- Added "_TECHMAP_CELLNAME_" parameter for "techmap" pass
- Merged "dffsr2dff", "opt_rmdff", "dff2dffe", "dff2dffs", "peepopt.dffmux" passes into a new "opt_dff" pass
- Added $meminit_v2 cells (with support for write mask)
+ - Added $mem_v2, $memrd_v2, $memwr_v2, with the following features:
+ - write priority masks, per write/write port pair
+ - transparency and undefined collision behavior masks, per read/write port pair
+ - read port reset and initialization
+ - wide ports (accessing a naturally aligned power-of-two number of memory cells)
Yosys 0.8 .. Yosys 0.9
----------------------
setup_internals_ff();
setup_type(ID($memrd), {ID::CLK, ID::EN, ID::ADDR}, {ID::DATA});
+ setup_type(ID($memrd_v2), {ID::CLK, ID::EN, ID::ARST, ID::SRST, ID::ADDR}, {ID::DATA});
setup_type(ID($memwr), {ID::CLK, ID::EN, ID::ADDR, ID::DATA}, pool<RTLIL::IdString>());
+ setup_type(ID($memwr_v2), {ID::CLK, ID::EN, ID::ADDR, ID::DATA}, pool<RTLIL::IdString>());
setup_type(ID($meminit), {ID::ADDR, ID::DATA}, pool<RTLIL::IdString>());
setup_type(ID($meminit_v2), {ID::ADDR, ID::DATA, ID::EN}, pool<RTLIL::IdString>());
setup_type(ID($mem), {ID::RD_CLK, ID::RD_EN, ID::RD_ADDR, ID::WR_CLK, ID::WR_EN, ID::WR_ADDR, ID::WR_DATA}, {ID::RD_DATA});
+ setup_type(ID($mem_v2), {ID::RD_CLK, ID::RD_EN, ID::RD_ARST, ID::RD_SRST, ID::RD_ADDR, ID::WR_CLK, ID::WR_EN, ID::WR_ADDR, ID::WR_DATA}, {ID::RD_DATA});
setup_type(ID($fsm), {ID::CLK, ID::ARST, ID::CTRL_IN}, {ID::CTRL_OUT});
}
X(B_WIDTH)
X(C)
X(cells_not_processed)
+X(CE_OVER_SRST)
X(CFG_ABITS)
X(CFG_DBITS)
X(CFG_INIT)
X(CLR)
X(CLR_POLARITY)
X(CO)
+X(COLLISION_X_MASK)
X(CONFIG)
X(CONFIG_WIDTH)
X(CTRL_IN)
X(hierconn)
X(I)
X(INIT)
+X(INIT_VALUE)
X(init)
X(initial_top)
X(interface_modport)
X(P)
X(parallel_case)
X(parameter)
+X(PORTID)
X(PRIORITY)
+X(PRIORITY_MASK)
X(Q)
X(qwp_position)
X(R)
X(RD_ADDR)
+X(RD_ARST)
+X(RD_ARST_VALUE)
+X(RD_CE_OVER_SRST)
X(RD_CLK)
X(RD_CLK_ENABLE)
X(RD_CLK_POLARITY)
+X(RD_COLLISION_X_MASK)
X(RD_DATA)
X(RD_EN)
+X(RD_INIT_VALUE)
X(RD_PORTS)
+X(RD_SRST)
+X(RD_SRST_VALUE)
+X(RD_TRANSPARENCY_MASK)
X(RD_TRANSPARENT)
+X(RD_WIDE_CONTINUATION)
X(reg)
X(S)
X(SET)
X(to_delete)
X(top)
X(TRANS_NUM)
+X(TRANSPARENCY_MASK)
X(TRANSPARENT)
X(TRANS_TABLE)
X(T_RISE_MAX)
X(WR_DATA)
X(WR_EN)
X(WR_PORTS)
+X(WR_PRIORITY_MASK)
+X(WR_WIDE_CONTINUATION)
X(X)
X(Y)
X(Y_WIDTH)
if (!cell) {
if (memid.empty())
memid = NEW_ID;
- cell = module->addCell(memid, ID($mem));
+ cell = module->addCell(memid, ID($mem_v2));
}
+ cell->type = ID($mem_v2);
cell->attributes = attributes;
cell->parameters[ID::MEMID] = Const(memid.str());
cell->parameters[ID::WIDTH] = Const(width);
cell->parameters[ID::OFFSET] = Const(start_offset);
cell->parameters[ID::SIZE] = Const(size);
- Const rd_wide_continuation, rd_clk_enable, rd_clk_polarity, rd_transparent;
- Const wr_wide_continuation, wr_clk_enable, wr_clk_polarity;
+ Const rd_wide_continuation, rd_clk_enable, rd_clk_polarity, rd_transparency_mask, rd_collision_x_mask;
+ Const wr_wide_continuation, wr_clk_enable, wr_clk_polarity, wr_priority_mask;
+ Const rd_ce_over_srst, rd_arst_value, rd_srst_value, rd_init_value;
SigSpec rd_clk, rd_en, rd_addr, rd_data;
SigSpec wr_clk, wr_en, wr_addr, wr_data;
+ SigSpec rd_arst, rd_srst;
int abits = 0;
for (auto &port : rd_ports)
abits = std::max(abits, GetSize(port.addr));
for (auto &port : wr_ports)
abits = std::max(abits, GetSize(port.addr));
cell->parameters[ID::ABITS] = Const(abits);
+ std::vector<int> wr_port_xlat;
+ for (int i = 0; i < GetSize(wr_ports); i++)
+ for (int j = 0; j < (1 << wr_ports[i].wide_log2); j++)
+ wr_port_xlat.push_back(i);
for (auto &port : rd_ports) {
- // TODO: remove
- log_assert(port.arst == State::S0);
- log_assert(port.srst == State::S0);
- log_assert(port.init_value == Const(State::Sx, width << port.wide_log2));
- bool transparent = false;
- bool non_transparent = false;
- if (port.clk_enable) {
- for (int i = 0; i < GetSize(wr_ports); i++) {
- auto &oport = wr_ports[i];
- if (oport.clk_enable && oport.clk == port.clk && oport.clk_polarity == port.clk_polarity) {
- if (port.transparency_mask[i])
- transparent = true;
- else if (!port.collision_x_mask[i])
- non_transparent = true;
- }
- }
- log_assert(!transparent || !non_transparent);
- }
if (port.cell) {
module->remove(port.cell);
port.cell = nullptr;
rd_wide_continuation.bits.push_back(State(sub != 0));
rd_clk_enable.bits.push_back(State(port.clk_enable));
rd_clk_polarity.bits.push_back(State(port.clk_polarity));
- rd_transparent.bits.push_back(State(transparent));
+ rd_ce_over_srst.bits.push_back(State(port.ce_over_srst));
rd_clk.append(port.clk);
+ rd_arst.append(port.arst);
+ rd_srst.append(port.srst);
rd_en.append(port.en);
SigSpec addr = port.sub_addr(sub);
addr.extend_u0(abits, false);
rd_addr.append(addr);
log_assert(GetSize(addr) == abits);
+ for (auto idx : wr_port_xlat) {
+ rd_transparency_mask.bits.push_back(State(bool(port.transparency_mask[idx])));
+ rd_collision_x_mask.bits.push_back(State(bool(port.collision_x_mask[idx])));
+ }
}
rd_data.append(port.data);
+ for (auto &bit : port.arst_value)
+ rd_arst_value.bits.push_back(bit);
+ for (auto &bit : port.srst_value)
+ rd_srst_value.bits.push_back(bit);
+ for (auto &bit : port.init_value)
+ rd_init_value.bits.push_back(bit);
}
if (rd_ports.empty()) {
rd_wide_continuation = State::S0;
rd_clk_enable = State::S0;
rd_clk_polarity = State::S0;
- rd_transparent = State::S0;
+ rd_ce_over_srst = State::S0;
+ rd_arst_value = State::S0;
+ rd_srst_value = State::S0;
+ rd_init_value = State::S0;
+ }
+ if (rd_ports.empty() || wr_ports.empty()) {
+ rd_transparency_mask = State::S0;
+ rd_collision_x_mask = State::S0;
}
cell->parameters[ID::RD_PORTS] = Const(GetSize(rd_clk));
cell->parameters[ID::RD_CLK_ENABLE] = rd_clk_enable;
cell->parameters[ID::RD_CLK_POLARITY] = rd_clk_polarity;
- cell->parameters[ID::RD_TRANSPARENT] = rd_transparent;
+ cell->parameters[ID::RD_TRANSPARENCY_MASK] = rd_transparency_mask;
+ cell->parameters[ID::RD_COLLISION_X_MASK] = rd_collision_x_mask;
+ cell->parameters[ID::RD_WIDE_CONTINUATION] = rd_wide_continuation;
+ cell->parameters[ID::RD_CE_OVER_SRST] = rd_ce_over_srst;
+ cell->parameters[ID::RD_ARST_VALUE] = rd_arst_value;
+ cell->parameters[ID::RD_SRST_VALUE] = rd_srst_value;
+ cell->parameters[ID::RD_INIT_VALUE] = rd_init_value;
cell->setPort(ID::RD_CLK, rd_clk);
cell->setPort(ID::RD_EN, rd_en);
+ cell->setPort(ID::RD_ARST, rd_arst);
+ cell->setPort(ID::RD_SRST, rd_srst);
cell->setPort(ID::RD_ADDR, rd_addr);
cell->setPort(ID::RD_DATA, rd_data);
for (auto &port : wr_ports) {
wr_clk_enable.bits.push_back(State(port.clk_enable));
wr_clk_polarity.bits.push_back(State(port.clk_polarity));
wr_clk.append(port.clk);
+ for (auto idx : wr_port_xlat)
+ wr_priority_mask.bits.push_back(State(bool(port.priority_mask[idx])));
SigSpec addr = port.sub_addr(sub);
addr.extend_u0(abits, false);
wr_addr.append(addr);
wr_wide_continuation = State::S0;
wr_clk_enable = State::S0;
wr_clk_polarity = State::S0;
+ wr_priority_mask = State::S0;
}
cell->parameters[ID::WR_PORTS] = Const(GetSize(wr_clk));
cell->parameters[ID::WR_CLK_ENABLE] = wr_clk_enable;
cell->parameters[ID::WR_CLK_POLARITY] = wr_clk_polarity;
+ cell->parameters[ID::WR_PRIORITY_MASK] = wr_priority_mask;
+ cell->parameters[ID::WR_WIDE_CONTINUATION] = wr_wide_continuation;
cell->setPort(ID::WR_CLK, wr_clk);
cell->setPort(ID::WR_EN, wr_en);
cell->setPort(ID::WR_ADDR, wr_addr);
mem->size = size;
mem->attributes = attributes;
for (auto &port : rd_ports) {
- // TODO: remove
- log_assert(port.arst == State::S0);
- log_assert(port.srst == State::S0);
- log_assert(port.init_value == Const(State::Sx, width << port.wide_log2));
- bool transparent = false;
- bool non_transparent = false;
- if (port.clk_enable) {
- for (int i = 0; i < GetSize(wr_ports); i++) {
- auto &oport = wr_ports[i];
- if (oport.clk_enable && oport.clk == port.clk && oport.clk_polarity == port.clk_polarity) {
- if (port.transparency_mask[i])
- transparent = true;
- else if (!port.collision_x_mask[i])
- non_transparent = true;
- }
- }
- log_assert(!transparent || !non_transparent);
- }
if (!port.cell)
- port.cell = module->addCell(NEW_ID, ID($memrd));
+ port.cell = module->addCell(NEW_ID, ID($memrd_v2));
+ port.cell->type = ID($memrd_v2);
port.cell->attributes = port.attributes;
port.cell->parameters[ID::MEMID] = memid.str();
port.cell->parameters[ID::ABITS] = GetSize(port.addr);
port.cell->parameters[ID::WIDTH] = width << port.wide_log2;
port.cell->parameters[ID::CLK_ENABLE] = port.clk_enable;
port.cell->parameters[ID::CLK_POLARITY] = port.clk_polarity;
- port.cell->parameters[ID::TRANSPARENT] = transparent;
+ port.cell->parameters[ID::CE_OVER_SRST] = port.ce_over_srst;
+ port.cell->parameters[ID::ARST_VALUE] = port.arst_value;
+ port.cell->parameters[ID::SRST_VALUE] = port.srst_value;
+ port.cell->parameters[ID::INIT_VALUE] = port.init_value;
+ port.cell->parameters[ID::TRANSPARENCY_MASK] = port.transparency_mask;
+ port.cell->parameters[ID::COLLISION_X_MASK] = port.collision_x_mask;
+ port.cell->parameters.erase(ID::TRANSPARENT);
port.cell->setPort(ID::CLK, port.clk);
port.cell->setPort(ID::EN, port.en);
+ port.cell->setPort(ID::ARST, port.arst);
+ port.cell->setPort(ID::SRST, port.srst);
port.cell->setPort(ID::ADDR, port.addr);
port.cell->setPort(ID::DATA, port.data);
}
int idx = 0;
for (auto &port : wr_ports) {
if (!port.cell)
- port.cell = module->addCell(NEW_ID, ID($memwr));
+ port.cell = module->addCell(NEW_ID, ID($memwr_v2));
+ port.cell->type = ID($memwr_v2);
port.cell->attributes = port.attributes;
+ if (port.cell->parameters.count(ID::PRIORITY))
+ port.cell->parameters.erase(ID::PRIORITY);
port.cell->parameters[ID::MEMID] = memid.str();
port.cell->parameters[ID::ABITS] = GetSize(port.addr);
port.cell->parameters[ID::WIDTH] = width << port.wide_log2;
port.cell->parameters[ID::CLK_ENABLE] = port.clk_enable;
port.cell->parameters[ID::CLK_POLARITY] = port.clk_polarity;
- port.cell->parameters[ID::PRIORITY] = idx++;
+ port.cell->parameters[ID::PORTID] = idx++;
+ port.cell->parameters[ID::PRIORITY_MASK] = port.priority_mask;
port.cell->setPort(ID::CLK, port.clk);
port.cell->setPort(ID::EN, port.en);
port.cell->setPort(ID::ADDR, port.addr);
dict<IdString, pool<Cell *>> inits;
MemIndex (Module *module) {
for (auto cell: module->cells()) {
- if (cell->type == ID($memwr))
+ if (cell->type.in(ID($memwr), ID($memwr_v2)))
wr_ports[cell->parameters.at(ID::MEMID).decode_string()].insert(cell);
- else if (cell->type == ID($memrd))
+ else if (cell->type.in(ID($memrd), ID($memrd_v2)))
rd_ports[cell->parameters.at(ID::MEMID).decode_string()].insert(cell);
else if (cell->type.in(ID($meminit), ID($meminit_v2)))
inits[cell->parameters.at(ID::MEMID).decode_string()].insert(cell);
res.mem = mem;
res.attributes = mem->attributes;
std::vector<bool> rd_transparent;
+ std::vector<int> wr_portid;
if (index.rd_ports.count(mem->name)) {
for (auto cell : index.rd_ports.at(mem->name)) {
MemRd mrd;
+ bool is_compat = cell->type == ID($memrd);
mrd.cell = cell;
mrd.attributes = cell->attributes;
mrd.clk_enable = cell->parameters.at(ID::CLK_ENABLE).as_bool();
mrd.clk_polarity = cell->parameters.at(ID::CLK_POLARITY).as_bool();
- bool transparent = cell->parameters.at(ID::TRANSPARENT).as_bool();
mrd.clk = cell->getPort(ID::CLK);
mrd.en = cell->getPort(ID::EN);
mrd.addr = cell->getPort(ID::ADDR);
mrd.data = cell->getPort(ID::DATA);
mrd.wide_log2 = ceil_log2(GetSize(mrd.data) / mem->width);
- mrd.ce_over_srst = false;
- mrd.arst_value = Const(State::Sx, mem->width << mrd.wide_log2);
- mrd.srst_value = Const(State::Sx, mem->width << mrd.wide_log2);
- mrd.init_value = Const(State::Sx, mem->width << mrd.wide_log2);
- mrd.srst = State::S0;
- mrd.arst = State::S0;
- if (!mrd.clk_enable) {
- // Fix some patterns that we'll allow for backwards compatibility,
- // but don't want to see moving forwards: async transparent
- // ports (inherently meaningless) and async ports without
- // const 1 tied to EN bit (which may mean a latch in the future).
- transparent = false;
- if (mrd.en == State::Sx)
- mrd.en = State::S1;
+ bool transparent = false;
+ if (is_compat) {
+ transparent = cell->parameters.at(ID::TRANSPARENT).as_bool();
+ mrd.ce_over_srst = false;
+ mrd.arst_value = Const(State::Sx, mem->width << mrd.wide_log2);
+ mrd.srst_value = Const(State::Sx, mem->width << mrd.wide_log2);
+ mrd.init_value = Const(State::Sx, mem->width << mrd.wide_log2);
+ mrd.srst = State::S0;
+ mrd.arst = State::S0;
+ if (!mrd.clk_enable) {
+ // Fix some patterns that we'll allow for backwards compatibility,
+ // but don't want to see moving forwards: async transparent
+ // ports (inherently meaningless) and async ports without
+ // const 1 tied to EN bit (which may mean a latch in the future).
+ transparent = false;
+ if (mrd.en == State::Sx)
+ mrd.en = State::S1;
+ }
+ } else {
+ mrd.ce_over_srst = cell->parameters.at(ID::CE_OVER_SRST).as_bool();
+ mrd.arst_value = cell->parameters.at(ID::ARST_VALUE);
+ mrd.srst_value = cell->parameters.at(ID::SRST_VALUE);
+ mrd.init_value = cell->parameters.at(ID::INIT_VALUE);
+ mrd.arst = cell->getPort(ID::ARST);
+ mrd.srst = cell->getPort(ID::SRST);
}
res.rd_ports.push_back(mrd);
rd_transparent.push_back(transparent);
std::vector<std::pair<int, MemWr>> ports;
for (auto cell : index.wr_ports.at(mem->name)) {
MemWr mwr;
+ bool is_compat = cell->type == ID($memwr);
mwr.cell = cell;
mwr.attributes = cell->attributes;
mwr.clk_enable = cell->parameters.at(ID::CLK_ENABLE).as_bool();
mwr.addr = cell->getPort(ID::ADDR);
mwr.data = cell->getPort(ID::DATA);
mwr.wide_log2 = ceil_log2(GetSize(mwr.data) / mem->width);
- ports.push_back(std::make_pair(cell->parameters.at(ID::PRIORITY).as_int(), mwr));
+ ports.push_back(std::make_pair(cell->parameters.at(is_compat ? ID::PRIORITY : ID::PORTID).as_int(), mwr));
}
std::sort(ports.begin(), ports.end(), [](const std::pair<int, MemWr> &a, const std::pair<int, MemWr> &b) { return a.first < b.first; });
- for (auto &it : ports)
+ for (auto &it : ports) {
res.wr_ports.push_back(it.second);
+ wr_portid.push_back(it.first);
+ }
+ for (int i = 0; i < GetSize(res.wr_ports); i++) {
+ auto &port = res.wr_ports[i];
+ bool is_compat = port.cell->type == ID($memwr);
+ if (is_compat) {
+ port.priority_mask.resize(GetSize(res.wr_ports));
+ for (int j = 0; j < i; j++) {
+ auto &oport = res.wr_ports[j];
+ if (port.clk_enable != oport.clk_enable)
+ continue;
+ if (port.clk_enable && port.clk != oport.clk)
+ continue;
+ if (port.clk_enable && port.clk_polarity != oport.clk_polarity)
+ continue;
+ port.priority_mask[j] = true;
+ }
+ } else {
+ Const orig_prio_mask = port.cell->parameters.at(ID::PRIORITY_MASK);
+ for (int orig_portid : wr_portid) {
+ bool has_prio = orig_portid < GetSize(orig_prio_mask) && orig_prio_mask[orig_portid] == State::S1;
+ port.priority_mask.push_back(has_prio);
+ }
+ }
+ }
}
if (index.inits.count(mem->name)) {
std::vector<std::pair<int, MemInit>> inits;
for (auto &it : inits)
res.inits.push_back(it.second);
}
- for (int i = 0; i < GetSize(res.wr_ports); i++) {
- auto &port = res.wr_ports[i];
- port.priority_mask.resize(GetSize(res.wr_ports));
- for (int j = 0; j < i; j++) {
- auto &oport = res.wr_ports[j];
- if (port.clk_enable != oport.clk_enable)
- continue;
- if (port.clk_enable && port.clk != oport.clk)
- continue;
- if (port.clk_enable && port.clk_polarity != oport.clk_polarity)
- continue;
- port.priority_mask[j] = true;
- }
- }
for (int i = 0; i < GetSize(res.rd_ports); i++) {
auto &port = res.rd_ports[i];
- port.transparency_mask.resize(GetSize(res.wr_ports));
- port.collision_x_mask.resize(GetSize(res.wr_ports));
- if (!rd_transparent[i])
- continue;
- if (!port.clk_enable)
- continue;
- for (int j = 0; j < GetSize(res.wr_ports); j++) {
- auto &wport = res.wr_ports[j];
- if (!wport.clk_enable)
- continue;
- if (port.clk != wport.clk)
+ bool is_compat = port.cell->type == ID($memrd);
+ if (is_compat) {
+ port.transparency_mask.resize(GetSize(res.wr_ports));
+ port.collision_x_mask.resize(GetSize(res.wr_ports));
+ if (!rd_transparent[i])
continue;
- if (port.clk_polarity != wport.clk_polarity)
+ if (!port.clk_enable)
continue;
- port.transparency_mask[j] = true;
+ for (int j = 0; j < GetSize(res.wr_ports); j++) {
+ auto &wport = res.wr_ports[j];
+ if (!wport.clk_enable)
+ continue;
+ if (port.clk != wport.clk)
+ continue;
+ if (port.clk_polarity != wport.clk_polarity)
+ continue;
+ port.transparency_mask[j] = true;
+ }
+ } else {
+ Const orig_trans_mask = port.cell->parameters.at(ID::TRANSPARENCY_MASK);
+ Const orig_cx_mask = port.cell->parameters.at(ID::COLLISION_X_MASK);
+ for (int orig_portid : wr_portid) {
+ port.transparency_mask.push_back(orig_portid < GetSize(orig_trans_mask) && orig_trans_mask[orig_portid] == State::S1);
+ port.collision_x_mask.push_back(orig_portid < GetSize(orig_cx_mask) && orig_cx_mask[orig_portid] == State::S1);
+ }
}
}
res.check();
cell->parameters.at(ID::OFFSET).as_int(),
cell->parameters.at(ID::SIZE).as_int()
);
+ bool is_compat = cell->type == ID($mem);
int abits = cell->parameters.at(ID::ABITS).as_int();
res.packed = true;
res.cell = cell;
}
}
}
- for (int i = 0; i < cell->parameters.at(ID::RD_PORTS).as_int(); i++) {
+ int n_rd_ports = cell->parameters.at(ID::RD_PORTS).as_int();
+ int n_wr_ports = cell->parameters.at(ID::WR_PORTS).as_int();
+ Const rd_wide_continuation = is_compat ? Const(State::S0, n_rd_ports) : cell->parameters.at(ID::RD_WIDE_CONTINUATION);
+ Const wr_wide_continuation = is_compat ? Const(State::S0, n_wr_ports) : cell->parameters.at(ID::WR_WIDE_CONTINUATION);
+ for (int i = 0, ni; i < n_rd_ports; i = ni) {
+ ni = i + 1;
+ while (ni < n_rd_ports && rd_wide_continuation[ni] == State::S1)
+ ni++;
MemRd mrd;
- mrd.wide_log2 = 0;
+ mrd.wide_log2 = ceil_log2(ni - i);
+ log_assert(ni - i == (1 << mrd.wide_log2));
mrd.clk_enable = cell->parameters.at(ID::RD_CLK_ENABLE).extract(i, 1).as_bool();
mrd.clk_polarity = cell->parameters.at(ID::RD_CLK_POLARITY).extract(i, 1).as_bool();
mrd.clk = cell->getPort(ID::RD_CLK).extract(i, 1);
mrd.en = cell->getPort(ID::RD_EN).extract(i, 1);
mrd.addr = cell->getPort(ID::RD_ADDR).extract(i * abits, abits);
- mrd.data = cell->getPort(ID::RD_DATA).extract(i * res.width, res.width);
- mrd.ce_over_srst = false;
- mrd.arst_value = Const(State::Sx, res.width << mrd.wide_log2);
- mrd.srst_value = Const(State::Sx, res.width << mrd.wide_log2);
- mrd.init_value = Const(State::Sx, res.width << mrd.wide_log2);
- mrd.srst = State::S0;
- mrd.arst = State::S0;
+ mrd.data = cell->getPort(ID::RD_DATA).extract(i * res.width, (ni - i) * res.width);
+ if (is_compat) {
+ mrd.ce_over_srst = false;
+ mrd.arst_value = Const(State::Sx, res.width << mrd.wide_log2);
+ mrd.srst_value = Const(State::Sx, res.width << mrd.wide_log2);
+ mrd.init_value = Const(State::Sx, res.width << mrd.wide_log2);
+ mrd.arst = State::S0;
+ mrd.srst = State::S0;
+ } else {
+ mrd.ce_over_srst = cell->parameters.at(ID::RD_CE_OVER_SRST).extract(i, 1).as_bool();
+ mrd.arst_value = cell->parameters.at(ID::RD_ARST_VALUE).extract(i * res.width, (ni - i) * res.width);
+ mrd.srst_value = cell->parameters.at(ID::RD_SRST_VALUE).extract(i * res.width, (ni - i) * res.width);
+ mrd.init_value = cell->parameters.at(ID::RD_INIT_VALUE).extract(i * res.width, (ni - i) * res.width);
+ mrd.arst = cell->getPort(ID::RD_ARST).extract(i, 1);
+ mrd.srst = cell->getPort(ID::RD_SRST).extract(i, 1);
+ }
+ if (!is_compat) {
+ Const transparency_mask = cell->parameters.at(ID::RD_TRANSPARENCY_MASK).extract(i * n_wr_ports, n_wr_ports);
+ Const collision_x_mask = cell->parameters.at(ID::RD_COLLISION_X_MASK).extract(i * n_wr_ports, n_wr_ports);
+ for (int j = 0; j < n_wr_ports; j++)
+ if (wr_wide_continuation[j] != State::S1) {
+ mrd.transparency_mask.push_back(transparency_mask[j] == State::S1);
+ mrd.collision_x_mask.push_back(collision_x_mask[j] == State::S1);
+ }
+ }
res.rd_ports.push_back(mrd);
}
- for (int i = 0; i < cell->parameters.at(ID::WR_PORTS).as_int(); i++) {
+ for (int i = 0, ni; i < n_wr_ports; i = ni) {
+ ni = i + 1;
+ while (ni < n_wr_ports && wr_wide_continuation[ni] == State::S1)
+ ni++;
MemWr mwr;
- mwr.wide_log2 = 0;
+ mwr.wide_log2 = ceil_log2(ni - i);
+ log_assert(ni - i == (1 << mwr.wide_log2));
mwr.clk_enable = cell->parameters.at(ID::WR_CLK_ENABLE).extract(i, 1).as_bool();
mwr.clk_polarity = cell->parameters.at(ID::WR_CLK_POLARITY).extract(i, 1).as_bool();
mwr.clk = cell->getPort(ID::WR_CLK).extract(i, 1);
- mwr.en = cell->getPort(ID::WR_EN).extract(i * res.width, res.width);
+ mwr.en = cell->getPort(ID::WR_EN).extract(i * res.width, (ni - i) * res.width);
mwr.addr = cell->getPort(ID::WR_ADDR).extract(i * abits, abits);
- mwr.data = cell->getPort(ID::WR_DATA).extract(i * res.width, res.width);
+ mwr.data = cell->getPort(ID::WR_DATA).extract(i * res.width, (ni - i) * res.width);
+ if (!is_compat) {
+ Const priority_mask = cell->parameters.at(ID::WR_PRIORITY_MASK).extract(i * n_wr_ports, n_wr_ports);
+ for (int j = 0; j < n_wr_ports; j++)
+ if (wr_wide_continuation[j] != State::S1)
+ mwr.priority_mask.push_back(priority_mask[j] == State::S1);
+ }
res.wr_ports.push_back(mwr);
}
- for (int i = 0; i < GetSize(res.wr_ports); i++) {
- auto &port = res.wr_ports[i];
- port.priority_mask.resize(GetSize(res.wr_ports));
- for (int j = 0; j < i; j++) {
- auto &oport = res.wr_ports[j];
- if (port.clk_enable != oport.clk_enable)
- continue;
- if (port.clk_enable && port.clk != oport.clk)
- continue;
- if (port.clk_enable && port.clk_polarity != oport.clk_polarity)
- continue;
- port.priority_mask[j] = true;
+ if (is_compat) {
+ for (int i = 0; i < GetSize(res.wr_ports); i++) {
+ auto &port = res.wr_ports[i];
+ port.priority_mask.resize(GetSize(res.wr_ports));
+ for (int j = 0; j < i; j++) {
+ auto &oport = res.wr_ports[j];
+ if (port.clk_enable != oport.clk_enable)
+ continue;
+ if (port.clk_enable && port.clk != oport.clk)
+ continue;
+ if (port.clk_enable && port.clk_polarity != oport.clk_polarity)
+ continue;
+ port.priority_mask[j] = true;
+ }
}
- }
- for (int i = 0; i < GetSize(res.rd_ports); i++) {
- auto &port = res.rd_ports[i];
- port.transparency_mask.resize(GetSize(res.wr_ports));
- port.collision_x_mask.resize(GetSize(res.wr_ports));
- if (!cell->parameters.at(ID::RD_TRANSPARENT).extract(i, 1).as_bool())
- continue;
- if (!port.clk_enable)
- continue;
- for (int j = 0; j < GetSize(res.wr_ports); j++) {
- auto &wport = res.wr_ports[j];
- if (!wport.clk_enable)
- continue;
- if (port.clk != wport.clk)
+ for (int i = 0; i < GetSize(res.rd_ports); i++) {
+ auto &port = res.rd_ports[i];
+ port.transparency_mask.resize(GetSize(res.wr_ports));
+ port.collision_x_mask.resize(GetSize(res.wr_ports));
+ if (!cell->parameters.at(ID::RD_TRANSPARENT).extract(i, 1).as_bool())
continue;
- if (port.clk_polarity != wport.clk_polarity)
+ if (!port.clk_enable)
continue;
- port.transparency_mask[j] = true;
+ for (int j = 0; j < GetSize(res.wr_ports); j++) {
+ auto &wport = res.wr_ports[j];
+ if (!wport.clk_enable)
+ continue;
+ if (port.clk != wport.clk)
+ continue;
+ if (port.clk_polarity != wport.clk_polarity)
+ continue;
+ port.transparency_mask[j] = true;
+ }
}
}
res.check();
res.push_back(mem_from_memory(module, it.second, index));
}
for (auto cell: module->cells()) {
- if (cell->type == ID($mem))
+ if (cell->type.in(ID($mem), ID($mem_v2)))
res.push_back(mem_from_cell(cell));
}
return res;
res.push_back(mem_from_memory(module, it.second, index));
}
for (auto cell: module->selected_cells()) {
- if (cell->type == ID($mem))
+ if (cell->type.in(ID($mem), ID($mem_v2)))
res.push_back(mem_from_cell(cell));
}
return res;
return;
}
+ if (cell->type == ID($memrd_v2)) {
+ param(ID::MEMID);
+ param_bool(ID::CLK_ENABLE);
+ param_bool(ID::CLK_POLARITY);
+ param(ID::TRANSPARENCY_MASK);
+ param(ID::COLLISION_X_MASK);
+ param_bool(ID::CE_OVER_SRST);
+ param_bits(ID::ARST_VALUE, param(ID::WIDTH));
+ param_bits(ID::SRST_VALUE, param(ID::WIDTH));
+ param_bits(ID::INIT_VALUE, param(ID::WIDTH));
+ port(ID::CLK, 1);
+ port(ID::EN, 1);
+ port(ID::ARST, 1);
+ port(ID::SRST, 1);
+ port(ID::ADDR, param(ID::ABITS));
+ port(ID::DATA, param(ID::WIDTH));
+ check_expected();
+ return;
+ }
+
if (cell->type == ID($memwr)) {
param(ID::MEMID);
param_bool(ID::CLK_ENABLE);
return;
}
+ if (cell->type == ID($memwr_v2)) {
+ param(ID::MEMID);
+ param_bool(ID::CLK_ENABLE);
+ param_bool(ID::CLK_POLARITY);
+ param(ID::PORTID);
+ param(ID::PRIORITY_MASK);
+ port(ID::CLK, 1);
+ port(ID::EN, param(ID::WIDTH));
+ port(ID::ADDR, param(ID::ABITS));
+ port(ID::DATA, param(ID::WIDTH));
+ check_expected();
+ return;
+ }
+
if (cell->type == ID($meminit)) {
param(ID::MEMID);
param(ID::PRIORITY);
return;
}
+ if (cell->type == ID($mem_v2)) {
+ param(ID::MEMID);
+ param(ID::SIZE);
+ param(ID::OFFSET);
+ param(ID::INIT);
+ param_bits(ID::RD_CLK_ENABLE, max(1, param(ID::RD_PORTS)));
+ param_bits(ID::RD_CLK_POLARITY, max(1, param(ID::RD_PORTS)));
+ param_bits(ID::RD_TRANSPARENCY_MASK, max(1, param(ID::RD_PORTS) * param(ID::WR_PORTS)));
+ param_bits(ID::RD_COLLISION_X_MASK, max(1, param(ID::RD_PORTS) * param(ID::WR_PORTS)));
+ param_bits(ID::RD_WIDE_CONTINUATION, max(1, param(ID::RD_PORTS)));
+ param_bits(ID::RD_CE_OVER_SRST, max(1, param(ID::RD_PORTS)));
+ param_bits(ID::RD_ARST_VALUE, param(ID::RD_PORTS) * param(ID::WIDTH));
+ param_bits(ID::RD_SRST_VALUE, param(ID::RD_PORTS) * param(ID::WIDTH));
+ param_bits(ID::RD_INIT_VALUE, param(ID::RD_PORTS) * param(ID::WIDTH));
+ param_bits(ID::WR_CLK_ENABLE, max(1, param(ID::WR_PORTS)));
+ param_bits(ID::WR_CLK_POLARITY, max(1, param(ID::WR_PORTS)));
+ param_bits(ID::WR_WIDE_CONTINUATION, max(1, param(ID::WR_PORTS)));
+ param_bits(ID::WR_PRIORITY_MASK, max(1, param(ID::WR_PORTS) * param(ID::WR_PORTS)));
+ port(ID::RD_CLK, param(ID::RD_PORTS));
+ port(ID::RD_EN, param(ID::RD_PORTS));
+ port(ID::RD_ARST, param(ID::RD_PORTS));
+ port(ID::RD_SRST, param(ID::RD_PORTS));
+ port(ID::RD_ADDR, param(ID::RD_PORTS) * param(ID::ABITS));
+ port(ID::RD_DATA, param(ID::RD_PORTS) * param(ID::WIDTH));
+ port(ID::WR_CLK, param(ID::WR_PORTS));
+ port(ID::WR_EN, param(ID::WR_PORTS) * param(ID::WIDTH));
+ port(ID::WR_ADDR, param(ID::WR_PORTS) * param(ID::ABITS));
+ port(ID::WR_DATA, param(ID::WR_PORTS) * param(ID::WIDTH));
+ check_expected();
+ return;
+ }
+
if (cell->type == ID($tribuf)) {
port(ID::A, param(ID::WIDTH));
port(ID::Y, param(ID::WIDTH));
bool RTLIL::Cell::has_memid() const
{
- return type.in(ID($memwr), ID($memrd), ID($meminit), ID($meminit_v2));
+ return type.in(ID($memwr), ID($memwr_v2), ID($memrd), ID($memrd_v2), ID($meminit), ID($meminit_v2));
}
bool RTLIL::Cell::is_mem_cell() const
{
- return type == ID($mem) || has_memid();
+ return type.in(ID($mem), ID($mem_v2)) || has_memid();
}
RTLIL::SigChunk::SigChunk()
\subsection{Memories}
\label{sec:memcells}
-Memories are either represented using RTLIL::Memory objects, {\tt \$memrd}, {\tt \$memwr}, and {\tt \$meminit\_v2}
-cells, or by {\tt \$mem} cells alone.
+Memories are either represented using RTLIL::Memory objects, {\tt \$memrd\_v2}, {\tt \$memwr\_v2}, and {\tt \$meminit\_v2}
+cells, or by {\tt \$mem\_v2} cells alone.
In the first alternative the RTLIL::Memory objects hold the general metadata for the memory (bit width,
-size in number of words, etc.) and for each port a {\tt \$memrd} (read port) or {\tt \$memwr} (write port)
+size in number of words, etc.) and for each port a {\tt \$memrd\_v2} (read port) or {\tt \$memwr\_v2} (write port)
cell is created. Having individual cells for read and write ports has the advantage that they can be
consolidated using resource sharing passes. In some cases this drastically reduces the number of required
ports on the memory cell. In this alternative, memory initialization data is represented by {\tt \$meminit\_v2} cells,
which allow delaying constant folding for initialization addresses and data until after the frontend finishes.
-The {\tt \$memrd} cells have a clock input \B{CLK}, an enable input \B{EN}, an
-address input \B{ADDR}, and a data output \B{DATA}. They also have the
-following parameters:
+The {\tt \$memrd\_v2} cells have a clock input \B{CLK}, an enable input \B{EN}, an
+address input \B{ADDR}, a data output \B{DATA}, an asynchronous reset input \B{ARST},
+and a synchronous reset input \B{SRST}. They also have the following parameters:
\begin{itemize}
\item \B{MEMID} \\
The number of address bits (width of the \B{ADDR} input port).
\item \B{WIDTH} \\
-The number of data bits (width of the \B{DATA} output port).
+The number of data bits (width of the \B{DATA} output port). Note that this may be a power-of-two
+multiple of the underlying memory's width -- such ports are called wide ports and access an aligned
+group of cells at once. In this case, the corresponding low bits of \B{ADDR} must be tied to 0.
\item \B{CLK\_ENABLE} \\
When this parameter is non-zero, the clock is used. Otherwise this read port is asynchronous and
Clock is active on the positive edge if this parameter has the value {\tt 1'b1} and on the negative
edge if this parameter is {\tt 1'b0}.
-\item \B{TRANSPARENT} \\
-If this parameter is set to {\tt 1'b1}, a read and write to the same address in the same cycle will
-return the new value. Otherwise the old value is returned.
+\item \B{TRANSPARENCY\_MASK} \\
+This parameter is a bitmask of write ports that this read port is transparent with. The bits
+of this parameter are indexed by the write port's \B{PORTID} parameter. Transparency can only be
+enabled between synchronous ports sharing a clock domain. When transparency is enabled for a given
+port pair, a read and write to the same address in the same cycle will return the new value.
+Otherwise the old value is returned.
+
+\item \B{COLLISION\_X\_MASK} \\
+This parameter is a bitmask of write ports that have undefined collision behavior with this port.
+The bits of this parameter are indexed by the write port's \B{PORTID} parameter. This behavior can only be
+enabled between synchronous ports sharing a clock domain. When undefined collision is enabled for a given
+port pair, a read and write to the same address in the same cycle will return the undefined (all-X) value.
+This option is exclusive (for a given port pair) with the transparency option.
+
+\item \B{ARST\_VALUE} \\
+Whenever the \B{ARST} input is asserted, the data output will be reset to this value.
+Only used for synchronous ports.
+
+\item \B{SRST\_VALUE} \\
+Whenever the \B{SRST} input is synchronously asserted, the data output will be reset to this value.
+Only used for synchronous ports.
+
+\item \B{INIT\_VALUE} \\
+The initial value of the data output, for synchronous ports.
+
+\item \B{CE\_OVER\_SRST} \\
+If this parameter is non-zero, the \B{SRST} input is only recognized when \B{EN} is true.
+Otherwise, \B{SRST} is recognized regardless of \B{EN}.
\end{itemize}
-The {\tt \$memwr} cells have a clock input \B{CLK}, an enable input \B{EN} (one
+The {\tt \$memwr\_v2} cells have a clock input \B{CLK}, an enable input \B{EN} (one
enable bit for each data bit), an address input \B{ADDR} and a data input
\B{DATA}. They also have the following parameters:
The number of address bits (width of the \B{ADDR} input port).
\item \B{WIDTH} \\
-The number of data bits (width of the \B{DATA} output port).
+The number of data bits (width of the \B{DATA} output port). Like with {\tt \$memrd\_v2} cells,
+the width is allowed to be any power-of-two multiple of memory width, with the corresponding
+restriction on address.
\item \B{CLK\_ENABLE} \\
When this parameter is non-zero, the clock is used. Otherwise this write port is asynchronous and
Clock is active on positive edge if this parameter has the value {\tt 1'b1} and on the negative
edge if this parameter is {\tt 1'b0}.
-\item \B{PRIORITY} \\
-The cell with the higher integer value in this parameter wins a write conflict.
+\item \B{PORTID} \\
+An identifier for this write port, used to index write port bit mask parameters.
+
+\item \B{PRIORITY\_MASK} \\
+This parameter is a bitmask of write ports that this write port has priority over in case of writing
+to the same address. The bits of this parameter are indexed by the other write port's \B{PORTID} parameter.
+Write ports can only have priority over write ports with lower port ID. When two ports write to the same
+address and neither has priority over the other, the result is undefined. Priority can only be set between
+two synchronous ports sharing the same clock domain.
\end{itemize}
The {\tt \$meminit\_v2} cells have an address input \B{ADDR}, a data input \B{DATA}, with the width
\end{itemize}
The HDL frontend models a memory using RTLIL::Memory objects and asynchronous
-{\tt \$memrd} and {\tt \$memwr} cells. The {\tt memory} pass (i.e.~its various sub-passes) migrates
-{\tt \$dff} cells into the {\tt \$memrd} and {\tt \$memwr} cells making them synchronous, then
-converts them to a single {\tt \$mem} cell and (optionally) maps this cell type
+{\tt \$memrd\_v2} and {\tt \$memwr\_v2} cells. The {\tt memory} pass (i.e.~its various sub-passes) migrates
+{\tt \$dff} cells into the {\tt \$memrd\_v2} and {\tt \$memwr\_v2} cells making them synchronous, then
+converts them to a single {\tt \$mem\_v2} cell and (optionally) maps this cell type
to {\tt \$dff} cells for the individual words and multiplexer-based address decoders for the read and
-write interfaces. When the last step is disabled or not possible, a {\tt \$mem} cell is left in the design.
+write interfaces. When the last step is disabled or not possible, a {\tt \$mem\_v2} cell is left in the design.
-The {\tt \$mem} cell provides the following parameters:
+The {\tt \$mem\_v2} cell provides the following parameters:
\begin{itemize}
\item \B{MEMID} \\
-The name of the original RTLIL::Memory object that became this {\tt \$mem} cell.
+The name of the original RTLIL::Memory object that became this {\tt \$mem\_v2} cell.
\item \B{SIZE} \\
The number of words in the memory.
\item \B{RD\_PORTS} \\
The number of read ports on this memory cell.
+\item \B{RD\_WIDE\_CONTINUATION} \\
+This parameter is \B{RD\_PORTS} bits wide, containing a bitmask of ``wide continuation'' read ports.
+Such ports are used to represent the extra data bits of wide ports in the combined cell, and must
+have all control signals identical with the preceding port, except for address, which must have
+the proper sub-cell address encoded in the low bits.
+
\item \B{RD\_CLK\_ENABLE} \\
This parameter is \B{RD\_PORTS} bits wide, containing a clock enable bit for each read port.
\item \B{RD\_CLK\_POLARITY} \\
This parameter is \B{RD\_PORTS} bits wide, containing a clock polarity bit for each read port.
-\item \B{RD\_TRANSPARENT} \\
-This parameter is \B{RD\_PORTS} bits wide, containing a transparent bit for each read port.
+\item \B{RD\_TRANSPARENCY\_MASK} \\
+This parameter is \B{RD\_PORTS*WR\_PORTS} bits wide, containing a concatenation of all
+\B{TRANSPARENCY\_MASK} values of the original {\tt \$memrd\_v2} cells.
+
+\item \B{RD\_COLLISION\_X\_MASK} \\
+This parameter is \B{RD\_PORTS*WR\_PORTS} bits wide, containing a concatenation of all
+\B{COLLISION\_X\_MASK} values of the original {\tt \$memrd\_v2} cells.
+
+\item \B{RD\_CE\_OVER\_SRST} \\
+This parameter is \B{RD\_PORTS} bits wide, determining relative synchronous reset and enable priority for each read port.
+
+\item \B{RD\_INIT\_VALUE} \\
+This parameter is \B{RD\_PORTS*WIDTH} bits wide, containing the initial value for each synchronous read port.
+
+\item \B{RD\_ARST\_VALUE} \\
+This parameter is \B{RD\_PORTS*WIDTH} bits wide, containing the asynchronous reset value for each synchronous read port.
+
+\item \B{RD\_SRST\_VALUE} \\
+This parameter is \B{RD\_PORTS*WIDTH} bits wide, containing the synchronous reset value for each synchronous read port.
\item \B{WR\_PORTS} \\
The number of write ports on this memory cell.
+\item \B{WR\_WIDE\_CONTINUATION} \\
+This parameter is \B{WR\_PORTS} bits wide, containing a bitmask of ``wide continuation'' write ports.
+
\item \B{WR\_CLK\_ENABLE} \\
This parameter is \B{WR\_PORTS} bits wide, containing a clock enable bit for each write port.
\item \B{WR\_CLK\_POLARITY} \\
This parameter is \B{WR\_PORTS} bits wide, containing a clock polarity bit for each write port.
+
+\item \B{WR\_PRIORITY\_MASK} \\
+This parameter is \B{WR\_PORTS*WR\_PORTS} bits wide, containing a concatenation of all
+\B{PRIORITY\_MASK} values of the original {\tt \$memwr\_v2} cells.
\end{itemize}
-The {\tt \$mem} cell has the following ports:
+The {\tt \$mem\_v2} cell has the following ports:
\begin{itemize}
\item \B{RD\_CLK} \\
\item \B{RD\_DATA} \\
This input is \B{RD\_PORTS}*\B{WIDTH} bits wide, containing all data signals for the read ports.
+\item \B{RD\_ARST} \\
+This input is \B{RD\_PORTS} bits wide, containing all asynchronous reset signals for the read ports.
+
+\item \B{RD\_SRST} \\
+This input is \B{RD\_PORTS} bits wide, containing all synchronous reset signals for the read ports.
+
\item \B{WR\_CLK} \\
This input is \B{WR\_PORTS} bits wide, containing all clock signals for the write ports.
This input is \B{WR\_PORTS}*\B{WIDTH} bits wide, containing all data signals for the write ports.
\end{itemize}
-The {\tt memory\_collect} pass can be used to convert discrete {\tt \$memrd}, {\tt \$memwr}, and {\tt \$meminit\_v2} cells
-belonging to the same memory to a single {\tt \$mem} cell, whereas the {\tt memory\_unpack} pass performs the inverse operation.
+The {\tt memory\_collect} pass can be used to convert discrete {\tt \$memrd\_v2}, {\tt \$memwr\_v2}, and {\tt \$meminit\_v2} cells
+belonging to the same memory to a single {\tt \$mem\_v2} cell, whereas the {\tt memory\_unpack} pass performs the inverse operation.
The {\tt memory\_dff} pass can combine asynchronous memory ports that are fed by or feeding registers into synchronous memory ports.
-The {\tt memory\_bram} pass can be used to recognize {\tt \$mem} cells that can be implemented with a block RAM resource on an FPGA.
-The {\tt memory\_map} pass can be used to implement {\tt \$mem} cells as basic logic: word-wide DFFs and address decoders.
+The {\tt memory\_bram} pass can be used to recognize {\tt \$mem\_v2} cells that can be implemented with a block RAM resource on an FPGA.
+The {\tt memory\_map} pass can be used to implement {\tt \$mem\_v2} cells as basic logic: word-wide DFFs and address decoders.
\subsection{Finite State Machines}
if (!noautostop && yosys_celltypes.cell_known(cell->type)) {
if (conn.first.in(ID::Q, ID::CTRL_OUT, ID::RD_DATA))
continue;
- if (cell->type == ID($memrd) && conn.first == ID::DATA)
+ if (cell->type.in(ID($memrd), ID($memrd_v2)) && conn.first == ID::DATA)
continue;
}
}
for (Cell *cell : module->cells()) {
- if (cell->type.in(ID($memwr), ID($meminit), ID($meminit_v2))) {
+ if (cell->type.in(ID($memwr), ID($memwr_v2), ID($meminit), ID($meminit_v2))) {
IdString mem_id = cell->getParam(ID::MEMID).decode_string();
mem2cells[mem_id].insert(cell);
}
for (auto bit : sigmap(it.second))
bits.insert(bit);
- if (cell->type == ID($memrd)) {
+ if (cell->type.in(ID($memrd), ID($memrd_v2))) {
IdString mem_id = cell->getParam(ID::MEMID).decode_string();
if (mem_unused.count(mem_id)) {
mem_unused.erase(mem_id);
if (!noclkinv)
{
- if (cell->type.in(ID($dff), ID($dffe), ID($dffsr), ID($dffsre), ID($adff), ID($adffe), ID($sdff), ID($sdffe), ID($sdffce), ID($fsm), ID($memrd), ID($memwr)))
+ if (cell->type.in(ID($dff), ID($dffe), ID($dffsr), ID($dffsre), ID($adff), ID($adffe), ID($sdff), ID($sdffe), ID($sdffce), ID($fsm), ID($memrd), ID($memrd_v2), ID($memwr), ID($memwr_v2)))
handle_polarity_inv(cell, ID::CLK, ID::CLK_POLARITY, assign_map, invert_map);
if (cell->type.in(ID($sr), ID($dffsr), ID($dffsre), ID($dlatchsr))) {
SigPool mem_wren_sigs;
for (auto &cell_it : module->cells_) {
RTLIL::Cell *cell = cell_it.second;
- if (cell->type == ID($mem))
+ if (cell->type.in(ID($mem), ID($mem_v2)))
mem_wren_sigs.add(assign_map(cell->getPort(ID::WR_EN)));
- if (cell->type == ID($memwr))
+ if (cell->type.in(ID($memwr), ID($memwr_v2)))
mem_wren_sigs.add(assign_map(cell->getPort(ID::EN)));
}
for (auto &cell_it : module->cells_) {
continue;
}
- if (cell->type == ID($memrd)) {
+ if (cell->type.in(ID($memrd), ID($memrd_v2))) {
if (cell->parameters.at(ID::CLK_ENABLE).as_bool())
continue;
if (config.opt_aggressive || !modwalker.sigmap(cell->getPort(ID::ADDR)).is_fully_const())
if (c1->type != c2->type)
return false;
- if (c1->type == ID($memrd))
+ if (c1->type.in(ID($memrd), ID($memrd_v2)))
{
if (c1->parameters.at(ID::MEMID).decode_string() != c2->parameters.at(ID::MEMID).decode_string())
return false;
+ if (c1->parameters.at(ID::WIDTH) != c2->parameters.at(ID::WIDTH))
+ return false;
+
return true;
}
return supercell;
}
- if (c1->type == ID($memrd))
+ if (c1->type.in(ID($memrd), ID($memrd_v2)))
{
RTLIL::Cell *supercell = module->addCell(NEW_ID, c1);
RTLIL::SigSpec addr1 = c1->getPort(ID::ADDR);
}
}
- if (!opt_memx && c->type.in(ID($memrd), ID($memwr), ID($meminit), ID($meminit_v2))) {
+ if (!opt_memx && c->type.in(ID($memrd), ID($memrd_v2), ID($memwr), ID($memwr_v2), ID($meminit), ID($meminit_v2))) {
IdString memid = c->getParam(ID::MEMID).decode_string();
RTLIL::Memory *mem = module->memories.at(memid);
if (mem->start_offset >= 0) {
param_int(ID::CTRL_IN_WIDTH)
param_int(ID::CTRL_OUT_WIDTH)
param_int(ID::OFFSET)
+ param_int(ID::PORTID)
param_int(ID::PRIORITY)
param_int(ID::RD_PORTS)
param_int(ID::SIZE)
endmodule
+module \$memrd_v2 (CLK, EN, ARST, SRST, ADDR, DATA);
+
+parameter MEMID = "";
+parameter ABITS = 8;
+parameter WIDTH = 8;
+
+parameter CLK_ENABLE = 0;
+parameter CLK_POLARITY = 0;
+parameter TRANSPARENCY_MASK = 0;
+parameter COLLISION_X_MASK = 0;
+parameter ARST_VALUE = 0;
+parameter SRST_VALUE = 0;
+parameter INIT_VALUE = 0;
+parameter CE_OVER_SRST = 0;
+
+input CLK, EN, ARST, SRST;
+input [ABITS-1:0] ADDR;
+output [WIDTH-1:0] DATA;
+
+initial begin
+ if (MEMID != "") begin
+ $display("ERROR: Found non-simulatable instance of $memrd_v2!");
+ $finish;
+ end
+end
+
+endmodule
+
// --------------------------------------------------------
module \$memwr (CLK, EN, ADDR, DATA);
endmodule
+module \$memwr_v2 (CLK, EN, ADDR, DATA);
+
+parameter MEMID = "";
+parameter ABITS = 8;
+parameter WIDTH = 8;
+
+parameter CLK_ENABLE = 0;
+parameter CLK_POLARITY = 0;
+parameter PORTID = 0;
+parameter PRIORITY_MASK = 0;
+
+input CLK;
+input [WIDTH-1:0] EN;
+input [ABITS-1:0] ADDR;
+input [WIDTH-1:0] DATA;
+
+initial begin
+ if (MEMID != "") begin
+ $display("ERROR: Found non-simulatable instance of $memwr_v2!");
+ $finish;
+ end
+end
+
+endmodule
+
// --------------------------------------------------------
module \$meminit (ADDR, DATA);
endmodule
+module \$mem_v2 (RD_CLK, RD_EN, RD_ARST, RD_SRST, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA);
+
+parameter MEMID = "";
+parameter signed SIZE = 4;
+parameter signed OFFSET = 0;
+parameter signed ABITS = 2;
+parameter signed WIDTH = 8;
+parameter signed INIT = 1'bx;
+
+parameter signed RD_PORTS = 1;
+parameter RD_CLK_ENABLE = 1'b1;
+parameter RD_CLK_POLARITY = 1'b1;
+parameter RD_TRANSPARENCY_MASK = 1'b0;
+parameter RD_COLLISION_X_MASK = 1'b0;
+parameter RD_WIDE_CONTINUATION = 1'b0;
+parameter RD_CE_OVER_SRST = 1'b0;
+parameter RD_ARST_VALUE = 1'b0;
+parameter RD_SRST_VALUE = 1'b0;
+parameter RD_INIT_VALUE = 1'b0;
+
+parameter signed WR_PORTS = 1;
+parameter WR_CLK_ENABLE = 1'b1;
+parameter WR_CLK_POLARITY = 1'b1;
+parameter WR_PRIORITY_MASK = 1'b0;
+parameter WR_WIDE_CONTINUATION = 1'b0;
+
+input [RD_PORTS-1:0] RD_CLK;
+input [RD_PORTS-1:0] RD_EN;
+input [RD_PORTS-1:0] RD_ARST;
+input [RD_PORTS-1:0] RD_SRST;
+input [RD_PORTS*ABITS-1:0] RD_ADDR;
+output reg [RD_PORTS*WIDTH-1:0] RD_DATA;
+
+input [WR_PORTS-1:0] WR_CLK;
+input [WR_PORTS*WIDTH-1:0] WR_EN;
+input [WR_PORTS*ABITS-1:0] WR_ADDR;
+input [WR_PORTS*WIDTH-1:0] WR_DATA;
+
+reg [WIDTH-1:0] memory [SIZE-1:0];
+
+integer i, j, k;
+reg [WR_PORTS-1:0] LAST_WR_CLK;
+reg [RD_PORTS-1:0] LAST_RD_CLK;
+
+function port_active;
+ input clk_enable;
+ input clk_polarity;
+ input last_clk;
+ input this_clk;
+ begin
+ casez ({clk_enable, clk_polarity, last_clk, this_clk})
+ 4'b0???: port_active = 1;
+ 4'b1101: port_active = 1;
+ 4'b1010: port_active = 1;
+ default: port_active = 0;
+ endcase
+ end
+endfunction
+
+initial begin
+ for (i = 0; i < SIZE; i = i+1)
+ memory[i] = INIT >>> (i*WIDTH);
+ RD_DATA = RD_INIT_VALUE;
+end
+
+always @(RD_CLK, RD_ARST, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA) begin
+`ifdef SIMLIB_MEMDELAY
+ #`SIMLIB_MEMDELAY;
+`endif
+ for (i = 0; i < RD_PORTS; i = i+1) begin
+ if (RD_CLK_ENABLE[i] && RD_EN[i] && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i])) begin
+ // $display("Read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
+ RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET];
+
+ for (j = 0; j < WR_PORTS; j = j+1) begin
+ if (RD_TRANSPARENCY_MASK[i*WR_PORTS + j] && port_active(WR_CLK_ENABLE[j], WR_CLK_POLARITY[j], LAST_WR_CLK[j], WR_CLK[j]) && RD_ADDR[i*ABITS +: ABITS] == WR_ADDR[j*ABITS +: ABITS])
+ for (k = 0; k < WIDTH; k = k+1)
+ if (WR_EN[j*WIDTH+k])
+ RD_DATA[i*WIDTH+k] <= WR_DATA[j*WIDTH+k];
+ if (RD_COLLISION_X_MASK[i*WR_PORTS + j] && port_active(WR_CLK_ENABLE[j], WR_CLK_POLARITY[j], LAST_WR_CLK[j], WR_CLK[j]) && RD_ADDR[i*ABITS +: ABITS] == WR_ADDR[j*ABITS +: ABITS])
+ for (k = 0; k < WIDTH; k = k+1)
+ if (WR_EN[j*WIDTH+k])
+ RD_DATA[i*WIDTH+k] <= 1'bx;
+ end
+ end
+ end
+
+ for (i = 0; i < WR_PORTS; i = i+1) begin
+ if (port_active(WR_CLK_ENABLE[i], WR_CLK_POLARITY[i], LAST_WR_CLK[i], WR_CLK[i]))
+ for (j = 0; j < WIDTH; j = j+1)
+ if (WR_EN[i*WIDTH+j]) begin
+ // $display("Write to %s: addr=%b data=%b", MEMID, WR_ADDR[i*ABITS +: ABITS], WR_DATA[i*WIDTH+j]);
+ memory[WR_ADDR[i*ABITS +: ABITS] - OFFSET][j] = WR_DATA[i*WIDTH+j];
+ end
+ end
+
+ for (i = 0; i < RD_PORTS; i = i+1) begin
+ if (!RD_CLK_ENABLE[i]) begin
+ // $display("Combinatorial read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
+ RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET];
+ end
+ end
+
+ for (i = 0; i < RD_PORTS; i = i+1) begin
+ if (RD_SRST[i] && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i]) && (RD_EN[i] || !RD_CE_OVER_SRST[i]))
+ RD_DATA[i*WIDTH +: WIDTH] <= RD_SRST_VALUE[i*WIDTH +: WIDTH];
+ if (RD_ARST[i])
+ RD_DATA[i*WIDTH +: WIDTH] <= RD_ARST_VALUE[i*WIDTH +: WIDTH];
+ end
+
+ LAST_RD_CLK <= RD_CLK;
+ LAST_WR_CLK <= WR_CLK;
+end
+
+endmodule
+
`endif
// --------------------------------------------------------
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 36 sync_ram_sdp
setattr -set syn_romstyle "ebr" m:memory
synth_ecp5 -top sync_ram_sdp; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BROM but this is a RAM
+select -assert-count 1 t:$mem_v2 # requested BROM but this is a RAM
design -reset; read_verilog ../common/blockram.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 36 sync_ram_sdp
setattr -set rom_block 1 m:memory
synth_ecp5 -top sync_ram_sdp; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BROM but this is a RAM
+select -assert-count 1 t:$mem_v2 # requested BROM but this is a RAM
design -reset; read_verilog ../common/blockram.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 36 sync_ram_sdp
setattr -set syn_ramstyle "block_ram" m:memory
synth_ecp5 -top sync_ram_sdp -nobram; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BRAM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BRAM but BRAM is disabled
design -reset; read_verilog ../common/blockram.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 36 sync_ram_sdp
setattr -set ram_block 1 m:memory
synth_ecp5 -top sync_ram_sdp -nobram; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BRAM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BRAM but BRAM is disabled
# RAM bits <= 18K; Data width <= 18; Address width <= 10: -> DP16KD
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 18 sync_ram_sdp
setattr -set syn_romstyle "ebr" m:memory
synth_ecp5 -top sync_ram_sdp; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BROM but this is a RAM
+select -assert-count 1 t:$mem_v2 # requested BROM but this is a RAM
design -reset; read_verilog ../common/blockram.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 18 sync_ram_sdp
setattr -set rom_block 1 m:memory
synth_ecp5 -top sync_ram_sdp; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BROM but this is a RAM
+select -assert-count 1 t:$mem_v2 # requested BROM but this is a RAM
design -reset; read_verilog ../common/blockram.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 18 sync_ram_sdp
setattr -set syn_ramstyle "block_ram" m:memory
synth_ecp5 -top sync_ram_sdp -nobram; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BRAM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BRAM but BRAM is disabled
design -reset; read_verilog ../common/blockram.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 18 sync_ram_sdp
setattr -set ram_block 1 m:memory
synth_ecp5 -top sync_ram_sdp -nobram; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BRAM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BRAM but BRAM is disabled
# RAM bits <= 64; Data width <= 4; Address width <= 4: -> DPR16X4
chparam -set ADDRESS_WIDTH 4 -set DATA_WIDTH 4 sync_ram_sdp
setattr -set syn_ramstyle "distributed" m:memory
synth_ecp5 -top sync_ram_sdp -nolutram; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested LUTRAM but LUTRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested LUTRAM but LUTRAM is disabled
# ================================ ROM ================================
# ROM bits <= 18K; Data width <= 36; Address width <= 9: -> PDPW16KD
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 36 sync_rom
setattr -set syn_ramstyle "block_ram" m:memory
synth_ecp5 -top sync_rom; cd sync_rom
-select -assert-count 1 t:$mem # requested BRAM but this is a ROM
+select -assert-count 1 t:$mem_v2 # requested BRAM but this is a ROM
design -reset; read_verilog ../common/blockrom.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 36 sync_rom
setattr -set ram_block 1 m:memory
synth_ecp5 -top sync_rom; cd sync_rom
-select -assert-count 1 t:$mem # requested BRAM but this is a ROM
+select -assert-count 1 t:$mem_v2 # requested BRAM but this is a ROM
design -reset; read_verilog ../common/blockrom.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 36 sync_rom
setattr -set syn_ramstyle "block_rom" m:memory
synth_ecp5 -top sync_rom -nobram; cd sync_rom
-select -assert-count 1 t:$mem # requested BROM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BROM but BRAM is disabled
design -reset; read_verilog ../common/blockrom.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 36 sync_rom
setattr -set rom_block 1 m:memory
synth_ecp5 -top sync_rom -nobram; cd sync_rom
-select -assert-count 1 t:$mem # requested BROM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BROM but BRAM is disabled
# ROM bits <= 18K; Data width <= 18; Address width <= 10: -> DP16KD
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 18 sync_rom
setattr -set syn_ramstyle "block_ram" m:memory
synth_ecp5 -top sync_rom; cd sync_rom
-select -assert-count 1 t:$mem # requested BRAM but this is a ROM
+select -assert-count 1 t:$mem_v2 # requested BRAM but this is a ROM
design -reset; read_verilog ../common/blockrom.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 18 sync_rom
setattr -set ram_block 1 m:memory
synth_ecp5 -top sync_rom; cd sync_rom
-select -assert-count 1 t:$mem # requested BRAM but this is a ROM
+select -assert-count 1 t:$mem_v2 # requested BRAM but this is a ROM
design -reset; read_verilog ../common/blockrom.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 18 sync_rom
setattr -set syn_ramstyle "block_rom" m:memory
synth_ecp5 -top sync_rom -nobram; cd sync_rom
-select -assert-count 1 t:$mem # requested BROM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BROM but BRAM is disabled
design -reset; read_verilog ../common/blockrom.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 18 sync_rom
setattr -set rom_block 1 m:memory
synth_ecp5 -top sync_rom -nobram; cd sync_rom
-select -assert-count 1 t:$mem # requested BROM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BROM but BRAM is disabled
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 8 sync_ram_sdp
setattr -set syn_romstyle "ebr" m:memory
synth_ice40 -top sync_ram_sdp; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BROM but this is a RAM
+select -assert-count 1 t:$mem_v2 # requested BROM but this is a RAM
design -reset; read_verilog ../common/blockram.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 8 sync_ram_sdp
setattr -set rom_block 1 m:memory
synth_ice40 -top sync_ram_sdp; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BROM but this is a RAM
+select -assert-count 1 t:$mem_v2 # requested BROM but this is a RAM
design -reset; read_verilog ../common/blockram.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 8 sync_ram_sdp
setattr -set syn_ramstyle "block_ram" m:memory
synth_ice40 -top sync_ram_sdp -nobram; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BRAM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BRAM but BRAM is disabled
design -reset; read_verilog ../common/blockram.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 8 sync_ram_sdp
setattr -set ram_block 1 m:memory
synth_ice40 -top sync_ram_sdp -nobram; cd sync_ram_sdp
-select -assert-count 1 t:$mem # requested BRAM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BRAM but BRAM is disabled
# ================================ ROM ================================
# ROM bits <= 4K; Data width <= 16; Address width <= 11: -> SB_RAM40_4K
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 8 sync_rom
setattr -set syn_ramstyle "block_ram" m:memory
synth_ice40 -top sync_rom; cd sync_rom
-select -assert-count 1 t:$mem # requested BRAM but this is a ROM
+select -assert-count 1 t:$mem_v2 # requested BRAM but this is a ROM
design -reset; read_verilog ../common/blockrom.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 8 sync_rom
setattr -set ram_block 1 m:memory
synth_ice40 -top sync_rom; cd sync_rom
-select -assert-count 1 t:$mem # requested BRAM but this is a ROM
+select -assert-count 1 t:$mem_v2 # requested BRAM but this is a ROM
design -reset; read_verilog ../common/blockrom.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 8 sync_rom
setattr -set syn_romstyle "ebr" m:memory
synth_ice40 -top sync_rom -nobram; cd sync_rom
-select -assert-count 1 t:$mem # requested BROM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BROM but BRAM is disabled
design -reset; read_verilog ../common/blockrom.v
chparam -set ADDRESS_WIDTH 2 -set DATA_WIDTH 8 sync_rom
setattr -set rom_block 1 m:memory
synth_ice40 -top sync_rom -nobram; cd sync_rom
-select -assert-count 1 t:$mem # requested BROM but BRAM is disabled
+select -assert-count 1 t:$mem_v2 # requested BROM but BRAM is disabled
for f in `egrep -l 'expect-(wr-ports|rd-ports|rd-clk)' *.v`; do
echo -n "Testing expectations for $f .."
- ../../yosys -qp "proc; opt; memory -nomap;; dump -outfile ${f%.v}.dmp t:\$mem" $f
+ ../../yosys -qp "proc; opt; memory -nomap;; dump -outfile ${f%.v}.dmp t:\$mem_v2" $f
if grep -q expect-wr-ports $f; then
grep -q "parameter \\\\WR_PORTS $(gawk '/expect-wr-ports/ { print $3; }' $f)\$" ${f%.v}.dmp ||
{ echo " ERROR: Unexpected number of write ports."; false; }
opt
select -assert-count 2 t:$memwr
opt_mem
-select -assert-count 1 t:$memwr
+select -assert-count 1 t:$memwr_v2
design -load start
opt_mem_feedback
-select -assert-count 1 t:$memrd
+select -assert-count 1 t:$memrd_v2
memory_map
design -save postopt
design -load start
opt_mem_feedback
-select -assert-count 1 t:$memrd
+select -assert-count 1 t:$memrd_v2
memory_map
design -save postopt
read_verilog -sv logic_rom.sv
prep -top top
-select -assert-count 1 t:$mem r:SIZE=16 %i r:WIDTH=8 %i
+select -assert-count 1 t:$mem_v2 r:SIZE=16 %i r:WIDTH=8 %i
read_verilog -sv typedef_memory.sv
prep -top top
-select -assert-count 1 t:$mem r:SIZE=16 %i r:WIDTH=4 %i
+select -assert-count 1 t:$mem_v2 r:SIZE=16 %i r:WIDTH=4 %i
read_verilog -sv typedef_memory_2.sv
prep -top top
dump
-select -assert-count 1 t:$mem r:SIZE=16 %i r:WIDTH=4 %i
+select -assert-count 1 t:$mem_v2 r:SIZE=16 %i r:WIDTH=4 %i