# This file is Copyright (c) 2020 bunnie <bunnie@kosagi.com>
# License: BSD
-from litex.soc.interconnect.csr_eventmanager import *
+from migen.genlib.cdc import MultiReg
+
from litex.soc.interconnect import wishbone
+from litex.soc.interconnect.csr_eventmanager import *
+
from litex.soc.integration.doc import AutoDoc, ModuleDoc
-from migen.genlib.cdc import MultiReg
-class i2s_slave(Module, AutoCSR, AutoDoc):
- def __init__(self, pads, fifodepth=256):
+
+class S7I2SSlave(Module, AutoCSR, AutoDoc):
+ def __init__(self, pads, fifo_depth=256):
self.intro = ModuleDoc("""
Intro
*******
-
- I2S slave creates a slave audio interface instance. Tx and Rx interfaces are inferred
- based upon the presence or absence of the respective pins in the "pads" argument.
-
- The interface is I2S-like, but note the deviation that the bits are justified
- left without a 1-bit pad after sync edges. This isn't a problem for talking to the LM49352
- codec this was designed for, as the bit offset is programmable, but this will not work well if
- are talking to a CODEC without a programmable bit offset!
-
+
+ I2S slave creates a slave audio interface instance. Tx and Rx interfaces are inferred based
+ upon the presence or absence of the respective pins in the "pads" argument.
+
+ The interface is I2S-like, but note the deviation that the bits are justified left without a
+ 1-bit pad after sync edges. This isn't a problem for talking to the LM49352 codec this was
+ designed for, as the bit offset is programmable, but this will not work well if are talking
+ to a CODEC without a programmable bit offset!
+
System Interface
=================
-
+
Audio interchange is done with the system using 16-bit stereo samples, with the right channel
mapped to the least significant word of a 32-bit word. Thus each 32-bit word is a single
- stereo sample. As this is a slave I2S interface, sampling rate and framing is set by the programming
- of the audio CODEC chip. A slave situation is preferred because this defers the generation of
- audio clocks to the CODEC, which has PLLs specialized to generate the correct frequencies for
- audio sampling rates.
-
- `fifodepth` is the depth at which either a read interrupt is fired (guaranteeing at least `fifodepth`
- stereo samples in the receive FIFO) or a write interrupt is fired (guaranteeing at least `fifodepth`
- free space in the transmit FIFO). The maximum depth is 512.
-
+ stereo sample. As this is a slave I2S interface, sampling rate and framing is set by the
+ programming of the audio CODEC chip. A slave situation is preferred because this defers the
+ generation of audio clocks to the CODEC, which has PLLs specialized to generate the correct
+ frequencies for audio sampling rates.
+
+ `fifo_depth` is the depth at which either a read interrupt is fired (guaranteeing at least
+ `fifo_depth` stereo samples in the receive FIFO) or a write interrupt is fired (guaranteeing
+ at least `fifo_depth` free space in the transmit FIFO). The maximum depth is 512.
+
To receive audio data:
-
+
- reset the Rx FIFO, to guarantee all pointers at zero
- hook the Rx full interrupt with an interrupt handler (optional)
- if the CODEC is not yet transmitting data, initiate data transmission
- enable Rx FIFO to run
- - poll or wait for interrupt; upon interrupt, read `fifodepth` words. Repeat.
+ - poll or wait for interrupt; upon interrupt, read `fifo_depth` words. Repeat.
- to close the stream, simply clear the Rx FIFO enable bit. The next initiation should call a
- reset of the FIFO to ensure leftover previous data is cleared from the FIFO.
-
+ reset of the FIFO to ensure leftover previous data is cleared from the FIFO.
+
To transmit audio data:
-
+
- reset the Tx FIFO, to guarantee all pointers at zero
- hook the Tx available interrupt with an interrupt handler (optional)
- write 512 words of data into the Tx FIFO, filling it to the max
- - if the CODEC is not yet requesting data and unmuted, unmute and initiate reception
+ - if the CODEC is not yet requesting data and unmuted, unmute and initiate reception
- enable the Tx FIFO to run
- - poll or wait for interrupt; upon interrupt, write `fifodepth` words. Repeat.
- - to close stream, mute the DAC and stop the request clock. Ideally, this can be completed before
- the FIFO is emptied, so there is no jarring pop or truncation of data
- - stop FIFO running. Next initiation should reset the FIFO to ensure leftover previous data in
- FIFO is cleared.
-
+ - poll or wait for interrupt; upon interrupt, write `fifo_depth` words. Repeat.
+ - to close stream, mute the DAC and stop the request clock. Ideally, this can be completed
+ before the FIFO is emptied, so there is no jarring pop or truncation of data
+ - stop FIFO running. Next initiation should reset the FIFO to ensure leftover previous data
+ in FIFO is cleared.
+
CODEC Interface
================
-
- The interface assumes we have a sysclk domain running around 100MHz, and that our typical
- max audio rate is 44.1kHz * 24bits * 2channels = 2.1168MHz audio clock. Thus, the architecture
+
+ The interface assumes we have a sysclk domain running around 100MHz, and that our typical max
+ audio rate is 44.1kHz * 24bits * 2channels = 2.1168MHz audio clock. Thus, the architecture
treats the audio clock and data as asynchronous inputs that are MultiReg-syncd into the clock
domain. Probably the slowest sysclk rate this might work with is around 20-25MHz (10x over
sampling), but at 100MHz things will be quite comfortable.
-
+
The upside of the fully asynchronous implementation is that we can leave the I/O unconstrained,
giving the place/route more latitude to do its job.
-
+
Here's the timing format targeted by this I2S interface:
-
+
.. wavedrom::
:caption: Timing format of the I2S interface
{ "signal" : [
{ "name": "clk", "wave": "n....|.......|......" },
{ "name": "sync", "wave": "1.0..|....1..|....0." },
- { "name": "tx/rx", "wave": ".====|==x.===|==x.=x", "data": ["L15", "L14", "...", "L1", "L0", "R15", "R14", "...", "R1", "R0", "L15"] },
+ { "name": "tx/rx", "wave": ".====|==x.===|==x.=x", "data":
+ ["L15", "L14", "...", "L1", "L0", "R15", "R14", "...", "R1", "R0", "L15"] },
]}
-
+
- Data is updated on the falling edge
- Data is sampled on the rising edge
- - Words are MSB-to-LSB, left-justified (**NOTE: this is a deviation from strict I2S, which offsets by 1 from the left**)
+ - Words are MSB-to-LSB, left-justified (**NOTE: this is a deviation from strict I2S, which
+ offsets by 1 from the left**)
- Sync is an input (FPGA is slave, codec is master): low => left channel, high => right channel
- Sync can be longer than the wordlen, extra bits are just ignored
- Tx is data to the codec (SDI pin on LM49352)
- Rx is data from the codec (SDO pin on LM49352)
-
+
""")
- # one cache line is 8 32-bit words, need to always have enough space for one line or else nothing works
- if fifodepth > 504:
- fifodepth = 504
+ # One cache line is 8 32-bit words, need to always have enough space for one line or else
+ # nothing works
+ if fifo_depth > 504:
+ fifo_depth = 504
print("I2S warning: fifo depth greater than 504 selected; truncating to 504")
- if fifodepth < 8:
- fifodepth = 8
+ if fifo_depth < 8:
+ fifo_depth = 8
print("I2S warning: fifo depth less than 8 selected; truncating to 8")
- # connect pins, synchronizers, and edge detectors
+ # Connect pins, synchronizers, and edge detectors
if hasattr(pads, 'tx'):
tx_pin = Signal()
self.comb += pads.tx.eq(tx_pin)
self.specials += MultiReg(pads.clk, clk_pin)
clk_d = Signal()
self.sync += clk_d.eq(clk_pin)
- rising_edge = Signal()
+ rising_edge = Signal()
falling_edge = Signal()
self.comb += [rising_edge.eq(clk_pin & ~clk_d), falling_edge.eq(~clk_pin & clk_d)]
- # wishbone bus
- self.bus = wishbone.Interface()
+ # Wishbone bus
+ self.bus = bus = wishbone.Interface()
rd_ack = Signal()
wr_ack = Signal()
self.comb +=[
- If(self.bus.we,
- self.bus.ack.eq(wr_ack),
+ If(bus.we,
+ bus.ack.eq(wr_ack),
).Else(
- self.bus.ack.eq(rd_ack),
+ bus.ack.eq(rd_ack),
)
]
- # interrupts
+ # Interrupts
self.submodules.ev = EventManager()
if hasattr(pads, 'rx'):
- self.ev.rx_ready = EventSourcePulse(description="Indicates FIFO is ready to read") # rising edge triggered
+ self.ev.rx_ready = EventSourcePulse(description="Indicates FIFO is ready to read") # Rising edge triggered
self.ev.rx_error = EventSourcePulse(description="Indicates an Rx error has happened (over/underflow)")
if hasattr(pads, 'tx'):
- self.ev.tx_ready = EventSourcePulse(description="Indicates enough space available for next Tx quanta of {} words".format(fifodepth))
+ self.ev.tx_ready = EventSourcePulse(description="Indicates enough space available for next Tx quanta of {} words".format(fifo_depth))
self.ev.tx_error = EventSourcePulse(description="Indicates a Tx error has happened (over/underflow")
self.ev.finalize()
# build the RX subsystem
if hasattr(pads, 'rx'):
- rx_rd_d = Signal(32)
- rx_almostfull = Signal()
+ rx_rd_d = Signal(32)
+ rx_almostfull = Signal()
rx_almostempty = Signal()
- rx_full = Signal()
- rx_empty = Signal()
- rx_rdcount = Signal(9)
- rx_rderr = Signal()
- rx_wrerr = Signal()
- rx_wrcount = Signal(9)
- rx_rden = Signal()
- rx_wr_d = Signal(32)
- rx_wren = Signal()
+ rx_full = Signal()
+ rx_empty = Signal()
+ rx_rdcount = Signal(9)
+ rx_rderr = Signal()
+ rx_wrerr = Signal()
+ rx_wrcount = Signal(9)
+ rx_rden = Signal()
+ rx_wr_d = Signal(32)
+ rx_wren = Signal()
self.rx_ctl = CSRStorage(description="Rx data path control",
fields=[
CSRField("enable", size=1, description="Enable the receiving data"),
- CSRField("reset", size=1, description="Writing `1` resets the FIFO. Reset happens regardless of enable state.", pulse=1)
+ CSRField("reset", size=1, description="Writing `1` resets the FIFO. Reset happens regardless of enable state.", pulse=1)
])
self.rx_stat = CSRStatus(description="Rx data path status",
fields=[
- CSRField("overflow", size=1, description="Rx overflow"),
+ CSRField("overflow", size=1, description="Rx overflow"),
CSRField("underflow", size=1, description="Rx underflow"),
- CSRField("dataready", size=1, description="{} words of data loaded and ready to read".format(fifodepth)),
- CSRField("empty", size=1, description="No data available in FIFO to read"), # next flags probably never used
- CSRField("wrcount", size=9, description="Write count"),
- CSRField("rdcount", size=9, description="Read count"),
- CSRField("fifodepth", size=9, description="FIFO depth as synthesized")
+ CSRField("dataready", size=1, description="{} words of data loaded and ready to read".format(fifo_depth)),
+ CSRField("empty", size=1, description="No data available in FIFO to read"), # next flags probably never used
+ CSRField("wrcount", size=9, description="Write count"),
+ CSRField("rdcount", size=9, description="Read count"),
+ CSRField("fifo_depth", size=9, description="FIFO depth as synthesized")
])
- self.comb += self.rx_stat.fields.fifodepth.eq(fifodepth)
+ self.comb += self.rx_stat.fields.fifo_depth.eq(fifo_depth)
rx_rst_cnt = Signal(3)
- rx_reset = Signal()
+ rx_reset = Signal()
self.sync += [
If(self.rx_ctl.fields.reset,
rx_rst_cnt.eq(5), # 5 cycles reset required by design
)
)
]
- # at a width of 32 bits, an 18kiB fifo is 512 entries deep
+ # At a width of 32 bits, an 18kiB fifo is 512 entries deep
self.specials += Instance("FIFO_SYNC_MACRO",
- p_DEVICE="7SERIES", p_FIFO_SIZE="18Kb", p_DATA_WIDTH=32,
- p_ALMOST_EMPTY_OFFSET=8, p_ALMOST_FULL_OFFSET=(512 - fifodepth),
- p_DO_REG=0,
-
- o_ALMOSTFULL=rx_almostfull, o_ALMOSTEMPTY=rx_almostempty,
- o_DO=rx_rd_d, o_EMPTY=rx_empty, o_FULL=rx_full,
- o_RDCOUNT=rx_rdcount, o_RDERR=rx_rderr, o_WRCOUNT=rx_wrcount, o_WRERR=rx_wrerr,
- i_DI=rx_wr_d, i_CLK=ClockSignal(), i_RDEN=rx_rden & ~rx_reset,
- i_WREN=rx_wren & ~rx_reset, i_RST=rx_reset,
+ p_DEVICE = "7SERIES",
+ p_FIFO_SIZE = "18Kb",
+ p_DATA_WIDTH = 32,
+ p_ALMOST_EMPTY_OFFSET = 8,
+ p_ALMOST_FULL_OFFSET = (512 - fifo_depth),
+ p_DO_REG = 0,
+ i_CLK = ClockSignal(),
+ i_RST = rx_reset,
+ o_ALMOSTFULL = rx_almostfull,
+ o_ALMOSTEMPTY = rx_almostempty,
+ o_FULL = rx_full,
+ o_EMPTY = rx_empty,
+ i_WREN = rx_wren & ~rx_reset,
+ i_DI = rx_wr_d,
+ i_RDEN = rx_rden & ~rx_reset,
+ o_DO = rx_rd_d,
+ o_RDCOUNT = rx_rdcount,
+ o_RDERR = rx_rderr,
+ o_WRCOUNT = rx_wrcount,
+ o_WRERR = rx_wrerr,
)
- self.comb += [ # wire up the status signals and interrupts
+ self.comb += [ # Wire up the status signals and interrupts
self.rx_stat.fields.overflow.eq(rx_wrerr),
self.rx_stat.fields.underflow.eq(rx_rderr),
self.rx_stat.fields.dataready.eq(rx_almostfull),
self.ev.rx_ready.trigger.eq(rx_almostfull),
self.ev.rx_error.trigger.eq(rx_wrerr | rx_rderr),
]
- bus_read = Signal()
- bus_read_d = Signal()
+ bus_read = Signal()
+ bus_read_d = Signal()
rd_ack_pipe = Signal()
- self.comb += bus_read.eq(self.bus.cyc & self.bus.stb & ~self.bus.we & (self.bus.cti == 0))
- self.sync += [ # this is the bus responder -- only works for uncached memory regions
+ self.comb += bus_read.eq(bus.cyc & bus.stb & ~bus.we & (bus.cti == 0))
+ self.sync += [ # This is the bus responder -- only works for uncached memory regions
bus_read_d.eq(bus_read),
- If(bus_read & ~bus_read_d, # one response, one cycle
+ If(bus_read & ~bus_read_d, # One response, one cycle
rd_ack_pipe.eq(1),
If(~rx_empty,
- self.bus.dat_r.eq(rx_rd_d),
+ bus.dat_r.eq(rx_rd_d),
rx_rden.eq(1),
).Else(
- self.bus.dat_r.eq(0xDEADBEEF), # don't stall the bus indefinitely if we try to read from an empty fifo...just return garbage
+ # Don't stall the bus indefinitely if we try to read from an empty fifo...just
+ # return garbage
+ bus.dat_r.eq(0xdeadbeef),
rx_rden.eq(0),
)
).Else(
rx_cnt = Signal(5)
self.submodules.rxi2s = rxi2s = FSM(reset_state="IDLE")
rxi2s.act("IDLE",
- NextValue(rx_wr_d, 0),
- If(self.rx_ctl.fields.enable,
- If(rising_edge & sync_pin, # wait_sync guarantees we start at the beginning of a left frame, and not in the middle
- NextState("WAIT_SYNC"),
- )
- )
+ NextValue(rx_wr_d, 0),
+ If(self.rx_ctl.fields.enable,
+ # Wait_sync guarantees we start at the beginning of a left frame, and not in
+ # the middle
+ If(rising_edge & sync_pin,
+ NextState("WAIT_SYNC")
+ )
+ )
),
rxi2s.act("WAIT_SYNC",
- If(rising_edge & ~sync_pin,
- NextState("LEFT"),
- NextValue(rx_cnt, 16),
- ),
+ If(rising_edge & ~sync_pin,
+ NextState("LEFT"),
+ NextValue(rx_cnt, 16)
+ ),
)
rxi2s.act("LEFT",
- If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
- NextValue(rx_wr_d, Cat(rx_pin, rx_wr_d[:-1])),
- NextValue(rx_cnt, rx_cnt - 1),
- NextState("LEFT_WAIT"),
- )
+ If(~self.rx_ctl.fields.enable,
+ NextState("IDLE")
+ ).Else(
+ NextValue(rx_wr_d, Cat(rx_pin, rx_wr_d[:-1])),
+ NextValue(rx_cnt, rx_cnt - 1),
+ NextState("LEFT_WAIT")
+ )
)
rxi2s.act("LEFT_WAIT",
- If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
- If(rising_edge,
- If((rx_cnt == 0) & sync_pin,
- NextValue(rx_cnt, 16),
- NextState("RIGHT")
- ).Elif(rx_cnt > 0,
- NextState("LEFT"),
- )
- )
- )
+ If(~self.rx_ctl.fields.enable,
+ NextState("IDLE")
+ ).Else(
+ If(rising_edge,
+ If((rx_cnt == 0) & sync_pin,
+ NextValue(rx_cnt, 16),
+ NextState("RIGHT")
+ ).Elif(rx_cnt > 0,
+ NextState("LEFT")
+ )
+ )
+ )
)
rxi2s.act("RIGHT",
- If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
- NextValue(rx_wr_d, Cat(rx_pin, rx_wr_d[:-1])),
- NextValue(rx_cnt, rx_cnt - 1),
- NextState("RIGHT_WAIT"),
- )
+ If(~self.rx_ctl.fields.enable,
+ NextState("IDLE")
+ ).Else(
+ NextValue(rx_wr_d, Cat(rx_pin, rx_wr_d[:-1])),
+ NextValue(rx_cnt, rx_cnt - 1),
+ NextState("RIGHT_WAIT")
+ )
)
rxi2s.act("RIGHT_WAIT",
- If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
- If(rising_edge,
- If((rx_cnt == 0) & ~sync_pin,
- NextValue(rx_cnt, 16),
- NextState("LEFT"),
- rx_wren.eq(1), # pulse rx_wren to write the current data word
- ).Elif(rx_cnt > 0,
- NextState("RIGHT"),
- )
- )
- )
+ If(~self.rx_ctl.fields.enable,
+ NextState("IDLE")
+ ).Else(
+ If(rising_edge,
+ If((rx_cnt == 0) & ~sync_pin,
+ NextValue(rx_cnt, 16),
+ NextState("LEFT"),
+ rx_wren.eq(1) # Pulse rx_wren to write the current data word
+ ).Elif(rx_cnt > 0,
+ NextState("RIGHT")
+ )
+ )
+ )
)
- # build the TX subsystem
+ # Build the TX subsystem
if hasattr(pads, 'tx'):
- tx_rd_d = Signal(32)
- tx_almostfull = Signal()
+ tx_rd_d = Signal(32)
+ tx_almostfull = Signal()
tx_almostempty = Signal()
- tx_full = Signal()
- tx_empty = Signal()
- tx_rdcount = Signal(9)
- tx_rderr = Signal()
- tx_wrerr = Signal()
- tx_wrcount = Signal(9)
- tx_rden = Signal()
- tx_wr_d = Signal(32)
- tx_wren = Signal()
+ tx_full = Signal()
+ tx_empty = Signal()
+ tx_rdcount = Signal(9)
+ tx_rderr = Signal()
+ tx_wrerr = Signal()
+ tx_wrcount = Signal(9)
+ tx_rden = Signal()
+ tx_wr_d = Signal(32)
+ tx_wren = Signal()
self.tx_ctl = CSRStorage(description="Tx data path control",
fields=[
CSRField("enable", size=1, description="Enable the transmission data"),
- CSRField("reset", size=1, description="Writing `1` resets the FIFO. Reset happens regardless of enable state.", pulse=1)
+ CSRField("reset", size=1, description="Writing `1` resets the FIFO. Reset happens regardless of enable state.", pulse=1)
])
self.tx_stat = CSRStatus(description="Tx data path status",
fields=[
- CSRField("overflow", size=1, description="Tx overflow"),
- CSRField("underflow", size=1, description="Tx underflow"),
- CSRField("free", size=1, description="At least {} words of space free".format(fifodepth)),
+ CSRField("overflow", size=1, description="Tx overflow"),
+ CSRField("underflow", size=1, description="Tx underflow"),
+ CSRField("free", size=1, description="At least {} words of space free".format(fifo_depth)),
CSRField("almostfull", size=1, description="Less than 8 words space available"), # the next few flags should be rarely used
- CSRField("full", size=1, description="FIFO is full or overfull"),
- CSRField("empty", size=1, description="FIFO is empty"),
- CSRField("wrcount", size=9, description="Tx write count"),
- CSRField("rdcount", size=9, description="Tx read count"),
+ CSRField("full", size=1, description="FIFO is full or overfull"),
+ CSRField("empty", size=1, description="FIFO is empty"),
+ CSRField("wrcount", size=9, description="Tx write count"),
+ CSRField("rdcount", size=9, description="Tx read count"),
])
tx_rst_cnt = Signal(3)
- tx_reset = Signal()
+ tx_reset = Signal()
self.sync += [
If(self.tx_ctl.fields.reset,
- tx_rst_cnt.eq(5), # 5 cycles reset required by design
+ tx_rst_cnt.eq(5), # 5 cycles reset required by design
tx_reset.eq(1)
).Else(
If(tx_rst_cnt == 0,
)
)
]
- # at a width of 32 bits, an 18kiB fifo is 512 entries deep
+ # At a width of 32 bits, an 18kiB fifo is 512 entries deep
self.specials += Instance("FIFO_SYNC_MACRO",
- p_DEVICE="7SERIES", p_FIFO_SIZE="18Kb", p_DATA_WIDTH=32,
- p_ALMOST_EMPTY_OFFSET=fifodepth, p_ALMOST_FULL_OFFSET=8,
- p_DO_REG=0,
-
- o_ALMOSTFULL=tx_almostfull, o_ALMOSTEMPTY=tx_almostempty,
- o_DO=tx_rd_d, o_EMPTY=tx_empty, o_FULL=tx_full,
- o_RDCOUNT=tx_rdcount, o_RDERR=tx_rderr, o_WRCOUNT=tx_wrcount, o_WRERR=tx_wrerr,
- i_DI=tx_wr_d, i_CLK=ClockSignal(), i_RDEN=tx_rden & ~tx_reset,
- i_WREN=tx_wren & ~tx_reset, i_RST=tx_reset,
+ p_DEVICE = "7SERIES",
+ p_FIFO_SIZE = "18Kb",
+ p_DATA_WIDTH = 32,
+ p_ALMOST_EMPTY_OFFSET = fifo_depth,
+ p_ALMOST_FULL_OFFSET = 8,
+ p_DO_REG = 0,
+ i_CLK = ClockSignal(),
+ i_RST = tx_reset,
+ o_ALMOSTFULL = tx_almostfull,
+ o_ALMOSTEMPTY = tx_almostempty,
+ o_FULL = tx_full,
+ o_EMPTY = tx_empty,
+ i_WREN = tx_wren & ~tx_reset,
+ i_DI = tx_wr_d,
+ i_RDEN = tx_rden & ~tx_reset,
+ o_DO = tx_rd_d,
+ o_RDCOUNT = tx_rdcount,
+ o_RDERR = tx_rderr,
+ o_WRCOUNT = tx_wrcount,
+ o_WRERR = tx_wrerr,
)
- self.comb += [ # wire up the status signals and interrupts
+
+ self.comb += [ # Wire up the status signals and interrupts
self.tx_stat.fields.overflow.eq(tx_wrerr),
self.tx_stat.fields.underflow.eq(tx_rderr),
self.tx_stat.fields.free.eq(tx_almostempty),
self.ev.tx_ready.trigger.eq(tx_almostempty),
self.ev.tx_error.trigger.eq(tx_wrerr | tx_rderr),
]
- self.sync += [ # this is the bus responder -- need to check how this interacts with uncached memory region
- If(self.bus.cyc & self.bus.stb & self.bus.we & ~self.bus.ack,
+ self.sync += [
+ # This is the bus responder -- need to check how this interacts with uncached memory
+ # region
+ If(bus.cyc & bus.stb & bus.we & ~bus.ack,
If(~tx_full,
- tx_wr_d.eq(self.bus.dat_w),
+ tx_wr_d.eq(bus.dat_w),
tx_wren.eq(1),
wr_ack.eq(1),
).Else(
tx_buf = Signal(32)
self.submodules.txi2s = txi2s = FSM(reset_state="IDLE")
txi2s.act("IDLE",
- If(self.tx_ctl.fields.enable,
- If(falling_edge & sync_pin,
- NextState("WAIT_SYNC"),
- )
- )
+ If(self.tx_ctl.fields.enable,
+ If(falling_edge & sync_pin,
+ NextState("WAIT_SYNC"),
+ )
+ )
),
txi2s.act("WAIT_SYNC",
- If(falling_edge & ~sync_pin,
- NextState("LEFT"),
- NextValue(tx_cnt, 16),
- NextValue(tx_buf, tx_rd_d),
- tx_rden.eq(1),
- ),
+ If(falling_edge & ~sync_pin,
+ NextState("LEFT"),
+ NextValue(tx_cnt, 16),
+ NextValue(tx_buf, tx_rd_d),
+ tx_rden.eq(1)
+ )
)
txi2s.act("LEFT",
- If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
- NextValue(tx_pin, tx_buf[31]),
- NextValue(tx_buf, Cat(0, tx_buf[:-1])),
- NextValue(tx_cnt, tx_cnt - 1),
- NextState("LEFT_WAIT"),
- )
+ If(~self.tx_ctl.fields.enable,
+ NextState("IDLE")
+ ).Else(
+ NextValue(tx_pin, tx_buf[31]),
+ NextValue(tx_buf, Cat(0, tx_buf[:-1])),
+ NextValue(tx_cnt, tx_cnt - 1),
+ NextState("LEFT_WAIT")
+ )
)
txi2s.act("LEFT_WAIT",
- If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
- If(falling_edge,
- If((tx_cnt == 0) & sync_pin,
- NextValue(tx_cnt, 16),
- NextState("RIGHT")
- ).Elif(tx_cnt > 0,
- NextState("LEFT"),
- )
- )
- )
+ If(~self.tx_ctl.fields.enable,
+ NextState("IDLE")
+ ).Else(
+ If(falling_edge,
+ If((tx_cnt == 0) & sync_pin,
+ NextValue(tx_cnt, 16),
+ NextState("RIGHT")
+ ).Elif(tx_cnt > 0,
+ NextState("LEFT")
+ )
+ )
+ )
)
txi2s.act("RIGHT",
- If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
- NextValue(tx_pin, tx_buf[31]),
- NextValue(tx_buf, Cat(0, tx_buf[:-1])),
- NextValue(tx_cnt, tx_cnt - 1),
- NextState("RIGHT_WAIT"),
- )
+ If(~self.tx_ctl.fields.enable,
+ NextState("IDLE")
+ ).Else(
+ NextValue(tx_pin, tx_buf[31]),
+ NextValue(tx_buf, Cat(0, tx_buf[:-1])),
+ NextValue(tx_cnt, tx_cnt - 1),
+ NextState("RIGHT_WAIT")
+ )
)
txi2s.act("RIGHT_WAIT",
- If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
- If(falling_edge,
- If((tx_cnt == 0) & ~sync_pin,
- NextValue(tx_cnt, 16),
- NextState("LEFT"),
- NextValue(tx_buf, tx_rd_d),
- tx_rden.eq(1),
- ).Elif(tx_cnt > 0,
- NextState("RIGHT"),
- )
- )
- )
- )
\ No newline at end of file
+ If(~self.tx_ctl.fields.enable,
+ NextState("IDLE")
+ ).Else(
+ If(falling_edge,
+ If((tx_cnt == 0) & ~sync_pin,
+ NextValue(tx_cnt, 16),
+ NextState("LEFT"),
+ NextValue(tx_buf, tx_rd_d),
+ tx_rden.eq(1)
+ ).Elif(tx_cnt > 0,
+ NextState("RIGHT")
+ )
+ )
+ )
+ )