-/* $Id: imports.c,v 1.32 2003/03/01 01:50:21 brianp Exp $ */
+/* $Id: imports.c,v 1.33 2003/03/04 16:33:53 brianp Exp $ */
/*
* Mesa 3-D graphics library
* then reconstruct the result back into a float
*/
num.i = ((sqrttab[num.i >> 16]) << 16) | ((e + 127) << 23);
+
return num.f;
#else
return (float) _mesa_sqrtd((double) x);
}
+/**
+ inv_sqrt - A single precision 1/sqrt routine for IEEE format floats.
+ written by Josh Vanderhoof, based on newsgroup posts by James Van Buskirk
+ and Vesa Karvonen.
+*/
+float
+_mesa_inv_sqrtf(float n)
+{
+#if defined(USE_IEEE) && !defined(DEBUG)
+ float r0, x0, y0;
+ float r1, x1, y1;
+ float r2, x2, y2;
+#if 0 /* not used, see below -BP */
+ float r3, x3, y3;
+#endif
+ union { float f; unsigned int i; } u;
+ unsigned int magic;
+
+ /*
+ Exponent part of the magic number -
+
+ We want to:
+ 1. subtract the bias from the exponent,
+ 2. negate it
+ 3. divide by two (rounding towards -inf)
+ 4. add the bias back
+
+ Which is the same as subtracting the exponent from 381 and dividing
+ by 2.
+
+ floor(-(x - 127) / 2) + 127 = floor((381 - x) / 2)
+ */
+
+ magic = 381 << 23;
+
+ /*
+ Significand part of magic number -
+
+ With the current magic number, "(magic - u.i) >> 1" will give you:
+
+ for 1 <= u.f <= 2: 1.25 - u.f / 4
+ for 2 <= u.f <= 4: 1.00 - u.f / 8
+
+ This isn't a bad approximation of 1/sqrt. The maximum difference from
+ 1/sqrt will be around .06. After three Newton-Raphson iterations, the
+ maximum difference is less than 4.5e-8. (Which is actually close
+ enough to make the following bias academic...)
+
+ To get a better approximation you can add a bias to the magic
+ number. For example, if you subtract 1/2 of the maximum difference in
+ the first approximation (.03), you will get the following function:
+
+ for 1 <= u.f <= 2: 1.22 - u.f / 4
+ for 2 <= u.f <= 3.76: 0.97 - u.f / 8
+ for 3.76 <= u.f <= 4: 0.72 - u.f / 16
+ (The 3.76 to 4 range is where the result is < .5.)
+
+ This is the closest possible initial approximation, but with a maximum
+ error of 8e-11 after three NR iterations, it is still not perfect. If
+ you subtract 0.0332281 instead of .03, the maximum error will be
+ 2.5e-11 after three NR iterations, which should be about as close as
+ is possible.
+
+ for 1 <= u.f <= 2: 1.2167719 - u.f / 4
+ for 2 <= u.f <= 3.73: 0.9667719 - u.f / 8
+ for 3.73 <= u.f <= 4: 0.7167719 - u.f / 16
+
+ */
+
+ magic -= (int)(0.0332281 * (1 << 25));
+
+ u.f = n;
+ u.i = (magic - u.i) >> 1;
+
+ /*
+ Instead of Newton-Raphson, we use Goldschmidt's algorithm, which
+ allows more parallelism. From what I understand, the parallelism
+ comes at the cost of less precision, because it lets error
+ accumulate across iterations.
+ */
+ x0 = 1.0f;
+ y0 = 0.5f * n;
+ r0 = u.f;
+
+ x1 = x0 * r0;
+ y1 = y0 * r0 * r0;
+ r1 = 1.5f - y1;
+
+ x2 = x1 * r1;
+ y2 = y1 * r1 * r1;
+ r2 = 1.5f - y2;
+
+#if 1
+ return x2 * r2; /* we can stop here, and be conformant -BP */
+#else
+ x3 = x2 * r2;
+ y3 = y2 * r2 * r2;
+ r3 = 1.5f - y3;
+
+ return x3 * r3;
+#endif
+#elif defined(XFree86LOADER) && defined(IN_MODULE)
+ return 1.0F / xf86sqrt(n);
+#else
+ return 1.0F / sqrt(n);
+#endif
+}
+
+
double
_mesa_pow(double x, double y)
{
-/* $Id: imports.h,v 1.16 2003/03/03 21:44:39 brianp Exp $ */
+/* $Id: imports.h,v 1.17 2003/03/04 16:33:53 brianp Exp $ */
/*
* Mesa 3-D graphics library
#endif
+/***
+ *** INV_SQRTF: single-precision inverse square root
+ ***/
+#if 0
+#define INV_SQRTF(X) _mesa_inv_sqrt(X)
+#else
+#define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */
+#endif
+
+
/***
*** LOG2: Log base 2 of float
***/
extern float
_mesa_sqrtf(float x);
+extern float
+_mesa_inv_sqrtf(float x);
+
extern double
_mesa_pow(double x, double y);
-/* $Id: macros.h,v 1.31 2003/03/01 01:50:21 brianp Exp $ */
+/* $Id: macros.h,v 1.32 2003/03/04 16:33:54 brianp Exp $ */
/*
* Mesa 3-D graphics library
do { \
GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \
if (len) { \
- len = (GLfloat) (1.0 / SQRTF(len)); \
+ len = INV_SQRTF(len); \
(V)[0] = (GLfloat) ((V)[0] * len); \
(V)[1] = (GLfloat) ((V)[1] * len); \
(V)[2] = (GLfloat) ((V)[2] * len); \
-/* $Id: nvvertexec.c,v 1.2 2003/03/01 01:50:22 brianp Exp $ */
+/* $Id: nvvertexec.c,v 1.3 2003/03/04 16:33:55 brianp Exp $ */
/*
* Mesa 3-D graphics library
{
GLfloat t[4];
fetch_vector1( &inst->SrcReg[0], machine, t );
- t[0] = (float) (1.0 / sqrt(fabs(t[0])));
+ t[0] = INV_SQRTF(FABSF(t[0]));
t[1] = t[2] = t[3] = t[0];
store_vector4( &inst->DstReg, machine, t );
}
-/* $Id: m_norm_tmp.h,v 1.13 2003/03/01 01:50:24 brianp Exp $ */
+/* $Id: m_norm_tmp.h,v 1.14 2003/03/04 16:34:01 brianp Exp $ */
/*
* Mesa 3-D graphics library
{
GLdouble len = tx*tx + ty*ty + tz*tz;
if (len > 1e-20) {
- GLdouble scale = 1.0F / SQRTF(len);
- out[i][0] = (GLfloat) (tx * scale);
- out[i][1] = (GLfloat) (ty * scale);
- out[i][2] = (GLfloat) (tz * scale);
+ GLfloat scale = INV_SQRTF(len);
+ out[i][0] = tx * scale;
+ out[i][1] = ty * scale;
+ out[i][2] = tz * scale;
}
else {
out[i][0] = out[i][1] = out[i][2] = 0;
{
GLdouble len = tx*tx + ty*ty + tz*tz;
if (len > 1e-20) {
- GLdouble scale = 1.0F / SQRTF(len);
- out[i][0] = (GLfloat) (tx * scale);
- out[i][1] = (GLfloat) (ty * scale);
- out[i][2] = (GLfloat) (tz * scale);
+ GLfloat scale = INV_SQRTF(len);
+ out[i][0] = tx * scale;
+ out[i][1] = ty * scale;
+ out[i][2] = tz * scale;
}
else {
out[i][0] = out[i][1] = out[i][2] = 0;
const GLfloat x = from[0], y = from[1], z = from[2];
GLdouble len = x * x + y * y + z * z;
if (len > 1e-50) {
- len = 1.0F / SQRTF(len);
- out[i][0] = (GLfloat) (x * len);
- out[i][1] = (GLfloat) (y * len);
- out[i][2] = (GLfloat) (z * len);
+ len = INV_SQRTF(len);
+ out[i][0] = x * len;
+ out[i][1] = y * len;
+ out[i][2] = z * len;
}
else {
out[i][0] = x;
-/* $Id: s_aalinetemp.h,v 1.22 2003/02/21 21:00:27 brianp Exp $ */
+/* $Id: s_aalinetemp.h,v 1.23 2003/03/04 16:34:02 brianp Exp $ */
/*
* Mesa 3-D graphics library
line.y1 = v1->win[1];
line.dx = line.x1 - line.x0;
line.dy = line.y1 - line.y0;
- line.len = (GLfloat) sqrt(line.dx * line.dx + line.dy * line.dy);
+ line.len = SQRTF(line.dx * line.dx + line.dy * line.dy);
line.halfWidth = 0.5F * ctx->Line.Width;
if (line.len == 0.0 || IS_INF_OR_NAN(line.len))
-/* $Id: s_nvfragprog.c,v 1.5 2003/03/01 01:50:26 brianp Exp $ */
+/* $Id: s_nvfragprog.c,v 1.6 2003/03/04 16:34:03 brianp Exp $ */
/*
* Mesa 3-D graphics library
{
GLfloat a[4], result[4];
fetch_vector1( &inst->SrcReg[0], machine, a );
- result[0] = result[1] = result[2] = result[3]
- = 1.0F / SQRTF(a[0]);
+ result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
store_vector4( inst, machine, result );
}
break;
-/* $Id: s_span.c,v 1.56 2003/03/01 01:50:26 brianp Exp $ */
+/* $Id: s_span.c,v 1.57 2003/03/04 16:34:03 brianp Exp $ */
/*
* Mesa 3-D graphics library
GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
- GLfloat x = sqrt(dudx * dudx + dvdx * dvdx);
- GLfloat y = sqrt(dudy * dudy + dvdy * dvdy);
+ GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
+ GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
GLfloat rho = MAX2(x, y);
GLfloat lambda = LOG2(rho);
return lambda;
-/* $Id: t_vb_texgen.c,v 1.17 2003/03/01 01:50:27 brianp Exp $ */
+/* $Id: t_vb_texgen.c,v 1.18 2003/03/04 16:34:04 brianp Exp $ */
/*
* Mesa 3-D graphics library
fz = f[i][2] = u[2] - norm[2] * two_nu;
m[i] = fx * fx + fy * fy + (fz + 1.0F) * (fz + 1.0F);
if (m[i] != 0.0F) {
- m[i] = 0.5F / SQRTF(m[i]);
+ m[i] = 0.5F * _mesa_inv_sqrtf(m[i]);
}
}
}
fz = f[i][2] = u[2] - norm[2] * two_nu;
m[i] = fx * fx + fy * fy + (fz + 1.0F) * (fz + 1.0F);
if (m[i] != 0.0F) {
- m[i] = 0.5F / SQRTF(m[i]);
+ m[i] = 0.5F * _mesa_inv_sqrtf(m[i]);
}
}
}