Type* slice_type = Type::make_array_type(ptdt, NULL);
-
-      Struct_type* s = Type::make_builtin_struct_type(4,
-                                                     "", tdt,
-                                                     "dotdotdot", bool_type,
-                                                     "in", slice_type,
-                                                     "out", slice_type);
-
-      ret = Type::make_builtin_named_type("FuncType", s);
-    }
-
-  return ret;
-}
-
-// The type descriptor for a function type.
-
-Expression*
-Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* ftdt = Function_type::make_function_type_descriptor_type();
-
-  const Struct_field_list* fields = ftdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(4);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_FUNC,
-                                                   name, NULL, true));
-
-  ++p;
-  gcc_assert(p->field_name() == "dotdotdot");
-  vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "in");
-  vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
-                                              this->parameters()));
-
-  ++p;
-  gcc_assert(p->field_name() == "out");
-  vals->push_back(this->type_descriptor_params(p->type(), NULL,
-                                              this->results()));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(ftdt, vals, bloc);
-}
-
-// Return a composite literal for the parameters or results of a type
-// descriptor.
-
-Expression*
-Function_type::type_descriptor_params(Type* params_type,
-                                     const Typed_identifier* receiver,
-                                     const Typed_identifier_list* params)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  if (receiver == NULL && params == NULL)
-    return Expression::make_slice_composite_literal(params_type, NULL, bloc);
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve((params == NULL ? 0 : params->size())
-               + (receiver != NULL ? 1 : 0));
-
-  if (receiver != NULL)
-    {
-      Type* rtype = receiver->type();
-      // The receiver is always passed as a pointer.  FIXME: Is this
-      // right?  Should that fact affect the type descriptor?
-      if (rtype->points_to() == NULL)
-       rtype = Type::make_pointer_type(rtype);
-      vals->push_back(Expression::make_type_descriptor(rtype, bloc));
-    }
-
-  if (params != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
-    }
-
-  return Expression::make_slice_composite_literal(params_type, vals, bloc);
-}
-
-// The reflection string.
-
-void
-Function_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  // FIXME: Turn this off until we straighten out the type of the
-  // struct field used in a go statement which calls a method.
-  // gcc_assert(this->receiver_ == NULL);
-
-  ret->append("func");
-
-  if (this->receiver_ != NULL)
-    {
-      ret->push_back('(');
-      this->append_reflection(this->receiver_->type(), gogo, ret);
-      ret->push_back(')');
-    }
-
-  ret->push_back('(');
-  const Typed_identifier_list* params = this->parameters();
-  if (params != NULL)
-    {
-      bool is_varargs = this->is_varargs_;
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       {
-         if (p != params->begin())
-           ret->append(", ");
-         if (!is_varargs || p + 1 != params->end())
-           this->append_reflection(p->type(), gogo, ret);
-         else
-           {
-             ret->append("...");
-             this->append_reflection(p->type()->array_type()->element_type(),
-                                     gogo, ret);
-           }
-       }
-    }
-  ret->push_back(')');
-
-  const Typed_identifier_list* results = this->results();
-  if (results != NULL && !results->empty())
-    {
-      if (results->size() == 1)
-       ret->push_back(' ');
-      else
-       ret->append(" (");
-      for (Typed_identifier_list::const_iterator p = results->begin();
-          p != results->end();
-          ++p)
-       {
-         if (p != results->begin())
-           ret->append(", ");
-         this->append_reflection(p->type(), gogo, ret);
-       }
-      if (results->size() > 1)
-       ret->push_back(')');
-    }
-}
-
-// Mangled name.
-
-void
-Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('F');
-
-  if (this->receiver_ != NULL)
-    {
-      ret->push_back('m');
-      this->append_mangled_name(this->receiver_->type(), gogo, ret);
-    }
-
-  const Typed_identifier_list* params = this->parameters();
-  if (params != NULL)
-    {
-      ret->push_back('p');
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       this->append_mangled_name(p->type(), gogo, ret);
-      if (this->is_varargs_)
-       ret->push_back('V');
-      ret->push_back('e');
-    }
-
-  const Typed_identifier_list* results = this->results();
-  if (results != NULL)
-    {
-      ret->push_back('r');
-      for (Typed_identifier_list::const_iterator p = results->begin();
-          p != results->end();
-          ++p)
-       this->append_mangled_name(p->type(), gogo, ret);
-      ret->push_back('e');
-    }
-
-  ret->push_back('e');
-}
-
-// Export a function type.
-
-void
-Function_type::do_export(Export* exp) const
-{
-  // We don't write out the receiver.  The only function types which
-  // should have a receiver are the ones associated with explicitly
-  // defined methods.  For those the receiver type is written out by
-  // Function::export_func.
-
-  exp->write_c_string("(");
-  bool first = true;
-  if (this->parameters_ != NULL)
-    {
-      bool is_varargs = this->is_varargs_;
-      for (Typed_identifier_list::const_iterator p =
-            this->parameters_->begin();
-          p != this->parameters_->end();
-          ++p)
-       {
-         if (first)
-           first = false;
-         else
-           exp->write_c_string(", ");
-         if (!is_varargs || p + 1 != this->parameters_->end())
-           exp->write_type(p->type());
-         else
-           {
-             exp->write_c_string("...");
-             exp->write_type(p->type()->array_type()->element_type());
-           }
-       }
-    }
-  exp->write_c_string(")");
-
-  const Typed_identifier_list* results = this->results_;
-  if (results != NULL)
-    {
-      exp->write_c_string(" ");
-      if (results->size() == 1)
-       exp->write_type(results->begin()->type());
-      else
-       {
-         first = true;
-         exp->write_c_string("(");
-         for (Typed_identifier_list::const_iterator p = results->begin();
-              p != results->end();
-              ++p)
-           {
-             if (first)
-               first = false;
-             else
-               exp->write_c_string(", ");
-             exp->write_type(p->type());
-           }
-         exp->write_c_string(")");
-       }
-    }
-}
-
-// Import a function type.
-
-Function_type*
-Function_type::do_import(Import* imp)
-{
-  imp->require_c_string("(");
-  Typed_identifier_list* parameters;
-  bool is_varargs = false;
-  if (imp->peek_char() == ')')
-    parameters = NULL;
-  else
-    {
-      parameters = new Typed_identifier_list();
-      while (true)
-       {
-         if (imp->match_c_string("..."))
-           {
-             imp->advance(3);
-             is_varargs = true;
-           }
-
-         Type* ptype = imp->read_type();
-         if (is_varargs)
-           ptype = Type::make_array_type(ptype, NULL);
-         parameters->push_back(Typed_identifier(Import::import_marker,
-                                                ptype, imp->location()));
-         if (imp->peek_char() != ',')
-           break;
-         gcc_assert(!is_varargs);
-         imp->require_c_string(", ");
-       }
-    }
-  imp->require_c_string(")");
-
-  Typed_identifier_list* results;
-  if (imp->peek_char() != ' ')
-    results = NULL;
-  else
-    {
-      imp->advance(1);
-      results = new Typed_identifier_list;
-      if (imp->peek_char() != '(')
-       {
-         Type* rtype = imp->read_type();
-         results->push_back(Typed_identifier(Import::import_marker, rtype,
-                                             imp->location()));
-       }
-      else
-       {
-         imp->advance(1);
-         while (true)
-           {
-             Type* rtype = imp->read_type();
-             results->push_back(Typed_identifier(Import::import_marker,
-                                                 rtype, imp->location()));
-             if (imp->peek_char() != ',')
-               break;
-             imp->require_c_string(", ");
-           }
-         imp->require_c_string(")");
-       }
-    }
-
-  Function_type* ret = Type::make_function_type(NULL, parameters, results,
-                                               imp->location());
-  if (is_varargs)
-    ret->set_is_varargs();
-  return ret;
-}
-
-// Make a copy of a function type without a receiver.
-
-Function_type*
-Function_type::copy_without_receiver() const
-{
-  gcc_assert(this->is_method());
-  Function_type *ret = Type::make_function_type(NULL, this->parameters_,
-                                               this->results_,
-                                               this->location_);
-  if (this->is_varargs())
-    ret->set_is_varargs();
-  if (this->is_builtin())
-    ret->set_is_builtin();
-  return ret;
-}
-
-// Make a copy of a function type with a receiver.
-
-Function_type*
-Function_type::copy_with_receiver(Type* receiver_type) const
-{
-  gcc_assert(!this->is_method());
-  Typed_identifier* receiver = new Typed_identifier("", receiver_type,
-                                                   this->location_);
-  return Type::make_function_type(receiver, this->parameters_,
-                                 this->results_, this->location_);
-}
-
-// Make a function type.
-
-Function_type*
-Type::make_function_type(Typed_identifier* receiver,
-                        Typed_identifier_list* parameters,
-                        Typed_identifier_list* results,
-                        source_location location)
-{
-  return new Function_type(receiver, parameters, results, location);
-}
-
-// Class Pointer_type.
-
-// Traversal.
-
-int
-Pointer_type::do_traverse(Traverse* traverse)
-{
-  return Type::traverse(this->to_type_, traverse);
-}
-
-// Hash code.
-
-unsigned int
-Pointer_type::do_hash_for_method(Gogo* gogo) const
-{
-  return this->to_type_->hash_for_method(gogo) << 4;
-}
-
-// The tree for a pointer type.
-
-tree
-Pointer_type::do_get_tree(Gogo* gogo)
-{
-  return build_pointer_type(this->to_type_->get_tree(gogo));
-}
-
-// Initialize a pointer type.
-
-tree
-Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// The type of a pointer type descriptor.
-
-Type*
-Pointer_type::make_pointer_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Struct_type* s = Type::make_builtin_struct_type(2,
-                                                     "", tdt,
-                                                     "elem", ptdt);
-
-      ret = Type::make_builtin_named_type("PtrType", s);
-    }
-
-  return ret;
-}
-
-// The type descriptor for a pointer type.
-
-Expression*
-Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (this->is_unsafe_pointer_type())
-    {
-      gcc_assert(name != NULL);
-      return this->plain_type_descriptor(gogo,
-                                        RUNTIME_TYPE_KIND_UNSAFE_POINTER,
-                                        name);
-    }
-  else
-    {
-      source_location bloc = BUILTINS_LOCATION;
-
-      const Methods* methods;
-      Type* deref = this->points_to();
-      if (deref->named_type() != NULL)
-       methods = deref->named_type()->methods();
-      else if (deref->struct_type() != NULL)
-       methods = deref->struct_type()->methods();
-      else
-       methods = NULL;
-
-      Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
-
-      const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
-
-      Expression_list* vals = new Expression_list();
-      vals->reserve(2);
-
-      Struct_field_list::const_iterator p = fields->begin();
-      gcc_assert(p->field_name() == "commonType");
-      vals->push_back(this->type_descriptor_constructor(gogo,
-                                                       RUNTIME_TYPE_KIND_PTR,
-                                                       name, methods, false));
-
-      ++p;
-      gcc_assert(p->field_name() == "elem");
-      vals->push_back(Expression::make_type_descriptor(deref, bloc));
-
-      return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
-    }
-}
-
-// Reflection string.
-
-void
-Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('*');
-  this->append_reflection(this->to_type_, gogo, ret);
-}
-
-// Mangled name.
-
-void
-Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('p');
-  this->append_mangled_name(this->to_type_, gogo, ret);
-}
-
-// Export.
-
-void
-Pointer_type::do_export(Export* exp) const
-{
-  exp->write_c_string("*");
-  if (this->is_unsafe_pointer_type())
-    exp->write_c_string("any");
-  else
-    exp->write_type(this->to_type_);
-}
-
-// Import.
-
-Pointer_type*
-Pointer_type::do_import(Import* imp)
-{
-  imp->require_c_string("*");
-  if (imp->match_c_string("any"))
-    {
-      imp->advance(3);
-      return Type::make_pointer_type(Type::make_void_type());
-    }
-  Type* to = imp->read_type();
-  return Type::make_pointer_type(to);
-}
-
-// Make a pointer type.
-
-Pointer_type*
-Type::make_pointer_type(Type* to_type)
-{
-  typedef Unordered_map(Type*, Pointer_type*) Hashtable;
-  static Hashtable pointer_types;
-  Hashtable::const_iterator p = pointer_types.find(to_type);
-  if (p != pointer_types.end())
-    return p->second;
-  Pointer_type* ret = new Pointer_type(to_type);
-  pointer_types[to_type] = ret;
-  return ret;
-}
-
-// The nil type.  We use a special type for nil because it is not the
-// same as any other type.  In C term nil has type void*, but there is
-// no such type in Go.
-
-class Nil_type : public Type
-{
- public:
-  Nil_type()
-    : Type(TYPE_NIL)
-  { }
-
- protected:
-  tree
-  do_get_tree(Gogo*)
-  { return ptr_type_node; }
-
-  tree
-  do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-  { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  { gcc_unreachable(); }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { gcc_unreachable(); }
-
-  void
-  do_mangled_name(Gogo*, std::string* ret) const
-  { ret->push_back('n'); }
-};
-
-// Make the nil type.
-
-Type*
-Type::make_nil_type()
-{
-  static Nil_type singleton_nil_type;
-  return &singleton_nil_type;
-}
-
-// The type of a function call which returns multiple values.  This is
-// really a struct, but we don't want to confuse a function call which
-// returns a struct with a function call which returns multiple
-// values.
-
-class Call_multiple_result_type : public Type
-{
- public:
-  Call_multiple_result_type(Call_expression* call)
-    : Type(TYPE_CALL_MULTIPLE_RESULT),
-      call_(call)
-  { }
-
- protected:
-  bool
-  do_has_pointer() const
-  {
-    gcc_assert(saw_errors());
-    return false;
-  }
-
-  tree
-  do_get_tree(Gogo*);
-
-  tree
-  do_get_init_tree(Gogo*, tree, bool)
-  {
-    gcc_assert(saw_errors());
-    return error_mark_node;
-  }
-
-  Expression*
-  do_type_descriptor(Gogo*, Named_type*)
-  {
-    gcc_assert(saw_errors());
-    return Expression::make_error(UNKNOWN_LOCATION);
-  }
-
-  void
-  do_reflection(Gogo*, std::string*) const
-  { gcc_assert(saw_errors()); }
-
-  void
-  do_mangled_name(Gogo*, std::string*) const
-  { gcc_assert(saw_errors()); }
-
- private:
-  // The expression being called.
-  Call_expression* call_;
-};
-
-// Return the tree for a call result.
-
-tree
-Call_multiple_result_type::do_get_tree(Gogo* gogo)
-{
-  Function_type* fntype = this->call_->get_function_type();
-  gcc_assert(fntype != NULL);
-  const Typed_identifier_list* results = fntype->results();
-  gcc_assert(results != NULL && results->size() > 1);
-  tree fntype_tree = fntype->get_tree(gogo);
-  if (fntype_tree == error_mark_node)
-    return error_mark_node;
-  return TREE_TYPE(fntype_tree);
-}
-
-// Make a call result type.
-
-Type*
-Type::make_call_multiple_result_type(Call_expression* call)
-{
-  return new Call_multiple_result_type(call);
-}
-
-// Class Struct_field.
-
-// Get the name of a field.
-
-const std::string&
-Struct_field::field_name() const
-{
-  const std::string& name(this->typed_identifier_.name());
-  if (!name.empty())
-    return name;
-  else
-    {
-      // This is called during parsing, before anything is lowered, so
-      // we have to be pretty careful to avoid dereferencing an
-      // unknown type name.
-      Type* t = this->typed_identifier_.type();
-      Type* dt = t;
-      if (t->classification() == Type::TYPE_POINTER)
-       {
-         // Very ugly.
-         Pointer_type* ptype = static_cast<Pointer_type*>(t);
-         dt = ptype->points_to();
-       }
-      if (dt->forward_declaration_type() != NULL)
-       return dt->forward_declaration_type()->name();
-      else if (dt->named_type() != NULL)
-       return dt->named_type()->name();
-      else if (t->is_error_type() || dt->is_error_type())
-       {
-         static const std::string error_string = "*error*";
-         return error_string;
-       }
-      else
-       {
-         // Avoid crashing in the erroneous case where T is named but
-         // DT is not.
-         gcc_assert(t != dt);
-         if (t->forward_declaration_type() != NULL)
-           return t->forward_declaration_type()->name();
-         else if (t->named_type() != NULL)
-           return t->named_type()->name();
-         else
-           gcc_unreachable();
-       }
-    }
-}
-
-// Class Struct_type.
-
-// Traversal.
-
-int
-Struct_type::do_traverse(Traverse* traverse)
-{
-  Struct_field_list* fields = this->fields_;
-  if (fields != NULL)
-    {
-      for (Struct_field_list::iterator p = fields->begin();
-          p != fields->end();
-          ++p)
-       {
-         if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
-           return TRAVERSE_EXIT;
-       }
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Verify that the struct type is complete and valid.
-
-bool
-Struct_type::do_verify()
-{
-  Struct_field_list* fields = this->fields_;
-  if (fields == NULL)
-    return true;
-  bool ret = true;
-  for (Struct_field_list::iterator p = fields->begin();
-       p != fields->end();
-       ++p)
-    {
-      Type* t = p->type();
-      if (t->is_undefined())
-       {
-         error_at(p->location(), "struct field type is incomplete");
-         p->set_type(Type::make_error_type());
-         ret = false;
-       }
-      else if (p->is_anonymous())
-       {
-         if (t->named_type() != NULL && t->points_to() != NULL)
-           {
-             error_at(p->location(), "embedded type may not be a pointer");
-             p->set_type(Type::make_error_type());
-             return false;
-           }
-       }
-    }
-  return ret;
-}
-
-// Whether this contains a pointer.
-
-bool
-Struct_type::do_has_pointer() const
-{
-  const Struct_field_list* fields = this->fields();
-  if (fields == NULL)
-    return false;
-  for (Struct_field_list::const_iterator p = fields->begin();
-       p != fields->end();
-       ++p)
-    {
-      if (p->type()->has_pointer())
-       return true;
-    }
-  return false;
-}
-
-// Whether this type is identical to T.
-
-bool
-Struct_type::is_identical(const Struct_type* t,
-                         bool errors_are_identical) const
-{
-  const Struct_field_list* fields1 = this->fields();
-  const Struct_field_list* fields2 = t->fields();
-  if (fields1 == NULL || fields2 == NULL)
-    return fields1 == fields2;
-  Struct_field_list::const_iterator pf2 = fields2->begin();
-  for (Struct_field_list::const_iterator pf1 = fields1->begin();
-       pf1 != fields1->end();
-       ++pf1, ++pf2)
-    {
-      if (pf2 == fields2->end())
-       return false;
-      if (pf1->field_name() != pf2->field_name())
-       return false;
-      if (pf1->is_anonymous() != pf2->is_anonymous()
-         || !Type::are_identical(pf1->type(), pf2->type(),
-                                 errors_are_identical, NULL))
-       return false;
-      if (!pf1->has_tag())
-       {
-         if (pf2->has_tag())
-           return false;
-       }
-      else
-       {
-         if (!pf2->has_tag())
-           return false;
-         if (pf1->tag() != pf2->tag())
-           return false;
-       }
-    }
-  if (pf2 != fields2->end())
-    return false;
-  return true;
-}
-
-// Whether this struct type has any hidden fields.
-
-bool
-Struct_type::struct_has_hidden_fields(const Named_type* within,
-                                     std::string* reason) const
-{
-  const Struct_field_list* fields = this->fields();
-  if (fields == NULL)
-    return false;
-  const Package* within_package = (within == NULL
-                                  ? NULL
-                                  : within->named_object()->package());
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      if (within_package != NULL
-         && !pf->is_anonymous()
-         && Gogo::is_hidden_name(pf->field_name()))
-       {
-         if (reason != NULL)
-           {
-             std::string within_name = within->named_object()->message_name();
-             std::string name = Gogo::message_name(pf->field_name());
-             size_t bufsize = 200 + within_name.length() + name.length();
-             char* buf = new char[bufsize];
-             snprintf(buf, bufsize,
-                      _("implicit assignment of %s%s%s hidden field %s%s%s"),
-                      open_quote, within_name.c_str(), close_quote,
-                      open_quote, name.c_str(), close_quote);
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return true;
-       }
-
-      if (pf->type()->has_hidden_fields(within, reason))
-       return true;
-    }
-
-  return false;
-}
-
-// Hash code.
-
-unsigned int
-Struct_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->fields() != NULL)
-    {
-      for (Struct_field_list::const_iterator pf = this->fields()->begin();
-          pf != this->fields()->end();
-          ++pf)
-       ret = (ret << 1) + pf->type()->hash_for_method(gogo);
-    }
-  return ret <<= 2;
-}
-
-// Find the local field NAME.
-
-const Struct_field*
-Struct_type::find_local_field(const std::string& name,
-                             unsigned int *pindex) const
-{
-  const Struct_field_list* fields = this->fields_;
-  if (fields == NULL)
-    return NULL;
-  unsigned int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (pf->field_name() == name)
-       {
-         if (pindex != NULL)
-           *pindex = i;
-         return &*pf;
-       }
-    }
-  return NULL;
-}
-
-// Return an expression for field NAME in STRUCT_EXPR, or NULL.
-
-Field_reference_expression*
-Struct_type::field_reference(Expression* struct_expr, const std::string& name,
-                            source_location location) const
-{
-  unsigned int depth;
-  return this->field_reference_depth(struct_expr, name, location, NULL,
-                                    &depth);
-}
-
-// Return an expression for a field, along with the depth at which it
-// was found.
-
-Field_reference_expression*
-Struct_type::field_reference_depth(Expression* struct_expr,
-                                  const std::string& name,
-                                  source_location location,
-                                  Saw_named_type* saw,
-                                  unsigned int* depth) const
-{
-  const Struct_field_list* fields = this->fields_;
-  if (fields == NULL)
-    return NULL;
-
-  // Look for a field with this name.
-  unsigned int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (pf->field_name() == name)
-       {
-         *depth = 0;
-         return Expression::make_field_reference(struct_expr, i, location);
-       }
-    }
-
-  // Look for an anonymous field which contains a field with this
-  // name.
-  unsigned int found_depth = 0;
-  Field_reference_expression* ret = NULL;
-  i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (!pf->is_anonymous())
-       continue;
-
-      Struct_type* st = pf->type()->deref()->struct_type();
-      if (st == NULL)
-       continue;
-
-      Saw_named_type* hold_saw = saw;
-      Saw_named_type saw_here;
-      Named_type* nt = pf->type()->named_type();
-      if (nt == NULL)
-       nt = pf->type()->deref()->named_type();
-      if (nt != NULL)
-       {
-         Saw_named_type* q;
-         for (q = saw; q != NULL; q = q->next)
-           {
-             if (q->nt == nt)
-               {
-                 // If this is an error, it will be reported
-                 // elsewhere.
-                 break;
-               }
-           }
-         if (q != NULL)
-           continue;
-         saw_here.next = saw;
-         saw_here.nt = nt;
-         saw = &saw_here;
-       }
-
-      // Look for a reference using a NULL struct expression.  If we
-      // find one, fill in the struct expression with a reference to
-      // this field.
-      unsigned int subdepth;
-      Field_reference_expression* sub = st->field_reference_depth(NULL, name,
-                                                                 location,
-                                                                 saw,
-                                                                 &subdepth);
-
-      saw = hold_saw;
-
-      if (sub == NULL)
-       continue;
-
-      if (ret == NULL || subdepth < found_depth)
-       {
-         if (ret != NULL)
-           delete ret;
-         ret = sub;
-         found_depth = subdepth;
-         Expression* here = Expression::make_field_reference(struct_expr, i,
-                                                             location);
-         if (pf->type()->points_to() != NULL)
-           here = Expression::make_unary(OPERATOR_MULT, here, location);
-         while (sub->expr() != NULL)
-           {
-             sub = sub->expr()->deref()->field_reference_expression();
-             gcc_assert(sub != NULL);
-           }
-         sub->set_struct_expression(here);
-       }
-      else if (subdepth > found_depth)
-       delete sub;
-      else
-       {
-         // We do not handle ambiguity here--it should be handled by
-         // Type::bind_field_or_method.
-         delete sub;
-         found_depth = 0;
-         ret = NULL;
-       }
-    }
-
-  if (ret != NULL)
-    *depth = found_depth + 1;
-
-  return ret;
-}
-
-// Return the total number of fields, including embedded fields.
-
-unsigned int
-Struct_type::total_field_count() const
-{
-  if (this->fields_ == NULL)
-    return 0;
-  unsigned int ret = 0;
-  for (Struct_field_list::const_iterator pf = this->fields_->begin();
-       pf != this->fields_->end();
-       ++pf)
-    {
-      if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
-       ++ret;
-      else
-       ret += pf->type()->struct_type()->total_field_count();
-    }
-  return ret;
-}
-
-// Return whether NAME is an unexported field, for better error reporting.
-
-bool
-Struct_type::is_unexported_local_field(Gogo* gogo,
-                                      const std::string& name) const
-{
-  const Struct_field_list* fields = this->fields_;
-  if (fields != NULL)
-    {
-      for (Struct_field_list::const_iterator pf = fields->begin();
-          pf != fields->end();
-          ++pf)
-       {
-         const std::string& field_name(pf->field_name());
-         if (Gogo::is_hidden_name(field_name)
-             && name == Gogo::unpack_hidden_name(field_name)
-             && gogo->pack_hidden_name(name, false) != field_name)
-           return true;
-       }
-    }
-  return false;
-}
-
-// Finalize the methods of an unnamed struct.
-
-void
-Struct_type::finalize_methods(Gogo* gogo)
-{
-  if (this->all_methods_ != NULL)
-    return;
-  Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
-}
-
-// Return the method NAME, or NULL if there isn't one or if it is
-// ambiguous.  Set *IS_AMBIGUOUS if the method exists but is
-// ambiguous.
-
-Method*
-Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
-{
-  return Type::method_function(this->all_methods_, name, is_ambiguous);
-}
-
-// Get the tree for a struct type.
-
-tree
-Struct_type::do_get_tree(Gogo* gogo)
-{
-  tree type = make_node(RECORD_TYPE);
-  return this->fill_in_tree(gogo, type);
-}
-
-// Fill in the fields for a struct type.
-
-tree
-Struct_type::fill_in_tree(Gogo* gogo, tree type)
-{
-  tree field_trees = NULL_TREE;
-  tree* pp = &field_trees;
-  for (Struct_field_list::const_iterator p = this->fields_->begin();
-       p != this->fields_->end();
-       ++p)
-    {
-      std::string name = Gogo::unpack_hidden_name(p->field_name());
-      tree name_tree = get_identifier_with_length(name.data(), name.length());
-
-      tree field_type_tree = p->type()->get_tree(gogo);
-      if (field_type_tree == error_mark_node)
-       return error_mark_node;
-      gcc_assert(TYPE_SIZE(field_type_tree) != NULL_TREE);
-
-      tree field = build_decl(p->location(), FIELD_DECL, name_tree,
-                             field_type_tree);
-      DECL_CONTEXT(field) = type;
-      *pp = field;
-      pp = &DECL_CHAIN(field);
-    }
-
-  TYPE_FIELDS(type) = field_trees;
-
-  layout_type(type);
-
-  return type;
-}
-
-// Initialize struct fields.
-
-tree
-Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
-{
-  if (this->fields_ == NULL || this->fields_->empty())
-    {
-      if (is_clear)
-       return NULL;
-      else
-       {
-         tree ret = build_constructor(type_tree,
-                                      VEC_alloc(constructor_elt, gc, 0));
-         TREE_CONSTANT(ret) = 1;
-         return ret;
-       }
-    }
-
-  bool is_constant = true;
-  bool any_fields_set = false;
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
-                                           this->fields_->size());
-
-  tree field = TYPE_FIELDS(type_tree);
-  for (Struct_field_list::const_iterator p = this->fields_->begin();
-       p != this->fields_->end();
-       ++p, field = DECL_CHAIN(field))
-    {
-      tree value = p->type()->get_init_tree(gogo, is_clear);
-      if (value == error_mark_node)
-       return error_mark_node;
-      gcc_assert(field != NULL_TREE);
-      if (value != NULL)
-       {
-         constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-         elt->index = field;
-         elt->value = value;
-         any_fields_set = true;
-         if (!TREE_CONSTANT(value))
-           is_constant = false;
-       }
-    }
-  gcc_assert(field == NULL_TREE);
-
-  if (!any_fields_set)
-    {
-      gcc_assert(is_clear);
-      VEC_free(constructor_elt, gc, init);
-      return NULL;
-    }
-
-  tree ret = build_constructor(type_tree, init);
-  if (is_constant)
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// The type of a struct type descriptor.
-
-Type*
-Struct_type::make_struct_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-      Type* string_type = Type::lookup_string_type();
-      Type* pointer_string_type = Type::make_pointer_type(string_type);
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(5,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "typ", ptdt,
-                                      "tag", pointer_string_type,
-                                      "offset", uintptr_type);
-      Type* nsf = Type::make_builtin_named_type("structField", sf);
-
-      Type* slice_type = Type::make_array_type(nsf, NULL);
-
-      Struct_type* s = Type::make_builtin_struct_type(2,
-                                                     "", tdt,
-                                                     "fields", slice_type);
-
-      ret = Type::make_builtin_named_type("StructType", s);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for a struct type.
-
-Expression*
-Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* stdt = Struct_type::make_struct_type_descriptor_type();
-
-  const Struct_field_list* fields = stdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(2);
-
-  const Methods* methods = this->methods();
-  // A named struct should not have methods--the methods should attach
-  // to the named type.
-  gcc_assert(methods == NULL || name == NULL);
-
-  Struct_field_list::const_iterator ps = fields->begin();
-  gcc_assert(ps->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_STRUCT,
-                                                   name, methods, true));
-
-  ++ps;
-  gcc_assert(ps->field_name() == "fields");
-
-  Expression_list* elements = new Expression_list();
-  elements->reserve(this->fields_->size());
-  Type* element_type = ps->type()->array_type()->element_type();
-  for (Struct_field_list::const_iterator pf = this->fields_->begin();
-       pf != this->fields_->end();
-       ++pf)
-    {
-      const Struct_field_list* f = element_type->struct_type()->fields();
-
-      Expression_list* fvals = new Expression_list();
-      fvals->reserve(5);
-
-      Struct_field_list::const_iterator q = f->begin();
-      gcc_assert(q->field_name() == "name");
-      if (pf->is_anonymous())
-       fvals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         std::string n = Gogo::unpack_hidden_name(pf->field_name());
-         Expression* s = Expression::make_string(n, bloc);
-         fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-
-      ++q;
-      gcc_assert(q->field_name() == "pkgPath");
-      if (!Gogo::is_hidden_name(pf->field_name()))
-       fvals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         std::string n = Gogo::hidden_name_prefix(pf->field_name());
-         Expression* s = Expression::make_string(n, bloc);
-         fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-
-      ++q;
-      gcc_assert(q->field_name() == "typ");
-      fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
-
-      ++q;
-      gcc_assert(q->field_name() == "tag");
-      if (!pf->has_tag())
-       fvals->push_back(Expression::make_nil(bloc));
-      else
-       {
-         Expression* s = Expression::make_string(pf->tag(), bloc);
-         fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
-       }
-
-      ++q;
-      gcc_assert(q->field_name() == "offset");
-      fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
-
-      Expression* v = Expression::make_struct_composite_literal(element_type,
-                                                               fvals, bloc);
-      elements->push_back(v);
-    }
-
-  vals->push_back(Expression::make_slice_composite_literal(ps->type(),
-                                                          elements, bloc));
-
-  return Expression::make_struct_composite_literal(stdt, vals, bloc);
-}
-
-// Reflection string.
-
-void
-Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->append("struct { ");
-
-  for (Struct_field_list::const_iterator p = this->fields_->begin();
-       p != this->fields_->end();
-       ++p)
-    {
-      if (p != this->fields_->begin())
-       ret->append("; ");
-      if (p->is_anonymous())
-       ret->push_back('?');
-      else
-       ret->append(Gogo::unpack_hidden_name(p->field_name()));
-      ret->push_back(' ');
-      this->append_reflection(p->type(), gogo, ret);
-
-      if (p->has_tag())
-       {
-         const std::string& tag(p->tag());
-         ret->append(" \"");
-         for (std::string::const_iterator p = tag.begin();
-              p != tag.end();
-              ++p)
-           {
-             if (*p == '\0')
-               ret->append("\\x00");
-             else if (*p == '\n')
-               ret->append("\\n");
-             else if (*p == '\t')
-               ret->append("\\t");
-             else if (*p == '"')
-               ret->append("\\\"");
-             else if (*p == '\\')
-               ret->append("\\\\");
-             else
-               ret->push_back(*p);
-           }
-         ret->push_back('"');
-       }
-    }
-
-  ret->append(" }");
-}
-
-// Mangled name.
-
-void
-Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('S');
-
-  const Struct_field_list* fields = this->fields_;
-  if (fields != NULL)
-    {
-      for (Struct_field_list::const_iterator p = fields->begin();
-          p != fields->end();
-          ++p)
-       {
-         if (p->is_anonymous())
-           ret->append("0_");
-         else
-           {
-             std::string n = Gogo::unpack_hidden_name(p->field_name());
-             char buf[20];
-             snprintf(buf, sizeof buf, "%u_",
-                      static_cast<unsigned int>(n.length()));
-             ret->append(buf);
-             ret->append(n);
-           }
-         this->append_mangled_name(p->type(), gogo, ret);
-         if (p->has_tag())
-           {
-             const std::string& tag(p->tag());
-             std::string out;
-             for (std::string::const_iterator p = tag.begin();
-                  p != tag.end();
-                  ++p)
-               {
-                 if (ISALNUM(*p) || *p == '_')
-                   out.push_back(*p);
-                 else
-                   {
-                     char buf[20];
-                     snprintf(buf, sizeof buf, ".%x.",
-                              static_cast<unsigned int>(*p));
-                     out.append(buf);
-                   }
-               }
-             char buf[20];
-             snprintf(buf, sizeof buf, "T%u_",
-                      static_cast<unsigned int>(out.length()));
-             ret->append(buf);
-             ret->append(out);
-           }
-       }
-    }
-
-  ret->push_back('e');
-}
-
-// Export.
-
-void
-Struct_type::do_export(Export* exp) const
-{
-  exp->write_c_string("struct { ");
-  const Struct_field_list* fields = this->fields_;
-  gcc_assert(fields != NULL);
-  for (Struct_field_list::const_iterator p = fields->begin();
-       p != fields->end();
-       ++p)
-    {
-      if (p->is_anonymous())
-       exp->write_string("? ");
-      else
-       {
-         exp->write_string(p->field_name());
-         exp->write_c_string(" ");
-       }
-      exp->write_type(p->type());
-
-      if (p->has_tag())
-       {
-         exp->write_c_string(" ");
-         Expression* expr = Expression::make_string(p->tag(),
-                                                    BUILTINS_LOCATION);
-         expr->export_expression(exp);
-         delete expr;
-       }
-
-      exp->write_c_string("; ");
-    }
-  exp->write_c_string("}");
-}
-
-// Import.
-
-Struct_type*
-Struct_type::do_import(Import* imp)
-{
-  imp->require_c_string("struct { ");
-  Struct_field_list* fields = new Struct_field_list;
-  if (imp->peek_char() != '}')
-    {
-      while (true)
-       {
-         std::string name;
-         if (imp->match_c_string("? "))
-           imp->advance(2);
-         else
-           {
-             name = imp->read_identifier();
-             imp->require_c_string(" ");
-           }
-         Type* ftype = imp->read_type();
-
-         Struct_field sf(Typed_identifier(name, ftype, imp->location()));
-
-         if (imp->peek_char() == ' ')
-           {
-             imp->advance(1);
-             Expression* expr = Expression::import_expression(imp);
-             String_expression* sexpr = expr->string_expression();
-             gcc_assert(sexpr != NULL);
-             sf.set_tag(sexpr->val());
-             delete sexpr;
-           }
-
-         imp->require_c_string("; ");
-         fields->push_back(sf);
-         if (imp->peek_char() == '}')
-           break;
-       }
-    }
-  imp->require_c_string("}");
-
-  return Type::make_struct_type(fields, imp->location());
-}
-
-// Make a struct type.
-
-Struct_type*
-Type::make_struct_type(Struct_field_list* fields,
-                      source_location location)
-{
-  return new Struct_type(fields, location);
-}
-
-// Class Array_type.
-
-// Whether two array types are identical.
-
-bool
-Array_type::is_identical(const Array_type* t, bool errors_are_identical) const
-{
-  if (!Type::are_identical(this->element_type(), t->element_type(),
-                          errors_are_identical, NULL))
-    return false;
-
-  Expression* l1 = this->length();
-  Expression* l2 = t->length();
-
-  // Slices of the same element type are identical.
-  if (l1 == NULL && l2 == NULL)
-    return true;
-
-  // Arrays of the same element type are identical if they have the
-  // same length.
-  if (l1 != NULL && l2 != NULL)
-    {
-      if (l1 == l2)
-       return true;
-
-      // Try to determine the lengths.  If we can't, assume the arrays
-      // are not identical.
-      bool ret = false;
-      mpz_t v1;
-      mpz_init(v1);
-      Type* type1;
-      mpz_t v2;
-      mpz_init(v2);
-      Type* type2;
-      if (l1->integer_constant_value(true, v1, &type1)
-         && l2->integer_constant_value(true, v2, &type2))
-       ret = mpz_cmp(v1, v2) == 0;
-      mpz_clear(v1);
-      mpz_clear(v2);
-      return ret;
-    }
-
-  // Otherwise the arrays are not identical.
-  return false;
-}
-
-// Traversal.
-
-int
-Array_type::do_traverse(Traverse* traverse)
-{
-  if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  if (this->length_ != NULL
-      && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that the length is valid.
-
-bool
-Array_type::verify_length()
-{
-  if (this->length_ == NULL)
-    return true;
-
-  Type_context context(Type::lookup_integer_type("int"), false);
-  this->length_->determine_type(&context);
-
-  if (!this->length_->is_constant())
-    {
-      error_at(this->length_->location(), "array bound is not constant");
-      return false;
-    }
-
-  mpz_t val;
-  mpz_init(val);
-  Type* vt;
-  if (!this->length_->integer_constant_value(true, val, &vt))
-    {
-      mpfr_t fval;
-      mpfr_init(fval);
-      if (!this->length_->float_constant_value(fval, &vt))
-       {
-         if (this->length_->type()->integer_type() != NULL
-             || this->length_->type()->float_type() != NULL)
-           error_at(this->length_->location(),
-                    "array bound is not constant");
-         else
-           error_at(this->length_->location(),
-                    "array bound is not numeric");
-         mpfr_clear(fval);
-         mpz_clear(val);
-         return false;
-       }
-      if (!mpfr_integer_p(fval))
-       {
-         error_at(this->length_->location(),
-                  "array bound truncated to integer");
-         mpfr_clear(fval);
-         mpz_clear(val);
-         return false;
-       }
-      mpz_init(val);
-      mpfr_get_z(val, fval, GMP_RNDN);
-      mpfr_clear(fval);
-    }
-
-  if (mpz_sgn(val) < 0)
-    {
-      error_at(this->length_->location(), "negative array bound");
-      mpz_clear(val);
-      return false;
-    }
-
-  Type* int_type = Type::lookup_integer_type("int");
-  int tbits = int_type->integer_type()->bits();
-  int vbits = mpz_sizeinbase(val, 2);
-  if (vbits + 1 > tbits)
-    {
-      error_at(this->length_->location(), "array bound overflows");
-      mpz_clear(val);
-      return false;
-    }
-
-  mpz_clear(val);
-
-  return true;
-}
-
-// Verify the type.
-
-bool
-Array_type::do_verify()
-{
-  if (!this->verify_length())
-    {
-      this->length_ = Expression::make_error(this->length_->location());
-      return false;
-    }
-  return true;
-}
-
-// Array type hash code.
-
-unsigned int
-Array_type::do_hash_for_method(Gogo* gogo) const
-{
-  // There is no very convenient way to get a hash code for the
-  // length.
-  return this->element_type_->hash_for_method(gogo) + 1;
-}
-
-// See if the expression passed to make is suitable.  The first
-// argument is required, and gives the length.  An optional second
-// argument is permitted for the capacity.
-
-bool
-Array_type::do_check_make_expression(Expression_list* args,
-                                    source_location location)
-{
-  gcc_assert(this->length_ == NULL);
-  if (args == NULL || args->empty())
-    {
-      error_at(location, "length required when allocating a slice");
-      return false;
-    }
-  else if (args->size() > 2)
-    {
-      error_at(location, "too many expressions passed to make");
-      return false;
-    }
-  else
-    {
-      if (!Type::check_int_value(args->front(),
-                                _("bad length when making slice"), location))
-       return false;
-
-      if (args->size() > 1)
-       {
-         if (!Type::check_int_value(args->back(),
-                                    _("bad capacity when making slice"),
-                                    location))
-           return false;
-       }
-
-      return true;
-    }
-}
-
-// Get a tree for the length of a fixed array.  The length may be
-// computed using a function call, so we must only evaluate it once.
-
-tree
-Array_type::get_length_tree(Gogo* gogo)
-{
-  gcc_assert(this->length_ != NULL);
-  if (this->length_tree_ == NULL_TREE)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* t;
-      if (this->length_->integer_constant_value(true, val, &t))
-       {
-         if (t == NULL)
-           t = Type::lookup_integer_type("int");
-         else if (t->is_abstract())
-           t = t->make_non_abstract_type();
-         tree tt = t->get_tree(gogo);
-         this->length_tree_ = Expression::integer_constant_tree(val, tt);
-         mpz_clear(val);
-       }
-      else
-       {
-         mpz_clear(val);
-
-         // Make up a translation context for the array length
-         // expression.  FIXME: This won't work in general.
-         Translate_context context(gogo, NULL, NULL, NULL_TREE);
-         tree len = this->length_->get_tree(&context);
-         if (len != error_mark_node)
-           {
-             len = convert_to_integer(integer_type_node, len);
-             len = save_expr(len);
-           }
-         this->length_tree_ = len;
-       }
-    }
-  return this->length_tree_;
-}
-
-// Get a tree for the type of this array.  A fixed array is simply
-// represented as ARRAY_TYPE with the appropriate index--i.e., it is
-// just like an array in C.  An open array is a struct with three
-// fields: a data pointer, the length, and the capacity.
-
-tree
-Array_type::do_get_tree(Gogo* gogo)
-{
-  if (this->length_ == NULL)
-    {
-      tree struct_type = gogo->slice_type_tree(void_type_node);
-      return this->fill_in_slice_tree(gogo, struct_type);
-    }
-  else
-    {
-      tree array_type = make_node(ARRAY_TYPE);
-      return this->fill_in_array_tree(gogo, array_type);
-    }
-}
-
-// Fill in the fields for an array type.  This is used for named array
-// types.
-
-tree
-Array_type::fill_in_array_tree(Gogo* gogo, tree array_type)
-{
-  gcc_assert(this->length_ != NULL);
-
-  tree element_type_tree = this->element_type_->get_tree(gogo);
-  tree length_tree = this->get_length_tree(gogo);
-  if (element_type_tree == error_mark_node
-      || length_tree == error_mark_node)
-    return error_mark_node;
-
-  gcc_assert(TYPE_SIZE(element_type_tree) != NULL_TREE);
-
-  length_tree = fold_convert(sizetype, length_tree);
-
-  // build_index_type takes the maximum index, which is one less than
-  // the length.
-  tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
-                                                length_tree,
-                                                size_one_node));
-
-  TREE_TYPE(array_type) = element_type_tree;
-  TYPE_DOMAIN(array_type) = index_type;
-  TYPE_ADDR_SPACE(array_type) = TYPE_ADDR_SPACE(element_type_tree);
-  layout_type(array_type);
-
-  if (TYPE_STRUCTURAL_EQUALITY_P(element_type_tree)
-      || TYPE_STRUCTURAL_EQUALITY_P(index_type))
-    SET_TYPE_STRUCTURAL_EQUALITY(array_type);
-  else if (TYPE_CANONICAL(element_type_tree) != element_type_tree
-          || TYPE_CANONICAL(index_type) != index_type)
-    TYPE_CANONICAL(array_type) =
-      build_array_type(TYPE_CANONICAL(element_type_tree),
-                      TYPE_CANONICAL(index_type));
-
-  return array_type;
-}
-
-// Fill in the fields for a slice type.  This is used for named slice
-// types.
-
-tree
-Array_type::fill_in_slice_tree(Gogo* gogo, tree struct_type)
-{
-  gcc_assert(this->length_ == NULL);
-
-  tree element_type_tree = this->element_type_->get_tree(gogo);
-  if (element_type_tree == error_mark_node)
-    return error_mark_node;
-  tree field = TYPE_FIELDS(struct_type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
-  gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
-            && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
-  TREE_TYPE(field) = build_pointer_type(element_type_tree);
-
-  return struct_type;
-}
-
-// Return an initializer for an array type.
-
-tree
-Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
-{
-  if (this->length_ == NULL)
-    {
-      // Open array.
-
-      if (is_clear)
-       return NULL;
-
-      gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
-
-      VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
-
-      for (tree field = TYPE_FIELDS(type_tree);
-          field != NULL_TREE;
-          field = DECL_CHAIN(field))
-       {
-         constructor_elt* elt = VEC_quick_push(constructor_elt, init,
-                                               NULL);
-         elt->index = field;
-         elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
-       }
-
-      tree ret = build_constructor(type_tree, init);
-      TREE_CONSTANT(ret) = 1;
-      return ret;
-    }
-  else
-    {
-      // Fixed array.
-
-      tree value = this->element_type_->get_init_tree(gogo, is_clear);
-      if (value == NULL)
-       return NULL;
-      if (value == error_mark_node)
-       return error_mark_node;
-
-      tree length_tree = this->get_length_tree(gogo);
-      if (length_tree == error_mark_node)
-       return error_mark_node;
-
-      length_tree = fold_convert(sizetype, length_tree);
-      tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
-                         fold_build2(MINUS_EXPR, sizetype,
-                                     length_tree, size_one_node));
-      tree ret = build_constructor_single(type_tree, range, value);
-      if (TREE_CONSTANT(value))
-       TREE_CONSTANT(ret) = 1;
-      return ret;
-    }
-}
-
-// Handle the builtin make function for a slice.
-
-tree
-Array_type::do_make_expression_tree(Translate_context* context,
-                                   Expression_list* args,
-                                   source_location location)
-{
-  gcc_assert(this->length_ == NULL);
-
-  Gogo* gogo = context->gogo();
-  tree type_tree = this->get_tree(gogo);
-  if (type_tree == error_mark_node)
-    return error_mark_node;
-
-  tree values_field = TYPE_FIELDS(type_tree);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
-                   "__values") == 0);
-
-  tree count_field = DECL_CHAIN(values_field);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
-                   "__count") == 0);
-
-  tree element_type_tree = this->element_type_->get_tree(gogo);
-  if (element_type_tree == error_mark_node)
-    return error_mark_node;
-  tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
-
-  tree value = this->element_type_->get_init_tree(gogo, true);
-  if (value == error_mark_node)
-    return error_mark_node;
-
-  // The first argument is the number of elements, the optional second
-  // argument is the capacity.
-  gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
-
-  tree length_tree = args->front()->get_tree(context);
-  if (length_tree == error_mark_node)
-    return error_mark_node;
-  if (!DECL_P(length_tree))
-    length_tree = save_expr(length_tree);
-  if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
-    length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
-
-  tree bad_index = Expression::check_bounds(length_tree,
-                                           TREE_TYPE(count_field),
-                                           NULL_TREE, location);
-
-  length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
-  tree capacity_tree;
-  if (args->size() == 1)
-    capacity_tree = length_tree;
-  else
-    {
-      capacity_tree = args->back()->get_tree(context);
-      if (capacity_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(capacity_tree))
-       capacity_tree = save_expr(capacity_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
-       capacity_tree = convert_to_integer(TREE_TYPE(count_field),
-                                          capacity_tree);
-
-      bad_index = Expression::check_bounds(capacity_tree,
-                                          TREE_TYPE(count_field),
-                                          bad_index, location);
-
-      tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
-                       > TYPE_SIZE(TREE_TYPE(length_tree)))
-                      || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
-                           == TYPE_SIZE(TREE_TYPE(length_tree)))
-                          && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
-                     ? TREE_TYPE(capacity_tree)
-                     : TREE_TYPE(length_tree));
-      tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
-                                fold_convert_loc(location, chktype,
-                                                 capacity_tree),
-                                fold_convert_loc(location, chktype,
-                                                 length_tree));
-      if (bad_index == NULL_TREE)
-       bad_index = chk;
-      else
-       bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
-                                   bad_index, chk);
-
-      capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
-                                      capacity_tree);
-    }
-
-  tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
-                                  element_size_tree,
-                                  fold_convert_loc(location, sizetype,
-                                                   capacity_tree));
-
-  tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
-                            fold_build2_loc(location, GT_EXPR,
-                                            boolean_type_node,
-                                            fold_convert_loc(location,
-                                                             sizetype,
-                                                             capacity_tree),
-                                            size_zero_node),
-                            fold_build2_loc(location, LT_EXPR,
-                                            boolean_type_node,
-                                            size_tree, element_size_tree));
-  if (bad_index == NULL_TREE)
-    bad_index = chk;
-  else
-    bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
-                               bad_index, chk);
-
-  tree space = context->gogo()->allocate_memory(this->element_type_,
-                                               size_tree, location);
-
-  if (value != NULL_TREE)
-    space = save_expr(space);
-
-  space = fold_convert(TREE_TYPE(values_field), space);
-
-  if (bad_index != NULL_TREE && bad_index != boolean_false_node)
-    {
-      tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
-                                      location);
-      space = build2(COMPOUND_EXPR, TREE_TYPE(space),
-                    build3(COND_EXPR, void_type_node,
-                           bad_index, crash, NULL_TREE),
-                    space);
-    }
-
-  tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
-                                            capacity_tree);
-
-  if (value == NULL_TREE)
-    {
-      // The array contents are zero initialized.
-      return constructor;
-    }
-
-  // The elements must be initialized.
-
-  tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
-                            capacity_tree,
-                            fold_convert_loc(location, TREE_TYPE(count_field),
-                                             integer_one_node));
-
-  tree array_type = build_array_type(element_type_tree,
-                                    build_index_type(max));
-
-  tree value_pointer = fold_convert_loc(location,
-                                       build_pointer_type(array_type),
-                                       space);
-
-  tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
-  tree space_init = build_constructor_single(array_type, range, value);
-
-  return build2(COMPOUND_EXPR, TREE_TYPE(constructor),
-               build2(MODIFY_EXPR, void_type_node,
-                      build_fold_indirect_ref(value_pointer),
-                      space_init),
-               constructor);
-}
-
-// Return a tree for a pointer to the values in ARRAY.
-
-tree
-Array_type::value_pointer_tree(Gogo*, tree array) const
-{
-  tree ret;
-  if (this->length() != NULL)
-    {
-      // Fixed array.
-      ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
-                        build_fold_addr_expr(array));
-    }
-  else
-    {
-      // Open array.
-      tree field = TYPE_FIELDS(TREE_TYPE(array));
-      gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
-                       "__values") == 0);
-      ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
-                       NULL_TREE);
-    }
-  if (TREE_CONSTANT(array))
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Return a tree for the length of the array ARRAY which has this
-// type.
-
-tree
-Array_type::length_tree(Gogo* gogo, tree array)
-{
-  if (this->length_ != NULL)
-    {
-      if (TREE_CODE(array) == SAVE_EXPR)
-       return fold_convert(integer_type_node, this->get_length_tree(gogo));
-      else
-       return omit_one_operand(integer_type_node,
-                               this->get_length_tree(gogo), array);
-    }
-
-  // This is an open array.  We need to read the length field.
-
-  tree type = TREE_TYPE(array);
-  gcc_assert(TREE_CODE(type) == RECORD_TYPE);
-
-  tree field = DECL_CHAIN(TYPE_FIELDS(type));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
-
-  tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
-  if (TREE_CONSTANT(array))
-    TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// Return a tree for the capacity of the array ARRAY which has this
-// type.
-
-tree
-Array_type::capacity_tree(Gogo* gogo, tree array)
-{
-  if (this->length_ != NULL)
-    return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
-
-  // This is an open array.  We need to read the capacity field.
-
-  tree type = TREE_TYPE(array);
-  gcc_assert(TREE_CODE(type) == RECORD_TYPE);
-
-  tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
-
-  return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
-}
-
-// Export.
-
-void
-Array_type::do_export(Export* exp) const
-{
-  exp->write_c_string("[");
-  if (this->length_ != NULL)
-    this->length_->export_expression(exp);
-  exp->write_c_string("] ");
-  exp->write_type(this->element_type_);
-}
-
-// Import.
-
-Array_type*
-Array_type::do_import(Import* imp)
-{
-  imp->require_c_string("[");
-  Expression* length;
-  if (imp->peek_char() == ']')
-    length = NULL;
-  else
-    length = Expression::import_expression(imp);
-  imp->require_c_string("] ");
-  Type* element_type = imp->read_type();
-  return Type::make_array_type(element_type, length);
-}
-
-// The type of an array type descriptor.
-
-Type*
-Array_type::make_array_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(3,
-                                      "", tdt,
-                                      "elem", ptdt,
-                                      "len", uintptr_type);
-
-      ret = Type::make_builtin_named_type("ArrayType", sf);
-    }
-
-  return ret;
-}
-
-// The type of an slice type descriptor.
-
-Type*
-Array_type::make_slice_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(2,
-                                      "", tdt,
-                                      "elem", ptdt);
-
-      ret = Type::make_builtin_named_type("SliceType", sf);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for an array/slice type.
-
-Expression*
-Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (this->length_ != NULL)
-    return this->array_type_descriptor(gogo, name);
-  else
-    return this->slice_type_descriptor(gogo, name);
-}
-
-// Build a type descriptor for an array type.
-
-Expression*
-Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* atdt = Array_type::make_array_type_descriptor_type();
-
-  const Struct_field_list* fields = atdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_ARRAY,
-                                                   name, NULL, true));
-
-  ++p;
-  gcc_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "len");
-  vals->push_back(Expression::make_cast(p->type(), this->length_, bloc));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(atdt, vals, bloc);
-}
-
-// Build a type descriptor for a slice type.
-
-Expression*
-Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* stdt = Array_type::make_slice_type_descriptor_type();
-
-  const Struct_field_list* fields = stdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(2);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_SLICE,
-                                                   name, NULL, true));
-
-  ++p;
-  gcc_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(stdt, vals, bloc);
-}
-
-// Reflection string.
-
-void
-Array_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('[');
-  if (this->length_ != NULL)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* type;
-      if (!this->length_->integer_constant_value(true, val, &type))
-       error_at(this->length_->location(),
-                "array length must be integer constant expression");
-      else if (mpz_cmp_si(val, 0) < 0)
-       error_at(this->length_->location(), "array length is negative");
-      else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
-       error_at(this->length_->location(), "array length is too large");
-      else
-       {
-         char buf[50];
-         snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
-         ret->append(buf);
-       }
-      mpz_clear(val);
-    }
-  ret->push_back(']');
-
-  this->append_reflection(this->element_type_, gogo, ret);
-}
-
-// Mangled name.
-
-void
-Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('A');
-  this->append_mangled_name(this->element_type_, gogo, ret);
-  if (this->length_ != NULL)
-    {
-      mpz_t val;
-      mpz_init(val);
-      Type* type;
-      if (!this->length_->integer_constant_value(true, val, &type))
-       error_at(this->length_->location(),
-                "array length must be integer constant expression");
-      else if (mpz_cmp_si(val, 0) < 0)
-       error_at(this->length_->location(), "array length is negative");
-      else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
-       error_at(this->length_->location(), "array size is too large");
-      else
-       {
-         char buf[50];
-         snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
-         ret->append(buf);
-       }
-      mpz_clear(val);
-    }
-  ret->push_back('e');
-}
-
-// Make an array type.
-
-Array_type*
-Type::make_array_type(Type* element_type, Expression* length)
-{
-  return new Array_type(element_type, length);
-}
-
-// Class Map_type.
-
-// Traversal.
-
-int
-Map_type::do_traverse(Traverse* traverse)
-{
-  if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
-      || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Check that the map type is OK.
-
-bool
-Map_type::do_verify()
-{
-  if (this->key_type_->struct_type() != NULL
-      || this->key_type_->array_type() != NULL)
-    {
-      error_at(this->location_, "invalid map key type");
-      return false;
-    }
-  return true;
-}
-
-// Whether two map types are identical.
-
-bool
-Map_type::is_identical(const Map_type* t, bool errors_are_identical) const
-{
-  return (Type::are_identical(this->key_type(), t->key_type(),
-                             errors_are_identical, NULL)
-         && Type::are_identical(this->val_type(), t->val_type(),
-                                errors_are_identical, NULL));
-}
-
-// Hash code.
-
-unsigned int
-Map_type::do_hash_for_method(Gogo* gogo) const
-{
-  return (this->key_type_->hash_for_method(gogo)
-         + this->val_type_->hash_for_method(gogo)
-         + 2);
-}
-
-// Check that a call to the builtin make function is valid.  For a map
-// the optional argument is the number of spaces to preallocate for
-// values.
-
-bool
-Map_type::do_check_make_expression(Expression_list* args,
-                                  source_location location)
-{
-  if (args != NULL && !args->empty())
-    {
-      if (!Type::check_int_value(args->front(), _("bad size when making map"),
-                                location))
-       return false;
-      else if (args->size() > 1)
-       {
-         error_at(location, "too many arguments when making map");
-         return false;
-       }
-    }
-  return true;
-}
-
-// Get a tree for a map type.  A map type is represented as a pointer
-// to a struct.  The struct is __go_map in libgo/map.h.
-
-tree
-Map_type::do_get_tree(Gogo* gogo)
-{
-  static tree type_tree;
-  if (type_tree == NULL_TREE)
-    {
-      tree struct_type = make_node(RECORD_TYPE);
-
-      tree map_descriptor_type = gogo->map_descriptor_type();
-      tree const_map_descriptor_type =
-       build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
-      tree name = get_identifier("__descriptor");
-      tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
-                             build_pointer_type(const_map_descriptor_type));
-      DECL_CONTEXT(field) = struct_type;
-      TYPE_FIELDS(struct_type) = field;
-      tree last_field = field;
-
-      name = get_identifier("__element_count");
-      field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
-      DECL_CONTEXT(field) = struct_type;
-      DECL_CHAIN(last_field) = field;
-      last_field = field;
-
-      name = get_identifier("__bucket_count");
-      field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
-      DECL_CONTEXT(field) = struct_type;
-      DECL_CHAIN(last_field) = field;
-      last_field = field;
-
-      name = get_identifier("__buckets");
-      field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
-                        build_pointer_type(ptr_type_node));
-      DECL_CONTEXT(field) = struct_type;
-      DECL_CHAIN(last_field) = field;
-
-      layout_type(struct_type);
-
-      // Give the struct a name for better debugging info.
-      name = get_identifier("__go_map");
-      tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
-                                 struct_type);
-      DECL_ARTIFICIAL(type_decl) = 1;
-      TYPE_NAME(struct_type) = type_decl;
-      go_preserve_from_gc(type_decl);
-      rest_of_decl_compilation(type_decl, 1, 0);
-
-      type_tree = build_pointer_type(struct_type);
-      go_preserve_from_gc(type_tree);
-    }
-
-  return type_tree;
-}
-
-// Initialize a map.
-
-tree
-Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// Return an expression for a newly allocated map.
-
-tree
-Map_type::do_make_expression_tree(Translate_context* context,
-                                 Expression_list* args,
-                                 source_location location)
-{
-  tree bad_index = NULL_TREE;
-
-  tree expr_tree;
-  if (args == NULL || args->empty())
-    expr_tree = size_zero_node;
-  else
-    {
-      expr_tree = args->front()->get_tree(context);
-      if (expr_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(expr_tree))
-       expr_tree = save_expr(expr_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
-       expr_tree = convert_to_integer(sizetype, expr_tree);
-      bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
-                                          location);
-    }
-
-  tree map_type = this->get_tree(context->gogo());
-
-  static tree new_map_fndecl;
-  tree ret = Gogo::call_builtin(&new_map_fndecl,
-                               location,
-                               "__go_new_map",
-                               2,
-                               map_type,
-                               TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
-                               context->gogo()->map_descriptor(this),
-                               sizetype,
-                               expr_tree);
-  if (ret == error_mark_node)
-    return error_mark_node;
-  // This can panic if the capacity is out of range.
-  TREE_NOTHROW(new_map_fndecl) = 0;
-
-  if (bad_index == NULL_TREE)
-    return ret;
-  else
-    {
-      tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
-                                      location);
-      return build2(COMPOUND_EXPR, TREE_TYPE(ret),
-                   build3(COND_EXPR, void_type_node,
-                          bad_index, crash, NULL_TREE),
-                   ret);
-    }
-}
-
-// The type of a map type descriptor.
-
-Type*
-Map_type::make_map_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(3,
-                                      "", tdt,
-                                      "key", ptdt,
-                                      "elem", ptdt);
-
-      ret = Type::make_builtin_named_type("MapType", sf);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for a map type.
-
-Expression*
-Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* mtdt = Map_type::make_map_type_descriptor_type();
-
-  const Struct_field_list* fields = mtdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_MAP,
-                                                   name, NULL, true));
-
-  ++p;
-  gcc_assert(p->field_name() == "key");
-  vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(mtdt, vals, bloc);
-}
-
-// Reflection string for a map.
-
-void
-Map_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->append("map[");
-  this->append_reflection(this->key_type_, gogo, ret);
-  ret->append("] ");
-  this->append_reflection(this->val_type_, gogo, ret);
-}
-
-// Mangled name for a map.
-
-void
-Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('M');
-  this->append_mangled_name(this->key_type_, gogo, ret);
-  ret->append("__");
-  this->append_mangled_name(this->val_type_, gogo, ret);
-}
-
-// Export a map type.
-
-void
-Map_type::do_export(Export* exp) const
-{
-  exp->write_c_string("map [");
-  exp->write_type(this->key_type_);
-  exp->write_c_string("] ");
-  exp->write_type(this->val_type_);
-}
-
-// Import a map type.
-
-Map_type*
-Map_type::do_import(Import* imp)
-{
-  imp->require_c_string("map [");
-  Type* key_type = imp->read_type();
-  imp->require_c_string("] ");
-  Type* val_type = imp->read_type();
-  return Type::make_map_type(key_type, val_type, imp->location());
-}
-
-// Make a map type.
-
-Map_type*
-Type::make_map_type(Type* key_type, Type* val_type, source_location location)
-{
-  return new Map_type(key_type, val_type, location);
-}
-
-// Class Channel_type.
-
-// Hash code.
-
-unsigned int
-Channel_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->may_send_)
-    ret += 1;
-  if (this->may_receive_)
-    ret += 2;
-  if (this->element_type_ != NULL)
-    ret += this->element_type_->hash_for_method(gogo) << 2;
-  return ret << 3;
-}
-
-// Whether this type is the same as T.
-
-bool
-Channel_type::is_identical(const Channel_type* t,
-                          bool errors_are_identical) const
-{
-  if (!Type::are_identical(this->element_type(), t->element_type(),
-                          errors_are_identical, NULL))
-    return false;
-  return (this->may_send_ == t->may_send_
-         && this->may_receive_ == t->may_receive_);
-}
-
-// Check whether the parameters for a call to the builtin function
-// make are OK for a channel.  A channel can take an optional single
-// parameter which is the buffer size.
-
-bool
-Channel_type::do_check_make_expression(Expression_list* args,
-                                     source_location location)
-{
-  if (args != NULL && !args->empty())
-    {
-      if (!Type::check_int_value(args->front(),
-                                _("bad buffer size when making channel"),
-                                location))
-       return false;
-      else if (args->size() > 1)
-       {
-         error_at(location, "too many arguments when making channel");
-         return false;
-       }
-    }
-  return true;
-}
-
-// Return the tree for a channel type.  A channel is a pointer to a
-// __go_channel struct.  The __go_channel struct is defined in
-// libgo/runtime/channel.h.
-
-tree
-Channel_type::do_get_tree(Gogo*)
-{
-  static tree type_tree;
-  if (type_tree == NULL_TREE)
-    {
-      tree ret = make_node(RECORD_TYPE);
-      TYPE_NAME(ret) = get_identifier("__go_channel");
-      TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
-                                      ret);
-      type_tree = build_pointer_type(ret);
-      go_preserve_from_gc(type_tree);
-    }
-  return type_tree;
-}
-
-// Initialize a channel variable.
-
-tree
-Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-  return fold_convert(type_tree, null_pointer_node);
-}
-
-// Handle the builtin function make for a channel.
-
-tree
-Channel_type::do_make_expression_tree(Translate_context* context,
-                                     Expression_list* args,
-                                     source_location location)
-{
-  Gogo* gogo = context->gogo();
-  tree channel_type = this->get_tree(gogo);
-
-  tree element_tree = this->element_type_->get_tree(gogo);
-  tree element_size_tree = size_in_bytes(element_tree);
-
-  tree bad_index = NULL_TREE;
-
-  tree expr_tree;
-  if (args == NULL || args->empty())
-    expr_tree = size_zero_node;
-  else
-    {
-      expr_tree = args->front()->get_tree(context);
-      if (expr_tree == error_mark_node)
-       return error_mark_node;
-      if (!DECL_P(expr_tree))
-       expr_tree = save_expr(expr_tree);
-      if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
-       expr_tree = convert_to_integer(sizetype, expr_tree);
-      bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
-                                          location);
-    }
-
-  static tree new_channel_fndecl;
-  tree ret = Gogo::call_builtin(&new_channel_fndecl,
-                               location,
-                               "__go_new_channel",
-                               2,
-                               channel_type,
-                               sizetype,
-                               element_size_tree,
-                               sizetype,
-                               expr_tree);
-  if (ret == error_mark_node)
-    return error_mark_node;
-  // This can panic if the capacity is out of range.
-  TREE_NOTHROW(new_channel_fndecl) = 0;
-
-  if (bad_index == NULL_TREE)
-    return ret;
-  else
-    {
-      tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
-                                      location);
-      return build2(COMPOUND_EXPR, TREE_TYPE(ret),
-                   build3(COND_EXPR, void_type_node,
-                          bad_index, crash, NULL_TREE),
-                   ret);
-    }
-}
-
-// Build a type descriptor for a channel type.
-
-Type*
-Channel_type::make_chan_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* uintptr_type = Type::lookup_integer_type("uintptr");
-
-      Struct_type* sf =
-       Type::make_builtin_struct_type(3,
-                                      "", tdt,
-                                      "elem", ptdt,
-                                      "dir", uintptr_type);
-
-      ret = Type::make_builtin_named_type("ChanType", sf);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for a map type.
-
-Expression*
-Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* ctdt = Channel_type::make_chan_type_descriptor_type();
-
-  const Struct_field_list* fields = ctdt->struct_type()->fields();
-
-  Expression_list* vals = new Expression_list();
-  vals->reserve(3);
-
-  Struct_field_list::const_iterator p = fields->begin();
-  gcc_assert(p->field_name() == "commonType");
-  vals->push_back(this->type_descriptor_constructor(gogo,
-                                                   RUNTIME_TYPE_KIND_CHAN,
-                                                   name, NULL, true));
-
-  ++p;
-  gcc_assert(p->field_name() == "elem");
-  vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
-
-  ++p;
-  gcc_assert(p->field_name() == "dir");
-  // These bits must match the ones in libgo/runtime/go-type.h.
-  int val = 0;
-  if (this->may_receive_)
-    val |= 1;
-  if (this->may_send_)
-    val |= 2;
-  mpz_t iv;
-  mpz_init_set_ui(iv, val);
-  vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
-  mpz_clear(iv);
-
-  ++p;
-  gcc_assert(p == fields->end());
-
-  return Expression::make_struct_composite_literal(ctdt, vals, bloc);
-}
-
-// Reflection string.
-
-void
-Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  if (!this->may_send_)
-    ret->append("<-");
-  ret->append("chan");
-  if (!this->may_receive_)
-    ret->append("<-");
-  ret->push_back(' ');
-  this->append_reflection(this->element_type_, gogo, ret);
-}
-
-// Mangled name.
-
-void
-Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('C');
-  this->append_mangled_name(this->element_type_, gogo, ret);
-  if (this->may_send_)
-    ret->push_back('s');
-  if (this->may_receive_)
-    ret->push_back('r');
-  ret->push_back('e');
-}
-
-// Export.
-
-void
-Channel_type::do_export(Export* exp) const
-{
-  exp->write_c_string("chan ");
-  if (this->may_send_ && !this->may_receive_)
-    exp->write_c_string("-< ");
-  else if (this->may_receive_ && !this->may_send_)
-    exp->write_c_string("<- ");
-  exp->write_type(this->element_type_);
-}
-
-// Import.
-
-Channel_type*
-Channel_type::do_import(Import* imp)
-{
-  imp->require_c_string("chan ");
-
-  bool may_send;
-  bool may_receive;
-  if (imp->match_c_string("-< "))
-    {
-      imp->advance(3);
-      may_send = true;
-      may_receive = false;
-    }
-  else if (imp->match_c_string("<- "))
-    {
-      imp->advance(3);
-      may_receive = true;
-      may_send = false;
-    }
-  else
-    {
-      may_send = true;
-      may_receive = true;
-    }
-
-  Type* element_type = imp->read_type();
-
-  return Type::make_channel_type(may_send, may_receive, element_type);
-}
-
-// Make a new channel type.
-
-Channel_type*
-Type::make_channel_type(bool send, bool receive, Type* element_type)
-{
-  return new Channel_type(send, receive, element_type);
-}
-
-// Class Interface_type.
-
-// Traversal.
-
-int
-Interface_type::do_traverse(Traverse* traverse)
-{
-  if (this->methods_ == NULL)
-    return TRAVERSE_CONTINUE;
-  return this->methods_->traverse(traverse);
-}
-
-// Finalize the methods.  This handles interface inheritance.
-
-void
-Interface_type::finalize_methods()
-{
-  if (this->methods_ == NULL)
-    return;
-  std::vector<Named_type*> seen;
-  bool is_recursive = false;
-  size_t from = 0;
-  size_t to = 0;
-  while (from < this->methods_->size())
-    {
-      const Typed_identifier* p = &this->methods_->at(from);
-      if (!p->name().empty())
-       {
-         size_t i;
-         for (i = 0; i < to; ++i)
-           {
-             if (this->methods_->at(i).name() == p->name())
-               {
-                 error_at(p->location(), "duplicate method %qs",
-                          Gogo::message_name(p->name()).c_str());
-                 break;
-               }
-           }
-         if (i == to)
-           {
-             if (from != to)
-               this->methods_->set(to, *p);
-             ++to;
-           }
-         ++from;
-         continue;
-       }
-
-      Interface_type* it = p->type()->interface_type();
-      if (it == NULL)
-       {
-         error_at(p->location(), "interface contains embedded non-interface");
-         ++from;
-         continue;
-       }
-      if (it == this)
-       {
-         if (!is_recursive)
-           {
-             error_at(p->location(), "invalid recursive interface");
-             is_recursive = true;
-           }
-         ++from;
-         continue;
-       }
-
-      Named_type* nt = p->type()->named_type();
-      if (nt != NULL)
-       {
-         std::vector<Named_type*>::const_iterator q;
-         for (q = seen.begin(); q != seen.end(); ++q)
-           {
-             if (*q == nt)
-               {
-                 error_at(p->location(), "inherited interface loop");
-                 break;
-               }
-           }
-         if (q != seen.end())
-           {
-             ++from;
-             continue;
-           }
-         seen.push_back(nt);
-       }
-
-      const Typed_identifier_list* methods = it->methods();
-      if (methods == NULL)
-       {
-         ++from;
-         continue;
-       }
-      for (Typed_identifier_list::const_iterator q = methods->begin();
-          q != methods->end();
-          ++q)
-       {
-         if (q->name().empty())
-           {
-             if (q->type()->forwarded() == p->type()->forwarded())
-               error_at(p->location(), "interface inheritance loop");
-             else
-               {
-                 size_t i;
-                 for (i = from + 1; i < this->methods_->size(); ++i)
-                   {
-                     const Typed_identifier* r = &this->methods_->at(i);
-                     if (r->name().empty()
-                         && r->type()->forwarded() == q->type()->forwarded())
-                       {
-                         error_at(p->location(),
-                                  "inherited interface listed twice");
-                         break;
-                       }
-                   }
-                 if (i == this->methods_->size())
-                   this->methods_->push_back(Typed_identifier(q->name(),
-                                                              q->type(),
-                                                              p->location()));
-               }
-           }
-         else if (this->find_method(q->name()) == NULL)
-           this->methods_->push_back(Typed_identifier(q->name(), q->type(),
-                                                      p->location()));
-         else
-           {
-             if (!is_recursive)
-               error_at(p->location(), "inherited method %qs is ambiguous",
-                        Gogo::message_name(q->name()).c_str());
-           }
-       }
-      ++from;
-    }
-  if (to == 0)
-    {
-      delete this->methods_;
-      this->methods_ = NULL;
-    }
-  else
-    {
-      this->methods_->resize(to);
-      this->methods_->sort_by_name();
-    }
-}
-
-// Return the method NAME, or NULL.
-
-const Typed_identifier*
-Interface_type::find_method(const std::string& name) const
-{
-  if (this->methods_ == NULL)
-    return NULL;
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    if (p->name() == name)
-      return &*p;
-  return NULL;
-}
-
-// Return the method index.
-
-size_t
-Interface_type::method_index(const std::string& name) const
-{
-  gcc_assert(this->methods_ != NULL);
-  size_t ret = 0;
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p, ++ret)
-    if (p->name() == name)
-      return ret;
-  gcc_unreachable();
-}
-
-// Return whether NAME is an unexported method, for better error
-// reporting.
-
-bool
-Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
-{
-  if (this->methods_ == NULL)
-    return false;
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    {
-      const std::string& method_name(p->name());
-      if (Gogo::is_hidden_name(method_name)
-         && name == Gogo::unpack_hidden_name(method_name)
-         && gogo->pack_hidden_name(name, false) != method_name)
-       return true;
-    }
-  return false;
-}
-
-// Whether this type is identical with T.
-
-bool
-Interface_type::is_identical(const Interface_type* t,
-                            bool errors_are_identical) const
-{
-  // We require the same methods with the same types.  The methods
-  // have already been sorted.
-  if (this->methods() == NULL || t->methods() == NULL)
-    return this->methods() == t->methods();
-
-  Typed_identifier_list::const_iterator p1 = this->methods()->begin();
-  for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
-       p2 != t->methods()->end();
-       ++p1, ++p2)
-    {
-      if (p1 == this->methods()->end())
-       return false;
-      if (p1->name() != p2->name()
-         || !Type::are_identical(p1->type(), p2->type(),
-                                 errors_are_identical, NULL))
-       return false;
-    }
-  if (p1 != this->methods()->end())
-    return false;
-  return true;
-}
-
-// Whether we can assign the interface type T to this type.  The types
-// are known to not be identical.  An interface assignment is only
-// permitted if T is known to implement all methods in THIS.
-// Otherwise a type guard is required.
-
-bool
-Interface_type::is_compatible_for_assign(const Interface_type* t,
-                                        std::string* reason) const
-{
-  if (this->methods() == NULL)
-    return true;
-  for (Typed_identifier_list::const_iterator p = this->methods()->begin();
-       p != this->methods()->end();
-       ++p)
-    {
-      const Typed_identifier* m = t->find_method(p->name());
-      if (m == NULL)
-       {
-         if (reason != NULL)
-           {
-             char buf[200];
-             snprintf(buf, sizeof buf,
-                      _("need explicit conversion; missing method %s%s%s"),
-                      open_quote, Gogo::message_name(p->name()).c_str(),
-                      close_quote);
-             reason->assign(buf);
-           }
-         return false;
-       }
-
-      std::string subreason;
-      if (!Type::are_identical(p->type(), m->type(), true, &subreason))
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = 100 + n.length() + subreason.length();
-             char* buf = new char[len];
-             if (subreason.empty())
-               snprintf(buf, len, _("incompatible type for method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             else
-               snprintf(buf, len,
-                        _("incompatible type for method %s%s%s (%s)"),
-                        open_quote, n.c_str(), close_quote,
-                        subreason.c_str());
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Hash code.
-
-unsigned int
-Interface_type::do_hash_for_method(Gogo* gogo) const
-{
-  unsigned int ret = 0;
-  if (this->methods_ != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-          p != this->methods_->end();
-          ++p)
-       {
-         ret = Type::hash_string(p->name(), ret);
-         ret += p->type()->hash_for_method(gogo);
-         ret <<= 1;
-       }
-    }
-  return ret;
-}
-
-// Return true if T implements the interface.  If it does not, and
-// REASON is not NULL, set *REASON to a useful error message.
-
-bool
-Interface_type::implements_interface(const Type* t, std::string* reason) const
-{
-  if (this->methods_ == NULL)
-    return true;
-
-  bool is_pointer = false;
-  const Named_type* nt = t->named_type();
-  const Struct_type* st = t->struct_type();
-  // If we start with a named type, we don't dereference it to find
-  // methods.
-  if (nt == NULL)
-    {
-      const Type* pt = t->points_to();
-      if (pt != NULL)
-       {
-         // If T is a pointer to a named type, then we need to look at
-         // the type to which it points.
-         is_pointer = true;
-         nt = pt->named_type();
-         st = pt->struct_type();
-       }
-    }
-
-  // If we have a named type, get the methods from it rather than from
-  // any struct type.
-  if (nt != NULL)
-    st = NULL;
-
-  // Only named and struct types have methods.
-  if (nt == NULL && st == NULL)
-    {
-      if (reason != NULL)
-       {
-         if (t->points_to() != NULL
-             && t->points_to()->interface_type() != NULL)
-           reason->assign(_("pointer to interface type has no methods"));
-         else
-           reason->assign(_("type has no methods"));
-       }
-      return false;
-    }
-
-  if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
-    {
-      if (reason != NULL)
-       {
-         if (t->points_to() != NULL
-             && t->points_to()->interface_type() != NULL)
-           reason->assign(_("pointer to interface type has no methods"));
-         else
-           reason->assign(_("type has no methods"));
-       }
-      return false;
-    }
-
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    {
-      bool is_ambiguous = false;
-      Method* m = (nt != NULL
-                  ? nt->method_function(p->name(), &is_ambiguous)
-                  : st->method_function(p->name(), &is_ambiguous));
-      if (m == NULL)
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = n.length() + 100;
-             char* buf = new char[len];
-             if (is_ambiguous)
-               snprintf(buf, len, _("ambiguous method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             else
-               snprintf(buf, len, _("missing method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-
-      Function_type *p_fn_type = p->type()->function_type();
-      Function_type* m_fn_type = m->type()->function_type();
-      gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
-      std::string subreason;
-      if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason))
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = 100 + n.length() + subreason.length();
-             char* buf = new char[len];
-             if (subreason.empty())
-               snprintf(buf, len, _("incompatible type for method %s%s%s"),
-                        open_quote, n.c_str(), close_quote);
-             else
-               snprintf(buf, len,
-                        _("incompatible type for method %s%s%s (%s)"),
-                        open_quote, n.c_str(), close_quote,
-                        subreason.c_str());
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-
-      if (!is_pointer && !m->is_value_method())
-       {
-         if (reason != NULL)
-           {
-             std::string n = Gogo::message_name(p->name());
-             size_t len = 100 + n.length();
-             char* buf = new char[len];
-             snprintf(buf, len, _("method %s%s%s requires a pointer"),
-                      open_quote, n.c_str(), close_quote);
-             reason->assign(buf);
-             delete[] buf;
-           }
-         return false;
-       }
-    }
-
-  return true;
-}
-
-// Return a tree for an interface type.  An interface is a pointer to
-// a struct.  The struct has three fields.  The first field is a
-// pointer to the type descriptor for the dynamic type of the object.
-// The second field is a pointer to a table of methods for the
-// interface to be used with the object.  The third field is the value
-// of the object itself.
-
-tree
-Interface_type::do_get_tree(Gogo* gogo)
-{
-  if (this->methods_ == NULL)
-    return Interface_type::empty_type_tree(gogo);
-  else
-    {
-      tree t = Interface_type::non_empty_type_tree(this->location_);
-      return this->fill_in_tree(gogo, t);
-    }
-}
-
-// Return a singleton struct for an empty interface type.  We use the
-// same type for all empty interfaces.  This lets us assign them to
-// each other directly without triggering GIMPLE type errors.
-
-tree
-Interface_type::empty_type_tree(Gogo* gogo)
-{
-  static tree empty_interface;
-  if (empty_interface != NULL_TREE)
-    return empty_interface;
-
-  tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
-  dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
-  return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
-                             NULL_TREE, 2,
-                             "__type_descriptor",
-                             dtype,
-                             "__object",
-                             ptr_type_node);
-}
-
-// Return a new struct for a non-empty interface type.  The correct
-// values are filled in by fill_in_tree.
-
-tree
-Interface_type::non_empty_type_tree(source_location location)
-{
-  tree ret = make_node(RECORD_TYPE);
-
-  tree field_trees = NULL_TREE;
-  tree* pp = &field_trees;
-
-  tree name_tree = get_identifier("__methods");
-  tree field = build_decl(location, FIELD_DECL, name_tree, ptr_type_node);
-  DECL_CONTEXT(field) = ret;
-  *pp = field;
-  pp = &DECL_CHAIN(field);
-
-  name_tree = get_identifier("__object");
-  field = build_decl(location, FIELD_DECL, name_tree, ptr_type_node);
-  DECL_CONTEXT(field) = ret;
-  *pp = field;
-
-  TYPE_FIELDS(ret) = field_trees;
-
-  layout_type(ret);
-
-  return ret;
-}
-
-// Fill in the tree for an interface type.  This is used for named
-// interface types.
-
-tree
-Interface_type::fill_in_tree(Gogo* gogo, tree type)
-{
-  gcc_assert(this->methods_ != NULL);
-
-  // Build the type of the table of methods.
-
-  tree method_table = make_node(RECORD_TYPE);
-
-  // The first field is a pointer to the type descriptor.
-  tree name_tree = get_identifier("__type_descriptor");
-  tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
-  dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
-  tree field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
-  DECL_CONTEXT(field) = method_table;
-  TYPE_FIELDS(method_table) = field;
-
-  std::string last_name = "";
-  tree* pp = &DECL_CHAIN(field);
-  for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-       p != this->methods_->end();
-       ++p)
-    {
-      std::string name = Gogo::unpack_hidden_name(p->name());
-      name_tree = get_identifier_with_length(name.data(), name.length());
-      tree field_type = p->type()->get_tree(gogo);
-      if (field_type == error_mark_node)
-       return error_mark_node;
-      field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
-      DECL_CONTEXT(field) = method_table;
-      *pp = field;
-      pp = &DECL_CHAIN(field);
-      // Sanity check: the names should be sorted.
-      gcc_assert(p->name() > last_name);
-      last_name = p->name();
-    }
-  layout_type(method_table);
-
-  // Update the type of the __methods field from a generic pointer to
-  // a pointer to the method table.
-  field = TYPE_FIELDS(type);
-  gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
-
-  TREE_TYPE(field) = build_pointer_type(method_table);
-
-  return type;
-}
-
-// Initialization value.
-
-tree
-Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
-{
-  if (is_clear)
-    return NULL;
-
-  VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
-  for (tree field = TYPE_FIELDS(type_tree);
-       field != NULL_TREE;
-       field = DECL_CHAIN(field))
-    {
-      constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
-      elt->index = field;
-      elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
-    }
-
-  tree ret = build_constructor(type_tree, init);
-  TREE_CONSTANT(ret) = 1;
-  return ret;
-}
-
-// The type of an interface type descriptor.
-
-Type*
-Interface_type::make_interface_type_descriptor_type()
-{
-  static Type* ret;
-  if (ret == NULL)
-    {
-      Type* tdt = Type::make_type_descriptor_type();
-      Type* ptdt = Type::make_type_descriptor_ptr_type();
-
-      Type* string_type = Type::lookup_string_type();
-      Type* pointer_string_type = Type::make_pointer_type(string_type);
-
-      Struct_type* sm =
-       Type::make_builtin_struct_type(3,
-                                      "name", pointer_string_type,
-                                      "pkgPath", pointer_string_type,
-                                      "typ", ptdt);
-
-      Type* nsm = Type::make_builtin_named_type("imethod", sm);
-
-      Type* slice_nsm = Type::make_array_type(nsm, NULL);
-
-      Struct_type* s = Type::make_builtin_struct_type(2,
-                                                     "", tdt,
-                                                     "methods", slice_nsm);
-
-      ret = Type::make_builtin_named_type("InterfaceType", s);
-    }
-
-  return ret;
-}
-
-// Build a type descriptor for an interface type.
-
-Expression*
-Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  source_location bloc = BUILTINS_LOCATION;
-
-  Type* itdt = Interface_type::make_interface_type_descriptor_type();
-
-  const Struct_field_list* ifields = itdt->struct_type()->fields();
-
-  Expression_list* ivals = new Expression_list();
-  ivals->reserve(2);
-
-  Struct_field_list::const_iterator pif = ifields->begin();
-  gcc_assert(pif->field_name() == "commonType");
-  ivals->push_back(this->type_descriptor_constructor(gogo,
-                                                    RUNTIME_TYPE_KIND_INTERFACE,
-                                                    name, NULL, true));
-
-  ++pif;
-  gcc_assert(pif->field_name() == "methods");
-
-  Expression_list* methods = new Expression_list();
-  if (this->methods_ != NULL && !this->methods_->empty())
-    {
-      Type* elemtype = pif->type()->array_type()->element_type();
-
-      methods->reserve(this->methods_->size());
-      for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
-          pm != this->methods_->end();
-          ++pm)
-       {
-         const Struct_field_list* mfields = elemtype->struct_type()->fields();
-
-         Expression_list* mvals = new Expression_list();
-         mvals->reserve(3);
-
-         Struct_field_list::const_iterator pmf = mfields->begin();
-         gcc_assert(pmf->field_name() == "name");
-         std::string s = Gogo::unpack_hidden_name(pm->name());
-         Expression* e = Expression::make_string(s, bloc);
-         mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
-
-         ++pmf;
-         gcc_assert(pmf->field_name() == "pkgPath");
-         if (!Gogo::is_hidden_name(pm->name()))
-           mvals->push_back(Expression::make_nil(bloc));
-         else
-           {
-             s = Gogo::hidden_name_prefix(pm->name());
-             e = Expression::make_string(s, bloc);
-             mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
-           }
-
-         ++pmf;
-         gcc_assert(pmf->field_name() == "typ");
-         mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
-
-         ++pmf;
-         gcc_assert(pmf == mfields->end());
-
-         e = Expression::make_struct_composite_literal(elemtype, mvals,
-                                                       bloc);
-         methods->push_back(e);
-       }
-    }
-
-  ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
-                                                           methods, bloc));
-
-  ++pif;
-  gcc_assert(pif == ifields->end());
-
-  return Expression::make_struct_composite_literal(itdt, ivals, bloc);
-}
-
-// Reflection string.
-
-void
-Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  ret->append("interface {");
-  if (this->methods_ != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = this->methods_->begin();
-          p != this->methods_->end();
-          ++p)
-       {
-         if (p != this->methods_->begin())
-           ret->append(";");
-         ret->push_back(' ');
-         ret->append(Gogo::unpack_hidden_name(p->name()));
-         std::string sub = p->type()->reflection(gogo);
-         gcc_assert(sub.compare(0, 4, "func") == 0);
-         sub = sub.substr(4);
-         ret->append(sub);
-       }
-    }
-  ret->append(" }");
-}
-
-// Mangled name.
-
-void
-Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  ret->push_back('I');
-
-  const Typed_identifier_list* methods = this->methods_;
-  if (methods != NULL)
-    {
-      for (Typed_identifier_list::const_iterator p = methods->begin();
-          p != methods->end();
-          ++p)
-       {
-         std::string n = Gogo::unpack_hidden_name(p->name());
-         char buf[20];
-         snprintf(buf, sizeof buf, "%u_",
-                  static_cast<unsigned int>(n.length()));
-         ret->append(buf);
-         ret->append(n);
-         this->append_mangled_name(p->type(), gogo, ret);
-       }
-    }
-
-  ret->push_back('e');
-}
-
-// Export.
-
-void
-Interface_type::do_export(Export* exp) const
-{
-  exp->write_c_string("interface { ");
-
-  const Typed_identifier_list* methods = this->methods_;
-  if (methods != NULL)
-    {
-      for (Typed_identifier_list::const_iterator pm = methods->begin();
-          pm != methods->end();
-          ++pm)
-       {
-         exp->write_string(pm->name());
-         exp->write_c_string(" (");
-
-         const Function_type* fntype = pm->type()->function_type();
-
-         bool first = true;
-         const Typed_identifier_list* parameters = fntype->parameters();
-         if (parameters != NULL)
-           {
-             bool is_varargs = fntype->is_varargs();
-             for (Typed_identifier_list::const_iterator pp =
-                    parameters->begin();
-                  pp != parameters->end();
-                  ++pp)
-               {
-                 if (first)
-                   first = false;
-                 else
-                   exp->write_c_string(", ");
-                 if (!is_varargs || pp + 1 != parameters->end())
-                   exp->write_type(pp->type());
-                 else
-                   {
-                     exp->write_c_string("...");
-                     Type *pptype = pp->type();
-                     exp->write_type(pptype->array_type()->element_type());
-                   }
-               }
-           }
-
-         exp->write_c_string(")");
-
-         const Typed_identifier_list* results = fntype->results();
-         if (results != NULL)
-           {
-             exp->write_c_string(" ");
-             if (results->size() == 1)
-               exp->write_type(results->begin()->type());
-             else
-               {
-                 first = true;
-                 exp->write_c_string("(");
-                 for (Typed_identifier_list::const_iterator p =
-                        results->begin();
-                      p != results->end();
-                      ++p)
-                   {
-                     if (first)
-                       first = false;
-                     else
-                       exp->write_c_string(", ");
-                     exp->write_type(p->type());
-                   }
-                 exp->write_c_string(")");
-               }
-           }
-
-         exp->write_c_string("; ");
-       }
-    }
-
-  exp->write_c_string("}");
-}
-
-// Import an interface type.
-
-Interface_type*
-Interface_type::do_import(Import* imp)
-{
-  imp->require_c_string("interface { ");
-
-  Typed_identifier_list* methods = new Typed_identifier_list;
-  while (imp->peek_char() != '}')
-    {
-      std::string name = imp->read_identifier();
-      imp->require_c_string(" (");
-
-      Typed_identifier_list* parameters;
-      bool is_varargs = false;
-      if (imp->peek_char() == ')')
-       parameters = NULL;
-      else
-       {
-         parameters = new Typed_identifier_list;
-         while (true)
-           {
-             if (imp->match_c_string("..."))
-               {
-                 imp->advance(3);
-                 is_varargs = true;
-               }
-
-             Type* ptype = imp->read_type();
-             if (is_varargs)
-               ptype = Type::make_array_type(ptype, NULL);
-             parameters->push_back(Typed_identifier(Import::import_marker,
-                                                    ptype, imp->location()));
-             if (imp->peek_char() != ',')
-               break;
-             gcc_assert(!is_varargs);
-             imp->require_c_string(", ");
-           }
-       }
-      imp->require_c_string(")");
-
-      Typed_identifier_list* results;
-      if (imp->peek_char() != ' ')
-       results = NULL;
-      else
-       {
-         results = new Typed_identifier_list;
-         imp->advance(1);
-         if (imp->peek_char() != '(')
-           {
-             Type* rtype = imp->read_type();
-             results->push_back(Typed_identifier(Import::import_marker,
-                                                 rtype, imp->location()));
-           }
-         else
-           {
-             imp->advance(1);
-             while (true)
-               {
-                 Type* rtype = imp->read_type();
-                 results->push_back(Typed_identifier(Import::import_marker,
-                                                     rtype, imp->location()));
-                 if (imp->peek_char() != ',')
-                   break;
-                 imp->require_c_string(", ");
-               }
-             imp->require_c_string(")");
-           }
-       }
-
-      Function_type* fntype = Type::make_function_type(NULL, parameters,
-                                                      results,
-                                                      imp->location());
-      if (is_varargs)
-       fntype->set_is_varargs();
-      methods->push_back(Typed_identifier(name, fntype, imp->location()));
-
-      imp->require_c_string("; ");
-    }
-
-  imp->require_c_string("}");
-
-  if (methods->empty())
-    {
-      delete methods;
-      methods = NULL;
-    }
-
-  return Type::make_interface_type(methods, imp->location());
-}
-
-// Make an interface type.
-
-Interface_type*
-Type::make_interface_type(Typed_identifier_list* methods,
-                         source_location location)
-{
-  return new Interface_type(methods, location);
-}
-
-// Class Method.
-
-// Bind a method to an object.
-
-Expression*
-Method::bind_method(Expression* expr, source_location location) const
-{
-  if (this->stub_ == NULL)
-    {
-      // When there is no stub object, the binding is determined by
-      // the child class.
-      return this->do_bind_method(expr, location);
-    }
-
-  Expression* func = Expression::make_func_reference(this->stub_, NULL,
-                                                    location);
-  return Expression::make_bound_method(expr, func, location);
-}
-
-// Return the named object associated with a method.  This may only be
-// called after methods are finalized.
-
-Named_object*
-Method::named_object() const
-{
-  if (this->stub_ != NULL)
-    return this->stub_;
-  return this->do_named_object();
-}
-
-// Class Named_method.
-
-// The type of the method.
-
-Function_type*
-Named_method::do_type() const
-{
-  if (this->named_object_->is_function())
-    return this->named_object_->func_value()->type();
-  else if (this->named_object_->is_function_declaration())
-    return this->named_object_->func_declaration_value()->type();
-  else
-    gcc_unreachable();
-}
-
-// Return the location of the method receiver.
-
-source_location
-Named_method::do_receiver_location() const
-{
-  return this->do_type()->receiver()->location();
-}
-
-// Bind a method to an object.
-
-Expression*
-Named_method::do_bind_method(Expression* expr, source_location location) const
-{
-  Expression* func = Expression::make_func_reference(this->named_object_, NULL,
-                                                    location);
-  Bound_method_expression* bme = Expression::make_bound_method(expr, func,
-                                                              location);
-  // If this is not a local method, and it does not use a stub, then
-  // the real method expects a different type.  We need to cast the
-  // first argument.
-  if (this->depth() > 0 && !this->needs_stub_method())
-    {
-      Function_type* ftype = this->do_type();
-      gcc_assert(ftype->is_method());
-      Type* frtype = ftype->receiver()->type();
-      bme->set_first_argument_type(frtype);
-    }
-  return bme;
-}
-
-// Class Interface_method.
-
-// Bind a method to an object.
-
-Expression*
-Interface_method::do_bind_method(Expression* expr,
-                                source_location location) const
-{
-  return Expression::make_interface_field_reference(expr, this->name_,
-                                                   location);
-}
-
-// Class Methods.
-
-// Insert a new method.  Return true if it was inserted, false
-// otherwise.
-
-bool
-Methods::insert(const std::string& name, Method* m)
-{
-  std::pair<Method_map::iterator, bool> ins =
-    this->methods_.insert(std::make_pair(name, m));
-  if (ins.second)
-    return true;
-  else
-    {
-      Method* old_method = ins.first->second;
-      if (m->depth() < old_method->depth())
-       {
-         delete old_method;
-         ins.first->second = m;
-         return true;
-       }
-      else
-       {
-         if (m->depth() == old_method->depth())
-           old_method->set_is_ambiguous();
-         return false;
-       }
-    }
-}
-
-// Return the number of unambiguous methods.
-
-size_t
-Methods::count() const
-{
-  size_t ret = 0;
-  for (Method_map::const_iterator p = this->methods_.begin();
-       p != this->methods_.end();
-       ++p)
-    if (!p->second->is_ambiguous())
-      ++ret;
-  return ret;
-}
-
-// Class Named_type.
-
-// Return the name of the type.
-
-const std::string&
-Named_type::name() const
-{
-  return this->named_object_->name();
-}
-
-// Return the name of the type to use in an error message.
-
-std::string
-Named_type::message_name() const
-{
-  return this->named_object_->message_name();
-}
-
-// Return the base type for this type.  We have to be careful about
-// circular type definitions, which are invalid but may be seen here.
-
-Type*
-Named_type::named_base()
-{
-  if (this->seen_ > 0)
-    return this;
-  ++this->seen_;
-  Type* ret = this->type_->base();
-  --this->seen_;
-  return ret;
-}
-
-const Type*
-Named_type::named_base() const
-{
-  if (this->seen_ > 0)
-    return this;
-  ++this->seen_;
-  const Type* ret = this->type_->base();
-  --this->seen_;
-  return ret;
-}
-
-// Return whether this is an error type.  We have to be careful about
-// circular type definitions, which are invalid but may be seen here.
-
-bool
-Named_type::is_named_error_type() const
-{
-  if (this->seen_ > 0)
-    return false;
-  ++this->seen_;
-  bool ret = this->type_->is_error_type();
-  --this->seen_;
-  return ret;
-}
-
-// Add a method to this type.
-
-Named_object*
-Named_type::add_method(const std::string& name, Function* function)
-{
-  if (this->local_methods_ == NULL)
-    this->local_methods_ = new Bindings(NULL);
-  return this->local_methods_->add_function(name, NULL, function);
-}
-
-// Add a method declaration to this type.
-
-Named_object*
-Named_type::add_method_declaration(const std::string& name, Package* package,
-                                  Function_type* type,
-                                  source_location location)
-{
-  if (this->local_methods_ == NULL)
-    this->local_methods_ = new Bindings(NULL);
-  return this->local_methods_->add_function_declaration(name, package, type,
-                                                       location);
-}
-
-// Add an existing method to this type.
-
-void
-Named_type::add_existing_method(Named_object* no)
-{
-  if (this->local_methods_ == NULL)
-    this->local_methods_ = new Bindings(NULL);
-  this->local_methods_->add_named_object(no);
-}
-
-// Look for a local method NAME, and returns its named object, or NULL
-// if not there.
-
-Named_object*
-Named_type::find_local_method(const std::string& name) const
-{
-  if (this->local_methods_ == NULL)
-    return NULL;
-  return this->local_methods_->lookup(name);
-}
-
-// Return whether NAME is an unexported field or method, for better
-// error reporting.
-
-bool
-Named_type::is_unexported_local_method(Gogo* gogo,
-                                      const std::string& name) const
-{
-  Bindings* methods = this->local_methods_;
-  if (methods != NULL)
-    {
-      for (Bindings::const_declarations_iterator p =
-            methods->begin_declarations();
-          p != methods->end_declarations();
-          ++p)
-       {
-         if (Gogo::is_hidden_name(p->first)
-             && name == Gogo::unpack_hidden_name(p->first)
-             && gogo->pack_hidden_name(name, false) != p->first)
-           return true;
-       }
-    }
-  return false;
-}
-
-// Build the complete list of methods for this type, which means
-// recursively including all methods for anonymous fields.  Create all
-// stub methods.
-
-void
-Named_type::finalize_methods(Gogo* gogo)
-{
-  if (this->all_methods_ != NULL)
-    return;
-
-  if (this->local_methods_ != NULL
-      && (this->points_to() != NULL || this->interface_type() != NULL))
-    {
-      const Bindings* lm = this->local_methods_;
-      for (Bindings::const_declarations_iterator p = lm->begin_declarations();
-          p != lm->end_declarations();
-          ++p)
-       error_at(p->second->location(),
-                "invalid pointer or interface receiver type");
-      delete this->local_methods_;
-      this->local_methods_ = NULL;
-      return;
-    }
-
-  Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
-}
-
-// Return the method NAME, or NULL if there isn't one or if it is
-// ambiguous.  Set *IS_AMBIGUOUS if the method exists but is
-// ambiguous.
-
-Method*
-Named_type::method_function(const std::string& name, bool* is_ambiguous) const
-{
-  return Type::method_function(this->all_methods_, name, is_ambiguous);
-}
-
-// Return a pointer to the interface method table for this type for
-// the interface INTERFACE.  IS_POINTER is true if this is for a
-// pointer to THIS.
-
-tree
-Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
-                                  bool is_pointer)
-{
-  gcc_assert(!interface->is_empty());
-
-  Interface_method_tables** pimt = (is_pointer
-                                   ? &this->interface_method_tables_
-                                   : &this->pointer_interface_method_tables_);
-
-  if (*pimt == NULL)
-    *pimt = new Interface_method_tables(5);
-
-  std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
-  std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
-
-  if (ins.second)
-    {
-      // This is a new entry in the hash table.
-      gcc_assert(ins.first->second == NULL_TREE);
-      ins.first->second = gogo->interface_method_table_for_type(interface,
-                                                               this,
-                                                               is_pointer);
-    }
-
-  tree decl = ins.first->second;
-  if (decl == error_mark_node)
-    return error_mark_node;
-  gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
-  return build_fold_addr_expr(decl);
-}
-
-// Return whether a named type has any hidden fields.
-
-bool
-Named_type::named_type_has_hidden_fields(std::string* reason) const
-{
-  if (this->seen_ > 0)
-    return false;
-  ++this->seen_;
-  bool ret = this->type_->has_hidden_fields(this, reason);
-  --this->seen_;
-  return ret;
-}
-
-// Look for a use of a complete type within another type.  This is
-// used to check that we don't try to use a type within itself.
-
-class Find_type_use : public Traverse
-{
- public:
-  Find_type_use(Named_type* find_type)
-    : Traverse(traverse_types),
-      find_type_(find_type), found_(false)
-  { }
-
-  // Whether we found the type.
-  bool
-  found() const
-  { return this->found_; }
-
- protected:
-  int
-  type(Type*);
-
- private:
-  // The type we are looking for.
-  Named_type* find_type_;
-  // Whether we found the type.
-  bool found_;
-};
-
-// Check for FIND_TYPE in TYPE.
-
-int
-Find_type_use::type(Type* type)
-{
-  if (type->named_type() != NULL && this->find_type_ == type->named_type())
-    {
-      this->found_ = true;
-      return TRAVERSE_EXIT;
-    }
-
-  // It's OK if we see a reference to the type in any type which is
-  // essentially a pointer: a pointer, a slice, a function, a map, or
-  // a channel.
-  if (type->points_to() != NULL
-      || type->is_open_array_type()
-      || type->function_type() != NULL
-      || type->map_type() != NULL
-      || type->channel_type() != NULL)
-    return TRAVERSE_SKIP_COMPONENTS;
-
-  // For an interface, a reference to the type in a method type should
-  // be ignored, but we have to consider direct inheritance.  When
-  // this is called, there may be cases of direct inheritance
-  // represented as a method with no name.
-  if (type->interface_type() != NULL)
-    {
-      const Typed_identifier_list* methods = type->interface_type()->methods();
-      if (methods != NULL)
-       {
-         for (Typed_identifier_list::const_iterator p = methods->begin();
-              p != methods->end();
-              ++p)
-           {
-             if (p->name().empty())
-               {
-                 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
-                   return TRAVERSE_EXIT;
-               }
-           }
-       }
-      return TRAVERSE_SKIP_COMPONENTS;
-    }
-
-  // Otherwise, FIND_TYPE_ depends on TYPE, in the sense that we need
-  // to convert TYPE to the backend representation before we convert
-  // FIND_TYPE_.
-  if (type->named_type() != NULL)
-    {
-      switch (type->base()->classification())
-       {
-       case Type::TYPE_ERROR:
-       case Type::TYPE_BOOLEAN:
-       case Type::TYPE_INTEGER:
-       case Type::TYPE_FLOAT:
-       case Type::TYPE_COMPLEX:
-       case Type::TYPE_STRING:
-       case Type::TYPE_NIL:
-         break;
-
-       case Type::TYPE_ARRAY:
-       case Type::TYPE_STRUCT:
-         this->find_type_->add_dependency(type->named_type());
-         break;
-
-       case Type::TYPE_VOID:
-       case Type::TYPE_SINK:
-       case Type::TYPE_FUNCTION:
-       case Type::TYPE_POINTER:
-       case Type::TYPE_CALL_MULTIPLE_RESULT:
-       case Type::TYPE_MAP:
-       case Type::TYPE_CHANNEL:
-       case Type::TYPE_INTERFACE:
-       case Type::TYPE_NAMED:
-       case Type::TYPE_FORWARD:
-       default:
-         gcc_unreachable();
-       }
-    }
-
-  return TRAVERSE_CONTINUE;
-}
-
-// Verify that a named type does not refer to itself.
-
-bool
-Named_type::do_verify()
-{
-  Find_type_use find(this);
-  Type::traverse(this->type_, &find);
-  if (find.found())
-    {
-      error_at(this->location_, "invalid recursive type %qs",
-              this->message_name().c_str());
-      this->is_error_ = true;
-      return false;
-    }
-
-  // Check whether any of the local methods overloads an existing
-  // struct field or interface method.  We don't need to check the
-  // list of methods against itself: that is handled by the Bindings
-  // code.
-  if (this->local_methods_ != NULL)
-    {
-      Struct_type* st = this->type_->struct_type();
-      Interface_type* it = this->type_->interface_type();
-      bool found_dup = false;
-      if (st != NULL || it != NULL)
-       {
-         for (Bindings::const_declarations_iterator p =
-                this->local_methods_->begin_declarations();
-              p != this->local_methods_->end_declarations();
-              ++p)
-           {
-             const std::string& name(p->first);
-             if (st != NULL && st->find_local_field(name, NULL) != NULL)
-               {
-                 error_at(p->second->location(),
-                          "method %qs redeclares struct field name",
-                          Gogo::message_name(name).c_str());
-                 found_dup = true;
-               }
-             if (it != NULL && it->find_method(name) != NULL)
-               {
-                 error_at(p->second->location(),
-                          "method %qs redeclares interface method name",
-                          Gogo::message_name(name).c_str());
-                 found_dup = true;
-               }
-           }
-       }
-      if (found_dup)
-       return false;
-    }
-
-  return true;
-}
-
-// Return whether this type is or contains a pointer.
-
-bool
-Named_type::do_has_pointer() const
-{
-  if (this->seen_ > 0)
-    return false;
-  ++this->seen_;
-  bool ret = this->type_->has_pointer();
-  --this->seen_;
-  return ret;
-}
-
-// Return a hash code.  This is used for method lookup.  We simply
-// hash on the name itself.
-
-unsigned int
-Named_type::do_hash_for_method(Gogo* gogo) const
-{
-  const std::string& name(this->named_object()->name());
-  unsigned int ret = Type::hash_string(name, 0);
-
-  // GOGO will be NULL here when called from Type_hash_identical.
-  // That is OK because that is only used for internal hash tables
-  // where we are going to be comparing named types for equality.  In
-  // other cases, which are cases where the runtime is going to
-  // compare hash codes to see if the types are the same, we need to
-  // include the package prefix and name in the hash.
-  if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
-    {
-      const Package* package = this->named_object()->package();
-      if (package == NULL)
-       {
-         ret = Type::hash_string(gogo->unique_prefix(), ret);
-         ret = Type::hash_string(gogo->package_name(), ret);
-       }
-      else
-       {
-         ret = Type::hash_string(package->unique_prefix(), ret);
-         ret = Type::hash_string(package->name(), ret);
-       }
-    }
-
-  return ret;
-}
-
-// Convert a named type to the backend representation.  In order to
-// get dependencies right, we fill in a dummy structure for this type,
-// then convert all the dependencies, then complete this type.  When
-// this function is complete, the size of the type is known.
-
-void
-Named_type::convert(Gogo* gogo)
-{
-  if (this->is_error_ || this->is_converted_)
-    return;
-
-  this->create_placeholder(gogo);
-
-  // Convert all the dependencies.  If they refer indirectly back to
-  // this type, they will pick up the intermediate tree we just
-  // created.
-  for (std::vector<Named_type*>::const_iterator p = this->dependencies_.begin();
-       p != this->dependencies_.end();
-       ++p)
-    (*p)->convert(gogo);
-
-  // Complete this type.
-  tree t = this->named_tree_;
-  Type* base = this->type_->base();
-  switch (base->classification())
-    {
-    case TYPE_VOID:
-    case TYPE_BOOLEAN:
-    case TYPE_INTEGER:
-    case TYPE_FLOAT:
-    case TYPE_COMPLEX:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      break;
-
-    case TYPE_MAP:
-    case TYPE_CHANNEL:
-      break;
-
-    case TYPE_FUNCTION:
-    case TYPE_POINTER:
-      // The size of these types is already correct.
-      break;
-
-    case TYPE_STRUCT:
-      t = base->struct_type()->fill_in_tree(gogo, t);
-      break;
-
-    case TYPE_ARRAY:
-      if (!base->is_open_array_type())
-       t = base->array_type()->fill_in_array_tree(gogo, t);
-      break;
-
-    case TYPE_INTERFACE:
-      if (!base->interface_type()->is_empty())
-       t = base->interface_type()->fill_in_tree(gogo, t);
-      break;
-
-    case TYPE_ERROR:
-      return;
-
-    default:
-    case TYPE_SINK:
-    case TYPE_CALL_MULTIPLE_RESULT:
-    case TYPE_NAMED:
-    case TYPE_FORWARD:
-      gcc_unreachable();
-    }
-
-  this->named_tree_ = t;
-
-  if (t == error_mark_node)
-    this->is_error_ = true;
-  else
-    gcc_assert(TYPE_SIZE(t) != NULL_TREE);
-
-  this->is_converted_ = true;
-}
-
-// Create the placeholder for a named type.  This is the first step in
-// converting to the backend representation.
-
-void
-Named_type::create_placeholder(Gogo* gogo)
-{
-  if (this->is_error_)
-    this->named_tree_ = error_mark_node;
-
-  if (this->named_tree_ != NULL_TREE)
-    return;
-
-  // Create the structure for this type.  Note that because we call
-  // base() here, we don't attempt to represent a named type defined
-  // as another named type.  Instead both named types will point to
-  // different base representations.
-  Type* base = this->type_->base();
-  tree t;
-  switch (base->classification())
-    {
-    case TYPE_ERROR:
-      this->is_error_ = true;
-      this->named_tree_ = error_mark_node;
-      return;
-
-    case TYPE_VOID:
-    case TYPE_BOOLEAN:
-    case TYPE_INTEGER:
-    case TYPE_FLOAT:
-    case TYPE_COMPLEX:
-    case TYPE_STRING:
-    case TYPE_NIL:
-      // These are simple basic types, we can just create them
-      // directly.
-      t = Type::get_named_type_tree(gogo, base);
-      if (t == error_mark_node)
-       {
-         this->is_error_ = true;
-         this->named_tree_ = error_mark_node;
-         return;
-       }
-      t = build_variant_type_copy(t);
-      break;
-
-    case TYPE_MAP:
-    case TYPE_CHANNEL:
-      // All maps and channels have the same type in GENERIC.
-      t = Type::get_named_type_tree(gogo, base);
-      if (t == error_mark_node)
-       {
-         this->is_error_ = true;
-         this->named_tree_ = error_mark_node;
-         return;
-       }
-      t = build_variant_type_copy(t);
-      break;
-
-    case TYPE_FUNCTION:
-    case TYPE_POINTER:
-      t = build_variant_type_copy(ptr_type_node);
-      break;
-
-    case TYPE_STRUCT:
-      t = make_node(RECORD_TYPE);
-      break;
-
-    case TYPE_ARRAY:
-      if (base->is_open_array_type())
-       t = gogo->slice_type_tree(void_type_node);
-      else
-       t = make_node(ARRAY_TYPE);
-      break;
-
-    case TYPE_INTERFACE:
-      if (base->interface_type()->is_empty())
-       {
-         t = Interface_type::empty_type_tree(gogo);
-         t = build_variant_type_copy(t);
-       }
-      else
-       {
-         source_location loc = base->interface_type()->location();
-         t = Interface_type::non_empty_type_tree(loc);
-       }
-      break;
-
-    default:
-    case TYPE_SINK:
-    case TYPE_CALL_MULTIPLE_RESULT:
-    case TYPE_NAMED:
-    case TYPE_FORWARD:
-      gcc_unreachable();
-    }
-
-  // Create the named type.
-
-  tree id = this->named_object_->get_id(gogo);
-  tree decl = build_decl(this->location_, TYPE_DECL, id, t);
-  TYPE_NAME(t) = decl;
-
-  this->named_tree_ = t;
-}
-
-// Get a tree for a named type.
-
-tree
-Named_type::do_get_tree(Gogo* gogo)
-{
-  if (this->is_error_)
-    return error_mark_node;
-
-  tree t = this->named_tree_;
-
-  // FIXME: GOGO can be NULL when called from go_type_for_size, which
-  // is only used for basic types.
-  if (gogo == NULL || !gogo->named_types_are_converted())
-    {
-      // We have not completed converting named types.  NAMED_TREE_ is
-      // a placeholder and we shouldn't do anything further.
-      if (t != NULL_TREE)
-       return t;
-
-      // We don't build dependencies for types whose sizes do not
-      // change or are not relevant, so we may see them here while
-      // converting types.
-      this->create_placeholder(gogo);
-      t = this->named_tree_;
-      gcc_assert(t != NULL_TREE);
-      return t;
-    }
-
-  // We are not converting types.  This should only be called if the
-  // type has already been converted.
-  if (!this->is_converted_)
-    {
-      gcc_assert(saw_errors());
-      return error_mark_node;
-    }
-
-  gcc_assert(t != NULL_TREE && TYPE_SIZE(t) != NULL_TREE);
-
-  // Complete the tree.
-  Type* base = this->type_->base();
-  tree t1;
-  switch (base->classification())
-    {
-    case TYPE_ERROR:
-      return error_mark_node;
-
-    case TYPE_VOID:
-    case TYPE_BOOLEAN:
-    case TYPE_INTEGER:
-    case TYPE_FLOAT:
-    case TYPE_COMPLEX:
-    case TYPE_STRING:
-    case TYPE_NIL:
-    case TYPE_MAP:
-    case TYPE_CHANNEL:
-    case TYPE_STRUCT:
-    case TYPE_INTERFACE:
-      return t;
-
-    case TYPE_FUNCTION:
-      // Don't build a circular data structure.  GENERIC can't handle
-      // it.
-      if (this->seen_ > 0)
-       {
-         this->is_circular_ = true;
-         return ptr_type_node;
-       }
-      ++this->seen_;
-      t1 = Type::get_named_type_tree(gogo, base);
-      --this->seen_;
-      if (t1 == error_mark_node)
-       return error_mark_node;
-      if (this->is_circular_)
-       t1 = ptr_type_node;
-      gcc_assert(t != NULL_TREE && TREE_CODE(t) == POINTER_TYPE);
-      gcc_assert(TREE_CODE(t1) == POINTER_TYPE);
-      TREE_TYPE(t) = TREE_TYPE(t1);
-      return t;
-
-    case TYPE_POINTER:
-      // Don't build a circular data structure. GENERIC can't handle
-      // it.
-      if (this->seen_ > 0)
-       {
-         this->is_circular_ = true;
-         return ptr_type_node;
-       }
-      ++this->seen_;
-      t1 = Type::get_named_type_tree(gogo, base);
-      --this->seen_;
-      if (t1 == error_mark_node)
-       return error_mark_node;
-      if (this->is_circular_)
-       t1 = ptr_type_node;
-      gcc_assert(t != NULL_TREE && TREE_CODE(t) == POINTER_TYPE);
-      gcc_assert(TREE_CODE(t1) == POINTER_TYPE);
-      TREE_TYPE(t) = TREE_TYPE(t1);
-      return t;
-
-    case TYPE_ARRAY:
-      if (base->is_open_array_type())
-       {
-         if (this->seen_ > 0)
-           return t;
-         else
-           {
-             ++this->seen_;
-             t = base->array_type()->fill_in_slice_tree(gogo, t);
-             --this->seen_;
-           }
-       }
-      return t;
-
-    default:
-    case TYPE_SINK:
-    case TYPE_CALL_MULTIPLE_RESULT:
-    case TYPE_NAMED:
-    case TYPE_FORWARD:
-      gcc_unreachable();
-    }
-
-  gcc_unreachable();
-}
-
-// Build a type descriptor for a named type.
-
-Expression*
-Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  // If NAME is not NULL, then we don't really want the type
-  // descriptor for this type; we want the descriptor for the
-  // underlying type, giving it the name NAME.
-  return this->named_type_descriptor(gogo, this->type_,
-                                    name == NULL ? this : name);
-}
-
-// Add to the reflection string.  This is used mostly for the name of
-// the type used in a type descriptor, not for actual reflection
-// strings.
-
-void
-Named_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  if (this->location() != BUILTINS_LOCATION)
-    {
-      const Package* package = this->named_object_->package();
-      if (package != NULL)
-       ret->append(package->name());
-      else
-       ret->append(gogo->package_name());
-      ret->push_back('.');
-    }
-  if (this->in_function_ != NULL)
-    {
-      ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
-      ret->push_back('$');
-    }
-  ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
-}
-
-// Get the mangled name.
-
-void
-Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  Named_object* no = this->named_object_;
-  std::string name;
-  if (this->location() == BUILTINS_LOCATION)
-    gcc_assert(this->in_function_ == NULL);
-  else
-    {
-      const std::string& unique_prefix(no->package() == NULL
-                                      ? gogo->unique_prefix()
-                                      : no->package()->unique_prefix());
-      const std::string& package_name(no->package() == NULL
-                                     ? gogo->package_name()
-                                     : no->package()->name());
-      name = unique_prefix;
-      name.append(1, '.');
-      name.append(package_name);
-      name.append(1, '.');
-      if (this->in_function_ != NULL)
-       {
-         name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
-         name.append(1, '$');
-       }
-    }
-  name.append(Gogo::unpack_hidden_name(no->name()));
-  char buf[20];
-  snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
-  ret->append(buf);
-  ret->append(name);
-}
-
-// Export the type.  This is called to export a global type.
-
-void
-Named_type::export_named_type(Export* exp, const std::string&) const
-{
-  // We don't need to write the name of the type here, because it will
-  // be written by Export::write_type anyhow.
-  exp->write_c_string("type ");
-  exp->write_type(this);
-  exp->write_c_string(";\n");
-}
-
-// Import a named type.
-
-void
-Named_type::import_named_type(Import* imp, Named_type** ptype)
-{
-  imp->require_c_string("type ");
-  Type *type = imp->read_type();
-  *ptype = type->named_type();
-  gcc_assert(*ptype != NULL);
-  imp->require_c_string(";\n");
-}
-
-// Export the type when it is referenced by another type.  In this
-// case Export::export_type will already have issued the name.
-
-void
-Named_type::do_export(Export* exp) const
-{
-  exp->write_type(this->type_);
-
-  // To save space, we only export the methods directly attached to
-  // this type.
-  Bindings* methods = this->local_methods_;
-  if (methods == NULL)
-    return;
-
-  exp->write_c_string("\n");
-  for (Bindings::const_definitions_iterator p = methods->begin_definitions();
-       p != methods->end_definitions();
-       ++p)
-    {
-      exp->write_c_string(" ");
-      (*p)->export_named_object(exp);
-    }
-
-  for (Bindings::const_declarations_iterator p = methods->begin_declarations();
-       p != methods->end_declarations();
-       ++p)
-    {
-      if (p->second->is_function_declaration())
-       {
-         exp->write_c_string(" ");
-         p->second->export_named_object(exp);
-       }
-    }
-}
-
-// Make a named type.
-
-Named_type*
-Type::make_named_type(Named_object* named_object, Type* type,
-                     source_location location)
-{
-  return new Named_type(named_object, type, location);
-}
-
-// Finalize the methods for TYPE.  It will be a named type or a struct
-// type.  This sets *ALL_METHODS to the list of methods, and builds
-// all required stubs.
-
-void
-Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
-                      Methods** all_methods)
-{
-  *all_methods = NULL;
-  Types_seen types_seen;
-  Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
-                            all_methods);
-  Type::build_stub_methods(gogo, type, *all_methods, location);
-}
-
-// Add the methods for TYPE to *METHODS.  FIELD_INDEXES is used to
-// build up the struct field indexes as we go.  DEPTH is the depth of
-// the field within TYPE.  IS_EMBEDDED_POINTER is true if we are
-// adding these methods for an anonymous field with pointer type.
-// NEEDS_STUB_METHOD is true if we need to use a stub method which
-// calls the real method.  TYPES_SEEN is used to avoid infinite
-// recursion.
-
-void
-Type::add_methods_for_type(const Type* type,
-                          const Method::Field_indexes* field_indexes,
-                          unsigned int depth,
-                          bool is_embedded_pointer,
-                          bool needs_stub_method,
-                          Types_seen* types_seen,
-                          Methods** methods)
-{
-  // Pointer types may not have methods.
-  if (type->points_to() != NULL)
-    return;
-
-  const Named_type* nt = type->named_type();
-  if (nt != NULL)
-    {
-      std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
-      if (!ins.second)
-       return;
-    }
-
-  if (nt != NULL)
-    Type::add_local_methods_for_type(nt, field_indexes, depth,
-                                    is_embedded_pointer, needs_stub_method,
-                                    methods);
-
-  Type::add_embedded_methods_for_type(type, field_indexes, depth,
-                                     is_embedded_pointer, needs_stub_method,
-                                     types_seen, methods);
-
-  // If we are called with depth > 0, then we are looking at an
-  // anonymous field of a struct.  If such a field has interface type,
-  // then we need to add the interface methods.  We don't want to add
-  // them when depth == 0, because we will already handle them
-  // following the usual rules for an interface type.
-  if (depth > 0)
-    Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
-}
-
-// Add the local methods for the named type NT to *METHODS.  The
-// parameters are as for add_methods_to_type.
-
-void
-Type::add_local_methods_for_type(const Named_type* nt,
-                                const Method::Field_indexes* field_indexes,
-                                unsigned int depth,
-                                bool is_embedded_pointer,
-                                bool needs_stub_method,
-                                Methods** methods)
-{
-  const Bindings* local_methods = nt->local_methods();
-  if (local_methods == NULL)
-    return;
-
-  if (*methods == NULL)
-    *methods = new Methods();
-
-  for (Bindings::const_declarations_iterator p =
-        local_methods->begin_declarations();
-       p != local_methods->end_declarations();
-       ++p)
-    {
-      Named_object* no = p->second;
-      bool is_value_method = (is_embedded_pointer
-                             || !Type::method_expects_pointer(no));
-      Method* m = new Named_method(no, field_indexes, depth, is_value_method,
-                                  (needs_stub_method
-                                   || (depth > 0 && is_value_method)));
-      if (!(*methods)->insert(no->name(), m))
-       delete m;
-    }
-}
-
-// Add the embedded methods for TYPE to *METHODS.  These are the
-// methods attached to anonymous fields.  The parameters are as for
-// add_methods_to_type.
-
-void
-Type::add_embedded_methods_for_type(const Type* type,
-                                   const Method::Field_indexes* field_indexes,
-                                   unsigned int depth,
-                                   bool is_embedded_pointer,
-                                   bool needs_stub_method,
-                                   Types_seen* types_seen,
-                                   Methods** methods)
-{
-  // Look for anonymous fields in TYPE.  TYPE has fields if it is a
-  // struct.
-  const Struct_type* st = type->struct_type();
-  if (st == NULL)
-    return;
-
-  const Struct_field_list* fields = st->fields();
-  if (fields == NULL)
-    return;
-
-  unsigned int i = 0;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf, ++i)
-    {
-      if (!pf->is_anonymous())
-       continue;
-
-      Type* ftype = pf->type();
-      bool is_pointer = false;
-      if (ftype->points_to() != NULL)
-       {
-         ftype = ftype->points_to();
-         is_pointer = true;
-       }
-      Named_type* fnt = ftype->named_type();
-      if (fnt == NULL)
-       {
-         // This is an error, but it will be diagnosed elsewhere.
-         continue;
-       }
-
-      Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
-      sub_field_indexes->next = field_indexes;
-      sub_field_indexes->field_index = i;
-
-      Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
-                                (is_embedded_pointer || is_pointer),
-                                (needs_stub_method
-                                 || is_pointer
-                                 || i > 0),
-                                types_seen,
-                                methods);
-    }
-}
-
-// If TYPE is an interface type, then add its method to *METHODS.
-// This is for interface methods attached to an anonymous field.  The
-// parameters are as for add_methods_for_type.
-
-void
-Type::add_interface_methods_for_type(const Type* type,
-                                    const Method::Field_indexes* field_indexes,
-                                    unsigned int depth,
-                                    Methods** methods)
-{
-  const Interface_type* it = type->interface_type();
-  if (it == NULL)
-    return;
-
-  const Typed_identifier_list* imethods = it->methods();
-  if (imethods == NULL)
-    return;
-
-  if (*methods == NULL)
-    *methods = new Methods();
-
-  for (Typed_identifier_list::const_iterator pm = imethods->begin();
-       pm != imethods->end();
-       ++pm)
-    {
-      Function_type* fntype = pm->type()->function_type();
-      if (fntype == NULL)
-       {
-         // This is an error, but it should be reported elsewhere
-         // when we look at the methods for IT.
-         continue;
-       }
-      gcc_assert(!fntype->is_method());
-      fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
-      Method* m = new Interface_method(pm->name(), pm->location(), fntype,
-                                      field_indexes, depth);
-      if (!(*methods)->insert(pm->name(), m))
-       delete m;
-    }
-}
-
-// Build stub methods for TYPE as needed.  METHODS is the set of
-// methods for the type.  A stub method may be needed when a type
-// inherits a method from an anonymous field.  When we need the
-// address of the method, as in a type descriptor, we need to build a
-// little stub which does the required field dereferences and jumps to
-// the real method.  LOCATION is the location of the type definition.
-
-void
-Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
-                        source_location location)
-{
-  if (methods == NULL)
-    return;
-  for (Methods::const_iterator p = methods->begin();
-       p != methods->end();
-       ++p)
-    {
-      Method* m = p->second;
-      if (m->is_ambiguous() || !m->needs_stub_method())
-       continue;
-
-      const std::string& name(p->first);
-
-      // Build a stub method.
-
-      const Function_type* fntype = m->type();
-
-      static unsigned int counter;
-      char buf[100];
-      snprintf(buf, sizeof buf, "$this%u", counter);
-      ++counter;
-
-      Type* receiver_type = const_cast<Type*>(type);
-      if (!m->is_value_method())
-       receiver_type = Type::make_pointer_type(receiver_type);
-      source_location receiver_location = m->receiver_location();
-      Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
-                                                       receiver_location);
-
-      const Typed_identifier_list* fnparams = fntype->parameters();
-      Typed_identifier_list* stub_params;
-      if (fnparams == NULL || fnparams->empty())
-       stub_params = NULL;
-      else
-       {
-         // We give each stub parameter a unique name.
-         stub_params = new Typed_identifier_list();
-         for (Typed_identifier_list::const_iterator pp = fnparams->begin();
-              pp != fnparams->end();
-              ++pp)
-           {
-             char pbuf[100];
-             snprintf(pbuf, sizeof pbuf, "$p%u", counter);
-             stub_params->push_back(Typed_identifier(pbuf, pp->type(),
-                                                     pp->location()));
-             ++counter;
-           }
-       }
-
-      const Typed_identifier_list* fnresults = fntype->results();
-      Typed_identifier_list* stub_results;
-      if (fnresults == NULL || fnresults->empty())
-       stub_results = NULL;
-      else
-       {
-         // We create the result parameters without any names, since
-         // we won't refer to them.
-         stub_results = new Typed_identifier_list();
-         for (Typed_identifier_list::const_iterator pr = fnresults->begin();
-              pr != fnresults->end();
-              ++pr)
-           stub_results->push_back(Typed_identifier("", pr->type(),
-                                                    pr->location()));
-       }
-
-      Function_type* stub_type = Type::make_function_type(receiver,
-                                                         stub_params,
-                                                         stub_results,
-                                                         fntype->location());
-      if (fntype->is_varargs())
-       stub_type->set_is_varargs();
-
-      // We only create the function in the package which creates the
-      // type.
-      const Package* package;
-      if (type->named_type() == NULL)
-       package = NULL;
-      else
-       package = type->named_type()->named_object()->package();
-      Named_object* stub;
-      if (package != NULL)
-       stub = Named_object::make_function_declaration(name, package,
-                                                      stub_type, location);
-      else
-       {
-         stub = gogo->start_function(name, stub_type, false,
-                                     fntype->location());
-         Type::build_one_stub_method(gogo, m, buf, stub_params,
-                                     fntype->is_varargs(), location);
-         gogo->finish_function(fntype->location());
-       }
-
-      m->set_stub_object(stub);
-    }
-}
-
-// Build a stub method which adjusts the receiver as required to call
-// METHOD.  RECEIVER_NAME is the name we used for the receiver.
-// PARAMS is the list of function parameters.
-
-void
-Type::build_one_stub_method(Gogo* gogo, Method* method,
-                           const char* receiver_name,
-                           const Typed_identifier_list* params,
-                           bool is_varargs,
-                           source_location location)
-{
-  Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
-  gcc_assert(receiver_object != NULL);
-
-  Expression* expr = Expression::make_var_reference(receiver_object, location);
-  expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
-  if (expr->type()->points_to() == NULL)
-    expr = Expression::make_unary(OPERATOR_AND, expr, location);
-
-  Expression_list* arguments;
-  if (params == NULL || params->empty())
-    arguments = NULL;
-  else
-    {
-      arguments = new Expression_list();
-      for (Typed_identifier_list::const_iterator p = params->begin();
-          p != params->end();
-          ++p)
-       {
-         Named_object* param = gogo->lookup(p->name(), NULL);
-         gcc_assert(param != NULL);
-         Expression* param_ref = Expression::make_var_reference(param,
-                                                                location);
-         arguments->push_back(param_ref);
-       }
-    }
-
-  Expression* func = method->bind_method(expr, location);
-  gcc_assert(func != NULL);
-  Call_expression* call = Expression::make_call(func, arguments, is_varargs,
-                                               location);
-  size_t count = call->result_count();
-  if (count == 0)
-    gogo->add_statement(Statement::make_statement(call));
-  else
-    {
-      Expression_list* retvals = new Expression_list();
-      if (count <= 1)
-       retvals->push_back(call);
-      else
-       {
-         for (size_t i = 0; i < count; ++i)
-           retvals->push_back(Expression::make_call_result(call, i));
-       }
-      const Function* function = gogo->current_function()->func_value();
-      const Typed_identifier_list* results = function->type()->results();
-      Statement* retstat = Statement::make_return_statement(results, retvals,
-                                                           location);
-      gogo->add_statement(retstat);
-    }
-}
-
-// Apply FIELD_INDEXES to EXPR.  The field indexes have to be applied
-// in reverse order.
-
-Expression*
-Type::apply_field_indexes(Expression* expr,
-                         const Method::Field_indexes* field_indexes,
-                         source_location location)
-{
-  if (field_indexes == NULL)
-    return expr;
-  expr = Type::apply_field_indexes(expr, field_indexes->next, location);
-  Struct_type* stype = expr->type()->deref()->struct_type();
-  gcc_assert(stype != NULL
-            && field_indexes->field_index < stype->field_count());
-  if (expr->type()->struct_type() == NULL)
-    {
-      gcc_assert(expr->type()->points_to() != NULL);
-      expr = Expression::make_unary(OPERATOR_MULT, expr, location);
-      gcc_assert(expr->type()->struct_type() == stype);
-    }
-  return Expression::make_field_reference(expr, field_indexes->field_index,
-                                         location);
-}
-
-// Return whether NO is a method for which the receiver is a pointer.
-
-bool
-Type::method_expects_pointer(const Named_object* no)
-{
-  const Function_type *fntype;
-  if (no->is_function())
-    fntype = no->func_value()->type();
-  else if (no->is_function_declaration())
-    fntype = no->func_declaration_value()->type();
-  else
-    gcc_unreachable();
-  return fntype->receiver()->type()->points_to() != NULL;
-}
-
-// Given a set of methods for a type, METHODS, return the method NAME,
-// or NULL if there isn't one or if it is ambiguous.  If IS_AMBIGUOUS
-// is not NULL, then set *IS_AMBIGUOUS to true if the method exists
-// but is ambiguous (and return NULL).
-
-Method*
-Type::method_function(const Methods* methods, const std::string& name,
-                     bool* is_ambiguous)
-{
-  if (is_ambiguous != NULL)
-    *is_ambiguous = false;
-  if (methods == NULL)
-    return NULL;
-  Methods::const_iterator p = methods->find(name);
-  if (p == methods->end())
-    return NULL;
-  Method* m = p->second;
-  if (m->is_ambiguous())
-    {
-      if (is_ambiguous != NULL)
-       *is_ambiguous = true;
-      return NULL;
-    }
-  return m;
-}
-
-// Look for field or method NAME for TYPE.  Return an Expression for
-// the field or method bound to EXPR.  If there is no such field or
-// method, give an appropriate error and return an error expression.
-
-Expression*
-Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
-                          const std::string& name,
-                          source_location location)
-{
-  if (type->deref()->is_error_type())
-    return Expression::make_error(location);
-
-  const Named_type* nt = type->deref()->named_type();
-  const Struct_type* st = type->deref()->struct_type();
-  const Interface_type* it = type->deref()->interface_type();
-
-  // If this is a pointer to a pointer, then it is possible that the
-  // pointed-to type has methods.
-  if (nt == NULL
-      && st == NULL
-      && it == NULL
-      && type->points_to() != NULL
-      && type->points_to()->points_to() != NULL)
-    {
-      expr = Expression::make_unary(OPERATOR_MULT, expr, location);
-      type = type->points_to();
-      if (type->deref()->is_error_type())
-       return Expression::make_error(location);
-      nt = type->points_to()->named_type();
-      st = type->points_to()->struct_type();
-      it = type->points_to()->interface_type();
-    }
-
-  bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
-                                 || expr->is_addressable());
-  std::vector<const Named_type*> seen;
-  bool is_method = false;
-  bool found_pointer_method = false;
-  std::string ambig1;
-  std::string ambig2;
-  if (Type::find_field_or_method(type, name, receiver_can_be_pointer,
-                                &seen, NULL, &is_method,
-                                &found_pointer_method, &ambig1, &ambig2))
-    {
-      Expression* ret;
-      if (!is_method)
-       {
-         gcc_assert(st != NULL);
-         if (type->struct_type() == NULL)
-           {
-             gcc_assert(type->points_to() != NULL);
-             expr = Expression::make_unary(OPERATOR_MULT, expr,
-                                           location);
-             gcc_assert(expr->type()->struct_type() == st);
-           }
-         ret = st->field_reference(expr, name, location);
-       }
-      else if (it != NULL && it->find_method(name) != NULL)
-       ret = Expression::make_interface_field_reference(expr, name,
-                                                        location);
-      else
-       {
-         Method* m;
-         if (nt != NULL)
-           m = nt->method_function(name, NULL);
-         else if (st != NULL)
-           m = st->method_function(name, NULL);
-         else
-           gcc_unreachable();
-         gcc_assert(m != NULL);
-         if (!m->is_value_method() && expr->type()->points_to() == NULL)
-           expr = Expression::make_unary(OPERATOR_AND, expr, location);
-         ret = m->bind_method(expr, location);
-       }
-      gcc_assert(ret != NULL);
-      return ret;
-    }
-  else
-    {
-      if (!ambig1.empty())
-       error_at(location, "%qs is ambiguous via %qs and %qs",
-                Gogo::message_name(name).c_str(),
-                Gogo::message_name(ambig1).c_str(),
-                Gogo::message_name(ambig2).c_str());
-      else if (found_pointer_method)
-       error_at(location, "method requires a pointer");
-      else if (nt == NULL && st == NULL && it == NULL)
-       error_at(location,
-                ("reference to field %qs in object which "
-                 "has no fields or methods"),
-                Gogo::message_name(name).c_str());
-      else
-       {
-         bool is_unexported;
-         if (!Gogo::is_hidden_name(name))
-           is_unexported = false;
-         else
-           {
-             std::string unpacked = Gogo::unpack_hidden_name(name);
-             seen.clear();
-             is_unexported = Type::is_unexported_field_or_method(gogo, type,
-                                                                 unpacked,
-                                                                 &seen);
-           }
-         if (is_unexported)
-           error_at(location, "reference to unexported field or method %qs",
-                    Gogo::message_name(name).c_str());
-         else
-           error_at(location, "reference to undefined field or method %qs",
-                    Gogo::message_name(name).c_str());
-       }
-      return Expression::make_error(location);
-    }
-}
-
-// Look in TYPE for a field or method named NAME, return true if one
-// is found.  This looks through embedded anonymous fields and handles
-// ambiguity.  If a method is found, sets *IS_METHOD to true;
-// otherwise, if a field is found, set it to false.  If
-// RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
-// whose address can not be taken.  SEEN is used to avoid infinite
-// recursion on invalid types.
-
-// When returning false, this sets *FOUND_POINTER_METHOD if we found a
-// method we couldn't use because it requires a pointer.  LEVEL is
-// used for recursive calls, and can be NULL for a non-recursive call.
-// When this function returns false because it finds that the name is
-// ambiguous, it will store a path to the ambiguous names in *AMBIG1
-// and *AMBIG2.  If the name is not found at all, *AMBIG1 and *AMBIG2
-// will be unchanged.
-
-// This function just returns whether or not there is a field or
-// method, and whether it is a field or method.  It doesn't build an
-// expression to refer to it.  If it is a method, we then look in the
-// list of all methods for the type.  If it is a field, the search has
-// to be done again, looking only for fields, and building up the
-// expression as we go.
-
-bool
-Type::find_field_or_method(const Type* type,
-                          const std::string& name,
-                          bool receiver_can_be_pointer,
-                          std::vector<const Named_type*>* seen,
-                          int* level,
-                          bool* is_method,
-                          bool* found_pointer_method,
-                          std::string* ambig1,
-                          std::string* ambig2)
-{
-  // Named types can have locally defined methods.
-  const Named_type* nt = type->named_type();
-  if (nt == NULL && type->points_to() != NULL)
-    nt = type->points_to()->named_type();
-  if (nt != NULL)
-    {
-      Named_object* no = nt->find_local_method(name);
-      if (no != NULL)
-       {
-         if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
-           {
-             *is_method = true;
-             return true;
-           }
-
-         // Record that we have found a pointer method in order to
-         // give a better error message if we don't find anything
-         // else.
-         *found_pointer_method = true;
-       }
-
-      for (std::vector<const Named_type*>::const_iterator p = seen->begin();
-          p != seen->end();
-          ++p)
-       {
-         if (*p == nt)
-           {
-             // We've already seen this type when searching for methods.
-             return false;
-           }
-       }
-    }
-
-  // Interface types can have methods.
-  const Interface_type* it = type->deref()->interface_type();
-  if (it != NULL && it->find_method(name) != NULL)
-    {
-      *is_method = true;
-      return true;
-    }
-
-  // Struct types can have fields.  They can also inherit fields and
-  // methods from anonymous fields.
-  const Struct_type* st = type->deref()->struct_type();
-  if (st == NULL)
-    return false;
-  const Struct_field_list* fields = st->fields();
-  if (fields == NULL)
-    return false;
-
-  if (nt != NULL)
-    seen->push_back(nt);
-
-  int found_level = 0;
-  bool found_is_method = false;
-  std::string found_ambig1;
-  std::string found_ambig2;
-  const Struct_field* found_parent = NULL;
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      if (pf->field_name() == name)
-       {
-         *is_method = false;
-         if (nt != NULL)
-           seen->pop_back();
-         return true;
-       }
-
-      if (!pf->is_anonymous())
-       continue;
-
-      if (pf->type()->deref()->is_error_type()
-         || pf->type()->deref()->is_undefined())
-       continue;
-
-      Named_type* fnt = pf->type()->named_type();
-      if (fnt == NULL)
-       fnt = pf->type()->deref()->named_type();
-      gcc_assert(fnt != NULL);
-
-      int sublevel = level == NULL ? 1 : *level + 1;
-      bool sub_is_method;
-      std::string subambig1;
-      std::string subambig2;
-      bool subfound = Type::find_field_or_method(fnt,
-                                                name,
-                                                receiver_can_be_pointer,
-                                                seen,
-                                                &sublevel,
-                                                &sub_is_method,
-                                                found_pointer_method,
-                                                &subambig1,
-                                                &subambig2);
-      if (!subfound)
-       {
-         if (!subambig1.empty())
-           {
-             // The name was found via this field, but is ambiguous.
-             // if the ambiguity is lower or at the same level as
-             // anything else we have already found, then we want to
-             // pass the ambiguity back to the caller.
-             if (found_level == 0 || sublevel <= found_level)
-               {
-                 found_ambig1 = pf->field_name() + '.' + subambig1;
-                 found_ambig2 = pf->field_name() + '.' + subambig2;
-                 found_level = sublevel;
-               }
-           }
-       }
-      else
-       {
-         // The name was found via this field.  Use the level to see
-         // if we want to use this one, or whether it introduces an
-         // ambiguity.
-         if (found_level == 0 || sublevel < found_level)
-           {
-             found_level = sublevel;
-             found_is_method = sub_is_method;
-             found_ambig1.clear();
-             found_ambig2.clear();
-             found_parent = &*pf;
-           }
-         else if (sublevel > found_level)
-           ;
-         else if (found_ambig1.empty())
-           {
-             // We found an ambiguity.
-             gcc_assert(found_parent != NULL);
-             found_ambig1 = found_parent->field_name();
-             found_ambig2 = pf->field_name();
-           }
-         else
-           {
-             // We found an ambiguity, but we already know of one.
-             // Just report the earlier one.
-           }
-       }
-    }
-
-  // Here if we didn't find anything FOUND_LEVEL is 0.  If we found
-  // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
-  // FOUND_AMBIG2 are not empty.  If we found the field, FOUND_LEVEL
-  // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
-
-  if (nt != NULL)
-    seen->pop_back();
-
-  if (found_level == 0)
-    return false;
-  else if (!found_ambig1.empty())
-    {
-      gcc_assert(!found_ambig1.empty());
-      ambig1->assign(found_ambig1);
-      ambig2->assign(found_ambig2);
-      if (level != NULL)
-       *level = found_level;
-      return false;
-    }
-  else
-    {
-      if (level != NULL)
-       *level = found_level;
-      *is_method = found_is_method;
-      return true;
-    }
-}
-
-// Return whether NAME is an unexported field or method for TYPE.
-
-bool
-Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
-                                   const std::string& name,
-                                   std::vector<const Named_type*>* seen)
-{
-  const Named_type* nt = type->named_type();
-  if (nt == NULL)
-    nt = type->deref()->named_type();
-  if (nt != NULL)
-    {
-      if (nt->is_unexported_local_method(gogo, name))
-       return true;
-
-      for (std::vector<const Named_type*>::const_iterator p = seen->begin();
-          p != seen->end();
-          ++p)
-       {
-         if (*p == nt)
-           {
-             // We've already seen this type.
-             return false;
-           }
-       }
-    }
-
-  type = type->deref();
-
-  const Interface_type* it = type->interface_type();
-  if (it != NULL && it->is_unexported_method(gogo, name))
-    return true;
-
-  const Struct_type* st = type->struct_type();
-  if (st != NULL && st->is_unexported_local_field(gogo, name))
-    return true;
-
-  if (st == NULL)
-    return false;
-
-  const Struct_field_list* fields = st->fields();
-  if (fields == NULL)
-    return false;
-
-  if (nt != NULL)
-    seen->push_back(nt);
-
-  for (Struct_field_list::const_iterator pf = fields->begin();
-       pf != fields->end();
-       ++pf)
-    {
-      if (pf->is_anonymous()
-         && !pf->type()->deref()->is_error_type()
-         && !pf->type()->deref()->is_undefined())
-       {
-         Named_type* subtype = pf->type()->named_type();
-         if (subtype == NULL)
-           subtype = pf->type()->deref()->named_type();
-         if (subtype == NULL)
-           {
-             // This is an error, but it will be diagnosed elsewhere.
-             continue;
-           }
-         if (Type::is_unexported_field_or_method(gogo, subtype, name, seen))
-           {
-             if (nt != NULL)
-               seen->pop_back();
-             return true;
-           }
-       }
-    }
-
-  if (nt != NULL)
-    seen->pop_back();
-
-  return false;
-}
-
-// Class Forward_declaration.
-
-Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
-  : Type(TYPE_FORWARD),
-    named_object_(named_object->resolve()), warned_(false)
-{
-  gcc_assert(this->named_object_->is_unknown()
-            || this->named_object_->is_type_declaration());
-}
-
-// Return the named object.
-
-Named_object*
-Forward_declaration_type::named_object()
-{
-  return this->named_object_->resolve();
-}
-
-const Named_object*
-Forward_declaration_type::named_object() const
-{
-  return this->named_object_->resolve();
-}
-
-// Return the name of the forward declared type.
-
-const std::string&
-Forward_declaration_type::name() const
-{
-  return this->named_object()->name();
-}
-
-// Warn about a use of a type which has been declared but not defined.
-
-void
-Forward_declaration_type::warn() const
-{
-  Named_object* no = this->named_object_->resolve();
-  if (no->is_unknown())
-    {
-      // The name was not defined anywhere.
-      if (!this->warned_)
-       {
-         error_at(this->named_object_->location(),
-                  "use of undefined type %qs",
-                  no->message_name().c_str());
-         this->warned_ = true;
-       }
-    }
-  else if (no->is_type_declaration())
-    {
-      // The name was seen as a type, but the type was never defined.
-      if (no->type_declaration_value()->using_type())
-       {
-         error_at(this->named_object_->location(),
-                  "use of undefined type %qs",
-                  no->message_name().c_str());
-         this->warned_ = true;
-       }
-    }
-  else
-    {
-      // The name was defined, but not as a type.
-      if (!this->warned_)
-       {
-         error_at(this->named_object_->location(), "expected type");
-         this->warned_ = true;
-       }
-    }
-}
-
-// Get the base type of a declaration.  This gives an error if the
-// type has not yet been defined.
-
-Type*
-Forward_declaration_type::real_type()
-{
-  if (this->is_defined())
-    return this->named_object()->type_value();
-  else
-    {
-      this->warn();
-      return Type::make_error_type();
-    }
-}
-
-const Type*
-Forward_declaration_type::real_type() const
-{
-  if (this->is_defined())
-    return this->named_object()->type_value();
-  else
-    {
-      this->warn();
-      return Type::make_error_type();
-    }
-}
-
-// Return whether the base type is defined.
-
-bool
-Forward_declaration_type::is_defined() const
-{
-  return this->named_object()->is_type();
-}
-
-// Add a method.  This is used when methods are defined before the
-// type.
-
-Named_object*
-Forward_declaration_type::add_method(const std::string& name,
-                                    Function* function)
-{
-  Named_object* no = this->named_object();
-  if (no->is_unknown())
-    no->declare_as_type();
-  return no->type_declaration_value()->add_method(name, function);
-}
-
-// Add a method declaration.  This is used when methods are declared
-// before the type.
-
-Named_object*
-Forward_declaration_type::add_method_declaration(const std::string& name,
-                                                Function_type* type,
-                                                source_location location)
-{
-  Named_object* no = this->named_object();
-  if (no->is_unknown())
-    no->declare_as_type();
-  Type_declaration* td = no->type_declaration_value();
-  return td->add_method_declaration(name, type, location);
-}
-
-// Traversal.
-
-int
-Forward_declaration_type::do_traverse(Traverse* traverse)
-{
-  if (this->is_defined()
-      && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
-    return TRAVERSE_EXIT;
-  return TRAVERSE_CONTINUE;
-}
-
-// Get a tree for the type.
-
-tree
-Forward_declaration_type::do_get_tree(Gogo* gogo)
-{
-  if (this->is_defined())
-    return Type::get_named_type_tree(gogo, this->real_type());
-
-  if (this->warned_)
-    return error_mark_node;
-
-  // We represent an undefined type as a struct with no fields.  That
-  // should work fine for the middle-end, since the same case can
-  // arise in C.
-  Named_object* no = this->named_object();
-  tree type_tree = make_node(RECORD_TYPE);
-  tree id = no->get_id(gogo);
-  tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
-  TYPE_NAME(type_tree) = decl;
-  layout_type(type_tree);
-  return type_tree;
-}
-
-// Build a type descriptor for a forwarded type.
-
-Expression*
-Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
-{
-  if (!this->is_defined())
-    return Expression::make_nil(BUILTINS_LOCATION);
-  else
-    {
-      Type* t = this->real_type();
-      if (name != NULL)
-       return this->named_type_descriptor(gogo, t, name);
-      else
-       return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
-    }
-}
-
-// The reflection string.
-
-void
-Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
-{
-  this->append_reflection(this->real_type(), gogo, ret);
-}
-
-// The mangled name.
-
-void
-Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
-{
-  if (this->is_defined())
-    this->append_mangled_name(this->real_type(), gogo, ret);
-  else
-    {
-      const Named_object* no = this->named_object();
-      std::string name;
-      if (no->package() == NULL)
-       name = gogo->package_name();
-      else
-       name = no->package()->name();
-      name += '.';
-      name += Gogo::unpack_hidden_name(no->name());
-      char buf[20];
-      snprintf(buf, sizeof buf, "N%u_",
-              static_cast<unsigned int>(name.length()));
-      ret->append(buf);
-      ret->append(name);
-    }
-}
-
-// Export a forward declaration.  This can happen when a defined type
-// refers to a type which is only declared (and is presumably defined
-// in some other file in the same package).
-
-void
-Forward_declaration_type::do_export(Export*) const
-{
-  // If there is a base type, that should be exported instead of this.
-  gcc_assert(!this->is_defined());
-
-  // We don't output anything.
-}
-
-// Make a forward declaration.
-
-Type*
-Type::make_forward_declaration(Named_object* named_object)
-{
-  return new Forward_declaration_type(named_object);
-}
-
-// Class Typed_identifier_list.
-
-// Sort the entries by name.
-
-struct Typed_identifier_list_sort
-{
- public:
-  bool
-  operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
-  { return t1.name() < t2.name(); }
-};
-
-void
-Typed_identifier_list::sort_by_name()
-{
-  std::sort(this->entries_.begin(), this->entries_.end(),
-           Typed_identifier_list_sort());
-}
-
-// Traverse types.
-
-int
-Typed_identifier_list::traverse(Traverse* traverse)
-{
-  for (Typed_identifier_list::const_iterator p = this->begin();
-       p != this->end();
-       ++p)
-    {
-      if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
-       return TRAVERSE_EXIT;
-    }
-  return TRAVERSE_CONTINUE;
-}
-
-// Copy the list.
-
-Typed_identifier_list*
-Typed_identifier_list::copy() const
-{
-  Typed_identifier_list* ret = new Typed_identifier_list();
-  for (Typed_identifier_list::const_iterator p = this->begin();
-       p != this->end();
-       ++p)
-    ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
-  return ret;
-}
diff --git a/gcc/go/gofrontend/unsafe.cc.merge-left.r167407 b/gcc/go/gofrontend/unsafe.cc.merge-left.r167407
deleted file mode 100644 (file)
index 51d812b..0000000
+++ /dev/null
@@ -1,134 +0,0 @@
-// unsafe.cc -- Go frontend builtin unsafe package.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "types.h"
-#include "gogo.h"
-
-// Set up the builtin unsafe package.  This should probably be driven
-// by a table.
-
-void
-Gogo::import_unsafe(const std::string& local_name, bool is_local_name_exported,
-                   source_location location)
-{
-  location_t bloc = BUILTINS_LOCATION;
-
-  bool add_to_globals;
-  Package* package = this->add_imported_package("unsafe", local_name,
-                                               is_local_name_exported,
-                                               "libgo_unsafe",
-                                               location, &add_to_globals);
-  package->set_is_imported();
-
-  Bindings* bindings = package->bindings();
-
-  // The type may have already been created by an import.
-  Named_object* no = package->bindings()->lookup("Pointer");
-  if (no == NULL)
-    {
-      Type* type = Type::make_pointer_type(Type::make_void_type());
-      no = bindings->add_type("Pointer", package, type, UNKNOWN_LOCATION);
-    }
-  else
-    {
-      gcc_assert(no->package() == package);
-      gcc_assert(no->is_type());
-      gcc_assert(no->type_value()->is_unsafe_pointer_type());
-      no->type_value()->set_is_visible();
-    }
-  Named_type* pointer_type = no->type_value();
-  if (add_to_globals)
-    this->add_named_type(pointer_type);
-
-  Type* int_type = this->lookup_global("int")->type_value();
-
-  // Sizeof.
-  Typed_identifier_list* results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", int_type, bloc));
-  Function_type* fntype = Type::make_function_type(NULL, NULL, results, bloc);
-  fntype->set_is_builtin();
-  no = bindings->add_function_declaration("Sizeof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Offsetof.
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", int_type, bloc));
-  fntype = Type::make_function_type(NULL, NULL, results, bloc);
-  fntype->set_is_varargs();
-  fntype->set_is_builtin();
-  no = bindings->add_function_declaration("Offsetof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Alignof.
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", int_type, bloc));
-  fntype = Type::make_function_type(NULL, NULL, results, bloc);
-  fntype->set_is_varargs();
-  fntype->set_is_builtin();
-  no = bindings->add_function_declaration("Alignof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Typeof.
-  Type* empty_interface = Type::make_interface_type(NULL, bloc);
-  Typed_identifier_list* parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("i", empty_interface, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", empty_interface, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("Typeof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Reflect.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("it", empty_interface, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", empty_interface, bloc));
-  results->push_back(Typed_identifier("", pointer_type, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("Reflect", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Unreflect.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("typ", empty_interface, bloc));
-  parameters->push_back(Typed_identifier("addr", pointer_type, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", empty_interface, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("Unreflect", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // New.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("typ", empty_interface, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", pointer_type, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("New", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // NewArray.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("typ", empty_interface, bloc));
-  parameters->push_back(Typed_identifier("n", int_type, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", pointer_type, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("NewArray", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  this->imported_unsafe_ = true;
-}
diff --git a/gcc/go/gofrontend/unsafe.cc.merge-right.r172891 b/gcc/go/gofrontend/unsafe.cc.merge-right.r172891
deleted file mode 100644 (file)
index 80b367c..0000000
+++ /dev/null
@@ -1,146 +0,0 @@
-// unsafe.cc -- Go frontend builtin unsafe package.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "go-c.h"
-#include "types.h"
-#include "gogo.h"
-
-// Set up the builtin unsafe package.  This should probably be driven
-// by a table.
-
-void
-Gogo::import_unsafe(const std::string& local_name, bool is_local_name_exported,
-                   source_location location)
-{
-  location_t bloc = BUILTINS_LOCATION;
-
-  bool add_to_globals;
-  Package* package = this->add_imported_package("unsafe", local_name,
-                                               is_local_name_exported,
-                                               "libgo_unsafe",
-                                               location, &add_to_globals);
-
-  if (package == NULL)
-    {
-      go_assert(saw_errors());
-      return;
-    }
-
-  package->set_is_imported();
-
-  Bindings* bindings = package->bindings();
-
-  // The type may have already been created by an import.
-  Named_object* no = package->bindings()->lookup("Pointer");
-  if (no == NULL)
-    {
-      Type* type = Type::make_pointer_type(Type::make_void_type());
-      no = bindings->add_type("Pointer", package, type, UNKNOWN_LOCATION);
-    }
-  else
-    {
-      go_assert(no->package() == package);
-      go_assert(no->is_type());
-      go_assert(no->type_value()->is_unsafe_pointer_type());
-      no->type_value()->set_is_visible();
-    }
-  Named_type* pointer_type = no->type_value();
-  if (add_to_globals)
-    this->add_named_type(pointer_type);
-
-  Type* int_type = this->lookup_global("int")->type_value();
-
-  // Sizeof.
-  Typed_identifier_list* results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", int_type, bloc));
-  Function_type* fntype = Type::make_function_type(NULL, NULL, results, bloc);
-  fntype->set_is_builtin();
-  no = bindings->add_function_declaration("Sizeof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Offsetof.
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", int_type, bloc));
-  fntype = Type::make_function_type(NULL, NULL, results, bloc);
-  fntype->set_is_varargs();
-  fntype->set_is_builtin();
-  no = bindings->add_function_declaration("Offsetof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Alignof.
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", int_type, bloc));
-  fntype = Type::make_function_type(NULL, NULL, results, bloc);
-  fntype->set_is_varargs();
-  fntype->set_is_builtin();
-  no = bindings->add_function_declaration("Alignof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Typeof.
-  Type* empty_interface = Type::make_interface_type(NULL, bloc);
-  Typed_identifier_list* parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("i", empty_interface, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", empty_interface, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("Typeof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Reflect.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("it", empty_interface, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", empty_interface, bloc));
-  results->push_back(Typed_identifier("", pointer_type, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("Reflect", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Unreflect.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("typ", empty_interface, bloc));
-  parameters->push_back(Typed_identifier("addr", pointer_type, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", empty_interface, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("Unreflect", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // New.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("typ", empty_interface, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", pointer_type, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("New", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // NewArray.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("typ", empty_interface, bloc));
-  parameters->push_back(Typed_identifier("n", int_type, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", pointer_type, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("NewArray", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  if (!this->imported_unsafe_)
-    {
-      go_imported_unsafe();
-      this->imported_unsafe_ = true;
-    }
-}
diff --git a/gcc/go/gofrontend/unsafe.cc.working b/gcc/go/gofrontend/unsafe.cc.working
deleted file mode 100644 (file)
index 9d51b4d..0000000
+++ /dev/null
@@ -1,146 +0,0 @@
-// unsafe.cc -- Go frontend builtin unsafe package.
-
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "go-system.h"
-
-#include "go-c.h"
-#include "types.h"
-#include "gogo.h"
-
-// Set up the builtin unsafe package.  This should probably be driven
-// by a table.
-
-void
-Gogo::import_unsafe(const std::string& local_name, bool is_local_name_exported,
-                   source_location location)
-{
-  location_t bloc = BUILTINS_LOCATION;
-
-  bool add_to_globals;
-  Package* package = this->add_imported_package("unsafe", local_name,
-                                               is_local_name_exported,
-                                               "libgo_unsafe",
-                                               location, &add_to_globals);
-
-  if (package == NULL)
-    {
-      gcc_assert(saw_errors());
-      return;
-    }
-
-  package->set_is_imported();
-
-  Bindings* bindings = package->bindings();
-
-  // The type may have already been created by an import.
-  Named_object* no = package->bindings()->lookup("Pointer");
-  if (no == NULL)
-    {
-      Type* type = Type::make_pointer_type(Type::make_void_type());
-      no = bindings->add_type("Pointer", package, type, UNKNOWN_LOCATION);
-    }
-  else
-    {
-      gcc_assert(no->package() == package);
-      gcc_assert(no->is_type());
-      gcc_assert(no->type_value()->is_unsafe_pointer_type());
-      no->type_value()->set_is_visible();
-    }
-  Named_type* pointer_type = no->type_value();
-  if (add_to_globals)
-    this->add_named_type(pointer_type);
-
-  Type* int_type = this->lookup_global("int")->type_value();
-
-  // Sizeof.
-  Typed_identifier_list* results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", int_type, bloc));
-  Function_type* fntype = Type::make_function_type(NULL, NULL, results, bloc);
-  fntype->set_is_builtin();
-  no = bindings->add_function_declaration("Sizeof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Offsetof.
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", int_type, bloc));
-  fntype = Type::make_function_type(NULL, NULL, results, bloc);
-  fntype->set_is_varargs();
-  fntype->set_is_builtin();
-  no = bindings->add_function_declaration("Offsetof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Alignof.
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", int_type, bloc));
-  fntype = Type::make_function_type(NULL, NULL, results, bloc);
-  fntype->set_is_varargs();
-  fntype->set_is_builtin();
-  no = bindings->add_function_declaration("Alignof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Typeof.
-  Type* empty_interface = Type::make_interface_type(NULL, bloc);
-  Typed_identifier_list* parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("i", empty_interface, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", empty_interface, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("Typeof", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Reflect.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("it", empty_interface, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", empty_interface, bloc));
-  results->push_back(Typed_identifier("", pointer_type, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("Reflect", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // Unreflect.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("typ", empty_interface, bloc));
-  parameters->push_back(Typed_identifier("addr", pointer_type, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", empty_interface, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("Unreflect", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // New.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("typ", empty_interface, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", pointer_type, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("New", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  // NewArray.
-  parameters = new Typed_identifier_list;
-  parameters->push_back(Typed_identifier("typ", empty_interface, bloc));
-  parameters->push_back(Typed_identifier("n", int_type, bloc));
-  results = new Typed_identifier_list;
-  results->push_back(Typed_identifier("", pointer_type, bloc));
-  fntype = Type::make_function_type(NULL, parameters, results, bloc);
-  no = bindings->add_function_declaration("NewArray", package, fntype, bloc);
-  if (add_to_globals)
-    this->add_named_object(no);
-
-  if (!this->imported_unsafe_)
-    {
-      go_imported_unsafe();
-      this->imported_unsafe_ = true;
-    }
-}