* result.z = result.x * APPX(result.y)
* We do what the ARB extension says.
*/
- q[2] = pow(2.0, t[0]);
+ q[2] = (GLfloat) pow(2.0, t[0]);
}
q[1] = t[0] - floor_t0;
q[3] = 1.0F;
return (GLint) paramList->ParameterValues[i][0];
}
else {
+ GLuint i;
const GLint size = 1; /* a sampler is basically a texture unit number */
GLfloat value;
GLint numSamplers = 0;
_mesa_printf(".xyzw\n");
}
else {
- char *s = _mesa_swizzle_string(swizzle, 0, 0);
+ const char *s = _mesa_swizzle_string(swizzle, 0, 0);
_mesa_printf("%s\n", s);
}
}
value[1] = ctx->Fog.Start;
value[2] = ctx->Fog.End;
value[3] = (ctx->Fog.End == ctx->Fog.Start)
- ? 1.0 : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
+ ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
return;
case STATE_CLIPPLANE:
{
= ctx->Texture.Unit[unit]._Current;
if (texObj) {
struct gl_texture_image *texImage = texObj->Image[0][0];
- ASSIGN_4V(value, 1.0 / texImage->Width,
+ ASSIGN_4V(value, (GLfloat) (1.0 / texImage->Width),
(GLfloat)(1.0 / texImage->Height),
- 0.0, 1.0);
+ 0.0f, 1.0f);
}
}
return;
* exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
*/
value[0] = (ctx->Fog.End == ctx->Fog.Start)
- ? 1.0 : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
+ ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
value[1] = ctx->Fog.End * -value[0];
value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
= _mesa_lookup_shader_program(ctx, program);
if (shProg) {
if (shProg->Uniforms &&
- location >= 0 && location < shProg->Uniforms->NumUniforms) {
+ location >= 0 && location < (GLint) shProg->Uniforms->NumUniforms) {
GLint progPos;
GLuint i;
const struct gl_program *prog = NULL;
/* ordinary uniform variable */
GLsizei k, i;
- if (count * elems > program->Parameters->Parameters[location].Size) {
+ if (count * elems > (GLint) program->Parameters->Parameters[location].Size) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glUniform(count too large)");
return;
}
if (location == -1)
return; /* The standard specifies this as a no-op */
- if (location < 0 || location >= shProg->Uniforms->NumUniforms) {
+ if (location < 0 || location >= (GLint) shProg->Uniforms->NumUniforms) {
_mesa_error(ctx, GL_INVALID_VALUE, "glUniformMatrix(location)");
return;
}
index = (GLint) oper->children[1].literal[0];
if (oper->children[1].type != SLANG_OPER_LITERAL_INT ||
- index >= max) {
+ index >= (GLint) max) {
slang_info_log_error(A->log, "Invalid array index for vector type");
return NULL;
}
void
slang_print_tree(const slang_operation *op, int indent)
{
- int i;
+ GLuint i;
switch (op->type) {
case SLANG_OPER_BLOCK_NEW_SCOPE:
spaces(indent);
printf("{{ // new scope locals=%p: ", (void*)op->locals);
- {
- int i;
- for (i = 0; i < op->locals->num_variables; i++) {
- printf("%s ", (char *) op->locals->variables[i]->a_name);
- }
- printf("\n");
+ for (i = 0; i < op->locals->num_variables; i++) {
+ printf("%s ", (char *) op->locals->variables[i]->a_name);
}
+ printf("\n");
print_generic(op, NULL, indent+3);
spaces(indent);
printf("}}\n");
void
slang_print_function(const slang_function *f, GLboolean body)
{
- int i;
+ GLuint i;
#if 0
if (_mesa_strcmp((char *) f->header.a_name, "main") != 0)
for (i = 0; info[i].Name; i++) {
if (strcmp(info[i].Name, name) == 0) {
/* found */
- GLint value = -1.0;
+ GLint value = -1;
_mesa_GetIntegerv(info[i].Token, &value);
ASSERT(value >= 0); /* sanity check that glGetFloatv worked */
return value / info[i].Divisor;
oper->literal[0] =
oper->literal[1] =
oper->literal[2] =
- oper->literal[3] = value;
+ oper->literal[3] = (GLfloat) value;
oper->type = SLANG_OPER_LITERAL_INT;
return;
}
&origArg);
callOper->children[i + j].children[1].type
= SLANG_OPER_LITERAL_INT;
- callOper->children[i + j].children[1].literal[0] = j;
+ callOper->children[i + j].children[1].literal[0] = (GLfloat) j;
}
}
}
}
- if (callOper->num_children < numParams) {
+ if (callOper->num_children < (GLuint) numParams) {
/* still not enough args for all params */
return GL_FALSE;
}
- else if (callOper->num_children > numParams) {
+ else if (callOper->num_children > (GLuint) numParams) {
/* now too many arguments */
/* XXX this isn't always an error, see spec */
return GL_FALSE;
/* just verify that any remaining allocations in this scope
* were for temps
*/
- for (i = 0; i < vt->MaxRegisters * 4; i++) {
+ for (i = 0; i < (int) vt->MaxRegisters * 4; i++) {
if (t->Temps[i] != FREE && t->Parent->Temps[i] == FREE) {
if (dbg) printf(" Free reg %d\n", i/4);
assert(t->Temps[i] == TEMP);
for (i = 0; i <= vt->MaxRegisters * 4 - size; i += step) {
GLuint found = 0;
- for (j = 0; j < size; j++) {
+ for (j = 0; j < (GLuint) size; j++) {
if (i + j < vt->MaxRegisters * 4 && t->Temps[i + j] == FREE) {
found++;
}
/* found block of size free regs */
if (size > 1)
assert(i % 4 == 0);
- for (j = 0; j < size; j++)
+ for (j = 0; j < (GLuint) size; j++)
t->Temps[i + j] = isTemp ? TEMP : VAR;
assert(i < MAX_PROGRAM_TEMPS * 4);
t->ValSize[i] = size;
else {
/*assert(store->Swizzle == SWIZZLE_NOOP);*/
assert(t->ValSize[r*4] == store->Size);
- for (i = 0; i < store->Size; i++) {
+ for (i = 0; i < (GLuint) store->Size; i++) {
assert(t->Temps[r * 4 + i] == TEMP);
t->Temps[r * 4 + i] = FREE;
}
struct table *t = vt->Top;
GLuint comp;
assert(store->Index >= 0);
- assert(store->Index < vt->MaxRegisters);
+ assert(store->Index < (int) vt->MaxRegisters);
if (store->Swizzle == SWIZZLE_NOOP)
comp = 0;
else