return NULL;
}
-/* All pointers in the ptr_free_list are assumed to be page-aligned. This
- * means that the bottom 12 bits should all be zero.
- */
-#define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
-#define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
-#define PFL_PACK(ptr, count) ({ \
- (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
-})
-
-static bool
-anv_ptr_free_list_pop(void **list, void **elem)
-{
- void *current = *list;
- while (PFL_PTR(current) != NULL) {
- void **next_ptr = PFL_PTR(current);
- void *new_ptr = VG_NOACCESS_READ(next_ptr);
- unsigned new_count = PFL_COUNT(current) + 1;
- void *new = PFL_PACK(new_ptr, new_count);
- void *old = __sync_val_compare_and_swap(list, current, new);
- if (old == current) {
- *elem = PFL_PTR(current);
- return true;
- }
- current = old;
- }
-
- return false;
-}
-
-static void
-anv_ptr_free_list_push(void **list, void *elem)
-{
- void *old, *current;
- void **next_ptr = elem;
-
- /* The pointer-based free list requires that the pointer be
- * page-aligned. This is because we use the bottom 12 bits of the
- * pointer to store a counter to solve the ABA concurrency problem.
- */
- assert(((uintptr_t)elem & 0xfff) == 0);
-
- old = *list;
- do {
- current = old;
- VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
- unsigned new_count = PFL_COUNT(current) + 1;
- void *new = PFL_PACK(elem, new_count);
- old = __sync_val_compare_and_swap(list, current, new);
- } while (old != current);
-}
-
static VkResult
anv_block_pool_expand_range(struct anv_block_pool *pool,
uint32_t center_bo_offset, uint32_t size);
return state;
}
-struct bo_pool_bo_link {
- struct bo_pool_bo_link *next;
- struct anv_bo bo;
-};
-
void
anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
uint64_t bo_flags)
{
pool->device = device;
pool->bo_flags = bo_flags;
- memset(pool->free_list, 0, sizeof(pool->free_list));
+ for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
+ util_sparse_array_free_list_init(&pool->free_list[i],
+ &device->bo_cache.bo_map, 0,
+ offsetof(struct anv_bo, free_index));
+ }
VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
}
anv_bo_pool_finish(struct anv_bo_pool *pool)
{
for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
- struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
- while (link != NULL) {
- struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
-
- anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
- anv_vma_free(pool->device, &link_copy.bo);
- anv_gem_close(pool->device, link_copy.bo.gem_handle);
- link = link_copy.next;
+ while (1) {
+ struct anv_bo *bo =
+ util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
+ if (bo == NULL)
+ break;
+
+ /* anv_device_release_bo is going to "free" it */
+ VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
+ anv_device_release_bo(pool->device, bo);
}
}
}
VkResult
-anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
+anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
+ struct anv_bo **bo_out)
{
- VkResult result;
-
const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
const unsigned pow2_size = 1 << size_log2;
const unsigned bucket = size_log2 - 12;
assert(bucket < ARRAY_SIZE(pool->free_list));
- void *next_free_void;
- if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
- struct bo_pool_bo_link *next_free = next_free_void;
- *bo = VG_NOACCESS_READ(&next_free->bo);
- assert(bo->gem_handle);
- assert(bo->map == next_free);
- assert(size <= bo->size);
-
+ struct anv_bo *bo =
+ util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
+ if (bo != NULL) {
VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
-
+ *bo_out = bo;
return VK_SUCCESS;
}
- struct anv_bo new_bo;
-
- result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
+ VkResult result = anv_device_alloc_bo(pool->device,
+ pow2_size,
+ ANV_BO_ALLOC_MAPPED |
+ ANV_BO_ALLOC_SNOOPED,
+ &bo);
if (result != VK_SUCCESS)
return result;
- new_bo.flags = pool->bo_flags;
-
- if (!anv_vma_alloc(pool->device, &new_bo))
- return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
-
- assert(new_bo.size == pow2_size);
-
- new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
- if (new_bo.map == MAP_FAILED) {
- anv_gem_close(pool->device, new_bo.gem_handle);
- anv_vma_free(pool->device, &new_bo);
- return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
- }
-
- /* We are removing the state flushes, so lets make sure that these buffers
- * are cached/snooped.
- */
- if (!pool->device->info.has_llc) {
- anv_gem_set_caching(pool->device, new_bo.gem_handle,
- I915_CACHING_CACHED);
- }
-
- *bo = new_bo;
-
+ /* We want it to look like it came from this pool */
+ VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
+ *bo_out = bo;
+
return VK_SUCCESS;
}
void
-anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
+anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
{
- /* Make a copy in case the anv_bo happens to be storred in the BO */
- struct anv_bo bo = *bo_in;
-
- VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
-
- struct bo_pool_bo_link *link = bo.map;
- VG_NOACCESS_WRITE(&link->bo, bo);
+ VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
- assert(util_is_power_of_two_or_zero(bo.size));
- const unsigned size_log2 = ilog2_round_up(bo.size);
+ assert(util_is_power_of_two_or_zero(bo->size));
+ const unsigned size_log2 = ilog2_round_up(bo->size);
const unsigned bucket = size_log2 - 12;
assert(bucket < ARRAY_SIZE(pool->free_list));
- anv_ptr_free_list_push(&pool->free_list[bucket], link);
+ assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
+ bo->gem_handle) == bo);
+ util_sparse_array_free_list_push(&pool->free_list[bucket],
+ &bo->gem_handle, 1);
}
// Scratch pool
if (bbo == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
- result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, &bbo->bo,
- ANV_CMD_BUFFER_BATCH_SIZE);
+ result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool,
+ ANV_CMD_BUFFER_BATCH_SIZE, &bbo->bo);
if (result != VK_SUCCESS)
goto fail_alloc;
return VK_SUCCESS;
fail_bo_alloc:
- anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
+ anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo);
fail_alloc:
vk_free(&cmd_buffer->pool->alloc, bbo);
if (bbo == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
- result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, &bbo->bo,
- other_bbo->bo.size);
+ result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool,
+ other_bbo->bo->size, &bbo->bo);
if (result != VK_SUCCESS)
goto fail_alloc;
goto fail_bo_alloc;
bbo->length = other_bbo->length;
- memcpy(bbo->bo.map, other_bbo->bo.map, other_bbo->length);
-
+ memcpy(bbo->bo->map, other_bbo->bo->map, other_bbo->length);
*bbo_out = bbo;
return VK_SUCCESS;
fail_bo_alloc:
- anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
+ anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo);
fail_alloc:
vk_free(&cmd_buffer->pool->alloc, bbo);
anv_batch_bo_start(struct anv_batch_bo *bbo, struct anv_batch *batch,
size_t batch_padding)
{
- batch->next = batch->start = bbo->bo.map;
- batch->end = bbo->bo.map + bbo->bo.size - batch_padding;
+ batch->next = batch->start = bbo->bo->map;
+ batch->end = bbo->bo->map + bbo->bo->size - batch_padding;
batch->relocs = &bbo->relocs;
bbo->relocs.num_relocs = 0;
_mesa_set_clear(bbo->relocs.deps, NULL);
anv_batch_bo_continue(struct anv_batch_bo *bbo, struct anv_batch *batch,
size_t batch_padding)
{
- batch->start = bbo->bo.map;
- batch->next = bbo->bo.map + bbo->length;
- batch->end = bbo->bo.map + bbo->bo.size - batch_padding;
+ batch->start = bbo->bo->map;
+ batch->next = bbo->bo->map + bbo->length;
+ batch->end = bbo->bo->map + bbo->bo->size - batch_padding;
batch->relocs = &bbo->relocs;
}
static void
anv_batch_bo_finish(struct anv_batch_bo *bbo, struct anv_batch *batch)
{
- assert(batch->start == bbo->bo.map);
+ assert(batch->start == bbo->bo->map);
bbo->length = batch->next - batch->start;
VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->start, bbo->length));
}
struct anv_batch *batch, size_t aditional,
size_t batch_padding)
{
- assert(batch->start == bbo->bo.map);
+ assert(batch->start == bbo->bo->map);
bbo->length = batch->next - batch->start;
- size_t new_size = bbo->bo.size;
+ size_t new_size = bbo->bo->size;
while (new_size <= bbo->length + aditional + batch_padding)
new_size *= 2;
- if (new_size == bbo->bo.size)
+ if (new_size == bbo->bo->size)
return VK_SUCCESS;
- struct anv_bo new_bo;
+ struct anv_bo *new_bo;
VkResult result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool,
- &new_bo, new_size);
+ new_size, &new_bo);
if (result != VK_SUCCESS)
return result;
- memcpy(new_bo.map, bbo->bo.map, bbo->length);
+ memcpy(new_bo->map, bbo->bo->map, bbo->length);
- anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
+ anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo);
bbo->bo = new_bo;
anv_batch_bo_continue(bbo, batch, batch_padding);
{
const uint32_t bb_start_offset =
prev_bbo->length - GEN8_MI_BATCH_BUFFER_START_length * 4;
- ASSERTED const uint32_t *bb_start = prev_bbo->bo.map + bb_start_offset;
+ ASSERTED const uint32_t *bb_start = prev_bbo->bo->map + bb_start_offset;
/* Make sure we're looking at a MI_BATCH_BUFFER_START */
assert(((*bb_start >> 29) & 0x07) == 0);
assert(((*bb_start >> 23) & 0x3f) == 49);
if (cmd_buffer->device->instance->physicalDevice.use_softpin) {
- assert(prev_bbo->bo.flags & EXEC_OBJECT_PINNED);
- assert(next_bbo->bo.flags & EXEC_OBJECT_PINNED);
+ assert(prev_bbo->bo->flags & EXEC_OBJECT_PINNED);
+ assert(next_bbo->bo->flags & EXEC_OBJECT_PINNED);
write_reloc(cmd_buffer->device,
- prev_bbo->bo.map + bb_start_offset + 4,
- next_bbo->bo.offset + next_bbo_offset, true);
+ prev_bbo->bo->map + bb_start_offset + 4,
+ next_bbo->bo->offset + next_bbo_offset, true);
} else {
uint32_t reloc_idx = prev_bbo->relocs.num_relocs - 1;
assert(prev_bbo->relocs.relocs[reloc_idx].offset == bb_start_offset + 4);
- prev_bbo->relocs.reloc_bos[reloc_idx] = &next_bbo->bo;
+ prev_bbo->relocs.reloc_bos[reloc_idx] = next_bbo->bo;
prev_bbo->relocs.relocs[reloc_idx].delta = next_bbo_offset;
/* Use a bogus presumed offset to force a relocation */
struct anv_cmd_buffer *cmd_buffer)
{
anv_reloc_list_finish(&bbo->relocs, &cmd_buffer->pool->alloc);
- anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
+ anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo);
vk_free(&cmd_buffer->pool->alloc, bbo);
}
* chaining command, let's set it back where it should go.
*/
batch->end += GEN8_MI_BATCH_BUFFER_START_length * 4;
- assert(batch->end == current_bbo->bo.map + current_bbo->bo.size);
+ assert(batch->end == current_bbo->bo->map + current_bbo->bo->size);
- emit_batch_buffer_start(cmd_buffer, &bbo->bo, 0);
+ emit_batch_buffer_start(cmd_buffer, bbo->bo, 0);
anv_batch_bo_finish(current_bbo, batch);
}
* with our BATCH_BUFFER_END in another BO.
*/
cmd_buffer->batch.end += GEN8_MI_BATCH_BUFFER_START_length * 4;
- assert(cmd_buffer->batch.end == batch_bo->bo.map + batch_bo->bo.size);
+ assert(cmd_buffer->batch.end == batch_bo->bo->map + batch_bo->bo->size);
anv_batch_emit(&cmd_buffer->batch, GEN8_MI_BATCH_BUFFER_END, bbe);
* chaining command, let's set it back where it should go.
*/
cmd_buffer->batch.end += GEN8_MI_BATCH_BUFFER_START_length * 4;
- assert(cmd_buffer->batch.start == batch_bo->bo.map);
- assert(cmd_buffer->batch.end == batch_bo->bo.map + batch_bo->bo.size);
+ assert(cmd_buffer->batch.start == batch_bo->bo->map);
+ assert(cmd_buffer->batch.end == batch_bo->bo->map + batch_bo->bo->size);
- emit_batch_buffer_start(cmd_buffer, &batch_bo->bo, 0);
- assert(cmd_buffer->batch.start == batch_bo->bo.map);
+ emit_batch_buffer_start(cmd_buffer, batch_bo->bo, 0);
+ assert(cmd_buffer->batch.start == batch_bo->bo->map);
} else {
cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN;
}
struct anv_batch_bo *last_bbo =
list_last_entry(&secondary->batch_bos, struct anv_batch_bo, link);
- emit_batch_buffer_start(primary, &first_bbo->bo, 0);
+ emit_batch_buffer_start(primary, first_bbo->bo, 0);
struct anv_batch_bo *this_bbo = anv_cmd_buffer_current_batch_bo(primary);
- assert(primary->batch.start == this_bbo->bo.map);
+ assert(primary->batch.start == this_bbo->bo->map);
uint32_t offset = primary->batch.next - primary->batch.start;
/* Make the tail of the secondary point back to right after the
struct anv_batch_bo **bbo;
u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
anv_reloc_list_apply(cmd_buffer->device,
- &(*bbo)->relocs, &(*bbo)->bo, false);
+ &(*bbo)->relocs, (*bbo)->bo, false);
}
for (uint32_t i = 0; i < exec->bo_count; i++)
*/
struct anv_batch_bo **bbo;
u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
- adjust_relocations_to_state_pool(ss_pool, &(*bbo)->bo, &(*bbo)->relocs,
+ adjust_relocations_to_state_pool(ss_pool, (*bbo)->bo, &(*bbo)->relocs,
cmd_buffer->last_ss_pool_center);
- result = anv_execbuf_add_bo(execbuf, &(*bbo)->bo, &(*bbo)->relocs, 0,
+ result = anv_execbuf_add_bo(execbuf, (*bbo)->bo, &(*bbo)->relocs, 0,
&cmd_buffer->device->alloc);
if (result != VK_SUCCESS)
return result;
* corresponding to the first batch_bo in the chain with the last
* element in the list.
*/
- if (first_batch_bo->bo.index != execbuf->bo_count - 1) {
- uint32_t idx = first_batch_bo->bo.index;
+ if (first_batch_bo->bo->index != execbuf->bo_count - 1) {
+ uint32_t idx = first_batch_bo->bo->index;
uint32_t last_idx = execbuf->bo_count - 1;
struct drm_i915_gem_exec_object2 tmp_obj = execbuf->objects[idx];
- assert(execbuf->bos[idx] == &first_batch_bo->bo);
+ assert(execbuf->bos[idx] == first_batch_bo->bo);
execbuf->objects[idx] = execbuf->objects[last_idx];
execbuf->bos[idx] = execbuf->bos[last_idx];
execbuf->bos[idx]->index = idx;
execbuf->objects[last_idx] = tmp_obj;
- execbuf->bos[last_idx] = &first_batch_bo->bo;
- first_batch_bo->bo.index = last_idx;
+ execbuf->bos[last_idx] = first_batch_bo->bo;
+ first_batch_bo->bo->index = last_idx;
}
/* If we are pinning our BOs, we shouldn't have to relocate anything */
__builtin_ia32_mfence();
u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
for (uint32_t i = 0; i < (*bbo)->length; i += CACHELINE_SIZE)
- __builtin_ia32_clflush((*bbo)->bo.map + i);
+ __builtin_ia32_clflush((*bbo)->bo->map + i);
}
}
switch (impl->type) {
case ANV_FENCE_TYPE_BO:
assert(!pdevice->has_syncobj_wait);
- result = anv_execbuf_add_bo(&execbuf, &impl->bo.bo, NULL,
+ result = anv_execbuf_add_bo(&execbuf, impl->bo.bo, NULL,
EXEC_OBJECT_WRITE, &device->alloc);
if (result != VK_SUCCESS)
return result;
struct anv_batch_bo **bo = u_vector_tail(&cmd_buffer->seen_bbos);
device->cmd_buffer_being_decoded = cmd_buffer;
- gen_print_batch(&device->decoder_ctx, (*bo)->bo.map,
- (*bo)->bo.size, (*bo)->bo.offset, false);
+ gen_print_batch(&device->decoder_ctx, (*bo)->bo->map,
+ (*bo)->bo->size, (*bo)->bo->offset, false);
device->cmd_buffer_being_decoded = NULL;
}
u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
/* The decoder zeroes out the top 16 bits, so we need to as well */
- uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
+ uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
- if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
+ if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
return (struct gen_batch_decode_bo) {
.addr = bo_address,
- .size = (*bo)->bo.size,
- .map = (*bo)->bo.map,
+ .size = (*bo)->bo->size,
+ .map = (*bo)->bo->map,
};
}
}
(physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
(physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
- anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
-
result = anv_bo_cache_init(&device->bo_cache);
if (result != VK_SUCCESS)
- goto fail_batch_bo_pool;
+ goto fail_queue_cond;
+
+ anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
result = anv_state_pool_init(&device->dynamic_state_pool, device,
DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
if (result != VK_SUCCESS)
- goto fail_bo_cache;
+ goto fail_batch_bo_pool;
result = anv_state_pool_init(&device->instruction_state_pool, device,
INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
anv_state_pool_finish(&device->instruction_state_pool);
fail_dynamic_state_pool:
anv_state_pool_finish(&device->dynamic_state_pool);
- fail_bo_cache:
- anv_bo_cache_finish(&device->bo_cache);
fail_batch_bo_pool:
anv_bo_pool_finish(&device->batch_bo_pool);
+ anv_bo_cache_finish(&device->bo_cache);
+ fail_queue_cond:
pthread_cond_destroy(&device->queue_submit);
fail_mutex:
pthread_mutex_destroy(&device->mutex);
anv_state_pool_finish(&device->instruction_state_pool);
anv_state_pool_finish(&device->dynamic_state_pool);
- anv_bo_cache_finish(&device->bo_cache);
-
anv_bo_pool_finish(&device->batch_bo_pool);
+ anv_bo_cache_finish(&device->bo_cache);
+
if (physical_device->use_softpin) {
util_vma_heap_finish(&device->vma_hi);
util_vma_heap_finish(&device->vma_lo);
*/
uint32_t index;
+ /* Index for use with util_sparse_array_free_list */
+ uint32_t free_index;
+
/* Last known offset. This value is provided by the kernel when we
* execbuf and is used as the presumed offset for the next bunch of
* relocations.
uint64_t bo_flags;
- void *free_list[16];
+ struct util_sparse_array_free_list free_list[16];
};
void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
uint64_t bo_flags);
void anv_bo_pool_finish(struct anv_bo_pool *pool);
-VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
- uint32_t size);
-void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
+VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
+ struct anv_bo **bo_out);
+void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
struct anv_scratch_bo {
bool exists;
/* Link in the anv_cmd_buffer.owned_batch_bos list */
struct list_head link;
- struct anv_bo bo;
+ struct anv_bo * bo;
/* Bytes actually consumed in this batch BO */
uint32_t length;
* will say it's idle in this case.
*/
struct {
- struct anv_bo bo;
+ struct anv_bo *bo;
enum anv_bo_fence_state state;
} bo;
{
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 exec2_objects[1];
- struct anv_bo bo, *exec_bos[1];
+ struct anv_bo *bo;
VkResult result = VK_SUCCESS;
uint32_t size;
/* Kernel driver requires 8 byte aligned batch length */
size = align_u32(batch->next - batch->start, 8);
- result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
+ result = anv_bo_pool_alloc(&device->batch_bo_pool, size, &bo);
if (result != VK_SUCCESS)
return result;
- memcpy(bo.map, batch->start, size);
+ memcpy(bo->map, batch->start, size);
if (!device->info.has_llc)
- gen_flush_range(bo.map, size);
+ gen_flush_range(bo->map, size);
- exec_bos[0] = &bo;
- exec2_objects[0].handle = bo.gem_handle;
+ exec2_objects[0].handle = bo->gem_handle;
exec2_objects[0].relocation_count = 0;
exec2_objects[0].relocs_ptr = 0;
exec2_objects[0].alignment = 0;
- exec2_objects[0].offset = bo.offset;
- exec2_objects[0].flags = bo.flags;
+ exec2_objects[0].offset = bo->offset;
+ exec2_objects[0].flags = bo->flags;
exec2_objects[0].rsvd1 = 0;
exec2_objects[0].rsvd2 = 0;
execbuf.rsvd1 = device->context_id;
execbuf.rsvd2 = 0;
- if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
- gen_print_batch(&device->decoder_ctx, bo.map, bo.size, bo.offset, false);
+ if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
+ gen_print_batch(&device->decoder_ctx, bo->map,
+ bo->size, bo->offset, false);
+ }
- result = anv_device_execbuf(device, &execbuf, exec_bos);
+ result = anv_device_execbuf(device, &execbuf, &bo);
if (result != VK_SUCCESS)
goto fail;
- result = anv_device_wait(device, &bo, INT64_MAX);
+ result = anv_device_wait(device, bo, INT64_MAX);
fail:
- anv_bo_pool_free(&device->batch_bo_pool, &bo);
+ anv_bo_pool_free(&device->batch_bo_pool, bo);
return result;
}
} else {
fence->permanent.type = ANV_FENCE_TYPE_BO;
- VkResult result = anv_bo_pool_alloc(&device->batch_bo_pool,
- &fence->permanent.bo.bo, 4096);
+ VkResult result = anv_bo_pool_alloc(&device->batch_bo_pool, 4096,
+ &fence->permanent.bo.bo);
if (result != VK_SUCCESS)
return result;
break;
case ANV_FENCE_TYPE_BO:
- anv_bo_pool_free(&device->batch_bo_pool, &impl->bo.bo);
+ anv_bo_pool_free(&device->batch_bo_pool, impl->bo.bo);
break;
case ANV_FENCE_TYPE_SYNCOBJ:
return VK_SUCCESS;
case ANV_BO_FENCE_STATE_SUBMITTED: {
- VkResult result = anv_device_bo_busy(device, &impl->bo.bo);
+ VkResult result = anv_device_bo_busy(device, impl->bo.bo);
if (result == VK_SUCCESS) {
impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
return VK_SUCCESS;
/* These are the fences we really care about. Go ahead and wait
* on it until we hit a timeout.
*/
- result = anv_device_wait(device, &impl->bo.bo,
+ result = anv_device_wait(device, impl->bo.bo,
anv_get_relative_timeout(abs_timeout_ns));
switch (result) {
case VK_SUCCESS: