overflow. */
static bool
-check_for_binary_op_overflow (vr_values *store,
+check_for_binary_op_overflow (range_query *store,
enum tree_code subcode, tree type,
tree op0, tree op1, bool *ovf)
{
gcc_unreachable ();
}
-/* Given a range VR, a LOOP and a variable VAR, determine whether it
- would be profitable to adjust VR using scalar evolution information
- for VAR. If so, update VR with the new limits. */
-void
-vr_values::adjust_range_with_scev (value_range_equiv *vr, class loop *loop,
- gimple *stmt, tree var)
+/* Given a VAR in STMT within LOOP, determine the bounds of the
+ variable and store it in MIN/MAX and return TRUE. If no bounds
+ could be determined, return FALSE. */
+
+bool
+bounds_of_var_in_loop (tree *min, tree *max, range_query *query,
+ class loop *loop, gimple *stmt, tree var)
{
- tree init, step, chrec, tmin, tmax, min, max, type, tem;
+ tree init, step, chrec, tmin, tmax, type = TREE_TYPE (var);
enum ev_direction dir;
- /* TODO. Don't adjust anti-ranges. An anti-range may provide
- better opportunities than a regular range, but I'm not sure. */
- if (vr->kind () == VR_ANTI_RANGE)
- return;
-
chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
/* Like in PR19590, scev can return a constant function. */
if (is_gimple_min_invariant (chrec))
{
- vr->set (chrec);
- return;
+ *min = *max = chrec;
+ return true;
}
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
- return;
+ return false;
init = initial_condition_in_loop_num (chrec, loop->num);
- tem = op_with_constant_singleton_value_range (init);
- if (tem)
- init = tem;
step = evolution_part_in_loop_num (chrec, loop->num);
- tem = op_with_constant_singleton_value_range (step);
- if (tem)
- step = tem;
+
+ /* If INIT is an SSA with a singleton range, set INIT to said
+ singleton, otherwise leave INIT alone. */
+ if (TREE_CODE (init) == SSA_NAME)
+ query->get_value_range (init, stmt)->singleton_p (&init);
+ /* Likewise for step. */
+ if (TREE_CODE (step) == SSA_NAME)
+ query->get_value_range (step, stmt)->singleton_p (&step);
/* If STEP is symbolic, we can't know whether INIT will be the
minimum or maximum value in the range. Also, unless INIT is
if (step == NULL_TREE
|| !is_gimple_min_invariant (step)
|| !valid_value_p (init))
- return;
+ return false;
dir = scev_direction (chrec);
if (/* Do not adjust ranges if we do not know whether the iv increases
/* ... or if it may wrap. */
|| scev_probably_wraps_p (NULL_TREE, init, step, stmt,
get_chrec_loop (chrec), true))
- return;
+ return false;
- type = TREE_TYPE (var);
if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
tmin = lower_bound_in_type (type, type);
else
if (TREE_CODE (step) == INTEGER_CST
&& is_gimple_val (init)
&& (TREE_CODE (init) != SSA_NAME
- || get_value_range (init, stmt)->kind () == VR_RANGE))
+ || query->get_value_range (init, stmt)->kind () == VR_RANGE))
{
widest_int nit;
&& (sgn == UNSIGNED
|| wi::gts_p (wtmp, 0) == wi::gts_p (wi::to_wide (step), 0)))
{
- value_range_equiv maxvr;
- tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
- extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
- TREE_TYPE (init), init, tem);
+ value_range maxvr, vr0, vr1;
+ if (TREE_CODE (init) == SSA_NAME)
+ vr0 = *(query->get_value_range (init, stmt));
+ else if (is_gimple_min_invariant (init))
+ vr0.set (init);
+ else
+ vr0.set_varying (TREE_TYPE (init));
+ tree tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
+ vr1.set (tem, tem);
+ range_fold_binary_expr (&maxvr, PLUS_EXPR,
+ TREE_TYPE (init), &vr0, &vr1);
+
/* Likewise if the addition did. */
if (maxvr.kind () == VR_RANGE)
{
value_range initvr;
if (TREE_CODE (init) == SSA_NAME)
- initvr = *(get_value_range (init, stmt));
+ initvr = *(query->get_value_range (init, stmt));
else if (is_gimple_min_invariant (init))
initvr.set (init);
else
- return;
+ return false;
/* Check if init + nit * step overflows. Though we checked
scev {init, step}_loop doesn't wrap, it is not enough
&& compare_values (maxvr.min (), initvr.min ()) != -1)
|| (dir == EV_DIR_GROWS
&& compare_values (maxvr.max (), initvr.max ()) != 1))
- return;
+ return false;
tmin = maxvr.min ();
tmax = maxvr.max ();
}
}
- if (vr->varying_p () || vr->undefined_p ())
- {
- min = tmin;
- max = tmax;
+ *min = tmin;
+ *max = tmax;
+ if (dir == EV_DIR_DECREASES)
+ *max = init;
+ else
+ *min = init;
- /* For VARYING or UNDEFINED ranges, just about anything we get
- from scalar evolutions should be better. */
+ /* Even for valid range info, sometimes overflow flag will leak in.
+ As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
+ drop them. */
+ if (TREE_OVERFLOW_P (*min))
+ *min = drop_tree_overflow (*min);
+ if (TREE_OVERFLOW_P (*max))
+ *max = drop_tree_overflow (*max);
- if (dir == EV_DIR_DECREASES)
- max = init;
- else
- min = init;
- }
- else if (vr->kind () == VR_RANGE)
- {
- min = vr->min ();
- max = vr->max ();
+ gcc_checking_assert (compare_values (*min, *max) != 1);
+ return true;
+}
+
+/* Given a range VR, a LOOP and a variable VAR, determine whether it
+ would be profitable to adjust VR using scalar evolution information
+ for VAR. If so, update VR with the new limits. */
- if (dir == EV_DIR_DECREASES)
+void
+vr_values::adjust_range_with_scev (value_range_equiv *vr, class loop *loop,
+ gimple *stmt, tree var)
+{
+ tree min, max;
+ if (bounds_of_var_in_loop (&min, &max, this, loop, stmt, var))
+ {
+ if (vr->undefined_p () || vr->varying_p ())
{
- /* INIT is the maximum value. If INIT is lower than VR->MAX ()
- but no smaller than VR->MIN (), set VR->MAX () to INIT. */
- if (compare_values (init, max) == -1)
- max = init;
+ /* For VARYING or UNDEFINED ranges, just about anything we get
+ from scalar evolutions should be better. */
+ vr->update (min, max);
+ }
+ else if (vr->kind () == VR_RANGE)
+ {
+ /* Start with the input range... */
+ tree vrmin = vr->min ();
+ tree vrmax = vr->max ();
- /* According to the loop information, the variable does not
- overflow. */
- if (compare_values (min, tmin) == -1)
- min = tmin;
+ /* ...and narrow it down with what we got from SCEV. */
+ if (compare_values (min, vrmin) == 1)
+ vrmin = min;
+ if (compare_values (max, vrmax) == -1)
+ vrmax = max;
+ vr->update (vrmin, vrmax);
}
- else
+ else if (vr->kind () == VR_ANTI_RANGE)
{
- /* If INIT is bigger than VR->MIN (), set VR->MIN () to INIT. */
- if (compare_values (init, min) == 1)
- min = init;
-
- if (compare_values (tmax, max) == -1)
- max = tmax;
+ /* ?? As an enhancement, if VR, MIN, and MAX are constants, one
+ could just intersect VR with a range of [MIN,MAX]. */
}
}
- else
- return;
-
- /* If we just created an invalid range with the minimum
- greater than the maximum, we fail conservatively.
- This should happen only in unreachable
- parts of code, or for invalid programs. */
- if (compare_values (min, max) == 1)
- return;
-
- /* Even for valid range info, sometimes overflow flag will leak in.
- As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
- drop them. */
- if (TREE_OVERFLOW_P (min))
- min = drop_tree_overflow (min);
- if (TREE_OVERFLOW_P (max))
- max = drop_tree_overflow (max);
-
- vr->update (min, max);
}
/* Dump value ranges of all SSA_NAMEs to FILE. */
return false;
}
-simplify_using_ranges::simplify_using_ranges (vr_values *store)
+simplify_using_ranges::simplify_using_ranges (range_query *store)
: store (store)
{
to_remove_edges = vNULL;
#include "value-range-equiv.h"
+// Abstract class to return a range for a given SSA.
+
+class range_query
+{
+public:
+ virtual const value_range_equiv *get_value_range (const_tree,
+ gimple * = NULL) = 0;
+ virtual ~range_query () { }
+};
+
// Class to simplify a statement using range information.
//
// The constructor takes a full vr_values, but all it needs is
// get_value_range() from it. This class could be made to work with
// any range repository.
-class simplify_using_ranges
+class simplify_using_ranges : public range_query
{
public:
- simplify_using_ranges (class vr_values *);
+ simplify_using_ranges (class range_query *);
~simplify_using_ranges ();
bool simplify (gimple_stmt_iterator *);
private:
const value_range_equiv *get_value_range (const_tree op,
- gimple *stmt = NULL);
+ gimple *stmt = NULL) OVERRIDE;
bool simplify_truth_ops_using_ranges (gimple_stmt_iterator *, gimple *);
bool simplify_div_or_mod_using_ranges (gimple_stmt_iterator *, gimple *);
bool simplify_abs_using_ranges (gimple_stmt_iterator *, gimple *);
vec<edge> to_remove_edges;
vec<switch_update> to_update_switch_stmts;
- class vr_values *store;
+ class range_query *store;
};
/* The VR_VALUES class holds the current view of range information
gets attached to an SSA_NAME. It's unclear how useful that global
information will be in a world where we can compute context sensitive
range information fast or perform on-demand queries. */
-class vr_values
+class vr_values : public range_query
{
public:
vr_values (void);
// FIXME: Move this to tree-vrp.c.
void simplify_cond_using_ranges_2 (class vr_values *, gcond *);
+extern bool bounds_of_var_in_loop (tree *min, tree *max, range_query *,
+ class loop *loop, gimple *stmt, tree var);
+
#endif /* GCC_VR_VALUES_H */