glsl: Mark a set of array elements as accessed using a list of array_deref_range
authorIan Romanick <ian.d.romanick@intel.com>
Thu, 15 Dec 2016 22:01:28 +0000 (14:01 -0800)
committerIan Romanick <ian.d.romanick@intel.com>
Mon, 19 Dec 2016 23:55:43 +0000 (15:55 -0800)
Signed-off-by: Ian Romanick <ian.d.romanick@intel.com>
Cc: mesa-stable@lists.freedesktop.org
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
src/compiler/glsl/ir_array_refcount.cpp
src/compiler/glsl/ir_array_refcount.h
src/compiler/glsl/tests/array_refcount_test.cpp

index 1b5c43c9927f976db9d63427c24da75a2aace002..7627fa13bd228c86f7c969877802703164777f8d 100644 (file)
@@ -60,6 +60,14 @@ ir_array_refcount_entry::ir_array_refcount_entry(ir_variable *var)
    num_bits = MAX2(1, var->type->arrays_of_arrays_size());
    bits = new BITSET_WORD[BITSET_WORDS(num_bits)];
    memset(bits, 0, BITSET_WORDS(num_bits) * sizeof(bits[0]));
+
+   /* Count the "depth" of the arrays-of-arrays. */
+   array_depth = 0;
+   for (const glsl_type *type = var->type;
+        type->is_array();
+        type = type->fields.array) {
+      array_depth++;
+   }
 }
 
 
@@ -69,6 +77,53 @@ ir_array_refcount_entry::~ir_array_refcount_entry()
 }
 
 
+void
+ir_array_refcount_entry::mark_array_elements_referenced(const array_deref_range *dr,
+                                                        unsigned count)
+{
+   if (count != array_depth)
+      return;
+
+   mark_array_elements_referenced(dr, count, 1, 0);
+}
+
+void
+ir_array_refcount_entry::mark_array_elements_referenced(const array_deref_range *dr,
+                                                        unsigned count,
+                                                        unsigned scale,
+                                                        unsigned linearized_index)
+{
+   /* Walk through the list of array dereferences in least- to
+    * most-significant order.  Along the way, accumulate the current
+    * linearized offset and the scale factor for each array-of-.
+    */
+   for (unsigned i = 0; i < count; i++) {
+      if (dr[i].index < dr[i].size) {
+         linearized_index += dr[i].index * scale;
+         scale *= dr[i].size;
+      } else {
+         /* For each element in the current array, update the count and
+          * offset, then recurse to process the remaining arrays.
+          *
+          * There is some inefficency here if the last element in the
+          * array_deref_range list specifies the entire array.  In that case,
+          * the loop will make recursive calls with count == 0.  In the call,
+          * all that will happen is the bit will be set.
+          */
+         for (unsigned j = 0; j < dr[i].size; j++) {
+            mark_array_elements_referenced(&dr[i + 1],
+                                           count - (i + 1),
+                                           scale * dr[i].size,
+                                           linearized_index + (j * scale));
+         }
+
+         return;
+      }
+   }
+
+   BITSET_SET(bits, linearized_index);
+}
+
 ir_array_refcount_entry *
 ir_array_refcount_visitor::get_variable_entry(ir_variable *var)
 {
index 1e7f34349f81b9a521af463e82123903d44642a9..2988046aaedbdc9451edf45531d9be5156736e78 100644 (file)
@@ -60,6 +60,34 @@ public:
    /** Has the variable been referenced? */
    bool is_referenced;
 
+   /**
+    * Mark a set of array elements as accessed.
+    *
+    * If every \c array_deref_range is for a single index, only a single
+    * element will be marked.  If any \c array_deref_range is for an entire
+    * array-of-, then multiple elements will be marked.
+    *
+    * Items in the \c array_deref_range list appear in least- to
+    * most-significant order.  This is the \b opposite order the indices
+    * appear in the GLSL shader text.  An array access like
+    *
+    *     x = y[1][i][3];
+    *
+    * would appear as
+    *
+    *     { { 3, n }, { m, m }, { 1, p } }
+    *
+    * where n, m, and p are the sizes of the arrays-of-arrays.
+    *
+    * The set of marked array elements can later be queried by
+    * \c ::is_linearized_index_referenced.
+    *
+    * \param dr     List of array_deref_range elements to be processed.
+    * \param count  Number of array_deref_range elements to be processed.
+    */
+   void mark_array_elements_referenced(const array_deref_range *dr,
+                                       unsigned count);
+
    /** Has a linearized array index been referenced? */
    bool is_linearized_index_referenced(unsigned linearized_index) const
    {
@@ -80,6 +108,27 @@ private:
     */
    unsigned num_bits;
 
+   /** Count of nested arrays in the type. */
+   unsigned array_depth;
+
+   /**
+    * Recursive part of the public mark_array_elements_referenced method.
+    *
+    * The recursion occurs when an entire array-of- is accessed.  See the
+    * implementation for more details.
+    *
+    * \param dr                List of array_deref_range elements to be
+    *                          processed.
+    * \param count             Number of array_deref_range elements to be
+    *                          processed.
+    * \param scale             Current offset scale.
+    * \param linearized_index  Current accumulated linearized array index.
+    */
+   void mark_array_elements_referenced(const array_deref_range *dr,
+                                       unsigned count,
+                                       unsigned scale,
+                                       unsigned linearized_index);
+
    friend class array_refcount_test;
 };
 
index d80ea810159497f63933720e7f2b4a1c68e09596..29bb133e231fd14e707df60b4d26f79120eb26d9 100644 (file)
@@ -62,6 +62,18 @@ public:
    {
       return entry.num_bits;
    }
+
+   /**
+    * Wrapper to access private member "array_depth" of ir_array_refcount_entry
+    *
+    * The test class is a friend to ir_array_refcount_entry, but the
+    * individual tests are not part of the class.  Since the friendliness of
+    * the test class does not extend to the tests, provide a wrapper.
+    */
+   unsigned get_array_depth(const ir_array_refcount_entry &entry)
+   {
+      return entry.array_depth;
+   }
 };
 
 void
@@ -95,6 +107,7 @@ TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_scalar)
    ASSERT_NE((void *)0, get_bits(entry));
    EXPECT_FALSE(entry.is_referenced);
    EXPECT_EQ(1, get_num_bits(entry));
+   EXPECT_EQ(0, get_array_depth(entry));
    EXPECT_FALSE(entry.is_linearized_index_referenced(0));
 }
 
@@ -108,6 +121,7 @@ TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_vector)
    ASSERT_NE((void *)0, get_bits(entry));
    EXPECT_FALSE(entry.is_referenced);
    EXPECT_EQ(1, get_num_bits(entry));
+   EXPECT_EQ(0, get_array_depth(entry));
    EXPECT_FALSE(entry.is_linearized_index_referenced(0));
 }
 
@@ -121,6 +135,7 @@ TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_matrix)
    ASSERT_NE((void *)0, get_bits(entry));
    EXPECT_FALSE(entry.is_referenced);
    EXPECT_EQ(1, get_num_bits(entry));
+   EXPECT_EQ(0, get_array_depth(entry));
    EXPECT_FALSE(entry.is_linearized_index_referenced(0));
 }
 
@@ -137,7 +152,141 @@ TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_array)
    ASSERT_NE((void *)0, get_bits(entry));
    EXPECT_FALSE(entry.is_referenced);
    EXPECT_EQ(total_elements, get_num_bits(entry));
+   EXPECT_EQ(3, get_array_depth(entry));
 
    for (unsigned i = 0; i < total_elements; i++)
       EXPECT_FALSE(entry.is_linearized_index_referenced(i)) << "index = " << i;
 }
+
+TEST_F(array_refcount_test, mark_array_elements_referenced_simple)
+{
+   ir_variable *const var =
+      new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
+                               "a",
+                               ir_var_auto);
+   const unsigned total_elements = var->type->arrays_of_arrays_size();
+
+   ir_array_refcount_entry entry(var);
+
+   static const array_deref_range dr[] = {
+      { 0, 5 }, { 1, 4 }, { 2, 3 }
+   };
+   const unsigned accessed_element = 0 + (1 * 5) + (2 * 4 * 5);
+
+   entry.mark_array_elements_referenced(dr, 3);
+
+   for (unsigned i = 0; i < total_elements; i++)
+      EXPECT_EQ(i == accessed_element, entry.is_linearized_index_referenced(i));
+}
+
+TEST_F(array_refcount_test, mark_array_elements_referenced_whole_first_array)
+{
+   ir_variable *const var =
+      new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
+                               "a",
+                               ir_var_auto);
+
+   ir_array_refcount_entry entry(var);
+
+   static const array_deref_range dr[] = {
+      { 0, 5 }, { 1, 4 }, { 3, 3 }
+   };
+
+   entry.mark_array_elements_referenced(dr, 3);
+
+   for (unsigned i = 0; i < 3; i++) {
+      for (unsigned j = 0; j < 4; j++) {
+         for (unsigned k = 0; k < 5; k++) {
+            const bool accessed = (j == 1) && (k == 0);
+            const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
+
+            EXPECT_EQ(accessed,
+                      entry.is_linearized_index_referenced(linearized_index));
+         }
+      }
+   }
+}
+
+TEST_F(array_refcount_test, mark_array_elements_referenced_whole_second_array)
+{
+   ir_variable *const var =
+      new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
+                               "a",
+                               ir_var_auto);
+
+   ir_array_refcount_entry entry(var);
+
+   static const array_deref_range dr[] = {
+      { 0, 5 }, { 4, 4 }, { 1, 3 }
+   };
+
+   entry.mark_array_elements_referenced(dr, 3);
+
+   for (unsigned i = 0; i < 3; i++) {
+      for (unsigned j = 0; j < 4; j++) {
+         for (unsigned k = 0; k < 5; k++) {
+            const bool accessed = (i == 1) && (k == 0);
+            const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
+
+            EXPECT_EQ(accessed,
+                      entry.is_linearized_index_referenced(linearized_index));
+         }
+      }
+   }
+}
+
+TEST_F(array_refcount_test, mark_array_elements_referenced_whole_third_array)
+{
+   ir_variable *const var =
+      new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
+                               "a",
+                               ir_var_auto);
+
+   ir_array_refcount_entry entry(var);
+
+   static const array_deref_range dr[] = {
+      { 5, 5 }, { 2, 4 }, { 1, 3 }
+   };
+
+   entry.mark_array_elements_referenced(dr, 3);
+
+   for (unsigned i = 0; i < 3; i++) {
+      for (unsigned j = 0; j < 4; j++) {
+         for (unsigned k = 0; k < 5; k++) {
+            const bool accessed = (i == 1) && (j == 2);
+            const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
+
+            EXPECT_EQ(accessed,
+                      entry.is_linearized_index_referenced(linearized_index));
+         }
+      }
+   }
+}
+
+TEST_F(array_refcount_test, mark_array_elements_referenced_whole_first_and_third_arrays)
+{
+   ir_variable *const var =
+      new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
+                               "a",
+                               ir_var_auto);
+
+   ir_array_refcount_entry entry(var);
+
+   static const array_deref_range dr[] = {
+      { 5, 5 }, { 3, 4 }, { 3, 3 }
+   };
+
+   entry.mark_array_elements_referenced(dr, 3);
+
+   for (unsigned i = 0; i < 3; i++) {
+      for (unsigned j = 0; j < 4; j++) {
+         for (unsigned k = 0; k < 5; k++) {
+            const bool accessed = (j == 3);
+            const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
+
+            EXPECT_EQ(accessed,
+                      entry.is_linearized_index_referenced(linearized_index));
+         }
+      }
+   }
+}