struct XAigerWriter
{
Module *module;
+ bool zinit_mode;
SigMap sigmap;
+ dict<SigBit, bool> init_map;
pool<SigBit> input_bits, output_bits;
- dict<SigBit, SigBit> not_map, alias_map;
+ dict<SigBit, SigBit> not_map, ff_map, alias_map;
dict<SigBit, pair<SigBit, SigBit>> and_map;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits;
+ vector<SigBit> ff_bits;
dict<SigBit, float> arrival_times;
vector<pair<int, int>> aig_gates;
- vector<int> aig_outputs;
+ vector<int> aig_latchin, aig_latchinit, aig_outputs;
int aig_m = 0, aig_i = 0, aig_l = 0, aig_o = 0, aig_a = 0;
dict<SigBit, int> aig_map;
dict<SigBit, int> ordered_outputs;
+ dict<SigBit, int> ordered_latches;
vector<Cell*> box_list;
bool omode = false;
+ //dict<SigBit, int> init_inputs;
+ //int initstate_ff = 0;
+
int mkgate(int a0, int a1)
{
aig_m++, aig_a++;
return a;
}
- XAigerWriter(Module *module, bool holes_mode=false) : module(module), sigmap(module)
+ XAigerWriter(Module *module, bool zinit_mode, bool holes_mode=false) : module(module), zinit_mode(zinit_mode), sigmap(module)
{
pool<SigBit> undriven_bits;
pool<SigBit> unused_bits;
for (auto wire : module->wires())
{
+ if (wire->attributes.count("\\init")) {
+ SigSpec initsig = sigmap(wire);
+ Const initval = wire->attributes.at("\\init");
+ for (int i = 0; i < GetSize(wire) && i < GetSize(initval); i++)
+ if (initval[i] == State::S0 || initval[i] == State::S1)
+ init_map[initsig[i]] = initval[i] == State::S1;
+ }
+
bool keep = wire->attributes.count("\\keep");
for (int i = 0; i < GetSize(wire); i++)
// box ordering, but not individual AIG cells
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
+ struct flop_data_t {
+ IdString d_port;
+ IdString q_port;
+ int q_arrival;
+ };
+ dict<IdString, flop_data_t> flop_data;
bool abc_box_seen = false;
for (auto cell : module->selected_cells()) {
log_assert(!holes_mode);
+ if (cell->type == "$__ABC_FF_")
+ {
+ SigBit D = sigmap(cell->getPort("\\D").as_bit());
+ SigBit Q = sigmap(cell->getPort("\\Q").as_bit());
+ unused_bits.erase(D);
+ undriven_bits.erase(Q);
+ alias_map[Q] = D;
+ continue;
+ }
+
RTLIL::Module* inst_module = module->design->module(cell->type);
if (inst_module && inst_module->attributes.count("\\abc_box_id")) {
abc_box_seen = true;
- if (!holes_mode) {
- toposort.node(cell->name);
- for (const auto &conn : cell->connections()) {
- auto port_wire = inst_module->wire(conn.first);
- if (port_wire->port_input) {
- // Ignore inout for the sake of topographical ordering
- if (port_wire->port_output) continue;
- for (auto bit : sigmap(conn.second))
- bit_users[bit].insert(cell->name);
+ toposort.node(cell->name);
+
+ auto r = flop_data.insert(std::make_pair(cell->type, flop_data_t{IdString(), IdString(), 0}));
+ if (r.second && inst_module->attributes.count("\\abc_flop")) {
+ IdString &abc_flop_d = r.first->second.d_port;
+ IdString &abc_flop_q = r.first->second.q_port;
+ for (auto port_name : inst_module->ports) {
+ auto wire = inst_module->wire(port_name);
+ log_assert(wire);
+ if (wire->attributes.count("\\abc_flop_d")) {
+ if (abc_flop_d != IdString())
+ log_error("More than one port has the 'abc_flop_d' attribute set on module '%s'.\n", log_id(cell->type));
+ abc_flop_d = port_name;
+ }
+ if (wire->attributes.count("\\abc_flop_q")) {
+ if (abc_flop_q != IdString())
+ log_error("More than one port has the 'abc_flop_q' attribute set on module '%s'.\n", log_id(cell->type));
+ abc_flop_q = port_name;
+
+ auto it = wire->attributes.find("\\abc_arrival");
+ if (it != wire->attributes.end()) {
+ if (it->second.flags != 0)
+ log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type));
+ r.first->second.q_arrival = it->second.as_int();
+ }
}
+ }
+ if (abc_flop_d == IdString())
+ log_error("'abc_flop_d' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
+ if (abc_flop_q == IdString())
+ log_error("'abc_flop_q' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
+ }
+
+ auto abc_flop_d = r.first->second.d_port;
+ if (abc_flop_d != IdString()) {
+ SigBit d = cell->getPort(abc_flop_d);
+ SigBit I = sigmap(d);
+ if (I != d)
+ alias_map[I] = d;
+ unused_bits.erase(d);
+
+ auto abc_flop_q = r.first->second.q_port;
+ SigBit q = cell->getPort(abc_flop_q);
+ SigBit O = sigmap(q);
+ if (O != q)
+ alias_map[O] = q;
+ undriven_bits.erase(O);
+ ff_bits.emplace_back(q);
+
+ auto arrival = r.first->second.q_arrival;
+ if (arrival)
+ arrival_times[q] = arrival;
+ }
- if (port_wire->port_output)
- for (auto bit : sigmap(conn.second))
- bit_drivers[bit].insert(cell->name);
+ for (const auto &conn : cell->connections()) {
+ auto port_wire = inst_module->wire(conn.first);
+ if (port_wire->port_input) {
+ // Ignore inout for the sake of topographical ordering
+ if (port_wire->port_output) continue;
+ for (auto bit : sigmap(conn.second))
+ bit_users[bit].insert(cell->name);
}
+
+ if (port_wire->port_output)
+ for (auto bit : sigmap(conn.second))
+ bit_drivers[bit].insert(cell->name);
}
}
else {
log_warning("Treating a total of %d undriven bits in %s like $anyseq.\n", GetSize(undriven_bits), log_id(module));
}
+ init_map.sort();
if (holes_mode) {
struct sort_by_port_id {
bool operator()(const RTLIL::SigBit& a, const RTLIL::SigBit& b) const {
}
not_map.sort();
+ ff_map.sort();
and_map.sort();
aig_map[State::S0] = 0;
aig_map[bit] = 2*aig_m;
}
+ for (auto bit : ff_bits) {
+ aig_m++, aig_i++;
+ log_assert(!aig_map.count(bit));
+ aig_map[bit] = 2*aig_m;
+ }
+
+ dict<SigBit, int> ff_aig_map;
for (auto &c : ci_bits) {
RTLIL::SigBit bit = std::get<0>(c);
aig_m++, aig_i++;
- aig_map[bit] = 2*aig_m;
+ auto r = aig_map.insert(std::make_pair(bit, 2*aig_m));
+ if (!r.second)
+ ff_aig_map[bit] = 2*aig_m;
}
+ //if (zinit_mode)
+ //{
+ // for (auto it : ff_map) {
+ // if (init_map.count(it.first))
+ // continue;
+ // aig_m++, aig_i++;
+ // init_inputs[it.first] = 2*aig_m;
+ // }
+ //}
+
+ //for (auto it : ff_map) {
+ // aig_m++, aig_l++;
+ // aig_map[it.first] = 2*aig_m;
+ // ordered_latches[it.first] = aig_l-1;
+ // if (init_map.count(it.first) == 0)
+ // aig_latchinit.push_back(2);
+ // else
+ // aig_latchinit.push_back(init_map.at(it.first) ? 1 : 0);
+ //}
+
+ //if (!init_inputs.empty()) {
+ // aig_m++, aig_l++;
+ // initstate_ff = 2*aig_m+1;
+ // aig_latchinit.push_back(0);
+ //}
+
+ //if (zinit_mode)
+ //{
+ // for (auto it : ff_map)
+ // {
+ // int l = ordered_latches[it.first];
+
+ // if (aig_latchinit.at(l) == 1)
+ // aig_map[it.first] ^= 1;
+
+ // if (aig_latchinit.at(l) == 2)
+ // {
+ // int gated_ffout = mkgate(aig_map[it.first], initstate_ff^1);
+ // int gated_initin = mkgate(init_inputs[it.first], initstate_ff);
+ // aig_map[it.first] = mkgate(gated_ffout^1, gated_initin^1)^1;
+ // }
+ // }
+ //}
+
+ //for (auto it : ff_map) {
+ // int a = bit2aig(it.second);
+ // int l = ordered_latches[it.first];
+ // if (zinit_mode && aig_latchinit.at(l) == 1)
+ // aig_latchin.push_back(a ^ 1);
+ // else
+ // aig_latchin.push_back(a);
+ //}
+
+ //if (!init_inputs.empty())
+ // aig_latchin.push_back(1);
+
for (auto &c : co_bits) {
RTLIL::SigBit bit = std::get<0>(c);
std::get<4>(c) = ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
}
+ for (auto bit : ff_bits) {
+ aig_o++;
+ aig_outputs.push_back(ff_aig_map.at(bit));
+ }
+
if (output_bits.empty()) {
aig_o++;
aig_outputs.push_back(0);
int aig_obcjf = aig_obcj;
log_assert(aig_m == aig_i + aig_l + aig_a);
+ log_assert(aig_l == GetSize(aig_latchin));
+ log_assert(aig_l == GetSize(aig_latchinit));
log_assert(aig_obcjf == GetSize(aig_outputs));
f << stringf("%s %d %d %d %d %d", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_o, aig_a);
for (int i = 0; i < aig_i; i++)
f << stringf("%d\n", 2*i+2);
+ //for (int i = 0; i < aig_l; i++) {
+ // if (zinit_mode || aig_latchinit.at(i) == 0)
+ // f << stringf("%d %d\n", 2*(aig_i+i)+2, aig_latchin.at(i));
+ // else if (aig_latchinit.at(i) == 1)
+ // f << stringf("%d %d 1\n", 2*(aig_i+i)+2, aig_latchin.at(i));
+ // else if (aig_latchinit.at(i) == 2)
+ // f << stringf("%d %d %d\n", 2*(aig_i+i)+2, aig_latchin.at(i), 2*(aig_i+i)+2);
+ //}
+
for (int i = 0; i < aig_obc; i++)
f << stringf("%d\n", aig_outputs.at(i));
}
else
{
+ //for (int i = 0; i < aig_l; i++) {
+ // if (zinit_mode || aig_latchinit.at(i) == 0)
+ // f << stringf("%d\n", aig_latchin.at(i));
+ // else if (aig_latchinit.at(i) == 1)
+ // f << stringf("%d 1\n", aig_latchin.at(i));
+ // else if (aig_latchinit.at(i) == 2)
+ // f << stringf("%d %d\n", aig_latchin.at(i), 2*(aig_i+i)+2);
+ //}
+
for (int i = 0; i < aig_obc; i++)
f << stringf("%d\n", aig_outputs.at(i));
std::stringstream h_buffer;
auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1);
write_h_buffer(1);
- log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ci_bits));
- write_h_buffer(input_bits.size() + ci_bits.size());
- log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(co_bits));
- write_h_buffer(output_bits.size() + GetSize(co_bits));
- log_debug("piNum = %d\n", GetSize(input_bits));
- write_h_buffer(input_bits.size());
- log_debug("poNum = %d\n", GetSize(output_bits));
- write_h_buffer(output_bits.size());
+ log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ff_bits) + GetSize(ci_bits));
+ write_h_buffer(input_bits.size() + ff_bits.size() + ci_bits.size());
+ log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(ff_bits) + GetSize(co_bits));
+ write_h_buffer(output_bits.size() + GetSize(ff_bits) + GetSize(co_bits));
+ log_debug("piNum = %d\n", GetSize(input_bits) + GetSize(ff_bits));
+ write_h_buffer(input_bits.size() + ff_bits.size());
+ log_debug("poNum = %d\n", GetSize(output_bits) + GetSize(ff_bits));
+ write_h_buffer(output_bits.size() + ff_bits.size());
log_debug("boxNum = %d\n", GetSize(box_list));
write_h_buffer(box_list.size());
//for (auto bit : output_bits)
// write_o_buffer(0);
- if (!box_list.empty()) {
+ if (!box_list.empty() || !ff_bits.empty()) {
RTLIL::Module *holes_module = module->design->addModule("$__holes__");
log_assert(holes_module);
std::stringstream r_buffer;
auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1);
- write_r_buffer(0);
+ log_debug("flopNum = %d\n", GetSize(ff_bits));
+ write_r_buffer(ff_bits.size());
+ int mergeability_class = 1;
+ for (auto bit : ff_bits) {
+ write_r_buffer(mergeability_class++);
+ write_i_buffer(arrival_times.at(bit, 0));
+ //write_o_buffer(0);
+ }
+
f << "r";
std::string buffer_str = r_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
+ std::stringstream s_buffer;
+ auto write_s_buffer = std::bind(write_buffer, std::ref(s_buffer), std::placeholders::_1);
+ write_s_buffer(ff_bits.size());
+ for (auto bit : ff_bits) {
+ auto it = bit.wire->attributes.find("\\init");
+ if (it != bit.wire->attributes.end()) {
+ auto init = it->second[bit.offset];
+ if (init == RTLIL::S1) {
+ write_s_buffer(1);
+ continue;
+ }
+ }
+ write_s_buffer(0);
+ }
+ f << "s";
+ buffer_str = s_buffer.str();
+ buffer_size_be = to_big_endian(buffer_str.size());
+ f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
+ f.write(buffer_str.data(), buffer_str.size());
+
if (holes_module) {
log_push();
Pass::call(holes_design, "clean -purge");
std::stringstream a_buffer;
- XAigerWriter writer(holes_module, true /* holes_mode */);
+ XAigerWriter writer(holes_module, false /*zinit_mode*/, true /* holes_mode */);
writer.write_aiger(a_buffer, false /*ascii_mode*/);
delete holes_design;
void write_map(std::ostream &f, bool verbose_map)
{
dict<int, string> input_lines;
+ dict<int, string> init_lines;
dict<int, string> output_lines;
+ dict<int, string> latch_lines;
dict<int, string> wire_lines;
for (auto wire : module->wires())
if (output_bits.count(b)) {
int o = ordered_outputs.at(b);
- output_lines[o] += stringf("output %d %d %s\n", o - GetSize(co_bits), i, log_id(wire));
+ int init = 2;
+ auto it = init_map.find(b);
+ if (it != init_map.end())
+ init = it->second ? 1 : 0;
+ output_lines[o] += stringf("output %d %d %s %d\n", o - GetSize(co_bits), i, log_id(wire), init);
continue;
}
+ //if (init_inputs.count(sig[i])) {
+ // int a = init_inputs.at(sig[i]);
+ // log_assert((a & 1) == 0);
+ // init_lines[a] += stringf("init %d %d %s\n", (a >> 1)-1, i, log_id(wire));
+ // continue;
+ //}
+
+ //if (ordered_latches.count(sig[i])) {
+ // int l = ordered_latches.at(sig[i]);
+ // if (zinit_mode && (aig_latchinit.at(l) == 1))
+ // latch_lines[l] += stringf("invlatch %d %d %s\n", l, i, log_id(wire));
+ // else
+ // latch_lines[l] += stringf("latch %d %d %s\n", l, i, log_id(wire));
+ // continue;
+ //}
+
if (verbose_map) {
if (aig_map.count(sig[i]) == 0)
continue;
f << it.second;
log_assert(input_lines.size() == input_bits.size());
+ init_lines.sort();
+ for (auto &it : init_lines)
+ f << it.second;
+
int box_count = 0;
for (auto cell : box_list)
f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name));
if (omode && output_bits.empty())
f << "output " << output_lines.size() << " 0 $__dummy__\n";
+ latch_lines.sort();
+ for (auto &it : latch_lines)
+ f << it.second;
+
wire_lines.sort();
for (auto &it : wire_lines)
f << it.second;
log(" -ascii\n");
log(" write ASCII version of AIGER format\n");
log("\n");
+ log(" -zinit\n");
+ log(" convert FFs to zero-initialized FFs, adding additional inputs for\n");
+ log(" uninitialized FFs.\n");
+ log("\n");
log(" -map <filename>\n");
log(" write an extra file with port and latch symbols\n");
log("\n");
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
bool ascii_mode = false;
+ bool zinit_mode = false;
bool verbose_map = false;
std::string map_filename;
ascii_mode = true;
continue;
}
+ if (args[argidx] == "-zinit") {
+ zinit_mode = true;
+ continue;
+ }
if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) {
map_filename = args[++argidx];
continue;
if (top_module == nullptr)
log_error("Can't find top module in current design!\n");
- XAigerWriter writer(top_module);
+ XAigerWriter writer(top_module, zinit_mode);
writer.write_aiger(*f, ascii_mode);
if (!map_filename.empty()) {
void AigerReader::post_process()
{
pool<IdString> seen_boxes;
- unsigned ci_count = 0, co_count = 0;
+ pool<IdString> flops;
+ unsigned ci_count = 0, co_count = 0, flop_count = 0;
for (auto cell : boxes) {
RTLIL::Module* box_module = design->module(cell->type);
log_assert(box_module);
+ bool is_flop = false;
if (seen_boxes.insert(cell->type).second) {
+ if (box_module->attributes.count("\\abc_flop")) {
+ log_assert(flop_count < flopNum);
+ flops.insert(cell->type);
+ is_flop = true;
+ }
auto it = box_module->attributes.find("\\abc_carry");
if (it != box_module->attributes.end()) {
RTLIL::Wire *carry_in = nullptr, *carry_out = nullptr;
carry_out->port_id = ports.size();
}
}
+ else
+ is_flop = flops.count(cell->type);
// NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do)
rhs.append(wire);
}
- cell->setPort(port_name, rhs);
+ if (!is_flop || port_name != "\\$pastQ")
+ cell->setPort(port_name, rhs);
+ }
+
+ if (is_flop) {
+ RTLIL::Wire *d = outputs[outputs.size() - flopNum + flop_count];
+ log_assert(d);
+ log_assert(d->port_output);
+ d->port_output = false;
+
+ RTLIL::Wire *q = inputs[piNum - flopNum + flop_count];
+ log_assert(q);
+ log_assert(q->port_input);
+ q->port_input = false;
+
+ flop_count++;
+ module->connect(q, d);
+ cell->set_bool_attribute("\\abc_flop");
+ continue;
}
}
}
}
log_debug(" -> %s\n", log_id(wire));
+ int init;
+ mf >> init;
+ if (init < 2)
+ wire->attributes["\\init"] = init;
}
else if (type == "box") {
RTLIL::Cell* cell = module->cell(stringf("$__box%d__", variable));
dict<IdString, bool> abc_box;
vector<RTLIL::Cell*> boxes;
for (auto cell : module->selected_cells()) {
- if (cell->type.in(ID($_AND_), ID($_NOT_))) {
+ if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC_FF_))) {
module->remove(cell);
continue;
}
cell->attributes = mapped_cell->attributes;
}
+ auto abc_flop = mapped_cell->attributes.count("\\abc_flop");
for (auto &conn : mapped_cell->connections()) {
RTLIL::SigSpec newsig;
for (auto c : conn.second.chunks()) {
}
cell->setPort(conn.first, newsig);
- if (cell->input(conn.first)) {
- for (auto i : newsig)
- bit2sinks[i].push_back(cell);
- for (auto i : conn.second)
- bit_users[i].insert(mapped_cell->name);
+ if (!abc_flop) {
+ if (cell->input(conn.first)) {
+ for (auto i : newsig)
+ bit2sinks[i].push_back(cell);
+ for (auto i : conn.second)
+ bit_users[i].insert(mapped_cell->name);
+ }
+ if (cell->output(conn.first))
+ for (auto i : conn.second)
+ bit_drivers[i].insert(mapped_cell->name);
}
- if (cell->output(conn.first))
- for (auto i : conn.second)
- bit_drivers[i].insert(mapped_cell->name);
}
}
assign_map.set(mod);
if (!dff_mode || !clk_str.empty()) {
+
design->selection_stack.emplace_back(false);
RTLIL::Selection& sel = design->selection_stack.back();
sel.select(mod);
std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;
+ pool<IdString> seen_cells;
+ struct flop_data_t {
+ IdString clk_port;
+ IdString en_port;
+ };
+ dict<IdString, flop_data_t> flop_data;
+
for (auto cell : all_cells) {
clkdomain_t key;
}
}
- if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_)))
- {
- key = clkdomain_t(cell->type == ID($_DFF_P_), assign_map(cell->getPort(ID(C))), true, RTLIL::SigSpec());
+ decltype(flop_data)::iterator it;
+ if (seen_cells.insert(cell->type).second) {
+ RTLIL::Module* inst_module = design->module(cell->type);
+ if (!inst_module)
+ continue;
+
+ if (!inst_module->attributes.count("\\abc_flop"))
+ continue;
+
+ IdString abc_flop_clk, abc_flop_en;
+ for (auto port_name : inst_module->ports) {
+ auto wire = inst_module->wire(port_name);
+ log_assert(wire);
+ if (wire->attributes.count("\\abc_flop_clk")) {
+ if (abc_flop_clk != IdString())
+ log_error("More than one port has the 'abc_flop_clk' attribute set on module '%s'.\n", log_id(cell->type));
+ abc_flop_clk = port_name;
+ }
+ if (wire->attributes.count("\\abc_flop_en")) {
+ if (abc_flop_en != IdString())
+ log_error("More than one port has the 'abc_flop_en' attribute set on module '%s'.\n", log_id(cell->type));
+ abc_flop_en = port_name;
+ }
+ }
+
+ if (abc_flop_clk == IdString())
+ log_error("'abc_flop_clk' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
+ if (abc_flop_en == IdString())
+ log_error("'abc_flop_en' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
+
+ it = flop_data.insert(std::make_pair(cell->type, flop_data_t{abc_flop_clk, abc_flop_en})).first;
}
- else
- if (cell->type.in(ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
- {
- bool this_clk_pol = cell->type.in(ID($_DFFE_PN_), ID($_DFFE_PP_));
- bool this_en_pol = cell->type.in(ID($_DFFE_NP_), ID($_DFFE_PP_));
- key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(ID(C))), this_en_pol, assign_map(cell->getPort(ID(E))));
+ else {
+ it = flop_data.find(cell->type);
+ if (it == flop_data.end())
+ continue;
}
- else
- continue;
+ const auto &data = it->second;
+
+ auto jt = cell->parameters.find("\\CLK_POLARITY");
+ if (jt == cell->parameters.end())
+ log_error("'CLK_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type));
+ bool this_clk_pol = jt->second.as_bool();
+
+ jt = cell->parameters.find("\\EN_POLARITY");
+ if (jt == cell->parameters.end())
+ log_error("'EN_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type));
+ bool this_en_pol = jt->second.as_bool();
+
+ key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(data.clk_port)), this_en_pol, assign_map(cell->getPort(data.en_port)));
unassigned_cells.erase(cell);
expand_queue.insert(cell);
// ============================================================================
+module FDRE (output reg Q, input C, CE, D, R);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_R_INVERTED = 1'b0;
+ wire \$nextQ ;
+ \$__ABC_FDRE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_R_INVERTED(IS_R_INVERTED),
+ .CLK_POLARITY(!IS_C_INVERTED),
+ .EN_POLARITY(1'b1)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
+ );
+ \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
+endmodule
+module FDRE_1 (output reg Q, input C, CE, D, R);
+ parameter [0:0] INIT = 1'b0;
+ wire \$nextQ ;
+ \$__ABC_FDRE_1 #(
+ .INIT(|0),
+ .CLK_POLARITY(1'b0),
+ .EN_POLARITY(1'b1)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
+ );
+ \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
+endmodule
+
+module FDCE (output reg Q, input C, CE, D, CLR);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ wire \$nextQ , \$currQ ;
+ \$__ABC_FDCE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_CLR_INVERTED(IS_CLR_INVERTED),
+ .CLK_POLARITY(!IS_C_INVERTED),
+ .EN_POLARITY(1'b1)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
+ );
+ \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
+ \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
+endmodule
+module FDCE_1 (output reg Q, input C, CE, D, CLR);
+ parameter [0:0] INIT = 1'b0;
+ wire \$nextQ , \$currQ ;
+ \$__ABC_FDCE_1 #(
+ .INIT(INIT),
+ .CLK_POLARITY(1'b0),
+ .EN_POLARITY(1'b1)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
+ );
+ \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
+ \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
+endmodule
+
+module FDPE (output reg Q, input C, CE, D, PRE);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ wire \$nextQ , \$currQ ;
+ \$__ABC_FDPE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_PRE_INVERTED(IS_PRE_INVERTED),
+ .CLK_POLARITY(!IS_C_INVERTED),
+ .EN_POLARITY(1'b1)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
+ );
+ \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
+ \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
+endmodule
+module FDPE_1 (output reg Q, input C, CE, D, PRE);
+ parameter [0:0] INIT = 1'b0;
+ wire \$nextQ , \$currQ ;
+ \$__ABC_FDPE_1 #(
+ .INIT(INIT),
+ .CLK_POLARITY(1'b0),
+ .EN_POLARITY(1'b1)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
+ );
+ \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
+ \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
+endmodule
+
module RAM32X1D (
output DPO, SPO,
input D,
: (S0 ? I1 : I0);
endmodule
+module \$__ABC_FF_ (input C, D, output Q);
+endmodule
+
+(* abc_box_id = 1000 *)
+module \$__ABC_ASYNC (input A, S, output Y);
+endmodule
+
+(* abc_box_id=1001, lib_whitebox, abc_flop *)
+module \$__ABC_FDRE ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input R, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_R_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = (R ^ IS_R_INVERTED) ? 1'b0 : (CE ? (D ^ IS_D_INVERTED) : \$pastQ );
+endmodule
+
+(* abc_box_id=1002, lib_whitebox, abc_flop *)
+module \$__ABC_FDRE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input R, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
+endmodule
+
+(* abc_box_id=1003, lib_whitebox, abc_flop *)
+module \$__ABC_FDCE ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input CLR, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
+endmodule
+
+(* abc_box_id=1004, lib_whitebox, abc_flop *)
+module \$__ABC_FDCE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input CLR, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = (CE && !CLR) ? D : \$pastQ ;
+endmodule
+
+(* abc_box_id=1005, lib_whitebox, abc_flop *)
+module \$__ABC_FDPE ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input PRE, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
+endmodule
+
+(* abc_box_id=1006, lib_whitebox, abc_flop *)
+module \$__ABC_FDPE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input PRE, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = (CE && !PRE) ? D : \$pastQ ;
+endmodule
+
(* abc_box_id=2000 *)
module \$__ABC_LUTMUX6 (input A, input [5:0] S, output Y);
endmodule
module \$__ABC_LUTMUX7 (input A, input [6:0] S, output Y);
endmodule
+
module \$__ABC_RAM32X1D (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
(* abc_arrival=1153 *) output DPO, SPO,
// ============================================================================
+module \$__ABC_ASYNC (input A, S, output Y);
+ assign Y = A;
+endmodule
+
+module \$__ABC_FDRE (output Q,
+ input C,
+ input CE,
+ input D,
+ input R, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_R_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+
+ FDRE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_R_INVERTED(IS_R_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .R(R)
+ );
+endmodule
+
+module \$__ABC_FDRE_1 (output Q,
+ input C,
+ input CE,
+ input D,
+ input R, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
+
+ FDRE_1 #(
+ .INIT(INIT),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .R(R)
+ );
+endmodule
+
+module \$__ABC_FDCE (output Q,
+ input C,
+ input CE,
+ input D,
+ input CLR, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+
+ FDCE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_CLR_INVERTED(IS_CLR_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
+ );
+endmodule
+
+module \$__ABC_FDCE_1 (output Q,
+ input C,
+ input CE,
+ input D,
+ input CLR, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+
+ FDCE_1 #(
+ .INIT(INIT),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
+ );
+endmodule
+
+module \$__ABC_FDPE (output Q,
+ input C,
+ input CE,
+ input D,
+ input PRE, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+
+ FDPE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_PRE_INVERTED(IS_PRE_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
+ );
+endmodule
+
+module \$__ABC_FDPE_1 (output Q,
+ input C,
+ input CE,
+ input D,
+ input PRE, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+
+ FDPE_1 #(
+ .INIT(INIT),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
+ );
+endmodule
+
module \$__ABC_LUTMUX6 (input A, input [5:0] S, output Y);
assign Y = A;
endmodule
592 540 520 356 - 512 548 292 - 228
580 526 507 398 385 508 528 378 380 114
+# Box to emulate async behaviour of FD[CP]*
+# Inputs: A S
+# Outputs: Y
+$__ABC_ASYNC 1000 0 2 1
+0 764
+
+# The following FD*.{CE,R,CLR,PRE) are offset by 46ps to
+# reflect the -46ps Tsu
+# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251
+# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277
+
+# Inputs: C CE D R \$pastQ
+# Outputs: Q
+FDRE 1001 1 5 1
+0 151 0 446 0
+
+# Inputs: C CE D R \$pastQ
+# Outputs: Q
+FDRE_1 1002 1 5 1
+0 151 0 446 0
+
+# Inputs: C CE CLR D \$pastQ
+# Outputs: Q
+FDCE 1003 1 5 1
+0 151 806 0 0
+
+# Inputs: C CE CLR D \$pastQ
+# Outputs: Q
+FDCE_1 1004 1 5 1
+0 151 806 0 0
+
+# Inputs: C CE D PRE \$pastQ
+# Outputs: Q
+FDPE 1005 1 5 1
+0 151 0 806 0
+
+# Inputs: C CE D PRE \$pastQ
+# Outputs: Q
+FDPE_1 1006 1 5 1
+0 151 0 806 0
+
# SLICEM/A6LUT
# Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
# Inputs: A S0 S1 S2 S3 S4 S5
`endif
-module FDRE ((* abc_arrival=303 *) output reg Q,
- input C, CE, D, R);
+module FDRE (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
endcase endgenerate
endmodule
-module FDSE ((* abc_arrival=303 *) output reg Q,
- input C, CE, D, S);
+module FDSE (output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
endcase endgenerate
endmodule
-module FDCE ((* abc_arrival=303 *) output reg Q,
- input C, CE, D, CLR);
+module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
endcase endgenerate
endmodule
-module FDPE ((* abc_arrival=303 *) output reg Q,
- input C, CE, D, PRE);
+module FDPE (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
endcase endgenerate
endmodule
-module FDRE_1 ((* abc_arrival=303 *) output reg Q,
- input C, CE, D, R);
+module FDRE_1 (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
endmodule
-module FDSE_1 ((* abc_arrival=303 *) output reg Q,
- input C, CE, D, S);
+module FDSE_1 (output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
endmodule
-module FDCE_1 ((* abc_arrival=303 *) output reg Q,
- input C, CE, D, CLR);
+module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule
-module FDPE_1 ((* abc_arrival=303 *) output reg Q,
- input C, CE, D, PRE);
+module FDPE_1 (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
std::string techmap_args = "-map +/techmap.v -map +/xilinx/cells_map.v";
if (widemux > 0)
techmap_args += stringf(" -D MIN_MUX_INPUTS=%d", widemux);
+ if (abc9)
+ techmap_args += " -map +/xilinx/ff_map.v";
run("techmap " + techmap_args);
run("clean");
}
// has performed any necessary retiming
if (!nosrl || help_mode)
run("shregmap -minlen 3 -init -params -enpol any_or_none", "(skip if '-nosrl')");
- std::string techmap_args = "-map +/xilinx/lut_map.v -map +/xilinx/ff_map.v";
+ std::string techmap_args = "-map +/xilinx/lut_map.v";
if (abc9)
techmap_args += " -map +/xilinx/abc_unmap.v";
+ else
+ techmap_args += " -map +/xilinx/ff_map.v";
run("techmap " + techmap_args);
run("dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT -ff FDSE Q INIT "
"-ff FDRE_1 Q INIT -ff FDCE_1 Q INIT -ff FDPE_1 Q INIT -ff FDSE_1 Q INIT");