--- /dev/null
+/*
+ * Copyright (c) 2012-2019 Etnaviv Project
+ * Copyright (c) 2019 Zodiac Inflight Innovations
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sub license,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ *
+ * Authors:
+ * Jonathan Marek <jonathan@marek.ca>
+ * Wladimir J. van der Laan <laanwj@gmail.com>
+ */
+
+#include "etnaviv_compiler.h"
+#include "etnaviv_asm.h"
+#include "etnaviv_context.h"
+#include "etnaviv_debug.h"
+#include "etnaviv_disasm.h"
+#include "etnaviv_uniforms.h"
+#include "etnaviv_util.h"
+
+#include <math.h>
+#include "util/u_memory.h"
+#include "util/register_allocate.h"
+#include "compiler/nir/nir_builder.h"
+#include "compiler/nir/nir_worklist.h"
+
+#include "util/u_half.h"
+
+struct etna_compile {
+ nir_shader *nir;
+#define is_fs(c) ((c)->nir->info.stage == MESA_SHADER_FRAGMENT)
+ const struct etna_specs *specs;
+ struct etna_shader_variant *variant;
+
+ /* register assigned to each output, indexed by driver_location */
+ unsigned output_reg[ETNA_NUM_INPUTS];
+
+ /* block # to instr index */
+ unsigned *block_ptr;
+
+ /* Code generation */
+ int inst_ptr; /* current instruction pointer */
+ struct etna_inst code[ETNA_MAX_INSTRUCTIONS * ETNA_INST_SIZE];
+
+ /* There was an error during compilation */
+ bool error;
+};
+
+#define compile_error(ctx, args...) ({ \
+ printf(args); \
+ ctx->error = true; \
+ assert(0); \
+})
+
+/* io related lowering
+ * run after lower_int_to_float because it adds i2f/f2i ops
+ */
+static void
+etna_lower_io(nir_shader *shader, struct etna_shader_variant *v)
+{
+ bool rb_swap = shader->info.stage == MESA_SHADER_FRAGMENT && v->key.frag_rb_swap;
+
+ unsigned color_location = 0;
+ nir_foreach_variable(var, &shader->outputs) {
+ switch (var->data.location) {
+ case FRAG_RESULT_COLOR:
+ case FRAG_RESULT_DATA0:
+ color_location = var->data.driver_location;
+ break;
+ }
+ }
+
+ nir_foreach_function(function, shader) {
+ nir_builder b;
+ nir_builder_init(&b, function->impl);
+
+ nir_foreach_block(block, function->impl) {
+ nir_foreach_instr_safe(instr, block) {
+ if (instr->type == nir_instr_type_intrinsic) {
+ nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
+
+ switch (intr->intrinsic) {
+ case nir_intrinsic_load_front_face: {
+ /* front face inverted (run after int_to_float, so invert as float) */
+ b.cursor = nir_after_instr(instr);
+
+ nir_ssa_def *ssa = nir_seq(&b, &intr->dest.ssa, nir_imm_float(&b, 0.0));
+ nir_ssa_def_rewrite_uses_after(&intr->dest.ssa,
+ nir_src_for_ssa(ssa),
+ ssa->parent_instr);
+ } break;
+ case nir_intrinsic_store_output: {
+ if (!rb_swap || nir_intrinsic_base(intr) != color_location)
+ break;
+ b.cursor = nir_before_instr(instr);
+
+ nir_ssa_def *ssa = nir_mov(&b, intr->src[0].ssa);
+ nir_alu_instr *alu = nir_instr_as_alu(ssa->parent_instr);
+ alu->src[0].swizzle[0] = 2;
+ alu->src[0].swizzle[2] = 0;
+ nir_instr_rewrite_src(instr, &intr->src[0], nir_src_for_ssa(ssa));
+ } break;
+ case nir_intrinsic_load_instance_id: {
+ b.cursor = nir_after_instr(instr);
+ nir_ssa_def *ssa = nir_i2f32(&b, &intr->dest.ssa);
+ nir_ssa_def_rewrite_uses_after(&intr->dest.ssa,
+ nir_src_for_ssa(ssa),
+ ssa->parent_instr);
+ } break;
+ case nir_intrinsic_load_uniform: {
+ /* multiply by 16 and convert to int */
+ b.cursor = nir_before_instr(instr);
+ nir_ssa_def *ssa = nir_f2u32(&b, nir_fmul(&b, intr->src[0].ssa,
+ nir_imm_float(&b, 16.0f)));
+ nir_instr_rewrite_src(instr, &intr->src[0], nir_src_for_ssa(ssa));
+ } break;
+ default:
+ break;
+ }
+ }
+
+ if (instr->type != nir_instr_type_tex)
+ continue;
+
+ nir_tex_instr *tex = nir_instr_as_tex(instr);
+ nir_src *coord = NULL;
+ nir_src *lod_bias = NULL;
+ unsigned lod_bias_idx;
+
+ assert(tex->sampler_index == tex->texture_index);
+
+ for (unsigned i = 0; i < tex->num_srcs; i++) {
+ switch (tex->src[i].src_type) {
+ case nir_tex_src_coord:
+ coord = &tex->src[i].src;
+ break;
+ case nir_tex_src_bias:
+ case nir_tex_src_lod:
+ assert(!lod_bias);
+ lod_bias = &tex->src[i].src;
+ lod_bias_idx = i;
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ }
+
+ if (tex->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
+ /* use a dummy load_uniform here to represent texcoord scale */
+ b.cursor = nir_before_instr(instr);
+ nir_intrinsic_instr *load =
+ nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_uniform);
+ nir_intrinsic_set_base(load, ~tex->sampler_index);
+ load->num_components = 2;
+ load->src[0] = nir_src_for_ssa(nir_imm_float(&b, 0.0f));
+ nir_ssa_dest_init(&load->instr, &load->dest, 2, 32, NULL);
+ nir_intrinsic_set_type(load, nir_type_float);
+
+ nir_builder_instr_insert(&b, &load->instr);
+
+ nir_ssa_def *new_coord = nir_fmul(&b, coord->ssa, &load->dest.ssa);
+ nir_instr_rewrite_src(&tex->instr, coord, nir_src_for_ssa(new_coord));
+ }
+
+ /* pre HALTI5 needs texture sources in a single source */
+
+ if (!lod_bias || v->shader->specs->halti >= 5)
+ continue;
+
+ assert(coord && lod_bias && tex->coord_components < 4);
+
+ nir_alu_instr *vec = nir_alu_instr_create(shader, nir_op_vec4);
+ for (unsigned i = 0; i < tex->coord_components; i++) {
+ vec->src[i].src = nir_src_for_ssa(coord->ssa);
+ vec->src[i].swizzle[0] = i;
+ }
+ for (unsigned i = tex->coord_components; i < 4; i++)
+ vec->src[i].src = nir_src_for_ssa(lod_bias->ssa);
+
+ vec->dest.write_mask = 0xf;
+ nir_ssa_dest_init(&vec->instr, &vec->dest.dest, 4, 32, NULL);
+
+ nir_tex_instr_remove_src(tex, lod_bias_idx);
+ nir_instr_rewrite_src(&tex->instr, coord, nir_src_for_ssa(&vec->dest.dest.ssa));
+ tex->coord_components = 4;
+
+ nir_instr_insert_before(&tex->instr, &vec->instr);
+ }
+ }
+ }
+}
+
+static void
+etna_lower_alu_to_scalar(nir_shader *shader, const struct etna_specs *specs)
+{
+ BITSET_DECLARE(scalar_ops, nir_num_opcodes);
+ BITSET_ZERO(scalar_ops);
+
+ BITSET_SET(scalar_ops, nir_op_frsq);
+ BITSET_SET(scalar_ops, nir_op_frcp);
+ BITSET_SET(scalar_ops, nir_op_flog2);
+ BITSET_SET(scalar_ops, nir_op_fexp2);
+ BITSET_SET(scalar_ops, nir_op_fsqrt);
+ BITSET_SET(scalar_ops, nir_op_fcos);
+ BITSET_SET(scalar_ops, nir_op_fsin);
+ BITSET_SET(scalar_ops, nir_op_fdiv);
+
+ if (!specs->has_halti2_instructions)
+ BITSET_SET(scalar_ops, nir_op_fdot2);
+
+ nir_lower_alu_to_scalar(shader, scalar_ops);
+}
+
+static void
+etna_lower_alu_impl(nir_function_impl *impl, struct etna_compile *c)
+{
+ nir_shader *shader = impl->function->shader;
+
+ nir_builder b;
+ nir_builder_init(&b, impl);
+
+ /* in a seperate loop so we can apply the multiple-uniform logic to the new fmul */
+ nir_foreach_block(block, impl) {
+ nir_foreach_instr_safe(instr, block) {
+ if (instr->type != nir_instr_type_alu)
+ continue;
+
+ nir_alu_instr *alu = nir_instr_as_alu(instr);
+ /* multiply sin/cos src by constant
+ * TODO: do this earlier (but it breaks const_prop opt)
+ */
+ if (alu->op == nir_op_fsin || alu->op == nir_op_fcos) {
+ b.cursor = nir_before_instr(instr);
+
+ nir_ssa_def *imm = c->specs->has_new_transcendentals ?
+ nir_imm_float(&b, 1.0 / M_PI) :
+ nir_imm_float(&b, 2.0 / M_PI);
+
+ nir_instr_rewrite_src(instr, &alu->src[0].src,
+ nir_src_for_ssa(nir_fmul(&b, alu->src[0].src.ssa, imm)));
+ }
+
+ /* change transcendental ops to vec2 and insert vec1 mul for the result
+ * TODO: do this earlier (but it breaks with optimizations)
+ */
+ if (c->specs->has_new_transcendentals && (
+ alu->op == nir_op_fdiv || alu->op == nir_op_flog2 ||
+ alu->op == nir_op_fsin || alu->op == nir_op_fcos)) {
+ nir_ssa_def *ssa = &alu->dest.dest.ssa;
+
+ assert(ssa->num_components == 1);
+
+ nir_alu_instr *mul = nir_alu_instr_create(shader, nir_op_fmul);
+ mul->src[0].src = mul->src[1].src = nir_src_for_ssa(ssa);
+ mul->src[1].swizzle[0] = 1;
+
+ mul->dest.write_mask = 1;
+ nir_ssa_dest_init(&mul->instr, &mul->dest.dest, 1, 32, NULL);
+
+ ssa->num_components = 2;
+
+ mul->dest.saturate = alu->dest.saturate;
+ alu->dest.saturate = 0;
+
+ nir_instr_insert_after(instr, &mul->instr);
+
+ nir_ssa_def_rewrite_uses_after(ssa, nir_src_for_ssa(&mul->dest.dest.ssa), &mul->instr);
+ }
+ }
+ }
+}
+
+static void etna_lower_alu(nir_shader *shader, struct etna_compile *c)
+{
+ nir_foreach_function(function, shader) {
+ if (function->impl)
+ etna_lower_alu_impl(function->impl, c);
+ }
+}
+
+static void
+emit_inst(struct etna_compile *c, struct etna_inst *inst)
+{
+ c->code[c->inst_ptr++] = *inst;
+}
+
+/* to map nir srcs should to etna_inst srcs */
+enum {
+ SRC_0_1_2 = (0 << 0) | (1 << 2) | (2 << 4),
+ SRC_0_1_X = (0 << 0) | (1 << 2) | (3 << 4),
+ SRC_0_X_X = (0 << 0) | (3 << 2) | (3 << 4),
+ SRC_0_X_1 = (0 << 0) | (3 << 2) | (1 << 4),
+ SRC_0_1_0 = (0 << 0) | (1 << 2) | (0 << 4),
+ SRC_X_X_0 = (3 << 0) | (3 << 2) | (0 << 4),
+ SRC_0_X_0 = (0 << 0) | (3 << 2) | (0 << 4),
+};
+
+/* info to translate a nir op to etna_inst */
+struct etna_op_info {
+ uint8_t opcode; /* INST_OPCODE_ */
+ uint8_t src; /* SRC_ enum */
+ uint8_t cond; /* INST_CONDITION_ */
+ uint8_t type; /* INST_TYPE_ */
+};
+
+static const struct etna_op_info etna_ops[] = {
+ [0 ... nir_num_opcodes - 1] = {0xff},
+#undef TRUE
+#undef FALSE
+#define OPCT(nir, op, src, cond, type) [nir_op_##nir] = { \
+ INST_OPCODE_##op, \
+ SRC_##src, \
+ INST_CONDITION_##cond, \
+ INST_TYPE_##type \
+}
+#define OPC(nir, op, src, cond) OPCT(nir, op, src, cond, F32)
+#define OP(nir, op, src) OPC(nir, op, src, TRUE)
+ OP(mov, MOV, X_X_0), OP(fneg, MOV, X_X_0), OP(fabs, MOV, X_X_0), OP(fsat, MOV, X_X_0),
+ OP(fmul, MUL, 0_1_X), OP(fadd, ADD, 0_X_1), OP(ffma, MAD, 0_1_2),
+ OP(fdot2, DP2, 0_1_X), OP(fdot3, DP3, 0_1_X), OP(fdot4, DP4, 0_1_X),
+ OPC(fmin, SELECT, 0_1_0, GT), OPC(fmax, SELECT, 0_1_0, LT),
+ OP(ffract, FRC, X_X_0), OP(frcp, RCP, X_X_0), OP(frsq, RSQ, X_X_0),
+ OP(fsqrt, SQRT, X_X_0), OP(fsin, SIN, X_X_0), OP(fcos, COS, X_X_0),
+ OP(fsign, SIGN, X_X_0), OP(ffloor, FLOOR, X_X_0), OP(fceil, CEIL, X_X_0),
+ OP(flog2, LOG, X_X_0), OP(fexp2, EXP, X_X_0),
+ OPC(seq, SET, 0_1_X, EQ), OPC(sne, SET, 0_1_X, NE), OPC(sge, SET, 0_1_X, GE), OPC(slt, SET, 0_1_X, LT),
+ OPC(fcsel, SELECT, 0_1_2, NZ),
+ OP(fdiv, DIV, 0_1_X),
+ OP(fddx, DSX, 0_X_0), OP(fddy, DSY, 0_X_0),
+
+ /* integer opcodes */
+ OPCT(i2f32, I2F, 0_X_X, TRUE, S32),
+ OPCT(f2u32, F2I, 0_X_X, TRUE, U32),
+};
+
+static void
+etna_emit_block_start(struct etna_compile *c, unsigned block)
+{
+ c->block_ptr[block] = c->inst_ptr;
+}
+
+static void
+etna_emit_alu(struct etna_compile *c, nir_op op, struct etna_inst_dst dst,
+ struct etna_inst_src src[3], bool saturate)
+{
+ struct etna_op_info ei = etna_ops[op];
+
+ assert(ei.opcode != 0xff);
+
+ struct etna_inst inst = {
+ .opcode = ei.opcode,
+ .type = ei.type,
+ .cond = ei.cond,
+ .dst = dst,
+ .sat = saturate,
+ };
+
+ switch (op) {
+ case nir_op_fdiv:
+ case nir_op_flog2:
+ case nir_op_fsin:
+ case nir_op_fcos:
+ if (c->specs->has_new_transcendentals)
+ inst.tex.amode = 1;
+ /* fall through */
+ case nir_op_frsq:
+ case nir_op_frcp:
+ case nir_op_fexp2:
+ case nir_op_fsqrt:
+ case nir_op_i2f32:
+ case nir_op_f2u32:
+ /* for these instructions we want src to be in x component
+ * note: on HALTI2+ i2f/f2u are not scalar but we only use them this way currently
+ */
+ src[0].swiz = inst_swiz_compose(src[0].swiz,
+ INST_SWIZ_BROADCAST(ffs(inst.dst.write_mask)-1));
+ default:
+ break;
+ }
+
+ for (unsigned j = 0; j < 3; j++) {
+ unsigned i = ((ei.src >> j*2) & 3);
+ if (i < 3)
+ inst.src[j] = src[i];
+ }
+
+ emit_inst(c, &inst);
+}
+
+static void
+etna_emit_tex(struct etna_compile *c, nir_texop op, unsigned texid, unsigned dst_swiz,
+ struct etna_inst_dst dst, struct etna_inst_src coord,
+ struct etna_inst_src lod_bias)
+{
+ struct etna_inst inst = {
+ .dst = dst,
+ .tex.id = texid + (is_fs(c) ? 0 : c->specs->vertex_sampler_offset),
+ .tex.swiz = dst_swiz,
+ .src[0] = coord,
+ };
+
+ if (lod_bias.use)
+ inst.src[1] = lod_bias;
+
+ switch (op) {
+ case nir_texop_tex: inst.opcode = INST_OPCODE_TEXLD; break;
+ case nir_texop_txb: inst.opcode = INST_OPCODE_TEXLDB; break;
+ case nir_texop_txl: inst.opcode = INST_OPCODE_TEXLDL; break;
+ default:
+ assert(0);
+ }
+
+ emit_inst(c, &inst);
+}
+
+static void
+etna_emit_jump(struct etna_compile *c, unsigned block, struct etna_inst_src condition)
+{
+ if (!condition.use) {
+ emit_inst(c, &(struct etna_inst) {.opcode = INST_OPCODE_BRANCH, .imm = block });
+ return;
+ }
+
+ struct etna_inst inst = {
+ .opcode = INST_OPCODE_BRANCH,
+ .cond = INST_CONDITION_NOT,
+ .type = INST_TYPE_U32,
+ .src[0] = condition,
+ .imm = block,
+ };
+ inst.src[0].swiz = INST_SWIZ_BROADCAST(inst.src[0].swiz & 3);
+ emit_inst(c, &inst);
+}
+
+static void
+etna_emit_discard(struct etna_compile *c, struct etna_inst_src condition)
+{
+ if (!condition.use) {
+ emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_TEXKILL });
+ return;
+ }
+
+ struct etna_inst inst = {
+ .opcode = INST_OPCODE_TEXKILL,
+ .cond = INST_CONDITION_GZ,
+ .src[0] = condition,
+ };
+ inst.src[0].swiz = INST_SWIZ_BROADCAST(inst.src[0].swiz & 3);
+ emit_inst(c, &inst);
+}
+
+static void
+etna_emit_output(struct etna_compile *c, unsigned index, struct etna_inst_src src)
+{
+ c->output_reg[index] = src.reg;
+}
+
+static void
+etna_emit_load_ubo(struct etna_compile *c, struct etna_inst_dst dst,
+ struct etna_inst_src src, struct etna_inst_src base)
+{
+ emit_inst(c, &(struct etna_inst) {
+ .opcode = INST_OPCODE_LOAD,
+ .type = INST_TYPE_U32,
+ .dst = dst,
+ .src[0] = src,
+ .src[1] = base,
+ });
+}
+
+#define OPT(nir, pass, ...) ({ \
+ bool this_progress = false; \
+ NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
+ this_progress; \
+})
+#define OPT_V(nir, pass, ...) NIR_PASS_V(nir, pass, ##__VA_ARGS__)
+
+static void
+etna_optimize_loop(nir_shader *s)
+{
+ bool progress;
+ do {
+ progress = false;
+
+ OPT_V(s, nir_lower_vars_to_ssa);
+ progress |= OPT(s, nir_opt_copy_prop_vars);
+ progress |= OPT(s, nir_copy_prop);
+ progress |= OPT(s, nir_opt_dce);
+ progress |= OPT(s, nir_opt_cse);
+ progress |= OPT(s, nir_opt_peephole_select, 16, true, true);
+ progress |= OPT(s, nir_opt_intrinsics);
+ progress |= OPT(s, nir_opt_algebraic);
+ progress |= OPT(s, nir_opt_constant_folding);
+ progress |= OPT(s, nir_opt_dead_cf);
+ if (OPT(s, nir_opt_trivial_continues)) {
+ progress = true;
+ /* If nir_opt_trivial_continues makes progress, then we need to clean
+ * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
+ * to make progress.
+ */
+ OPT(s, nir_copy_prop);
+ OPT(s, nir_opt_dce);
+ }
+ progress |= OPT(s, nir_opt_loop_unroll, nir_var_all);
+ progress |= OPT(s, nir_opt_if, false);
+ progress |= OPT(s, nir_opt_remove_phis);
+ progress |= OPT(s, nir_opt_undef);
+ }
+ while (progress);
+}
+
+static int
+etna_glsl_type_size(const struct glsl_type *type, bool bindless)
+{
+ return glsl_count_attribute_slots(type, false);
+}
+
+static void
+copy_uniform_state_to_shader(struct etna_shader_variant *sobj, uint64_t *consts, unsigned count)
+{
+ struct etna_shader_uniform_info *uinfo = &sobj->uniforms;
+
+ uinfo->imm_count = count * 4;
+ uinfo->imm_data = MALLOC(uinfo->imm_count * sizeof(*uinfo->imm_data));
+ uinfo->imm_contents = MALLOC(uinfo->imm_count * sizeof(*uinfo->imm_contents));
+
+ for (unsigned i = 0; i < uinfo->imm_count; i++) {
+ uinfo->imm_data[i] = consts[i];
+ uinfo->imm_contents[i] = consts[i] >> 32;
+ }
+
+ etna_set_shader_uniforms_dirty_flags(sobj);
+}
+
+#include "etnaviv_compiler_nir_emit.h"
+
+bool
+etna_compile_shader_nir(struct etna_shader_variant *v)
+{
+ if (unlikely(!v))
+ return false;
+
+ struct etna_compile *c = CALLOC_STRUCT(etna_compile);
+ if (!c)
+ return false;
+
+ c->variant = v;
+ c->specs = v->shader->specs;
+ c->nir = nir_shader_clone(NULL, v->shader->nir);
+
+ nir_shader *s = c->nir;
+ const struct etna_specs *specs = c->specs;
+
+ v->stage = s->info.stage;
+ v->num_loops = 0; /* TODO */
+ v->vs_id_in_reg = -1;
+ v->vs_pos_out_reg = -1;
+ v->vs_pointsize_out_reg = -1;
+ v->ps_color_out_reg = 0; /* 0 for shader that doesn't write fragcolor.. */
+ v->ps_depth_out_reg = -1;
+
+ /* setup input linking */
+ struct etna_shader_io_file *sf = &v->infile;
+ if (s->info.stage == MESA_SHADER_VERTEX) {
+ nir_foreach_variable(var, &s->inputs) {
+ unsigned idx = var->data.driver_location;
+ sf->reg[idx].reg = idx;
+ sf->reg[idx].slot = var->data.location;
+ sf->reg[idx].num_components = 4; /* TODO */
+ sf->num_reg = MAX2(sf->num_reg, idx+1);
+ }
+ } else {
+ unsigned count = 0;
+ nir_foreach_variable(var, &s->inputs) {
+ unsigned idx = var->data.driver_location;
+ sf->reg[idx].reg = idx + 1;
+ sf->reg[idx].slot = var->data.location;
+ sf->reg[idx].num_components = 4; /* TODO */
+ sf->num_reg = MAX2(sf->num_reg, idx+1);
+ count++;
+ }
+ assert(sf->num_reg == count);
+ }
+
+ NIR_PASS_V(s, nir_lower_io, nir_var_all, etna_glsl_type_size,
+ (nir_lower_io_options)0);
+
+ OPT_V(s, nir_lower_regs_to_ssa);
+ OPT_V(s, nir_lower_vars_to_ssa);
+ OPT_V(s, nir_lower_indirect_derefs, nir_var_all);
+ OPT_V(s, nir_lower_tex, &(struct nir_lower_tex_options) { .lower_txp = ~0u });
+ OPT_V(s, etna_lower_alu_to_scalar, specs);
+
+ etna_optimize_loop(s);
+
+ /* use opt_algebraic between int_to_float and boot_to_float because
+ * int_to_float emits ftrunc, and ftrunc lowering generates bool ops
+ */
+ OPT_V(s, nir_lower_int_to_float);
+ OPT_V(s, nir_opt_algebraic);
+ OPT_V(s, nir_lower_bool_to_float);
+
+ /* after int to float because insert i2f for instance_id */
+ OPT_V(s, etna_lower_io, v);
+
+ etna_optimize_loop(s);
+
+ if (DBG_ENABLED(ETNA_DBG_DUMP_SHADERS))
+ nir_print_shader(s, stdout);
+
+ while( OPT(s, nir_opt_vectorize) );
+ OPT_V(s, etna_lower_alu_to_scalar, specs);
+
+ NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp);
+ NIR_PASS_V(s, nir_opt_algebraic_late);
+
+ NIR_PASS_V(s, nir_move_vec_src_uses_to_dest);
+ NIR_PASS_V(s, nir_copy_prop);
+ NIR_PASS_V(s, nir_lower_to_source_mods, ~nir_lower_int_source_mods);
+ /* need copy prop after uses_to_dest, and before src mods: see
+ * dEQP-GLES2.functional.shaders.random.all_features.fragment.95
+ */
+
+ NIR_PASS_V(s, nir_opt_dce);
+
+ NIR_PASS_V(s, etna_lower_alu, c);
+
+ if (DBG_ENABLED(ETNA_DBG_DUMP_SHADERS))
+ nir_print_shader(s, stdout);
+
+ uint64_t consts[ETNA_MAX_IMM] = {};
+
+ unsigned block_ptr[nir_shader_get_entrypoint(s)->num_blocks];
+ c->block_ptr = block_ptr;
+ struct emit_options options = {
+ .max_temps = ETNA_MAX_TEMPS,
+ .max_consts = ETNA_MAX_IMM / 4,
+ .id_reg = sf->num_reg,
+ .single_const_src = c->specs->halti < 5,
+ .etna_new_transcendentals = c->specs->has_new_transcendentals,
+ .user = c,
+ .consts = consts,
+ };
+
+ unsigned num_consts;
+ bool ok = emit_shader(c->nir, &options, &v->num_temps, &num_consts);
+ assert(ok);
+
+ /* empty shader, emit NOP */
+ if (!c->inst_ptr)
+ emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_NOP });
+
+ /* assemble instructions, fixing up labels */
+ uint32_t *code = MALLOC(c->inst_ptr * 16 + 1024);
+ for (unsigned i = 0; i < c->inst_ptr; i++) {
+ struct etna_inst *inst = &c->code[i];
+ if (inst->opcode == INST_OPCODE_BRANCH)
+ inst->imm = block_ptr[inst->imm];
+
+ inst->halti5 = specs->halti >= 5;
+ etna_assemble(&code[i * 4], inst);
+ }
+
+ v->code_size = c->inst_ptr * 4;
+ v->code = code;
+ v->needs_icache = c->inst_ptr > specs->max_instructions;
+
+ copy_uniform_state_to_shader(v, consts, num_consts);
+
+ if (s->info.stage == MESA_SHADER_FRAGMENT) {
+ v->input_count_unk8 = 31; /* XXX what is this */
+
+ nir_foreach_variable(var, &s->outputs) {
+ unsigned reg = c->output_reg[var->data.driver_location];
+ switch (var->data.location) {
+ case FRAG_RESULT_COLOR:
+ case FRAG_RESULT_DATA0: /* DATA0 is used by gallium shaders for color */
+ v->ps_color_out_reg = reg;
+ break;
+ case FRAG_RESULT_DEPTH:
+ v->ps_depth_out_reg = reg;
+ break;
+ default:
+ compile_error(c, "Unsupported fs output %s\n", gl_frag_result_name(var->data.location));
+ }
+ }
+ assert(v->ps_depth_out_reg <= 0);
+ v->outfile.num_reg = 0;
+ ralloc_free(c->nir);
+ FREE(c);
+ return true;
+ }
+
+ v->input_count_unk8 = DIV_ROUND_UP(v->infile.num_reg + 4, 16); /* XXX what is this */
+
+ sf = &v->outfile;
+ sf->num_reg = 0;
+ nir_foreach_variable(var, &s->outputs) {
+ unsigned native = c->output_reg[var->data.driver_location];
+
+ if (var->data.location == VARYING_SLOT_POS) {
+ v->vs_pos_out_reg = native;
+ continue;
+ }
+
+ if (var->data.location == VARYING_SLOT_PSIZ) {
+ v->vs_pointsize_out_reg = native;
+ continue;
+ }
+
+ sf->reg[sf->num_reg].reg = native;
+ sf->reg[sf->num_reg].slot = var->data.location;
+ sf->reg[sf->num_reg].num_components = 4; /* TODO */
+ sf->num_reg++;
+ }
+
+ /* fill in "mystery meat" load balancing value. This value determines how
+ * work is scheduled between VS and PS
+ * in the unified shader architecture. More precisely, it is determined from
+ * the number of VS outputs, as well as chip-specific
+ * vertex output buffer size, vertex cache size, and the number of shader
+ * cores.
+ *
+ * XXX this is a conservative estimate, the "optimal" value is only known for
+ * sure at link time because some
+ * outputs may be unused and thus unmapped. Then again, in the general use
+ * case with GLSL the vertex and fragment
+ * shaders are linked already before submitting to Gallium, thus all outputs
+ * are used.
+ *
+ * note: TGSI compiler counts all outputs (including position and pointsize), here
+ * v->outfile.num_reg only counts varyings, +1 to compensate for the position output
+ * TODO: might have a problem that we don't count pointsize when it is used
+ */
+
+ int half_out = v->outfile.num_reg / 2 + 1;
+ assert(half_out);
+
+ uint32_t b = ((20480 / (specs->vertex_output_buffer_size -
+ 2 * half_out * specs->vertex_cache_size)) +
+ 9) /
+ 10;
+ uint32_t a = (b + 256 / (specs->shader_core_count * half_out)) / 2;
+ v->vs_load_balancing = VIVS_VS_LOAD_BALANCING_A(MIN2(a, 255)) |
+ VIVS_VS_LOAD_BALANCING_B(MIN2(b, 255)) |
+ VIVS_VS_LOAD_BALANCING_C(0x3f) |
+ VIVS_VS_LOAD_BALANCING_D(0x0f);
+
+ ralloc_free(c->nir);
+ FREE(c);
+ return true;
+}
+
+void
+etna_destroy_shader_nir(struct etna_shader_variant *shader)
+{
+ assert(shader);
+
+ FREE(shader->code);
+ FREE(shader->uniforms.imm_data);
+ FREE(shader->uniforms.imm_contents);
+ FREE(shader);
+}
+
+static const struct etna_shader_inout *
+etna_shader_vs_lookup(const struct etna_shader_variant *sobj,
+ const struct etna_shader_inout *in)
+{
+ for (int i = 0; i < sobj->outfile.num_reg; i++)
+ if (sobj->outfile.reg[i].slot == in->slot)
+ return &sobj->outfile.reg[i];
+
+ return NULL;
+}
+
+bool
+etna_link_shader_nir(struct etna_shader_link_info *info,
+ const struct etna_shader_variant *vs,
+ const struct etna_shader_variant *fs)
+{
+ int comp_ofs = 0;
+ /* For each fragment input we need to find the associated vertex shader
+ * output, which can be found by matching on semantic name and index. A
+ * binary search could be used because the vs outputs are sorted by their
+ * semantic index and grouped by semantic type by fill_in_vs_outputs.
+ */
+ assert(fs->infile.num_reg < ETNA_NUM_INPUTS);
+ info->pcoord_varying_comp_ofs = -1;
+
+ for (int idx = 0; idx < fs->infile.num_reg; ++idx) {
+ const struct etna_shader_inout *fsio = &fs->infile.reg[idx];
+ const struct etna_shader_inout *vsio = etna_shader_vs_lookup(vs, fsio);
+ struct etna_varying *varying;
+ bool interpolate_always = true;
+
+ assert(fsio->reg > 0 && fsio->reg <= ARRAY_SIZE(info->varyings));
+
+ if (fsio->reg > info->num_varyings)
+ info->num_varyings = fsio->reg;
+
+ varying = &info->varyings[fsio->reg - 1];
+ varying->num_components = fsio->num_components;
+
+ if (!interpolate_always) /* colors affected by flat shading */
+ varying->pa_attributes = 0x200;
+ else /* texture coord or other bypasses flat shading */
+ varying->pa_attributes = 0x2f1;
+
+ varying->use[0] = VARYING_COMPONENT_USE_UNUSED;
+ varying->use[1] = VARYING_COMPONENT_USE_UNUSED;
+ varying->use[2] = VARYING_COMPONENT_USE_UNUSED;
+ varying->use[3] = VARYING_COMPONENT_USE_UNUSED;
+
+ /* point coord is an input to the PS without matching VS output,
+ * so it gets a varying slot without being assigned a VS register.
+ */
+ if (fsio->slot == VARYING_SLOT_PNTC) {
+ varying->use[0] = VARYING_COMPONENT_USE_POINTCOORD_X;
+ varying->use[1] = VARYING_COMPONENT_USE_POINTCOORD_Y;
+
+ info->pcoord_varying_comp_ofs = comp_ofs;
+ } else {
+ if (vsio == NULL) { /* not found -- link error */
+ BUG("Semantic value not found in vertex shader outputs\n");
+ return true;
+ }
+ varying->reg = vsio->reg;
+ }
+
+ comp_ofs += varying->num_components;
+ }
+
+ assert(info->num_varyings == fs->infile.num_reg);
+
+ return false;
+}
--- /dev/null
+/*
+ * Copyright (c) 2019 Zodiac Inflight Innovations
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sub license,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ *
+ * Authors:
+ * Jonathan Marek <jonathan@marek.ca>
+ */
+
+#include "etnaviv_asm.h"
+#include "etnaviv_context.h"
+
+#include "compiler/nir/nir.h"
+#include "compiler/nir/nir_builder.h"
+#include "compiler/nir/nir_worklist.h"
+#include "util/register_allocate.h"
+
+struct emit_options {
+ unsigned max_temps; /* max # of vec4 registers */
+ unsigned max_consts; /* max # of vec4 consts */
+ unsigned id_reg; /* register with vertex/instance id */
+ bool single_const_src : 1; /* limited to 1 vec4 const src */
+ bool etna_new_transcendentals : 1;
+ void *user;
+ uint64_t *consts;
+};
+
+#define ALU_SWIZ(s) INST_SWIZ((s)->swizzle[0], (s)->swizzle[1], (s)->swizzle[2], (s)->swizzle[3])
+#define SRC_DISABLE ((hw_src){})
+#define SRC_CONST(idx, s) ((hw_src){.use=1, .rgroup = INST_RGROUP_UNIFORM_0, .reg=idx, .swiz=s})
+#define SRC_REG(idx, s) ((hw_src){.use=1, .rgroup = INST_RGROUP_TEMP, .reg=idx, .swiz=s})
+
+#define option(name) (state->options->name)
+#define emit(type, args...) etna_emit_##type(state->options->user, args)
+
+typedef struct etna_inst_dst hw_dst;
+typedef struct etna_inst_src hw_src;
+
+enum {
+ BYPASS_DST = 1,
+ BYPASS_SRC = 2,
+};
+
+struct state {
+ const struct emit_options *options;
+ unsigned const_count;
+
+ nir_shader *shader;
+ nir_function_impl *impl;
+
+ /* ra state */
+ struct ra_graph *g;
+ struct ra_regs *regs;
+ unsigned *live_map;
+ unsigned num_nodes;
+};
+
+static inline hw_src
+src_swizzle(hw_src src, unsigned swizzle)
+{
+ src.swiz = inst_swiz_compose(src.swiz, swizzle);
+ return src;
+}
+
+static inline bool is_sysval(nir_instr *instr)
+{
+ if (instr->type != nir_instr_type_intrinsic)
+ return false;
+
+ nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
+ return intr->intrinsic == nir_intrinsic_load_front_face ||
+ intr->intrinsic == nir_intrinsic_load_frag_coord;
+}
+
+/* constants are represented as 64-bit ints
+ * 32-bit for the value and 32-bit for the type (imm, uniform, etc)
+ */
+
+#define CONST_VAL(a, b) (nir_const_value) {.u64 = (uint64_t)(a) << 32 | (uint64_t)(b)}
+#define CONST(x) CONST_VAL(ETNA_IMMEDIATE_CONSTANT, x)
+#define UNIFORM(x) CONST_VAL(ETNA_IMMEDIATE_UNIFORM, x)
+#define UNIFORM_BASE(x) CONST_VAL(ETNA_IMMEDIATE_UBO0_ADDR, x)
+#define TEXSCALE(x, i) CONST_VAL(ETNA_IMMEDIATE_TEXRECT_SCALE_X + (i), x)
+
+static int
+const_add(uint64_t *c, uint64_t value)
+{
+ for (unsigned i = 0; i < 4; i++) {
+ if (c[i] == value || !c[i]) {
+ c[i] = value;
+ return i;
+ }
+ }
+ return -1;
+}
+
+static hw_src
+const_src(struct state *state, nir_const_value *value, unsigned num_components)
+{
+ unsigned i;
+ int swiz = -1;
+ for (i = 0; swiz < 0; i++) {
+ uint64_t *a = &option(consts)[i*4];
+ uint64_t save[4];
+ memcpy(save, a, sizeof(save));
+ swiz = 0;
+ for (unsigned j = 0; j < num_components; j++) {
+ int c = const_add(a, value[j].u64);
+ if (c < 0) {
+ memcpy(a, save, sizeof(save));
+ swiz = -1;
+ break;
+ }
+ swiz |= c << j * 2;
+ }
+ }
+
+ assert(i <= option(max_consts));
+ state->const_count = MAX2(state->const_count, i);
+
+ return SRC_CONST(i - 1, swiz);
+}
+
+struct ssa_reg {
+ uint8_t idx;
+ uint8_t src_swizzle;
+ uint8_t dst_swizzle;
+ uint8_t write_mask;
+};
+
+/* Swizzles and write masks can be used to layer virtual non-interfering
+ * registers on top of the real VEC4 registers. For example, the virtual
+ * VEC3_XYZ register and the virtual SCALAR_W register that use the same
+ * physical VEC4 base register do not interfere.
+ */
+enum {
+ REG_CLASS_VIRT_SCALAR,
+ REG_CLASS_VIRT_VEC2,
+ REG_CLASS_VIRT_VEC3,
+ REG_CLASS_VEC4,
+ /* special vec2 class for fast transcendentals, limited to XY or ZW */
+ REG_CLASS_VIRT_VEC2T,
+ NUM_REG_CLASSES,
+} reg_class;
+
+enum {
+ REG_TYPE_VEC4,
+ REG_TYPE_VIRT_VEC3_XYZ,
+ REG_TYPE_VIRT_VEC3_XYW,
+ REG_TYPE_VIRT_VEC3_XZW,
+ REG_TYPE_VIRT_VEC3_YZW,
+ REG_TYPE_VIRT_VEC2_XY,
+ REG_TYPE_VIRT_VEC2_XZ,
+ REG_TYPE_VIRT_VEC2_XW,
+ REG_TYPE_VIRT_VEC2_YZ,
+ REG_TYPE_VIRT_VEC2_YW,
+ REG_TYPE_VIRT_VEC2_ZW,
+ REG_TYPE_VIRT_SCALAR_X,
+ REG_TYPE_VIRT_SCALAR_Y,
+ REG_TYPE_VIRT_SCALAR_Z,
+ REG_TYPE_VIRT_SCALAR_W,
+ REG_TYPE_VIRT_VEC2T_XY,
+ REG_TYPE_VIRT_VEC2T_ZW,
+ NUM_REG_TYPES,
+} reg_type;
+
+/* writemask when used as dest */
+static const uint8_t
+reg_writemask[NUM_REG_TYPES] = {
+ [REG_TYPE_VEC4] = 0xf,
+ [REG_TYPE_VIRT_SCALAR_X] = 0x1,
+ [REG_TYPE_VIRT_SCALAR_Y] = 0x2,
+ [REG_TYPE_VIRT_VEC2_XY] = 0x3,
+ [REG_TYPE_VIRT_VEC2T_XY] = 0x3,
+ [REG_TYPE_VIRT_SCALAR_Z] = 0x4,
+ [REG_TYPE_VIRT_VEC2_XZ] = 0x5,
+ [REG_TYPE_VIRT_VEC2_YZ] = 0x6,
+ [REG_TYPE_VIRT_VEC3_XYZ] = 0x7,
+ [REG_TYPE_VIRT_SCALAR_W] = 0x8,
+ [REG_TYPE_VIRT_VEC2_XW] = 0x9,
+ [REG_TYPE_VIRT_VEC2_YW] = 0xa,
+ [REG_TYPE_VIRT_VEC3_XYW] = 0xb,
+ [REG_TYPE_VIRT_VEC2_ZW] = 0xc,
+ [REG_TYPE_VIRT_VEC2T_ZW] = 0xc,
+ [REG_TYPE_VIRT_VEC3_XZW] = 0xd,
+ [REG_TYPE_VIRT_VEC3_YZW] = 0xe,
+};
+
+/* how to swizzle when used as a src */
+static const uint8_t
+reg_swiz[NUM_REG_TYPES] = {
+ [REG_TYPE_VEC4] = INST_SWIZ_IDENTITY,
+ [REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY,
+ [REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(Y, Y, Y, Y),
+ [REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY,
+ [REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY,
+ [REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(Z, Z, Z, Z),
+ [REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, Z, X, Z),
+ [REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(Y, Z, Y, Z),
+ [REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY,
+ [REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(W, W, W, W),
+ [REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, W, X, W),
+ [REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(Y, W, Y, W),
+ [REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, W, X),
+ [REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(Z, W, Z, W),
+ [REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(Z, W, Z, W),
+ [REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Z, W, X),
+ [REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(Y, Z, W, X),
+};
+
+/* how to swizzle when used as a dest */
+static const uint8_t
+reg_dst_swiz[NUM_REG_TYPES] = {
+ [REG_TYPE_VEC4] = INST_SWIZ_IDENTITY,
+ [REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY,
+ [REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(X, X, X, X),
+ [REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY,
+ [REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY,
+ [REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(X, X, X, X),
+ [REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, X, Y, Y),
+ [REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(X, X, Y, Y),
+ [REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY,
+ [REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(X, X, X, X),
+ [REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, X, Y, Y),
+ [REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(X, X, Y, Y),
+ [REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, Z, Z),
+ [REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(X, X, X, Y),
+ [REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(X, X, X, Y),
+ [REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Y, Y, Z),
+ [REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(X, X, Y, Z),
+};
+
+static inline int reg_get_type(int virt_reg)
+{
+ return virt_reg % NUM_REG_TYPES;
+}
+
+static inline int reg_get_base(struct state *state, int virt_reg)
+{
+ /* offset by 1 to avoid reserved position register */
+ if (state->shader->info.stage == MESA_SHADER_FRAGMENT)
+ return virt_reg / NUM_REG_TYPES + 1;
+ return virt_reg / NUM_REG_TYPES;
+}
+
+static inline int reg_get_class(int virt_reg)
+{
+ switch (reg_get_type(virt_reg)) {
+ case REG_TYPE_VEC4:
+ return REG_CLASS_VEC4;
+ case REG_TYPE_VIRT_VEC3_XYZ:
+ case REG_TYPE_VIRT_VEC3_XYW:
+ case REG_TYPE_VIRT_VEC3_XZW:
+ case REG_TYPE_VIRT_VEC3_YZW:
+ return REG_CLASS_VIRT_VEC3;
+ case REG_TYPE_VIRT_VEC2_XY:
+ case REG_TYPE_VIRT_VEC2_XZ:
+ case REG_TYPE_VIRT_VEC2_XW:
+ case REG_TYPE_VIRT_VEC2_YZ:
+ case REG_TYPE_VIRT_VEC2_YW:
+ case REG_TYPE_VIRT_VEC2_ZW:
+ return REG_CLASS_VIRT_VEC2;
+ case REG_TYPE_VIRT_SCALAR_X:
+ case REG_TYPE_VIRT_SCALAR_Y:
+ case REG_TYPE_VIRT_SCALAR_Z:
+ case REG_TYPE_VIRT_SCALAR_W:
+ return REG_CLASS_VIRT_SCALAR;
+ case REG_TYPE_VIRT_VEC2T_XY:
+ case REG_TYPE_VIRT_VEC2T_ZW:
+ return REG_CLASS_VIRT_VEC2T;
+ }
+
+ assert(false);
+ return 0;
+}
+
+/* get unique ssa/reg index for nir_src */
+static unsigned
+src_index(nir_function_impl *impl, nir_src *src)
+{
+ return src->is_ssa ? src->ssa->index : (src->reg.reg->index + impl->ssa_alloc);
+}
+
+/* get unique ssa/reg index for nir_dest */
+static unsigned
+dest_index(nir_function_impl *impl, nir_dest *dest)
+{
+ return dest->is_ssa ? dest->ssa.index : (dest->reg.reg->index + impl->ssa_alloc);
+}
+
+/* nir_src to allocated register */
+static hw_src
+ra_src(struct state *state, nir_src *src)
+{
+ unsigned reg = ra_get_node_reg(state->g, state->live_map[src_index(state->impl, src)]);
+ return SRC_REG(reg_get_base(state, reg), reg_swiz[reg_get_type(reg)]);
+}
+
+static hw_src
+get_src(struct state *state, nir_src *src)
+{
+ if (!src->is_ssa)
+ return ra_src(state, src);
+
+ nir_instr *instr = src->ssa->parent_instr;
+
+ if (instr->pass_flags & BYPASS_SRC) {
+ assert(instr->type == nir_instr_type_alu);
+ nir_alu_instr *alu = nir_instr_as_alu(instr);
+ assert(alu->op == nir_op_mov);
+ return src_swizzle(get_src(state, &alu->src[0].src), ALU_SWIZ(&alu->src[0]));
+ }
+
+ switch (instr->type) {
+ case nir_instr_type_load_const:
+ return const_src(state, nir_instr_as_load_const(instr)->value, src->ssa->num_components);
+ case nir_instr_type_intrinsic: {
+ nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
+ switch (intr->intrinsic) {
+ case nir_intrinsic_load_input:
+ case nir_intrinsic_load_instance_id:
+ case nir_intrinsic_load_uniform:
+ return ra_src(state, src);
+ case nir_intrinsic_load_front_face:
+ return (hw_src) { .use = 1, .rgroup = INST_RGROUP_INTERNAL };
+ case nir_intrinsic_load_frag_coord:
+ return SRC_REG(0, INST_SWIZ_IDENTITY);
+ default:
+ assert(0);
+ break;
+ }
+ } break;
+ case nir_instr_type_alu:
+ case nir_instr_type_tex:
+ return ra_src(state, src);
+ case nir_instr_type_ssa_undef: {
+ /* return zero to deal with broken Blur demo */
+ nir_const_value value = CONST(0);
+ return src_swizzle(const_src(state, &value, 1), SWIZZLE(X,X,X,X));
+ }
+ default:
+ assert(0);
+ break;
+ }
+
+ return SRC_DISABLE;
+}
+
+static void
+update_swiz_mask(nir_alu_instr *alu, nir_dest *dest, unsigned *swiz, unsigned *mask)
+{
+ if (!swiz)
+ return;
+
+ bool is_vec = dest != NULL;
+ unsigned swizzle = 0, write_mask = 0;
+ for (unsigned i = 0; i < 4; i++) {
+ /* channel not written */
+ if (!(alu->dest.write_mask & (1 << i)))
+ continue;
+ /* src is different (only check for vecN) */
+ if (is_vec && alu->src[i].src.ssa != &dest->ssa)
+ continue;
+
+ unsigned src_swiz = is_vec ? alu->src[i].swizzle[0] : alu->src[0].swizzle[i];
+ swizzle |= (*swiz >> src_swiz * 2 & 3) << i * 2;
+ /* this channel isn't written through this chain */
+ if (*mask & (1 << src_swiz))
+ write_mask |= 1 << i;
+ }
+ *swiz = swizzle;
+ *mask = write_mask;
+}
+
+static bool
+vec_dest_has_swizzle(nir_alu_instr *vec, nir_ssa_def *ssa)
+{
+ for (unsigned i = 0; i < 4; i++) {
+ if (!(vec->dest.write_mask & (1 << i)) || vec->src[i].src.ssa != ssa)
+ continue;
+
+ if (vec->src[i].swizzle[0] != i)
+ return true;
+ }
+
+ /* don't deal with possible bypassed vec/mov chain */
+ nir_foreach_use(use_src, ssa) {
+ nir_instr *instr = use_src->parent_instr;
+ if (instr->type != nir_instr_type_alu)
+ continue;
+
+ nir_alu_instr *alu = nir_instr_as_alu(instr);
+
+ switch (alu->op) {
+ case nir_op_mov:
+ case nir_op_vec2:
+ case nir_op_vec3:
+ case nir_op_vec4:
+ return true;
+ default:
+ break;
+ }
+ }
+ return false;
+}
+
+static nir_dest *
+real_dest(nir_dest *dest, unsigned *swiz, unsigned *mask)
+{
+ if (!dest || !dest->is_ssa)
+ return dest;
+
+ bool can_bypass_src = !list_length(&dest->ssa.if_uses);
+ nir_instr *p_instr = dest->ssa.parent_instr;
+
+ /* if used by a vecN, the "real" destination becomes the vecN destination
+ * lower_alu guarantees that values used by a vecN are only used by that vecN
+ * we can apply the same logic to movs in a some cases too
+ */
+ nir_foreach_use(use_src, &dest->ssa) {
+ nir_instr *instr = use_src->parent_instr;
+
+ /* src bypass check: for now only deal with tex src mov case
+ * note: for alu don't bypass mov for multiple uniform sources
+ */
+ switch (instr->type) {
+ case nir_instr_type_tex:
+ if (p_instr->type == nir_instr_type_alu &&
+ nir_instr_as_alu(p_instr)->op == nir_op_mov) {
+ break;
+ }
+ default:
+ can_bypass_src = false;
+ break;
+ }
+
+ if (instr->type != nir_instr_type_alu)
+ continue;
+
+ nir_alu_instr *alu = nir_instr_as_alu(instr);
+
+ switch (alu->op) {
+ case nir_op_vec2:
+ case nir_op_vec3:
+ case nir_op_vec4:
+ assert(list_length(&dest->ssa.if_uses) == 0);
+ nir_foreach_use(use_src, &dest->ssa)
+ assert(use_src->parent_instr == instr);
+
+ update_swiz_mask(alu, dest, swiz, mask);
+ break;
+ case nir_op_mov: {
+ switch (dest->ssa.parent_instr->type) {
+ case nir_instr_type_alu:
+ case nir_instr_type_tex:
+ break;
+ default:
+ continue;
+ }
+ if (list_length(&dest->ssa.if_uses) || list_length(&dest->ssa.uses) > 1)
+ continue;
+
+ update_swiz_mask(alu, NULL, swiz, mask);
+ break;
+ };
+ default:
+ continue;
+ }
+
+ assert(!(instr->pass_flags & BYPASS_SRC));
+ instr->pass_flags |= BYPASS_DST;
+ return real_dest(&alu->dest.dest, swiz, mask);
+ }
+
+ if (can_bypass_src && !(p_instr->pass_flags & BYPASS_DST)) {
+ p_instr->pass_flags |= BYPASS_SRC;
+ return NULL;
+ }
+
+ return dest;
+}
+
+/* get allocated dest register for nir_dest
+ * *p_swiz tells how the components need to be placed into register
+ */
+static hw_dst
+ra_dest(struct state *state, nir_dest *dest, unsigned *p_swiz)
+{
+ unsigned swiz = INST_SWIZ_IDENTITY, mask = 0xf;
+ dest = real_dest(dest, &swiz, &mask);
+
+ unsigned r = ra_get_node_reg(state->g, state->live_map[dest_index(state->impl, dest)]);
+ unsigned t = reg_get_type(r);
+
+ *p_swiz = inst_swiz_compose(swiz, reg_dst_swiz[t]);
+
+ return (hw_dst) {
+ .use = 1,
+ .reg = reg_get_base(state, r),
+ .write_mask = inst_write_mask_compose(mask, reg_writemask[t]),
+ };
+}
+
+/* if instruction dest needs a register, return nir_dest for it */
+static nir_dest *
+dest_for_instr(nir_instr *instr)
+{
+ nir_dest *dest = NULL;
+
+ switch (instr->type) {
+ case nir_instr_type_alu:
+ dest = &nir_instr_as_alu(instr)->dest.dest;
+ break;
+ case nir_instr_type_tex:
+ dest =&nir_instr_as_tex(instr)->dest;
+ break;
+ case nir_instr_type_intrinsic: {
+ nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
+ if (intr->intrinsic == nir_intrinsic_load_uniform ||
+ intr->intrinsic == nir_intrinsic_load_input ||
+ intr->intrinsic == nir_intrinsic_load_instance_id)
+ dest = &intr->dest;
+ }
+ default:
+ break;
+ }
+ return real_dest(dest, NULL, NULL);
+}
+
+struct live_def {
+ nir_instr *instr;
+ nir_dest *dest; /* cached dest_for_instr */
+ unsigned live_start, live_end; /* live range */
+};
+
+static void
+range_include(struct live_def *def, unsigned index)
+{
+ if (def->live_start > index)
+ def->live_start = index;
+ if (def->live_end < index)
+ def->live_end = index;
+}
+
+struct live_defs_state {
+ unsigned num_defs;
+ unsigned bitset_words;
+
+ nir_function_impl *impl;
+ nir_block *block; /* current block pointer */
+ unsigned index; /* current live index */
+
+ struct live_def *defs;
+ unsigned *live_map; /* to map ssa/reg index into defs array */
+
+ nir_block_worklist worklist;
+};
+
+static bool
+init_liveness_block(nir_block *block,
+ struct live_defs_state *state)
+{
+ block->live_in = reralloc(block, block->live_in, BITSET_WORD,
+ state->bitset_words);
+ memset(block->live_in, 0, state->bitset_words * sizeof(BITSET_WORD));
+
+ block->live_out = reralloc(block, block->live_out, BITSET_WORD,
+ state->bitset_words);
+ memset(block->live_out, 0, state->bitset_words * sizeof(BITSET_WORD));
+
+ nir_block_worklist_push_head(&state->worklist, block);
+
+ return true;
+}
+
+static bool
+set_src_live(nir_src *src, void *void_state)
+{
+ struct live_defs_state *state = void_state;
+
+ if (src->is_ssa) {
+ nir_instr *instr = src->ssa->parent_instr;
+
+ if (is_sysval(instr))
+ return true;
+
+ switch (instr->type) {
+ case nir_instr_type_load_const:
+ case nir_instr_type_ssa_undef:
+ return true;
+ case nir_instr_type_alu: {
+ /* alu op bypass */
+ nir_alu_instr *alu = nir_instr_as_alu(instr);
+ if (instr->pass_flags & BYPASS_SRC) {
+ for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++)
+ set_src_live(&alu->src[i].src, state);
+ return true;
+ }
+ } break;
+ default:
+ break;
+ }
+ }
+
+ unsigned i = state->live_map[src_index(state->impl, src)];
+ assert(i != ~0u);
+
+ BITSET_SET(state->block->live_in, i);
+ range_include(&state->defs[i], state->index);
+
+ return true;
+}
+
+static bool
+propagate_across_edge(nir_block *pred, nir_block *succ,
+ struct live_defs_state *state)
+{
+ BITSET_WORD progress = 0;
+ for (unsigned i = 0; i < state->bitset_words; ++i) {
+ progress |= succ->live_in[i] & ~pred->live_out[i];
+ pred->live_out[i] |= succ->live_in[i];
+ }
+ return progress != 0;
+}
+
+static unsigned
+live_defs(nir_function_impl *impl, struct live_def *defs, unsigned *live_map)
+{
+ struct live_defs_state state;
+ unsigned block_live_index[impl->num_blocks + 1];
+
+ state.impl = impl;
+ state.defs = defs;
+ state.live_map = live_map;
+
+ state.num_defs = 0;
+ nir_foreach_block(block, impl) {
+ block_live_index[block->index] = state.num_defs;
+ nir_foreach_instr(instr, block) {
+ nir_dest *dest = dest_for_instr(instr);
+ if (!dest)
+ continue;
+
+ unsigned idx = dest_index(impl, dest);
+ /* register is already in defs */
+ if (live_map[idx] != ~0u)
+ continue;
+
+ defs[state.num_defs] = (struct live_def) {instr, dest, state.num_defs, 0};
+
+ /* input live from the start */
+ if (instr->type == nir_instr_type_intrinsic) {
+ nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
+ if (intr->intrinsic == nir_intrinsic_load_input ||
+ intr->intrinsic == nir_intrinsic_load_instance_id)
+ defs[state.num_defs].live_start = 0;
+ }
+
+ live_map[idx] = state.num_defs;
+ state.num_defs++;
+ }
+ }
+ block_live_index[impl->num_blocks] = state.num_defs;
+
+ nir_block_worklist_init(&state.worklist, impl->num_blocks, NULL);
+
+ /* We now know how many unique ssa definitions we have and we can go
+ * ahead and allocate live_in and live_out sets and add all of the
+ * blocks to the worklist.
+ */
+ state.bitset_words = BITSET_WORDS(state.num_defs);
+ nir_foreach_block(block, impl) {
+ init_liveness_block(block, &state);
+ }
+
+ /* We're now ready to work through the worklist and update the liveness
+ * sets of each of the blocks. By the time we get to this point, every
+ * block in the function implementation has been pushed onto the
+ * worklist in reverse order. As long as we keep the worklist
+ * up-to-date as we go, everything will get covered.
+ */
+ while (!nir_block_worklist_is_empty(&state.worklist)) {
+ /* We pop them off in the reverse order we pushed them on. This way
+ * the first walk of the instructions is backwards so we only walk
+ * once in the case of no control flow.
+ */
+ nir_block *block = nir_block_worklist_pop_head(&state.worklist);
+ state.block = block;
+
+ memcpy(block->live_in, block->live_out,
+ state.bitset_words * sizeof(BITSET_WORD));
+
+ state.index = block_live_index[block->index + 1];
+
+ nir_if *following_if = nir_block_get_following_if(block);
+ if (following_if)
+ set_src_live(&following_if->condition, &state);
+
+ nir_foreach_instr_reverse(instr, block) {
+ /* when we come across the next "live" instruction, decrement index */
+ if (state.index && instr == defs[state.index - 1].instr) {
+ state.index--;
+ /* the only source of writes to registers is phis:
+ * we don't expect any partial write_mask alus
+ * so clearing live_in here is OK
+ */
+ BITSET_CLEAR(block->live_in, state.index);
+ }
+
+ /* don't set_src_live for not-emitted instructions */
+ if (instr->pass_flags)
+ continue;
+
+ unsigned index = state.index;
+
+ /* output live till the end */
+ if (instr->type == nir_instr_type_intrinsic) {
+ nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
+ if (intr->intrinsic == nir_intrinsic_store_output)
+ state.index = ~0u;
+ }
+
+ nir_foreach_src(instr, set_src_live, &state);
+
+ state.index = index;
+ }
+ assert(state.index == block_live_index[block->index]);
+
+ /* Walk over all of the predecessors of the current block updating
+ * their live in with the live out of this one. If anything has
+ * changed, add the predecessor to the work list so that we ensure
+ * that the new information is used.
+ */
+ set_foreach(block->predecessors, entry) {
+ nir_block *pred = (nir_block *)entry->key;
+ if (propagate_across_edge(pred, block, &state))
+ nir_block_worklist_push_tail(&state.worklist, pred);
+ }
+ }
+
+ nir_block_worklist_fini(&state.worklist);
+
+ /* apply live_in/live_out to ranges */
+
+ nir_foreach_block(block, impl) {
+ BITSET_WORD tmp;
+ int i;
+
+ BITSET_FOREACH_SET(i, tmp, block->live_in, state.num_defs)
+ range_include(&state.defs[i], block_live_index[block->index]);
+
+ BITSET_FOREACH_SET(i, tmp, block->live_out, state.num_defs)
+ range_include(&state.defs[i], block_live_index[block->index + 1]);
+ }
+
+ return state.num_defs;
+}
+
+/* precomputed by register_allocate */
+static unsigned int *q_values[] = {
+ (unsigned int[]) { 1, 2, 3, 4, 2 },
+ (unsigned int[]) { 3, 5, 6, 6, 5 },
+ (unsigned int[]) { 3, 4, 4, 4, 4 },
+ (unsigned int[]) { 1, 1, 1, 1, 1 },
+ (unsigned int[]) { 1, 2, 2, 2, 1 },
+};
+
+static void
+ra_assign(struct state *state, nir_shader *shader)
+{
+ struct ra_regs *regs = ra_alloc_reg_set(NULL, option(max_temps) *
+ NUM_REG_TYPES, false);
+
+ /* classes always be created from index 0, so equal to the class enum
+ * which represents a register with (c+1) components
+ */
+ for (int c = 0; c < NUM_REG_CLASSES; c++)
+ ra_alloc_reg_class(regs);
+ /* add each register of each class */
+ for (int r = 0; r < NUM_REG_TYPES * option(max_temps); r++)
+ ra_class_add_reg(regs, reg_get_class(r), r);
+ /* set conflicts */
+ for (int r = 0; r < option(max_temps); r++) {
+ for (int i = 0; i < NUM_REG_TYPES; i++) {
+ for (int j = 0; j < i; j++) {
+ if (reg_writemask[i] & reg_writemask[j]) {
+ ra_add_reg_conflict(regs, NUM_REG_TYPES * r + i,
+ NUM_REG_TYPES * r + j);
+ }
+ }
+ }
+ }
+ ra_set_finalize(regs, q_values);
+
+ nir_function_impl *impl = nir_shader_get_entrypoint(shader);
+
+ /* liveness and interference */
+
+ nir_index_blocks(impl);
+ nir_index_ssa_defs(impl);
+ nir_foreach_block(block, impl) {
+ nir_foreach_instr(instr, block)
+ instr->pass_flags = 0;
+ }
+
+ /* this gives an approximation/upper limit on how many nodes are needed
+ * (some ssa values do not represent an allocated register)
+ */
+ unsigned max_nodes = impl->ssa_alloc + impl->reg_alloc;
+ unsigned *live_map = ralloc_array(NULL, unsigned, max_nodes);
+ memset(live_map, 0xff, sizeof(unsigned) * max_nodes);
+ struct live_def *defs = rzalloc_array(NULL, struct live_def, max_nodes);
+
+ unsigned num_nodes = live_defs(impl, defs, live_map);
+ struct ra_graph *g = ra_alloc_interference_graph(regs, num_nodes);
+
+ /* set classes from num_components */
+ for (unsigned i = 0; i < num_nodes; i++) {
+ nir_instr *instr = defs[i].instr;
+ nir_dest *dest = defs[i].dest;
+
+ ra_set_node_class(g, i, nir_dest_num_components(*dest) - 1);
+
+ if (instr->type == nir_instr_type_alu && option(etna_new_transcendentals)) {
+ switch (nir_instr_as_alu(instr)->op) {
+ case nir_op_fdiv:
+ case nir_op_flog2:
+ case nir_op_fsin:
+ case nir_op_fcos:
+ assert(dest->is_ssa);
+ ra_set_node_class(g, i, REG_CLASS_VIRT_VEC2T);
+ default:
+ break;
+ }
+ }
+ }
+
+ nir_foreach_block(block, impl) {
+ nir_foreach_instr(instr, block) {
+ if (instr->type != nir_instr_type_intrinsic)
+ continue;
+
+ nir_dest *dest = dest_for_instr(instr);
+ nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
+ unsigned reg;
+
+ switch (intr->intrinsic) {
+ case nir_intrinsic_store_output: {
+ /* don't want output to be swizzled
+ * TODO: better would be to set the type to X/XY/XYZ/XYZW
+ */
+ ra_set_node_class(g, live_map[src_index(impl, &intr->src[0])], REG_CLASS_VEC4);
+ } continue;
+ case nir_intrinsic_load_input:
+ reg = nir_intrinsic_base(intr) * NUM_REG_TYPES + (unsigned[]) {
+ REG_TYPE_VIRT_SCALAR_X,
+ REG_TYPE_VIRT_VEC2_XY,
+ REG_TYPE_VIRT_VEC3_XYZ,
+ REG_TYPE_VEC4,
+ }[nir_dest_num_components(*dest) - 1];
+ break;
+ case nir_intrinsic_load_instance_id:
+ reg = option(id_reg) * NUM_REG_TYPES + REG_TYPE_VIRT_SCALAR_Y;
+ break;
+ default:
+ continue;
+ }
+
+ ra_set_node_reg(g, live_map[dest_index(impl, dest)], reg);
+ }
+ }
+
+ /* add interference for intersecting live ranges */
+ for (unsigned i = 0; i < num_nodes; i++) {
+ assert(defs[i].live_start < defs[i].live_end);
+ for (unsigned j = 0; j < i; j++) {
+ if (defs[i].live_start >= defs[j].live_end || defs[j].live_start >= defs[i].live_end)
+ continue;
+ ra_add_node_interference(g, i, j);
+ }
+ }
+
+ ralloc_free(defs);
+
+ /* Allocate registers */
+ bool ok = ra_allocate(g);
+ assert(ok);
+
+ state->g = g;
+ state->regs = regs;
+ state->live_map = live_map;
+ state->num_nodes = num_nodes;
+}
+
+static unsigned
+ra_finish(struct state *state)
+{
+ /* TODO: better way to get number of registers used? */
+ unsigned j = 0;
+ for (unsigned i = 0; i < state->num_nodes; i++) {
+ j = MAX2(j, reg_get_base(state, ra_get_node_reg(state->g, i)) + 1);
+ }
+
+ ralloc_free(state->g);
+ ralloc_free(state->regs);
+ ralloc_free(state->live_map);
+
+ return j;
+}
+
+static void
+emit_alu(struct state *state, nir_alu_instr * alu)
+{
+ const nir_op_info *info = &nir_op_infos[alu->op];
+
+ /* marked as dead instruction (vecN and other bypassed instr) */
+ if (alu->instr.pass_flags)
+ return;
+
+ assert(!(alu->op >= nir_op_vec2 && alu->op <= nir_op_vec4));
+
+ unsigned dst_swiz;
+ hw_dst dst = ra_dest(state, &alu->dest.dest, &dst_swiz);
+
+ /* compose alu write_mask with RA write mask */
+ if (!alu->dest.dest.is_ssa)
+ dst.write_mask = inst_write_mask_compose(alu->dest.write_mask, dst.write_mask);
+
+ switch (alu->op) {
+ case nir_op_fdot2:
+ case nir_op_fdot3:
+ case nir_op_fdot4:
+ /* not per-component - don't compose dst_swiz */
+ dst_swiz = INST_SWIZ_IDENTITY;
+ break;
+ default:
+ break;
+ }
+
+ hw_src srcs[3];
+
+ for (int i = 0; i < info->num_inputs; i++) {
+ nir_alu_src *asrc = &alu->src[i];
+ hw_src src;
+
+ src = src_swizzle(get_src(state, &asrc->src), ALU_SWIZ(asrc));
+ src = src_swizzle(src, dst_swiz);
+
+ if (src.rgroup != INST_RGROUP_IMMEDIATE) {
+ src.neg = asrc->negate || (alu->op == nir_op_fneg);
+ src.abs = asrc->abs || (alu->op == nir_op_fabs);
+ } else {
+ assert(!asrc->negate && alu->op != nir_op_fneg);
+ assert(!asrc->abs && alu->op != nir_op_fabs);
+ }
+
+ srcs[i] = src;
+ }
+
+ emit(alu, alu->op, dst, srcs, alu->dest.saturate || (alu->op == nir_op_fsat));
+}
+
+static void
+emit_tex(struct state *state, nir_tex_instr * tex)
+{
+ unsigned dst_swiz;
+ hw_dst dst = ra_dest(state, &tex->dest, &dst_swiz);
+ nir_src *coord = NULL;
+ nir_src *lod_bias = NULL;
+
+ for (unsigned i = 0; i < tex->num_srcs; i++) {
+ switch (tex->src[i].src_type) {
+ case nir_tex_src_coord:
+ coord = &tex->src[i].src;
+ break;
+ case nir_tex_src_bias:
+ case nir_tex_src_lod:
+ assert(!lod_bias);
+ lod_bias = &tex->src[i].src;
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ }
+
+ emit(tex, tex->op, tex->sampler_index, dst_swiz, dst, get_src(state, coord),
+ lod_bias ? get_src(state, lod_bias) : SRC_DISABLE);
+}
+
+static void
+emit_intrinsic(struct state *state, nir_intrinsic_instr * intr)
+{
+ switch (intr->intrinsic) {
+ case nir_intrinsic_store_output:
+ emit(output, nir_intrinsic_base(intr), get_src(state, &intr->src[0]));
+ break;
+ case nir_intrinsic_discard_if:
+ emit(discard, get_src(state, &intr->src[0]));
+ break;
+ case nir_intrinsic_discard:
+ emit(discard, SRC_DISABLE);
+ break;
+ case nir_intrinsic_load_uniform: {
+ unsigned dst_swiz;
+ hw_dst dst = ra_dest(state, &intr->dest, &dst_swiz);
+ /* TODO: might have a problem with dst_swiz .. */
+ emit(load_ubo, dst, get_src(state, &intr->src[0]), const_src(state, &UNIFORM_BASE(nir_intrinsic_base(intr) * 16), 1));
+ } break;
+ case nir_intrinsic_load_front_face:
+ case nir_intrinsic_load_frag_coord:
+ assert(intr->dest.is_ssa); /* TODO - lower phis could cause this */
+ break;
+ case nir_intrinsic_load_input:
+ case nir_intrinsic_load_instance_id:
+ break;
+ default:
+ assert(0);
+ }
+}
+
+static void
+emit_instr(struct state *state, nir_instr * instr)
+{
+ switch (instr->type) {
+ case nir_instr_type_alu:
+ emit_alu(state, nir_instr_as_alu(instr));
+ break;
+ case nir_instr_type_tex:
+ emit_tex(state, nir_instr_as_tex(instr));
+ break;
+ case nir_instr_type_intrinsic:
+ emit_intrinsic(state, nir_instr_as_intrinsic(instr));
+ break;
+ case nir_instr_type_jump:
+ assert(nir_instr_is_last(instr));
+ case nir_instr_type_load_const:
+ case nir_instr_type_ssa_undef:
+ break;
+ default:
+ assert(0);
+ break;
+ }
+}
+
+static void
+emit_block(struct state *state, nir_block * block)
+{
+ emit(block_start, block->index);
+
+ nir_foreach_instr(instr, block)
+ emit_instr(state, instr);
+
+ /* succs->index < block->index is for the loop case */
+ nir_block *succs = block->successors[0];
+ if (nir_block_ends_in_jump(block) || succs->index < block->index)
+ emit(jump, succs->index, SRC_DISABLE);
+}
+
+static void
+emit_cf_list(struct state *state, struct exec_list *list);
+
+static void
+emit_if(struct state *state, nir_if * nif)
+{
+ emit(jump, nir_if_first_else_block(nif)->index, get_src(state, &nif->condition));
+ emit_cf_list(state, &nif->then_list);
+
+ /* jump at end of then_list to skip else_list
+ * not needed if then_list already ends with a jump or else_list is empty
+ */
+ if (!nir_block_ends_in_jump(nir_if_last_then_block(nif)) &&
+ !nir_cf_list_is_empty_block(&nif->else_list))
+ emit(jump, nir_if_last_else_block(nif)->successors[0]->index, SRC_DISABLE);
+
+ emit_cf_list(state, &nif->else_list);
+}
+
+static void
+emit_cf_list(struct state *state, struct exec_list *list)
+{
+ foreach_list_typed(nir_cf_node, node, node, list) {
+ switch (node->type) {
+ case nir_cf_node_block:
+ emit_block(state, nir_cf_node_as_block(node));
+ break;
+ case nir_cf_node_if:
+ emit_if(state, nir_cf_node_as_if(node));
+ break;
+ case nir_cf_node_loop:
+ emit_cf_list(state, &nir_cf_node_as_loop(node)->body);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ }
+}
+
+/* based on nir_lower_vec_to_movs */
+static unsigned
+insert_vec_mov(nir_alu_instr *vec, unsigned start_idx, nir_shader *shader)
+{
+ assert(start_idx < nir_op_infos[vec->op].num_inputs);
+ unsigned write_mask = (1u << start_idx);
+
+ nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov);
+ nir_alu_src_copy(&mov->src[0], &vec->src[start_idx], mov);
+
+ mov->src[0].swizzle[0] = vec->src[start_idx].swizzle[0];
+ mov->src[0].negate = vec->src[start_idx].negate;
+ mov->src[0].abs = vec->src[start_idx].abs;
+
+ unsigned num_components = 1;
+
+ for (unsigned i = start_idx + 1; i < 4; i++) {
+ if (!(vec->dest.write_mask & (1 << i)))
+ continue;
+
+ if (nir_srcs_equal(vec->src[i].src, vec->src[start_idx].src) &&
+ vec->src[i].negate == vec->src[start_idx].negate &&
+ vec->src[i].abs == vec->src[start_idx].abs) {
+ write_mask |= (1 << i);
+ mov->src[0].swizzle[num_components] = vec->src[i].swizzle[0];
+ num_components++;
+ }
+ }
+
+ mov->dest.write_mask = (1 << num_components) - 1;
+ nir_ssa_dest_init(&mov->instr, &mov->dest.dest, num_components, 32, NULL);
+
+ /* replace vec srcs with inserted mov */
+ for (unsigned i = 0, j = 0; i < 4; i++) {
+ if (!(write_mask & (1 << i)))
+ continue;
+
+ nir_instr_rewrite_src(&vec->instr, &vec->src[i].src, nir_src_for_ssa(&mov->dest.dest.ssa));
+ vec->src[i].swizzle[0] = j++;
+ }
+
+ nir_instr_insert_before(&vec->instr, &mov->instr);
+
+ return write_mask;
+}
+
+/*
+ * for vecN instructions:
+ * -merge constant sources into a single src
+ * -insert movs (nir_lower_vec_to_movs equivalent)
+ * for non-vecN instructions:
+ * -try to merge constants as single constant
+ * -insert movs for multiple constants (pre-HALTI5)
+ */
+static void
+lower_alu(struct state *state, nir_alu_instr *alu)
+{
+ const nir_op_info *info = &nir_op_infos[alu->op];
+
+ nir_builder b;
+ nir_builder_init(&b, state->impl);
+ b.cursor = nir_before_instr(&alu->instr);
+
+ switch (alu->op) {
+ case nir_op_vec2:
+ case nir_op_vec3:
+ case nir_op_vec4: {
+ nir_const_value value[4];
+ unsigned num_components = 0;
+
+ for (unsigned i = 0; i < info->num_inputs; i++) {
+ nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
+ if (cv)
+ value[num_components++] = cv[alu->src[i].swizzle[0]];
+ }
+
+ if (num_components <= 1) /* nothing to do */
+ break;
+
+ nir_ssa_def *def = nir_build_imm(&b, num_components, 32, value);
+
+ if (num_components == info->num_inputs) {
+ nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(def));
+ nir_instr_remove(&alu->instr);
+ return;
+ }
+
+ for (unsigned i = 0, j = 0; i < info->num_inputs; i++) {
+ nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
+ if (!cv)
+ continue;
+
+ nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(def));
+ alu->src[i].swizzle[0] = j++;
+ }
+ } break;
+ default: {
+ if (!option(single_const_src))
+ return;
+
+ /* pre-GC7000L can only have 1 uniform src per instruction */
+ nir_const_value value[4] = {};
+ uint8_t swizzle[4][4] = {};
+ unsigned swiz_max = 0, num_const = 0;
+
+ for (unsigned i = 0; i < info->num_inputs; i++) {
+ nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
+ if (!cv)
+ continue;
+
+ unsigned num_components = info->input_sizes[i] ?: alu->dest.dest.ssa.num_components;
+ for (unsigned j = 0; j < num_components; j++) {
+ int idx = const_add(&value[0].u64, cv[alu->src[i].swizzle[j]].u64);
+ swizzle[i][j] = idx;
+ swiz_max = MAX2(swiz_max, (unsigned) idx);
+ }
+ num_const++;
+ }
+
+ /* nothing to do */
+ if (num_const <= 1)
+ return;
+
+ /* resolve with single combined const src */
+ if (swiz_max < 4) {
+ nir_ssa_def *def = nir_build_imm(&b, swiz_max + 1, 32, value);
+
+ for (unsigned i = 0; i < info->num_inputs; i++) {
+ nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
+ if (!cv)
+ continue;
+
+ nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(def));
+
+ for (unsigned j = 0; j < 4; j++)
+ alu->src[i].swizzle[j] = swizzle[i][j];
+ }
+ return;
+ }
+
+ /* resolve with movs */
+ num_const = 0;
+ for (unsigned i = 0; i < info->num_inputs; i++) {
+ nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
+ if (!cv)
+ continue;
+
+ num_const++;
+ if (num_const == 1)
+ continue;
+
+ nir_ssa_def *mov = nir_mov(&b, alu->src[i].src.ssa);
+ nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(mov));
+ }
+ } return;
+ }
+
+ unsigned finished_write_mask = 0;
+ for (unsigned i = 0; i < 4; i++) {
+ if (!(alu->dest.write_mask & (1 << i)))
+ continue;
+
+ nir_ssa_def *ssa = alu->src[i].src.ssa;
+
+ /* check that vecN instruction is only user of this */
+ bool need_mov = list_length(&ssa->if_uses) != 0;
+ nir_foreach_use(use_src, ssa) {
+ if (use_src->parent_instr != &alu->instr)
+ need_mov = true;
+ }
+
+ nir_instr *instr = ssa->parent_instr;
+ switch (instr->type) {
+ case nir_instr_type_alu:
+ case nir_instr_type_tex:
+ break;
+ case nir_instr_type_intrinsic:
+ if (nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_load_input) {
+ need_mov = vec_dest_has_swizzle(alu, &nir_instr_as_intrinsic(instr)->dest.ssa);
+ break;
+ }
+ default:
+ need_mov = true;
+ }
+
+ if (need_mov && !(finished_write_mask & (1 << i)))
+ finished_write_mask |= insert_vec_mov(alu, i, state->shader);
+ }
+}
+
+static bool
+emit_shader(nir_shader *shader, const struct emit_options *options,
+ unsigned *num_temps, unsigned *num_consts)
+{
+ struct state state = {
+ .options = options,
+ .shader = shader,
+ .impl = nir_shader_get_entrypoint(shader),
+ };
+
+ nir_builder b;
+ nir_builder_init(&b, state.impl);
+
+ /* convert non-dynamic uniform loads to constants, etc */
+ nir_foreach_block(block, state.impl) {
+ nir_foreach_instr_safe(instr, block) {
+ switch(instr->type) {
+ case nir_instr_type_alu:
+ /* deals with vecN and const srcs */
+ lower_alu(&state, nir_instr_as_alu(instr));
+ break;
+ case nir_instr_type_load_const: {
+ nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
+ for (unsigned i = 0; i < load_const->def.num_components; i++)
+ load_const->value[i] = CONST(load_const->value[i].u32);
+ } break;
+ case nir_instr_type_intrinsic: {
+ nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
+ if (intr->intrinsic != nir_intrinsic_load_uniform)
+ break;
+ nir_const_value *off = nir_src_as_const_value(intr->src[0]);
+ if (!off || off[0].u64 >> 32 != ETNA_IMMEDIATE_CONSTANT)
+ break;
+
+ unsigned base = nir_intrinsic_base(intr) + off[0].u32 / 16;
+ nir_const_value value[4];
+
+ for (unsigned i = 0; i < intr->dest.ssa.num_components; i++) {
+ if (nir_intrinsic_base(intr) < 0)
+ value[i] = TEXSCALE(~nir_intrinsic_base(intr), i);
+ else
+ value[i] = UNIFORM(base * 4 + i);
+ }
+
+ b.cursor = nir_after_instr(instr);
+ nir_ssa_def *def = nir_build_imm(&b, intr->dest.ssa.num_components, 32, value);
+
+ nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_src_for_ssa(def));
+ nir_instr_remove(instr);
+ } break;
+ default:
+ break;
+ }
+ }
+ }
+
+ /* add mov for any store output using sysval/const */
+ nir_foreach_block(block, state.impl) {
+ nir_foreach_instr_safe(instr, block) {
+ if (instr->type != nir_instr_type_intrinsic)
+ continue;
+
+ nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
+
+ switch (intr->intrinsic) {
+ case nir_intrinsic_store_output: {
+ nir_src *src = &intr->src[0];
+ if (nir_src_is_const(*src) || is_sysval(src->ssa->parent_instr)) {
+ b.cursor = nir_before_instr(instr);
+ nir_instr_rewrite_src(instr, src, nir_src_for_ssa(nir_mov(&b, src->ssa)));
+ }
+ } break;
+ default:
+ break;
+ }
+ }
+ }
+
+ /* call directly to avoid validation (load_const don't pass validation at this point) */
+ nir_convert_from_ssa(shader, true);
+ nir_opt_dce(shader);
+
+ ra_assign(&state, shader);
+
+ emit_cf_list(&state, &nir_shader_get_entrypoint(shader)->body);
+
+ *num_temps = ra_finish(&state);
+ *num_consts = state.const_count;
+ return true;
+}