*/
-machine(L1Cache, "MSI Directory L1 Cache CMP") : LATENCY_L1_REQUEST_LATENCY LATENCY_L1_RESPONSE_LATENCY LATENCY_TO_L2_LATENCY {
+machine(L1Cache, "MSI Directory L1 Cache CMP")
+ : int l1_request_latency,
+ int l1_response_latency,
+ int to_l2_latency,
+ int l2_select_low_bit,
+ int l2_select_num_bits
+{
+
// NODE L1 CACHE
// From this node's L1 cache TO the network
external_type(CacheMemory) {
bool cacheAvail(Address);
Address cacheProbe(Address);
- void allocate(Address);
+ void allocate(Address, Entry);
void deallocate(Address);
Entry lookup(Address);
void changePermission(Address, AccessPermission);
// CacheMemory L1IcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1I"', abstract_chip_ptr="true";
// CacheMemory L1DcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1D"', abstract_chip_ptr="true";
- CacheMemory L1IcacheMemory, factory='RubySystem::getCache(m_cfg["L1Icache"])';
+ CacheMemory L1IcacheMemory, factory='RubySystem::getCache(m_cfg["icache"])';
- CacheMemory L1DcacheMemory, factory='RubySystem::getCache(m_cfg["L1Dcache"])';
+ CacheMemory L1DcacheMemory, factory='RubySystem::getCache(m_cfg["dcache"])';
// MessageBuffer mandatoryQueue, ordered="false", rank="100", abstract_chip_ptr="true";
}
State getState(Address addr) {
- if((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == true){
- DEBUG_EXPR(id);
- DEBUG_EXPR(addr);
- }
+// if((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == true){
+// DEBUG_EXPR(id);
+// DEBUG_EXPR(addr);
+// }
assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
if(L1_TBEs.isPresent(addr)) {
// ACTIONS
action(a_issueGETS, "a", desc="Issue GETS") {
peek(mandatoryQueue_in, CacheMsg) {
- enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency=l1_request_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.Requestor := machineID;
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
DEBUG_EXPR(address);
- DEBUG_EXPR(out_msg.Destination);
+ //DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
action(ai_issueGETINSTR, "ai", desc="Issue GETINSTR") {
peek(mandatoryQueue_in, CacheMsg) {
- enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency=l1_request_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GET_INSTR;
out_msg.Requestor := machineID;
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
DEBUG_EXPR(address);
- DEBUG_EXPR(out_msg.Destination);
+ //DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
action(b_issueGETX, "b", desc="Issue GETX") {
peek(mandatoryQueue_in, CacheMsg) {
- enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency=l1_request_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETX;
out_msg.Requestor := machineID;
- DEBUG_EXPR(machineID);
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ //DEBUG_EXPR(machineID);
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
DEBUG_EXPR(address);
- DEBUG_EXPR(out_msg.Destination);
+ //DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
action(c_issueUPGRADE, "c", desc="Issue GETX") {
peek(mandatoryQueue_in, CacheMsg) {
- enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency= l1_request_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:UPGRADE;
out_msg.Requestor := machineID;
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
DEBUG_EXPR(address);
- DEBUG_EXPR(out_msg.Destination);
+ //DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
action(d_sendDataToRequestor, "d", desc="send data to requestor") {
peek(requestIntraChipL1Network_in, RequestMsg) {
- enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
}
action(d2_sendDataToL2, "d2", desc="send data to the L2 cache because of M downgrade") {
- enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
out_msg.Dirty := getL1CacheEntry(address).Dirty;
out_msg.Sender := machineID;
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(dt_sendDataToRequestor_fromTBE, "dt", desc="send data to requestor") {
peek(requestIntraChipL1Network_in, RequestMsg) {
- enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := L1_TBEs[address].DataBlk;
}
action(d2t_sendDataToL2_fromTBE, "d2t", desc="send data to the L2 cache") {
- enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := L1_TBEs[address].DataBlk;
out_msg.Dirty := L1_TBEs[address].Dirty;
out_msg.Sender := machineID;
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(e_sendAckToRequestor, "e", desc="send invalidate ack to requestor (could be L2 or L1)") {
peek(requestIntraChipL1Network_in, RequestMsg) {
- enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
}
action(f_sendDataToL2, "f", desc="send data to the L2 cache") {
- enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
out_msg.Dirty := getL1CacheEntry(address).Dirty;
out_msg.Sender := machineID;
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
out_msg.MessageSize := MessageSizeType:Writeback_Data;
}
}
action(ft_sendDataToL2_fromTBE, "ft", desc="send data to the L2 cache") {
- enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := L1_TBEs[address].DataBlk;
out_msg.Dirty := L1_TBEs[address].Dirty;
out_msg.Sender := machineID;
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
out_msg.MessageSize := MessageSizeType:Writeback_Data;
}
}
action(fi_sendInvAck, "fi", desc="send data to the L2 cache") {
peek(requestIntraChipL1Network_in, RequestMsg) {
- enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
action(g_issuePUTX, "g", desc="send data to the L2 cache") {
- enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_RESPONSE_LATENCY") {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency=l1_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:PUTX;
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
out_msg.Dirty := getL1CacheEntry(address).Dirty;
out_msg.Requestor:= machineID;
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
if (getL1CacheEntry(address).Dirty) {
out_msg.MessageSize := MessageSizeType:Writeback_Data;
} else {
}
action(j_sendUnblock, "j", desc="send unblock to the L2 cache") {
- enqueue(unblockNetwork_out, ResponseMsg, latency="TO_L2_LATENCY") {
+ enqueue(unblockNetwork_out, ResponseMsg, latency=to_l2_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:UNBLOCK;
out_msg.Sender := machineID;
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
out_msg.MessageSize := MessageSizeType:Response_Control;
+ DEBUG_EXPR(address);
+
}
}
action(jj_sendExclusiveUnblock, "\j", desc="send unblock to the L2 cache") {
- enqueue(unblockNetwork_out, ResponseMsg, latency="TO_L2_LATENCY") {
+ enqueue(unblockNetwork_out, ResponseMsg, latency=to_l2_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:EXCLUSIVE_UNBLOCK;
out_msg.Sender := machineID;
- out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
+ l2_select_low_bit, l2_select_num_bits));
out_msg.MessageSize := MessageSizeType:Response_Control;
+ DEBUG_EXPR(address);
+
}
}
action(h_load_hit, "h", desc="If not prefetch, notify sequencer the load completed.") {
- DEBUG_EXPR(getL1CacheEntry(address).DataBlk);
+ //DEBUG_EXPR(getL1CacheEntry(address).DataBlk);
sequencer.readCallback(address, getL1CacheEntry(address).DataBlk);
}
action(hh_store_hit, "\h", desc="If not prefetch, notify sequencer that store completed.") {
- DEBUG_EXPR(getL1CacheEntry(address).DataBlk);
+ //DEBUG_EXPR(getL1CacheEntry(address).DataBlk);
sequencer.writeCallback(address, getL1CacheEntry(address).DataBlk);
getL1CacheEntry(address).Dirty := true;
}
action(oo_allocateL1DCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B.") {
if (L1DcacheMemory.isTagPresent(address) == false) {
- L1DcacheMemory.allocate(address);
+ L1DcacheMemory.allocate(address, new Entry);
}
}
action(pp_allocateL1ICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B.") {
if (L1IcacheMemory.isTagPresent(address) == false) {
- L1IcacheMemory.allocate(address);
+ L1IcacheMemory.allocate(address, new Entry);
}
}
*
*/
-machine(L2Cache, "MOSI Directory L2 Cache CMP") {
+machine(L2Cache, "MESI Directory L2 Cache CMP")
+ : int l2_request_latency,
+ int l2_response_latency,
+ int to_l1_latency
+{
// L2 BANK QUEUES
// From local bank of L2 cache TO the network
MessageBuffer responseFromL2Cache, network="To", virtual_network="3", ordered="false"; // this L2 bank -> a local L1 || Memory
// FROM the network to this local bank of L2 cache
+ MessageBuffer unblockToL2Cache, network="From", virtual_network="4", ordered="false"; // a local L1 || Memory -> this L2 bank
MessageBuffer L1RequestToL2Cache, network="From", virtual_network="0", ordered="false"; // a local L1 -> this L2 bank
MessageBuffer responseToL2Cache, network="From", virtual_network="3", ordered="false"; // a local L1 || Memory -> this L2 bank
- MessageBuffer unblockToL2Cache, network="From", virtual_network="4", ordered="false"; // a local L1 || Memory -> this L2 bank
+// MessageBuffer unblockToL2Cache, network="From", virtual_network="4", ordered="false"; // a local L1 || Memory -> this L2 bank
// STATES
enumeration(State, desc="L2 Cache states", default="L2Cache_State_NP") {
MT_IIB, desc="Blocked for L1_GETS from MT, waiting for unblock and data";
MT_IB, desc="Blocked for L1_GETS from MT, got unblock, waiting for data";
MT_SB, desc="Blocked for L1_GETS from MT, got data, waiting for unblock";
-
+
}
// EVENTS
Unblock_Cancel, desc="Unblock from L1 requestor (FOR XACT MEMORY)";
Exclusive_Unblock, desc="Unblock from L1 requestor";
+ MEM_Inv, desc="Invalidation from directory";
+
}
// TYPES
external_type(CacheMemory) {
bool cacheAvail(Address);
Address cacheProbe(Address);
- void allocate(Address);
+ void allocate(Address, Entry);
void deallocate(Address);
Entry lookup(Address);
void changePermission(Address, AccessPermission);
bool isPresent(Address);
}
- TBETable L2_TBEs, template_hack="<L2Cache_TBE>", no_vector="true";
+ TBETable L2_TBEs, template_hack="<L2Cache_TBE>";
// CacheMemory L2cacheMemory, template_hack="<L2Cache_Entry>", constructor_hack='L2_CACHE_NUM_SETS_BITS,L2_CACHE_ASSOC,MachineType_L2Cache,int_to_string(i)';
- CacheMemory L2cacheMemory, factory='RubySystem::getCache(m_cfg["cache"])', no_vector="true";
+ CacheMemory L2cacheMemory, factory='RubySystem::getCache(m_cfg["cache"])';
// inclusive cache, returns L2 entries only
Entry getL2CacheEntry(Address addr), return_by_ref="yes" {
}
void addSharer(Address addr, MachineID requestor) {
- DEBUG_EXPR(machineID);
- DEBUG_EXPR(requestor);
- DEBUG_EXPR(addr);
- assert(map_L1CacheMachId_to_L2Cache(addr, requestor) == machineID);
+ //DEBUG_EXPR(machineID);
+ //DEBUG_EXPR(requestor);
+ //DEBUG_EXPR(addr);
L2cacheMemory[addr].Sharers.add(requestor);
}
out_port(responseIntraChipL2Network_out, ResponseMsg, responseFromL2Cache);
+ in_port(L1unblockNetwork_in, ResponseMsg, unblockToL2Cache) {
+ if(L1unblockNetwork_in.isReady()) {
+ peek(L1unblockNetwork_in, ResponseMsg) {
+ DEBUG_EXPR(in_msg.Address);
+ DEBUG_EXPR(getState(in_msg.Address));
+ DEBUG_EXPR(in_msg.Sender);
+ DEBUG_EXPR(in_msg.Type);
+ DEBUG_EXPR(in_msg.Destination);
+
+ assert(in_msg.Destination.isElement(machineID));
+ if (in_msg.Type == CoherenceResponseType:EXCLUSIVE_UNBLOCK) {
+ trigger(Event:Exclusive_Unblock, in_msg.Address);
+ } else if (in_msg.Type == CoherenceResponseType:UNBLOCK) {
+ trigger(Event:Unblock, in_msg.Address);
+ } else {
+ error("unknown unblock message");
+ }
+ }
+ }
+ }
+
+
+
// Response IntraChip L2 Network - response msg to this particular L2 bank
in_port(responseIntraChipL2Network_in, ResponseMsg, responseToL2Cache) {
if (responseIntraChipL2Network_in.isReady()) {
trigger(Event:Mem_Data, in_msg.Address); // L2 now has data and all off-chip acks
} else if(in_msg.Type == CoherenceResponseType:MEMORY_ACK) {
trigger(Event:Mem_Ack, in_msg.Address); // L2 now has data and all off-chip acks
+ } else if(in_msg.Type == CoherenceResponseType:INV) {
+ trigger(Event:MEM_Inv, in_msg.Address); // L2 now has data and all off-chip acks
} else {
error("unknown message type");
}
if(L1RequestIntraChipL2Network_in.isReady()) {
peek(L1RequestIntraChipL2Network_in, RequestMsg) {
DEBUG_EXPR(in_msg.Address);
- DEBUG_EXPR(id);
+ //DEBUG_EXPR(id);
DEBUG_EXPR(getState(in_msg.Address));
- DEBUG_EXPR(in_msg.Requestor);
+ //DEBUG_EXPR(in_msg.Requestor);
DEBUG_EXPR(in_msg.Type);
- DEBUG_EXPR(in_msg.Destination);
+ //DEBUG_EXPR(in_msg.Destination);
assert(machineIDToMachineType(in_msg.Requestor) == MachineType:L1Cache);
assert(in_msg.Destination.isElement(machineID));
if (L2cacheMemory.isTagPresent(in_msg.Address)) {
}
}
- in_port(L1unblockNetwork_in, ResponseMsg, unblockToL2Cache) {
- if(L1unblockNetwork_in.isReady()) {
- peek(L1unblockNetwork_in, ResponseMsg) {
- assert(in_msg.Destination.isElement(machineID));
- if (in_msg.Type == CoherenceResponseType:EXCLUSIVE_UNBLOCK) {
- trigger(Event:Exclusive_Unblock, in_msg.Address);
- } else if (in_msg.Type == CoherenceResponseType:UNBLOCK) {
- trigger(Event:Unblock, in_msg.Address);
- } else {
- error("unknown unblock message");
- }
- }
- }
- }
// ACTIONS
action(a_issueFetchToMemory, "a", desc="fetch data from memory") {
peek(L1RequestIntraChipL2Network_in, RequestMsg) {
- enqueue(DirRequestIntraChipL2Network_out, RequestMsg, latency="L2_REQUEST_LATENCY") {
+ enqueue(DirRequestIntraChipL2Network_out, RequestMsg, latency=l2_request_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.Requestor := machineID;
action(b_forwardRequestToExclusive, "b", desc="Forward request to the exclusive L1") {
peek(L1RequestIntraChipL2Network_in, RequestMsg) {
- enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="1") {
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency=to_l1_latency) {
out_msg.Address := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
}
action(c_exclusiveReplacement, "c", desc="Send data to memory") {
- enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:MEMORY_DATA;
out_msg.Sender := machineID;
}
}
+ action(c_exclusiveCleanReplacement, "cc", desc="Send ack to memory for clean replacement") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:ACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(map_Address_to_Directory(address));
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ }
+ }
+
+
action(ct_exclusiveReplacementFromTBE, "ct", desc="Send data to memory") {
- enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:MEMORY_DATA;
out_msg.Sender := machineID;
action(d_sendDataToRequestor, "d", desc="Send data from cache to reqeustor") {
peek(L1RequestIntraChipL2Network_in, RequestMsg) {
- enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
action(dd_sendExclusiveDataToRequestor, "dd", desc="Send data from cache to reqeustor") {
peek(L1RequestIntraChipL2Network_in, RequestMsg) {
- enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
action(ds_sendSharedDataToRequestor, "ds", desc="Send data from cache to reqeustor") {
peek(L1RequestIntraChipL2Network_in, RequestMsg) {
- enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
action(e_sendDataToGetSRequestors, "e", desc="Send data from cache to all GetS IDs") {
assert(L2_TBEs[address].L1_GetS_IDs.count() > 0);
- enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="1") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=to_l1_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
action(ex_sendExclusiveDataToGetSRequestors, "ex", desc="Send data from cache to all GetS IDs") {
assert(L2_TBEs[address].L1_GetS_IDs.count() == 1);
- enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="1") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=to_l1_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
action(ee_sendDataToGetXRequestor, "ee", desc="Send data from cache to GetX ID") {
- enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="1") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=to_l1_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(L2_TBEs[address].L1_GetX_ID);
- DEBUG_EXPR(out_msg.Destination);
+ //DEBUG_EXPR(out_msg.Destination);
out_msg.DataBlk := getL2CacheEntry(address).DataBlk;
out_msg.Dirty := getL2CacheEntry(address).Dirty;
DEBUG_EXPR(out_msg.Address);
- DEBUG_EXPR(out_msg.Destination);
- DEBUG_EXPR(out_msg.DataBlk);
+ //DEBUG_EXPR(out_msg.Destination);
+ //DEBUG_EXPR(out_msg.DataBlk);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(f_sendInvToSharers, "f", desc="invalidate sharers for L2 replacement") {
- enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="1") {
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency=to_l1_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := machineID;
action(fw_sendFwdInvToSharers, "fw", desc="invalidate sharers for request") {
peek(L1RequestIntraChipL2Network_in, RequestMsg) {
- enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="1") {
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency=to_l1_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := in_msg.Requestor;
action(fwm_sendFwdInvToSharersMinusRequestor, "fwm", desc="invalidate sharers for request, requestor is sharer") {
peek(L1RequestIntraChipL2Network_in, RequestMsg) {
- enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="1") {
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency=to_l1_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := in_msg.Requestor;
action(qq_allocateL2CacheBlock, "\q", desc="Set L2 cache tag equal to tag of block B.") {
if (L2cacheMemory.isTagPresent(address) == false) {
- L2cacheMemory.allocate(address);
+ L2cacheMemory.allocate(address, new Entry);
}
}
action(t_sendWBAck, "t", desc="Send writeback ACK") {
peek(L1RequestIntraChipL2Network_in, RequestMsg) {
- enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="1") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=to_l1_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:WB_ACK;
out_msg.Sender := machineID;
action(ts_sendInvAckToUpgrader, "ts", desc="Send ACK to upgrader") {
peek(L1RequestIntraChipL2Network_in, RequestMsg) {
- enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="1") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=to_l1_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
L1RequestIntraChipL2Network_in.recycle();
}
+ action(zn_recycleResponseNetwork, "zn", desc="recycle memory request") {
+ responseIntraChipL2Network_in.recycle();
+ }
+
+
//*****************************************************
// TRANSITIONS
//*****************************************************
zz_recycleL1RequestQueue;
}
+ transition({IM, IS, ISS, SS_MB, M_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, MEM_Inv) {
+ zn_recycleResponseNetwork;
+ }
+
+ transition({S_I, M_I, MT_I}, MEM_Inv) {
+ o_popIncomingResponseQueue;
+ }
+
+
transition({SS_MB, M_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, {L1_GETS, L1_GET_INSTR, L1_GETX, L1_UPGRADE}) {
zz_recycleL1RequestQueue;
}
rr_deallocateL2CacheBlock;
}
- transition(SS, L2_Replacement, S_I) {
+ transition(SS, {L2_Replacement, MEM_Inv}, S_I) {
i_allocateTBE;
f_sendInvToSharers;
rr_deallocateL2CacheBlock;
}
+
transition(M, L1_GETX, MT_MB) {
d_sendDataToRequestor;
uu_profileMiss;
jj_popL1RequestQueue;
}
- transition(M, L2_Replacement, M_I) {
+ transition(M, {L2_Replacement, MEM_Inv}, M_I) {
i_allocateTBE;
c_exclusiveReplacement;
rr_deallocateL2CacheBlock;
}
transition(M, L2_Replacement_clean, M_I) {
+ i_allocateTBE;
+ c_exclusiveCleanReplacement;
rr_deallocateL2CacheBlock;
}
jj_popL1RequestQueue;
}
- transition(MT, L2_Replacement, MT_I) {
+ transition(MT, {L2_Replacement, MEM_Inv}, MT_I) {
i_allocateTBE;
f_sendInvToSharers;
rr_deallocateL2CacheBlock;
o_popIncomingResponseQueue;
}
- transition(I_I, Ack_all, NP) {
- s_deallocateTBE;
+ transition(I_I, Ack_all, M_I) {
+ c_exclusiveCleanReplacement;
o_popIncomingResponseQueue;
}
o_popIncomingResponseQueue;
}
- transition(MCT_I, WB_Data_clean, NP) {
- s_deallocateTBE;
+ transition(MCT_I, {WB_Data_clean, Ack_all}, M_I) {
+ c_exclusiveCleanReplacement;
o_popIncomingResponseQueue;
}
o_popIncomingResponseQueue;
}
- // clean data that L1 exclusive never wrote
- transition(MCT_I, Ack_all, NP) {
- s_deallocateTBE;
- o_popIncomingResponseQueue;
- }
// drop this because L1 will send data again
// the reason we don't accept is that the request virtual network may be completely backed up
}
}
+
+
// Copied here by aep 12/14/07
-machine(Directory, "MESI_CMP_filter_directory protocol") : LATENCY_MEMORY_LATENCY LATENCY_TO_MEM_CTRL_LATENCY {
+machine(Directory, "MESI_CMP_filter_directory protocol")
+ : int to_mem_ctrl_latency,
+ int directory_latency
+{
MessageBuffer requestToDir, network="From", virtual_network="2", ordered="false";
MessageBuffer responseToDir, network="From", virtual_network="3", ordered="false";
MessageBuffer responseFromDir, network="To", virtual_network="3", ordered="false";
- MessageBuffer dmaRequestFromDir, network="To", virtual_network="4", ordered="true", no_vector="true";
- MessageBuffer dmaRequestToDir, network="From", virtual_network="5", ordered="true", no_vector="true";
+ MessageBuffer dmaRequestFromDir, network="To", virtual_network="6", ordered="true";
+ MessageBuffer dmaRequestToDir, network="From", virtual_network="7", ordered="true";
// STATES
// Base states
I, desc="Owner";
ID, desc="Intermediate state for DMA_READ when in I";
- ID_W, desc="Intermediate state for DMA_WRITE when in I";
+ ID_W, desc="Intermediate state for DMA_WRITE when in I";
+
+ M, desc="Modified";
+ IM, desc="Intermediate State I>M";
+ MI, desc="Intermediate State M>I";
+ M_DRD, desc="Intermediate State when there is a dma read";
+ M_DRDI, desc="Intermediate State when there is a dma read";
+ M_DWR, desc="Intermediate State when there is a dma write";
+ M_DWRI, desc="Intermediate State when there is a dma write";
}
// Events
//added by SS for dma
DMA_READ, desc="A DMA Read memory request";
DMA_WRITE, desc="A DMA Write memory request";
-
+ CleanReplacement, desc="Clean Replacement in L2 cache";
}
// DirectoryEntry
structure(Entry, desc="...") {
+ State DirectoryState, desc="Directory state";
DataBlock DataBlk, desc="data for the block";
+ NetDest Sharers, desc="Sharers for this block";
+ NetDest Owner, desc="Owner of this block";
}
external_type(DirectoryMemory) {
}
+ // TBE entries for DMA requests
+ structure(TBE, desc="TBE entries for outstanding DMA requests") {
+ Address PhysicalAddress, desc="physical address";
+ State TBEState, desc="Transient State";
+ DataBlock DataBlk, desc="Data to be written (DMA write only)";
+ int Len, desc="...";
+ }
+
+ external_type(TBETable) {
+ TBE lookup(Address);
+ void allocate(Address);
+ void deallocate(Address);
+ bool isPresent(Address);
+ }
+
// ** OBJECTS **
MemoryControl memBuffer, factory='RubySystem::getMemoryControl(m_cfg["memory_controller_name"])';
+ TBETable TBEs, template_hack="<Directory_TBE>";
+
State getState(Address addr) {
- return State:I;
- }
+ if (TBEs.isPresent(addr)) {
+ return TBEs[addr].TBEState;
+ } else if (directory.isPresent(addr)) {
+ return directory[addr].DirectoryState;
+ } else {
+ return State:I;
+ }
+ }
+
void setState(Address addr, State state) {
+
+ if (TBEs.isPresent(addr)) {
+ TBEs[addr].TBEState := state;
+ }
+
+ if (directory.isPresent(addr)) {
+
+ if (state == State:I) {
+ assert(directory[addr].Owner.count() == 0);
+ assert(directory[addr].Sharers.count() == 0);
+ } else if (state == State:M) {
+ assert(directory[addr].Owner.count() == 1);
+ assert(directory[addr].Sharers.count() == 0);
+ }
+
+ directory[addr].DirectoryState := state;
+ }
}
+
bool isGETRequest(CoherenceRequestType type) {
return (type == CoherenceRequestType:GETS) ||
(type == CoherenceRequestType:GET_INSTR) ||
if (dmaRequestQueue_in.isReady()) {
peek(dmaRequestQueue_in, DMARequestMsg) {
if (in_msg.Type == DMARequestType:READ) {
- trigger(Event:DMA_READ, in_msg.PhysicalAddress);
+ trigger(Event:DMA_READ, in_msg.LineAddress);
} else if (in_msg.Type == DMARequestType:WRITE) {
- trigger(Event:DMA_WRITE, in_msg.PhysicalAddress);
+ trigger(Event:DMA_WRITE, in_msg.LineAddress);
} else {
error("Invalid message");
}
assert(in_msg.Destination.isElement(machineID));
if (in_msg.Type == CoherenceResponseType:MEMORY_DATA) {
trigger(Event:Data, in_msg.Address);
+ } else if (in_msg.Type == CoherenceResponseType:ACK) {
+ trigger(Event:CleanReplacement, in_msg.Address);
} else {
DEBUG_EXPR(in_msg.Type);
error("Invalid message");
// Actions
action(a_sendAck, "a", desc="Send ack to L2") {
- peek(memQueue_in, MemoryMsg) {
- enqueue(responseNetwork_out, ResponseMsg, latency="TO_MEM_CTRL_LATENCY") {
+ peek(responseNetwork_in, ResponseMsg) {
+ enqueue(responseNetwork_out, ResponseMsg, latency=to_mem_ctrl_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:MEMORY_ACK;
out_msg.Sender := machineID;
- out_msg.Destination.add(in_msg.OriginalRequestorMachId);
+ out_msg.Destination.add(in_msg.Sender);
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(d_sendData, "d", desc="Send data to requestor") {
peek(memQueue_in, MemoryMsg) {
- enqueue(responseNetwork_out, ResponseMsg, latency="TO_MEM_CTRL_LATENCY") {
+ enqueue(responseNetwork_out, ResponseMsg, latency=to_mem_ctrl_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:MEMORY_DATA;
out_msg.Sender := machineID;
}
}
+ // Actions
+ action(aa_sendAck, "aa", desc="Send ack to L2") {
+ peek(memQueue_in, MemoryMsg) {
+ enqueue(responseNetwork_out, ResponseMsg, latency=to_mem_ctrl_latency) {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:MEMORY_ACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.OriginalRequestorMachId);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ }
+ }
+ }
+
action(j_popIncomingRequestQueue, "j", desc="Pop incoming request queue") {
requestNetwork_in.dequeue();
}
action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
peek(requestNetwork_in, RequestMsg) {
- enqueue(memQueue_out, MemoryMsg, latency="TO_MEM_CTRL_LATENCY") {
+ enqueue(memQueue_out, MemoryMsg, latency=to_mem_ctrl_latency) {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_READ;
out_msg.Sender := machineID;
action(qw_queueMemoryWBRequest, "qw", desc="Queue off-chip writeback request") {
peek(responseNetwork_in, ResponseMsg) {
- enqueue(memQueue_out, MemoryMsg, latency="TO_MEM_CTRL_LATENCY") {
+ enqueue(memQueue_out, MemoryMsg, latency=to_mem_ctrl_latency) {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
out_msg.Sender := machineID;
//added by SS for dma
action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") {
peek(dmaRequestQueue_in, DMARequestMsg) {
- enqueue(memQueue_out, MemoryMsg, latency="TO_MEM_CTRL_LATENCY") {
+ enqueue(memQueue_out, MemoryMsg, latency=to_mem_ctrl_latency) {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_READ;
out_msg.Sender := machineID;
action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") {
peek(memQueue_in, MemoryMsg) {
- enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="MEMORY_LATENCY") {
+ enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency=to_mem_ctrl_latency) {
out_msg.PhysicalAddress := address;
out_msg.Type := DMAResponseType:DATA;
out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
action(dw_writeDMAData, "dw", desc="DMA Write data to memory") {
peek(dmaRequestQueue_in, DMARequestMsg) {
- directory[in_msg.PhysicalAddress].DataBlk.copyPartial(in_msg.DataBlk, in_msg.Offset, in_msg.Len);
+ //directory[in_msg.PhysicalAddress].DataBlk.copyPartial(in_msg.DataBlk, in_msg.Offset, in_msg.Len);
+
+ directory[in_msg.PhysicalAddress].DataBlk.copyPartial(in_msg.DataBlk, addressOffset(in_msg.PhysicalAddress), in_msg.Len);
}
}
action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") {
peek(dmaRequestQueue_in, DMARequestMsg) {
- enqueue(memQueue_out, MemoryMsg, latency="TO_MEM_CTRL_LATENCY") {
+ enqueue(memQueue_out, MemoryMsg, latency=to_mem_ctrl_latency) {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
out_msg.OriginalRequestorMachId := machineID;
//out_msg.DataBlk := in_msg.DataBlk;
- out_msg.DataBlk.copyPartial(in_msg.DataBlk, in_msg.Offset, in_msg.Len);
+ out_msg.DataBlk.copyPartial(in_msg.DataBlk, addressOffset(address), in_msg.Len);
+
+
out_msg.MessageSize := in_msg.MessageSize;
//out_msg.Prefetch := in_msg.Prefetch;
}
action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") {
- enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="MEMORY_LATENCY") {
+ enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency=to_mem_ctrl_latency) {
out_msg.PhysicalAddress := address;
out_msg.Type := DMAResponseType:ACK;
out_msg.Destination.add(map_Address_to_DMA(address));
}
action(z_recycleRequestQueue, "z", desc="recycle request queue") {
- requestNetwork_in.dequeue();
+ requestNetwork_in.recycle();
+ }
+
+ action(zz_recycleDMAQueue, "zz", desc="recycle DMA queue") {
+ dmaRequestQueue_in.recycle();
+ }
+
+
+ action(e_ownerIsRequestor, "e", desc="The owner is now the requestor") {
+ peek(requestNetwork_in, RequestMsg) {
+ directory[address].Owner.clear();
+ directory[address].Owner.add(in_msg.Requestor);
+ }
}
+
+ action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") {
+ peek(dmaRequestQueue_in, DMARequestMsg) {
+ enqueue(responseNetwork_out, ResponseMsg, latency=directory_latency) {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:INV;
+ out_msg.Sender := machineID;
+ out_msg.Destination := directory[in_msg.PhysicalAddress].Owner;
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ }
+ }
+ }
+
+
+ action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") {
+ peek(responseNetwork_in, ResponseMsg) {
+ enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency=to_mem_ctrl_latency) {
+ out_msg.PhysicalAddress := address;
+ out_msg.Type := DMAResponseType:DATA;
+ out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
+ out_msg.Destination.add(map_Address_to_DMA(address));
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+ }
+ }
+ }
+
+ action(c_clearOwner, "c", desc="Clear the owner field") {
+ directory[address].Owner.clear();
+ }
+
+ action(v_allocateTBE, "v", desc="Allocate TBE") {
+ peek(dmaRequestQueue_in, DMARequestMsg) {
+ TBEs.allocate(address);
+ TBEs[address].DataBlk := in_msg.DataBlk;
+ TBEs[address].PhysicalAddress := in_msg.PhysicalAddress;
+ TBEs[address].Len := in_msg.Len;
+ }
+ }
+
+ action(dwt_writeDMADataFromTBE, "dwt", desc="DMA Write data to memory from TBE") {
+ //directory[address].DataBlk.copyPartial(TBEs[address].DataBlk, TBEs[address].Offset, TBEs[address].Len);
+ directory[address].DataBlk.copyPartial(TBEs[address].DataBlk, addressOffset(TBEs[address].PhysicalAddress), TBEs[address].Len);
+
+
+ }
+
+
+ action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") {
+ peek(responseNetwork_in, ResponseMsg) {
+ enqueue(memQueue_out, MemoryMsg, latency=to_mem_ctrl_latency) {
+ out_msg.Address := address;
+ out_msg.Type := MemoryRequestType:MEMORY_WB;
+ out_msg.OriginalRequestorMachId := in_msg.Sender;
+ //out_msg.DataBlk := in_msg.DataBlk;
+ //out_msg.DataBlk.copyPartial(TBEs[address].DataBlk, TBEs[address].Offset, TBEs[address].Len);
+ out_msg.DataBlk.copyPartial(TBEs[address].DataBlk, addressOffset(TBEs[address].PhysicalAddress), TBEs[address].Len);
+
+ out_msg.MessageSize := in_msg.MessageSize;
+ //out_msg.Prefetch := in_msg.Prefetch;
+
+ DEBUG_EXPR(out_msg);
+ }
+ }
+ }
+
+ action(w_deallocateTBE, "w", desc="Deallocate TBE") {
+ TBEs.deallocate(address);
+ }
+
+
// TRANSITIONS
- transition(I, Fetch) {
- //d_sendData;
+
+ transition(I, Fetch, IM) {
qf_queueMemoryFetchRequest;
+ e_ownerIsRequestor;
j_popIncomingRequestQueue;
}
- transition(I, Data) {
+ transition(IM, Memory_Data, M) {
+ d_sendData;
+ l_popMemQueue;
+ }
+//added by SS
+ transition(M, CleanReplacement, I) {
+ c_clearOwner;
+ a_sendAck;
+ k_popIncomingResponseQueue;
+ }
+
+ transition(M, Data, MI) {
m_writeDataToMemory;
- //a_sendAck;
qw_queueMemoryWBRequest;
k_popIncomingResponseQueue;
}
- transition(I, Memory_Data) {
- d_sendData;
+ transition(MI, Memory_Ack, I) {
+ c_clearOwner;
+ aa_sendAck;
l_popMemQueue;
}
- transition(I, Memory_Ack) {
- a_sendAck;
- l_popMemQueue;
- }
//added by SS for dma support
transition(I, DMA_READ, ID) {
l_popMemQueue;
}
- transition({ID, ID_W}, {Fetch, Data} ) {
+ transition({ID, ID_W, M_DRDI, M_DWRI, IM, MI}, {Fetch, Data} ) {
z_recycleRequestQueue;
}
+ transition({ID, ID_W, M_DRD, M_DRDI, M_DWR, M_DWRI, IM, MI}, {DMA_WRITE, DMA_READ} ) {
+ zz_recycleDMAQueue;
+ }
+
+
+ transition(M, DMA_READ, M_DRD) {
+ inv_sendCacheInvalidate;
+ p_popIncomingDMARequestQueue;
+ }
+
+ transition(M_DRD, Data, M_DRDI) {
+ drp_sendDMAData;
+ m_writeDataToMemory;
+ qw_queueMemoryWBRequest;
+ k_popIncomingResponseQueue;
+ }
+
+ transition(M_DRDI, Memory_Ack, I) {
+ aa_sendAck;
+ c_clearOwner;
+ l_popMemQueue;
+ }
+
+ transition(M, DMA_WRITE, M_DWR) {
+ v_allocateTBE;
+ inv_sendCacheInvalidate;
+ p_popIncomingDMARequestQueue;
+ }
+
+ transition(M_DWR, Data, M_DWRI) {
+ m_writeDataToMemory;
+ qw_queueMemoryWBRequest_partialTBE;
+ k_popIncomingResponseQueue;
+ }
+
+ transition(M_DWRI, Memory_Ack, I) {
+ dwt_writeDMADataFromTBE;
+ aa_sendAck;
+ c_clearOwner;
+ da_sendDMAAck;
+ w_deallocateTBE;
+ l_popMemQueue;
+ }
}
/*
- * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met: redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer;
- * redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution;
- * neither the name of the copyright holders nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
+ Copyright (C) 1999-2005 by Mark D. Hill and David A. Wood for the
+ Wisconsin Multifacet Project. Contact: gems@cs.wisc.edu
+ http://www.cs.wisc.edu/gems/
+
+ --------------------------------------------------------------------
+
+ This file is part of the SLICC (Specification Language for
+ Implementing Cache Coherence), a component of the Multifacet GEMS
+ (General Execution-driven Multiprocessor Simulator) software
+ toolset originally developed at the University of Wisconsin-Madison.
+
+ SLICC was originally developed by Milo Martin with substantial
+ contributions from Daniel Sorin.
+
+ Substantial further development of Multifacet GEMS at the
+ University of Wisconsin was performed by Alaa Alameldeen, Brad
+ Beckmann, Jayaram Bobba, Ross Dickson, Dan Gibson, Pacia Harper,
+ Derek Hower, Milo Martin, Michael Marty, Carl Mauer, Michelle Moravan,
+ Kevin Moore, Manoj Plakal, Daniel Sorin, Haris Volos, Min Xu, and Luke Yen.
+
+ --------------------------------------------------------------------
+
+ If your use of this software contributes to a published paper, we
+ request that you (1) cite our summary paper that appears on our
+ website (http://www.cs.wisc.edu/gems/) and (2) e-mail a citation
+ for your published paper to gems@cs.wisc.edu.
+
+ If you redistribute derivatives of this software, we request that
+ you notify us and either (1) ask people to register with us at our
+ website (http://www.cs.wisc.edu/gems/) or (2) collect registration
+ information and periodically send it to us.
+ --------------------------------------------------------------------
+
+ Multifacet GEMS is free software; you can redistribute it and/or
+ modify it under the terms of version 2 of the GNU General Public
+ License as published by the Free Software Foundation.
+
+ Multifacet GEMS is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with the Multifacet GEMS; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307, USA
+
+ The GNU General Public License is contained in the file LICENSE.
+
+### END HEADER ###
+*/
/*
* $Id: MSI_MOSI_CMP_directory-msg.sm 1.5 05/01/19 15:48:37-06:00 mikem@royal16.cs.wisc.edu $
*
GET_INSTR, desc="Get Instruction";
INV, desc="INValidate";
PUTX, desc="replacement message";
+
+ WB_ACK, desc="Writeback ack";
+ WB_NACK, desc="Writeback neg. ack";
+ FWD, desc="Generic FWD";
+
+
}
// CoherenceResponseType
WB_ACK, desc="writeback ack";
UNBLOCK, desc="unblock";
EXCLUSIVE_UNBLOCK, desc="exclusive unblock";
+ INV, desc="Invalidate from directory";
}
// RequestMsg
structure(DMARequestMsg, desc="...", interface="NetworkMessage") {
DMARequestType Type, desc="Request type (read/write)";
Address PhysicalAddress, desc="Physical address for this request";
+ Address LineAddress, desc="Line address for this request";
NetDest Destination, desc="Destination";
DataBlock DataBlk, desc="DataBlk attached to this request";
int Offset, desc="The offset into the datablock";
structure(DMAResponseMsg, desc="...", interface="NetworkMessage") {
DMAResponseType Type, desc="Response type (DATA/ACK)";
Address PhysicalAddress, desc="Physical address for this request";
+ Address LineAddress, desc="Line address for this request";
NetDest Destination, desc="Destination";
DataBlock DataBlk, desc="DataBlk attached to this request";
MessageSizeType MessageSize, desc="size category of the message";