/*
* Mesa 3-D graphics library
- * Version: 6.1
+ * Version: 6.3
*
- * Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
+ * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
#include "s_texture.h"
-/*
- * These values are used in the fixed-point arithmetic used
- * for linear filtering.
+/**
+ * Constants for integer linear interpolation.
*/
-#define WEIGHT_SCALE 65536.0F
-#define WEIGHT_SHIFT 16
+#define ILERP_SCALE 65536.0F
+#define ILERP_SHIFT 16
-/*
+/**
+ * Linear interpolation macros
+ */
+#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) )
+#define ILERP(IT, A, B) ( (A) + (((IT) * ((B) - (A))) >> ILERP_SHIFT) )
+
+
+/**
+ * Do 2D/biliner interpolation of float values.
+ * v00, v10, v01 and v11 are typically four texture samples in a square/box.
+ * a and b are the horizontal and vertical interpolants.
+ * It's important that this function is inlined when compiled with
+ * optimization! If we find that's not true on some systems, convert
+ * to a macro.
+ */
+static INLINE GLfloat
+lerp_2d(GLfloat a, GLfloat b,
+ GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11)
+{
+ const GLfloat temp0 = LERP(a, v00, v10);
+ const GLfloat temp1 = LERP(a, v01, v11);
+ return LERP(b, temp0, temp1);
+}
+
+
+/**
+ * Do 2D/biliner interpolation of integer values.
+ * \sa lerp_2d
+ */
+static INLINE GLint
+ilerp_2d(GLint ia, GLint ib,
+ GLint v00, GLint v10, GLint v01, GLint v11)
+{
+ /* fixed point interpolants in [0, ILERP_SCALE] */
+ const GLint temp0 = ILERP(ia, v00, v10);
+ const GLint temp1 = ILERP(ia, v01, v11);
+ return ILERP(ib, temp0, temp1);
+}
+
+
+/**
+ * Do 3D/trilinear interpolation of float values.
+ * \sa lerp_2d
+ */
+static INLINE GLfloat
+lerp_3d(GLfloat a, GLfloat b, GLfloat c,
+ GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110,
+ GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111)
+{
+ const GLfloat temp00 = LERP(a, v000, v100);
+ const GLfloat temp10 = LERP(a, v010, v110);
+ const GLfloat temp01 = LERP(a, v001, v101);
+ const GLfloat temp11 = LERP(a, v011, v111);
+ const GLfloat temp0 = LERP(b, temp00, temp10);
+ const GLfloat temp1 = LERP(b, temp01, temp11);
+ return LERP(c, temp0, temp1);
+}
+
+
+/**
+ * Do 3D/trilinear interpolation of integer values.
+ * \sa lerp_2d
+ */
+static INLINE GLint
+ilerp_3d(GLint ia, GLint ib, GLint ic,
+ GLint v000, GLint v100, GLint v010, GLint v110,
+ GLint v001, GLint v101, GLint v011, GLint v111)
+{
+ /* fixed point interpolants in [0, ILERP_SCALE] */
+ const GLint temp00 = ILERP(ia, v000, v100);
+ const GLint temp10 = ILERP(ia, v010, v110);
+ const GLint temp01 = ILERP(ia, v001, v101);
+ const GLint temp11 = ILERP(ia, v011, v111);
+ const GLint temp0 = ILERP(ib, temp00, temp10);
+ const GLint temp1 = ILERP(ib, temp01, temp11);
+ return ILERP(ic, temp0, temp1);
+}
+
+
+
+/**
* Compute the remainder of a divided by b, but be careful with
* negative values so that GL_REPEAT mode works right.
*/
}
-/*
+/**
* Used to compute texel locations for linear sampling.
* Input:
* wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER
}
-/*
+/**
* Used to compute texel location for nearest sampling.
*/
#define COMPUTE_NEAREST_TEXEL_LOCATION(wrapMode, S, SIZE, I) \
{
const GLfloat a = FRAC(u);
-
-#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT
- const GLfloat w0 = (1.0F-a);
- const GLfloat w1 = a ;
-#else /* CHAN_BITS == 8 */
- /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
- const GLint w0 = IROUND_POS((1.0F - a) * WEIGHT_SCALE);
- const GLint w1 = IROUND_POS( a * WEIGHT_SCALE);
-#endif
GLchan t0[4], t1[4]; /* texels */
+ /* fetch texel colors */
if (useBorderColor & I0BIT) {
COPY_CHAN4(t0, tObj->_BorderChan);
}
img->FetchTexelc(img, i1, 0, 0, t1);
}
+ /* do linear interpolation of texel colors */
#if CHAN_TYPE == GL_FLOAT
- rgba[0] = w0 * t0[0] + w1 * t1[0];
- rgba[1] = w0 * t0[1] + w1 * t1[1];
- rgba[2] = w0 * t0[2] + w1 * t1[2];
- rgba[3] = w0 * t0[3] + w1 * t1[3];
+ rgba[0] = LERP(a, t0[0], t1[0]);
+ rgba[1] = LERP(a, t0[1], t1[1]);
+ rgba[2] = LERP(a, t0[2], t1[2]);
+ rgba[3] = LERP(a, t0[3], t1[3]);
#elif CHAN_TYPE == GL_UNSIGNED_SHORT
- rgba[0] = (GLchan) (w0 * t0[0] + w1 * t1[0] + 0.5);
- rgba[1] = (GLchan) (w0 * t0[1] + w1 * t1[1] + 0.5);
- rgba[2] = (GLchan) (w0 * t0[2] + w1 * t1[2] + 0.5);
- rgba[3] = (GLchan) (w0 * t0[3] + w1 * t1[3] + 0.5);
-#else /* CHAN_BITS == 8 */
- rgba[0] = (GLchan) ((w0 * t0[0] + w1 * t1[0]) >> WEIGHT_SHIFT);
- rgba[1] = (GLchan) ((w0 * t0[1] + w1 * t1[1]) >> WEIGHT_SHIFT);
- rgba[2] = (GLchan) ((w0 * t0[2] + w1 * t1[2]) >> WEIGHT_SHIFT);
- rgba[3] = (GLchan) ((w0 * t0[3] + w1 * t1[3]) >> WEIGHT_SHIFT);
+ rgba[0] = (GLchan) (LERP(a, t0[0], t1[0]) + 0.5);
+ rgba[1] = (GLchan) (LERP(a, t0[1], t1[1]) + 0.5);
+ rgba[2] = (GLchan) (LERP(a, t0[2], t1[2]) + 0.5);
+ rgba[3] = (GLchan) (LERP(a, t0[3], t1[3]) + 0.5);
+#else
+ ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE);
+ {
+ /* fixed point interpolants in [0, ILERP_SCALE] */
+ const GLint ia = IROUND_POS(a * ILERP_SCALE);
+ rgba[0] = ILERP(ia, t0[0], t1[0]);
+ rgba[1] = ILERP(ia, t0[1], t1[1]);
+ rgba[2] = ILERP(ia, t0[2], t1[2]);
+ rgba[3] = ILERP(ia, t0[3], t1[3]);
+ }
#endif
-
}
}
-/*
+/**
* Return the texture sample for coordinate (s,t) using GL_LINEAR filter.
* New sampling code contributed by Lynn Quam <quam@ai.sri.com>.
*/
{
const GLfloat a = FRAC(u);
const GLfloat b = FRAC(v);
-
-#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT
- const GLfloat w00 = (1.0F-a) * (1.0F-b);
- const GLfloat w10 = a * (1.0F-b);
- const GLfloat w01 = (1.0F-a) * b ;
- const GLfloat w11 = a * b ;
-#else /* CHAN_BITS == 8 */
- /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
- const GLint w00 = IROUND_POS((1.0F-a) * (1.0F-b) * WEIGHT_SCALE);
- const GLint w10 = IROUND_POS( a * (1.0F-b) * WEIGHT_SCALE);
- const GLint w01 = IROUND_POS((1.0F-a) * b * WEIGHT_SCALE);
- const GLint w11 = IROUND_POS( a * b * WEIGHT_SCALE);
+#if CHAN_TYPE == GL_UNSIGNED_BYTE
+ const GLint ia = IROUND_POS(a * ILERP_SCALE);
+ const GLint ib = IROUND_POS(b * ILERP_SCALE);
#endif
- GLchan t00[4];
- GLchan t10[4];
- GLchan t01[4];
- GLchan t11[4];
+ GLchan t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
+ /* fetch four texel colors */
if (useBorderColor & (I0BIT | J0BIT)) {
COPY_CHAN4(t00, tObj->_BorderChan);
}
else {
img->FetchTexelc(img, i1, j1, 0, t11);
}
+
+ /* do bilinear interpolation of texel colors */
#if CHAN_TYPE == GL_FLOAT
- rgba[0] = w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0];
- rgba[1] = w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1];
- rgba[2] = w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2];
- rgba[3] = w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3];
+ rgba[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
+ rgba[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
+ rgba[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
+ rgba[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
#elif CHAN_TYPE == GL_UNSIGNED_SHORT
- rgba[0] = (GLchan) (w00 * t00[0] + w10 * t10[0] +
- w01 * t01[0] + w11 * t11[0] + 0.5);
- rgba[1] = (GLchan) (w00 * t00[1] + w10 * t10[1] +
- w01 * t01[1] + w11 * t11[1] + 0.5);
- rgba[2] = (GLchan) (w00 * t00[2] + w10 * t10[2] +
- w01 * t01[2] + w11 * t11[2] + 0.5);
- rgba[3] = (GLchan) (w00 * t00[3] + w10 * t10[3] +
- w01 * t01[3] + w11 * t11[3] + 0.5);
-#else /* CHAN_BITS == 8 */
- rgba[0] = (GLchan) ((w00 * t00[0] + w10 * t10[0] +
- w01 * t01[0] + w11 * t11[0]) >> WEIGHT_SHIFT);
- rgba[1] = (GLchan) ((w00 * t00[1] + w10 * t10[1] +
- w01 * t01[1] + w11 * t11[1]) >> WEIGHT_SHIFT);
- rgba[2] = (GLchan) ((w00 * t00[2] + w10 * t10[2] +
- w01 * t01[2] + w11 * t11[2]) >> WEIGHT_SHIFT);
- rgba[3] = (GLchan) ((w00 * t00[3] + w10 * t10[3] +
- w01 * t01[3] + w11 * t11[3]) >> WEIGHT_SHIFT);
+ rgba[0] = (GLchan) (lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]) + 0.5);
+ rgba[1] = (GLchan) (lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]) + 0.5);
+ rgba[2] = (GLchan) (lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]) + 0.5);
+ rgba[3] = (GLchan) (lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]) + 0.5);
+#else
+ ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE);
+ rgba[0] = ilerp_2d(ia, ib, t00[0], t10[0], t01[0], t11[0]);
+ rgba[1] = ilerp_2d(ia, ib, t00[1], t10[1], t01[1], t11[1]);
+ rgba[2] = ilerp_2d(ia, ib, t00[2], t10[2], t01[2], t11[2]);
+ rgba[3] = ilerp_2d(ia, ib, t00[3], t10[3], t01[3], t11[3]);
#endif
-
}
-
}
/*
- * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT
- * and we're not using a paletted texture.
+ * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT.
*/
static INLINE void
sample_2d_linear_repeat(GLcontext *ctx,
{
const GLfloat a = FRAC(u);
const GLfloat b = FRAC(v);
-
-#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT
- const GLfloat w00 = (1.0F-a) * (1.0F-b);
- const GLfloat w10 = a * (1.0F-b);
- const GLfloat w01 = (1.0F-a) * b ;
- const GLfloat w11 = a * b ;
-#else /* CHAN_BITS == 8 */
- /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
- const GLint w00 = IROUND_POS((1.0F-a) * (1.0F-b) * WEIGHT_SCALE);
- const GLint w10 = IROUND_POS( a * (1.0F-b) * WEIGHT_SCALE);
- const GLint w01 = IROUND_POS((1.0F-a) * b * WEIGHT_SCALE);
- const GLint w11 = IROUND_POS( a * b * WEIGHT_SCALE);
+#if CHAN_TYPE == GL_UNSIGNED_BYTE
+ const GLint ia = IROUND_POS(a * ILERP_SCALE);
+ const GLint ib = IROUND_POS(b * ILERP_SCALE);
#endif
- GLchan t00[4];
- GLchan t10[4];
- GLchan t01[4];
- GLchan t11[4];
+ GLchan t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
img->FetchTexelc(img, i0, j0, 0, t00);
img->FetchTexelc(img, i1, j0, 0, t10);
img->FetchTexelc(img, i0, j1, 0, t01);
img->FetchTexelc(img, i1, j1, 0, t11);
+ /* do bilinear interpolation of texel colors */
#if CHAN_TYPE == GL_FLOAT
- rgba[0] = w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0];
- rgba[1] = w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1];
- rgba[2] = w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2];
- rgba[3] = w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3];
+ rgba[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
+ rgba[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
+ rgba[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
+ rgba[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
#elif CHAN_TYPE == GL_UNSIGNED_SHORT
- rgba[0] = (GLchan) (w00 * t00[0] + w10 * t10[0] +
- w01 * t01[0] + w11 * t11[0] + 0.5);
- rgba[1] = (GLchan) (w00 * t00[1] + w10 * t10[1] +
- w01 * t01[1] + w11 * t11[1] + 0.5);
- rgba[2] = (GLchan) (w00 * t00[2] + w10 * t10[2] +
- w01 * t01[2] + w11 * t11[2] + 0.5);
- rgba[3] = (GLchan) (w00 * t00[3] + w10 * t10[3] +
- w01 * t01[3] + w11 * t11[3] + 0.5);
-#else /* CHAN_BITS == 8 */
- rgba[0] = (GLchan) ((w00 * t00[0] + w10 * t10[0] +
- w01 * t01[0] + w11 * t11[0]) >> WEIGHT_SHIFT);
- rgba[1] = (GLchan) ((w00 * t00[1] + w10 * t10[1] +
- w01 * t01[1] + w11 * t11[1]) >> WEIGHT_SHIFT);
- rgba[2] = (GLchan) ((w00 * t00[2] + w10 * t10[2] +
- w01 * t01[2] + w11 * t11[2]) >> WEIGHT_SHIFT);
- rgba[3] = (GLchan) ((w00 * t00[3] + w10 * t10[3] +
- w01 * t01[3] + w11 * t11[3]) >> WEIGHT_SHIFT);
+ rgba[0] = (GLchan) (lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]) + 0.5);
+ rgba[1] = (GLchan) (lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]) + 0.5);
+ rgba[2] = (GLchan) (lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]) + 0.5);
+ rgba[3] = (GLchan) (lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]) + 0.5);
+#else
+ ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE);
+ rgba[0] = ilerp_2d(ia, ib, t00[0], t10[0], t01[0], t11[0]);
+ rgba[1] = ilerp_2d(ia, ib, t00[1], t10[1], t01[1], t11[1]);
+ rgba[2] = ilerp_2d(ia, ib, t00[2], t10[2], t01[2], t11[2]);
+ rgba[3] = ilerp_2d(ia, ib, t00[3], t10[3], t01[3], t11[3]);
#endif
-
}
-
}
struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
(void) texUnit;
(void) lambda;
- for (i=0;i<n;i++) {
- sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ if (tObj->WrapS == GL_REPEAT && tObj->WrapT == GL_REPEAT) {
+ for (i=0;i<n;i++) {
+ sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+ }
+ else {
+ for (i=0;i<n;i++) {
+ sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
}
}
const GLfloat a = FRAC(u);
const GLfloat b = FRAC(v);
const GLfloat c = FRAC(w);
-
-#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT
- /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
- GLfloat w000 = (1.0F-a) * (1.0F-b) * (1.0F-c);
- GLfloat w100 = a * (1.0F-b) * (1.0F-c);
- GLfloat w010 = (1.0F-a) * b * (1.0F-c);
- GLfloat w110 = a * b * (1.0F-c);
- GLfloat w001 = (1.0F-a) * (1.0F-b) * c ;
- GLfloat w101 = a * (1.0F-b) * c ;
- GLfloat w011 = (1.0F-a) * b * c ;
- GLfloat w111 = a * b * c ;
-#else /* CHAN_BITS == 8 */
- /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
- GLint w000 = IROUND_POS((1.0F-a) * (1.0F-b) * (1.0F-c) * WEIGHT_SCALE);
- GLint w100 = IROUND_POS( a * (1.0F-b) * (1.0F-c) * WEIGHT_SCALE);
- GLint w010 = IROUND_POS((1.0F-a) * b * (1.0F-c) * WEIGHT_SCALE);
- GLint w110 = IROUND_POS( a * b * (1.0F-c) * WEIGHT_SCALE);
- GLint w001 = IROUND_POS((1.0F-a) * (1.0F-b) * c * WEIGHT_SCALE);
- GLint w101 = IROUND_POS( a * (1.0F-b) * c * WEIGHT_SCALE);
- GLint w011 = IROUND_POS((1.0F-a) * b * c * WEIGHT_SCALE);
- GLint w111 = IROUND_POS( a * b * c * WEIGHT_SCALE);
+#if CHAN_TYPE == GL_UNSIGNED_BYTE
+ const GLint ia = IROUND_POS(a * ILERP_SCALE);
+ const GLint ib = IROUND_POS(b * ILERP_SCALE);
+ const GLint ic = IROUND_POS(c * ILERP_SCALE);
#endif
-
GLchan t000[4], t010[4], t001[4], t011[4];
GLchan t100[4], t110[4], t101[4], t111[4];
+ /* Fetch texels */
if (useBorderColor & (I0BIT | J0BIT | K0BIT)) {
COPY_CHAN4(t000, tObj->_BorderChan);
}
img->FetchTexelc(img, i1, j1, k1, t111);
}
+ /* trilinear interpolation of samples */
#if CHAN_TYPE == GL_FLOAT
- rgba[0] = w000*t000[0] + w010*t010[0] + w001*t001[0] + w011*t011[0] +
- w100*t100[0] + w110*t110[0] + w101*t101[0] + w111*t111[0];
- rgba[1] = w000*t000[1] + w010*t010[1] + w001*t001[1] + w011*t011[1] +
- w100*t100[1] + w110*t110[1] + w101*t101[1] + w111*t111[1];
- rgba[2] = w000*t000[2] + w010*t010[2] + w001*t001[2] + w011*t011[2] +
- w100*t100[2] + w110*t110[2] + w101*t101[2] + w111*t111[2];
- rgba[3] = w000*t000[3] + w010*t010[3] + w001*t001[3] + w011*t011[3] +
- w100*t100[3] + w110*t110[3] + w101*t101[3] + w111*t111[3];
+ rgba[0] = lerp_3d(a, b, c,
+ t000[0], t100[0], t010[0], t110[0],
+ t001[0], t101[0], t011[0], t111[0]);
+ rgba[1] = lerp_3d(a, b, c,
+ t000[1], t100[1], t010[1], t110[1],
+ t001[1], t101[1], t011[1], t111[1]);
+ rgba[2] = lerp_3d(a, b, c,
+ t000[2], t100[2], t010[2], t110[2],
+ t001[2], t101[2], t011[2], t111[2]);
+ rgba[3] = lerp_3d(a, b, c,
+ t000[3], t100[3], t010[3], t110[3],
+ t001[3], t101[3], t011[3], t111[3]);
#elif CHAN_TYPE == GL_UNSIGNED_SHORT
- rgba[0] = (GLchan) (w000*t000[0] + w010*t010[0] +
- w001*t001[0] + w011*t011[0] +
- w100*t100[0] + w110*t110[0] +
- w101*t101[0] + w111*t111[0] + 0.5);
- rgba[1] = (GLchan) (w000*t000[1] + w010*t010[1] +
- w001*t001[1] + w011*t011[1] +
- w100*t100[1] + w110*t110[1] +
- w101*t101[1] + w111*t111[1] + 0.5);
- rgba[2] = (GLchan) (w000*t000[2] + w010*t010[2] +
- w001*t001[2] + w011*t011[2] +
- w100*t100[2] + w110*t110[2] +
- w101*t101[2] + w111*t111[2] + 0.5);
- rgba[3] = (GLchan) (w000*t000[3] + w010*t010[3] +
- w001*t001[3] + w011*t011[3] +
- w100*t100[3] + w110*t110[3] +
- w101*t101[3] + w111*t111[3] + 0.5);
-#else /* CHAN_BITS == 8 */
- rgba[0] = (GLchan) (
- (w000*t000[0] + w010*t010[0] + w001*t001[0] + w011*t011[0] +
- w100*t100[0] + w110*t110[0] + w101*t101[0] + w111*t111[0] )
- >> WEIGHT_SHIFT);
- rgba[1] = (GLchan) (
- (w000*t000[1] + w010*t010[1] + w001*t001[1] + w011*t011[1] +
- w100*t100[1] + w110*t110[1] + w101*t101[1] + w111*t111[1] )
- >> WEIGHT_SHIFT);
- rgba[2] = (GLchan) (
- (w000*t000[2] + w010*t010[2] + w001*t001[2] + w011*t011[2] +
- w100*t100[2] + w110*t110[2] + w101*t101[2] + w111*t111[2] )
- >> WEIGHT_SHIFT);
- rgba[3] = (GLchan) (
- (w000*t000[3] + w010*t010[3] + w001*t001[3] + w011*t011[3] +
- w100*t100[3] + w110*t110[3] + w101*t101[3] + w111*t111[3] )
- >> WEIGHT_SHIFT);
+ rgba[0] = (GLchan) (lerp_3d(a, b, c,
+ t000[0], t100[0], t010[0], t110[0],
+ t001[0], t101[0], t011[0], t111[0]) + 0.5F);
+ rgba[1] = (GLchan) (lerp_3d(a, b, c,
+ t000[1], t100[1], t010[1], t110[1],
+ t001[1], t101[1], t011[1], t111[1]) + 0.5F);
+ rgba[2] = (GLchan) (lerp_3d(a, b, c,
+ t000[2], t100[2], t010[2], t110[2],
+ t001[2], t101[2], t011[2], t111[2]) + 0.5F);
+ rgba[3] = (GLchan) (lerp_3d(a, b, c,
+ t000[3], t100[3], t010[3], t110[3],
+ t001[3], t101[3], t011[3], t111[3]) + 0.5F);
+#else
+ ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE);
+ rgba[0] = ilerp_3d(ia, ib, ic,
+ t000[0], t100[0], t010[0], t110[0],
+ t001[0], t101[0], t011[0], t111[0]);
+ rgba[1] = ilerp_3d(ia, ib, ic,
+ t000[1], t100[1], t010[1], t110[1],
+ t001[1], t101[1], t011[1], t111[1]);
+ rgba[2] = ilerp_3d(ia, ib, ic,
+ t000[2], t100[2], t010[2], t110[2],
+ t001[2], t101[2], t011[2], t111[2]);
+ rgba[3] = ilerp_3d(ia, ib, ic,
+ t000[3], t100[3], t010[3], t110[3],
+ t001[3], t101[3], t011[3], t111[3]);
#endif
-
}
}
GLfloat frow, fcol;
GLint i0, j0, i1, j1;
GLchan t00[4], t01[4], t10[4], t11[4];
- GLfloat a, b, w00, w01, w10, w11;
+ GLfloat a, b;
GLuint useBorderColor = 0;
+#if CHAN_TYPE == GL_UNSIGNED_BYTE
+ GLint ia, ib;
+#endif
/* NOTE: we DO NOT use [0, 1] texture coordinates! */
if (tObj->WrapS == GL_CLAMP) {
else
img->FetchTexelc(img, i1, j1, 0, t11);
- /* compute sample weights */
+ /* compute interpolants */
a = FRAC(fcol);
b = FRAC(frow);
- w00 = (1.0F-a) * (1.0F-b);
- w10 = a * (1.0F-b);
- w01 = (1.0F-a) * b ;
- w11 = a * b ;
-
- /* compute weighted average of samples */
- rgba[i][0] =
- (GLchan) (w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0]);
- rgba[i][1] =
- (GLchan) (w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1]);
- rgba[i][2] =
- (GLchan) (w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2]);
- rgba[i][3] =
- (GLchan) (w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3]);
+#if CHAN_TYPE == GL_UNSIGNED_BYTE
+ ia = IROUND_POS(a * ILERP_SCALE);
+ ib = IROUND_POS(b * ILERP_SCALE);
+#endif
+
+ /* do bilinear interpolation of texel colors */
+#if CHAN_TYPE == GL_FLOAT
+ rgba[i][0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
+ rgba[i][1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
+ rgba[i][2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
+ rgba[i][3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
+#elif CHAN_TYPE == GL_UNSIGNED_SHORT
+ rgba[i][0] = (GLchan) (lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]) + 0.5);
+ rgba[i][1] = (GLchan) (lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]) + 0.5);
+ rgba[i][2] = (GLchan) (lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]) + 0.5);
+ rgba[i][3] = (GLchan) (lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]) + 0.5);
+#else
+ ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE);
+ rgba[i][0] = ilerp_2d(ia, ib, t00[0], t10[0], t01[0], t11[0]);
+ rgba[i][1] = ilerp_2d(ia, ib, t00[1], t10[1], t01[1], t11[1]);
+ rgba[i][2] = ilerp_2d(ia, ib, t00[2], t10[2], t01[2], t11[2]);
+ rgba[i][3] = ilerp_2d(ia, ib, t00[3], t10[3], t01[3], t11[3]);
+#endif
}
}
/* compute a single weighted depth sample and do one comparison */
const GLfloat a = FRAC(u + 1.0F);
const GLfloat b = FRAC(v + 1.0F);
- const GLfloat w00 = (1.0F - a) * (1.0F - b);
- const GLfloat w10 = ( a) * (1.0F - b);
- const GLfloat w01 = (1.0F - a) * ( b);
- const GLfloat w11 = ( a) * ( b);
- const GLfloat depthSample = w00 * depth00 + w10 * depth10
- + w01 * depth01 + w11 * depth11;
+ const GLfloat depthSample
+ = lerp_2d(a, b, depth00, depth10, depth01, depth11);
if ((depthSample <= texcoords[i][2] && function == GL_LEQUAL) ||
(depthSample >= texcoords[i][2] && function == GL_GEQUAL)) {
result = ambient;
{
const GLfloat a = FRAC(u + 1.0F);
const GLfloat b = FRAC(v + 1.0F);
- const GLfloat w00 = (1.0F - a) * (1.0F - b);
- const GLfloat w10 = ( a) * (1.0F - b);
- const GLfloat w01 = (1.0F - a) * ( b);
- const GLfloat w11 = ( a) * ( b);
- const GLfloat depthSample = w00 * depth00 + w10 * depth10
- + w01 * depth01 + w11 * depth11;
+ const GLfloat depthSample
+ = lerp_2d(a, b, depth00, depth10, depth01, depth11);
CLAMPED_FLOAT_TO_CHAN(result, depthSample);
}
break;
};
+static INLINE GLint
+ilerp(GLint t, GLint a, GLint b)
+{
+ return a + ((t * (b - a)) >> FIXED_SHIFT);
+}
+
+static INLINE GLint
+ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11)
+{
+ const GLint temp0 = ilerp(ia, v00, v10);
+ const GLint temp1 = ilerp(ia, v01, v11);
+ return ilerp(ib, temp0, temp1);
+}
+
+
/* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
* textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
* texture env modes.
sample[ACOMP] = CHAN_MAX
#define LINEAR_RGB \
- sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) + \
- tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT; \
- sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) + \
- tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT; \
- sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) + \
- tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT; \
- sample[ACOMP] = CHAN_MAX
+ sample[RCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
+ sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
+ sample[BCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
+ sample[ACOMP] = CHAN_MAX;
#define NEAREST_RGBA COPY_CHAN4(sample, tex00)
#define LINEAR_RGBA \
- sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) + \
- tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT;\
- sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) + \
- tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT;\
- sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) + \
- tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT;\
- sample[ACOMP] = (ti * (si * tex00[3] + sf * tex01[3]) + \
- tf * (si * tex10[3] + sf * tex11[3])) >> 2 * FIXED_SHIFT
+ sample[RCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
+ sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
+ sample[BCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
+ sample[ACOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3])
#define MODULATE \
dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
#define NEAREST_RGBA_REPLACE COPY_CHAN4(dest, tex00)
-#define SPAN_NEAREST(DO_TEX,COMP) \
+#define SPAN_NEAREST(DO_TEX, COMPS) \
for (i = 0; i < span->end; i++) { \
/* Isn't it necessary to use FixedFloor below?? */ \
GLint s = FixedToInt(span->intTex[0]) & info->smask; \
GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
GLint pos = (t << info->twidth_log2) + s; \
- const GLchan *tex00 = info->texture + COMP * pos; \
+ const GLchan *tex00 = info->texture + COMPS * pos; \
DO_TEX; \
span->red += span->redStep; \
span->green += span->greenStep; \
dest += 4; \
}
-#define SPAN_LINEAR(DO_TEX,COMP) \
+#define SPAN_LINEAR(DO_TEX, COMPS) \
for (i = 0; i < span->end; i++) { \
/* Isn't it necessary to use FixedFloor below?? */ \
- GLint s = FixedToInt(span->intTex[0]) & info->smask; \
- GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
- GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
- GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
- GLfixed si = FIXED_FRAC_MASK - sf; \
- GLfixed ti = FIXED_FRAC_MASK - tf; \
- GLint pos = (t << info->twidth_log2) + s; \
- const GLchan *tex00 = info->texture + COMP * pos; \
+ const GLint s = FixedToInt(span->intTex[0]) & info->smask; \
+ const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
+ const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
+ const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
+ const GLint pos = (t << info->twidth_log2) + s; \
+ const GLchan *tex00 = info->texture + COMPS * pos; \
const GLchan *tex10 = tex00 + info->tbytesline; \
- const GLchan *tex01 = tex00 + COMP; \
- const GLchan *tex11 = tex10 + COMP; \
- (void) ti; \
- (void) si; \
+ const GLchan *tex01 = tex00 + COMPS; \
+ const GLchan *tex11 = tex10 + COMPS; \
if (t == info->tmask) { \
tex10 -= info->tsize; \
tex11 -= info->tsize; \
for (i = 0; i < span->end; i++) { \
GLdouble invQ = tex_coord[2] ? \
(1.0 / tex_coord[2]) : 1.0; \
- GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
- GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
- GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
- GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
- GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
- GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
- GLfixed sf = s_fix & FIXED_FRAC_MASK; \
- GLfixed tf = t_fix & FIXED_FRAC_MASK; \
- GLfixed si = FIXED_FRAC_MASK - sf; \
- GLfixed ti = FIXED_FRAC_MASK - tf; \
- GLint pos = (t << info->twidth_log2) + s; \
+ const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
+ const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
+ const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
+ const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
+ const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
+ const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
+ const GLfixed sf = s_fix & FIXED_FRAC_MASK; \
+ const GLfixed tf = t_fix & FIXED_FRAC_MASK; \
+ const GLint pos = (t << info->twidth_log2) + s; \
const GLchan *tex00 = info->texture + COMP * pos; \
const GLchan *tex10 = tex00 + info->tbytesline; \
const GLchan *tex01 = tex00 + COMP; \
const GLchan *tex11 = tex10 + COMP; \
- (void) ti; \
- (void) si; \
if (t == info->tmask) { \
tex10 -= info->tsize; \
tex11 -= info->tsize; \