--- /dev/null
+from abc import abstractproperty
+
+from ..hdl import *
+from ..lib.cdc import ResetSynchronizer
+from ..build import *
+
+
+__all__ = ["XilinxUltraScalePlatform"]
+
+
+class XilinxUltraScalePlatform(TemplatedPlatform):
+ """
+ Required tools:
+ * ``vivado``
+
+ The environment is populated by running the script specified in the environment variable
+ ``NMIGEN_ENV_Vivado``, if present.
+
+ Available overrides:
+ * ``script_after_read``: inserts commands after ``read_xdc`` in Tcl script.
+ * ``script_after_synth``: inserts commands after ``synth_design`` in Tcl script.
+ * ``script_after_place``: inserts commands after ``place_design`` in Tcl script.
+ * ``script_after_route``: inserts commands after ``route_design`` in Tcl script.
+ * ``script_before_bitstream``: inserts commands before ``write_bitstream`` in Tcl script.
+ * ``script_after_bitstream``: inserts commands after ``write_bitstream`` in Tcl script.
+ * ``add_constraints``: inserts commands in XDC file.
+ * ``vivado_opts``: adds extra options for ``vivado``.
+
+ Build products:
+ * ``{{name}}.log``: Vivado log.
+ * ``{{name}}_timing_synth.rpt``: Vivado report.
+ * ``{{name}}_utilization_hierarchical_synth.rpt``: Vivado report.
+ * ``{{name}}_utilization_synth.rpt``: Vivado report.
+ * ``{{name}}_utilization_hierarchical_place.rpt``: Vivado report.
+ * ``{{name}}_utilization_place.rpt``: Vivado report.
+ * ``{{name}}_io.rpt``: Vivado report.
+ * ``{{name}}_control_sets.rpt``: Vivado report.
+ * ``{{name}}_clock_utilization.rpt``: Vivado report.
+ * ``{{name}}_route_status.rpt``: Vivado report.
+ * ``{{name}}_drc.rpt``: Vivado report.
+ * ``{{name}}_timing.rpt``: Vivado report.
+ * ``{{name}}_power.rpt``: Vivado report.
+ * ``{{name}}_route.dcp``: Vivado design checkpoint.
+ * ``{{name}}.bit``: binary bitstream with metadata.
+ * ``{{name}}.bin``: binary bitstream.
+ """
+
+ toolchain = "Vivado"
+
+ device = abstractproperty()
+ package = abstractproperty()
+ speed = abstractproperty()
+ grade = None
+
+ required_tools = [
+ "yosys",
+ "vivado"
+ ]
+ file_templates = {
+ **TemplatedPlatform.build_script_templates,
+ "build_{{name}}.sh": r"""
+ # {{autogenerated}}
+ set -e{{verbose("x")}}
+ if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
+ [ -n "${{platform._toolchain_env_var}}" ] && . "${{platform._toolchain_env_var}}"
+ {{emit_commands("sh")}}
+ """,
+ "{{name}}.v": r"""
+ /* {{autogenerated}} */
+ {{emit_verilog()}}
+ """,
+ "{{name}}.debug.v": r"""
+ /* {{autogenerated}} */
+ {{emit_debug_verilog()}}
+ """,
+ "{{name}}.tcl": r"""
+ # {{autogenerated}}
+ create_project -force -name {{name}} -part {{platform.device}}-{{platform.package}}-{{platform.speed}}{{"-" + platform.grade if platform.grade else ""}}
+ {% for file in platform.iter_extra_files(".v", ".sv", ".vhd", ".vhdl") -%}
+ add_files {{file}}
+ {% endfor %}
+ add_files {{name}}.v
+ read_xdc {{name}}.xdc
+ {% for file in platform.iter_extra_files(".xdc") -%}
+ read_xdc {{file}}
+ {% endfor %}
+ {{get_override("script_after_read")|default("# (script_after_read placeholder)")}}
+ synth_design -top {{name}}
+ foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.false_path == "TRUE"}] {
+ set_false_path -to $cell
+ }
+ foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.max_delay != ""}] {
+ set clock [get_clocks -of_objects \
+ [all_fanin -flat -startpoints_only [get_pin $cell/D]]]
+ if {[llength $clock] != 0} {
+ set_max_delay -datapath_only -from $clock \
+ -to [get_cells $cell] [get_property nmigen.vivado.max_delay $cell]
+ }
+ }
+ {{get_override("script_after_synth")|default("# (script_after_synth placeholder)")}}
+ report_timing_summary -file {{name}}_timing_synth.rpt
+ report_utilization -hierarchical -file {{name}}_utilization_hierachical_synth.rpt
+ report_utilization -file {{name}}_utilization_synth.rpt
+ opt_design
+ place_design
+ {{get_override("script_after_place")|default("# (script_after_place placeholder)")}}
+ report_utilization -hierarchical -file {{name}}_utilization_hierarchical_place.rpt
+ report_utilization -file {{name}}_utilization_place.rpt
+ report_io -file {{name}}_io.rpt
+ report_control_sets -verbose -file {{name}}_control_sets.rpt
+ report_clock_utilization -file {{name}}_clock_utilization.rpt
+ route_design
+ {{get_override("script_after_route")|default("# (script_after_route placeholder)")}}
+ phys_opt_design
+ report_timing_summary -no_header -no_detailed_paths
+ write_checkpoint -force {{name}}_route.dcp
+ report_route_status -file {{name}}_route_status.rpt
+ report_drc -file {{name}}_drc.rpt
+ report_timing_summary -datasheet -max_paths 10 -file {{name}}_timing.rpt
+ report_power -file {{name}}_power.rpt
+ {{get_override("script_before_bitstream")|default("# (script_before_bitstream placeholder)")}}
+ write_bitstream -force -bin_file {{name}}.bit
+ {{get_override("script_after_bitstream")|default("# (script_after_bitstream placeholder)")}}
+ quit
+ """,
+ "{{name}}.xdc": r"""
+ # {{autogenerated}}
+ {% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
+ set_property LOC {{pin_name}} [get_ports {{port_name}}]
+ {% for attr_name, attr_value in attrs.items() -%}
+ set_property {{attr_name}} {{attr_value}} [get_ports {{port_name}}]
+ {% endfor %}
+ {% endfor %}
+ {% for signal, frequency in platform.iter_clock_constraints() -%}
+ create_clock -name {{signal.name}} -period {{1000000000/frequency}} [get_nets {{signal|hierarchy("/")}}]
+ {% endfor %}
+ {{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
+ """
+ }
+ command_templates = [
+ r"""
+ {{get_tool("vivado")}}
+ {{verbose("-verbose")}}
+ {{get_override("vivado_opts")|options}}
+ -mode batch
+ -log {{name}}.log
+ -source {{name}}.tcl
+ """
+ ]
+
+ def create_missing_domain(self, name):
+ # Xilinx devices have a global write enable (GWE) signal that asserted during configuraiton
+ # and deasserted once it ends. Because it is an asynchronous signal (GWE is driven by logic
+ # syncronous to configuration clock, which is not used by most designs), even though it is
+ # a low-skew global network, its deassertion may violate a setup/hold constraint with
+ # relation to a user clock. The recommended solution is to use a BUFGCE driven by the EOS
+ # signal. For details, see:
+ # * https://www.xilinx.com/support/answers/44174.html
+ # * https://www.xilinx.com/support/documentation/white_papers/wp272.pdf
+ if name == "sync" and self.default_clk is not None:
+ clk_i = self.request(self.default_clk).i
+ if self.default_rst is not None:
+ rst_i = self.request(self.default_rst).i
+
+ m = Module()
+ ready = Signal()
+ m.submodules += Instance("STARTUPE3", o_EOS=ready)
+ m.domains += ClockDomain("sync", reset_less=self.default_rst is None)
+ m.submodules += Instance("BUFGCE", i_CE=ready, i_I=clk_i, o_O=ClockSignal("sync"))
+ if self.default_rst is not None:
+ m.submodules.reset_sync = ResetSynchronizer(rst_i, domain="sync")
+ return m
+
+ def _get_xdr_buffer(self, m, pin, *, i_invert=False, o_invert=False):
+ def get_dff(clk, d, q):
+ # SDR I/O is performed by packing a flip-flop into the pad IOB.
+ for bit in range(len(q)):
+ _q = Signal()
+ _q.attrs["IOB"] = "TRUE"
+ # Vivado 2019.1 seems to make this flip-flop ineligible for IOB packing unless
+ # we prevent it from being optimized.
+ _q.attrs["DONT_TOUCH"] = "TRUE"
+ m.submodules += Instance("FDCE",
+ i_C=clk,
+ i_CE=Const(1),
+ i_CLR=Const(0),
+ i_D=d[bit],
+ o_Q=_q
+ )
+ m.d.comb += q[bit].eq(_q)
+
+ def get_iddr(clk, d, q1, q2):
+ for bit in range(len(q1)):
+ m.submodules += Instance("IDDRE1",
+ p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
+ p_IS_C_INVERTED=0, p_IS_CB_INVERTED=1,
+ i_C=clk, i_CB=clk,
+ i_R=Const(0),
+ i_D=d[bit],
+ o_Q1=q1[bit], o_Q2=q2[bit]
+ )
+
+ def get_oddr(clk, d1, d2, q):
+ for bit in range(len(q)):
+ m.submodules += Instance("ODDRE1",
+ p_DDR_CLK_EDGE="SAME_EDGE",
+ p_INIT=0,
+ i_C=clk,
+ i_SR=Const(0),
+ i_D1=d1[bit], i_D2=d2[bit],
+ o_Q=q[bit]
+ )
+
+ def get_ineg(y, invert):
+ if invert:
+ a = Signal.like(y, name_suffix="_n")
+ m.d.comb += y.eq(~a)
+ return a
+ else:
+ return y
+
+ def get_oneg(a, invert):
+ if invert:
+ y = Signal.like(a, name_suffix="_n")
+ m.d.comb += y.eq(~a)
+ return y
+ else:
+ return a
+
+ if "i" in pin.dir:
+ if pin.xdr < 2:
+ pin_i = get_ineg(pin.i, i_invert)
+ elif pin.xdr == 2:
+ pin_i0 = get_ineg(pin.i0, i_invert)
+ pin_i1 = get_ineg(pin.i1, i_invert)
+ if "o" in pin.dir:
+ if pin.xdr < 2:
+ pin_o = get_oneg(pin.o, o_invert)
+ elif pin.xdr == 2:
+ pin_o0 = get_oneg(pin.o0, o_invert)
+ pin_o1 = get_oneg(pin.o1, o_invert)
+
+ i = o = t = None
+ if "i" in pin.dir:
+ i = Signal(pin.width, name="{}_xdr_i".format(pin.name))
+ if "o" in pin.dir:
+ o = Signal(pin.width, name="{}_xdr_o".format(pin.name))
+ if pin.dir in ("oe", "io"):
+ t = Signal(1, name="{}_xdr_t".format(pin.name))
+
+ if pin.xdr == 0:
+ if "i" in pin.dir:
+ i = pin_i
+ if "o" in pin.dir:
+ o = pin_o
+ if pin.dir in ("oe", "io"):
+ t = ~pin.oe
+ elif pin.xdr == 1:
+ if "i" in pin.dir:
+ get_dff(pin.i_clk, i, pin_i)
+ if "o" in pin.dir:
+ get_dff(pin.o_clk, pin_o, o)
+ if pin.dir in ("oe", "io"):
+ get_dff(pin.o_clk, ~pin.oe, t)
+ elif pin.xdr == 2:
+ if "i" in pin.dir:
+ get_iddr(pin.i_clk, i, pin_i0, pin_i1)
+ if "o" in pin.dir:
+ get_oddr(pin.o_clk, pin_o0, pin_o1, o)
+ if pin.dir in ("oe", "io"):
+ get_dff(pin.o_clk, ~pin.oe, t)
+ else:
+ assert False
+
+ return (i, o, t)
+
+ def get_input(self, pin, port, attrs, invert):
+ self._check_feature("single-ended input", pin, attrs,
+ valid_xdrs=(0, 1, 2), valid_attrs=True)
+ m = Module()
+ i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
+ for bit in range(len(port)):
+ m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUF",
+ i_I=port[bit],
+ o_O=i[bit]
+ )
+ return m
+
+ def get_output(self, pin, port, attrs, invert):
+ self._check_feature("single-ended output", pin, attrs,
+ valid_xdrs=(0, 1, 2), valid_attrs=True)
+ m = Module()
+ i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
+ for bit in range(len(port)):
+ m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUF",
+ i_I=o[bit],
+ o_O=port[bit]
+ )
+ return m
+
+ def get_tristate(self, pin, port, attrs, invert):
+ self._check_feature("single-ended tristate", pin, attrs,
+ valid_xdrs=(0, 1, 2), valid_attrs=True)
+ m = Module()
+ i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
+ for bit in range(len(port)):
+ m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFT",
+ i_T=t,
+ i_I=o[bit],
+ o_O=port[bit]
+ )
+ return m
+
+ def get_input_output(self, pin, port, attrs, invert):
+ self._check_feature("single-ended input/output", pin, attrs,
+ valid_xdrs=(0, 1, 2), valid_attrs=True)
+ m = Module()
+ i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
+ for bit in range(len(port)):
+ m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUF",
+ i_T=t,
+ i_I=o[bit],
+ o_O=i[bit],
+ io_IO=port[bit]
+ )
+ return m
+
+ def get_diff_input(self, pin, p_port, n_port, attrs, invert):
+ self._check_feature("differential input", pin, attrs,
+ valid_xdrs=(0, 1, 2), valid_attrs=True)
+ m = Module()
+ i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
+ for bit in range(len(p_port)):
+ m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUFDS",
+ i_I=p_port[bit], i_IB=n_port[bit],
+ o_O=i[bit]
+ )
+ return m
+
+ def get_diff_output(self, pin, p_port, n_port, attrs, invert):
+ self._check_feature("differential output", pin, attrs,
+ valid_xdrs=(0, 1, 2), valid_attrs=True)
+ m = Module()
+ i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
+ for bit in range(len(p_port)):
+ m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFDS",
+ i_I=o[bit],
+ o_O=p_port[bit], o_OB=n_port[bit]
+ )
+ return m
+
+ def get_diff_tristate(self, pin, p_port, n_port, attrs, invert):
+ self._check_feature("differential tristate", pin, attrs,
+ valid_xdrs=(0, 1, 2), valid_attrs=True)
+ m = Module()
+ i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
+ for bit in range(len(p_port)):
+ m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFTDS",
+ i_T=t,
+ i_I=o[bit],
+ o_O=p_port[bit], o_OB=n_port[bit]
+ )
+ return m
+
+ def get_diff_input_output(self, pin, p_port, n_port, attrs, invert):
+ self._check_feature("differential input/output", pin, attrs,
+ valid_xdrs=(0, 1, 2), valid_attrs=True)
+ m = Module()
+ i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
+ for bit in range(len(p_port)):
+ m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUFDS",
+ i_T=t,
+ i_I=o[bit],
+ o_O=i[bit],
+ io_IO=p_port[bit], io_IOB=n_port[bit]
+ )
+ return m
+
+ # The synchronizer implementations below apply two separate but related timing constraints.
+ #
+ # First, the ASYNC_REG attribute prevents inference of shift registers from synchronizer FFs,
+ # and constraints the FFs to be placed as close as possible, ideally in one CLB. This attribute
+ # only affects the synchronizer FFs themselves.
+ #
+ # Second, the nmigen.vivado.false_path or nmigen.vivado.max_delay attribute affects the path
+ # into the synchronizer. If maximum input delay is specified, a datapath-only maximum delay
+ # constraint is applied, limiting routing delay (and therefore skew) at the synchronizer input.
+ # Otherwise, a false path constraint is used to omit the input path from the timing analysis.
+
+ def get_ff_sync(self, ff_sync):
+ m = Module()
+ flops = [Signal(ff_sync.i.shape(), name="stage{}".format(index),
+ reset=ff_sync._reset, reset_less=ff_sync._reset_less,
+ attrs={"ASYNC_REG": "TRUE"})
+ for index in range(ff_sync._stages)]
+ if ff_sync._max_input_delay is None:
+ flops[0].attrs["nmigen.vivado.false_path"] = "TRUE"
+ else:
+ flops[0].attrs["nmigen.vivado.max_delay"] = str(ff_sync._max_input_delay * 1e9)
+ for i, o in zip((ff_sync.i, *flops), flops):
+ m.d[ff_sync._o_domain] += o.eq(i)
+ m.d.comb += ff_sync.o.eq(flops[-1])
+ return m
+
+ def get_reset_sync(self, reset_sync):
+ m = Module()
+ m.domains += ClockDomain("reset_sync", async_reset=True, local=True)
+ flops = [Signal(1, name="stage{}".format(index), reset=1,
+ attrs={"ASYNC_REG": "TRUE"})
+ for index in range(reset_sync._stages)]
+ if reset_sync._max_input_delay is None:
+ flops[0].attrs["nmigen.vivado.false_path"] = "TRUE"
+ else:
+ flops[0].attrs["nmigen.vivado.max_delay"] = str(reset_sync._max_input_delay * 1e9)
+ for i, o in zip((0, *flops), flops):
+ m.d.reset_sync += o.eq(i)
+ m.d.comb += [
+ ClockSignal("reset_sync").eq(ClockSignal(reset_sync._domain)),
+ ResetSignal("reset_sync").eq(reset_sync.arst),
+ ResetSignal(reset_sync._domain).eq(flops[-1])
+ ]
+ return m