+2017-04-25 Bob Duff <duff@adacore.com>
+
+ * uintp.adb (Most_Sig_2_Digits): In case Direct (Right), fetch
+ Direct_Val (Right), instead of the incorrect Direct_Val (Left).
+ (UI_GCD): Remove ??? comment involving possible efficiency
+ improvements. This just isn't important after all these years.
+ Also minor cleanup.
+ * uintp.ads: Minor cleanup.
+
2017-04-25 Hristian Kirtchev <kirtchev@adacore.com>
* exp_util.adb, exp_util.ads, sem_ch7.adb, sem_prag.adb, exp_ch3.adb:
UI_Power_2 : array (Int range 0 .. 64) of Uint;
-- This table is used to memoize exponentiations by powers of 2. The Nth
- -- entry, if set, contains the Uint value 2 ** N. Initially UI_Power_2_Set
+ -- entry, if set, contains the Uint value 2**N. Initially UI_Power_2_Set
-- is zero and only the 0'th entry is set, the invariant being that all
-- entries in the range 0 .. UI_Power_2_Set are initialized.
Left_Hat : out Int;
Right_Hat : out Int);
-- Returns leading two significant digits from the given pair of Uint's.
- -- Mathematically: returns Left / (Base ** K) and Right / (Base ** K) where
+ -- Mathematically: returns Left / (Base**K) and Right / (Base**K) where
-- K is as small as possible S.T. Right_Hat < Base * Base. It is required
- -- that Left > Right for the algorithm to work.
+ -- that Left >= Right for the algorithm to work.
function N_Digits (Input : Uint) return Int;
pragma Inline (N_Digits);
-------------------
function Better_In_Hex return Boolean is
- T16 : constant Uint := Uint_2 ** Int'(16);
+ T16 : constant Uint := Uint_2**Int'(16);
A : Uint;
begin
pragma Assert (Left >= Right);
if Direct (Left) then
+ pragma Assert (Direct (Right));
Left_Hat := Direct_Val (Left);
Right_Hat := Direct_Val (Right);
return;
begin
if Direct (Right) then
- T := Direct_Val (Left);
+ T := Direct_Val (Right);
R1 := abs (T / Base);
R2 := T rem Base;
Length_R := 2;
elsif Right <= Uint_64 then
- -- 2 ** N for N in 2 .. 64
+ -- 2**N for N in 2 .. 64
if Left = Uint_2 then
declare
return UI_Power_2 (Right_Int);
end;
- -- 10 ** N for N in 2 .. 64
+ -- 10**N for N in 2 .. 64
elsif Left = Uint_10 then
declare
else
-- Use prior single precision steps to compute this Euclid step
- -- For constructs such as:
- -- sqrt_2: constant := 1.41421_35623_73095_04880_16887_24209_698;
- -- sqrt_eps: constant long_float := long_float( 1.0 / sqrt_2)
- -- ** long_float'machine_mantissa;
- --
- -- we spend 80% of our time working on this step. Perhaps we need
- -- a special case Int / Uint dot product to speed things up. ???
-
- -- Alternatively we could increase the single precision iterations
- -- to handle Uint's of some small size ( <5 digits?). Then we
- -- would have more iterations on small Uint. On the code above, we
- -- only get 5 (on average) single precision iterations per large
- -- iteration. ???
-
Tmp_UI := (UI_From_Int (A) * U) + (UI_From_Int (B) * V);
V := (UI_From_Int (C) * U) + (UI_From_Int (D) * V);
U := Tmp_UI;
(B : Uint;
E : Uint;
Modulo : Uint) return Uint;
- -- Efficiently compute (B ** E) rem Modulo
+ -- Efficiently compute (B**E) rem Modulo
function UI_Modular_Inverse (N : Uint; Modulo : Uint) return Uint;
-- Compute the multiplicative inverse of N in modular arithmetics with the
Base_Bits : constant := 15;
-- Number of bits in base value
- Base : constant Int := 2 ** Base_Bits;
+ Base : constant Int := 2**Base_Bits;
-- Values in the range -(Base-1) .. Max_Direct are encoded directly as
-- Uint values by adding a bias value. The value of Max_Direct is chosen
-- avoid accidental use of Uint arithmetic on these values, which is never
-- correct.
- type Ctrl is range Int'First .. Int'Last;
+ type Ctrl is new Int;
Uint_Direct_Bias : constant Ctrl := Ctrl (Uint_Low_Bound) + Ctrl (Base);
Uint_Direct_First : constant Ctrl := Uint_Direct_Bias + Ctrl (Min_Direct);
Uint_Direct_Last : constant Ctrl := Uint_Direct_Bias + Ctrl (Max_Direct);
- Uint_0 : constant Uint := Uint (Uint_Direct_Bias);
+ Uint_0 : constant Uint := Uint (Uint_Direct_Bias + 0);
Uint_1 : constant Uint := Uint (Uint_Direct_Bias + 1);
Uint_2 : constant Uint := Uint (Uint_Direct_Bias + 2);
Uint_3 : constant Uint := Uint (Uint_Direct_Bias + 3);
Uint_Minus_80 : constant Uint := Uint (Uint_Direct_Bias - 80);
Uint_Minus_128 : constant Uint := Uint (Uint_Direct_Bias - 128);
- Uint_Max_Simple_Mul : constant := Uint_Direct_Bias + 2 ** 15;
+ Uint_Max_Simple_Mul : constant := Uint_Direct_Bias + 2**15;
-- If two values are directly represented and less than or equal to this
-- value, then we know the product fits in a 32-bit integer. This allows
-- UI_Mul to efficiently compute the product in this case.