| `fcvtfguws FRT, RB` | `fcvtfg FRT, RB, 1, 2` | | `fcvtfguds FRT, RB` | `fcvtfg FRT, RB, 3, 2` |
| `fcvtfguws. FRT, RB` | `fcvtfg FRT, RB, 1, 3` | | `fcvtfguds. FRT, RB` | `fcvtfg FRT, RB, 3, 3` |
+## Floating-point Convert From GPR
+
+| 0-5 | 6-10 | 11-12 | 13-15 | 16-20 | 21-29 | 30-31 | Form |
+|-----|------|-------|-------|-------|-------|-------|--------|
+| PO | FRT | IT | 0 | RB | XO | RCS | X-Form |
+
+`fcvtfg FRT, RB, IT, RCS`
+
+```
+ if IT[0] = 0 and RCS[0] = 0 then # 32-bit int -> 64-bit float
+ # rounding never necessary, so don't touch FPSCR
+ # based off xvcvsxwdp
+ if IT = 0 then # Signed 32-bit
+ src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
+ else # IT = 1 -- Unsigned 32-bit
+ src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
+ FRT <- bfp64_CONVERT_FROM_BFP(src)
+ else
+ # rounding may be necessary. based off xscvuxdsp
+ reset_xflags()
+ switch(IT)
+ case(0): # Signed 32-bit
+ src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
+ case(1): # Unsigned 32-bit
+ src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
+ case(2): # Signed 64-bit
+ src <- bfp_CONVERT_FROM_SI64((RB))
+ default: # Unsigned 64-bit
+ src <- bfp_CONVERT_FROM_UI64((RB))
+ if RCS[0] = 1 then # Single
+ rnd <- bfp_ROUND_TO_BFP32(FPSCR.RN, src)
+ result32 <- bfp32_CONVERT_FROM_BFP(rnd)
+ cls <- fprf_CLASS_BFP32(result32)
+ result <- DOUBLE(result32)
+ else
+ rnd <- bfp_ROUND_TO_BFP64(FPSCR.RN, src)
+ result <- bfp64_CONVERT_FROM_BFP(rnd)
+ cls <- fprf_CLASS_BFP64(result)
+
+ if xx_flag = 1 then SetFX(FPSCR.XX)
+
+ FRT <- result
+ FPSCR.FPRF <- cls
+ FPSCR.FR <- inc_flag
+ FPSCR.FI <- xx_flag
+```
+<!-- note the PowerISA spec. explicitly has empty lines before/after SetFX,
+don't remove them -->
+
+Convert from a unsigned/signed 32/64-bit integer in RB to a 32/64-bit
+float in FRT, following the usual 32-bit float in 64-bit float format.
+If converting from a unsigned/signed 32-bit integer to a 64-bit float,
+rounding is never necessary, so `FPSCR` is unmodified and exceptions are
+never raised. Otherwise, `FPSCR` is modified and exceptions are raised
+as usual.
+
+Rc=1 tests FRT and sets CR1, exactly like all other Scalar Floating-Point
+operations.
+
+Special Registers altered:
+
+ CR1 (if Rc=1)
+ FPCSR (TODO: which bits?) (if IT[0] != 0 or RCS[0] != 0)
+
+### Assembly Aliases
+
+| Assembly Alias | Full Instruction | | Assembly Alias | Full Instruction |
+|----------------------|------------------------|------|----------------------|------------------------|
+| `fcvtfgw FRT, RB` | `fcvtfg FRT, RB, 0, 0` | | `fcvtfgd FRT, RB` | `fcvtfg FRT, RB, 2, 0` |
+| `fcvtfgw. FRT, RB` | `fcvtfg FRT, RB, 0, 1` | | `fcvtfgd. FRT, RB` | `fcvtfg FRT, RB, 2, 1` |
+| `fcvtfgws FRT, RB` | `fcvtfg FRT, RB, 0, 2` | | `fcvtfgds FRT, RB` | `fcvtfg FRT, RB, 2, 2` |
+| `fcvtfgws. FRT, RB` | `fcvtfg FRT, RB, 0, 3` | | `fcvtfgds. FRT, RB` | `fcvtfg FRT, RB, 2, 3` |
+| `fcvtfguw FRT, RB` | `fcvtfg FRT, RB, 1, 0` | | `fcvtfgud FRT, RB` | `fcvtfg FRT, RB, 3, 0` |
+| `fcvtfguw. FRT, RB` | `fcvtfg FRT, RB, 1, 1` | | `fcvtfgud. FRT, RB` | `fcvtfg FRT, RB, 3, 1` |
+| `fcvtfguws FRT, RB` | `fcvtfg FRT, RB, 1, 2` | | `fcvtfguds FRT, RB` | `fcvtfg FRT, RB, 3, 2` |
+| `fcvtfguws. FRT, RB` | `fcvtfg FRT, RB, 1, 3` | | `fcvtfguds. FRT, RB` | `fcvtfg FRT, RB, 3, 3` |
+
## Floating-point to Integer Conversion Overview
<div id="fpr-to-gpr-conversion-mode"></div>
| `fcvttguw[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 1` | `fcvttgud[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 1` |
| `fcvtstguw[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 2` | `fcvtstgud[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 2` |
| `fcvtstguw[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 3` | `fcvtstgud[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 3` |
+
+## Floating-point Convert To GPR
+
+| 0-5 | 6-10 | 11-12 | 13-15 | 16-20 | 21-28 | 29 | 30 | 31 | Form |
+|-----|------|-------|-------|-------|-------|--------|----|--------|---------|
+| PO | RT | IT | CVM | FRB | XO | RCS[0] | OE | RCS[1] | XO-Form |
+
+`fcvttg RT, FRB, CVM, IT, RCS`
+`fcvttgo RT, FRB, CVM, IT, RCS`
+
+```
+ # based on xscvdpuxws
+ reset_xflags()
+ if RCS[0] = 1 then # if Single mode
+ src <- bfp_CONVERT_FROM_BFP32(SINGLE((FRB)))
+ else
+ src <- bfp_CONVERT_FROM_BFP64((FRB))
+
+ switch(IT)
+ case(0): # Signed 32-bit
+ range_min <- bfp_CONVERT_FROM_SI32(0x8000_0000)
+ range_max <- bfp_CONVERT_FROM_SI32(0x7FFF_FFFF)
+ js_mask <- 0xFFFF_FFFF
+ case(1): # Unsigned 32-bit
+ range_min <- bfp_CONVERT_FROM_UI32(0)
+ range_max <- bfp_CONVERT_FROM_UI32(0xFFFF_FFFF)
+ js_mask <- 0xFFFF_FFFF
+ case(2): # Signed 64-bit
+ range_min <- bfp_CONVERT_FROM_SI64(-0x8000_0000_0000_0000)
+ range_max <- bfp_CONVERT_FROM_SI64(0x7FFF_FFFF_FFFF_FFFF)
+ js_mask <- 0xFFFF_FFFF_FFFF_FFFF
+ default: # Unsigned 64-bit
+ range_min <- bfp_CONVERT_FROM_UI64(0)
+ range_max <- bfp_CONVERT_FROM_UI64(0xFFFF_FFFF_FFFF_FFFF)
+ js_mask <- 0xFFFF_FFFF_FFFF_FFFF
+
+ if CVM[2] = 1 or FPSCR.RN = 0b01 then
+ rnd <- bfp_ROUND_TO_INTEGER_TRUNC(src)
+ else if FPSCR.RN = 0b00 then
+ rnd <- bfp_ROUND_TO_INTEGER_NEAR_EVEN(src)
+ else if FPSCR.RN = 0b10 then
+ rnd <- bfp_ROUND_TO_INTEGER_CEIL(src)
+ else if FPSCR.RN = 0b11 then
+ rnd <- bfp_ROUND_TO_INTEGER_FLOOR(src)
+
+ switch(CVM)
+ case(0, 1): # OpenPower semantics
+ if IsNaN(rnd) then
+ result <- si64_CONVERT_FROM_BFP(range_min)
+ else if bfp_COMPARE_GT(rnd, range_max) then
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else if bfp_COMPARE_LT(rnd, range_min) then
+ result <- si64_CONVERT_FROM_BFP(range_min)
+ else if IT[1] = 1 then # Unsigned 32/64-bit
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else # Signed 32/64-bit
+ result <- si64_CONVERT_FROM_BFP(range_max)
+ case(2, 3): # Java/Saturating semantics
+ if IsNaN(rnd) then
+ result <- [0] * 64
+ else if bfp_COMPARE_GT(rnd, range_max) then
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else if bfp_COMPARE_LT(rnd, range_min) then
+ result <- si64_CONVERT_FROM_BFP(range_min)
+ else if IT[1] = 1 then # Unsigned 32/64-bit
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else # Signed 32/64-bit
+ result <- si64_CONVERT_FROM_BFP(range_max)
+ default: # JavaScript semantics
+ # CVM = 6, 7 are illegal instructions
+ # this works because the largest type we try to convert from has
+ # 53 significand bits, and the largest type we try to convert to
+ # has 64 bits, and the sum of those is strictly less than the 128
+ # bits of the intermediate result.
+ limit <- bfp_CONVERT_FROM_UI128([1] * 128)
+ if IsInf(rnd) or IsNaN(rnd) then
+ result <- [0] * 64
+ else if bfp_COMPARE_GT(bfp_ABSOLUTE(rnd), limit) then
+ result <- [0] * 64
+ else
+ result128 <- si128_CONVERT_FROM_BFP(rnd)
+ result <- result128[64:127] & js_mask
+
+ switch(IT)
+ case(0): # Signed 32-bit
+ result <- EXTS64(result[32:63])
+ result_bfp <- bfp_CONVERT_FROM_SI32(result[32:63])
+ case(1): # Unsigned 32-bit
+ result <- EXTZ64(result[32:63])
+ result_bfp <- bfp_CONVERT_FROM_UI32(result[32:63])
+ case(2): # Signed 64-bit
+ result_bfp <- bfp_CONVERT_FROM_SI64(result)
+ default: # Unsigned 64-bit
+ result_bfp <- bfp_CONVERT_FROM_UI64(result)
+
+ if vxsnan_flag = 1 then SetFX(FPSCR.VXSNAN)
+ if vxcvi_flag = 1 then SetFX(FPSCR.VXCVI)
+ if xx_flag = 1 then SetFX(FPSCR.XX)
+
+ vx_flag <- vxsnan_flag | vxcvi_flag
+ vex_flag <- FPSCR.VE & vx_flag
+
+ if vex_flag = 0 then
+ RT <- result
+ FPSCR.FPRF <- undefined
+ FPSCR.FR <- inc_flag
+ FPSCR.FI <- xx_flag
+ if IsNaN(src) or not bfp_COMPARE_EQ(src, result_bfp) then
+ overflow <- 1 # signals SO only when OE = 1
+ else
+ FPSCR.FR <- 0
+ FPSCR.FI <- 0
+```
+
+Convert from 32/64-bit float in FRB to a unsigned/signed 32/64-bit integer
+in RT, with the conversion overflow/rounding semantics following the
+chosen `CVM` value, following the usual 32-bit float in 64-bit float
+format. `FPSCR` is modified and exceptions are raised as usual.
+
+Both of these instructions have an Rc=1 mode which sets CR0 in the normal
+way for any instructions producing a GPR result. Additionally, when OE=1,
+if the numerical value of the FP number is not 100% accurately preserved
+(due to truncation or saturation and including when the FP number was
+NaN) then this is considered to be an integer Overflow condition, and
+CR0.SO, XER.SO and XER.OV are all set as normal for any GPR instructions
+that overflow.
+
+Special Registers altered:
+
+ CR0 (if Rc=1)
+ XER SO, OV, OV32 (if OE=1)
+ FPCSR (TODO: which bits?)
+
+### Assembly Aliases
+
+For brevity, `[o]` is used to mean `o` is optional there.
+
+| Assembly Alias | Full Instruction | Assembly Alias | Full Instruction |
+|------------------------------|--------------------------------|------------------------------|--------------------------------|
+| `fcvttgw[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 0, 0` | `fcvttgd[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 2, 0` |
+| `fcvttgw[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 0, 1` | `fcvttgd[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 2, 1` |
+| `fcvtstgw[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 0, 2` | `fcvtstgd[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 2, 2` |
+| `fcvtstgw[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 0, 3` | `fcvtstgd[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 2, 3` |
+| `fcvttguw[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 0` | `fcvttgud[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 0` |
+| `fcvttguw[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 1` | `fcvttgud[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 1` |
+| `fcvtstguw[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 2` | `fcvtstgud[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 2` |
+| `fcvtstguw[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 3` | `fcvtstgud[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 3` |
| `fcvtfguws FRT, RB` | `fcvtfg FRT, RB, 1, 2` | | `fcvtfguds FRT, RB` | `fcvtfg FRT, RB, 3, 2` |
| `fcvtfguws. FRT, RB` | `fcvtfg FRT, RB, 1, 3` | | `fcvtfguds. FRT, RB` | `fcvtfg FRT, RB, 3, 3` |
+----------
+
+\newpage{}
+
+## Floating-point Convert From GPR
+
+| 0-5 | 6-10 | 11-12 | 13-15 | 16-20 | 21-29 | 30-31 | Form |
+|-----|------|-------|-------|-------|-------|-------|--------|
+| PO | FRT | IT | 0 | RB | XO | RCS | X-Form |
+
+`fcvtfg FRT, RB, IT, RCS`
+
+```
+ if IT[0] = 0 and RCS[0] = 0 then # 32-bit int -> 64-bit float
+ # rounding never necessary, so don't touch FPSCR
+ # based off xvcvsxwdp
+ if IT = 0 then # Signed 32-bit
+ src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
+ else # IT = 1 -- Unsigned 32-bit
+ src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
+ FRT <- bfp64_CONVERT_FROM_BFP(src)
+ else
+ # rounding may be necessary. based off xscvuxdsp
+ reset_xflags()
+ switch(IT)
+ case(0): # Signed 32-bit
+ src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
+ case(1): # Unsigned 32-bit
+ src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
+ case(2): # Signed 64-bit
+ src <- bfp_CONVERT_FROM_SI64((RB))
+ default: # Unsigned 64-bit
+ src <- bfp_CONVERT_FROM_UI64((RB))
+ if RCS[0] = 1 then # Single
+ rnd <- bfp_ROUND_TO_BFP32(FPSCR.RN, src)
+ result32 <- bfp32_CONVERT_FROM_BFP(rnd)
+ cls <- fprf_CLASS_BFP32(result32)
+ result <- DOUBLE(result32)
+ else
+ rnd <- bfp_ROUND_TO_BFP64(FPSCR.RN, src)
+ result <- bfp64_CONVERT_FROM_BFP(rnd)
+ cls <- fprf_CLASS_BFP64(result)
+
+ if xx_flag = 1 then SetFX(FPSCR.XX)
+
+ FRT <- result
+ FPSCR.FPRF <- cls
+ FPSCR.FR <- inc_flag
+ FPSCR.FI <- xx_flag
+```
+<!-- note the PowerISA spec. explicitly has empty lines before/after SetFX,
+don't remove them -->
+
+Convert from a unsigned/signed 32/64-bit integer in RB to a 32/64-bit
+float in FRT, following the usual 32-bit float in 64-bit float format.
+If converting from a unsigned/signed 32-bit integer to a 64-bit float,
+rounding is never necessary, so `FPSCR` is unmodified and exceptions are
+never raised. Otherwise, `FPSCR` is modified and exceptions are raised
+as usual.
+
+Rc=1 tests FRT and sets CR1, exactly like all other Scalar Floating-Point
+operations.
+
+Special Registers altered:
+
+ CR1 (if Rc=1)
+ FPCSR (TODO: which bits?) (if IT[0] != 0 or RCS[0] != 0)
+
+### Assembly Aliases
+
+| Assembly Alias | Full Instruction | | Assembly Alias | Full Instruction |
+|----------------------|------------------------|------|----------------------|------------------------|
+| `fcvtfgw FRT, RB` | `fcvtfg FRT, RB, 0, 0` | | `fcvtfgd FRT, RB` | `fcvtfg FRT, RB, 2, 0` |
+| `fcvtfgw. FRT, RB` | `fcvtfg FRT, RB, 0, 1` | | `fcvtfgd. FRT, RB` | `fcvtfg FRT, RB, 2, 1` |
+| `fcvtfgws FRT, RB` | `fcvtfg FRT, RB, 0, 2` | | `fcvtfgds FRT, RB` | `fcvtfg FRT, RB, 2, 2` |
+| `fcvtfgws. FRT, RB` | `fcvtfg FRT, RB, 0, 3` | | `fcvtfgds. FRT, RB` | `fcvtfg FRT, RB, 2, 3` |
+| `fcvtfguw FRT, RB` | `fcvtfg FRT, RB, 1, 0` | | `fcvtfgud FRT, RB` | `fcvtfg FRT, RB, 3, 0` |
+| `fcvtfguw. FRT, RB` | `fcvtfg FRT, RB, 1, 1` | | `fcvtfgud. FRT, RB` | `fcvtfg FRT, RB, 3, 1` |
+| `fcvtfguws FRT, RB` | `fcvtfg FRT, RB, 1, 2` | | `fcvtfguds FRT, RB` | `fcvtfg FRT, RB, 3, 2` |
+| `fcvtfguws. FRT, RB` | `fcvtfg FRT, RB, 1, 3` | | `fcvtfguds. FRT, RB` | `fcvtfg FRT, RB, 3, 3` |
----------
\newpage{}
+## Floating-point Convert To GPR
+
+| 0-5 | 6-10 | 11-12 | 13-15 | 16-20 | 21-28 | 29 | 30 | 31 | Form |
+|-----|------|-------|-------|-------|-------|--------|----|--------|---------|
+| PO | RT | IT | CVM | FRB | XO | RCS[0] | OE | RCS[1] | XO-Form |
+
+`fcvttg RT, FRB, CVM, IT, RCS`
+`fcvttgo RT, FRB, CVM, IT, RCS`
+
+```
+ # based on xscvdpuxws
+ reset_xflags()
+ if RCS[0] = 1 then # if Single mode
+ src <- bfp_CONVERT_FROM_BFP32(SINGLE((FRB)))
+ else
+ src <- bfp_CONVERT_FROM_BFP64((FRB))
+
+ switch(IT)
+ case(0): # Signed 32-bit
+ range_min <- bfp_CONVERT_FROM_SI32(0x8000_0000)
+ range_max <- bfp_CONVERT_FROM_SI32(0x7FFF_FFFF)
+ js_mask <- 0xFFFF_FFFF
+ case(1): # Unsigned 32-bit
+ range_min <- bfp_CONVERT_FROM_UI32(0)
+ range_max <- bfp_CONVERT_FROM_UI32(0xFFFF_FFFF)
+ js_mask <- 0xFFFF_FFFF
+ case(2): # Signed 64-bit
+ range_min <- bfp_CONVERT_FROM_SI64(-0x8000_0000_0000_0000)
+ range_max <- bfp_CONVERT_FROM_SI64(0x7FFF_FFFF_FFFF_FFFF)
+ js_mask <- 0xFFFF_FFFF_FFFF_FFFF
+ default: # Unsigned 64-bit
+ range_min <- bfp_CONVERT_FROM_UI64(0)
+ range_max <- bfp_CONVERT_FROM_UI64(0xFFFF_FFFF_FFFF_FFFF)
+ js_mask <- 0xFFFF_FFFF_FFFF_FFFF
+
+ if CVM[2] = 1 or FPSCR.RN = 0b01 then
+ rnd <- bfp_ROUND_TO_INTEGER_TRUNC(src)
+ else if FPSCR.RN = 0b00 then
+ rnd <- bfp_ROUND_TO_INTEGER_NEAR_EVEN(src)
+ else if FPSCR.RN = 0b10 then
+ rnd <- bfp_ROUND_TO_INTEGER_CEIL(src)
+ else if FPSCR.RN = 0b11 then
+ rnd <- bfp_ROUND_TO_INTEGER_FLOOR(src)
+
+ switch(CVM)
+ case(0, 1): # OpenPower semantics
+ if IsNaN(rnd) then
+ result <- si64_CONVERT_FROM_BFP(range_min)
+ else if bfp_COMPARE_GT(rnd, range_max) then
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else if bfp_COMPARE_LT(rnd, range_min) then
+ result <- si64_CONVERT_FROM_BFP(range_min)
+ else if IT[1] = 1 then # Unsigned 32/64-bit
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else # Signed 32/64-bit
+ result <- si64_CONVERT_FROM_BFP(range_max)
+ case(2, 3): # Java/Saturating semantics
+ if IsNaN(rnd) then
+ result <- [0] * 64
+ else if bfp_COMPARE_GT(rnd, range_max) then
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else if bfp_COMPARE_LT(rnd, range_min) then
+ result <- si64_CONVERT_FROM_BFP(range_min)
+ else if IT[1] = 1 then # Unsigned 32/64-bit
+ result <- ui64_CONVERT_FROM_BFP(range_max)
+ else # Signed 32/64-bit
+ result <- si64_CONVERT_FROM_BFP(range_max)
+ default: # JavaScript semantics
+ # CVM = 6, 7 are illegal instructions
+ # this works because the largest type we try to convert from has
+ # 53 significand bits, and the largest type we try to convert to
+ # has 64 bits, and the sum of those is strictly less than the 128
+ # bits of the intermediate result.
+ limit <- bfp_CONVERT_FROM_UI128([1] * 128)
+ if IsInf(rnd) or IsNaN(rnd) then
+ result <- [0] * 64
+ else if bfp_COMPARE_GT(bfp_ABSOLUTE(rnd), limit) then
+ result <- [0] * 64
+ else
+ result128 <- si128_CONVERT_FROM_BFP(rnd)
+ result <- result128[64:127] & js_mask
+
+ switch(IT)
+ case(0): # Signed 32-bit
+ result <- EXTS64(result[32:63])
+ result_bfp <- bfp_CONVERT_FROM_SI32(result[32:63])
+ case(1): # Unsigned 32-bit
+ result <- EXTZ64(result[32:63])
+ result_bfp <- bfp_CONVERT_FROM_UI32(result[32:63])
+ case(2): # Signed 64-bit
+ result_bfp <- bfp_CONVERT_FROM_SI64(result)
+ default: # Unsigned 64-bit
+ result_bfp <- bfp_CONVERT_FROM_UI64(result)
+
+ if vxsnan_flag = 1 then SetFX(FPSCR.VXSNAN)
+ if vxcvi_flag = 1 then SetFX(FPSCR.VXCVI)
+ if xx_flag = 1 then SetFX(FPSCR.XX)
+
+ vx_flag <- vxsnan_flag | vxcvi_flag
+ vex_flag <- FPSCR.VE & vx_flag
+
+ if vex_flag = 0 then
+ RT <- result
+ FPSCR.FPRF <- undefined
+ FPSCR.FR <- inc_flag
+ FPSCR.FI <- xx_flag
+ if IsNaN(src) or not bfp_COMPARE_EQ(src, result_bfp) then
+ overflow <- 1 # signals SO only when OE = 1
+ else
+ FPSCR.FR <- 0
+ FPSCR.FI <- 0
+```
+
+Convert from 32/64-bit float in FRB to a unsigned/signed 32/64-bit integer
+in RT, with the conversion overflow/rounding semantics following the
+chosen `CVM` value, following the usual 32-bit float in 64-bit float
+format. `FPSCR` is modified and exceptions are raised as usual.
+
+Both of these instructions have an Rc=1 mode which sets CR0 in the normal
+way for any instructions producing a GPR result. Additionally, when OE=1,
+if the numerical value of the FP number is not 100% accurately preserved
+(due to truncation or saturation and including when the FP number was
+NaN) then this is considered to be an integer Overflow condition, and
+CR0.SO, XER.SO and XER.OV are all set as normal for any GPR instructions
+that overflow.
+
+Special Registers altered:
+
+ CR0 (if Rc=1)
+ XER SO, OV, OV32 (if OE=1)
+ FPCSR (TODO: which bits?)
+
+### Assembly Aliases
+
+For brevity, `[o]` is used to mean `o` is optional there.
+
+| Assembly Alias | Full Instruction | Assembly Alias | Full Instruction |
+|------------------------------|--------------------------------|------------------------------|--------------------------------|
+| `fcvttgw[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 0, 0` | `fcvttgd[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 2, 0` |
+| `fcvttgw[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 0, 1` | `fcvttgd[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 2, 1` |
+| `fcvtstgw[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 0, 2` | `fcvtstgd[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 2, 2` |
+| `fcvtstgw[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 0, 3` | `fcvtstgd[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 2, 3` |
+| `fcvttguw[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 0` | `fcvttgud[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 0` |
+| `fcvttguw[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 1` | `fcvttgud[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 1` |
+| `fcvtstguw[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 2` | `fcvtstgud[o] RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 2` |
+| `fcvtstguw[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 1, 3` | `fcvtstgud[o]. RT, FRB, CVM` | `fcvttg[o] RT, FRB, CVM, 3, 3` |
+
+----------
+
+\newpage{}
+
----------
# Appendices