* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
+#include "milieu.h"
#include "softfloat.h"
/*
* 'Equal' wrapper. This returns 0 if the numbers are equal, or (1 | -1)
* otherwise. So we need to invert the output.
*/
-int __eqsf2(float32 a, float32 b)
+flag __eqsf2(float32 a, float32 b);
+flag __eqsf2(float32 a, float32 b)
{
return !float32_eq(a, b);
}
* to use an 'equal' call and invert the result. The result is already
* inverted though! Confusing?!
*/
-int __nesf2(float32 a, float32 b)
+flag __nesf2(float32 a, float32 b);
+flag __nesf2(float32 a, float32 b)
{
return !float32_eq(a, b);
}
* make up our mind. This means that we can call 'less than or equal' and
* invert the result.
*/
-int __gtsf2(float32 a, float32 b)
+flag __gtsf2(float32 a, float32 b);
+flag __gtsf2(float32 a, float32 b)
{
return !float32_le(a, b);
}
* 'Greater Than or Equal' wrapper. We emulate this by inverting the result
* of a 'less than' call.
*/
-int __gesf2(float32 a, float32 b)
+flag __gesf2(float32 a, float32 b);
+flag __gesf2(float32 a, float32 b)
{
return !float32_lt(a, b);
}
/*
* 'Less Than' wrapper.
*/
-int __ltsf2(float32 a, float32 b)
+flag __ltsf2(float32 a, float32 b);
+flag __ltsf2(float32 a, float32 b)
{
return float32_lt(a, b);
}
/*
* 'Less Than or Equal' wrapper. A 0 must turn into a 1, and a 1 into a 0.
*/
-int __lesf2(float32 a, float32 b)
+flag __lesf2(float32 a, float32 b);
+flag __lesf2(float32 a, float32 b)
{
return !float32_le(a, b);
}
* position in the registers of arguments, the double precision version can
* go here too ;-)
*/
+float32 __negsf2(float32 x);
float32 __negsf2(float32 x)
{
return x ^ 0x80000000;
/*
* 32-bit operations.
*/
+float32 __addsf3(float32 a, float32 b);
float32 __addsf3(float32 a, float32 b)
{
return float32_add(a, b);
}
+float32 __subsf3(float32 a, float32 b);
float32 __subsf3(float32 a, float32 b)
{
return float32_sub(a, b);
}
+float32 __mulsf3(float32 a, float32 b);
float32 __mulsf3(float32 a, float32 b)
{
return float32_mul(a, b);
}
+float32 __divsf3(float32 a, float32 b);
float32 __divsf3(float32 a, float32 b)
{
return float32_div(a, b);
}
+float32 __floatsisf(int x);
float32 __floatsisf(int x)
{
return int32_to_float32(x);
}
+int __fixsfsi(float32 x);
int __fixsfsi(float32 x)
{
return float32_to_int32_round_to_zero(x);
}
+unsigned int __fixunssfsi(float32 x);
unsigned int __fixunssfsi(float32 x)
{
return float32_to_int32_round_to_zero(x); // XXX
}
-int __unordsf2(float32 a, float32 b)
+flag __unordsf2(float32 a, float32 b);
+flag __unordsf2(float32 a, float32 b)
{
/*
* The comparison is unordered if either input is a NaN.
float32 float32_div( float32, float32 );
float32 float32_rem( float32, float32 );
float32 float32_sqrt( float32 );
-int float32_eq( float32, float32 );
-int float32_le( float32, float32 );
-int float32_lt( float32, float32 );
-int float32_eq_signaling( float32, float32 );
-int float32_le_quiet( float32, float32 );
-int float32_lt_quiet( float32, float32 );
-int float32_is_signaling_nan( float32 );
+flag float32_eq( float32, float32 );
+flag float32_le( float32, float32 );
+flag float32_lt( float32, float32 );
+flag float32_eq_signaling( float32, float32 );
+flag float32_le_quiet( float32, float32 );
+flag float32_lt_quiet( float32, float32 );
+flag float32_is_nan( float32 a );
+flag float32_is_signaling_nan( float32 );