+2017-01-10 Tom Tromey <tom@tromey.com>
+
+ * utils.h (make_cleanup_htab_delete): Don't declare.
+ * utils.c (do_htab_delete_cleanup, make_cleanup_htab_delete):
+ Remove.
+ * linespec.c (decode_compound_collector): Add constructor,
+ destructor.
+ (lookup_prefix_sym): Remove cleanup.
+ (symtab_collector): Add constructor, destructor.
+ (collect_symtabs_from_filename): Remove cleanup.
+ * disasm.c (do_mixed_source_and_assembly): Use htab_up.
+ * compile/compile-c-symbols.c (generate_c_for_variable_locations):
+ Use htab_up.
+ * gnu-v3-abi.c (gnuv3_print_vtable): Use htab_up.
+ * dwarf2read.c (dw2_expand_symtabs_matching)
+ (dw2_map_symbol_filenames, dwarf_decode_macros)
+ (write_psymtabs_to_index): Use htab_up.
+ * dwarf2loc.c (func_verify_no_selftailcall)
+ (call_site_find_chain_1, func_verify_no_selftailcall)
+ (chain_candidate, call_site_find_chain_1): Use std::unordered_set,
+ std::vector, gdb::unique_xmalloc_ptr.
+ (call_sitep): Remove typedef.
+ (dwarf2_locexpr_baton_eval): Remove unused variable.
+
2017-01-10 Tom Tromey <tom@tromey.com>
* python/python-internal.h (make_cleanup_py_decref)
const struct block *block,
CORE_ADDR pc)
{
- struct cleanup *cleanup, *outer;
- htab_t symhash;
+ struct cleanup *outer;
const struct block *static_block = block_static_block (block);
unsigned char *registers_used;
/* Ensure that a given name is only entered once. This reflects the
reality of shadowing. */
- symhash = htab_create_alloc (1, hash_symname, eq_symname, NULL,
- xcalloc, xfree);
- cleanup = make_cleanup_htab_delete (symhash);
+ htab_up symhash (htab_create_alloc (1, hash_symname, eq_symname, NULL,
+ xcalloc, xfree));
while (1)
{
sym != NULL;
sym = block_iterator_next (&iter))
{
- if (!symbol_seen (symhash, sym))
+ if (!symbol_seen (symhash.get (), sym))
generate_c_for_for_one_variable (compiler, stream, gdbarch,
registers_used, pc, sym);
}
block = BLOCK_SUPERBLOCK (block);
}
- do_cleanups (cleanup);
discard_cleanups (outer);
return registers_used;
}
int i, nlines;
int num_displayed = 0;
print_source_lines_flags psl_flags = 0;
- struct cleanup *cleanups;
struct cleanup *ui_out_chain;
struct cleanup *ui_out_tuple_chain;
struct cleanup *ui_out_list_chain;
CORE_ADDR pc;
struct symtab *last_symtab;
int last_line;
- htab_t dis_line_table;
gdb_assert (main_symtab != NULL && SYMTAB_LINETABLE (main_symtab) != NULL);
but if that text is for code that will be disassembled later, then
we'll want to defer printing it until later with its associated code. */
- dis_line_table = allocate_dis_line_table ();
- cleanups = make_cleanup_htab_delete (dis_line_table);
+ htab_up dis_line_table (allocate_dis_line_table ());
pc = low;
pc += length;
if (sal.symtab != NULL)
- add_dis_line_entry (dis_line_table, sal.symtab, sal.line);
+ add_dis_line_entry (dis_line_table.get (), sal.symtab, sal.line);
}
/* Second pass: print the disassembly.
which is where we put file name and source line contents output.
Cleanup usage:
- cleanups:
- For things created at the beginning of this function and need to be
- kept until the end of this function.
ui_out_chain
Handles the outer "asm_insns" list.
ui_out_tuple_chain
not associated with code that we'll print later. */
for (l = sal.line - 1; l > last_line; --l)
{
- if (line_has_code_p (dis_line_table, sal.symtab, l))
+ if (line_has_code_p (dis_line_table.get (),
+ sal.symtab, l))
break;
}
if (l < sal.line - 1)
}
do_cleanups (ui_out_chain);
- do_cleanups (cleanups);
}
static void
#include "selftest.h"
#include <algorithm>
#include <vector>
+#include <unordered_set>
extern int dwarf_always_disassemble;
static void
func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
{
- struct obstack addr_obstack;
- struct cleanup *old_chain;
CORE_ADDR addr;
- /* Track here CORE_ADDRs which were already visited. */
- htab_t addr_hash;
-
/* The verification is completely unordered. Track here function addresses
which still need to be iterated. */
- VEC (CORE_ADDR) *todo = NULL;
+ std::vector<CORE_ADDR> todo;
- obstack_init (&addr_obstack);
- old_chain = make_cleanup_obstack_free (&addr_obstack);
- addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
- &addr_obstack, hashtab_obstack_allocate,
- NULL);
- make_cleanup_htab_delete (addr_hash);
-
- make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
+ /* Track here CORE_ADDRs which were already visited. */
+ std::unordered_set<CORE_ADDR> addr_hash;
- VEC_safe_push (CORE_ADDR, todo, verify_addr);
- while (!VEC_empty (CORE_ADDR, todo))
+ todo.push_back (verify_addr);
+ while (!todo.empty ())
{
struct symbol *func_sym;
struct call_site *call_site;
- addr = VEC_pop (CORE_ADDR, todo);
+ addr = todo.back ();
+ todo.pop_back ();
func_sym = func_addr_to_tail_call_list (gdbarch, addr);
call_site; call_site = call_site->tail_call_next)
{
CORE_ADDR target_addr;
- void **slot;
/* CALLER_FRAME with registers is not available for tail-call jumped
frames. */
paddress (gdbarch, verify_addr));
}
- slot = htab_find_slot (addr_hash, &target_addr, INSERT);
- if (*slot == NULL)
- {
- *slot = obstack_copy (&addr_obstack, &target_addr,
- sizeof (target_addr));
- VEC_safe_push (CORE_ADDR, todo, target_addr);
- }
+ if (addr_hash.insert (target_addr).second)
+ todo.push_back (target_addr);
}
}
-
- do_cleanups (old_chain);
}
/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
}
-/* vec.h needs single word type name, typedef it. */
-typedef struct call_site *call_sitep;
-
-/* Define VEC (call_sitep) functions. */
-DEF_VEC_P (call_sitep);
-
/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
only top callers and bottom callees which are present in both. GDBARCH is
used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
responsible for xfree of any RESULTP data. */
static void
-chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
- VEC (call_sitep) *chain)
+chain_candidate (struct gdbarch *gdbarch,
+ gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
+ std::vector<struct call_site *> *chain)
{
- struct call_site_chain *result = *resultp;
- long length = VEC_length (call_sitep, chain);
+ long length = chain->size ();
int callers, callees, idx;
- if (result == NULL)
+ if (*resultp == NULL)
{
/* Create the initial chain containing all the passed PCs. */
- result = ((struct call_site_chain *)
- xmalloc (sizeof (*result)
- + sizeof (*result->call_site) * (length - 1)));
+ struct call_site_chain *result
+ = ((struct call_site_chain *)
+ xmalloc (sizeof (*result)
+ + sizeof (*result->call_site) * (length - 1)));
result->length = length;
result->callers = result->callees = length;
- if (!VEC_empty (call_sitep, chain))
- memcpy (result->call_site, VEC_address (call_sitep, chain),
+ if (!chain->empty ())
+ memcpy (result->call_site, chain->data (),
sizeof (*result->call_site) * length);
- *resultp = result;
+ resultp->reset (result);
if (entry_values_debug)
{
{
fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
for (idx = 0; idx < length; idx++)
- tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
+ tailcall_dump (gdbarch, chain->at (idx));
fputc_unfiltered ('\n', gdb_stdlog);
}
/* Intersect callers. */
- callers = std::min ((long) result->callers, length);
+ callers = std::min ((long) (*resultp)->callers, length);
for (idx = 0; idx < callers; idx++)
- if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
+ if ((*resultp)->call_site[idx] != chain->at (idx))
{
- result->callers = idx;
+ (*resultp)->callers = idx;
break;
}
/* Intersect callees. */
- callees = std::min ((long) result->callees, length);
+ callees = std::min ((long) (*resultp)->callees, length);
for (idx = 0; idx < callees; idx++)
- if (result->call_site[result->length - 1 - idx]
- != VEC_index (call_sitep, chain, length - 1 - idx))
+ if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
+ != chain->at (length - 1 - idx))
{
- result->callees = idx;
+ (*resultp)->callees = idx;
break;
}
if (entry_values_debug)
{
fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
- for (idx = 0; idx < result->callers; idx++)
- tailcall_dump (gdbarch, result->call_site[idx]);
+ for (idx = 0; idx < (*resultp)->callers; idx++)
+ tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
fputs_unfiltered (" |", gdb_stdlog);
- for (idx = 0; idx < result->callees; idx++)
- tailcall_dump (gdbarch, result->call_site[result->length
- - result->callees + idx]);
+ for (idx = 0; idx < (*resultp)->callees; idx++)
+ tailcall_dump (gdbarch,
+ (*resultp)->call_site[(*resultp)->length
+ - (*resultp)->callees + idx]);
fputc_unfiltered ('\n', gdb_stdlog);
}
- if (result->callers == 0 && result->callees == 0)
+ if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
{
/* There are no common callers or callees. It could be also a direct
call (which has length 0) with ambiguous possibility of an indirect
call - CALLERS == CALLEES == 0 is valid during the first allocation
but any subsequence processing of such entry means ambiguity. */
- xfree (result);
- *resultp = NULL;
+ resultp->reset (NULL);
return;
}
/* See call_site_find_chain_1 why there is no way to reach the bottom callee
PC again. In such case there must be two different code paths to reach
it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
- gdb_assert (result->callers + result->callees <= result->length);
+ gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
}
/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
CORE_ADDR callee_pc)
{
CORE_ADDR save_callee_pc = callee_pc;
- struct obstack addr_obstack;
- struct cleanup *back_to_retval, *back_to_workdata;
- struct call_site_chain *retval = NULL;
+ gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
struct call_site *call_site;
- /* Mark CALL_SITEs so we do not visit the same ones twice. */
- htab_t addr_hash;
-
/* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
call_site nor any possible call_site at CALLEE_PC's function is there.
Any CALL_SITE in CHAIN will be iterated to its siblings - via
TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
- VEC (call_sitep) *chain = NULL;
+ std::vector<struct call_site *> chain;
/* We are not interested in the specific PC inside the callee function. */
callee_pc = get_pc_function_start (callee_pc);
throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
paddress (gdbarch, save_callee_pc));
- back_to_retval = make_cleanup (free_current_contents, &retval);
-
- obstack_init (&addr_obstack);
- back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
- addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
- &addr_obstack, hashtab_obstack_allocate,
- NULL);
- make_cleanup_htab_delete (addr_hash);
-
- make_cleanup (VEC_cleanup (call_sitep), &chain);
+ /* Mark CALL_SITEs so we do not visit the same ones twice. */
+ std::unordered_set<CORE_ADDR> addr_hash;
/* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
at the target's function. All the possible tail call sites in the
if (target_func_addr == callee_pc)
{
- chain_candidate (gdbarch, &retval, chain);
+ chain_candidate (gdbarch, &retval, &chain);
if (retval == NULL)
break;
if (target_call_site)
{
- void **slot;
-
- slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
- if (*slot == NULL)
+ if (addr_hash.insert (target_call_site->pc).second)
{
/* Successfully entered TARGET_CALL_SITE. */
- *slot = &target_call_site->pc;
- VEC_safe_push (call_sitep, chain, target_call_site);
+ chain.push_back (target_call_site);
break;
}
}
sibling etc. */
target_call_site = NULL;
- while (!VEC_empty (call_sitep, chain))
+ while (!chain.empty ())
{
- call_site = VEC_pop (call_sitep, chain);
+ call_site = chain.back ();
+ chain.pop_back ();
- gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
- NO_INSERT) != NULL);
- htab_remove_elt (addr_hash, &call_site->pc);
+ size_t removed = addr_hash.erase (call_site->pc);
+ gdb_assert (removed == 1);
target_call_site = call_site->tail_call_next;
if (target_call_site)
}
while (target_call_site);
- if (VEC_empty (call_sitep, chain))
+ if (chain.empty ())
call_site = NULL;
else
- call_site = VEC_last (call_sitep, chain);
+ call_site = chain.back ();
}
if (retval == NULL)
paddress (gdbarch, callee_pc));
}
- do_cleanups (back_to_workdata);
- discard_cleanups (back_to_retval);
- return retval;
+ return retval.release ();
}
/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
CORE_ADDR *valp)
{
struct objfile *objfile;
- struct cleanup *cleanup;
if (dlbaton == NULL || dlbaton->size == 0)
return 0;
if (file_matcher != NULL)
{
- struct cleanup *cleanup;
- htab_t visited_found, visited_not_found;
-
- visited_found = htab_create_alloc (10,
- htab_hash_pointer, htab_eq_pointer,
- NULL, xcalloc, xfree);
- cleanup = make_cleanup_htab_delete (visited_found);
- visited_not_found = htab_create_alloc (10,
- htab_hash_pointer, htab_eq_pointer,
- NULL, xcalloc, xfree);
- make_cleanup_htab_delete (visited_not_found);
+ htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
+ htab_eq_pointer,
+ NULL, xcalloc, xfree));
+ htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
+ htab_eq_pointer,
+ NULL, xcalloc, xfree));
/* The rule is CUs specify all the files, including those used by
any TU, so there's no need to scan TUs here. */
if (file_data == NULL)
continue;
- if (htab_find (visited_not_found, file_data) != NULL)
+ if (htab_find (visited_not_found.get (), file_data) != NULL)
continue;
- else if (htab_find (visited_found, file_data) != NULL)
+ else if (htab_find (visited_found.get (), file_data) != NULL)
{
per_cu->v.quick->mark = 1;
continue;
}
slot = htab_find_slot (per_cu->v.quick->mark
- ? visited_found
- : visited_not_found,
+ ? visited_found.get ()
+ : visited_not_found.get (),
file_data, INSERT);
*slot = file_data;
}
-
- do_cleanups (cleanup);
}
for (iter = 0; iter < index->symbol_table_slots; ++iter)
void *data, int need_fullname)
{
int i;
- struct cleanup *cleanup;
- htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
- NULL, xcalloc, xfree);
+ htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
+ NULL, xcalloc, xfree));
- cleanup = make_cleanup_htab_delete (visited);
dw2_setup (objfile);
/* The rule is CUs specify all the files, including those used by
if (per_cu->v.quick->compunit_symtab)
{
- void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
+ void **slot = htab_find_slot (visited.get (),
+ per_cu->v.quick->file_names,
INSERT);
*slot = per_cu->v.quick->file_names;
if (file_data == NULL)
continue;
- slot = htab_find_slot (visited, file_data, INSERT);
+ slot = htab_find_slot (visited.get (), file_data, INSERT);
if (*slot)
{
/* Already visited. */
(*fun) (file_data->file_names[j], this_real_name, data);
}
}
-
- do_cleanups (cleanup);
}
static int
unsigned int offset_size = cu->header.offset_size;
const gdb_byte *opcode_definitions[256];
struct cleanup *cleanup;
- htab_t include_hash;
void **slot;
struct dwarf2_section_info *section;
const char *section_name;
command-line macro definitions/undefinitions. This flag is unset when we
reach the first DW_MACINFO_start_file entry. */
- include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
- NULL, xcalloc, xfree);
- cleanup = make_cleanup_htab_delete (include_hash);
+ htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
+ htab_eq_pointer,
+ NULL, xcalloc, xfree));
mac_ptr = section->buffer + offset;
- slot = htab_find_slot (include_hash, mac_ptr, INSERT);
+ slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
*slot = (void *) mac_ptr;
dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
current_file, lh, section,
- section_is_gnu, 0, offset_size, include_hash);
- do_cleanups (cleanup);
+ section_is_gnu, 0, offset_size,
+ include_hash.get ());
}
/* Check if the attribute's form is a DW_FORM_block*
struct mapped_symtab *symtab;
offset_type val, size_of_contents, total_len;
struct stat st;
- htab_t psyms_seen;
- htab_t cu_index_htab;
struct psymtab_cu_index_map *psymtab_cu_index_map;
if (dwarf2_per_objfile->using_index)
obstack_init (&types_cu_list);
make_cleanup_obstack_free (&types_cu_list);
- psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
- NULL, xcalloc, xfree);
- make_cleanup_htab_delete (psyms_seen);
+ htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
+ htab_eq_pointer,
+ NULL, xcalloc, xfree));
/* While we're scanning CU's create a table that maps a psymtab pointer
(which is what addrmap records) to its index (which is what is recorded
in the index file). This will later be needed to write the address
table. */
- cu_index_htab = htab_create_alloc (100,
- hash_psymtab_cu_index,
- eq_psymtab_cu_index,
- NULL, xcalloc, xfree);
- make_cleanup_htab_delete (cu_index_htab);
+ htab_up cu_index_htab (htab_create_alloc (100,
+ hash_psymtab_cu_index,
+ eq_psymtab_cu_index,
+ NULL, xcalloc, xfree));
psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
dwarf2_per_objfile->n_comp_units);
make_cleanup (xfree, psymtab_cu_index_map);
continue;
if (psymtab->user == NULL)
- recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
+ recursively_write_psymbols (objfile, psymtab, symtab,
+ psyms_seen.get (), i);
map = &psymtab_cu_index_map[i];
map->psymtab = psymtab;
map->cu_index = i;
- slot = htab_find_slot (cu_index_htab, map, INSERT);
+ slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
gdb_assert (slot != NULL);
gdb_assert (*slot == NULL);
*slot = map;
}
/* Dump the address map. */
- write_address_map (objfile, &addr_obstack, cu_index_htab);
+ write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
/* Write out the .debug_type entries, if any. */
if (dwarf2_per_objfile->signatured_types)
sig_data.objfile = objfile;
sig_data.symtab = symtab;
sig_data.types_list = &types_cu_list;
- sig_data.psyms_seen = psyms_seen;
+ sig_data.psyms_seen = psyms_seen.get ();
sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
write_one_signatured_type, &sig_data);
struct type *type;
struct value *vtable;
struct value_print_options opts;
- htab_t offset_hash;
struct cleanup *cleanup;
VEC (value_and_voffset_p) *result_vec = NULL;
struct value_and_voffset *iter;
return;
}
- offset_hash = htab_create_alloc (1, hash_value_and_voffset,
- eq_value_and_voffset,
- xfree, xcalloc, xfree);
- cleanup = make_cleanup_htab_delete (offset_hash);
- make_cleanup (VEC_cleanup (value_and_voffset_p), &result_vec);
+ htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
+ eq_value_and_voffset,
+ xfree, xcalloc, xfree));
+ cleanup = make_cleanup (VEC_cleanup (value_and_voffset_p), &result_vec);
- compute_vtable_size (offset_hash, &result_vec, value);
+ compute_vtable_size (offset_hash.get (), &result_vec, value);
qsort (VEC_address (value_and_voffset_p, result_vec),
VEC_length (value_and_voffset_p, result_vec),
/* A hash table of all symbols we found. We use this to avoid
adding any symbol more than once. */
htab_t unique_syms;
+
+ decode_compound_collector ()
+ : symbols (NULL),
+ unique_syms (NULL)
+ {
+ }
+
+ ~decode_compound_collector ()
+ {
+ if (unique_syms != NULL)
+ htab_delete (unique_syms);
+ }
};
/* A callback for iterate_over_symbols that is used by
collector.unique_syms = htab_create_alloc (1, htab_hash_pointer,
htab_eq_pointer, NULL,
xcalloc, xfree);
- cleanup = make_cleanup_htab_delete (collector.unique_syms);
for (ix = 0; VEC_iterate (symtab_ptr, file_symtabs, ix, elt); ++ix)
{
}
}
- do_cleanups (cleanup);
discard_cleanups (outer);
return collector.symbols;
}
/* This is used to ensure the symtabs are unique. */
htab_t symtab_table;
+
+ symtab_collector ()
+ : symtabs (NULL),
+ symtab_table (NULL)
+ {
+ }
+
+ ~symtab_collector ()
+ {
+ if (symtab_table != NULL)
+ htab_delete (symtab_table);
+ }
};
/* Callback for iterate_over_symtabs. */
collector.symtabs = NULL;
collector.symtab_table = htab_create (1, htab_hash_pointer, htab_eq_pointer,
NULL);
- cleanups = make_cleanup_htab_delete (collector.symtab_table);
/* Find that file's data. */
if (search_pspace == NULL)
iterate_over_symtabs (file, add_symtabs_to_list, &collector);
}
- do_cleanups (cleanups);
return collector.symtabs;
}
return make_cleanup (do_unpush_target, ops);
}
-/* Helper for make_cleanup_htab_delete compile time checking the types. */
-
-static void
-do_htab_delete_cleanup (void *htab_voidp)
-{
- htab_t htab = (htab_t) htab_voidp;
-
- htab_delete (htab);
-}
-
-/* Return a new cleanup that deletes HTAB. */
-
-struct cleanup *
-make_cleanup_htab_delete (htab_t htab)
-{
- return make_cleanup (do_htab_delete_cleanup, htab);
-}
-
/* Helper for make_cleanup_value_free_to_mark. */
static void
/* A unique_ptr wrapper for htab_t. */
typedef std::unique_ptr<htab, htab_deleter> htab_up;
-extern struct cleanup *make_cleanup_htab_delete (htab_t htab);
-
struct parser_state;
extern struct cleanup *make_cleanup_clear_parser_state
(struct parser_state **p);