glsl: Rewrite atan2 implementation to fix accuracy and handling of zero/infinity.
authorFrancisco Jerez <currojerez@riseup.net>
Sat, 21 Jan 2017 21:41:08 +0000 (13:41 -0800)
committerFrancisco Jerez <currojerez@riseup.net>
Tue, 31 Jan 2017 18:32:45 +0000 (10:32 -0800)
This addresses several issues of the current atan2 implementation:

 - Negative zero (and negative denorms which end up getting flushed to
   zero) isn't handled correctly by the current implementation.  The
   reason is that it does 'y >= 0' and 'x < 0' comparisons to decide
   on which side of the branch cut the argument is, which causes us to
   return incorrect results (off by up to 2π) for very small negative
   values.

 - There is a serious precision problem for x values of large enough
   magnitude introduced by the floating point division operation being
   implemented as a mul+rcp sequence.  This can lead to the quotient
   getting flushed to zero in some cases introducing an error of over
   8e6 ULP in the result -- Or in the most catastrophic case will
   cause us to return NaN instead of the correct value ±π/2 for y=±∞
   and x very large.  We can fix this easily by scaling down both
   arguments when the absolute value of the denominator goes above
   certain threshold.  The error of this atan2 implementation remains
   below 25 ULP in most of its domain except for a neighborhood of y=0
   where it reaches a maximum error of about 180 ULP.

 - It emits a bunch of instructions including no less than three
   if-else branches per scalar component that don't seem to get
   optimized out later on.  This implementation uses about 13% less
   instructions on Intel SKL hardware and doesn't emit any control
   flow instructions.

v2: Fix up argument scaling to take into account the range and
    precision of exotic FP24 hardware.  Flip coordinate system for
    arguments along the vertical line as if they were on the left
    half-plane in order to avoid division by zero which may give
    unspecified results on non-GLSL 4.1-capable hardware.  Sprinkle in
    some more comments.

Reviewed-by: Ian Romanick <ian.d.romanick@intel.com>
src/compiler/glsl/builtin_functions.cpp

index 4a6c5afd65c9e6ed7499168066b563b2f3aa6dc1..432df656e2f39fa545db5a41c670980eee87e0e2 100644 (file)
@@ -3560,44 +3560,68 @@ builtin_builder::_acos(const glsl_type *type)
 ir_function_signature *
 builtin_builder::_atan2(const glsl_type *type)
 {
-   ir_variable *vec_y = in_var(type, "vec_y");
-   ir_variable *vec_x = in_var(type, "vec_x");
-   MAKE_SIG(type, always_available, 2, vec_y, vec_x);
-
-   ir_variable *vec_result = body.make_temp(type, "vec_result");
-   ir_variable *r = body.make_temp(glsl_type::float_type, "r");
-   for (int i = 0; i < type->vector_elements; i++) {
-      ir_variable *y = body.make_temp(glsl_type::float_type, "y");
-      ir_variable *x = body.make_temp(glsl_type::float_type, "x");
-      body.emit(assign(y, swizzle(vec_y, i, 1)));
-      body.emit(assign(x, swizzle(vec_x, i, 1)));
-
-      /* If |x| >= 1.0e-8 * |y|: */
-      ir_if *outer_if =
-         new(mem_ctx) ir_if(greater(abs(x), mul(imm(1.0e-8f), abs(y))));
-
-      ir_factory outer_then(&outer_if->then_instructions, mem_ctx);
-
-      /* Then...call atan(y/x) */
-      do_atan(outer_then, glsl_type::float_type, r, div(y, x));
-
-      /*     ...and fix it up: */
-      ir_if *inner_if = new(mem_ctx) ir_if(less(x, imm(0.0f)));
-      inner_if->then_instructions.push_tail(
-         if_tree(gequal(y, imm(0.0f)),
-                 assign(r, add(r, imm(M_PIf))),
-                 assign(r, sub(r, imm(M_PIf)))));
-      outer_then.emit(inner_if);
-
-      /* Else... */
-      outer_if->else_instructions.push_tail(
-         assign(r, mul(sign(y), imm(M_PI_2f))));
+   const unsigned n = type->vector_elements;
+   ir_variable *y = in_var(type, "y");
+   ir_variable *x = in_var(type, "x");
+   MAKE_SIG(type, always_available, 2, y, x);
 
-      body.emit(outer_if);
+   /* If we're on the left half-plane rotate the coordinates π/2 clock-wise
+    * for the y=0 discontinuity to end up aligned with the vertical
+    * discontinuity of atan(s/t) along t=0.  This also makes sure that we
+    * don't attempt to divide by zero along the vertical line, which may give
+    * unspecified results on non-GLSL 4.1-capable hardware.
+    */
+   ir_variable *flip = body.make_temp(glsl_type::bvec(n), "flip");
+   body.emit(assign(flip, gequal(imm(0.0f, n), x)));
+   ir_variable *s = body.make_temp(type, "s");
+   body.emit(assign(s, csel(flip, abs(x), y)));
+   ir_variable *t = body.make_temp(type, "t");
+   body.emit(assign(t, csel(flip, y, abs(x))));
 
-      body.emit(assign(vec_result, r, 1 << i));
-   }
-   body.emit(ret(vec_result));
+   /* If the magnitude of the denominator exceeds some huge value, scale down
+    * the arguments in order to prevent the reciprocal operation from flushing
+    * its result to zero, which would cause precision problems, and for s
+    * infinite would cause us to return a NaN instead of the correct finite
+    * value.
+    *
+    * If fmin and fmax are respectively the smallest and largest positive
+    * normalized floating point values representable by the implementation,
+    * the constants below should be in agreement with:
+    *
+    *    huge <= 1 / fmin
+    *    scale <= 1 / fmin / fmax (for |t| >= huge)
+    *
+    * In addition scale should be a negative power of two in order to avoid
+    * loss of precision.  The values chosen below should work for most usual
+    * floating point representations with at least the dynamic range of ATI's
+    * 24-bit representation.
+    */
+   ir_constant *huge = imm(1e18f, n);
+   ir_variable *scale = body.make_temp(type, "scale");
+   body.emit(assign(scale, csel(gequal(abs(t), huge),
+                                imm(0.25f, n), imm(1.0f, n))));
+   ir_variable *rcp_scaled_t = body.make_temp(type, "rcp_scaled_t");
+   body.emit(assign(rcp_scaled_t, rcp(mul(t, scale))));
+   ir_expression *s_over_t = mul(mul(s, scale), rcp_scaled_t);
+
+   /* Calculate the arctangent and fix up the result if we had flipped the
+    * coordinate system.
+    */
+   ir_variable *arc = body.make_temp(type, "arc");
+   do_atan(body, type, arc, abs(s_over_t));
+   body.emit(assign(arc, add(arc, mul(b2f(flip), imm(M_PI_2f)))));
+
+   /* Rather convoluted calculation of the sign of the result.  When x < 0 we
+    * cannot use fsign because we need to be able to distinguish between
+    * negative and positive zero.  Unfortunately we cannot use bitwise
+    * arithmetic tricks either because of back-ends without integer support.
+    * When x >= 0 rcp_scaled_t will always be non-negative so this won't be
+    * able to distinguish between negative and positive zero, but we don't
+    * care because atan2 is continuous along the whole positive y = 0
+    * half-line, so it won't affect the result significantly.
+    */
+   body.emit(ret(csel(less(min2(y, rcp_scaled_t), imm(0.0f, n)),
+                      neg(arc), arc)));
 
    return sig;
 }