from m5.util.grammar import Grammar
-class ISAParser(Grammar):
- def __init__(self, *args, **kwargs):
- super(ISAParser, self).__init__(*args, **kwargs)
- self.templateMap = {}
+###################
+# Utility functions
- #####################################################################
- #
- # Lexer
- #
- # The PLY lexer module takes two things as input:
- # - A list of token names (the string list 'tokens')
- # - A regular expression describing a match for each token. The
- # regexp for token FOO can be provided in two ways:
- # - as a string variable named t_FOO
- # - as the doc string for a function named t_FOO. In this case,
- # the function is also executed, allowing an action to be
- # associated with each token match.
- #
- #####################################################################
+#
+# Indent every line in string 's' by two spaces
+# (except preprocessor directives).
+# Used to make nested code blocks look pretty.
+#
+def indent(s):
+ return re.sub(r'(?m)^(?!#)', ' ', s)
- # Reserved words. These are listed separately as they are matched
- # using the same regexp as generic IDs, but distinguished in the
- # t_ID() function. The PLY documentation suggests this approach.
- reserved = (
- 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
- 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
- 'OUTPUT', 'SIGNED', 'TEMPLATE'
- )
+#
+# Munge a somewhat arbitrarily formatted piece of Python code
+# (e.g. from a format 'let' block) into something whose indentation
+# will get by the Python parser.
+#
+# The two keys here are that Python will give a syntax error if
+# there's any whitespace at the beginning of the first line, and that
+# all lines at the same lexical nesting level must have identical
+# indentation. Unfortunately the way code literals work, an entire
+# let block tends to have some initial indentation. Rather than
+# trying to figure out what that is and strip it off, we prepend 'if
+# 1:' to make the let code the nested block inside the if (and have
+# the parser automatically deal with the indentation for us).
+#
+# We don't want to do this if (1) the code block is empty or (2) the
+# first line of the block doesn't have any whitespace at the front.
- # List of tokens. The lex module requires this.
- tokens = reserved + (
- # identifier
- 'ID',
+def fixPythonIndentation(s):
+ # get rid of blank lines first
+ s = re.sub(r'(?m)^\s*\n', '', s);
+ if (s != '' and re.match(r'[ \t]', s[0])):
+ s = 'if 1:\n' + s
+ return s
- # integer literal
- 'INTLIT',
+# Error handler. Just call exit. Output formatted to work under
+# Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
+# prints a Python stack backtrace too (can be handy when trying to
+# debug the parser itself).
+def error(lineno, string, print_traceback = False):
+ spaces = ""
+ for (filename, line) in fileNameStack[0:-1]:
+ print spaces + "In file included from " + filename + ":"
+ spaces += " "
+ # Print a Python stack backtrace if requested.
+ if (print_traceback):
+ traceback.print_exc()
+ if lineno != 0:
+ line_str = "%d:" % lineno
+ else:
+ line_str = ""
+ sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
- # string literal
- 'STRLIT',
+####################
+# Template objects.
+#
+# Template objects are format strings that allow substitution from
+# the attribute spaces of other objects (e.g. InstObjParams instances).
- # code literal
- 'CODELIT',
+labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
- # ( ) [ ] { } < > , ; . : :: *
- 'LPAREN', 'RPAREN',
- 'LBRACKET', 'RBRACKET',
- 'LBRACE', 'RBRACE',
- 'LESS', 'GREATER', 'EQUALS',
- 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
- 'ASTERISK',
+class Template(object):
+ def __init__(self, t):
+ self.template = t
- # C preprocessor directives
- 'CPPDIRECTIVE'
+ def subst(self, d):
+ myDict = None
- # The following are matched but never returned. commented out to
- # suppress PLY warning
- # newfile directive
- # 'NEWFILE',
+ # Protect non-Python-dict substitutions (e.g. if there's a printf
+ # in the templated C++ code)
+ template = protect_non_subst_percents(self.template)
+ # CPU-model-specific substitutions are handled later (in GenCode).
+ template = protect_cpu_symbols(template)
- # endfile directive
- # 'ENDFILE'
- )
+ # Build a dict ('myDict') to use for the template substitution.
+ # Start with the template namespace. Make a copy since we're
+ # going to modify it.
+ myDict = parser.templateMap.copy()
- # Regular expressions for token matching
- t_LPAREN = r'\('
- t_RPAREN = r'\)'
- t_LBRACKET = r'\['
- t_RBRACKET = r'\]'
- t_LBRACE = r'\{'
- t_RBRACE = r'\}'
- t_LESS = r'\<'
- t_GREATER = r'\>'
- t_EQUALS = r'='
- t_COMMA = r','
- t_SEMI = r';'
- t_DOT = r'\.'
- t_COLON = r':'
- t_DBLCOLON = r'::'
- t_ASTERISK = r'\*'
+ if isinstance(d, InstObjParams):
+ # If we're dealing with an InstObjParams object, we need
+ # to be a little more sophisticated. The instruction-wide
+ # parameters are already formed, but the parameters which
+ # are only function wide still need to be generated.
+ compositeCode = ''
- # Identifiers and reserved words
- reserved_map = { }
- for r in reserved:
- reserved_map[r.lower()] = r
+ myDict.update(d.__dict__)
+ # The "operands" and "snippets" attributes of the InstObjParams
+ # objects are for internal use and not substitution.
+ del myDict['operands']
+ del myDict['snippets']
- def t_ID(self, t):
- r'[A-Za-z_]\w*'
- t.type = self.reserved_map.get(t.value, 'ID')
- return t
+ snippetLabels = [l for l in labelRE.findall(template)
+ if d.snippets.has_key(l)]
- # Integer literal
- def t_INTLIT(self, t):
- r'-?(0x[\da-fA-F]+)|\d+'
- try:
- t.value = int(t.value,0)
- except ValueError:
- error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
- t.value = 0
- return t
+ snippets = dict([(s, mungeSnippet(d.snippets[s]))
+ for s in snippetLabels])
- # String literal. Note that these use only single quotes, and
- # can span multiple lines.
- def t_STRLIT(self, t):
- r"(?m)'([^'])+'"
- # strip off quotes
- t.value = t.value[1:-1]
- t.lexer.lineno += t.value.count('\n')
- return t
+ myDict.update(snippets)
+ compositeCode = ' '.join(map(str, snippets.values()))
- # "Code literal"... like a string literal, but delimiters are
- # '{{' and '}}' so they get formatted nicely under emacs c-mode
- def t_CODELIT(self, t):
- r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
- # strip off {{ & }}
- t.value = t.value[2:-2]
- t.lexer.lineno += t.value.count('\n')
- return t
+ # Add in template itself in case it references any
+ # operands explicitly (like Mem)
+ compositeCode += ' ' + template
- def t_CPPDIRECTIVE(self, t):
- r'^\#[^\#].*\n'
- t.lexer.lineno += t.value.count('\n')
- return t
+ operands = SubOperandList(compositeCode, d.operands)
- def t_NEWFILE(self, t):
- r'^\#\#newfile\s+"[\w/.-]*"'
- fileNameStack.push((t.value[11:-1], t.lexer.lineno))
- t.lexer.lineno = 0
+ myDict['op_decl'] = operands.concatAttrStrings('op_decl')
- def t_ENDFILE(self, t):
- r'^\#\#endfile'
- (old_filename, t.lexer.lineno) = fileNameStack.pop()
+ is_src = lambda op: op.is_src
+ is_dest = lambda op: op.is_dest
- #
- # The functions t_NEWLINE, t_ignore, and t_error are
- # special for the lex module.
- #
+ myDict['op_src_decl'] = \
+ operands.concatSomeAttrStrings(is_src, 'op_src_decl')
+ myDict['op_dest_decl'] = \
+ operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
- # Newlines
- def t_NEWLINE(self, t):
- r'\n+'
- t.lexer.lineno += t.value.count('\n')
+ myDict['op_rd'] = operands.concatAttrStrings('op_rd')
+ myDict['op_wb'] = operands.concatAttrStrings('op_wb')
- # Comments
- def t_comment(self, t):
- r'//.*'
+ if d.operands.memOperand:
+ myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size
+ myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type
- # Completely ignored characters
- t_ignore = ' \t\x0c'
+ elif isinstance(d, dict):
+ # if the argument is a dictionary, we just use it.
+ myDict.update(d)
+ elif hasattr(d, '__dict__'):
+ # if the argument is an object, we use its attribute map.
+ myDict.update(d.__dict__)
+ else:
+ raise TypeError, "Template.subst() arg must be or have dictionary"
+ return template % myDict
- # Error handler
- def t_error(self, t):
- error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
- t.skip(1)
+ # Convert to string. This handles the case when a template with a
+ # CPU-specific term gets interpolated into another template or into
+ # an output block.
+ def __str__(self):
+ return expand_cpu_symbols_to_string(self.template)
- #####################################################################
- #
- # Parser
- #
- # Every function whose name starts with 'p_' defines a grammar
- # rule. The rule is encoded in the function's doc string, while
- # the function body provides the action taken when the rule is
- # matched. The argument to each function is a list of the values
- # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
- # symbols on the RHS. For tokens, the value is copied from the
- # t.value attribute provided by the lexer. For non-terminals, the
- # value is assigned by the producing rule; i.e., the job of the
- # grammar rule function is to set the value for the non-terminal
- # on the LHS (by assigning to t[0]).
- #####################################################################
-
- # The LHS of the first grammar rule is used as the start symbol
- # (in this case, 'specification'). Note that this rule enforces
- # that there will be exactly one namespace declaration, with 0 or
- # more global defs/decls before and after it. The defs & decls
- # before the namespace decl will be outside the namespace; those
- # after will be inside. The decoder function is always inside the
- # namespace.
- def p_specification(self, t):
- 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
- global_code = t[1]
- isa_name = t[2]
- namespace = isa_name + "Inst"
- # wrap the decode block as a function definition
- t[4].wrap_decode_block('''
-StaticInstPtr
-%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
-{
- using namespace %(namespace)s;
-''' % vars(), '}')
- # both the latter output blocks and the decode block are in
- # the namespace
- namespace_code = t[3] + t[4]
- # pass it all back to the caller of yacc.parse()
- t[0] = (isa_name, namespace, global_code, namespace_code)
-
- # ISA name declaration looks like "namespace <foo>;"
- def p_name_decl(self, t):
- 'name_decl : NAMESPACE ID SEMI'
- t[0] = t[2]
-
- # 'opt_defs_and_outputs' is a possibly empty sequence of
- # def and/or output statements.
- def p_opt_defs_and_outputs_0(self, t):
- 'opt_defs_and_outputs : empty'
- t[0] = GenCode()
-
- def p_opt_defs_and_outputs_1(self, t):
- 'opt_defs_and_outputs : defs_and_outputs'
- t[0] = t[1]
-
- def p_defs_and_outputs_0(self, t):
- 'defs_and_outputs : def_or_output'
- t[0] = t[1]
-
- def p_defs_and_outputs_1(self, t):
- 'defs_and_outputs : defs_and_outputs def_or_output'
- t[0] = t[1] + t[2]
+################
+# Format object.
+#
+# A format object encapsulates an instruction format. It must provide
+# a defineInst() method that generates the code for an instruction
+# definition.
- # The list of possible definition/output statements.
- def p_def_or_output(self, t):
- '''def_or_output : def_format
- | def_bitfield
- | def_bitfield_struct
- | def_template
- | def_operand_types
- | def_operands
- | output_header
- | output_decoder
- | output_exec
- | global_let'''
- t[0] = t[1]
+exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string')
- # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
- # directly to the appropriate output section.
+exportContext = {}
- # Massage output block by substituting in template definitions and
- # bit operators. We handle '%'s embedded in the string that don't
- # indicate template substitutions (or CPU-specific symbols, which
- # get handled in GenCode) by doubling them first so that the
- # format operation will reduce them back to single '%'s.
- def process_output(self, s):
- s = protect_non_subst_percents(s)
- # protects cpu-specific symbols too
- s = protect_cpu_symbols(s)
- return substBitOps(s % self.templateMap)
+def updateExportContext():
+ exportContext.update(exportDict(*exportContextSymbols))
+ exportContext.update(parser.templateMap)
- def p_output_header(self, t):
- 'output_header : OUTPUT HEADER CODELIT SEMI'
- t[0] = GenCode(header_output = self.process_output(t[3]))
+def exportDict(*symNames):
+ return dict([(s, eval(s)) for s in symNames])
- def p_output_decoder(self, t):
- 'output_decoder : OUTPUT DECODER CODELIT SEMI'
- t[0] = GenCode(decoder_output = self.process_output(t[3]))
- def p_output_exec(self, t):
- 'output_exec : OUTPUT EXEC CODELIT SEMI'
- t[0] = GenCode(exec_output = self.process_output(t[3]))
+class Format(object):
+ def __init__(self, id, params, code):
+ # constructor: just save away arguments
+ self.id = id
+ self.params = params
+ label = 'def format ' + id
+ self.user_code = compile(fixPythonIndentation(code), label, 'exec')
+ param_list = string.join(params, ", ")
+ f = '''def defInst(_code, _context, %s):
+ my_locals = vars().copy()
+ exec _code in _context, my_locals
+ return my_locals\n''' % param_list
+ c = compile(f, label + ' wrapper', 'exec')
+ exec c
+ self.func = defInst
- # global let blocks 'let {{...}}' (Python code blocks) are
- # executed directly when seen. Note that these execute in a
- # special variable context 'exportContext' to prevent the code
- # from polluting this script's namespace.
- def p_global_let(self, t):
- 'global_let : LET CODELIT SEMI'
+ def defineInst(self, name, args, lineno):
+ context = {}
updateExportContext()
- exportContext["header_output"] = ''
- exportContext["decoder_output"] = ''
- exportContext["exec_output"] = ''
- exportContext["decode_block"] = ''
+ context.update(exportContext)
+ if len(name):
+ Name = name[0].upper()
+ if len(name) > 1:
+ Name += name[1:]
+ context.update({ 'name': name, 'Name': Name })
try:
- exec fixPythonIndentation(t[2]) in exportContext
+ vars = self.func(self.user_code, context, *args[0], **args[1])
except Exception, exc:
- error(t.lexer.lineno,
- 'error: %s in global let block "%s".' % (exc, t[2]))
- t[0] = GenCode(header_output = exportContext["header_output"],
- decoder_output = exportContext["decoder_output"],
- exec_output = exportContext["exec_output"],
- decode_block = exportContext["decode_block"])
+ error(lineno, 'error defining "%s": %s.' % (name, exc))
+ for k in vars.keys():
+ if k not in ('header_output', 'decoder_output',
+ 'exec_output', 'decode_block'):
+ del vars[k]
+ return GenCode(**vars)
- # Define the mapping from operand type extensions to C++ types and
- # bit widths (stored in operandTypeMap).
- def p_def_operand_types(self, t):
- 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
- try:
- user_dict = eval('{' + t[3] + '}')
- except Exception, exc:
- error(t.lexer.lineno,
- 'error: %s in def operand_types block "%s".' % (exc, t[3]))
- buildOperandTypeMap(user_dict, t.lexer.lineno)
- t[0] = GenCode() # contributes nothing to the output C++ file
+# Special null format to catch an implicit-format instruction
+# definition outside of any format block.
+class NoFormat(object):
+ def __init__(self):
+ self.defaultInst = ''
- # Define the mapping from operand names to operand classes and
- # other traits. Stored in operandNameMap.
- def p_def_operands(self, t):
- 'def_operands : DEF OPERANDS CODELIT SEMI'
- if not globals().has_key('operandTypeMap'):
- error(t.lexer.lineno,
- 'error: operand types must be defined before operands')
- try:
- user_dict = eval('{' + t[3] + '}', exportContext)
- except Exception, exc:
- error(t.lexer.lineno,
- 'error: %s in def operands block "%s".' % (exc, t[3]))
- buildOperandNameMap(user_dict, t.lexer.lineno)
- t[0] = GenCode() # contributes nothing to the output C++ file
+ def defineInst(self, name, args, lineno):
+ error(lineno,
+ 'instruction definition "%s" with no active format!' % name)
- # A bitfield definition looks like:
- # 'def [signed] bitfield <ID> [<first>:<last>]'
- # This generates a preprocessor macro in the output file.
- def p_def_bitfield_0(self, t):
- 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
- expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
- if (t[2] == 'signed'):
- expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
+# This dictionary maps format name strings to Format objects.
+formatMap = {}
- # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
- def p_def_bitfield_1(self, t):
- 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
- expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
- if (t[2] == 'signed'):
- expr = 'sext<%d>(%s)' % (1, expr)
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
+# Define a new format
+def defFormat(id, params, code, lineno):
+ # make sure we haven't already defined this one
+ if formatMap.get(id, None) != None:
+ error(lineno, 'format %s redefined.' % id)
+ # create new object and store in global map
+ formatMap[id] = Format(id, params, code)
- # alternate form for structure member: 'def bitfield <ID> <ID>'
- def p_def_bitfield_struct(self, t):
- 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
- if (t[2] != ''):
- error(t.lexer.lineno,
- 'error: structure bitfields are always unsigned.')
- expr = 'machInst.%s' % t[5]
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
+#####################################################################
+#
+# Support Classes
+#
+#####################################################################
- def p_id_with_dot_0(self, t):
- 'id_with_dot : ID'
- t[0] = t[1]
+# Expand template with CPU-specific references into a dictionary with
+# an entry for each CPU model name. The entry key is the model name
+# and the corresponding value is the template with the CPU-specific
+# refs substituted for that model.
+def expand_cpu_symbols_to_dict(template):
+ # Protect '%'s that don't go with CPU-specific terms
+ t = re.sub(r'%(?!\(CPU_)', '%%', template)
+ result = {}
+ for cpu in cpu_models:
+ result[cpu.name] = t % cpu.strings
+ return result
- def p_id_with_dot_1(self, t):
- 'id_with_dot : ID DOT id_with_dot'
- t[0] = t[1] + t[2] + t[3]
+# *If* the template has CPU-specific references, return a single
+# string containing a copy of the template for each CPU model with the
+# corresponding values substituted in. If the template has no
+# CPU-specific references, it is returned unmodified.
+def expand_cpu_symbols_to_string(template):
+ if template.find('%(CPU_') != -1:
+ return reduce(lambda x,y: x+y,
+ expand_cpu_symbols_to_dict(template).values())
+ else:
+ return template
- def p_opt_signed_0(self, t):
- 'opt_signed : SIGNED'
- t[0] = t[1]
+# Protect CPU-specific references by doubling the corresponding '%'s
+# (in preparation for substituting a different set of references into
+# the template).
+def protect_cpu_symbols(template):
+ return re.sub(r'%(?=\(CPU_)', '%%', template)
- def p_opt_signed_1(self, t):
- 'opt_signed : empty'
- t[0] = ''
-
- def p_def_template(self, t):
- 'def_template : DEF TEMPLATE ID CODELIT SEMI'
- self.templateMap[t[3]] = Template(t[4])
- t[0] = GenCode()
+# Protect any non-dict-substitution '%'s in a format string
+# (i.e. those not followed by '(')
+def protect_non_subst_percents(s):
+ return re.sub(r'%(?!\()', '%%', s)
- # An instruction format definition looks like
- # "def format <fmt>(<params>) {{...}};"
- def p_def_format(self, t):
- 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
- (id, params, code) = (t[3], t[5], t[7])
- defFormat(id, params, code, t.lexer.lineno)
- t[0] = GenCode()
+###############
+# GenCode class
+#
+# The GenCode class encapsulates generated code destined for various
+# output files. The header_output and decoder_output attributes are
+# strings containing code destined for decoder.hh and decoder.cc
+# respectively. The decode_block attribute contains code to be
+# incorporated in the decode function itself (that will also end up in
+# decoder.cc). The exec_output attribute is a dictionary with a key
+# for each CPU model name; the value associated with a particular key
+# is the string of code for that CPU model's exec.cc file. The
+# has_decode_default attribute is used in the decode block to allow
+# explicit default clauses to override default default clauses.
- # The formal parameter list for an instruction format is a
- # possibly empty list of comma-separated parameters. Positional
- # (standard, non-keyword) parameters must come first, followed by
- # keyword parameters, followed by a '*foo' parameter that gets
- # excess positional arguments (as in Python). Each of these three
- # parameter categories is optional.
- #
- # Note that we do not support the '**foo' parameter for collecting
- # otherwise undefined keyword args. Otherwise the parameter list
- # is (I believe) identical to what is supported in Python.
- #
- # The param list generates a tuple, where the first element is a
- # list of the positional params and the second element is a dict
- # containing the keyword params.
- def p_param_list_0(self, t):
- 'param_list : positional_param_list COMMA nonpositional_param_list'
- t[0] = t[1] + t[3]
+class GenCode(object):
+ # Constructor. At this point we substitute out all CPU-specific
+ # symbols. For the exec output, these go into the per-model
+ # dictionary. For all other output types they get collapsed into
+ # a single string.
+ def __init__(self,
+ header_output = '', decoder_output = '', exec_output = '',
+ decode_block = '', has_decode_default = False):
+ self.header_output = expand_cpu_symbols_to_string(header_output)
+ self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
+ if isinstance(exec_output, dict):
+ self.exec_output = exec_output
+ elif isinstance(exec_output, str):
+ # If the exec_output arg is a single string, we replicate
+ # it for each of the CPU models, substituting and
+ # %(CPU_foo)s params appropriately.
+ self.exec_output = expand_cpu_symbols_to_dict(exec_output)
+ self.decode_block = expand_cpu_symbols_to_string(decode_block)
+ self.has_decode_default = has_decode_default
- def p_param_list_1(self, t):
- '''param_list : positional_param_list
- | nonpositional_param_list'''
- t[0] = t[1]
+ # Override '+' operator: generate a new GenCode object that
+ # concatenates all the individual strings in the operands.
+ def __add__(self, other):
+ exec_output = {}
+ for cpu in cpu_models:
+ n = cpu.name
+ exec_output[n] = self.exec_output[n] + other.exec_output[n]
+ return GenCode(self.header_output + other.header_output,
+ self.decoder_output + other.decoder_output,
+ exec_output,
+ self.decode_block + other.decode_block,
+ self.has_decode_default or other.has_decode_default)
- def p_positional_param_list_0(self, t):
- 'positional_param_list : empty'
- t[0] = []
+ # Prepend a string (typically a comment) to all the strings.
+ def prepend_all(self, pre):
+ self.header_output = pre + self.header_output
+ self.decoder_output = pre + self.decoder_output
+ self.decode_block = pre + self.decode_block
+ for cpu in cpu_models:
+ self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
- def p_positional_param_list_1(self, t):
- 'positional_param_list : ID'
- t[0] = [t[1]]
+ # Wrap the decode block in a pair of strings (e.g., 'case foo:'
+ # and 'break;'). Used to build the big nested switch statement.
+ def wrap_decode_block(self, pre, post = ''):
+ self.decode_block = pre + indent(self.decode_block) + post
- def p_positional_param_list_2(self, t):
- 'positional_param_list : positional_param_list COMMA ID'
- t[0] = t[1] + [t[3]]
+#####################################################################
+#
+# Bitfield Operator Support
+#
+#####################################################################
- def p_nonpositional_param_list_0(self, t):
- 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
- t[0] = t[1] + t[3]
+bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
- def p_nonpositional_param_list_1(self, t):
- '''nonpositional_param_list : keyword_param_list
- | excess_args_param'''
- t[0] = t[1]
+bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
+bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
- def p_keyword_param_list_0(self, t):
- 'keyword_param_list : keyword_param'
- t[0] = [t[1]]
+def substBitOps(code):
+ # first convert single-bit selectors to two-index form
+ # i.e., <n> --> <n:n>
+ code = bitOp1ArgRE.sub(r'<\1:\1>', code)
+ # simple case: selector applied to ID (name)
+ # i.e., foo<a:b> --> bits(foo, a, b)
+ code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
+ # if selector is applied to expression (ending in ')'),
+ # we need to search backward for matching '('
+ match = bitOpExprRE.search(code)
+ while match:
+ exprEnd = match.start()
+ here = exprEnd - 1
+ nestLevel = 1
+ while nestLevel > 0:
+ if code[here] == '(':
+ nestLevel -= 1
+ elif code[here] == ')':
+ nestLevel += 1
+ here -= 1
+ if here < 0:
+ sys.exit("Didn't find '('!")
+ exprStart = here+1
+ newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
+ match.group(1), match.group(2))
+ code = code[:exprStart] + newExpr + code[match.end():]
+ match = bitOpExprRE.search(code)
+ return code
- def p_keyword_param_list_1(self, t):
- 'keyword_param_list : keyword_param_list COMMA keyword_param'
- t[0] = t[1] + [t[3]]
- def p_keyword_param(self, t):
- 'keyword_param : ID EQUALS expr'
- t[0] = t[1] + ' = ' + t[3].__repr__()
+#####################################################################
+#
+# Code Parser
+#
+# The remaining code is the support for automatically extracting
+# instruction characteristics from pseudocode.
+#
+#####################################################################
- def p_excess_args_param(self, t):
- 'excess_args_param : ASTERISK ID'
- # Just concatenate them: '*ID'. Wrap in list to be consistent
- # with positional_param_list and keyword_param_list.
- t[0] = [t[1] + t[2]]
+# Force the argument to be a list. Useful for flags, where a caller
+# can specify a singleton flag or a list of flags. Also usful for
+# converting tuples to lists so they can be modified.
+def makeList(arg):
+ if isinstance(arg, list):
+ return arg
+ elif isinstance(arg, tuple):
+ return list(arg)
+ elif not arg:
+ return []
+ else:
+ return [ arg ]
- # End of format definition-related rules.
- ##############
+# Generate operandTypeMap from the user's 'def operand_types'
+# statement.
+def buildOperandTypeMap(user_dict, lineno):
+ global operandTypeMap
+ operandTypeMap = {}
+ for (ext, (desc, size)) in user_dict.iteritems():
+ if desc == 'signed int':
+ ctype = 'int%d_t' % size
+ is_signed = 1
+ elif desc == 'unsigned int':
+ ctype = 'uint%d_t' % size
+ is_signed = 0
+ elif desc == 'float':
+ is_signed = 1 # shouldn't really matter
+ if size == 32:
+ ctype = 'float'
+ elif size == 64:
+ ctype = 'double'
+ elif desc == 'twin64 int':
+ is_signed = 0
+ ctype = 'Twin64_t'
+ elif desc == 'twin32 int':
+ is_signed = 0
+ ctype = 'Twin32_t'
+ if ctype == '':
+ error(lineno, 'Unrecognized type description "%s" in user_dict')
+ operandTypeMap[ext] = (size, ctype, is_signed)
- #
- # A decode block looks like:
- # decode <field1> [, <field2>]* [default <inst>] { ... }
- #
- def p_decode_block(self, t):
- 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
- default_defaults = defaultStack.pop()
- codeObj = t[5]
- # use the "default defaults" only if there was no explicit
- # default statement in decode_stmt_list
- if not codeObj.has_decode_default:
- codeObj += default_defaults
- codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
- t[0] = codeObj
+class Operand(object):
+ '''Base class for operand descriptors. An instance of this class
+ (or actually a class derived from this one) represents a specific
+ operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
+ derived classes encapsulates the traits of a particular operand
+ type (e.g., "32-bit integer register").'''
- # The opt_default statement serves only to push the "default
- # defaults" onto defaultStack. This value will be used by nested
- # decode blocks, and used and popped off when the current
- # decode_block is processed (in p_decode_block() above).
- def p_opt_default_0(self, t):
- 'opt_default : empty'
- # no default specified: reuse the one currently at the top of
- # the stack
- defaultStack.push(defaultStack.top())
- # no meaningful value returned
- t[0] = None
+ def buildReadCode(self, func = None):
+ code = self.read_code % {"name": self.base_name,
+ "func": func,
+ "op_idx": self.src_reg_idx,
+ "reg_idx": self.reg_spec,
+ "size": self.size,
+ "ctype": self.ctype}
+ if self.size != self.dflt_size:
+ return '%s = bits(%s, %d, 0);\n' % \
+ (self.base_name, code, self.size-1)
+ else:
+ return '%s = %s;\n' % \
+ (self.base_name, code)
- def p_opt_default_1(self, t):
- 'opt_default : DEFAULT inst'
- # push the new default
- codeObj = t[2]
- codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
- defaultStack.push(codeObj)
- # no meaningful value returned
- t[0] = None
-
- def p_decode_stmt_list_0(self, t):
- 'decode_stmt_list : decode_stmt'
- t[0] = t[1]
-
- def p_decode_stmt_list_1(self, t):
- 'decode_stmt_list : decode_stmt decode_stmt_list'
- if (t[1].has_decode_default and t[2].has_decode_default):
- error(t.lexer.lineno, 'Two default cases in decode block')
- t[0] = t[1] + t[2]
-
- #
- # Decode statement rules
- #
- # There are four types of statements allowed in a decode block:
- # 1. Format blocks 'format <foo> { ... }'
- # 2. Nested decode blocks
- # 3. Instruction definitions.
- # 4. C preprocessor directives.
-
-
- # Preprocessor directives found in a decode statement list are
- # passed through to the output, replicated to all of the output
- # code streams. This works well for ifdefs, so we can ifdef out
- # both the declarations and the decode cases generated by an
- # instruction definition. Handling them as part of the grammar
- # makes it easy to keep them in the right place with respect to
- # the code generated by the other statements.
- def p_decode_stmt_cpp(self, t):
- 'decode_stmt : CPPDIRECTIVE'
- t[0] = GenCode(t[1], t[1], t[1], t[1])
-
- # A format block 'format <foo> { ... }' sets the default
- # instruction format used to handle instruction definitions inside
- # the block. This format can be overridden by using an explicit
- # format on the instruction definition or with a nested format
- # block.
- def p_decode_stmt_format(self, t):
- 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
- # The format will be pushed on the stack when 'push_format_id'
- # is processed (see below). Once the parser has recognized
- # the full production (though the right brace), we're done
- # with the format, so now we can pop it.
- formatStack.pop()
- t[0] = t[4]
-
- # This rule exists so we can set the current format (& push the
- # stack) when we recognize the format name part of the format
- # block.
- def p_push_format_id(self, t):
- 'push_format_id : ID'
- try:
- formatStack.push(formatMap[t[1]])
- t[0] = ('', '// format %s' % t[1])
- except KeyError:
- error(t.lexer.lineno,
- 'instruction format "%s" not defined.' % t[1])
+ def buildWriteCode(self, func = None):
+ if (self.size != self.dflt_size and self.is_signed):
+ final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
+ else:
+ final_val = self.base_name
+ code = self.write_code % {"name": self.base_name,
+ "func": func,
+ "op_idx": self.dest_reg_idx,
+ "reg_idx": self.reg_spec,
+ "size": self.size,
+ "ctype": self.ctype,
+ "final_val": final_val}
+ return '''
+ {
+ %s final_val = %s;
+ %s;
+ if (traceData) { traceData->setData(final_val); }
+ }''' % (self.dflt_ctype, final_val, code)
- # Nested decode block: if the value of the current field matches
- # the specified constant, do a nested decode on some other field.
- def p_decode_stmt_decode(self, t):
- 'decode_stmt : case_label COLON decode_block'
- label = t[1]
- codeObj = t[3]
- # just wrap the decoding code from the block as a case in the
- # outer switch statement.
- codeObj.wrap_decode_block('\n%s:\n' % label)
- codeObj.has_decode_default = (label == 'default')
- t[0] = codeObj
+ def __init__(self, full_name, ext, is_src, is_dest):
+ self.full_name = full_name
+ self.ext = ext
+ self.is_src = is_src
+ self.is_dest = is_dest
+ # The 'effective extension' (eff_ext) is either the actual
+ # extension, if one was explicitly provided, or the default.
+ if ext:
+ self.eff_ext = ext
+ else:
+ self.eff_ext = self.dflt_ext
- # Instruction definition (finally!).
- def p_decode_stmt_inst(self, t):
- 'decode_stmt : case_label COLON inst SEMI'
- label = t[1]
- codeObj = t[3]
- codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
- codeObj.has_decode_default = (label == 'default')
- t[0] = codeObj
+ (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
- # The case label is either a list of one or more constants or
- # 'default'
- def p_case_label_0(self, t):
- 'case_label : intlit_list'
- def make_case(intlit):
- if intlit >= 2**32:
- return 'case ULL(%#x)' % intlit
+ # note that mem_acc_size is undefined for non-mem operands...
+ # template must be careful not to use it if it doesn't apply.
+ if self.isMem():
+ self.mem_acc_size = self.makeAccSize()
+ if self.ctype in ['Twin32_t', 'Twin64_t']:
+ self.mem_acc_type = 'Twin'
else:
- return 'case %#x' % intlit
- t[0] = ': '.join(map(make_case, t[1]))
-
- def p_case_label_1(self, t):
- 'case_label : DEFAULT'
- t[0] = 'default'
+ self.mem_acc_type = 'uint'
- #
- # The constant list for a decode case label must be non-empty, but
- # may have one or more comma-separated integer literals in it.
- #
- def p_intlit_list_0(self, t):
- 'intlit_list : INTLIT'
- t[0] = [t[1]]
+ # Finalize additional fields (primarily code fields). This step
+ # is done separately since some of these fields may depend on the
+ # register index enumeration that hasn't been performed yet at the
+ # time of __init__().
+ def finalize(self):
+ self.flags = self.getFlags()
+ self.constructor = self.makeConstructor()
+ self.op_decl = self.makeDecl()
- def p_intlit_list_1(self, t):
- 'intlit_list : intlit_list COMMA INTLIT'
- t[0] = t[1]
- t[0].append(t[3])
+ if self.is_src:
+ self.op_rd = self.makeRead()
+ self.op_src_decl = self.makeDecl()
+ else:
+ self.op_rd = ''
+ self.op_src_decl = ''
- # Define an instruction using the current instruction format
- # (specified by an enclosing format block).
- # "<mnemonic>(<args>)"
- def p_inst_0(self, t):
- 'inst : ID LPAREN arg_list RPAREN'
- # Pass the ID and arg list to the current format class to deal with.
- currentFormat = formatStack.top()
- codeObj = currentFormat.defineInst(t[1], t[3], t.lexer.lineno)
- args = ','.join(map(str, t[3]))
- args = re.sub('(?m)^', '//', args)
- args = re.sub('^//', '', args)
- comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
- codeObj.prepend_all(comment)
- t[0] = codeObj
+ if self.is_dest:
+ self.op_wb = self.makeWrite()
+ self.op_dest_decl = self.makeDecl()
+ else:
+ self.op_wb = ''
+ self.op_dest_decl = ''
- # Define an instruction using an explicitly specified format:
- # "<fmt>::<mnemonic>(<args>)"
- def p_inst_1(self, t):
- 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
- try:
- format = formatMap[t[1]]
- except KeyError:
- error(t.lexer.lineno,
- 'instruction format "%s" not defined.' % t[1])
- codeObj = format.defineInst(t[3], t[5], t.lexer.lineno)
- comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
- codeObj.prepend_all(comment)
- t[0] = codeObj
+ def isMem(self):
+ return 0
- # The arg list generates a tuple, where the first element is a
- # list of the positional args and the second element is a dict
- # containing the keyword args.
- def p_arg_list_0(self, t):
- 'arg_list : positional_arg_list COMMA keyword_arg_list'
- t[0] = ( t[1], t[3] )
+ def isReg(self):
+ return 0
- def p_arg_list_1(self, t):
- 'arg_list : positional_arg_list'
- t[0] = ( t[1], {} )
+ def isFloatReg(self):
+ return 0
- def p_arg_list_2(self, t):
- 'arg_list : keyword_arg_list'
- t[0] = ( [], t[1] )
+ def isIntReg(self):
+ return 0
- def p_positional_arg_list_0(self, t):
- 'positional_arg_list : empty'
- t[0] = []
+ def isControlReg(self):
+ return 0
- def p_positional_arg_list_1(self, t):
- 'positional_arg_list : expr'
- t[0] = [t[1]]
+ def getFlags(self):
+ # note the empty slice '[:]' gives us a copy of self.flags[0]
+ # instead of a reference to it
+ my_flags = self.flags[0][:]
+ if self.is_src:
+ my_flags += self.flags[1]
+ if self.is_dest:
+ my_flags += self.flags[2]
+ return my_flags
- def p_positional_arg_list_2(self, t):
- 'positional_arg_list : positional_arg_list COMMA expr'
- t[0] = t[1] + [t[3]]
+ def makeDecl(self):
+ # Note that initializations in the declarations are solely
+ # to avoid 'uninitialized variable' errors from the compiler.
+ return self.ctype + ' ' + self.base_name + ' = 0;\n';
- def p_keyword_arg_list_0(self, t):
- 'keyword_arg_list : keyword_arg'
- t[0] = t[1]
+class IntRegOperand(Operand):
+ def isReg(self):
+ return 1
- def p_keyword_arg_list_1(self, t):
- 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
- t[0] = t[1]
- t[0].update(t[3])
+ def isIntReg(self):
+ return 1
- def p_keyword_arg(self, t):
- 'keyword_arg : ID EQUALS expr'
- t[0] = { t[1] : t[3] }
+ def makeConstructor(self):
+ c = ''
+ if self.is_src:
+ c += '\n\t_srcRegIdx[%d] = %s;' % \
+ (self.src_reg_idx, self.reg_spec)
+ if self.is_dest:
+ c += '\n\t_destRegIdx[%d] = %s;' % \
+ (self.dest_reg_idx, self.reg_spec)
+ return c
- #
- # Basic expressions. These constitute the argument values of
- # "function calls" (i.e. instruction definitions in the decode
- # block) and default values for formal parameters of format
- # functions.
- #
- # Right now, these are either strings, integers, or (recursively)
- # lists of exprs (using Python square-bracket list syntax). Note
- # that bare identifiers are trated as string constants here (since
- # there isn't really a variable namespace to refer to).
- #
- def p_expr_0(self, t):
- '''expr : ID
- | INTLIT
- | STRLIT
- | CODELIT'''
- t[0] = t[1]
+ def makeRead(self):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error(0, 'Attempt to read integer register as FP')
+ if self.read_code != None:
+ return self.buildReadCode('readIntRegOperand')
+ if (self.size == self.dflt_size):
+ return '%s = xc->readIntRegOperand(this, %d);\n' % \
+ (self.base_name, self.src_reg_idx)
+ elif (self.size > self.dflt_size):
+ int_reg_val = 'xc->readIntRegOperand(this, %d)' % \
+ (self.src_reg_idx)
+ if (self.is_signed):
+ int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
+ return '%s = %s;\n' % (self.base_name, int_reg_val)
+ else:
+ return '%s = bits(xc->readIntRegOperand(this, %d), %d, 0);\n' % \
+ (self.base_name, self.src_reg_idx, self.size-1)
- def p_expr_1(self, t):
- '''expr : LBRACKET list_expr RBRACKET'''
- t[0] = t[2]
+ def makeWrite(self):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error(0, 'Attempt to write integer register as FP')
+ if self.write_code != None:
+ return self.buildWriteCode('setIntRegOperand')
+ if (self.size != self.dflt_size and self.is_signed):
+ final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
+ else:
+ final_val = self.base_name
+ wb = '''
+ {
+ %s final_val = %s;
+ xc->setIntRegOperand(this, %d, final_val);\n
+ if (traceData) { traceData->setData(final_val); }
+ }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
+ return wb
- def p_list_expr_0(self, t):
- 'list_expr : expr'
- t[0] = [t[1]]
+class FloatRegOperand(Operand):
+ def isReg(self):
+ return 1
- def p_list_expr_1(self, t):
- 'list_expr : list_expr COMMA expr'
- t[0] = t[1] + [t[3]]
+ def isFloatReg(self):
+ return 1
- def p_list_expr_2(self, t):
- 'list_expr : empty'
- t[0] = []
+ def makeConstructor(self):
+ c = ''
+ if self.is_src:
+ c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
+ (self.src_reg_idx, self.reg_spec)
+ if self.is_dest:
+ c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
+ (self.dest_reg_idx, self.reg_spec)
+ return c
- #
- # Empty production... use in other rules for readability.
- #
- def p_empty(self, t):
- 'empty :'
- pass
+ def makeRead(self):
+ bit_select = 0
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ func = 'readFloatRegOperand'
+ else:
+ func = 'readFloatRegOperandBits'
+ if (self.size != self.dflt_size):
+ bit_select = 1
+ base = 'xc->%s(this, %d)' % (func, self.src_reg_idx)
+ if self.read_code != None:
+ return self.buildReadCode(func)
+ if bit_select:
+ return '%s = bits(%s, %d, 0);\n' % \
+ (self.base_name, base, self.size-1)
+ else:
+ return '%s = %s;\n' % (self.base_name, base)
- # Parse error handler. Note that the argument here is the
- # offending *token*, not a grammar symbol (hence the need to use
- # t.value)
- def p_error(self, t):
- if t:
- error(t.lexer.lineno, "syntax error at '%s'" % t.value)
+ def makeWrite(self):
+ final_val = self.base_name
+ final_ctype = self.ctype
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ func = 'setFloatRegOperand'
+ elif (self.ctype == 'uint32_t' or self.ctype == 'uint64_t'):
+ func = 'setFloatRegOperandBits'
else:
- error(0, "unknown syntax error", True)
+ func = 'setFloatRegOperandBits'
+ final_ctype = 'uint%d_t' % self.dflt_size
+ if (self.size != self.dflt_size and self.is_signed):
+ final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
+ if self.write_code != None:
+ return self.buildWriteCode(func)
+ wb = '''
+ {
+ %s final_val = %s;
+ xc->%s(this, %d, final_val);\n
+ if (traceData) { traceData->setData(final_val); }
+ }''' % (final_ctype, final_val, func, self.dest_reg_idx)
+ return wb
- # END OF GRAMMAR RULES
+class ControlRegOperand(Operand):
+ def isReg(self):
+ return 1
-# Now build the parser.
-parser = ISAParser()
+ def isControlReg(self):
+ return 1
-#####################################################################
-#
-# Support Classes
-#
-#####################################################################
+ def makeConstructor(self):
+ c = ''
+ if self.is_src:
+ c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
+ (self.src_reg_idx, self.reg_spec)
+ if self.is_dest:
+ c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
+ (self.dest_reg_idx, self.reg_spec)
+ return c
-# Expand template with CPU-specific references into a dictionary with
-# an entry for each CPU model name. The entry key is the model name
-# and the corresponding value is the template with the CPU-specific
-# refs substituted for that model.
-def expand_cpu_symbols_to_dict(template):
- # Protect '%'s that don't go with CPU-specific terms
- t = re.sub(r'%(?!\(CPU_)', '%%', template)
- result = {}
- for cpu in cpu_models:
- result[cpu.name] = t % cpu.strings
- return result
+ def makeRead(self):
+ bit_select = 0
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error(0, 'Attempt to read control register as FP')
+ if self.read_code != None:
+ return self.buildReadCode('readMiscRegOperand')
+ base = 'xc->readMiscRegOperand(this, %s)' % self.src_reg_idx
+ if self.size == self.dflt_size:
+ return '%s = %s;\n' % (self.base_name, base)
+ else:
+ return '%s = bits(%s, %d, 0);\n' % \
+ (self.base_name, base, self.size-1)
-# *If* the template has CPU-specific references, return a single
-# string containing a copy of the template for each CPU model with the
-# corresponding values substituted in. If the template has no
-# CPU-specific references, it is returned unmodified.
-def expand_cpu_symbols_to_string(template):
- if template.find('%(CPU_') != -1:
- return reduce(lambda x,y: x+y,
- expand_cpu_symbols_to_dict(template).values())
- else:
- return template
+ def makeWrite(self):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error(0, 'Attempt to write control register as FP')
+ if self.write_code != None:
+ return self.buildWriteCode('setMiscRegOperand')
+ wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
+ (self.dest_reg_idx, self.base_name)
+ wb += 'if (traceData) { traceData->setData(%s); }' % \
+ self.base_name
+ return wb
+
+class MemOperand(Operand):
+ def isMem(self):
+ return 1
+
+ def makeConstructor(self):
+ return ''
+
+ def makeDecl(self):
+ # Note that initializations in the declarations are solely
+ # to avoid 'uninitialized variable' errors from the compiler.
+ # Declare memory data variable.
+ if self.ctype in ['Twin32_t','Twin64_t']:
+ return "%s %s; %s.a = 0; %s.b = 0;\n" % \
+ (self.ctype, self.base_name, self.base_name, self.base_name)
+ return '%s %s = 0;\n' % (self.ctype, self.base_name)
+
+ def makeRead(self):
+ if self.read_code != None:
+ return self.buildReadCode()
+ return ''
+
+ def makeWrite(self):
+ if self.write_code != None:
+ return self.buildWriteCode()
+ return ''
+
+ # Return the memory access size *in bits*, suitable for
+ # forming a type via "uint%d_t". Divide by 8 if you want bytes.
+ def makeAccSize(self):
+ return self.size
+
+class PCOperand(Operand):
+ def makeConstructor(self):
+ return ''
+
+ def makeRead(self):
+ return '%s = xc->readPC();\n' % self.base_name
+
+ def makeWrite(self):
+ return 'xc->setPC(%s);\n' % self.base_name
+
+class UPCOperand(Operand):
+ def makeConstructor(self):
+ return ''
+
+ def makeRead(self):
+ if self.read_code != None:
+ return self.buildReadCode('readMicroPC')
+ return '%s = xc->readMicroPC();\n' % self.base_name
+
+ def makeWrite(self):
+ if self.write_code != None:
+ return self.buildWriteCode('setMicroPC')
+ return 'xc->setMicroPC(%s);\n' % self.base_name
+
+class NUPCOperand(Operand):
+ def makeConstructor(self):
+ return ''
+
+ def makeRead(self):
+ if self.read_code != None:
+ return self.buildReadCode('readNextMicroPC')
+ return '%s = xc->readNextMicroPC();\n' % self.base_name
+
+ def makeWrite(self):
+ if self.write_code != None:
+ return self.buildWriteCode('setNextMicroPC')
+ return 'xc->setNextMicroPC(%s);\n' % self.base_name
+
+class NPCOperand(Operand):
+ def makeConstructor(self):
+ return ''
+
+ def makeRead(self):
+ if self.read_code != None:
+ return self.buildReadCode('readNextPC')
+ return '%s = xc->readNextPC();\n' % self.base_name
+
+ def makeWrite(self):
+ if self.write_code != None:
+ return self.buildWriteCode('setNextPC')
+ return 'xc->setNextPC(%s);\n' % self.base_name
+
+class NNPCOperand(Operand):
+ def makeConstructor(self):
+ return ''
+
+ def makeRead(self):
+ if self.read_code != None:
+ return self.buildReadCode('readNextNPC')
+ return '%s = xc->readNextNPC();\n' % self.base_name
+
+ def makeWrite(self):
+ if self.write_code != None:
+ return self.buildWriteCode('setNextNPC')
+ return 'xc->setNextNPC(%s);\n' % self.base_name
+
+def buildOperandNameMap(user_dict, lineno):
+ global operandNameMap
+ operandNameMap = {}
+ for (op_name, val) in user_dict.iteritems():
+ (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val[:5]
+ if len(val) > 5:
+ read_code = val[5]
+ else:
+ read_code = None
+ if len(val) > 6:
+ write_code = val[6]
+ else:
+ write_code = None
+ if len(val) > 7:
+ error(lineno,
+ 'error: too many attributes for operand "%s"' %
+ base_cls_name)
+
+ (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
+ # Canonical flag structure is a triple of lists, where each list
+ # indicates the set of flags implied by this operand always, when
+ # used as a source, and when used as a dest, respectively.
+ # For simplicity this can be initialized using a variety of fairly
+ # obvious shortcuts; we convert these to canonical form here.
+ if not flags:
+ # no flags specified (e.g., 'None')
+ flags = ( [], [], [] )
+ elif isinstance(flags, str):
+ # a single flag: assumed to be unconditional
+ flags = ( [ flags ], [], [] )
+ elif isinstance(flags, list):
+ # a list of flags: also assumed to be unconditional
+ flags = ( flags, [], [] )
+ elif isinstance(flags, tuple):
+ # it's a tuple: it should be a triple,
+ # but each item could be a single string or a list
+ (uncond_flags, src_flags, dest_flags) = flags
+ flags = (makeList(uncond_flags),
+ makeList(src_flags), makeList(dest_flags))
+ # Accumulate attributes of new operand class in tmp_dict
+ tmp_dict = {}
+ for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
+ 'dflt_size', 'dflt_ctype', 'dflt_is_signed',
+ 'read_code', 'write_code'):
+ tmp_dict[attr] = eval(attr)
+ tmp_dict['base_name'] = op_name
+ # New class name will be e.g. "IntReg_Ra"
+ cls_name = base_cls_name + '_' + op_name
+ # Evaluate string arg to get class object. Note that the
+ # actual base class for "IntReg" is "IntRegOperand", i.e. we
+ # have to append "Operand".
+ try:
+ base_cls = eval(base_cls_name + 'Operand')
+ except NameError:
+ error(lineno,
+ 'error: unknown operand base class "%s"' % base_cls_name)
+ # The following statement creates a new class called
+ # <cls_name> as a subclass of <base_cls> with the attributes
+ # in tmp_dict, just as if we evaluated a class declaration.
+ operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
+
+ # Define operand variables.
+ operands = user_dict.keys()
+
+ operandsREString = (r'''
+ (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
+ ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
+ (?![\w\.]) # neg. lookahead assertion: prevent partial matches
+ '''
+ % string.join(operands, '|'))
+
+ global operandsRE
+ operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
+
+ # Same as operandsREString, but extension is mandatory, and only two
+ # groups are returned (base and ext, not full name as above).
+ # Used for subtituting '_' for '.' to make C++ identifiers.
+ operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
+ % string.join(operands, '|'))
+
+ global operandsWithExtRE
+ operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
+
+maxInstSrcRegs = 0
+maxInstDestRegs = 0
+
+class OperandList(object):
+ '''Find all the operands in the given code block. Returns an operand
+ descriptor list (instance of class OperandList).'''
+ def __init__(self, code):
+ self.items = []
+ self.bases = {}
+ # delete comments so we don't match on reg specifiers inside
+ code = commentRE.sub('', code)
+ # search for operands
+ next_pos = 0
+ while 1:
+ match = operandsRE.search(code, next_pos)
+ if not match:
+ # no more matches: we're done
+ break
+ op = match.groups()
+ # regexp groups are operand full name, base, and extension
+ (op_full, op_base, op_ext) = op
+ # if the token following the operand is an assignment, this is
+ # a destination (LHS), else it's a source (RHS)
+ is_dest = (assignRE.match(code, match.end()) != None)
+ is_src = not is_dest
+ # see if we've already seen this one
+ op_desc = self.find_base(op_base)
+ if op_desc:
+ if op_desc.ext != op_ext:
+ error(0, 'Inconsistent extensions for operand %s' % \
+ op_base)
+ op_desc.is_src = op_desc.is_src or is_src
+ op_desc.is_dest = op_desc.is_dest or is_dest
+ else:
+ # new operand: create new descriptor
+ op_desc = operandNameMap[op_base](op_full, op_ext,
+ is_src, is_dest)
+ self.append(op_desc)
+ # start next search after end of current match
+ next_pos = match.end()
+ self.sort()
+ # enumerate source & dest register operands... used in building
+ # constructor later
+ self.numSrcRegs = 0
+ self.numDestRegs = 0
+ self.numFPDestRegs = 0
+ self.numIntDestRegs = 0
+ self.memOperand = None
+ for op_desc in self.items:
+ if op_desc.isReg():
+ if op_desc.is_src:
+ op_desc.src_reg_idx = self.numSrcRegs
+ self.numSrcRegs += 1
+ if op_desc.is_dest:
+ op_desc.dest_reg_idx = self.numDestRegs
+ self.numDestRegs += 1
+ if op_desc.isFloatReg():
+ self.numFPDestRegs += 1
+ elif op_desc.isIntReg():
+ self.numIntDestRegs += 1
+ elif op_desc.isMem():
+ if self.memOperand:
+ error(0, "Code block has more than one memory operand.")
+ self.memOperand = op_desc
+ global maxInstSrcRegs
+ global maxInstDestRegs
+ if maxInstSrcRegs < self.numSrcRegs:
+ maxInstSrcRegs = self.numSrcRegs
+ if maxInstDestRegs < self.numDestRegs:
+ maxInstDestRegs = self.numDestRegs
+ # now make a final pass to finalize op_desc fields that may depend
+ # on the register enumeration
+ for op_desc in self.items:
+ op_desc.finalize()
+
+ def __len__(self):
+ return len(self.items)
+
+ def __getitem__(self, index):
+ return self.items[index]
+
+ def append(self, op_desc):
+ self.items.append(op_desc)
+ self.bases[op_desc.base_name] = op_desc
+
+ def find_base(self, base_name):
+ # like self.bases[base_name], but returns None if not found
+ # (rather than raising exception)
+ return self.bases.get(base_name)
+
+ # internal helper function for concat[Some]Attr{Strings|Lists}
+ def __internalConcatAttrs(self, attr_name, filter, result):
+ for op_desc in self.items:
+ if filter(op_desc):
+ result += getattr(op_desc, attr_name)
+ return result
-# Protect CPU-specific references by doubling the corresponding '%'s
-# (in preparation for substituting a different set of references into
-# the template).
-def protect_cpu_symbols(template):
- return re.sub(r'%(?=\(CPU_)', '%%', template)
+ # return a single string that is the concatenation of the (string)
+ # values of the specified attribute for all operands
+ def concatAttrStrings(self, attr_name):
+ return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
-# Protect any non-dict-substitution '%'s in a format string
-# (i.e. those not followed by '(')
-def protect_non_subst_percents(s):
- return re.sub(r'%(?!\()', '%%', s)
+ # like concatAttrStrings, but only include the values for the operands
+ # for which the provided filter function returns true
+ def concatSomeAttrStrings(self, filter, attr_name):
+ return self.__internalConcatAttrs(attr_name, filter, '')
-###############
-# GenCode class
-#
-# The GenCode class encapsulates generated code destined for various
-# output files. The header_output and decoder_output attributes are
-# strings containing code destined for decoder.hh and decoder.cc
-# respectively. The decode_block attribute contains code to be
-# incorporated in the decode function itself (that will also end up in
-# decoder.cc). The exec_output attribute is a dictionary with a key
-# for each CPU model name; the value associated with a particular key
-# is the string of code for that CPU model's exec.cc file. The
-# has_decode_default attribute is used in the decode block to allow
-# explicit default clauses to override default default clauses.
+ # return a single list that is the concatenation of the (list)
+ # values of the specified attribute for all operands
+ def concatAttrLists(self, attr_name):
+ return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
-class GenCode(object):
- # Constructor. At this point we substitute out all CPU-specific
- # symbols. For the exec output, these go into the per-model
- # dictionary. For all other output types they get collapsed into
- # a single string.
- def __init__(self,
- header_output = '', decoder_output = '', exec_output = '',
- decode_block = '', has_decode_default = False):
- self.header_output = expand_cpu_symbols_to_string(header_output)
- self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
- if isinstance(exec_output, dict):
- self.exec_output = exec_output
- elif isinstance(exec_output, str):
- # If the exec_output arg is a single string, we replicate
- # it for each of the CPU models, substituting and
- # %(CPU_foo)s params appropriately.
- self.exec_output = expand_cpu_symbols_to_dict(exec_output)
- self.decode_block = expand_cpu_symbols_to_string(decode_block)
- self.has_decode_default = has_decode_default
+ # like concatAttrLists, but only include the values for the operands
+ # for which the provided filter function returns true
+ def concatSomeAttrLists(self, filter, attr_name):
+ return self.__internalConcatAttrs(attr_name, filter, [])
- # Override '+' operator: generate a new GenCode object that
- # concatenates all the individual strings in the operands.
- def __add__(self, other):
- exec_output = {}
- for cpu in cpu_models:
- n = cpu.name
- exec_output[n] = self.exec_output[n] + other.exec_output[n]
- return GenCode(self.header_output + other.header_output,
- self.decoder_output + other.decoder_output,
- exec_output,
- self.decode_block + other.decode_block,
- self.has_decode_default or other.has_decode_default)
+ def sort(self):
+ self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
- # Prepend a string (typically a comment) to all the strings.
- def prepend_all(self, pre):
- self.header_output = pre + self.header_output
- self.decoder_output = pre + self.decoder_output
- self.decode_block = pre + self.decode_block
- for cpu in cpu_models:
- self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
+class SubOperandList(OperandList):
+ '''Find all the operands in the given code block. Returns an operand
+ descriptor list (instance of class OperandList).'''
+ def __init__(self, code, master_list):
+ self.items = []
+ self.bases = {}
+ # delete comments so we don't match on reg specifiers inside
+ code = commentRE.sub('', code)
+ # search for operands
+ next_pos = 0
+ while 1:
+ match = operandsRE.search(code, next_pos)
+ if not match:
+ # no more matches: we're done
+ break
+ op = match.groups()
+ # regexp groups are operand full name, base, and extension
+ (op_full, op_base, op_ext) = op
+ # find this op in the master list
+ op_desc = master_list.find_base(op_base)
+ if not op_desc:
+ error(0, 'Found operand %s which is not in the master list!' \
+ ' This is an internal error' % \
+ op_base)
+ else:
+ # See if we've already found this operand
+ op_desc = self.find_base(op_base)
+ if not op_desc:
+ # if not, add a reference to it to this sub list
+ self.append(master_list.bases[op_base])
- # Wrap the decode block in a pair of strings (e.g., 'case foo:'
- # and 'break;'). Used to build the big nested switch statement.
- def wrap_decode_block(self, pre, post = ''):
- self.decode_block = pre + indent(self.decode_block) + post
+ # start next search after end of current match
+ next_pos = match.end()
+ self.sort()
+ self.memOperand = None
+ for op_desc in self.items:
+ if op_desc.isMem():
+ if self.memOperand:
+ error(0, "Code block has more than one memory operand.")
+ self.memOperand = op_desc
-################
-# Format object.
-#
-# A format object encapsulates an instruction format. It must provide
-# a defineInst() method that generates the code for an instruction
-# definition.
+# Regular expression object to match C++ comments
+# (used in findOperands())
+commentRE = re.compile(r'//.*\n')
-exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string')
+# Regular expression object to match assignment statements
+# (used in findOperands())
+assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
-exportContext = {}
+# Munge operand names in code string to make legal C++ variable names.
+# This means getting rid of the type extension if any.
+# (Will match base_name attribute of Operand object.)
+def substMungedOpNames(code):
+ return operandsWithExtRE.sub(r'\1', code)
-def updateExportContext():
- exportContext.update(exportDict(*exportContextSymbols))
- exportContext.update(parser.templateMap)
+# Fix up code snippets for final substitution in templates.
+def mungeSnippet(s):
+ if isinstance(s, str):
+ return substMungedOpNames(substBitOps(s))
+ else:
+ return s
-def exportDict(*symNames):
- return dict([(s, eval(s)) for s in symNames])
+def makeFlagConstructor(flag_list):
+ if len(flag_list) == 0:
+ return ''
+ # filter out repeated flags
+ flag_list.sort()
+ i = 1
+ while i < len(flag_list):
+ if flag_list[i] == flag_list[i-1]:
+ del flag_list[i]
+ else:
+ i += 1
+ pre = '\n\tflags['
+ post = '] = true;'
+ code = pre + string.join(flag_list, post + pre) + post
+ return code
+# Assume all instruction flags are of the form 'IsFoo'
+instFlagRE = re.compile(r'Is.*')
-class Format(object):
- def __init__(self, id, params, code):
- # constructor: just save away arguments
- self.id = id
- self.params = params
- label = 'def format ' + id
- self.user_code = compile(fixPythonIndentation(code), label, 'exec')
- param_list = string.join(params, ", ")
- f = '''def defInst(_code, _context, %s):
- my_locals = vars().copy()
- exec _code in _context, my_locals
- return my_locals\n''' % param_list
- c = compile(f, label + ' wrapper', 'exec')
- exec c
- self.func = defInst
+# OpClass constants end in 'Op' except No_OpClass
+opClassRE = re.compile(r'.*Op|No_OpClass')
- def defineInst(self, name, args, lineno):
- context = {}
- updateExportContext()
- context.update(exportContext)
- if len(name):
- Name = name[0].upper()
- if len(name) > 1:
- Name += name[1:]
- context.update({ 'name': name, 'Name': Name })
- try:
- vars = self.func(self.user_code, context, *args[0], **args[1])
- except Exception, exc:
- error(lineno, 'error defining "%s": %s.' % (name, exc))
- for k in vars.keys():
- if k not in ('header_output', 'decoder_output',
- 'exec_output', 'decode_block'):
- del vars[k]
- return GenCode(**vars)
+class InstObjParams(object):
+ def __init__(self, mnem, class_name, base_class = '',
+ snippets = {}, opt_args = []):
+ self.mnemonic = mnem
+ self.class_name = class_name
+ self.base_class = base_class
+ if not isinstance(snippets, dict):
+ snippets = {'code' : snippets}
+ compositeCode = ' '.join(map(str, snippets.values()))
+ self.snippets = snippets
-# Special null format to catch an implicit-format instruction
-# definition outside of any format block.
-class NoFormat(object):
- def __init__(self):
- self.defaultInst = ''
+ self.operands = OperandList(compositeCode)
+ self.constructor = self.operands.concatAttrStrings('constructor')
+ self.constructor += \
+ '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
+ self.constructor += \
+ '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
+ self.constructor += \
+ '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
+ self.constructor += \
+ '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
+ self.flags = self.operands.concatAttrLists('flags')
- def defineInst(self, name, args, lineno):
- error(lineno,
- 'instruction definition "%s" with no active format!' % name)
+ # Make a basic guess on the operand class (function unit type).
+ # These are good enough for most cases, and can be overridden
+ # later otherwise.
+ if 'IsStore' in self.flags:
+ self.op_class = 'MemWriteOp'
+ elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
+ self.op_class = 'MemReadOp'
+ elif 'IsFloating' in self.flags:
+ self.op_class = 'FloatAddOp'
+ else:
+ self.op_class = 'IntAluOp'
-# This dictionary maps format name strings to Format objects.
-formatMap = {}
+ # Optional arguments are assumed to be either StaticInst flags
+ # or an OpClass value. To avoid having to import a complete
+ # list of these values to match against, we do it ad-hoc
+ # with regexps.
+ for oa in opt_args:
+ if instFlagRE.match(oa):
+ self.flags.append(oa)
+ elif opClassRE.match(oa):
+ self.op_class = oa
+ else:
+ error(0, 'InstObjParams: optional arg "%s" not recognized '
+ 'as StaticInst::Flag or OpClass.' % oa)
-# Define a new format
-def defFormat(id, params, code, lineno):
- # make sure we haven't already defined this one
- if formatMap.get(id, None) != None:
- error(lineno, 'format %s redefined.' % id)
- # create new object and store in global map
- formatMap[id] = Format(id, params, code)
+ # add flag initialization to contructor here to include
+ # any flags added via opt_args
+ self.constructor += makeFlagConstructor(self.flags)
+ # if 'IsFloating' is set, add call to the FP enable check
+ # function (which should be provided by isa_desc via a declare)
+ if 'IsFloating' in self.flags:
+ self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
+ else:
+ self.fp_enable_check = ''
##############
# Stack: a simple stack object. Used for both formats (formatStack)
formatStack = Stack(NoFormat())
# The global default case stack.
-defaultStack = Stack( None )
+defaultStack = Stack(None)
# Global stack that tracks current file and line number.
# Each element is a tuple (filename, lineno) that records the
# it was included.
fileNameStack = Stack()
-###################
-# Utility functions
-
-#
-# Indent every line in string 's' by two spaces
-# (except preprocessor directives).
-# Used to make nested code blocks look pretty.
-#
-def indent(s):
- return re.sub(r'(?m)^(?!#)', ' ', s)
-
-#
-# Munge a somewhat arbitrarily formatted piece of Python code
-# (e.g. from a format 'let' block) into something whose indentation
-# will get by the Python parser.
-#
-# The two keys here are that Python will give a syntax error if
-# there's any whitespace at the beginning of the first line, and that
-# all lines at the same lexical nesting level must have identical
-# indentation. Unfortunately the way code literals work, an entire
-# let block tends to have some initial indentation. Rather than
-# trying to figure out what that is and strip it off, we prepend 'if
-# 1:' to make the let code the nested block inside the if (and have
-# the parser automatically deal with the indentation for us).
-#
-# We don't want to do this if (1) the code block is empty or (2) the
-# first line of the block doesn't have any whitespace at the front.
-
-def fixPythonIndentation(s):
- # get rid of blank lines first
- s = re.sub(r'(?m)^\s*\n', '', s);
- if (s != '' and re.match(r'[ \t]', s[0])):
- s = 'if 1:\n' + s
- return s
-
-# Error handler. Just call exit. Output formatted to work under
-# Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
-# prints a Python stack backtrace too (can be handy when trying to
-# debug the parser itself).
-def error(lineno, string, print_traceback = False):
- spaces = ""
- for (filename, line) in fileNameStack[0:-1]:
- print spaces + "In file included from " + filename + ":"
- spaces += " "
- # Print a Python stack backtrace if requested.
- if (print_traceback):
- traceback.print_exc()
- if lineno != 0:
- line_str = "%d:" % lineno
- else:
- line_str = ""
- sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
-
-
-#####################################################################
-#
-# Bitfield Operator Support
-#
-#####################################################################
-
-bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
-
-bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
-bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
-
-def substBitOps(code):
- # first convert single-bit selectors to two-index form
- # i.e., <n> --> <n:n>
- code = bitOp1ArgRE.sub(r'<\1:\1>', code)
- # simple case: selector applied to ID (name)
- # i.e., foo<a:b> --> bits(foo, a, b)
- code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
- # if selector is applied to expression (ending in ')'),
- # we need to search backward for matching '('
- match = bitOpExprRE.search(code)
- while match:
- exprEnd = match.start()
- here = exprEnd - 1
- nestLevel = 1
- while nestLevel > 0:
- if code[here] == '(':
- nestLevel -= 1
- elif code[here] == ')':
- nestLevel += 1
- here -= 1
- if here < 0:
- sys.exit("Didn't find '('!")
- exprStart = here+1
- newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
- match.group(1), match.group(2))
- code = code[:exprStart] + newExpr + code[match.end():]
- match = bitOpExprRE.search(code)
- return code
-
-
-####################
-# Template objects.
-#
-# Template objects are format strings that allow substitution from
-# the attribute spaces of other objects (e.g. InstObjParams instances).
-
-labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
-
-class Template(object):
- def __init__(self, t):
- self.template = t
-
- def subst(self, d):
- myDict = None
-
- # Protect non-Python-dict substitutions (e.g. if there's a printf
- # in the templated C++ code)
- template = protect_non_subst_percents(self.template)
- # CPU-model-specific substitutions are handled later (in GenCode).
- template = protect_cpu_symbols(template)
-
- # Build a dict ('myDict') to use for the template substitution.
- # Start with the template namespace. Make a copy since we're
- # going to modify it.
- myDict = parser.templateMap.copy()
-
- if isinstance(d, InstObjParams):
- # If we're dealing with an InstObjParams object, we need
- # to be a little more sophisticated. The instruction-wide
- # parameters are already formed, but the parameters which
- # are only function wide still need to be generated.
- compositeCode = ''
-
- myDict.update(d.__dict__)
- # The "operands" and "snippets" attributes of the InstObjParams
- # objects are for internal use and not substitution.
- del myDict['operands']
- del myDict['snippets']
-
- snippetLabels = [l for l in labelRE.findall(template)
- if d.snippets.has_key(l)]
-
- snippets = dict([(s, mungeSnippet(d.snippets[s]))
- for s in snippetLabels])
-
- myDict.update(snippets)
-
- compositeCode = ' '.join(map(str, snippets.values()))
-
- # Add in template itself in case it references any
- # operands explicitly (like Mem)
- compositeCode += ' ' + template
-
- operands = SubOperandList(compositeCode, d.operands)
-
- myDict['op_decl'] = operands.concatAttrStrings('op_decl')
-
- is_src = lambda op: op.is_src
- is_dest = lambda op: op.is_dest
-
- myDict['op_src_decl'] = \
- operands.concatSomeAttrStrings(is_src, 'op_src_decl')
- myDict['op_dest_decl'] = \
- operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
-
- myDict['op_rd'] = operands.concatAttrStrings('op_rd')
- myDict['op_wb'] = operands.concatAttrStrings('op_wb')
-
- if d.operands.memOperand:
- myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size
- myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type
-
- elif isinstance(d, dict):
- # if the argument is a dictionary, we just use it.
- myDict.update(d)
- elif hasattr(d, '__dict__'):
- # if the argument is an object, we use its attribute map.
- myDict.update(d.__dict__)
- else:
- raise TypeError, "Template.subst() arg must be or have dictionary"
- return template % myDict
-
- # Convert to string. This handles the case when a template with a
- # CPU-specific term gets interpolated into another template or into
- # an output block.
- def __str__(self):
- return expand_cpu_symbols_to_string(self.template)
-#####################################################################
-#
-# Code Parser
+#######################
#
-# The remaining code is the support for automatically extracting
-# instruction characteristics from pseudocode.
+# Output file template
#
-#####################################################################
-
-# Force the argument to be a list. Useful for flags, where a caller
-# can specify a singleton flag or a list of flags. Also usful for
-# converting tuples to lists so they can be modified.
-def makeList(arg):
- if isinstance(arg, list):
- return arg
- elif isinstance(arg, tuple):
- return list(arg)
- elif not arg:
- return []
- else:
- return [ arg ]
-# Generate operandTypeMap from the user's 'def operand_types'
-# statement.
-def buildOperandTypeMap(user_dict, lineno):
- global operandTypeMap
- operandTypeMap = {}
- for (ext, (desc, size)) in user_dict.iteritems():
- if desc == 'signed int':
- ctype = 'int%d_t' % size
- is_signed = 1
- elif desc == 'unsigned int':
- ctype = 'uint%d_t' % size
- is_signed = 0
- elif desc == 'float':
- is_signed = 1 # shouldn't really matter
- if size == 32:
- ctype = 'float'
- elif size == 64:
- ctype = 'double'
- elif desc == 'twin64 int':
- is_signed = 0
- ctype = 'Twin64_t'
- elif desc == 'twin32 int':
- is_signed = 0
- ctype = 'Twin32_t'
- if ctype == '':
- error(lineno, 'Unrecognized type description "%s" in user_dict')
- operandTypeMap[ext] = (size, ctype, is_signed)
+file_template = '''
+/*
+ * DO NOT EDIT THIS FILE!!!
+ *
+ * It was automatically generated from the ISA description in %(filename)s
+ */
-class Operand(object):
- '''Base class for operand descriptors. An instance of this class
- (or actually a class derived from this one) represents a specific
- operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
- derived classes encapsulates the traits of a particular operand
- type (e.g., "32-bit integer register").'''
+%(includes)s
- def buildReadCode(self, func = None):
- code = self.read_code % {"name": self.base_name,
- "func": func,
- "op_idx": self.src_reg_idx,
- "reg_idx": self.reg_spec,
- "size": self.size,
- "ctype": self.ctype}
- if self.size != self.dflt_size:
- return '%s = bits(%s, %d, 0);\n' % \
- (self.base_name, code, self.size-1)
- else:
- return '%s = %s;\n' % \
- (self.base_name, code)
+%(global_output)s
- def buildWriteCode(self, func = None):
- if (self.size != self.dflt_size and self.is_signed):
- final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
- else:
- final_val = self.base_name
- code = self.write_code % {"name": self.base_name,
- "func": func,
- "op_idx": self.dest_reg_idx,
- "reg_idx": self.reg_spec,
- "size": self.size,
- "ctype": self.ctype,
- "final_val": final_val}
- return '''
- {
- %s final_val = %s;
- %s;
- if (traceData) { traceData->setData(final_val); }
- }''' % (self.dflt_ctype, final_val, code)
+namespace %(namespace)s {
- def __init__(self, full_name, ext, is_src, is_dest):
- self.full_name = full_name
- self.ext = ext
- self.is_src = is_src
- self.is_dest = is_dest
- # The 'effective extension' (eff_ext) is either the actual
- # extension, if one was explicitly provided, or the default.
- if ext:
- self.eff_ext = ext
- else:
- self.eff_ext = self.dflt_ext
+%(namespace_output)s
- (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
+} // namespace %(namespace)s
- # note that mem_acc_size is undefined for non-mem operands...
- # template must be careful not to use it if it doesn't apply.
- if self.isMem():
- self.mem_acc_size = self.makeAccSize()
- if self.ctype in ['Twin32_t', 'Twin64_t']:
- self.mem_acc_type = 'Twin'
- else:
- self.mem_acc_type = 'uint'
+%(decode_function)s
+'''
- # Finalize additional fields (primarily code fields). This step
- # is done separately since some of these fields may depend on the
- # register index enumeration that hasn't been performed yet at the
- # time of __init__().
- def finalize(self):
- self.flags = self.getFlags()
- self.constructor = self.makeConstructor()
- self.op_decl = self.makeDecl()
+max_inst_regs_template = '''
+/*
+ * DO NOT EDIT THIS FILE!!!
+ *
+ * It was automatically generated from the ISA description in %(filename)s
+ */
- if self.is_src:
- self.op_rd = self.makeRead()
- self.op_src_decl = self.makeDecl()
- else:
- self.op_rd = ''
- self.op_src_decl = ''
+namespace %(namespace)s {
- if self.is_dest:
- self.op_wb = self.makeWrite()
- self.op_dest_decl = self.makeDecl()
- else:
- self.op_wb = ''
- self.op_dest_decl = ''
+ const int MaxInstSrcRegs = %(MaxInstSrcRegs)d;
+ const int MaxInstDestRegs = %(MaxInstDestRegs)d;
- def isMem(self):
- return 0
+} // namespace %(namespace)s
- def isReg(self):
- return 0
+'''
- def isFloatReg(self):
- return 0
+class ISAParser(Grammar):
+ def __init__(self, *args, **kwargs):
+ super(ISAParser, self).__init__(*args, **kwargs)
+ self.templateMap = {}
- def isIntReg(self):
- return 0
+ #####################################################################
+ #
+ # Lexer
+ #
+ # The PLY lexer module takes two things as input:
+ # - A list of token names (the string list 'tokens')
+ # - A regular expression describing a match for each token. The
+ # regexp for token FOO can be provided in two ways:
+ # - as a string variable named t_FOO
+ # - as the doc string for a function named t_FOO. In this case,
+ # the function is also executed, allowing an action to be
+ # associated with each token match.
+ #
+ #####################################################################
- def isControlReg(self):
- return 0
+ # Reserved words. These are listed separately as they are matched
+ # using the same regexp as generic IDs, but distinguished in the
+ # t_ID() function. The PLY documentation suggests this approach.
+ reserved = (
+ 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
+ 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
+ 'OUTPUT', 'SIGNED', 'TEMPLATE'
+ )
- def getFlags(self):
- # note the empty slice '[:]' gives us a copy of self.flags[0]
- # instead of a reference to it
- my_flags = self.flags[0][:]
- if self.is_src:
- my_flags += self.flags[1]
- if self.is_dest:
- my_flags += self.flags[2]
- return my_flags
+ # List of tokens. The lex module requires this.
+ tokens = reserved + (
+ # identifier
+ 'ID',
- def makeDecl(self):
- # Note that initializations in the declarations are solely
- # to avoid 'uninitialized variable' errors from the compiler.
- return self.ctype + ' ' + self.base_name + ' = 0;\n';
+ # integer literal
+ 'INTLIT',
-class IntRegOperand(Operand):
- def isReg(self):
- return 1
+ # string literal
+ 'STRLIT',
- def isIntReg(self):
- return 1
+ # code literal
+ 'CODELIT',
- def makeConstructor(self):
- c = ''
- if self.is_src:
- c += '\n\t_srcRegIdx[%d] = %s;' % \
- (self.src_reg_idx, self.reg_spec)
- if self.is_dest:
- c += '\n\t_destRegIdx[%d] = %s;' % \
- (self.dest_reg_idx, self.reg_spec)
- return c
+ # ( ) [ ] { } < > , ; . : :: *
+ 'LPAREN', 'RPAREN',
+ 'LBRACKET', 'RBRACKET',
+ 'LBRACE', 'RBRACE',
+ 'LESS', 'GREATER', 'EQUALS',
+ 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
+ 'ASTERISK',
- def makeRead(self):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error(0, 'Attempt to read integer register as FP')
- if self.read_code != None:
- return self.buildReadCode('readIntRegOperand')
- if (self.size == self.dflt_size):
- return '%s = xc->readIntRegOperand(this, %d);\n' % \
- (self.base_name, self.src_reg_idx)
- elif (self.size > self.dflt_size):
- int_reg_val = 'xc->readIntRegOperand(this, %d)' % \
- (self.src_reg_idx)
- if (self.is_signed):
- int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
- return '%s = %s;\n' % (self.base_name, int_reg_val)
- else:
- return '%s = bits(xc->readIntRegOperand(this, %d), %d, 0);\n' % \
- (self.base_name, self.src_reg_idx, self.size-1)
+ # C preprocessor directives
+ 'CPPDIRECTIVE'
+
+ # The following are matched but never returned. commented out to
+ # suppress PLY warning
+ # newfile directive
+ # 'NEWFILE',
+
+ # endfile directive
+ # 'ENDFILE'
+ )
+
+ # Regular expressions for token matching
+ t_LPAREN = r'\('
+ t_RPAREN = r'\)'
+ t_LBRACKET = r'\['
+ t_RBRACKET = r'\]'
+ t_LBRACE = r'\{'
+ t_RBRACE = r'\}'
+ t_LESS = r'\<'
+ t_GREATER = r'\>'
+ t_EQUALS = r'='
+ t_COMMA = r','
+ t_SEMI = r';'
+ t_DOT = r'\.'
+ t_COLON = r':'
+ t_DBLCOLON = r'::'
+ t_ASTERISK = r'\*'
+
+ # Identifiers and reserved words
+ reserved_map = { }
+ for r in reserved:
+ reserved_map[r.lower()] = r
+
+ def t_ID(self, t):
+ r'[A-Za-z_]\w*'
+ t.type = self.reserved_map.get(t.value, 'ID')
+ return t
+
+ # Integer literal
+ def t_INTLIT(self, t):
+ r'-?(0x[\da-fA-F]+)|\d+'
+ try:
+ t.value = int(t.value,0)
+ except ValueError:
+ error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
+ t.value = 0
+ return t
+
+ # String literal. Note that these use only single quotes, and
+ # can span multiple lines.
+ def t_STRLIT(self, t):
+ r"(?m)'([^'])+'"
+ # strip off quotes
+ t.value = t.value[1:-1]
+ t.lexer.lineno += t.value.count('\n')
+ return t
+
+
+ # "Code literal"... like a string literal, but delimiters are
+ # '{{' and '}}' so they get formatted nicely under emacs c-mode
+ def t_CODELIT(self, t):
+ r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
+ # strip off {{ & }}
+ t.value = t.value[2:-2]
+ t.lexer.lineno += t.value.count('\n')
+ return t
- def makeWrite(self):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error(0, 'Attempt to write integer register as FP')
- if self.write_code != None:
- return self.buildWriteCode('setIntRegOperand')
- if (self.size != self.dflt_size and self.is_signed):
- final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
- else:
- final_val = self.base_name
- wb = '''
- {
- %s final_val = %s;
- xc->setIntRegOperand(this, %d, final_val);\n
- if (traceData) { traceData->setData(final_val); }
- }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
- return wb
+ def t_CPPDIRECTIVE(self, t):
+ r'^\#[^\#].*\n'
+ t.lexer.lineno += t.value.count('\n')
+ return t
-class FloatRegOperand(Operand):
- def isReg(self):
- return 1
+ def t_NEWFILE(self, t):
+ r'^\#\#newfile\s+"[\w/.-]*"'
+ fileNameStack.push((t.value[11:-1], t.lexer.lineno))
+ t.lexer.lineno = 0
- def isFloatReg(self):
- return 1
+ def t_ENDFILE(self, t):
+ r'^\#\#endfile'
+ (old_filename, t.lexer.lineno) = fileNameStack.pop()
- def makeConstructor(self):
- c = ''
- if self.is_src:
- c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
- (self.src_reg_idx, self.reg_spec)
- if self.is_dest:
- c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
- (self.dest_reg_idx, self.reg_spec)
- return c
+ #
+ # The functions t_NEWLINE, t_ignore, and t_error are
+ # special for the lex module.
+ #
- def makeRead(self):
- bit_select = 0
- if (self.ctype == 'float' or self.ctype == 'double'):
- func = 'readFloatRegOperand'
- else:
- func = 'readFloatRegOperandBits'
- if (self.size != self.dflt_size):
- bit_select = 1
- base = 'xc->%s(this, %d)' % (func, self.src_reg_idx)
- if self.read_code != None:
- return self.buildReadCode(func)
- if bit_select:
- return '%s = bits(%s, %d, 0);\n' % \
- (self.base_name, base, self.size-1)
- else:
- return '%s = %s;\n' % (self.base_name, base)
+ # Newlines
+ def t_NEWLINE(self, t):
+ r'\n+'
+ t.lexer.lineno += t.value.count('\n')
- def makeWrite(self):
- final_val = self.base_name
- final_ctype = self.ctype
- if (self.ctype == 'float' or self.ctype == 'double'):
- func = 'setFloatRegOperand'
- elif (self.ctype == 'uint32_t' or self.ctype == 'uint64_t'):
- func = 'setFloatRegOperandBits'
- else:
- func = 'setFloatRegOperandBits'
- final_ctype = 'uint%d_t' % self.dflt_size
- if (self.size != self.dflt_size and self.is_signed):
- final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
- if self.write_code != None:
- return self.buildWriteCode(func)
- wb = '''
- {
- %s final_val = %s;
- xc->%s(this, %d, final_val);\n
- if (traceData) { traceData->setData(final_val); }
- }''' % (final_ctype, final_val, func, self.dest_reg_idx)
- return wb
+ # Comments
+ def t_comment(self, t):
+ r'//.*'
-class ControlRegOperand(Operand):
- def isReg(self):
- return 1
+ # Completely ignored characters
+ t_ignore = ' \t\x0c'
- def isControlReg(self):
- return 1
+ # Error handler
+ def t_error(self, t):
+ error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
+ t.skip(1)
- def makeConstructor(self):
- c = ''
- if self.is_src:
- c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
- (self.src_reg_idx, self.reg_spec)
- if self.is_dest:
- c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
- (self.dest_reg_idx, self.reg_spec)
- return c
+ #####################################################################
+ #
+ # Parser
+ #
+ # Every function whose name starts with 'p_' defines a grammar
+ # rule. The rule is encoded in the function's doc string, while
+ # the function body provides the action taken when the rule is
+ # matched. The argument to each function is a list of the values
+ # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
+ # symbols on the RHS. For tokens, the value is copied from the
+ # t.value attribute provided by the lexer. For non-terminals, the
+ # value is assigned by the producing rule; i.e., the job of the
+ # grammar rule function is to set the value for the non-terminal
+ # on the LHS (by assigning to t[0]).
+ #####################################################################
- def makeRead(self):
- bit_select = 0
- if (self.ctype == 'float' or self.ctype == 'double'):
- error(0, 'Attempt to read control register as FP')
- if self.read_code != None:
- return self.buildReadCode('readMiscRegOperand')
- base = 'xc->readMiscRegOperand(this, %s)' % self.src_reg_idx
- if self.size == self.dflt_size:
- return '%s = %s;\n' % (self.base_name, base)
- else:
- return '%s = bits(%s, %d, 0);\n' % \
- (self.base_name, base, self.size-1)
+ # The LHS of the first grammar rule is used as the start symbol
+ # (in this case, 'specification'). Note that this rule enforces
+ # that there will be exactly one namespace declaration, with 0 or
+ # more global defs/decls before and after it. The defs & decls
+ # before the namespace decl will be outside the namespace; those
+ # after will be inside. The decoder function is always inside the
+ # namespace.
+ def p_specification(self, t):
+ 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
+ global_code = t[1]
+ isa_name = t[2]
+ namespace = isa_name + "Inst"
+ # wrap the decode block as a function definition
+ t[4].wrap_decode_block('''
+StaticInstPtr
+%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
+{
+ using namespace %(namespace)s;
+''' % vars(), '}')
+ # both the latter output blocks and the decode block are in
+ # the namespace
+ namespace_code = t[3] + t[4]
+ # pass it all back to the caller of yacc.parse()
+ t[0] = (isa_name, namespace, global_code, namespace_code)
- def makeWrite(self):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error(0, 'Attempt to write control register as FP')
- if self.write_code != None:
- return self.buildWriteCode('setMiscRegOperand')
- wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
- (self.dest_reg_idx, self.base_name)
- wb += 'if (traceData) { traceData->setData(%s); }' % \
- self.base_name
- return wb
+ # ISA name declaration looks like "namespace <foo>;"
+ def p_name_decl(self, t):
+ 'name_decl : NAMESPACE ID SEMI'
+ t[0] = t[2]
-class MemOperand(Operand):
- def isMem(self):
- return 1
+ # 'opt_defs_and_outputs' is a possibly empty sequence of
+ # def and/or output statements.
+ def p_opt_defs_and_outputs_0(self, t):
+ 'opt_defs_and_outputs : empty'
+ t[0] = GenCode()
- def makeConstructor(self):
- return ''
+ def p_opt_defs_and_outputs_1(self, t):
+ 'opt_defs_and_outputs : defs_and_outputs'
+ t[0] = t[1]
- def makeDecl(self):
- # Note that initializations in the declarations are solely
- # to avoid 'uninitialized variable' errors from the compiler.
- # Declare memory data variable.
- if self.ctype in ['Twin32_t','Twin64_t']:
- return "%s %s; %s.a = 0; %s.b = 0;\n" % \
- (self.ctype, self.base_name, self.base_name, self.base_name)
- return '%s %s = 0;\n' % (self.ctype, self.base_name)
+ def p_defs_and_outputs_0(self, t):
+ 'defs_and_outputs : def_or_output'
+ t[0] = t[1]
- def makeRead(self):
- if self.read_code != None:
- return self.buildReadCode()
- return ''
+ def p_defs_and_outputs_1(self, t):
+ 'defs_and_outputs : defs_and_outputs def_or_output'
+ t[0] = t[1] + t[2]
- def makeWrite(self):
- if self.write_code != None:
- return self.buildWriteCode()
- return ''
+ # The list of possible definition/output statements.
+ def p_def_or_output(self, t):
+ '''def_or_output : def_format
+ | def_bitfield
+ | def_bitfield_struct
+ | def_template
+ | def_operand_types
+ | def_operands
+ | output_header
+ | output_decoder
+ | output_exec
+ | global_let'''
+ t[0] = t[1]
- # Return the memory access size *in bits*, suitable for
- # forming a type via "uint%d_t". Divide by 8 if you want bytes.
- def makeAccSize(self):
- return self.size
+ # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
+ # directly to the appropriate output section.
-class PCOperand(Operand):
- def makeConstructor(self):
- return ''
+ # Massage output block by substituting in template definitions and
+ # bit operators. We handle '%'s embedded in the string that don't
+ # indicate template substitutions (or CPU-specific symbols, which
+ # get handled in GenCode) by doubling them first so that the
+ # format operation will reduce them back to single '%'s.
+ def process_output(self, s):
+ s = protect_non_subst_percents(s)
+ # protects cpu-specific symbols too
+ s = protect_cpu_symbols(s)
+ return substBitOps(s % self.templateMap)
- def makeRead(self):
- return '%s = xc->readPC();\n' % self.base_name
+ def p_output_header(self, t):
+ 'output_header : OUTPUT HEADER CODELIT SEMI'
+ t[0] = GenCode(header_output = self.process_output(t[3]))
+
+ def p_output_decoder(self, t):
+ 'output_decoder : OUTPUT DECODER CODELIT SEMI'
+ t[0] = GenCode(decoder_output = self.process_output(t[3]))
+
+ def p_output_exec(self, t):
+ 'output_exec : OUTPUT EXEC CODELIT SEMI'
+ t[0] = GenCode(exec_output = self.process_output(t[3]))
- def makeWrite(self):
- return 'xc->setPC(%s);\n' % self.base_name
+ # global let blocks 'let {{...}}' (Python code blocks) are
+ # executed directly when seen. Note that these execute in a
+ # special variable context 'exportContext' to prevent the code
+ # from polluting this script's namespace.
+ def p_global_let(self, t):
+ 'global_let : LET CODELIT SEMI'
+ updateExportContext()
+ exportContext["header_output"] = ''
+ exportContext["decoder_output"] = ''
+ exportContext["exec_output"] = ''
+ exportContext["decode_block"] = ''
+ try:
+ exec fixPythonIndentation(t[2]) in exportContext
+ except Exception, exc:
+ error(t.lexer.lineno,
+ 'error: %s in global let block "%s".' % (exc, t[2]))
+ t[0] = GenCode(header_output = exportContext["header_output"],
+ decoder_output = exportContext["decoder_output"],
+ exec_output = exportContext["exec_output"],
+ decode_block = exportContext["decode_block"])
-class UPCOperand(Operand):
- def makeConstructor(self):
- return ''
+ # Define the mapping from operand type extensions to C++ types and
+ # bit widths (stored in operandTypeMap).
+ def p_def_operand_types(self, t):
+ 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
+ try:
+ user_dict = eval('{' + t[3] + '}')
+ except Exception, exc:
+ error(t.lexer.lineno,
+ 'error: %s in def operand_types block "%s".' % (exc, t[3]))
+ buildOperandTypeMap(user_dict, t.lexer.lineno)
+ t[0] = GenCode() # contributes nothing to the output C++ file
- def makeRead(self):
- if self.read_code != None:
- return self.buildReadCode('readMicroPC')
- return '%s = xc->readMicroPC();\n' % self.base_name
+ # Define the mapping from operand names to operand classes and
+ # other traits. Stored in operandNameMap.
+ def p_def_operands(self, t):
+ 'def_operands : DEF OPERANDS CODELIT SEMI'
+ if not globals().has_key('operandTypeMap'):
+ error(t.lexer.lineno,
+ 'error: operand types must be defined before operands')
+ try:
+ user_dict = eval('{' + t[3] + '}', exportContext)
+ except Exception, exc:
+ error(t.lexer.lineno,
+ 'error: %s in def operands block "%s".' % (exc, t[3]))
+ buildOperandNameMap(user_dict, t.lexer.lineno)
+ t[0] = GenCode() # contributes nothing to the output C++ file
- def makeWrite(self):
- if self.write_code != None:
- return self.buildWriteCode('setMicroPC')
- return 'xc->setMicroPC(%s);\n' % self.base_name
+ # A bitfield definition looks like:
+ # 'def [signed] bitfield <ID> [<first>:<last>]'
+ # This generates a preprocessor macro in the output file.
+ def p_def_bitfield_0(self, t):
+ 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
+ expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
+ if (t[2] == 'signed'):
+ expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
-class NUPCOperand(Operand):
- def makeConstructor(self):
- return ''
+ # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
+ def p_def_bitfield_1(self, t):
+ 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
+ expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
+ if (t[2] == 'signed'):
+ expr = 'sext<%d>(%s)' % (1, expr)
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
- def makeRead(self):
- if self.read_code != None:
- return self.buildReadCode('readNextMicroPC')
- return '%s = xc->readNextMicroPC();\n' % self.base_name
+ # alternate form for structure member: 'def bitfield <ID> <ID>'
+ def p_def_bitfield_struct(self, t):
+ 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
+ if (t[2] != ''):
+ error(t.lexer.lineno,
+ 'error: structure bitfields are always unsigned.')
+ expr = 'machInst.%s' % t[5]
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
- def makeWrite(self):
- if self.write_code != None:
- return self.buildWriteCode('setNextMicroPC')
- return 'xc->setNextMicroPC(%s);\n' % self.base_name
+ def p_id_with_dot_0(self, t):
+ 'id_with_dot : ID'
+ t[0] = t[1]
-class NPCOperand(Operand):
- def makeConstructor(self):
- return ''
+ def p_id_with_dot_1(self, t):
+ 'id_with_dot : ID DOT id_with_dot'
+ t[0] = t[1] + t[2] + t[3]
- def makeRead(self):
- if self.read_code != None:
- return self.buildReadCode('readNextPC')
- return '%s = xc->readNextPC();\n' % self.base_name
+ def p_opt_signed_0(self, t):
+ 'opt_signed : SIGNED'
+ t[0] = t[1]
- def makeWrite(self):
- if self.write_code != None:
- return self.buildWriteCode('setNextPC')
- return 'xc->setNextPC(%s);\n' % self.base_name
+ def p_opt_signed_1(self, t):
+ 'opt_signed : empty'
+ t[0] = ''
-class NNPCOperand(Operand):
- def makeConstructor(self):
- return ''
+ def p_def_template(self, t):
+ 'def_template : DEF TEMPLATE ID CODELIT SEMI'
+ self.templateMap[t[3]] = Template(t[4])
+ t[0] = GenCode()
- def makeRead(self):
- if self.read_code != None:
- return self.buildReadCode('readNextNPC')
- return '%s = xc->readNextNPC();\n' % self.base_name
+ # An instruction format definition looks like
+ # "def format <fmt>(<params>) {{...}};"
+ def p_def_format(self, t):
+ 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
+ (id, params, code) = (t[3], t[5], t[7])
+ defFormat(id, params, code, t.lexer.lineno)
+ t[0] = GenCode()
- def makeWrite(self):
- if self.write_code != None:
- return self.buildWriteCode('setNextNPC')
- return 'xc->setNextNPC(%s);\n' % self.base_name
+ # The formal parameter list for an instruction format is a
+ # possibly empty list of comma-separated parameters. Positional
+ # (standard, non-keyword) parameters must come first, followed by
+ # keyword parameters, followed by a '*foo' parameter that gets
+ # excess positional arguments (as in Python). Each of these three
+ # parameter categories is optional.
+ #
+ # Note that we do not support the '**foo' parameter for collecting
+ # otherwise undefined keyword args. Otherwise the parameter list
+ # is (I believe) identical to what is supported in Python.
+ #
+ # The param list generates a tuple, where the first element is a
+ # list of the positional params and the second element is a dict
+ # containing the keyword params.
+ def p_param_list_0(self, t):
+ 'param_list : positional_param_list COMMA nonpositional_param_list'
+ t[0] = t[1] + t[3]
-def buildOperandNameMap(user_dict, lineno):
- global operandNameMap
- operandNameMap = {}
- for (op_name, val) in user_dict.iteritems():
- (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val[:5]
- if len(val) > 5:
- read_code = val[5]
- else:
- read_code = None
- if len(val) > 6:
- write_code = val[6]
- else:
- write_code = None
- if len(val) > 7:
- error(lineno,
- 'error: too many attributes for operand "%s"' %
- base_cls_name)
-
- (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
- # Canonical flag structure is a triple of lists, where each list
- # indicates the set of flags implied by this operand always, when
- # used as a source, and when used as a dest, respectively.
- # For simplicity this can be initialized using a variety of fairly
- # obvious shortcuts; we convert these to canonical form here.
- if not flags:
- # no flags specified (e.g., 'None')
- flags = ( [], [], [] )
- elif isinstance(flags, str):
- # a single flag: assumed to be unconditional
- flags = ( [ flags ], [], [] )
- elif isinstance(flags, list):
- # a list of flags: also assumed to be unconditional
- flags = ( flags, [], [] )
- elif isinstance(flags, tuple):
- # it's a tuple: it should be a triple,
- # but each item could be a single string or a list
- (uncond_flags, src_flags, dest_flags) = flags
- flags = (makeList(uncond_flags),
- makeList(src_flags), makeList(dest_flags))
- # Accumulate attributes of new operand class in tmp_dict
- tmp_dict = {}
- for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
- 'dflt_size', 'dflt_ctype', 'dflt_is_signed',
- 'read_code', 'write_code'):
- tmp_dict[attr] = eval(attr)
- tmp_dict['base_name'] = op_name
- # New class name will be e.g. "IntReg_Ra"
- cls_name = base_cls_name + '_' + op_name
- # Evaluate string arg to get class object. Note that the
- # actual base class for "IntReg" is "IntRegOperand", i.e. we
- # have to append "Operand".
- try:
- base_cls = eval(base_cls_name + 'Operand')
- except NameError:
- error(lineno,
- 'error: unknown operand base class "%s"' % base_cls_name)
- # The following statement creates a new class called
- # <cls_name> as a subclass of <base_cls> with the attributes
- # in tmp_dict, just as if we evaluated a class declaration.
- operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
+ def p_param_list_1(self, t):
+ '''param_list : positional_param_list
+ | nonpositional_param_list'''
+ t[0] = t[1]
- # Define operand variables.
- operands = user_dict.keys()
+ def p_positional_param_list_0(self, t):
+ 'positional_param_list : empty'
+ t[0] = []
- operandsREString = (r'''
- (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
- ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
- (?![\w\.]) # neg. lookahead assertion: prevent partial matches
- '''
- % string.join(operands, '|'))
+ def p_positional_param_list_1(self, t):
+ 'positional_param_list : ID'
+ t[0] = [t[1]]
- global operandsRE
- operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
+ def p_positional_param_list_2(self, t):
+ 'positional_param_list : positional_param_list COMMA ID'
+ t[0] = t[1] + [t[3]]
- # Same as operandsREString, but extension is mandatory, and only two
- # groups are returned (base and ext, not full name as above).
- # Used for subtituting '_' for '.' to make C++ identifiers.
- operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
- % string.join(operands, '|'))
+ def p_nonpositional_param_list_0(self, t):
+ 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
+ t[0] = t[1] + t[3]
- global operandsWithExtRE
- operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
+ def p_nonpositional_param_list_1(self, t):
+ '''nonpositional_param_list : keyword_param_list
+ | excess_args_param'''
+ t[0] = t[1]
-maxInstSrcRegs = 0
-maxInstDestRegs = 0
+ def p_keyword_param_list_0(self, t):
+ 'keyword_param_list : keyword_param'
+ t[0] = [t[1]]
-class OperandList(object):
- '''Find all the operands in the given code block. Returns an operand
- descriptor list (instance of class OperandList).'''
- def __init__(self, code):
- self.items = []
- self.bases = {}
- # delete comments so we don't match on reg specifiers inside
- code = commentRE.sub('', code)
- # search for operands
- next_pos = 0
- while 1:
- match = operandsRE.search(code, next_pos)
- if not match:
- # no more matches: we're done
- break
- op = match.groups()
- # regexp groups are operand full name, base, and extension
- (op_full, op_base, op_ext) = op
- # if the token following the operand is an assignment, this is
- # a destination (LHS), else it's a source (RHS)
- is_dest = (assignRE.match(code, match.end()) != None)
- is_src = not is_dest
- # see if we've already seen this one
- op_desc = self.find_base(op_base)
- if op_desc:
- if op_desc.ext != op_ext:
- error(0, 'Inconsistent extensions for operand %s' % \
- op_base)
- op_desc.is_src = op_desc.is_src or is_src
- op_desc.is_dest = op_desc.is_dest or is_dest
- else:
- # new operand: create new descriptor
- op_desc = operandNameMap[op_base](op_full, op_ext,
- is_src, is_dest)
- self.append(op_desc)
- # start next search after end of current match
- next_pos = match.end()
- self.sort()
- # enumerate source & dest register operands... used in building
- # constructor later
- self.numSrcRegs = 0
- self.numDestRegs = 0
- self.numFPDestRegs = 0
- self.numIntDestRegs = 0
- self.memOperand = None
- for op_desc in self.items:
- if op_desc.isReg():
- if op_desc.is_src:
- op_desc.src_reg_idx = self.numSrcRegs
- self.numSrcRegs += 1
- if op_desc.is_dest:
- op_desc.dest_reg_idx = self.numDestRegs
- self.numDestRegs += 1
- if op_desc.isFloatReg():
- self.numFPDestRegs += 1
- elif op_desc.isIntReg():
- self.numIntDestRegs += 1
- elif op_desc.isMem():
- if self.memOperand:
- error(0, "Code block has more than one memory operand.")
- self.memOperand = op_desc
- global maxInstSrcRegs
- global maxInstDestRegs
- if maxInstSrcRegs < self.numSrcRegs:
- maxInstSrcRegs = self.numSrcRegs
- if maxInstDestRegs < self.numDestRegs:
- maxInstDestRegs = self.numDestRegs
- # now make a final pass to finalize op_desc fields that may depend
- # on the register enumeration
- for op_desc in self.items:
- op_desc.finalize()
+ def p_keyword_param_list_1(self, t):
+ 'keyword_param_list : keyword_param_list COMMA keyword_param'
+ t[0] = t[1] + [t[3]]
- def __len__(self):
- return len(self.items)
+ def p_keyword_param(self, t):
+ 'keyword_param : ID EQUALS expr'
+ t[0] = t[1] + ' = ' + t[3].__repr__()
- def __getitem__(self, index):
- return self.items[index]
+ def p_excess_args_param(self, t):
+ 'excess_args_param : ASTERISK ID'
+ # Just concatenate them: '*ID'. Wrap in list to be consistent
+ # with positional_param_list and keyword_param_list.
+ t[0] = [t[1] + t[2]]
- def append(self, op_desc):
- self.items.append(op_desc)
- self.bases[op_desc.base_name] = op_desc
+ # End of format definition-related rules.
+ ##############
- def find_base(self, base_name):
- # like self.bases[base_name], but returns None if not found
- # (rather than raising exception)
- return self.bases.get(base_name)
+ #
+ # A decode block looks like:
+ # decode <field1> [, <field2>]* [default <inst>] { ... }
+ #
+ def p_decode_block(self, t):
+ 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
+ default_defaults = defaultStack.pop()
+ codeObj = t[5]
+ # use the "default defaults" only if there was no explicit
+ # default statement in decode_stmt_list
+ if not codeObj.has_decode_default:
+ codeObj += default_defaults
+ codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
+ t[0] = codeObj
- # internal helper function for concat[Some]Attr{Strings|Lists}
- def __internalConcatAttrs(self, attr_name, filter, result):
- for op_desc in self.items:
- if filter(op_desc):
- result += getattr(op_desc, attr_name)
- return result
+ # The opt_default statement serves only to push the "default
+ # defaults" onto defaultStack. This value will be used by nested
+ # decode blocks, and used and popped off when the current
+ # decode_block is processed (in p_decode_block() above).
+ def p_opt_default_0(self, t):
+ 'opt_default : empty'
+ # no default specified: reuse the one currently at the top of
+ # the stack
+ defaultStack.push(defaultStack.top())
+ # no meaningful value returned
+ t[0] = None
- # return a single string that is the concatenation of the (string)
- # values of the specified attribute for all operands
- def concatAttrStrings(self, attr_name):
- return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
+ def p_opt_default_1(self, t):
+ 'opt_default : DEFAULT inst'
+ # push the new default
+ codeObj = t[2]
+ codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
+ defaultStack.push(codeObj)
+ # no meaningful value returned
+ t[0] = None
- # like concatAttrStrings, but only include the values for the operands
- # for which the provided filter function returns true
- def concatSomeAttrStrings(self, filter, attr_name):
- return self.__internalConcatAttrs(attr_name, filter, '')
+ def p_decode_stmt_list_0(self, t):
+ 'decode_stmt_list : decode_stmt'
+ t[0] = t[1]
- # return a single list that is the concatenation of the (list)
- # values of the specified attribute for all operands
- def concatAttrLists(self, attr_name):
- return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
+ def p_decode_stmt_list_1(self, t):
+ 'decode_stmt_list : decode_stmt decode_stmt_list'
+ if (t[1].has_decode_default and t[2].has_decode_default):
+ error(t.lexer.lineno, 'Two default cases in decode block')
+ t[0] = t[1] + t[2]
- # like concatAttrLists, but only include the values for the operands
- # for which the provided filter function returns true
- def concatSomeAttrLists(self, filter, attr_name):
- return self.__internalConcatAttrs(attr_name, filter, [])
+ #
+ # Decode statement rules
+ #
+ # There are four types of statements allowed in a decode block:
+ # 1. Format blocks 'format <foo> { ... }'
+ # 2. Nested decode blocks
+ # 3. Instruction definitions.
+ # 4. C preprocessor directives.
- def sort(self):
- self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
-class SubOperandList(OperandList):
- '''Find all the operands in the given code block. Returns an operand
- descriptor list (instance of class OperandList).'''
- def __init__(self, code, master_list):
- self.items = []
- self.bases = {}
- # delete comments so we don't match on reg specifiers inside
- code = commentRE.sub('', code)
- # search for operands
- next_pos = 0
- while 1:
- match = operandsRE.search(code, next_pos)
- if not match:
- # no more matches: we're done
- break
- op = match.groups()
- # regexp groups are operand full name, base, and extension
- (op_full, op_base, op_ext) = op
- # find this op in the master list
- op_desc = master_list.find_base(op_base)
- if not op_desc:
- error(0, 'Found operand %s which is not in the master list!' \
- ' This is an internal error' % \
- op_base)
- else:
- # See if we've already found this operand
- op_desc = self.find_base(op_base)
- if not op_desc:
- # if not, add a reference to it to this sub list
- self.append(master_list.bases[op_base])
+ # Preprocessor directives found in a decode statement list are
+ # passed through to the output, replicated to all of the output
+ # code streams. This works well for ifdefs, so we can ifdef out
+ # both the declarations and the decode cases generated by an
+ # instruction definition. Handling them as part of the grammar
+ # makes it easy to keep them in the right place with respect to
+ # the code generated by the other statements.
+ def p_decode_stmt_cpp(self, t):
+ 'decode_stmt : CPPDIRECTIVE'
+ t[0] = GenCode(t[1], t[1], t[1], t[1])
- # start next search after end of current match
- next_pos = match.end()
- self.sort()
- self.memOperand = None
- for op_desc in self.items:
- if op_desc.isMem():
- if self.memOperand:
- error(0, "Code block has more than one memory operand.")
- self.memOperand = op_desc
+ # A format block 'format <foo> { ... }' sets the default
+ # instruction format used to handle instruction definitions inside
+ # the block. This format can be overridden by using an explicit
+ # format on the instruction definition or with a nested format
+ # block.
+ def p_decode_stmt_format(self, t):
+ 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
+ # The format will be pushed on the stack when 'push_format_id'
+ # is processed (see below). Once the parser has recognized
+ # the full production (though the right brace), we're done
+ # with the format, so now we can pop it.
+ formatStack.pop()
+ t[0] = t[4]
-# Regular expression object to match C++ comments
-# (used in findOperands())
-commentRE = re.compile(r'//.*\n')
+ # This rule exists so we can set the current format (& push the
+ # stack) when we recognize the format name part of the format
+ # block.
+ def p_push_format_id(self, t):
+ 'push_format_id : ID'
+ try:
+ formatStack.push(formatMap[t[1]])
+ t[0] = ('', '// format %s' % t[1])
+ except KeyError:
+ error(t.lexer.lineno,
+ 'instruction format "%s" not defined.' % t[1])
-# Regular expression object to match assignment statements
-# (used in findOperands())
-assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
+ # Nested decode block: if the value of the current field matches
+ # the specified constant, do a nested decode on some other field.
+ def p_decode_stmt_decode(self, t):
+ 'decode_stmt : case_label COLON decode_block'
+ label = t[1]
+ codeObj = t[3]
+ # just wrap the decoding code from the block as a case in the
+ # outer switch statement.
+ codeObj.wrap_decode_block('\n%s:\n' % label)
+ codeObj.has_decode_default = (label == 'default')
+ t[0] = codeObj
-# Munge operand names in code string to make legal C++ variable names.
-# This means getting rid of the type extension if any.
-# (Will match base_name attribute of Operand object.)
-def substMungedOpNames(code):
- return operandsWithExtRE.sub(r'\1', code)
+ # Instruction definition (finally!).
+ def p_decode_stmt_inst(self, t):
+ 'decode_stmt : case_label COLON inst SEMI'
+ label = t[1]
+ codeObj = t[3]
+ codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
+ codeObj.has_decode_default = (label == 'default')
+ t[0] = codeObj
-# Fix up code snippets for final substitution in templates.
-def mungeSnippet(s):
- if isinstance(s, str):
- return substMungedOpNames(substBitOps(s))
- else:
- return s
+ # The case label is either a list of one or more constants or
+ # 'default'
+ def p_case_label_0(self, t):
+ 'case_label : intlit_list'
+ def make_case(intlit):
+ if intlit >= 2**32:
+ return 'case ULL(%#x)' % intlit
+ else:
+ return 'case %#x' % intlit
+ t[0] = ': '.join(map(make_case, t[1]))
-def makeFlagConstructor(flag_list):
- if len(flag_list) == 0:
- return ''
- # filter out repeated flags
- flag_list.sort()
- i = 1
- while i < len(flag_list):
- if flag_list[i] == flag_list[i-1]:
- del flag_list[i]
- else:
- i += 1
- pre = '\n\tflags['
- post = '] = true;'
- code = pre + string.join(flag_list, post + pre) + post
- return code
+ def p_case_label_1(self, t):
+ 'case_label : DEFAULT'
+ t[0] = 'default'
-# Assume all instruction flags are of the form 'IsFoo'
-instFlagRE = re.compile(r'Is.*')
+ #
+ # The constant list for a decode case label must be non-empty, but
+ # may have one or more comma-separated integer literals in it.
+ #
+ def p_intlit_list_0(self, t):
+ 'intlit_list : INTLIT'
+ t[0] = [t[1]]
-# OpClass constants end in 'Op' except No_OpClass
-opClassRE = re.compile(r'.*Op|No_OpClass')
+ def p_intlit_list_1(self, t):
+ 'intlit_list : intlit_list COMMA INTLIT'
+ t[0] = t[1]
+ t[0].append(t[3])
-class InstObjParams(object):
- def __init__(self, mnem, class_name, base_class = '',
- snippets = {}, opt_args = []):
- self.mnemonic = mnem
- self.class_name = class_name
- self.base_class = base_class
- if not isinstance(snippets, dict):
- snippets = {'code' : snippets}
- compositeCode = ' '.join(map(str, snippets.values()))
- self.snippets = snippets
+ # Define an instruction using the current instruction format
+ # (specified by an enclosing format block).
+ # "<mnemonic>(<args>)"
+ def p_inst_0(self, t):
+ 'inst : ID LPAREN arg_list RPAREN'
+ # Pass the ID and arg list to the current format class to deal with.
+ currentFormat = formatStack.top()
+ codeObj = currentFormat.defineInst(t[1], t[3], t.lexer.lineno)
+ args = ','.join(map(str, t[3]))
+ args = re.sub('(?m)^', '//', args)
+ args = re.sub('^//', '', args)
+ comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
+ codeObj.prepend_all(comment)
+ t[0] = codeObj
- self.operands = OperandList(compositeCode)
- self.constructor = self.operands.concatAttrStrings('constructor')
- self.constructor += \
- '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
- self.constructor += \
- '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
- self.constructor += \
- '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
- self.constructor += \
- '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
- self.flags = self.operands.concatAttrLists('flags')
+ # Define an instruction using an explicitly specified format:
+ # "<fmt>::<mnemonic>(<args>)"
+ def p_inst_1(self, t):
+ 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
+ try:
+ format = formatMap[t[1]]
+ except KeyError:
+ error(t.lexer.lineno,
+ 'instruction format "%s" not defined.' % t[1])
+ codeObj = format.defineInst(t[3], t[5], t.lexer.lineno)
+ comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
+ codeObj.prepend_all(comment)
+ t[0] = codeObj
- # Make a basic guess on the operand class (function unit type).
- # These are good enough for most cases, and can be overridden
- # later otherwise.
- if 'IsStore' in self.flags:
- self.op_class = 'MemWriteOp'
- elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
- self.op_class = 'MemReadOp'
- elif 'IsFloating' in self.flags:
- self.op_class = 'FloatAddOp'
- else:
- self.op_class = 'IntAluOp'
+ # The arg list generates a tuple, where the first element is a
+ # list of the positional args and the second element is a dict
+ # containing the keyword args.
+ def p_arg_list_0(self, t):
+ 'arg_list : positional_arg_list COMMA keyword_arg_list'
+ t[0] = ( t[1], t[3] )
- # Optional arguments are assumed to be either StaticInst flags
- # or an OpClass value. To avoid having to import a complete
- # list of these values to match against, we do it ad-hoc
- # with regexps.
- for oa in opt_args:
- if instFlagRE.match(oa):
- self.flags.append(oa)
- elif opClassRE.match(oa):
- self.op_class = oa
- else:
- error(0, 'InstObjParams: optional arg "%s" not recognized '
- 'as StaticInst::Flag or OpClass.' % oa)
+ def p_arg_list_1(self, t):
+ 'arg_list : positional_arg_list'
+ t[0] = ( t[1], {} )
- # add flag initialization to contructor here to include
- # any flags added via opt_args
- self.constructor += makeFlagConstructor(self.flags)
+ def p_arg_list_2(self, t):
+ 'arg_list : keyword_arg_list'
+ t[0] = ( [], t[1] )
- # if 'IsFloating' is set, add call to the FP enable check
- # function (which should be provided by isa_desc via a declare)
- if 'IsFloating' in self.flags:
- self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
- else:
- self.fp_enable_check = ''
+ def p_positional_arg_list_0(self, t):
+ 'positional_arg_list : empty'
+ t[0] = []
-#######################
-#
-# Output file template
-#
+ def p_positional_arg_list_1(self, t):
+ 'positional_arg_list : expr'
+ t[0] = [t[1]]
-file_template = '''
-/*
- * DO NOT EDIT THIS FILE!!!
- *
- * It was automatically generated from the ISA description in %(filename)s
- */
+ def p_positional_arg_list_2(self, t):
+ 'positional_arg_list : positional_arg_list COMMA expr'
+ t[0] = t[1] + [t[3]]
-%(includes)s
+ def p_keyword_arg_list_0(self, t):
+ 'keyword_arg_list : keyword_arg'
+ t[0] = t[1]
-%(global_output)s
+ def p_keyword_arg_list_1(self, t):
+ 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
+ t[0] = t[1]
+ t[0].update(t[3])
-namespace %(namespace)s {
+ def p_keyword_arg(self, t):
+ 'keyword_arg : ID EQUALS expr'
+ t[0] = { t[1] : t[3] }
-%(namespace_output)s
+ #
+ # Basic expressions. These constitute the argument values of
+ # "function calls" (i.e. instruction definitions in the decode
+ # block) and default values for formal parameters of format
+ # functions.
+ #
+ # Right now, these are either strings, integers, or (recursively)
+ # lists of exprs (using Python square-bracket list syntax). Note
+ # that bare identifiers are trated as string constants here (since
+ # there isn't really a variable namespace to refer to).
+ #
+ def p_expr_0(self, t):
+ '''expr : ID
+ | INTLIT
+ | STRLIT
+ | CODELIT'''
+ t[0] = t[1]
-} // namespace %(namespace)s
+ def p_expr_1(self, t):
+ '''expr : LBRACKET list_expr RBRACKET'''
+ t[0] = t[2]
-%(decode_function)s
-'''
+ def p_list_expr_0(self, t):
+ 'list_expr : expr'
+ t[0] = [t[1]]
-max_inst_regs_template = '''
-/*
- * DO NOT EDIT THIS FILE!!!
- *
- * It was automatically generated from the ISA description in %(filename)s
- */
+ def p_list_expr_1(self, t):
+ 'list_expr : list_expr COMMA expr'
+ t[0] = t[1] + [t[3]]
-namespace %(namespace)s {
+ def p_list_expr_2(self, t):
+ 'list_expr : empty'
+ t[0] = []
- const int MaxInstSrcRegs = %(MaxInstSrcRegs)d;
- const int MaxInstDestRegs = %(MaxInstDestRegs)d;
+ #
+ # Empty production... use in other rules for readability.
+ #
+ def p_empty(self, t):
+ 'empty :'
+ pass
-} // namespace %(namespace)s
+ # Parse error handler. Note that the argument here is the
+ # offending *token*, not a grammar symbol (hence the need to use
+ # t.value)
+ def p_error(self, t):
+ if t:
+ error(t.lexer.lineno, "syntax error at '%s'" % t.value)
+ else:
+ error(0, "unknown syntax error", True)
-'''
+ # END OF GRAMMAR RULES
+# Now build the parser.
+parser = ISAParser()
# Update the output file only if the new contents are different from
# the current contents. Minimizes the files that need to be rebuilt