# Evaluate the product (x^7)(x^7 + x + 1)
print("{:02x}".format(multGF2(0b10000000, 0b10000011)))
```
-## GF div and mod
+## GF2 (carryless) div and mod
```
def gf_degree(a) :
mask >>= 1
return (res, rem)
```
-
-| 0.5|6.10|11.15|16.20|21.25| 26..30 |31| name |
-| -- | -- | --- | --- | --- | ------- |--| ----- |
-| NN | RS | RA | deg | RC | 0 1 011 |Rc| gfaddi |
-| NN | RS | RA | RB | RC | 1 1 111 |Rc| gfadd |
+| 0.5|6.10|11.15|16.20| 21 | 22.23 | 24....30 |31| name |
+| -- | -- | --- | --- | -- | ----- | -------- |--| ---- |
+| NN | RT | RA | RB | 1 | 00 | 0001 110 |Rc| cldiv |
+| NN | RT | RA | RB | 1 | 01 | 0001 110 |Rc| clmod |
GFMOD is a pseudo-op where RA=0