-OBJS += backends/cxxrtl/cxxrtl.o
+OBJS += backends/cxxrtl/cxxrtl_backend.o
+++ /dev/null
-/*
- * yosys -- Yosys Open SYnthesis Suite
- *
- * Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- */
-
-#include "kernel/rtlil.h"
-#include "kernel/register.h"
-#include "kernel/sigtools.h"
-#include "kernel/utils.h"
-#include "kernel/celltypes.h"
-#include "kernel/log.h"
-
-USING_YOSYS_NAMESPACE
-PRIVATE_NAMESPACE_BEGIN
-
-// [[CITE]]
-// Peter Eades; Xuemin Lin; W. F. Smyth, "A Fast Effective Heuristic For The Feedback Arc Set Problem"
-// Information Processing Letters, Vol. 47, pp 319-323, 1993
-// https://pdfs.semanticscholar.org/c7ed/d9acce96ca357876540e19664eb9d976637f.pdf
-
-// A topological sort (on a cell/wire graph) is always possible in a fully flattened RTLIL design without
-// processes or logic loops where every wire has a single driver. Logic loops are illegal in RTLIL and wires
-// with multiple drivers can be split by the `splitnets` pass; however, interdependencies between processes
-// or module instances can create strongly connected components without introducing evaluation nondeterminism.
-// We wish to support designs with such benign SCCs (as well as designs with multiple drivers per wire), so
-// we sort the graph in a way that minimizes feedback arcs. If there are no feedback arcs in the sorted graph,
-// then a more efficient evaluation method is possible, since eval() will always immediately converge.
-template<class T>
-struct Scheduler {
- struct Vertex {
- T *data;
- Vertex *prev, *next;
- pool<Vertex*, hash_ptr_ops> preds, succs;
-
- Vertex() : data(NULL), prev(this), next(this) {}
- Vertex(T *data) : data(data), prev(NULL), next(NULL) {}
-
- bool empty() const
- {
- log_assert(data == NULL);
- if (next == this) {
- log_assert(prev == next);
- return true;
- }
- return false;
- }
-
- void link(Vertex *list)
- {
- log_assert(prev == NULL && next == NULL);
- next = list;
- prev = list->prev;
- list->prev->next = this;
- list->prev = this;
- }
-
- void unlink()
- {
- log_assert(prev->next == this && next->prev == this);
- prev->next = next;
- next->prev = prev;
- next = prev = NULL;
- }
-
- int delta() const
- {
- return succs.size() - preds.size();
- }
- };
-
- std::vector<Vertex*> vertices;
- Vertex *sources = new Vertex;
- Vertex *sinks = new Vertex;
- dict<int, Vertex*> bins;
-
- ~Scheduler()
- {
- delete sources;
- delete sinks;
- for (auto bin : bins)
- delete bin.second;
- for (auto vertex : vertices)
- delete vertex;
- }
-
- Vertex *add(T *data)
- {
- Vertex *vertex = new Vertex(data);
- vertices.push_back(vertex);
- return vertex;
- }
-
- void relink(Vertex *vertex)
- {
- if (vertex->succs.empty())
- vertex->link(sinks);
- else if (vertex->preds.empty())
- vertex->link(sources);
- else {
- int delta = vertex->delta();
- if (!bins.count(delta))
- bins[delta] = new Vertex;
- vertex->link(bins[delta]);
- }
- }
-
- Vertex *remove(Vertex *vertex)
- {
- vertex->unlink();
- for (auto pred : vertex->preds) {
- if (pred == vertex)
- continue;
- log_assert(pred->succs[vertex]);
- pred->unlink();
- pred->succs.erase(vertex);
- relink(pred);
- }
- for (auto succ : vertex->succs) {
- if (succ == vertex)
- continue;
- log_assert(succ->preds[vertex]);
- succ->unlink();
- succ->preds.erase(vertex);
- relink(succ);
- }
- vertex->preds.clear();
- vertex->succs.clear();
- return vertex;
- }
-
- std::vector<Vertex*> schedule()
- {
- std::vector<Vertex*> s1, s2r;
- for (auto vertex : vertices)
- relink(vertex);
- bool bins_empty = false;
- while (!(sinks->empty() && sources->empty() && bins_empty)) {
- while (!sinks->empty())
- s2r.push_back(remove(sinks->next));
- while (!sources->empty())
- s1.push_back(remove(sources->next));
- // Choosing u in this implementation isn't O(1), but the paper handwaves which data structure they suggest
- // using to get O(1) relinking *and* find-max-key ("it is clear"... no it isn't), so this code uses a very
- // naive implementation of find-max-key.
- bins_empty = true;
- bins.template sort<std::greater<int>>();
- for (auto bin : bins) {
- if (!bin.second->empty()) {
- bins_empty = false;
- s1.push_back(remove(bin.second->next));
- break;
- }
- }
- }
- s1.insert(s1.end(), s2r.rbegin(), s2r.rend());
- return s1;
- }
-};
-
-bool is_input_wire(const RTLIL::Wire *wire)
-{
- return wire->port_input && !wire->port_output;
-}
-
-bool is_unary_cell(RTLIL::IdString type)
-{
- return type.in(
- ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool),
- ID($pos), ID($neg));
-}
-
-bool is_binary_cell(RTLIL::IdString type)
-{
- return type.in(
- ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or),
- ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx),
- ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le),
- ID($add), ID($sub), ID($mul), ID($div), ID($mod));
-}
-
-bool is_elidable_cell(RTLIL::IdString type)
-{
- return is_unary_cell(type) || is_binary_cell(type) || type.in(
- ID($mux), ID($concat), ID($slice));
-}
-
-bool is_sync_ff_cell(RTLIL::IdString type)
-{
- return type.in(
- ID($dff), ID($dffe));
-}
-
-bool is_ff_cell(RTLIL::IdString type)
-{
- return is_sync_ff_cell(type) || type.in(
- ID($adff), ID($dffsr), ID($dlatch), ID($dlatchsr), ID($sr));
-}
-
-bool is_internal_cell(RTLIL::IdString type)
-{
- return type[0] == '$' && !type.begins_with("$paramod");
-}
-
-bool is_cxxrtl_blackbox_cell(const RTLIL::Cell *cell)
-{
- RTLIL::Module *cell_module = cell->module->design->module(cell->type);
- log_assert(cell_module != nullptr);
- return cell_module->get_bool_attribute(ID(cxxrtl_blackbox));
-}
-
-enum class CxxrtlPortType {
- UNKNOWN = 0, // or mixed comb/sync
- COMB = 1,
- SYNC = 2,
-};
-
-CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port)
-{
- RTLIL::Module *cell_module = cell->module->design->module(cell->type);
- if (cell_module == nullptr || !cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
- return CxxrtlPortType::UNKNOWN;
- RTLIL::Wire *cell_output_wire = cell_module->wire(port);
- log_assert(cell_output_wire != nullptr);
- bool is_comb = cell_output_wire->get_bool_attribute(ID(cxxrtl_comb));
- bool is_sync = cell_output_wire->get_bool_attribute(ID(cxxrtl_sync));
- if (is_comb && is_sync)
- log_cmd_error("Port `%s.%s' is marked as both `cxxrtl_comb` and `cxxrtl_sync`.\n",
- log_id(cell_module), log_signal(cell_output_wire));
- else if (is_comb)
- return CxxrtlPortType::COMB;
- else if (is_sync)
- return CxxrtlPortType::SYNC;
- return CxxrtlPortType::UNKNOWN;
-}
-
-bool is_cxxrtl_comb_port(const RTLIL::Cell *cell, RTLIL::IdString port)
-{
- return cxxrtl_port_type(cell, port) == CxxrtlPortType::COMB;
-}
-
-bool is_cxxrtl_sync_port(const RTLIL::Cell *cell, RTLIL::IdString port)
-{
- return cxxrtl_port_type(cell, port) == CxxrtlPortType::SYNC;
-}
-
-struct FlowGraph {
- struct Node {
- enum class Type {
- CONNECT,
- CELL_SYNC,
- CELL_EVAL,
- PROCESS
- };
-
- Type type;
- RTLIL::SigSig connect = {};
- const RTLIL::Cell *cell = NULL;
- const RTLIL::Process *process = NULL;
- };
-
- std::vector<Node*> nodes;
- dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_comb_defs, wire_sync_defs, wire_uses;
- dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable;
-
- ~FlowGraph()
- {
- for (auto node : nodes)
- delete node;
- }
-
- void add_defs(Node *node, const RTLIL::SigSpec &sig, bool fully_sync, bool elidable)
- {
- for (auto chunk : sig.chunks())
- if (chunk.wire) {
- if (fully_sync)
- wire_sync_defs[chunk.wire].insert(node);
- else
- wire_comb_defs[chunk.wire].insert(node);
- }
- // Only comb defs of an entire wire in the right order can be elided.
- if (!fully_sync && sig.is_wire())
- wire_def_elidable[sig.as_wire()] = elidable;
- }
-
- void add_uses(Node *node, const RTLIL::SigSpec &sig)
- {
- for (auto chunk : sig.chunks())
- if (chunk.wire) {
- wire_uses[chunk.wire].insert(node);
- // Only a single use of an entire wire in the right order can be elided.
- // (But the use can include other chunks.)
- if (!wire_use_elidable.count(chunk.wire))
- wire_use_elidable[chunk.wire] = true;
- else
- wire_use_elidable[chunk.wire] = false;
- }
- }
-
- bool is_elidable(const RTLIL::Wire *wire) const
- {
- if (wire_def_elidable.count(wire) && wire_use_elidable.count(wire))
- return wire_def_elidable.at(wire) && wire_use_elidable.at(wire);
- return false;
- }
-
- // Connections
- void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn)
- {
- add_defs(node, conn.first, /*fully_sync=*/false, /*elidable=*/true);
- add_uses(node, conn.second);
- }
-
- Node *add_node(const RTLIL::SigSig &conn)
- {
- Node *node = new Node;
- node->type = Node::Type::CONNECT;
- node->connect = conn;
- nodes.push_back(node);
- add_connect_defs_uses(node, conn);
- return node;
- }
-
- // Cells
- void add_cell_sync_defs(Node *node, const RTLIL::Cell *cell)
- {
- // To understand why this node type is necessary and why it produces comb defs, consider a cell
- // with input \i and sync output \o, used in a design such that \i is connected to \o. This does
- // not result in a feedback arc because the output is synchronous. However, a naive implementation
- // of code generation for cells that assigns to inputs, evaluates cells, assigns from outputs
- // would not be able to immediately converge...
- //
- // wire<1> i_tmp;
- // cell->p_i = i_tmp.curr;
- // cell->eval();
- // i_tmp.next = cell->p_o.curr;
- //
- // ... since the wire connecting the input and output ports would not be localizable. To solve
- // this, the cell is split into two scheduling nodes; one exclusively for sync outputs, and
- // another for inputs and all non-sync outputs. This way the generated code can be rearranged...
- //
- // value<1> i_tmp;
- // i_tmp = cell->p_o.curr;
- // cell->p_i = i_tmp;
- // cell->eval();
- //
- // eliminating the unnecessary delta cycle. Conceptually, the CELL_SYNC node type is a series of
- // connections of the form `connect \lhs \cell.\sync_output`; the right-hand side of these is not
- // as a wire in RTLIL. If it was expressible, then `\cell.\sync_output` would have a sync def,
- // and this node would be an ordinary CONNECT node, with `\lhs` having a comb def. Because it isn't,
- // a special node type is used, the right-hand side does not appear anywhere, and the left-hand
- // side has a comb def.
- for (auto conn : cell->connections())
- if (cell->output(conn.first))
- if (is_cxxrtl_sync_port(cell, conn.first)) {
- // See note regarding elidability below.
- add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false);
- }
- }
-
- void add_cell_eval_defs_uses(Node *node, const RTLIL::Cell *cell)
- {
- for (auto conn : cell->connections()) {
- if (cell->output(conn.first)) {
- if (is_elidable_cell(cell->type))
- add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/true);
- else if (is_sync_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool()))
- add_defs(node, conn.second, /*fully_sync=*/true, /*elidable=*/false);
- else if (is_internal_cell(cell->type))
- add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false);
- else if (!is_cxxrtl_sync_port(cell, conn.first)) {
- // Although at first it looks like outputs of user-defined cells may always be elided, the reality is
- // more complex. Fully sync outputs produce no defs and so don't participate in elision. Fully comb
- // outputs are assigned in a different way depending on whether the cell's eval() immediately converged.
- // Unknown/mixed outputs could be elided, but should be rare in practical designs and don't justify
- // the infrastructure required to elide outputs of cells with many of them.
- add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false);
- }
- }
- if (cell->input(conn.first))
- add_uses(node, conn.second);
- }
- }
-
- Node *add_node(const RTLIL::Cell *cell)
- {
- log_assert(cell->known());
-
- bool has_fully_sync_outputs = false;
- for (auto conn : cell->connections())
- if (cell->output(conn.first) && is_cxxrtl_sync_port(cell, conn.first)) {
- has_fully_sync_outputs = true;
- break;
- }
- if (has_fully_sync_outputs) {
- Node *node = new Node;
- node->type = Node::Type::CELL_SYNC;
- node->cell = cell;
- nodes.push_back(node);
- add_cell_sync_defs(node, cell);
- }
-
- Node *node = new Node;
- node->type = Node::Type::CELL_EVAL;
- node->cell = cell;
- nodes.push_back(node);
- add_cell_eval_defs_uses(node, cell);
- return node;
- }
-
- // Processes
- void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_)
- {
- for (auto &action : case_->actions) {
- add_defs(node, action.first, /*is_sync=*/false, /*elidable=*/false);
- add_uses(node, action.second);
- }
- for (auto sub_switch : case_->switches) {
- add_uses(node, sub_switch->signal);
- for (auto sub_case : sub_switch->cases) {
- for (auto &compare : sub_case->compare)
- add_uses(node, compare);
- add_case_defs_uses(node, sub_case);
- }
- }
- }
-
- void add_process_defs_uses(Node *node, const RTLIL::Process *process)
- {
- add_case_defs_uses(node, &process->root_case);
- for (auto sync : process->syncs)
- for (auto action : sync->actions) {
- if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe)
- add_defs(node, action.first, /*is_sync=*/true, /*elidable=*/false);
- else
- add_defs(node, action.first, /*is_sync=*/false, /*elidable=*/false);
- add_uses(node, action.second);
- }
- }
-
- Node *add_node(const RTLIL::Process *process)
- {
- Node *node = new Node;
- node->type = Node::Type::PROCESS;
- node->process = process;
- nodes.push_back(node);
- add_process_defs_uses(node, process);
- return node;
- }
-};
-
-std::vector<std::string> split_by(const std::string &str, const std::string &sep)
-{
- std::vector<std::string> result;
- size_t prev = 0;
- while (true) {
- size_t curr = str.find_first_of(sep, prev + 1);
- if (curr > str.size())
- curr = str.size();
- if (curr > prev + 1)
- result.push_back(str.substr(prev, curr - prev));
- if (curr == str.size())
- break;
- prev = curr;
- }
- return result;
-}
-
-std::string escape_cxx_string(const std::string &input)
-{
- std::string output = "\"";
- for (auto c : input) {
- if (::isprint(c)) {
- if (c == '\\')
- output.push_back('\\');
- output.push_back(c);
- } else {
- char l = c & 0xf, h = (c >> 4) & 0xf;
- output.append("\\x");
- output.push_back((h < 10 ? '0' + h : 'a' + h - 10));
- output.push_back((l < 10 ? '0' + l : 'a' + l - 10));
- }
- }
- output.push_back('"');
- if (output.find('\0') != std::string::npos) {
- output.insert(0, "std::string {");
- output.append(stringf(", %zu}", input.size()));
- }
- return output;
-}
-
-template<class T>
-std::string get_hdl_name(T *object)
-{
- if (object->has_attribute(ID::hdlname))
- return object->get_string_attribute(ID::hdlname);
- else
- return object->name.str();
-}
-
-struct CxxrtlWorker {
- bool split_intf = false;
- std::string intf_filename;
- std::string design_ns = "cxxrtl_design";
- std::ostream *impl_f = nullptr;
- std::ostream *intf_f = nullptr;
-
- bool elide_internal = false;
- bool elide_public = false;
- bool localize_internal = false;
- bool localize_public = false;
- bool run_proc_flatten = false;
- bool max_opt_level = false;
-
- bool debug_info = false;
-
- std::ostringstream f;
- std::string indent;
- int temporary = 0;
-
- dict<const RTLIL::Module*, SigMap> sigmaps;
- pool<const RTLIL::Wire*> edge_wires;
- dict<RTLIL::SigBit, RTLIL::SyncType> edge_types;
- pool<const RTLIL::Memory*> writable_memories;
- dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for;
- dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires;
- dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule;
- pool<const RTLIL::Wire*> localized_wires;
- dict<const RTLIL::Module*, pool<std::string>> blackbox_specializations;
- dict<const RTLIL::Module*, bool> eval_converges;
-
- void inc_indent() {
- indent += "\t";
- }
- void dec_indent() {
- indent.resize(indent.size() - 1);
- }
-
- // RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code
- // because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl
- // identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results
- // in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules:
- // 1. All generated identifiers start with `_`.
- // 1a. Generated identifiers for public names (beginning with `\`) start with `p_`.
- // 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`.
- // 2. An underscore is escaped with another underscore, i.e. `__`.
- // 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`.
- std::string mangle_name(const RTLIL::IdString &name)
- {
- std::string mangled;
- bool first = true;
- for (char c : name.str()) {
- if (first) {
- first = false;
- if (c == '\\')
- mangled += "p_";
- else if (c == '$')
- mangled += "i_";
- else
- log_assert(false);
- } else {
- if (isalnum(c)) {
- mangled += c;
- } else if (c == '_') {
- mangled += "__";
- } else {
- char l = c & 0xf, h = (c >> 4) & 0xf;
- mangled += '_';
- mangled += (h < 10 ? '0' + h : 'a' + h - 10);
- mangled += (l < 10 ? '0' + l : 'a' + l - 10);
- mangled += '_';
- }
- }
- }
- return mangled;
- }
-
- std::string mangle_module_name(const RTLIL::IdString &name, bool is_blackbox = false)
- {
- // Class namespace.
- if (is_blackbox)
- return "bb_" + mangle_name(name);
- return mangle_name(name);
- }
-
- std::string mangle_memory_name(const RTLIL::IdString &name)
- {
- // Class member namespace.
- return "memory_" + mangle_name(name);
- }
-
- std::string mangle_cell_name(const RTLIL::IdString &name)
- {
- // Class member namespace.
- return "cell_" + mangle_name(name);
- }
-
- std::string mangle_wire_name(const RTLIL::IdString &name)
- {
- // Class member namespace.
- return mangle_name(name);
- }
-
- std::string mangle(const RTLIL::Module *module)
- {
- return mangle_module_name(module->name, /*is_blackbox=*/module->get_bool_attribute(ID(cxxrtl_blackbox)));
- }
-
- std::string mangle(const RTLIL::Memory *memory)
- {
- return mangle_memory_name(memory->name);
- }
-
- std::string mangle(const RTLIL::Cell *cell)
- {
- return mangle_cell_name(cell->name);
- }
-
- std::string mangle(const RTLIL::Wire *wire)
- {
- return mangle_wire_name(wire->name);
- }
-
- std::string mangle(RTLIL::SigBit sigbit)
- {
- log_assert(sigbit.wire != NULL);
- if (sigbit.wire->width == 1)
- return mangle(sigbit.wire);
- return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset);
- }
-
- std::vector<std::string> template_param_names(const RTLIL::Module *module)
- {
- if (!module->has_attribute(ID(cxxrtl_template)))
- return {};
-
- if (module->attributes.at(ID(cxxrtl_template)).flags != RTLIL::CONST_FLAG_STRING)
- log_cmd_error("Attribute `cxxrtl_template' of module `%s' is not a string.\n", log_id(module));
-
- std::vector<std::string> param_names = split_by(module->get_string_attribute(ID(cxxrtl_template)), " \t");
- for (const auto ¶m_name : param_names) {
- // Various lowercase prefixes (p_, i_, cell_, ...) are used for member variables, so require
- // parameters to start with an uppercase letter to avoid name conflicts. (This is the convention
- // in both Verilog and C++, anyway.)
- if (!isupper(param_name[0]))
- log_cmd_error("Attribute `cxxrtl_template' of module `%s' includes a parameter `%s', "
- "which does not start with an uppercase letter.\n",
- log_id(module), param_name.c_str());
- }
- return param_names;
- }
-
- std::string template_params(const RTLIL::Module *module, bool is_decl)
- {
- std::vector<std::string> param_names = template_param_names(module);
- if (param_names.empty())
- return "";
-
- std::string params = "<";
- bool first = true;
- for (const auto ¶m_name : param_names) {
- if (!first)
- params += ", ";
- first = false;
- if (is_decl)
- params += "size_t ";
- params += param_name;
- }
- params += ">";
- return params;
- }
-
- std::string template_args(const RTLIL::Cell *cell)
- {
- RTLIL::Module *cell_module = cell->module->design->module(cell->type);
- log_assert(cell_module != nullptr);
- if (!cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
- return "";
-
- std::vector<std::string> param_names = template_param_names(cell_module);
- if (param_names.empty())
- return "";
-
- std::string params = "<";
- bool first = true;
- for (const auto ¶m_name : param_names) {
- if (!first)
- params += ", ";
- first = false;
- params += "/*" + param_name + "=*/";
- RTLIL::IdString id_param_name = '\\' + param_name;
- if (!cell->hasParam(id_param_name))
- log_cmd_error("Cell `%s.%s' does not have a parameter `%s', which is required by the templated module `%s'.\n",
- log_id(cell->module), log_id(cell), param_name.c_str(), log_id(cell_module));
- RTLIL::Const param_value = cell->getParam(id_param_name);
- if (((param_value.flags & ~RTLIL::CONST_FLAG_SIGNED) != 0) || param_value.as_int() < 0)
- log_cmd_error("Parameter `%s' of cell `%s.%s', which is required by the templated module `%s', "
- "is not a positive integer.\n",
- param_name.c_str(), log_id(cell->module), log_id(cell), log_id(cell_module));
- params += std::to_string(cell->getParam(id_param_name).as_int());
- }
- params += ">";
- return params;
- }
-
- std::string fresh_temporary()
- {
- return stringf("tmp_%d", temporary++);
- }
-
- void dump_attrs(const RTLIL::AttrObject *object)
- {
- for (auto attr : object->attributes) {
- f << indent << "// " << attr.first.str() << ": ";
- if (attr.second.flags & RTLIL::CONST_FLAG_STRING) {
- f << attr.second.decode_string();
- } else {
- f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED);
- }
- f << "\n";
- }
- }
-
- void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
- {
- const int CHUNK_SIZE = 32;
- f << "{";
- while (width > 0) {
- int chunk_width = min(width, CHUNK_SIZE);
- uint32_t chunk = data.extract(offset, chunk_width).as_int();
- if (fixed_width)
- f << stringf("0x%.*xu", (3 + chunk_width) / 4, chunk);
- else
- f << stringf("%#xu", chunk);
- if (width > CHUNK_SIZE)
- f << ',';
- offset += CHUNK_SIZE;
- width -= CHUNK_SIZE;
- }
- f << "}";
- }
-
- void dump_const_init(const RTLIL::Const &data)
- {
- dump_const_init(data, data.size());
- }
-
- void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
- {
- f << "value<" << width << ">";
- dump_const_init(data, width, offset, fixed_width);
- }
-
- void dump_const(const RTLIL::Const &data)
- {
- dump_const(data, data.size());
- }
-
- bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs)
- {
- if (chunk.wire == NULL) {
- dump_const(chunk.data, chunk.width, chunk.offset);
- return false;
- } else {
- if (!is_lhs && elided_wires.count(chunk.wire)) {
- const FlowGraph::Node &node = elided_wires[chunk.wire];
- switch (node.type) {
- case FlowGraph::Node::Type::CONNECT:
- dump_connect_elided(node.connect);
- break;
- case FlowGraph::Node::Type::CELL_EVAL:
- log_assert(is_elidable_cell(node.cell->type));
- dump_cell_elided(node.cell);
- break;
- default:
- log_assert(false);
- }
- } else if (localized_wires[chunk.wire] || is_input_wire(chunk.wire)) {
- f << mangle(chunk.wire);
- } else {
- f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
- }
- if (chunk.width == chunk.wire->width && chunk.offset == 0)
- return false;
- else if (chunk.width == 1)
- f << ".slice<" << chunk.offset << ">()";
- else
- f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()";
- return true;
- }
- }
-
- bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs)
- {
- if (sig.empty()) {
- f << "value<0>()";
- return false;
- } else if (sig.is_chunk()) {
- return dump_sigchunk(sig.as_chunk(), is_lhs);
- } else {
- dump_sigchunk(*sig.chunks().rbegin(), is_lhs);
- for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) {
- f << ".concat(";
- dump_sigchunk(*it, is_lhs);
- f << ")";
- }
- return true;
- }
- }
-
- void dump_sigspec_lhs(const RTLIL::SigSpec &sig)
- {
- dump_sigspec(sig, /*is_lhs=*/true);
- }
-
- void dump_sigspec_rhs(const RTLIL::SigSpec &sig)
- {
- // In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
- // it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
- // type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
- // type conversion, but only if the expression needs it.
- bool is_complex = dump_sigspec(sig, /*is_lhs=*/false);
- if (is_complex)
- f << ".val()";
- }
-
- void collect_sigspec_rhs(const RTLIL::SigSpec &sig, std::vector<RTLIL::IdString> &cells)
- {
- for (auto chunk : sig.chunks()) {
- if (!chunk.wire || !elided_wires.count(chunk.wire))
- continue;
-
- const FlowGraph::Node &node = elided_wires[chunk.wire];
- switch (node.type) {
- case FlowGraph::Node::Type::CONNECT:
- collect_connect(node.connect, cells);
- break;
- case FlowGraph::Node::Type::CELL_EVAL:
- collect_cell_eval(node.cell, cells);
- break;
- default:
- log_assert(false);
- }
- }
- }
-
- void dump_connect_elided(const RTLIL::SigSig &conn)
- {
- dump_sigspec_rhs(conn.second);
- }
-
- bool is_connect_elided(const RTLIL::SigSig &conn)
- {
- return conn.first.is_wire() && elided_wires.count(conn.first.as_wire());
- }
-
- void collect_connect(const RTLIL::SigSig &conn, std::vector<RTLIL::IdString> &cells)
- {
- if (!is_connect_elided(conn))
- return;
-
- collect_sigspec_rhs(conn.second, cells);
- }
-
- void dump_connect(const RTLIL::SigSig &conn)
- {
- if (is_connect_elided(conn))
- return;
-
- f << indent << "// connection\n";
- f << indent;
- dump_sigspec_lhs(conn.first);
- f << " = ";
- dump_connect_elided(conn);
- f << ";\n";
- }
-
- void dump_cell_sync(const RTLIL::Cell *cell)
- {
- const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
- f << indent << "// cell " << cell->name.str() << " syncs\n";
- for (auto conn : cell->connections())
- if (cell->output(conn.first))
- if (is_cxxrtl_sync_port(cell, conn.first)) {
- f << indent;
- dump_sigspec_lhs(conn.second);
- f << " = " << mangle(cell) << access << mangle_wire_name(conn.first) << ".curr;\n";
- }
- }
-
- void dump_cell_elided(const RTLIL::Cell *cell)
- {
- // Unary cells
- if (is_unary_cell(cell->type)) {
- f << cell->type.substr(1) << '_' <<
- (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
- "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
- dump_sigspec_rhs(cell->getPort(ID::A));
- f << ")";
- // Binary cells
- } else if (is_binary_cell(cell->type)) {
- f << cell->type.substr(1) << '_' <<
- (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
- (cell->getParam(ID::B_SIGNED).as_bool() ? 's' : 'u') <<
- "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
- dump_sigspec_rhs(cell->getPort(ID::A));
- f << ", ";
- dump_sigspec_rhs(cell->getPort(ID::B));
- f << ")";
- // Muxes
- } else if (cell->type == ID($mux)) {
- f << "(";
- dump_sigspec_rhs(cell->getPort(ID::S));
- f << " ? ";
- dump_sigspec_rhs(cell->getPort(ID::B));
- f << " : ";
- dump_sigspec_rhs(cell->getPort(ID::A));
- f << ")";
- // Concats
- } else if (cell->type == ID($concat)) {
- dump_sigspec_rhs(cell->getPort(ID::B));
- f << ".concat(";
- dump_sigspec_rhs(cell->getPort(ID::A));
- f << ").val()";
- // Slices
- } else if (cell->type == ID($slice)) {
- dump_sigspec_rhs(cell->getPort(ID::A));
- f << ".slice<";
- f << cell->getParam(ID::OFFSET).as_int() + cell->getParam(ID::Y_WIDTH).as_int() - 1;
- f << ",";
- f << cell->getParam(ID::OFFSET).as_int();
- f << ">().val()";
- } else {
- log_assert(false);
- }
- }
-
- bool is_cell_elided(const RTLIL::Cell *cell)
- {
- return is_elidable_cell(cell->type) && cell->hasPort(ID::Y) && cell->getPort(ID::Y).is_wire() &&
- elided_wires.count(cell->getPort(ID::Y).as_wire());
- }
-
- void collect_cell_eval(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells)
- {
- if (!is_cell_elided(cell))
- return;
-
- cells.push_back(cell->name);
- for (auto port : cell->connections())
- if (port.first != ID::Y)
- collect_sigspec_rhs(port.second, cells);
- }
-
- void dump_cell_eval(const RTLIL::Cell *cell)
- {
- if (is_cell_elided(cell))
- return;
- if (cell->type == ID($meminit))
- return; // Handled elsewhere.
-
- std::vector<RTLIL::IdString> elided_cells;
- if (is_elidable_cell(cell->type)) {
- for (auto port : cell->connections())
- if (port.first != ID::Y)
- collect_sigspec_rhs(port.second, elided_cells);
- }
- if (elided_cells.empty()) {
- dump_attrs(cell);
- f << indent << "// cell " << cell->name.str() << "\n";
- } else {
- f << indent << "// cells";
- for (auto elided_cell : elided_cells)
- f << " " << elided_cell.str();
- f << "\n";
- }
-
- // Elidable cells
- if (is_elidable_cell(cell->type)) {
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Y));
- f << " = ";
- dump_cell_elided(cell);
- f << ";\n";
- // Parallel (one-hot) muxes
- } else if (cell->type == ID($pmux)) {
- int width = cell->getParam(ID::WIDTH).as_int();
- int s_width = cell->getParam(ID::S_WIDTH).as_int();
- bool first = true;
- for (int part = 0; part < s_width; part++) {
- f << (first ? indent : " else ");
- first = false;
- f << "if (";
- dump_sigspec_rhs(cell->getPort(ID::S).extract(part));
- f << ") {\n";
- inc_indent();
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Y));
- f << " = ";
- dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width));
- f << ";\n";
- dec_indent();
- f << indent << "}";
- }
- f << " else {\n";
- inc_indent();
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Y));
- f << " = ";
- dump_sigspec_rhs(cell->getPort(ID::A));
- f << ";\n";
- dec_indent();
- f << indent << "}\n";
- // Flip-flops
- } else if (is_ff_cell(cell->type)) {
- if (cell->hasPort(ID::CLK) && cell->getPort(ID::CLK).is_wire()) {
- // Edge-sensitive logic
- RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
- clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
- f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
- << mangle(clk_bit) << ") {\n";
- inc_indent();
- if (cell->type == ID($dffe)) {
- f << indent << "if (";
- dump_sigspec_rhs(cell->getPort(ID::EN));
- f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
- inc_indent();
- }
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Q));
- f << " = ";
- dump_sigspec_rhs(cell->getPort(ID::D));
- f << ";\n";
- if (cell->type == ID($dffe)) {
- dec_indent();
- f << indent << "}\n";
- }
- dec_indent();
- f << indent << "}\n";
- } else if (cell->hasPort(ID::EN)) {
- // Level-sensitive logic
- f << indent << "if (";
- dump_sigspec_rhs(cell->getPort(ID::EN));
- f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
- inc_indent();
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Q));
- f << " = ";
- dump_sigspec_rhs(cell->getPort(ID::D));
- f << ";\n";
- dec_indent();
- f << indent << "}\n";
- }
- if (cell->hasPort(ID::ARST)) {
- // Asynchronous reset (entire coarse cell at once)
- f << indent << "if (";
- dump_sigspec_rhs(cell->getPort(ID::ARST));
- f << " == value<1> {" << cell->getParam(ID::ARST_POLARITY).as_bool() << "u}) {\n";
- inc_indent();
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Q));
- f << " = ";
- dump_const(cell->getParam(ID::ARST_VALUE));
- f << ";\n";
- dec_indent();
- f << indent << "}\n";
- }
- if (cell->hasPort(ID::SET)) {
- // Asynchronous set (for individual bits)
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Q));
- f << " = ";
- dump_sigspec_lhs(cell->getPort(ID::Q));
- f << ".update(";
- dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID::WIDTH).as_int()));
- f << ", ";
- dump_sigspec_rhs(cell->getPort(ID::SET));
- f << (cell->getParam(ID::SET_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
- }
- if (cell->hasPort(ID::CLR)) {
- // Asynchronous clear (for individual bits; priority over set)
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Q));
- f << " = ";
- dump_sigspec_lhs(cell->getPort(ID::Q));
- f << ".update(";
- dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID::WIDTH).as_int()));
- f << ", ";
- dump_sigspec_rhs(cell->getPort(ID::CLR));
- f << (cell->getParam(ID::CLR_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
- }
- // Memory ports
- } else if (cell->type.in(ID($memrd), ID($memwr))) {
- if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
- RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
- clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
- f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
- << mangle(clk_bit) << ") {\n";
- inc_indent();
- }
- RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID::MEMID).decode_string()];
- std::string valid_index_temp = fresh_temporary();
- f << indent << "auto " << valid_index_temp << " = memory_index(";
- dump_sigspec_rhs(cell->getPort(ID::ADDR));
- f << ", " << memory->start_offset << ", " << memory->size << ");\n";
- if (cell->type == ID($memrd)) {
- bool has_enable = cell->getParam(ID::CLK_ENABLE).as_bool() && !cell->getPort(ID::EN).is_fully_ones();
- if (has_enable) {
- f << indent << "if (";
- dump_sigspec_rhs(cell->getPort(ID::EN));
- f << ") {\n";
- inc_indent();
- }
- // The generated code has two bounds checks; one in an assertion, and another that guards the read.
- // This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
- // loudly crashes if an illegal condition is encountered. The assert may be turned off with -NDEBUG not
- // just for release builds, but also to make sure the simulator (which is presumably embedded in some
- // larger program) will never crash the code that calls into it.
- //
- // If assertions are disabled, out of bounds reads are defined to return zero.
- f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
- f << indent << "if(" << valid_index_temp << ".valid) {\n";
- inc_indent();
- if (writable_memories[memory]) {
- std::string addr_temp = fresh_temporary();
- f << indent << "const value<" << cell->getPort(ID::ADDR).size() << "> &" << addr_temp << " = ";
- dump_sigspec_rhs(cell->getPort(ID::ADDR));
- f << ";\n";
- std::string lhs_temp = fresh_temporary();
- f << indent << "value<" << memory->width << "> " << lhs_temp << " = "
- << mangle(memory) << "[" << valid_index_temp << ".index];\n";
- std::vector<const RTLIL::Cell*> memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end());
- std::sort(memwr_cells.begin(), memwr_cells.end(),
- [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
- return a->getParam(ID::PRIORITY).as_int() < b->getParam(ID::PRIORITY).as_int();
- });
- for (auto memwr_cell : memwr_cells) {
- f << indent << "if (" << addr_temp << " == ";
- dump_sigspec_rhs(memwr_cell->getPort(ID::ADDR));
- f << ") {\n";
- inc_indent();
- f << indent << lhs_temp << " = " << lhs_temp;
- f << ".update(";
- dump_sigspec_rhs(memwr_cell->getPort(ID::DATA));
- f << ", ";
- dump_sigspec_rhs(memwr_cell->getPort(ID::EN));
- f << ");\n";
- dec_indent();
- f << indent << "}\n";
- }
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::DATA));
- f << " = " << lhs_temp << ";\n";
- } else {
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::DATA));
- f << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n";
- }
- dec_indent();
- f << indent << "} else {\n";
- inc_indent();
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::DATA));
- f << " = value<" << memory->width << "> {};\n";
- dec_indent();
- f << indent << "}\n";
- if (has_enable) {
- dec_indent();
- f << indent << "}\n";
- }
- } else /*if (cell->type == ID($memwr))*/ {
- log_assert(writable_memories[memory]);
- // See above for rationale of having both the assert and the condition.
- //
- // If assertions are disabled, out of bounds writes are defined to do nothing.
- f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
- f << indent << "if (" << valid_index_temp << ".valid) {\n";
- inc_indent();
- f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, ";
- dump_sigspec_rhs(cell->getPort(ID::DATA));
- f << ", ";
- dump_sigspec_rhs(cell->getPort(ID::EN));
- f << ", " << cell->getParam(ID::PRIORITY).as_int() << ");\n";
- dec_indent();
- f << indent << "}\n";
- }
- if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
- dec_indent();
- f << indent << "}\n";
- }
- // Internal cells
- } else if (is_internal_cell(cell->type)) {
- log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
- // User cells
- } else {
- log_assert(cell->known());
- const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
- for (auto conn : cell->connections())
- if (cell->input(conn.first) && !cell->output(conn.first)) {
- f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << " = ";
- dump_sigspec_rhs(conn.second);
- f << ";\n";
- if (getenv("CXXRTL_VOID_MY_WARRANTY")) {
- // Until we have proper clock tree detection, this really awful hack that opportunistically
- // propagates prev_* values for clocks can be used to estimate how much faster a design could
- // be if only one clock edge was simulated by replacing:
- // top.p_clk = value<1>{0u}; top.step();
- // top.p_clk = value<1>{1u}; top.step();
- // with:
- // top.prev_p_clk = value<1>{0u}; top.p_clk = value<1>{1u}; top.step();
- // Don't rely on this; it will be removed without warning.
- RTLIL::Module *cell_module = cell->module->design->module(cell->type);
- if (cell_module != nullptr && cell_module->wire(conn.first) && conn.second.is_wire()) {
- RTLIL::Wire *cell_module_wire = cell_module->wire(conn.first);
- if (edge_wires[conn.second.as_wire()] && edge_wires[cell_module_wire]) {
- f << indent << mangle(cell) << access << "prev_" << mangle(cell_module_wire) << " = ";
- f << "prev_" << mangle(conn.second.as_wire()) << ";\n";
- }
- }
- }
- } else if (cell->input(conn.first)) {
- f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << ".next = ";
- dump_sigspec_rhs(conn.second);
- f << ";\n";
- }
- auto assign_from_outputs = [&](bool cell_converged) {
- for (auto conn : cell->connections()) {
- if (cell->output(conn.first)) {
- if (conn.second.empty())
- continue; // ignore disconnected ports
- if (is_cxxrtl_sync_port(cell, conn.first))
- continue; // fully sync ports are handled in CELL_SYNC nodes
- f << indent;
- dump_sigspec_lhs(conn.second);
- f << " = " << mangle(cell) << access << mangle_wire_name(conn.first);
- // Similarly to how there is no purpose to buffering cell inputs, there is also no purpose to buffering
- // combinatorial cell outputs in case the cell converges within one cycle. (To convince yourself that
- // this optimization is valid, consider that, since the cell converged within one cycle, it would not
- // have any buffered wires if they were not output ports. Imagine inlining the cell's eval() function,
- // and consider the fate of the localized wires that used to be output ports.)
- //
- // Unlike cell inputs (which are never buffered), it is not possible to know apriori whether the cell
- // (which may be late bound) will converge immediately. Because of this, the choice between using .curr
- // (appropriate for buffered outputs) and .next (appropriate for unbuffered outputs) is made at runtime.
- if (cell_converged && is_cxxrtl_comb_port(cell, conn.first))
- f << ".next;\n";
- else
- f << ".curr;\n";
- }
- }
- };
- f << indent << "if (" << mangle(cell) << access << "eval()) {\n";
- inc_indent();
- assign_from_outputs(/*cell_converged=*/true);
- dec_indent();
- f << indent << "} else {\n";
- inc_indent();
- f << indent << "converged = false;\n";
- assign_from_outputs(/*cell_converged=*/false);
- dec_indent();
- f << indent << "}\n";
- }
- }
-
- void dump_assign(const RTLIL::SigSig &sigsig)
- {
- f << indent;
- dump_sigspec_lhs(sigsig.first);
- f << " = ";
- dump_sigspec_rhs(sigsig.second);
- f << ";\n";
- }
-
- void dump_case_rule(const RTLIL::CaseRule *rule)
- {
- for (auto action : rule->actions)
- dump_assign(action);
- for (auto switch_ : rule->switches)
- dump_switch_rule(switch_);
- }
-
- void dump_switch_rule(const RTLIL::SwitchRule *rule)
- {
- // The switch attributes are printed before the switch condition is captured.
- dump_attrs(rule);
- std::string signal_temp = fresh_temporary();
- f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = ";
- dump_sigspec(rule->signal, /*is_lhs=*/false);
- f << ";\n";
-
- bool first = true;
- for (auto case_ : rule->cases) {
- // The case attributes (for nested cases) are printed before the if/else if/else statement.
- dump_attrs(rule);
- f << indent;
- if (!first)
- f << "} else ";
- first = false;
- if (!case_->compare.empty()) {
- f << "if (";
- bool first = true;
- for (auto &compare : case_->compare) {
- if (!first)
- f << " || ";
- first = false;
- if (compare.is_fully_def()) {
- f << signal_temp << " == ";
- dump_sigspec(compare, /*is_lhs=*/false);
- } else if (compare.is_fully_const()) {
- RTLIL::Const compare_mask, compare_value;
- for (auto bit : compare.as_const()) {
- switch (bit) {
- case RTLIL::S0:
- case RTLIL::S1:
- compare_mask.bits.push_back(RTLIL::S1);
- compare_value.bits.push_back(bit);
- break;
-
- case RTLIL::Sx:
- case RTLIL::Sz:
- case RTLIL::Sa:
- compare_mask.bits.push_back(RTLIL::S0);
- compare_value.bits.push_back(RTLIL::S0);
- break;
-
- default:
- log_assert(false);
- }
- }
- f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
- dump_const(compare_mask);
- f << ") == ";
- dump_const(compare_value);
- } else {
- log_assert(false);
- }
- }
- f << ") ";
- }
- f << "{\n";
- inc_indent();
- dump_case_rule(case_);
- dec_indent();
- }
- f << indent << "}\n";
- }
-
- void dump_process(const RTLIL::Process *proc)
- {
- dump_attrs(proc);
- f << indent << "// process " << proc->name.str() << "\n";
- // The case attributes (for root case) are always empty.
- log_assert(proc->root_case.attributes.empty());
- dump_case_rule(&proc->root_case);
- for (auto sync : proc->syncs) {
- RTLIL::SigBit sync_bit;
- if (!sync->signal.empty()) {
- sync_bit = sync->signal[0];
- sync_bit = sigmaps[sync_bit.wire->module](sync_bit);
- }
-
- pool<std::string> events;
- switch (sync->type) {
- case RTLIL::STp:
- log_assert(sync_bit.wire != nullptr);
- events.insert("posedge_" + mangle(sync_bit));
- break;
- case RTLIL::STn:
- log_assert(sync_bit.wire != nullptr);
- events.insert("negedge_" + mangle(sync_bit));
- break;
- case RTLIL::STe:
- log_assert(sync_bit.wire != nullptr);
- events.insert("posedge_" + mangle(sync_bit));
- events.insert("negedge_" + mangle(sync_bit));
- break;
-
- case RTLIL::STa:
- events.insert("true");
- break;
-
- case RTLIL::ST0:
- case RTLIL::ST1:
- case RTLIL::STg:
- case RTLIL::STi:
- log_assert(false);
- }
- if (!events.empty()) {
- f << indent << "if (";
- bool first = true;
- for (auto &event : events) {
- if (!first)
- f << " || ";
- first = false;
- f << event;
- }
- f << ") {\n";
- inc_indent();
- for (auto action : sync->actions)
- dump_assign(action);
- dec_indent();
- f << indent << "}\n";
- }
- }
- }
-
- void dump_wire(const RTLIL::Wire *wire, bool is_local_context)
- {
- if (elided_wires.count(wire))
- return;
- if (localized_wires.count(wire) != is_local_context)
- return;
-
- if (is_local_context) {
- dump_attrs(wire);
- f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n";
- } else {
- std::string width;
- if (wire->module->has_attribute(ID(cxxrtl_blackbox)) && wire->has_attribute(ID(cxxrtl_width))) {
- width = wire->get_string_attribute(ID(cxxrtl_width));
- } else {
- width = std::to_string(wire->width);
- }
-
- dump_attrs(wire);
- f << indent << (is_input_wire(wire) ? "value" : "wire") << "<" << width << "> " << mangle(wire);
- if (wire->has_attribute(ID::init)) {
- f << " ";
- dump_const_init(wire->attributes.at(ID::init));
- }
- f << ";\n";
- if (edge_wires[wire]) {
- if (is_input_wire(wire)) {
- f << indent << "value<" << width << "> prev_" << mangle(wire);
- if (wire->has_attribute(ID::init)) {
- f << " ";
- dump_const_init(wire->attributes.at(ID::init));
- }
- f << ";\n";
- }
- for (auto edge_type : edge_types) {
- if (edge_type.first.wire == wire) {
- std::string prev, next;
- if (is_input_wire(wire)) {
- prev = "prev_" + mangle(edge_type.first.wire);
- next = mangle(edge_type.first.wire);
- } else {
- prev = mangle(edge_type.first.wire) + ".curr";
- next = mangle(edge_type.first.wire) + ".next";
- }
- prev += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
- next += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
- if (edge_type.second != RTLIL::STn) {
- f << indent << "bool posedge_" << mangle(edge_type.first) << "() const {\n";
- inc_indent();
- f << indent << "return !" << prev << " && " << next << ";\n";
- dec_indent();
- f << indent << "}\n";
- }
- if (edge_type.second != RTLIL::STp) {
- f << indent << "bool negedge_" << mangle(edge_type.first) << "() const {\n";
- inc_indent();
- f << indent << "return " << prev << " && !" << next << ";\n";
- dec_indent();
- f << indent << "}\n";
- }
- }
- }
- }
- }
- }
-
- void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
- {
- vector<const RTLIL::Cell*> init_cells;
- for (auto cell : module->cells())
- if (cell->type == ID($meminit) && cell->getParam(ID::MEMID).decode_string() == memory->name.str())
- init_cells.push_back(cell);
-
- std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
- int a_addr = a->getPort(ID::ADDR).as_int(), b_addr = b->getPort(ID::ADDR).as_int();
- int a_prio = a->getParam(ID::PRIORITY).as_int(), b_prio = b->getParam(ID::PRIORITY).as_int();
- return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr);
- });
-
- dump_attrs(memory);
- f << indent << "memory<" << memory->width << "> " << mangle(memory)
- << " { " << memory->size << "u";
- if (init_cells.empty()) {
- f << " };\n";
- } else {
- f << ",\n";
- inc_indent();
- for (auto cell : init_cells) {
- dump_attrs(cell);
- RTLIL::Const data = cell->getPort(ID::DATA).as_const();
- size_t width = cell->getParam(ID::WIDTH).as_int();
- size_t words = cell->getParam(ID::WORDS).as_int();
- f << indent << "memory<" << memory->width << ">::init<" << words << "> { "
- << stringf("%#x", cell->getPort(ID::ADDR).as_int()) << ", {";
- inc_indent();
- for (size_t n = 0; n < words; n++) {
- if (n % 4 == 0)
- f << "\n" << indent;
- else
- f << " ";
- dump_const(data, width, n * width, /*fixed_width=*/true);
- f << ",";
- }
- dec_indent();
- f << "\n" << indent << "}},\n";
- }
- dec_indent();
- f << indent << "};\n";
- }
- }
-
- void dump_eval_method(RTLIL::Module *module)
- {
- inc_indent();
- f << indent << "bool converged = " << (eval_converges.at(module) ? "true" : "false") << ";\n";
- if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
- for (auto wire : module->wires()) {
- if (edge_wires[wire]) {
- for (auto edge_type : edge_types) {
- if (edge_type.first.wire == wire) {
- if (edge_type.second != RTLIL::STn) {
- f << indent << "bool posedge_" << mangle(edge_type.first) << " = ";
- f << "this->posedge_" << mangle(edge_type.first) << "();\n";
- }
- if (edge_type.second != RTLIL::STp) {
- f << indent << "bool negedge_" << mangle(edge_type.first) << " = ";
- f << "this->negedge_" << mangle(edge_type.first) << "();\n";
- }
- }
- }
- }
- }
- for (auto wire : module->wires())
- dump_wire(wire, /*is_local_context=*/true);
- for (auto node : schedule[module]) {
- switch (node.type) {
- case FlowGraph::Node::Type::CONNECT:
- dump_connect(node.connect);
- break;
- case FlowGraph::Node::Type::CELL_SYNC:
- dump_cell_sync(node.cell);
- break;
- case FlowGraph::Node::Type::CELL_EVAL:
- dump_cell_eval(node.cell);
- break;
- case FlowGraph::Node::Type::PROCESS:
- dump_process(node.process);
- break;
- }
- }
- }
- f << indent << "return converged;\n";
- dec_indent();
- }
-
- void dump_commit_method(RTLIL::Module *module)
- {
- inc_indent();
- f << indent << "bool changed = false;\n";
- for (auto wire : module->wires()) {
- if (elided_wires.count(wire) || localized_wires.count(wire))
- continue;
- if (is_input_wire(wire)) {
- if (edge_wires[wire])
- f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n";
- continue;
- }
- if (!module->get_bool_attribute(ID(cxxrtl_blackbox)) || wire->port_id != 0)
- f << indent << "changed |= " << mangle(wire) << ".commit();\n";
- }
- if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
- for (auto memory : module->memories) {
- if (!writable_memories[memory.second])
- continue;
- f << indent << "changed |= " << mangle(memory.second) << ".commit();\n";
- }
- for (auto cell : module->cells()) {
- if (is_internal_cell(cell->type))
- continue;
- const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
- f << indent << "changed |= " << mangle(cell) << access << "commit();\n";
- }
- }
- f << indent << "return changed;\n";
- dec_indent();
- }
-
- void dump_debug_info_method(RTLIL::Module *module)
- {
- inc_indent();
- f << indent << "assert(path.empty() || path[path.size() - 1] == ' ');\n";
- for (auto wire : module->wires()) {
- if (wire->name[0] != '\\')
- continue;
- if (localized_wires.count(wire))
- continue;
- f << indent << "items.emplace(path + " << escape_cxx_string(get_hdl_name(wire));
- f << ", debug_item(" << mangle(wire) << "));\n";
- }
- for (auto &memory_it : module->memories) {
- if (memory_it.first[0] != '\\')
- continue;
- f << indent << "items.emplace(path + " << escape_cxx_string(get_hdl_name(memory_it.second));
- f << ", debug_item(" << mangle(memory_it.second) << "));\n";
- }
- for (auto cell : module->cells()) {
- if (is_internal_cell(cell->type))
- continue;
- const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
- f << indent << mangle(cell) << access << "debug_info(items, ";
- f << "path + " << escape_cxx_string(get_hdl_name(cell) + ' ') << ");\n";
- }
- dec_indent();
- }
-
- void dump_metadata_map(const dict<RTLIL::IdString, RTLIL::Const> &metadata_map)
- {
- if (metadata_map.empty()) {
- f << "metadata_map()";
- return;
- }
- f << "metadata_map({\n";
- inc_indent();
- for (auto metadata_item : metadata_map) {
- if (!metadata_item.first.begins_with("\\"))
- continue;
- f << indent << "{ " << escape_cxx_string(metadata_item.first.str().substr(1)) << ", ";
- if (metadata_item.second.flags & RTLIL::CONST_FLAG_REAL) {
- f << std::showpoint << std::stod(metadata_item.second.decode_string()) << std::noshowpoint;
- } else if (metadata_item.second.flags & RTLIL::CONST_FLAG_STRING) {
- f << escape_cxx_string(metadata_item.second.decode_string());
- } else {
- f << metadata_item.second.as_int(/*is_signed=*/metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED);
- if (!(metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED))
- f << "u";
- }
- f << " },\n";
- }
- dec_indent();
- f << indent << "})";
- }
-
- void dump_module_intf(RTLIL::Module *module)
- {
- dump_attrs(module);
- if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
- if (module->has_attribute(ID(cxxrtl_template)))
- f << indent << "template" << template_params(module, /*is_decl=*/true) << "\n";
- f << indent << "struct " << mangle(module) << " : public module {\n";
- inc_indent();
- for (auto wire : module->wires()) {
- if (wire->port_id != 0)
- dump_wire(wire, /*is_local_context=*/false);
- }
- f << "\n";
- f << indent << "bool eval() override {\n";
- dump_eval_method(module);
- f << indent << "}\n";
- f << "\n";
- f << indent << "bool commit() override {\n";
- dump_commit_method(module);
- f << indent << "}\n";
- f << "\n";
- if (debug_info) {
- f << indent << "void debug_info(debug_items &items, std::string path = \"\") override {\n";
- dump_debug_info_method(module);
- f << indent << "}\n";
- f << "\n";
- }
- f << indent << "static std::unique_ptr<" << mangle(module);
- f << template_params(module, /*is_decl=*/false) << "> ";
- f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n";
- dec_indent();
- f << indent << "}; // struct " << mangle(module) << "\n";
- f << "\n";
- if (blackbox_specializations.count(module)) {
- // If templated black boxes are used, the constructor of any module which includes the black box cell
- // (which calls the declared but not defined in the generated code `create` function) may only be used
- // if (a) the create function is defined in the same translation unit, or (b) the create function has
- // a forward-declared explicit specialization.
- //
- // Option (b) makes it possible to have the generated code and the black box implementation in different
- // translation units, which is convenient. Of course, its downside is that black boxes must predefine
- // a specialization for every combination of parameters the generated code may use; but since the main
- // purpose of templated black boxes is abstracting over datapath width, it is expected that there would
- // be very few such combinations anyway.
- for (auto specialization : blackbox_specializations[module]) {
- f << indent << "template<>\n";
- f << indent << "std::unique_ptr<" << mangle(module) << specialization << "> ";
- f << mangle(module) << specialization << "::";
- f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n";
- f << "\n";
- }
- }
- } else {
- f << indent << "struct " << mangle(module) << " : public module {\n";
- inc_indent();
- for (auto wire : module->wires())
- dump_wire(wire, /*is_local_context=*/false);
- f << "\n";
- bool has_memories = false;
- for (auto memory : module->memories) {
- dump_memory(module, memory.second);
- has_memories = true;
- }
- if (has_memories)
- f << "\n";
- bool has_cells = false;
- for (auto cell : module->cells()) {
- if (is_internal_cell(cell->type))
- continue;
- dump_attrs(cell);
- RTLIL::Module *cell_module = module->design->module(cell->type);
- log_assert(cell_module != nullptr);
- if (cell_module->get_bool_attribute(ID(cxxrtl_blackbox))) {
- f << indent << "std::unique_ptr<" << mangle(cell_module) << template_args(cell) << "> ";
- f << mangle(cell) << " = " << mangle(cell_module) << template_args(cell);
- f << "::create(" << escape_cxx_string(get_hdl_name(cell)) << ", ";
- dump_metadata_map(cell->parameters);
- f << ", ";
- dump_metadata_map(cell->attributes);
- f << ");\n";
- } else {
- f << indent << mangle(cell_module) << " " << mangle(cell) << ";\n";
- }
- has_cells = true;
- }
- if (has_cells)
- f << "\n";
- f << indent << "bool eval() override;\n";
- f << indent << "bool commit() override;\n";
- if (debug_info)
- f << indent << "void debug_info(debug_items &items, std::string path = \"\") override;\n";
- dec_indent();
- f << indent << "}; // struct " << mangle(module) << "\n";
- f << "\n";
- }
- }
-
- void dump_module_impl(RTLIL::Module *module)
- {
- if (module->get_bool_attribute(ID(cxxrtl_blackbox)))
- return;
- f << indent << "bool " << mangle(module) << "::eval() {\n";
- dump_eval_method(module);
- f << indent << "}\n";
- f << "\n";
- f << indent << "bool " << mangle(module) << "::commit() {\n";
- dump_commit_method(module);
- f << indent << "}\n";
- f << "\n";
- if (debug_info) {
- f << indent << "void " << mangle(module) << "::debug_info(debug_items &items, std::string path) {\n";
- dump_debug_info_method(module);
- f << indent << "}\n";
- f << "\n";
- }
- }
-
- void dump_design(RTLIL::Design *design)
- {
- RTLIL::Module *top_module = nullptr;
- std::vector<RTLIL::Module*> modules;
- TopoSort<RTLIL::Module*> topo_design;
- for (auto module : design->modules()) {
- if (!design->selected_module(module))
- continue;
- if (module->get_bool_attribute(ID(cxxrtl_blackbox)))
- modules.push_back(module); // cxxrtl blackboxes first
- if (module->get_blackbox_attribute() || module->get_bool_attribute(ID(cxxrtl_blackbox)))
- continue;
- if (module->get_bool_attribute(ID::top))
- top_module = module;
-
- topo_design.node(module);
- for (auto cell : module->cells()) {
- if (is_internal_cell(cell->type) || is_cxxrtl_blackbox_cell(cell))
- continue;
- RTLIL::Module *cell_module = design->module(cell->type);
- log_assert(cell_module != nullptr);
- topo_design.edge(cell_module, module);
- }
- }
- log_assert(topo_design.sort());
- modules.insert(modules.end(), topo_design.sorted.begin(), topo_design.sorted.end());
-
- if (split_intf) {
- // The only thing more depraved than include guards, is mangling filenames to turn them into include guards.
- std::string include_guard = design_ns + "_header";
- std::transform(include_guard.begin(), include_guard.end(), include_guard.begin(), ::toupper);
-
- f << "#ifndef " << include_guard << "\n";
- f << "#define " << include_guard << "\n";
- f << "\n";
- if (top_module != nullptr && debug_info) {
- f << "#include <backends/cxxrtl/cxxrtl_capi.h>\n";
- f << "\n";
- f << "#ifdef __cplusplus\n";
- f << "extern \"C\" {\n";
- f << "#endif\n";
- f << "\n";
- f << "cxxrtl_toplevel " << design_ns << "_create();\n";
- f << "\n";
- f << "#ifdef __cplusplus\n";
- f << "}\n";
- f << "#endif\n";
- f << "\n";
- } else {
- f << "// The CXXRTL C API is not available because the design is built without debug information.\n";
- f << "\n";
- }
- f << "#ifdef __cplusplus\n";
- f << "\n";
- f << "#include <backends/cxxrtl/cxxrtl.h>\n";
- f << "\n";
- f << "using namespace cxxrtl;\n";
- f << "\n";
- f << "namespace " << design_ns << " {\n";
- f << "\n";
- for (auto module : modules)
- dump_module_intf(module);
- f << "} // namespace " << design_ns << "\n";
- f << "\n";
- f << "#endif // __cplusplus\n";
- f << "\n";
- f << "#endif\n";
- *intf_f << f.str(); f.str("");
- }
-
- if (split_intf)
- f << "#include \"" << intf_filename << "\"\n";
- else
- f << "#include <backends/cxxrtl/cxxrtl.h>\n";
- f << "\n";
- f << "#if defined(CXXRTL_INCLUDE_CAPI_IMPL) || \\\n";
- f << " defined(CXXRTL_INCLUDE_VCD_CAPI_IMPL)\n";
- f << "#include <backends/cxxrtl/cxxrtl_capi.cc>\n";
- f << "#endif\n";
- f << "\n";
- f << "#if defined(CXXRTL_INCLUDE_VCD_CAPI_IMPL)\n";
- f << "#include <backends/cxxrtl/cxxrtl_vcd_capi.cc>\n";
- f << "#endif\n";
- f << "\n";
- f << "using namespace cxxrtl_yosys;\n";
- f << "\n";
- f << "namespace " << design_ns << " {\n";
- f << "\n";
- for (auto module : modules) {
- if (!split_intf)
- dump_module_intf(module);
- dump_module_impl(module);
- }
- f << "} // namespace " << design_ns << "\n";
- f << "\n";
- if (top_module != nullptr && debug_info) {
- f << "cxxrtl_toplevel " << design_ns << "_create() {\n";
- inc_indent();
- f << indent << "return new _cxxrtl_toplevel { ";
- f << "std::make_unique<" << design_ns << "::" << mangle(top_module) << ">()";
- f << " };\n";
- dec_indent();
- f << "}\n";
- }
-
- *impl_f << f.str(); f.str("");
- }
-
- // Edge-type sync rules require us to emit edge detectors, which require coordination between
- // eval and commit phases. To do this we need to collect them upfront.
- //
- // Note that the simulator commit phase operates at wire granularity but edge-type sync rules
- // operate at wire bit granularity; it is possible to have code similar to:
- // wire [3:0] clocks;
- // always @(posedge clocks[0]) ...
- // To handle this we track edge sensitivity both for wires and wire bits.
- void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
- {
- signal = sigmap(signal);
- log_assert(signal.is_wire() && signal.is_bit());
- log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
-
- RTLIL::SigBit sigbit = signal[0];
- if (!edge_types.count(sigbit))
- edge_types[sigbit] = type;
- else if (edge_types[sigbit] != type)
- edge_types[sigbit] = RTLIL::STe;
- edge_wires.insert(signal.as_wire());
- }
-
- void analyze_design(RTLIL::Design *design)
- {
- bool has_feedback_arcs = false;
- bool has_buffered_wires = false;
-
- for (auto module : design->modules()) {
- if (!design->selected_module(module))
- continue;
-
- SigMap &sigmap = sigmaps[module];
- sigmap.set(module);
-
- if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
- for (auto port : module->ports) {
- RTLIL::Wire *wire = module->wire(port);
- if (wire->has_attribute(ID(cxxrtl_edge))) {
- RTLIL::Const edge_attr = wire->attributes[ID(cxxrtl_edge)];
- if (!(edge_attr.flags & RTLIL::CONST_FLAG_STRING) || (int)edge_attr.decode_string().size() != GetSize(wire))
- log_cmd_error("Attribute `cxxrtl_edge' of port `%s.%s' is not a string with one character per bit.\n",
- log_id(module), log_signal(wire));
-
- std::string edges = wire->get_string_attribute(ID(cxxrtl_edge));
- for (int i = 0; i < GetSize(wire); i++) {
- RTLIL::SigSpec wire_sig = wire;
- switch (edges[i]) {
- case '-': break;
- case 'p': register_edge_signal(sigmap, wire_sig[i], RTLIL::STp); break;
- case 'n': register_edge_signal(sigmap, wire_sig[i], RTLIL::STn); break;
- case 'a': register_edge_signal(sigmap, wire_sig[i], RTLIL::STe); break;
- default:
- log_cmd_error("Attribute `cxxrtl_edge' of port `%s.%s' contains specifiers "
- "other than '-', 'p', 'n', or 'a'.\n",
- log_id(module), log_signal(wire));
- }
- }
- }
- }
-
- // Black boxes converge by default, since their implementations are quite unlikely to require
- // internal propagation of comb signals.
- eval_converges[module] = true;
- continue;
- }
-
- FlowGraph flow;
-
- for (auto conn : module->connections())
- flow.add_node(conn);
-
- dict<const RTLIL::Cell*, FlowGraph::Node*> memrw_cell_nodes;
- dict<std::pair<RTLIL::SigBit, const RTLIL::Memory*>,
- pool<const RTLIL::Cell*>> memwr_per_domain;
- for (auto cell : module->cells()) {
- if (!cell->known())
- log_cmd_error("Unknown cell `%s'.\n", log_id(cell->type));
-
- RTLIL::Module *cell_module = design->module(cell->type);
- if (cell_module &&
- cell_module->get_blackbox_attribute() &&
- !cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
- log_cmd_error("External blackbox cell `%s' is not marked as a CXXRTL blackbox.\n", log_id(cell->type));
-
- if (cell_module &&
- cell_module->get_bool_attribute(ID(cxxrtl_blackbox)) &&
- cell_module->get_bool_attribute(ID(cxxrtl_template)))
- blackbox_specializations[cell_module].insert(template_args(cell));
-
- FlowGraph::Node *node = flow.add_node(cell);
-
- // Various DFF cells are treated like posedge/negedge processes, see above for details.
- if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) {
- if (cell->getPort(ID::CLK).is_wire())
- register_edge_signal(sigmap, cell->getPort(ID::CLK),
- cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
- }
- // Similar for memory port cells.
- if (cell->type.in(ID($memrd), ID($memwr))) {
- if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
- if (cell->getPort(ID::CLK).is_wire())
- register_edge_signal(sigmap, cell->getPort(ID::CLK),
- cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
- }
- memrw_cell_nodes[cell] = node;
- }
- // Optimize access to read-only memories.
- if (cell->type == ID($memwr))
- writable_memories.insert(module->memories[cell->getParam(ID::MEMID).decode_string()]);
- // Collect groups of memory write ports in the same domain.
- if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire()) {
- RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
- const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
- memwr_per_domain[{clk_bit, memory}].insert(cell);
- }
- // Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence
- // of RTLIL memory objects and $memrd/$memwr/$meminit cells.
- if (cell->type.in(ID($mem)))
- log_assert(false);
- }
- for (auto cell : module->cells()) {
- // Collect groups of memory write ports read by every transparent read port.
- if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire() &&
- cell->getParam(ID::TRANSPARENT).as_bool()) {
- RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
- const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
- for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) {
- transparent_for[cell].insert(memwr_cell);
- // Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell
- // in the same domain, which isn't directly visible in the netlist. Add these uses explicitly.
- flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::EN));
- flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::ADDR));
- flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::DATA));
- }
- }
- }
-
- for (auto proc : module->processes) {
- flow.add_node(proc.second);
-
- for (auto sync : proc.second->syncs)
- switch (sync->type) {
- // Edge-type sync rules require pre-registration.
- case RTLIL::STp:
- case RTLIL::STn:
- case RTLIL::STe:
- register_edge_signal(sigmap, sync->signal, sync->type);
- break;
-
- // Level-type sync rules require no special handling.
- case RTLIL::ST0:
- case RTLIL::ST1:
- case RTLIL::STa:
- break;
-
- case RTLIL::STg:
- log_cmd_error("Global clock is not supported.\n");
-
- // Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire
- // attribute regardless of input.
- case RTLIL::STi:
- log_assert(false);
- }
- }
-
- for (auto wire : module->wires()) {
- if (!flow.is_elidable(wire)) continue;
- if (wire->port_id != 0) continue;
- if (wire->get_bool_attribute(ID::keep)) continue;
- if (wire->name.begins_with("$") && !elide_internal) continue;
- if (wire->name.begins_with("\\") && !elide_public) continue;
- if (edge_wires[wire]) continue;
- log_assert(flow.wire_comb_defs[wire].size() == 1);
- elided_wires[wire] = **flow.wire_comb_defs[wire].begin();
- }
-
- dict<FlowGraph::Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_defs;
- for (auto wire_comb_def : flow.wire_comb_defs)
- for (auto node : wire_comb_def.second)
- node_defs[node].insert(wire_comb_def.first);
-
- Scheduler<FlowGraph::Node> scheduler;
- dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_map;
- for (auto node : flow.nodes)
- node_map[node] = scheduler.add(node);
- for (auto node_def : node_defs) {
- auto vertex = node_map[node_def.first];
- for (auto wire : node_def.second)
- for (auto succ_node : flow.wire_uses[wire]) {
- auto succ_vertex = node_map[succ_node];
- vertex->succs.insert(succ_vertex);
- succ_vertex->preds.insert(vertex);
- }
- }
-
- auto eval_order = scheduler.schedule();
- pool<FlowGraph::Node*, hash_ptr_ops> evaluated;
- pool<const RTLIL::Wire*> feedback_wires;
- for (auto vertex : eval_order) {
- auto node = vertex->data;
- schedule[module].push_back(*node);
- // Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi
- // is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be
- // caused by a true logic loop, but usually are a benign result of dependency tracking that works
- // on wire, not bit, level. Nevertheless, feedback wires cannot be localized.
- evaluated.insert(node);
- for (auto wire : node_defs[node])
- for (auto succ_node : flow.wire_uses[wire])
- if (evaluated[succ_node]) {
- feedback_wires.insert(wire);
- // Feedback wires may never be elided because feedback requires state, but the point of elision
- // (and localization) is to eliminate state.
- elided_wires.erase(wire);
- }
- }
-
- if (!feedback_wires.empty()) {
- has_feedback_arcs = true;
- log("Module `%s' contains feedback arcs through wires:\n", log_id(module));
- for (auto wire : feedback_wires)
- log(" %s\n", log_id(wire));
- log("\n");
- }
-
- for (auto wire : module->wires()) {
- if (feedback_wires[wire]) continue;
- if (wire->port_id != 0) continue;
- if (wire->get_bool_attribute(ID::keep)) continue;
- if (wire->name.begins_with("$") && !localize_internal) continue;
- if (wire->name.begins_with("\\") && !localize_public) continue;
- if (edge_wires[wire]) continue;
- if (flow.wire_sync_defs.count(wire) > 0) continue;
- localized_wires.insert(wire);
- }
-
- // For maximum performance, the state of the simulation (which is the same as the set of its double buffered
- // wires, since using a singly buffered wire for any kind of state introduces a race condition) should contain
- // no wires attached to combinatorial outputs. Feedback wires, by definition, make that impossible. However,
- // it is possible that a design with no feedback arcs would end up with doubly buffered wires in such cases
- // as a wire with multiple drivers where one of them is combinatorial and the other is synchronous. Such designs
- // also require more than one delta cycle to converge.
- pool<const RTLIL::Wire*> buffered_wires;
- for (auto wire : module->wires()) {
- if (flow.wire_comb_defs[wire].size() > 0 && !elided_wires.count(wire) && !localized_wires[wire]) {
- if (!feedback_wires[wire])
- buffered_wires.insert(wire);
- }
- }
- if (!buffered_wires.empty()) {
- has_buffered_wires = true;
- log("Module `%s' contains buffered combinatorial wires:\n", log_id(module));
- for (auto wire : buffered_wires)
- log(" %s\n", log_id(wire));
- log("\n");
- }
-
- eval_converges[module] = feedback_wires.empty() && buffered_wires.empty();
- }
- if (has_feedback_arcs || has_buffered_wires) {
- // Although both non-feedback buffered combinatorial wires and apparent feedback wires may be eliminated
- // by optimizing the design, if after `proc; flatten` there are any feedback wires remaining, it is very
- // likely that these feedback wires are indicative of a true logic loop, so they get emphasized in the message.
- const char *why_pessimistic = nullptr;
- if (has_feedback_arcs)
- why_pessimistic = "feedback wires";
- else if (has_buffered_wires)
- why_pessimistic = "buffered combinatorial wires";
- log_warning("Design contains %s, which require delta cycles during evaluation.\n", why_pessimistic);
- if (!max_opt_level)
- log("Increasing the optimization level may eliminate %s from the design.\n", why_pessimistic);
- }
- }
-
- void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem)
- {
- has_sync_init = has_packed_mem = false;
-
- for (auto module : design->modules()) {
- if (module->get_blackbox_attribute() && !module->has_attribute(ID(cxxrtl_blackbox)))
- continue;
-
- if (!design->selected_whole_module(module))
- if (design->selected_module(module))
- log_cmd_error("Can't handle partially selected module `%s'!\n", id2cstr(module->name));
- if (!design->selected_module(module))
- continue;
-
- for (auto proc : module->processes)
- for (auto sync : proc.second->syncs)
- if (sync->type == RTLIL::STi)
- has_sync_init = true;
-
- for (auto cell : module->cells())
- if (cell->type == ID($mem))
- has_packed_mem = true;
- }
- }
-
- void prepare_design(RTLIL::Design *design)
- {
- bool did_anything = false;
- bool has_sync_init, has_packed_mem;
- log_push();
- check_design(design, has_sync_init, has_packed_mem);
- if (run_proc_flatten) {
- Pass::call(design, "proc");
- Pass::call(design, "flatten");
- did_anything = true;
- } else if (has_sync_init) {
- // We're only interested in proc_init, but it depends on proc_prune and proc_clean, so call those
- // in case they weren't already. (This allows `yosys foo.v -o foo.cc` to work.)
- Pass::call(design, "proc_prune");
- Pass::call(design, "proc_clean");
- Pass::call(design, "proc_init");
- did_anything = true;
- }
- if (has_packed_mem) {
- Pass::call(design, "memory_unpack");
- did_anything = true;
- }
- // Recheck the design if it was modified.
- if (has_sync_init || has_packed_mem)
- check_design(design, has_sync_init, has_packed_mem);
- log_assert(!(has_sync_init || has_packed_mem));
- log_pop();
- if (did_anything)
- log_spacer();
- analyze_design(design);
- }
-};
-
-struct CxxrtlBackend : public Backend {
- static const int DEFAULT_OPT_LEVEL = 5;
- static const int DEFAULT_DEBUG_LEVEL = 1;
-
- CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
- void help() YS_OVERRIDE
- {
- // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
- log("\n");
- log(" write_cxxrtl [options] [filename]\n");
- log("\n");
- log("Write C++ code that simulates the design. The generated code requires a driver\n");
- log("that instantiates the design, toggles its clock, and interacts with its ports.\n");
- log("\n");
- log("The following driver may be used as an example for a design with a single clock\n");
- log("driving rising edge triggered flip-flops:\n");
- log("\n");
- log(" #include \"top.cc\"\n");
- log("\n");
- log(" int main() {\n");
- log(" cxxrtl_design::p_top top;\n");
- log(" top.step();\n");
- log(" while (1) {\n");
- log(" /* user logic */\n");
- log(" top.p_clk = value<1> {0u};\n");
- log(" top.step();\n");
- log(" top.p_clk = value<1> {1u};\n");
- log(" top.step();\n");
- log(" }\n");
- log(" }\n");
- log("\n");
- log("Note that CXXRTL simulations, just like the hardware they are simulating, are\n");
- log("subject to race conditions. If, in the example above, the user logic would run\n");
- log("simultaneously with the rising edge of the clock, the design would malfunction.\n");
- log("\n");
- log("This backend supports replacing parts of the design with black boxes implemented\n");
- log("in C++. If a module marked as a CXXRTL black box, its implementation is ignored,\n");
- log("and the generated code consists only of an interface and a factory function.\n");
- log("The driver must implement the factory function that creates an implementation of\n");
- log("the black box, taking into account the parameters it is instantiated with.\n");
- log("\n");
- log("For example, the following Verilog code defines a CXXRTL black box interface for\n");
- log("a synchronous debug sink:\n");
- log("\n");
- log(" (* cxxrtl_blackbox *)\n");
- log(" module debug(...);\n");
- log(" (* cxxrtl_edge = \"p\" *) input clk;\n");
- log(" input en;\n");
- log(" input [7:0] i_data;\n");
- log(" (* cxxrtl_sync *) output [7:0] o_data;\n");
- log(" endmodule\n");
- log("\n");
- log("For this HDL interface, this backend will generate the following C++ interface:\n");
- log("\n");
- log(" struct bb_p_debug : public module {\n");
- log(" value<1> p_clk;\n");
- log(" bool posedge_p_clk() const { /* ... */ }\n");
- log(" value<1> p_en;\n");
- log(" value<8> p_i_data;\n");
- log(" wire<8> p_o_data;\n");
- log("\n");
- log(" bool eval() override;\n");
- log(" bool commit() override;\n");
- log("\n");
- log(" static std::unique_ptr<bb_p_debug>\n");
- log(" create(std::string name, metadata_map parameters, metadata_map attributes);\n");
- log(" };\n");
- log("\n");
- log("The `create' function must be implemented by the driver. For example, it could\n");
- log("always provide an implementation logging the values to standard error stream:\n");
- log("\n");
- log(" namespace cxxrtl_design {\n");
- log("\n");
- log(" struct stderr_debug : public bb_p_debug {\n");
- log(" bool eval() override {\n");
- log(" if (posedge_p_clk() && p_en)\n");
- log(" fprintf(stderr, \"debug: %%02x\\n\", p_i_data.data[0]);\n");
- log(" p_o_data.next = p_i_data;\n");
- log(" return bb_p_debug::eval();\n");
- log(" }\n");
- log(" };\n");
- log("\n");
- log(" std::unique_ptr<bb_p_debug>\n");
- log(" bb_p_debug::create(std::string name, cxxrtl::metadata_map parameters,\n");
- log(" cxxrtl::metadata_map attributes) {\n");
- log(" return std::make_unique<stderr_debug>();\n");
- log(" }\n");
- log("\n");
- log(" }\n");
- log("\n");
- log("For complex applications of black boxes, it is possible to parameterize their\n");
- log("port widths. For example, the following Verilog code defines a CXXRTL black box\n");
- log("interface for a configurable width debug sink:\n");
- log("\n");
- log(" (* cxxrtl_blackbox, cxxrtl_template = \"WIDTH\" *)\n");
- log(" module debug(...);\n");
- log(" parameter WIDTH = 8;\n");
- log(" (* cxxrtl_edge = \"p\" *) input clk;\n");
- log(" input en;\n");
- log(" (* cxxrtl_width = \"WIDTH\" *) input [WIDTH - 1:0] i_data;\n");
- log(" (* cxxrtl_width = \"WIDTH\" *) output [WIDTH - 1:0] o_data;\n");
- log(" endmodule\n");
- log("\n");
- log("For this parametric HDL interface, this backend will generate the following C++\n");
- log("interface (only the differences are shown):\n");
- log("\n");
- log(" template<size_t WIDTH>\n");
- log(" struct bb_p_debug : public module {\n");
- log(" // ...\n");
- log(" value<WIDTH> p_i_data;\n");
- log(" wire<WIDTH> p_o_data;\n");
- log(" // ...\n");
- log(" static std::unique_ptr<bb_p_debug<WIDTH>>\n");
- log(" create(std::string name, metadata_map parameters, metadata_map attributes);\n");
- log(" };\n");
- log("\n");
- log("The `create' function must be implemented by the driver, specialized for every\n");
- log("possible combination of template parameters. (Specialization is necessary to\n");
- log("enable separate compilation of generated code and black box implementations.)\n");
- log("\n");
- log(" template<size_t SIZE>\n");
- log(" struct stderr_debug : public bb_p_debug<SIZE> {\n");
- log(" // ...\n");
- log(" };\n");
- log("\n");
- log(" template<>\n");
- log(" std::unique_ptr<bb_p_debug<8>>\n");
- log(" bb_p_debug<8>::create(std::string name, cxxrtl::metadata_map parameters,\n");
- log(" cxxrtl::metadata_map attributes) {\n");
- log(" return std::make_unique<stderr_debug<8>>();\n");
- log(" }\n");
- log("\n");
- log("The following attributes are recognized by this backend:\n");
- log("\n");
- log(" cxxrtl_blackbox\n");
- log(" only valid on modules. if specified, the module contents are ignored,\n");
- log(" and the generated code includes only the module interface and a factory\n");
- log(" function, which will be called to instantiate the module.\n");
- log("\n");
- log(" cxxrtl_edge\n");
- log(" only valid on inputs of black boxes. must be one of \"p\", \"n\", \"a\".\n");
- log(" if specified on signal `clk`, the generated code includes edge detectors\n");
- log(" `posedge_p_clk()` (if \"p\"), `negedge_p_clk()` (if \"n\"), or both (if\n");
- log(" \"a\"), simplifying implementation of clocked black boxes.\n");
- log("\n");
- log(" cxxrtl_template\n");
- log(" only valid on black boxes. must contain a space separated sequence of\n");
- log(" identifiers that have a corresponding black box parameters. for each\n");
- log(" of them, the generated code includes a `size_t` template parameter.\n");
- log("\n");
- log(" cxxrtl_width\n");
- log(" only valid on ports of black boxes. must be a constant expression, which\n");
- log(" is directly inserted into generated code.\n");
- log("\n");
- log(" cxxrtl_comb, cxxrtl_sync\n");
- log(" only valid on outputs of black boxes. if specified, indicates that every\n");
- log(" bit of the output port is driven, correspondingly, by combinatorial or\n");
- log(" synchronous logic. this knowledge is used for scheduling optimizations.\n");
- log(" if neither is specified, the output will be pessimistically treated as\n");
- log(" driven by both combinatorial and synchronous logic.\n");
- log("\n");
- log("The following options are supported by this backend:\n");
- log("\n");
- log(" -header\n");
- log(" generate separate interface (.h) and implementation (.cc) files.\n");
- log(" if specified, the backend must be called with a filename, and filename\n");
- log(" of the interface is derived from filename of the implementation.\n");
- log(" otherwise, interface and implementation are generated together.\n");
- log("\n");
- log(" -namespace <ns-name>\n");
- log(" place the generated code into namespace <ns-name>. if not specified,\n");
- log(" \"cxxrtl_design\" is used.\n");
- log("\n");
- log(" -O <level>\n");
- log(" set the optimization level. the default is -O%d. higher optimization\n", DEFAULT_OPT_LEVEL);
- log(" levels dramatically decrease compile and run time, and highest level\n");
- log(" possible for a design should be used.\n");
- log("\n");
- log(" -O0\n");
- log(" no optimization.\n");
- log("\n");
- log(" -O1\n");
- log(" elide internal wires if possible.\n");
- log("\n");
- log(" -O2\n");
- log(" like -O1, and localize internal wires if possible.\n");
- log("\n");
- log(" -O3\n");
- log(" like -O2, and elide public wires not marked (*keep*) if possible.\n");
- log("\n");
- log(" -O4\n");
- log(" like -O3, and localize public wires not marked (*keep*) if possible.\n");
- log("\n");
- log(" -O5\n");
- log(" like -O4, and run `proc; flatten` first.\n");
- log("\n");
- log(" -g <level>\n");
- log(" set the debug level. the default is -g%d. higher debug levels provide\n", DEFAULT_DEBUG_LEVEL);
- log(" more visibility and generate more code, but do not pessimize evaluation.\n");
- log("\n");
- log(" -g0\n");
- log(" no debug information.\n");
- log("\n");
- log(" -g1\n");
- log(" debug information for non-localized public wires.\n");
- log("\n");
- }
-
- void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
- {
- int opt_level = DEFAULT_OPT_LEVEL;
- int debug_level = DEFAULT_DEBUG_LEVEL;
- CxxrtlWorker worker;
-
- log_header(design, "Executing CXXRTL backend.\n");
-
- size_t argidx;
- for (argidx = 1; argidx < args.size(); argidx++)
- {
- if (args[argidx] == "-O" && argidx+1 < args.size()) {
- opt_level = std::stoi(args[++argidx]);
- continue;
- }
- if (args[argidx].substr(0, 2) == "-O" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
- opt_level = std::stoi(args[argidx].substr(2));
- continue;
- }
- if (args[argidx] == "-g" && argidx+1 < args.size()) {
- debug_level = std::stoi(args[++argidx]);
- continue;
- }
- if (args[argidx].substr(0, 2) == "-g" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
- debug_level = std::stoi(args[argidx].substr(2));
- continue;
- }
- if (args[argidx] == "-header") {
- worker.split_intf = true;
- continue;
- }
- if (args[argidx] == "-namespace" && argidx+1 < args.size()) {
- worker.design_ns = args[++argidx];
- continue;
- }
- break;
- }
- extra_args(f, filename, args, argidx);
-
- switch (opt_level) {
- // the highest level here must match DEFAULT_OPT_LEVEL
- case 5:
- worker.max_opt_level = true;
- worker.run_proc_flatten = true;
- YS_FALLTHROUGH
- case 4:
- worker.localize_public = true;
- YS_FALLTHROUGH
- case 3:
- worker.elide_public = true;
- YS_FALLTHROUGH
- case 2:
- worker.localize_internal = true;
- YS_FALLTHROUGH
- case 1:
- worker.elide_internal = true;
- YS_FALLTHROUGH
- case 0:
- break;
- default:
- log_cmd_error("Invalid optimization level %d.\n", opt_level);
- }
-
- switch (debug_level) {
- // the highest level here must match DEFAULT_DEBUG_LEVEL
- case 1:
- worker.debug_info = true;
- YS_FALLTHROUGH
- case 0:
- break;
- default:
- log_cmd_error("Invalid optimization level %d.\n", opt_level);
- }
-
- std::ofstream intf_f;
- if (worker.split_intf) {
- if (filename == "<stdout>")
- log_cmd_error("Option -header must be used with a filename.\n");
-
- worker.intf_filename = filename.substr(0, filename.rfind('.')) + ".h";
- intf_f.open(worker.intf_filename, std::ofstream::trunc);
- if (intf_f.fail())
- log_cmd_error("Can't open file `%s' for writing: %s\n",
- worker.intf_filename.c_str(), strerror(errno));
-
- worker.intf_f = &intf_f;
- }
- worker.impl_f = f;
-
- worker.prepare_design(design);
- worker.dump_design(design);
- }
-} CxxrtlBackend;
-
-PRIVATE_NAMESPACE_END
--- /dev/null
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+#include "kernel/rtlil.h"
+#include "kernel/register.h"
+#include "kernel/sigtools.h"
+#include "kernel/utils.h"
+#include "kernel/celltypes.h"
+#include "kernel/log.h"
+
+USING_YOSYS_NAMESPACE
+PRIVATE_NAMESPACE_BEGIN
+
+// [[CITE]]
+// Peter Eades; Xuemin Lin; W. F. Smyth, "A Fast Effective Heuristic For The Feedback Arc Set Problem"
+// Information Processing Letters, Vol. 47, pp 319-323, 1993
+// https://pdfs.semanticscholar.org/c7ed/d9acce96ca357876540e19664eb9d976637f.pdf
+
+// A topological sort (on a cell/wire graph) is always possible in a fully flattened RTLIL design without
+// processes or logic loops where every wire has a single driver. Logic loops are illegal in RTLIL and wires
+// with multiple drivers can be split by the `splitnets` pass; however, interdependencies between processes
+// or module instances can create strongly connected components without introducing evaluation nondeterminism.
+// We wish to support designs with such benign SCCs (as well as designs with multiple drivers per wire), so
+// we sort the graph in a way that minimizes feedback arcs. If there are no feedback arcs in the sorted graph,
+// then a more efficient evaluation method is possible, since eval() will always immediately converge.
+template<class T>
+struct Scheduler {
+ struct Vertex {
+ T *data;
+ Vertex *prev, *next;
+ pool<Vertex*, hash_ptr_ops> preds, succs;
+
+ Vertex() : data(NULL), prev(this), next(this) {}
+ Vertex(T *data) : data(data), prev(NULL), next(NULL) {}
+
+ bool empty() const
+ {
+ log_assert(data == NULL);
+ if (next == this) {
+ log_assert(prev == next);
+ return true;
+ }
+ return false;
+ }
+
+ void link(Vertex *list)
+ {
+ log_assert(prev == NULL && next == NULL);
+ next = list;
+ prev = list->prev;
+ list->prev->next = this;
+ list->prev = this;
+ }
+
+ void unlink()
+ {
+ log_assert(prev->next == this && next->prev == this);
+ prev->next = next;
+ next->prev = prev;
+ next = prev = NULL;
+ }
+
+ int delta() const
+ {
+ return succs.size() - preds.size();
+ }
+ };
+
+ std::vector<Vertex*> vertices;
+ Vertex *sources = new Vertex;
+ Vertex *sinks = new Vertex;
+ dict<int, Vertex*> bins;
+
+ ~Scheduler()
+ {
+ delete sources;
+ delete sinks;
+ for (auto bin : bins)
+ delete bin.second;
+ for (auto vertex : vertices)
+ delete vertex;
+ }
+
+ Vertex *add(T *data)
+ {
+ Vertex *vertex = new Vertex(data);
+ vertices.push_back(vertex);
+ return vertex;
+ }
+
+ void relink(Vertex *vertex)
+ {
+ if (vertex->succs.empty())
+ vertex->link(sinks);
+ else if (vertex->preds.empty())
+ vertex->link(sources);
+ else {
+ int delta = vertex->delta();
+ if (!bins.count(delta))
+ bins[delta] = new Vertex;
+ vertex->link(bins[delta]);
+ }
+ }
+
+ Vertex *remove(Vertex *vertex)
+ {
+ vertex->unlink();
+ for (auto pred : vertex->preds) {
+ if (pred == vertex)
+ continue;
+ log_assert(pred->succs[vertex]);
+ pred->unlink();
+ pred->succs.erase(vertex);
+ relink(pred);
+ }
+ for (auto succ : vertex->succs) {
+ if (succ == vertex)
+ continue;
+ log_assert(succ->preds[vertex]);
+ succ->unlink();
+ succ->preds.erase(vertex);
+ relink(succ);
+ }
+ vertex->preds.clear();
+ vertex->succs.clear();
+ return vertex;
+ }
+
+ std::vector<Vertex*> schedule()
+ {
+ std::vector<Vertex*> s1, s2r;
+ for (auto vertex : vertices)
+ relink(vertex);
+ bool bins_empty = false;
+ while (!(sinks->empty() && sources->empty() && bins_empty)) {
+ while (!sinks->empty())
+ s2r.push_back(remove(sinks->next));
+ while (!sources->empty())
+ s1.push_back(remove(sources->next));
+ // Choosing u in this implementation isn't O(1), but the paper handwaves which data structure they suggest
+ // using to get O(1) relinking *and* find-max-key ("it is clear"... no it isn't), so this code uses a very
+ // naive implementation of find-max-key.
+ bins_empty = true;
+ bins.template sort<std::greater<int>>();
+ for (auto bin : bins) {
+ if (!bin.second->empty()) {
+ bins_empty = false;
+ s1.push_back(remove(bin.second->next));
+ break;
+ }
+ }
+ }
+ s1.insert(s1.end(), s2r.rbegin(), s2r.rend());
+ return s1;
+ }
+};
+
+bool is_input_wire(const RTLIL::Wire *wire)
+{
+ return wire->port_input && !wire->port_output;
+}
+
+bool is_unary_cell(RTLIL::IdString type)
+{
+ return type.in(
+ ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool),
+ ID($pos), ID($neg));
+}
+
+bool is_binary_cell(RTLIL::IdString type)
+{
+ return type.in(
+ ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or),
+ ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx),
+ ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le),
+ ID($add), ID($sub), ID($mul), ID($div), ID($mod));
+}
+
+bool is_elidable_cell(RTLIL::IdString type)
+{
+ return is_unary_cell(type) || is_binary_cell(type) || type.in(
+ ID($mux), ID($concat), ID($slice));
+}
+
+bool is_sync_ff_cell(RTLIL::IdString type)
+{
+ return type.in(
+ ID($dff), ID($dffe));
+}
+
+bool is_ff_cell(RTLIL::IdString type)
+{
+ return is_sync_ff_cell(type) || type.in(
+ ID($adff), ID($dffsr), ID($dlatch), ID($dlatchsr), ID($sr));
+}
+
+bool is_internal_cell(RTLIL::IdString type)
+{
+ return type[0] == '$' && !type.begins_with("$paramod");
+}
+
+bool is_cxxrtl_blackbox_cell(const RTLIL::Cell *cell)
+{
+ RTLIL::Module *cell_module = cell->module->design->module(cell->type);
+ log_assert(cell_module != nullptr);
+ return cell_module->get_bool_attribute(ID(cxxrtl_blackbox));
+}
+
+enum class CxxrtlPortType {
+ UNKNOWN = 0, // or mixed comb/sync
+ COMB = 1,
+ SYNC = 2,
+};
+
+CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port)
+{
+ RTLIL::Module *cell_module = cell->module->design->module(cell->type);
+ if (cell_module == nullptr || !cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
+ return CxxrtlPortType::UNKNOWN;
+ RTLIL::Wire *cell_output_wire = cell_module->wire(port);
+ log_assert(cell_output_wire != nullptr);
+ bool is_comb = cell_output_wire->get_bool_attribute(ID(cxxrtl_comb));
+ bool is_sync = cell_output_wire->get_bool_attribute(ID(cxxrtl_sync));
+ if (is_comb && is_sync)
+ log_cmd_error("Port `%s.%s' is marked as both `cxxrtl_comb` and `cxxrtl_sync`.\n",
+ log_id(cell_module), log_signal(cell_output_wire));
+ else if (is_comb)
+ return CxxrtlPortType::COMB;
+ else if (is_sync)
+ return CxxrtlPortType::SYNC;
+ return CxxrtlPortType::UNKNOWN;
+}
+
+bool is_cxxrtl_comb_port(const RTLIL::Cell *cell, RTLIL::IdString port)
+{
+ return cxxrtl_port_type(cell, port) == CxxrtlPortType::COMB;
+}
+
+bool is_cxxrtl_sync_port(const RTLIL::Cell *cell, RTLIL::IdString port)
+{
+ return cxxrtl_port_type(cell, port) == CxxrtlPortType::SYNC;
+}
+
+struct FlowGraph {
+ struct Node {
+ enum class Type {
+ CONNECT,
+ CELL_SYNC,
+ CELL_EVAL,
+ PROCESS
+ };
+
+ Type type;
+ RTLIL::SigSig connect = {};
+ const RTLIL::Cell *cell = NULL;
+ const RTLIL::Process *process = NULL;
+ };
+
+ std::vector<Node*> nodes;
+ dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_comb_defs, wire_sync_defs, wire_uses;
+ dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable;
+
+ ~FlowGraph()
+ {
+ for (auto node : nodes)
+ delete node;
+ }
+
+ void add_defs(Node *node, const RTLIL::SigSpec &sig, bool fully_sync, bool elidable)
+ {
+ for (auto chunk : sig.chunks())
+ if (chunk.wire) {
+ if (fully_sync)
+ wire_sync_defs[chunk.wire].insert(node);
+ else
+ wire_comb_defs[chunk.wire].insert(node);
+ }
+ // Only comb defs of an entire wire in the right order can be elided.
+ if (!fully_sync && sig.is_wire())
+ wire_def_elidable[sig.as_wire()] = elidable;
+ }
+
+ void add_uses(Node *node, const RTLIL::SigSpec &sig)
+ {
+ for (auto chunk : sig.chunks())
+ if (chunk.wire) {
+ wire_uses[chunk.wire].insert(node);
+ // Only a single use of an entire wire in the right order can be elided.
+ // (But the use can include other chunks.)
+ if (!wire_use_elidable.count(chunk.wire))
+ wire_use_elidable[chunk.wire] = true;
+ else
+ wire_use_elidable[chunk.wire] = false;
+ }
+ }
+
+ bool is_elidable(const RTLIL::Wire *wire) const
+ {
+ if (wire_def_elidable.count(wire) && wire_use_elidable.count(wire))
+ return wire_def_elidable.at(wire) && wire_use_elidable.at(wire);
+ return false;
+ }
+
+ // Connections
+ void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn)
+ {
+ add_defs(node, conn.first, /*fully_sync=*/false, /*elidable=*/true);
+ add_uses(node, conn.second);
+ }
+
+ Node *add_node(const RTLIL::SigSig &conn)
+ {
+ Node *node = new Node;
+ node->type = Node::Type::CONNECT;
+ node->connect = conn;
+ nodes.push_back(node);
+ add_connect_defs_uses(node, conn);
+ return node;
+ }
+
+ // Cells
+ void add_cell_sync_defs(Node *node, const RTLIL::Cell *cell)
+ {
+ // To understand why this node type is necessary and why it produces comb defs, consider a cell
+ // with input \i and sync output \o, used in a design such that \i is connected to \o. This does
+ // not result in a feedback arc because the output is synchronous. However, a naive implementation
+ // of code generation for cells that assigns to inputs, evaluates cells, assigns from outputs
+ // would not be able to immediately converge...
+ //
+ // wire<1> i_tmp;
+ // cell->p_i = i_tmp.curr;
+ // cell->eval();
+ // i_tmp.next = cell->p_o.curr;
+ //
+ // ... since the wire connecting the input and output ports would not be localizable. To solve
+ // this, the cell is split into two scheduling nodes; one exclusively for sync outputs, and
+ // another for inputs and all non-sync outputs. This way the generated code can be rearranged...
+ //
+ // value<1> i_tmp;
+ // i_tmp = cell->p_o.curr;
+ // cell->p_i = i_tmp;
+ // cell->eval();
+ //
+ // eliminating the unnecessary delta cycle. Conceptually, the CELL_SYNC node type is a series of
+ // connections of the form `connect \lhs \cell.\sync_output`; the right-hand side of these is not
+ // as a wire in RTLIL. If it was expressible, then `\cell.\sync_output` would have a sync def,
+ // and this node would be an ordinary CONNECT node, with `\lhs` having a comb def. Because it isn't,
+ // a special node type is used, the right-hand side does not appear anywhere, and the left-hand
+ // side has a comb def.
+ for (auto conn : cell->connections())
+ if (cell->output(conn.first))
+ if (is_cxxrtl_sync_port(cell, conn.first)) {
+ // See note regarding elidability below.
+ add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false);
+ }
+ }
+
+ void add_cell_eval_defs_uses(Node *node, const RTLIL::Cell *cell)
+ {
+ for (auto conn : cell->connections()) {
+ if (cell->output(conn.first)) {
+ if (is_elidable_cell(cell->type))
+ add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/true);
+ else if (is_sync_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool()))
+ add_defs(node, conn.second, /*fully_sync=*/true, /*elidable=*/false);
+ else if (is_internal_cell(cell->type))
+ add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false);
+ else if (!is_cxxrtl_sync_port(cell, conn.first)) {
+ // Although at first it looks like outputs of user-defined cells may always be elided, the reality is
+ // more complex. Fully sync outputs produce no defs and so don't participate in elision. Fully comb
+ // outputs are assigned in a different way depending on whether the cell's eval() immediately converged.
+ // Unknown/mixed outputs could be elided, but should be rare in practical designs and don't justify
+ // the infrastructure required to elide outputs of cells with many of them.
+ add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false);
+ }
+ }
+ if (cell->input(conn.first))
+ add_uses(node, conn.second);
+ }
+ }
+
+ Node *add_node(const RTLIL::Cell *cell)
+ {
+ log_assert(cell->known());
+
+ bool has_fully_sync_outputs = false;
+ for (auto conn : cell->connections())
+ if (cell->output(conn.first) && is_cxxrtl_sync_port(cell, conn.first)) {
+ has_fully_sync_outputs = true;
+ break;
+ }
+ if (has_fully_sync_outputs) {
+ Node *node = new Node;
+ node->type = Node::Type::CELL_SYNC;
+ node->cell = cell;
+ nodes.push_back(node);
+ add_cell_sync_defs(node, cell);
+ }
+
+ Node *node = new Node;
+ node->type = Node::Type::CELL_EVAL;
+ node->cell = cell;
+ nodes.push_back(node);
+ add_cell_eval_defs_uses(node, cell);
+ return node;
+ }
+
+ // Processes
+ void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_)
+ {
+ for (auto &action : case_->actions) {
+ add_defs(node, action.first, /*is_sync=*/false, /*elidable=*/false);
+ add_uses(node, action.second);
+ }
+ for (auto sub_switch : case_->switches) {
+ add_uses(node, sub_switch->signal);
+ for (auto sub_case : sub_switch->cases) {
+ for (auto &compare : sub_case->compare)
+ add_uses(node, compare);
+ add_case_defs_uses(node, sub_case);
+ }
+ }
+ }
+
+ void add_process_defs_uses(Node *node, const RTLIL::Process *process)
+ {
+ add_case_defs_uses(node, &process->root_case);
+ for (auto sync : process->syncs)
+ for (auto action : sync->actions) {
+ if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe)
+ add_defs(node, action.first, /*is_sync=*/true, /*elidable=*/false);
+ else
+ add_defs(node, action.first, /*is_sync=*/false, /*elidable=*/false);
+ add_uses(node, action.second);
+ }
+ }
+
+ Node *add_node(const RTLIL::Process *process)
+ {
+ Node *node = new Node;
+ node->type = Node::Type::PROCESS;
+ node->process = process;
+ nodes.push_back(node);
+ add_process_defs_uses(node, process);
+ return node;
+ }
+};
+
+std::vector<std::string> split_by(const std::string &str, const std::string &sep)
+{
+ std::vector<std::string> result;
+ size_t prev = 0;
+ while (true) {
+ size_t curr = str.find_first_of(sep, prev + 1);
+ if (curr > str.size())
+ curr = str.size();
+ if (curr > prev + 1)
+ result.push_back(str.substr(prev, curr - prev));
+ if (curr == str.size())
+ break;
+ prev = curr;
+ }
+ return result;
+}
+
+std::string escape_cxx_string(const std::string &input)
+{
+ std::string output = "\"";
+ for (auto c : input) {
+ if (::isprint(c)) {
+ if (c == '\\')
+ output.push_back('\\');
+ output.push_back(c);
+ } else {
+ char l = c & 0xf, h = (c >> 4) & 0xf;
+ output.append("\\x");
+ output.push_back((h < 10 ? '0' + h : 'a' + h - 10));
+ output.push_back((l < 10 ? '0' + l : 'a' + l - 10));
+ }
+ }
+ output.push_back('"');
+ if (output.find('\0') != std::string::npos) {
+ output.insert(0, "std::string {");
+ output.append(stringf(", %zu}", input.size()));
+ }
+ return output;
+}
+
+template<class T>
+std::string get_hdl_name(T *object)
+{
+ if (object->has_attribute(ID::hdlname))
+ return object->get_string_attribute(ID::hdlname);
+ else
+ return object->name.str();
+}
+
+struct CxxrtlWorker {
+ bool split_intf = false;
+ std::string intf_filename;
+ std::string design_ns = "cxxrtl_design";
+ std::ostream *impl_f = nullptr;
+ std::ostream *intf_f = nullptr;
+
+ bool elide_internal = false;
+ bool elide_public = false;
+ bool localize_internal = false;
+ bool localize_public = false;
+ bool run_proc_flatten = false;
+ bool max_opt_level = false;
+
+ bool debug_info = false;
+
+ std::ostringstream f;
+ std::string indent;
+ int temporary = 0;
+
+ dict<const RTLIL::Module*, SigMap> sigmaps;
+ pool<const RTLIL::Wire*> edge_wires;
+ dict<RTLIL::SigBit, RTLIL::SyncType> edge_types;
+ pool<const RTLIL::Memory*> writable_memories;
+ dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for;
+ dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires;
+ dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule;
+ pool<const RTLIL::Wire*> localized_wires;
+ dict<const RTLIL::Module*, pool<std::string>> blackbox_specializations;
+ dict<const RTLIL::Module*, bool> eval_converges;
+
+ void inc_indent() {
+ indent += "\t";
+ }
+ void dec_indent() {
+ indent.resize(indent.size() - 1);
+ }
+
+ // RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code
+ // because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl
+ // identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results
+ // in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules:
+ // 1. All generated identifiers start with `_`.
+ // 1a. Generated identifiers for public names (beginning with `\`) start with `p_`.
+ // 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`.
+ // 2. An underscore is escaped with another underscore, i.e. `__`.
+ // 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`.
+ std::string mangle_name(const RTLIL::IdString &name)
+ {
+ std::string mangled;
+ bool first = true;
+ for (char c : name.str()) {
+ if (first) {
+ first = false;
+ if (c == '\\')
+ mangled += "p_";
+ else if (c == '$')
+ mangled += "i_";
+ else
+ log_assert(false);
+ } else {
+ if (isalnum(c)) {
+ mangled += c;
+ } else if (c == '_') {
+ mangled += "__";
+ } else {
+ char l = c & 0xf, h = (c >> 4) & 0xf;
+ mangled += '_';
+ mangled += (h < 10 ? '0' + h : 'a' + h - 10);
+ mangled += (l < 10 ? '0' + l : 'a' + l - 10);
+ mangled += '_';
+ }
+ }
+ }
+ return mangled;
+ }
+
+ std::string mangle_module_name(const RTLIL::IdString &name, bool is_blackbox = false)
+ {
+ // Class namespace.
+ if (is_blackbox)
+ return "bb_" + mangle_name(name);
+ return mangle_name(name);
+ }
+
+ std::string mangle_memory_name(const RTLIL::IdString &name)
+ {
+ // Class member namespace.
+ return "memory_" + mangle_name(name);
+ }
+
+ std::string mangle_cell_name(const RTLIL::IdString &name)
+ {
+ // Class member namespace.
+ return "cell_" + mangle_name(name);
+ }
+
+ std::string mangle_wire_name(const RTLIL::IdString &name)
+ {
+ // Class member namespace.
+ return mangle_name(name);
+ }
+
+ std::string mangle(const RTLIL::Module *module)
+ {
+ return mangle_module_name(module->name, /*is_blackbox=*/module->get_bool_attribute(ID(cxxrtl_blackbox)));
+ }
+
+ std::string mangle(const RTLIL::Memory *memory)
+ {
+ return mangle_memory_name(memory->name);
+ }
+
+ std::string mangle(const RTLIL::Cell *cell)
+ {
+ return mangle_cell_name(cell->name);
+ }
+
+ std::string mangle(const RTLIL::Wire *wire)
+ {
+ return mangle_wire_name(wire->name);
+ }
+
+ std::string mangle(RTLIL::SigBit sigbit)
+ {
+ log_assert(sigbit.wire != NULL);
+ if (sigbit.wire->width == 1)
+ return mangle(sigbit.wire);
+ return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset);
+ }
+
+ std::vector<std::string> template_param_names(const RTLIL::Module *module)
+ {
+ if (!module->has_attribute(ID(cxxrtl_template)))
+ return {};
+
+ if (module->attributes.at(ID(cxxrtl_template)).flags != RTLIL::CONST_FLAG_STRING)
+ log_cmd_error("Attribute `cxxrtl_template' of module `%s' is not a string.\n", log_id(module));
+
+ std::vector<std::string> param_names = split_by(module->get_string_attribute(ID(cxxrtl_template)), " \t");
+ for (const auto ¶m_name : param_names) {
+ // Various lowercase prefixes (p_, i_, cell_, ...) are used for member variables, so require
+ // parameters to start with an uppercase letter to avoid name conflicts. (This is the convention
+ // in both Verilog and C++, anyway.)
+ if (!isupper(param_name[0]))
+ log_cmd_error("Attribute `cxxrtl_template' of module `%s' includes a parameter `%s', "
+ "which does not start with an uppercase letter.\n",
+ log_id(module), param_name.c_str());
+ }
+ return param_names;
+ }
+
+ std::string template_params(const RTLIL::Module *module, bool is_decl)
+ {
+ std::vector<std::string> param_names = template_param_names(module);
+ if (param_names.empty())
+ return "";
+
+ std::string params = "<";
+ bool first = true;
+ for (const auto ¶m_name : param_names) {
+ if (!first)
+ params += ", ";
+ first = false;
+ if (is_decl)
+ params += "size_t ";
+ params += param_name;
+ }
+ params += ">";
+ return params;
+ }
+
+ std::string template_args(const RTLIL::Cell *cell)
+ {
+ RTLIL::Module *cell_module = cell->module->design->module(cell->type);
+ log_assert(cell_module != nullptr);
+ if (!cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
+ return "";
+
+ std::vector<std::string> param_names = template_param_names(cell_module);
+ if (param_names.empty())
+ return "";
+
+ std::string params = "<";
+ bool first = true;
+ for (const auto ¶m_name : param_names) {
+ if (!first)
+ params += ", ";
+ first = false;
+ params += "/*" + param_name + "=*/";
+ RTLIL::IdString id_param_name = '\\' + param_name;
+ if (!cell->hasParam(id_param_name))
+ log_cmd_error("Cell `%s.%s' does not have a parameter `%s', which is required by the templated module `%s'.\n",
+ log_id(cell->module), log_id(cell), param_name.c_str(), log_id(cell_module));
+ RTLIL::Const param_value = cell->getParam(id_param_name);
+ if (((param_value.flags & ~RTLIL::CONST_FLAG_SIGNED) != 0) || param_value.as_int() < 0)
+ log_cmd_error("Parameter `%s' of cell `%s.%s', which is required by the templated module `%s', "
+ "is not a positive integer.\n",
+ param_name.c_str(), log_id(cell->module), log_id(cell), log_id(cell_module));
+ params += std::to_string(cell->getParam(id_param_name).as_int());
+ }
+ params += ">";
+ return params;
+ }
+
+ std::string fresh_temporary()
+ {
+ return stringf("tmp_%d", temporary++);
+ }
+
+ void dump_attrs(const RTLIL::AttrObject *object)
+ {
+ for (auto attr : object->attributes) {
+ f << indent << "// " << attr.first.str() << ": ";
+ if (attr.second.flags & RTLIL::CONST_FLAG_STRING) {
+ f << attr.second.decode_string();
+ } else {
+ f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED);
+ }
+ f << "\n";
+ }
+ }
+
+ void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
+ {
+ const int CHUNK_SIZE = 32;
+ f << "{";
+ while (width > 0) {
+ int chunk_width = min(width, CHUNK_SIZE);
+ uint32_t chunk = data.extract(offset, chunk_width).as_int();
+ if (fixed_width)
+ f << stringf("0x%.*xu", (3 + chunk_width) / 4, chunk);
+ else
+ f << stringf("%#xu", chunk);
+ if (width > CHUNK_SIZE)
+ f << ',';
+ offset += CHUNK_SIZE;
+ width -= CHUNK_SIZE;
+ }
+ f << "}";
+ }
+
+ void dump_const_init(const RTLIL::Const &data)
+ {
+ dump_const_init(data, data.size());
+ }
+
+ void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
+ {
+ f << "value<" << width << ">";
+ dump_const_init(data, width, offset, fixed_width);
+ }
+
+ void dump_const(const RTLIL::Const &data)
+ {
+ dump_const(data, data.size());
+ }
+
+ bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs)
+ {
+ if (chunk.wire == NULL) {
+ dump_const(chunk.data, chunk.width, chunk.offset);
+ return false;
+ } else {
+ if (!is_lhs && elided_wires.count(chunk.wire)) {
+ const FlowGraph::Node &node = elided_wires[chunk.wire];
+ switch (node.type) {
+ case FlowGraph::Node::Type::CONNECT:
+ dump_connect_elided(node.connect);
+ break;
+ case FlowGraph::Node::Type::CELL_EVAL:
+ log_assert(is_elidable_cell(node.cell->type));
+ dump_cell_elided(node.cell);
+ break;
+ default:
+ log_assert(false);
+ }
+ } else if (localized_wires[chunk.wire] || is_input_wire(chunk.wire)) {
+ f << mangle(chunk.wire);
+ } else {
+ f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
+ }
+ if (chunk.width == chunk.wire->width && chunk.offset == 0)
+ return false;
+ else if (chunk.width == 1)
+ f << ".slice<" << chunk.offset << ">()";
+ else
+ f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()";
+ return true;
+ }
+ }
+
+ bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs)
+ {
+ if (sig.empty()) {
+ f << "value<0>()";
+ return false;
+ } else if (sig.is_chunk()) {
+ return dump_sigchunk(sig.as_chunk(), is_lhs);
+ } else {
+ dump_sigchunk(*sig.chunks().rbegin(), is_lhs);
+ for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) {
+ f << ".concat(";
+ dump_sigchunk(*it, is_lhs);
+ f << ")";
+ }
+ return true;
+ }
+ }
+
+ void dump_sigspec_lhs(const RTLIL::SigSpec &sig)
+ {
+ dump_sigspec(sig, /*is_lhs=*/true);
+ }
+
+ void dump_sigspec_rhs(const RTLIL::SigSpec &sig)
+ {
+ // In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
+ // it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
+ // type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
+ // type conversion, but only if the expression needs it.
+ bool is_complex = dump_sigspec(sig, /*is_lhs=*/false);
+ if (is_complex)
+ f << ".val()";
+ }
+
+ void collect_sigspec_rhs(const RTLIL::SigSpec &sig, std::vector<RTLIL::IdString> &cells)
+ {
+ for (auto chunk : sig.chunks()) {
+ if (!chunk.wire || !elided_wires.count(chunk.wire))
+ continue;
+
+ const FlowGraph::Node &node = elided_wires[chunk.wire];
+ switch (node.type) {
+ case FlowGraph::Node::Type::CONNECT:
+ collect_connect(node.connect, cells);
+ break;
+ case FlowGraph::Node::Type::CELL_EVAL:
+ collect_cell_eval(node.cell, cells);
+ break;
+ default:
+ log_assert(false);
+ }
+ }
+ }
+
+ void dump_connect_elided(const RTLIL::SigSig &conn)
+ {
+ dump_sigspec_rhs(conn.second);
+ }
+
+ bool is_connect_elided(const RTLIL::SigSig &conn)
+ {
+ return conn.first.is_wire() && elided_wires.count(conn.first.as_wire());
+ }
+
+ void collect_connect(const RTLIL::SigSig &conn, std::vector<RTLIL::IdString> &cells)
+ {
+ if (!is_connect_elided(conn))
+ return;
+
+ collect_sigspec_rhs(conn.second, cells);
+ }
+
+ void dump_connect(const RTLIL::SigSig &conn)
+ {
+ if (is_connect_elided(conn))
+ return;
+
+ f << indent << "// connection\n";
+ f << indent;
+ dump_sigspec_lhs(conn.first);
+ f << " = ";
+ dump_connect_elided(conn);
+ f << ";\n";
+ }
+
+ void dump_cell_sync(const RTLIL::Cell *cell)
+ {
+ const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
+ f << indent << "// cell " << cell->name.str() << " syncs\n";
+ for (auto conn : cell->connections())
+ if (cell->output(conn.first))
+ if (is_cxxrtl_sync_port(cell, conn.first)) {
+ f << indent;
+ dump_sigspec_lhs(conn.second);
+ f << " = " << mangle(cell) << access << mangle_wire_name(conn.first) << ".curr;\n";
+ }
+ }
+
+ void dump_cell_elided(const RTLIL::Cell *cell)
+ {
+ // Unary cells
+ if (is_unary_cell(cell->type)) {
+ f << cell->type.substr(1) << '_' <<
+ (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
+ "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
+ dump_sigspec_rhs(cell->getPort(ID::A));
+ f << ")";
+ // Binary cells
+ } else if (is_binary_cell(cell->type)) {
+ f << cell->type.substr(1) << '_' <<
+ (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
+ (cell->getParam(ID::B_SIGNED).as_bool() ? 's' : 'u') <<
+ "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
+ dump_sigspec_rhs(cell->getPort(ID::A));
+ f << ", ";
+ dump_sigspec_rhs(cell->getPort(ID::B));
+ f << ")";
+ // Muxes
+ } else if (cell->type == ID($mux)) {
+ f << "(";
+ dump_sigspec_rhs(cell->getPort(ID::S));
+ f << " ? ";
+ dump_sigspec_rhs(cell->getPort(ID::B));
+ f << " : ";
+ dump_sigspec_rhs(cell->getPort(ID::A));
+ f << ")";
+ // Concats
+ } else if (cell->type == ID($concat)) {
+ dump_sigspec_rhs(cell->getPort(ID::B));
+ f << ".concat(";
+ dump_sigspec_rhs(cell->getPort(ID::A));
+ f << ").val()";
+ // Slices
+ } else if (cell->type == ID($slice)) {
+ dump_sigspec_rhs(cell->getPort(ID::A));
+ f << ".slice<";
+ f << cell->getParam(ID::OFFSET).as_int() + cell->getParam(ID::Y_WIDTH).as_int() - 1;
+ f << ",";
+ f << cell->getParam(ID::OFFSET).as_int();
+ f << ">().val()";
+ } else {
+ log_assert(false);
+ }
+ }
+
+ bool is_cell_elided(const RTLIL::Cell *cell)
+ {
+ return is_elidable_cell(cell->type) && cell->hasPort(ID::Y) && cell->getPort(ID::Y).is_wire() &&
+ elided_wires.count(cell->getPort(ID::Y).as_wire());
+ }
+
+ void collect_cell_eval(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells)
+ {
+ if (!is_cell_elided(cell))
+ return;
+
+ cells.push_back(cell->name);
+ for (auto port : cell->connections())
+ if (port.first != ID::Y)
+ collect_sigspec_rhs(port.second, cells);
+ }
+
+ void dump_cell_eval(const RTLIL::Cell *cell)
+ {
+ if (is_cell_elided(cell))
+ return;
+ if (cell->type == ID($meminit))
+ return; // Handled elsewhere.
+
+ std::vector<RTLIL::IdString> elided_cells;
+ if (is_elidable_cell(cell->type)) {
+ for (auto port : cell->connections())
+ if (port.first != ID::Y)
+ collect_sigspec_rhs(port.second, elided_cells);
+ }
+ if (elided_cells.empty()) {
+ dump_attrs(cell);
+ f << indent << "// cell " << cell->name.str() << "\n";
+ } else {
+ f << indent << "// cells";
+ for (auto elided_cell : elided_cells)
+ f << " " << elided_cell.str();
+ f << "\n";
+ }
+
+ // Elidable cells
+ if (is_elidable_cell(cell->type)) {
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::Y));
+ f << " = ";
+ dump_cell_elided(cell);
+ f << ";\n";
+ // Parallel (one-hot) muxes
+ } else if (cell->type == ID($pmux)) {
+ int width = cell->getParam(ID::WIDTH).as_int();
+ int s_width = cell->getParam(ID::S_WIDTH).as_int();
+ bool first = true;
+ for (int part = 0; part < s_width; part++) {
+ f << (first ? indent : " else ");
+ first = false;
+ f << "if (";
+ dump_sigspec_rhs(cell->getPort(ID::S).extract(part));
+ f << ") {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::Y));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}";
+ }
+ f << " else {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::Y));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID::A));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ // Flip-flops
+ } else if (is_ff_cell(cell->type)) {
+ if (cell->hasPort(ID::CLK) && cell->getPort(ID::CLK).is_wire()) {
+ // Edge-sensitive logic
+ RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
+ clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
+ f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
+ << mangle(clk_bit) << ") {\n";
+ inc_indent();
+ if (cell->type == ID($dffe)) {
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID::EN));
+ f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
+ inc_indent();
+ }
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::Q));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID::D));
+ f << ";\n";
+ if (cell->type == ID($dffe)) {
+ dec_indent();
+ f << indent << "}\n";
+ }
+ dec_indent();
+ f << indent << "}\n";
+ } else if (cell->hasPort(ID::EN)) {
+ // Level-sensitive logic
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID::EN));
+ f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::Q));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID::D));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ if (cell->hasPort(ID::ARST)) {
+ // Asynchronous reset (entire coarse cell at once)
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID::ARST));
+ f << " == value<1> {" << cell->getParam(ID::ARST_POLARITY).as_bool() << "u}) {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::Q));
+ f << " = ";
+ dump_const(cell->getParam(ID::ARST_VALUE));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ if (cell->hasPort(ID::SET)) {
+ // Asynchronous set (for individual bits)
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::Q));
+ f << " = ";
+ dump_sigspec_lhs(cell->getPort(ID::Q));
+ f << ".update(";
+ dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID::WIDTH).as_int()));
+ f << ", ";
+ dump_sigspec_rhs(cell->getPort(ID::SET));
+ f << (cell->getParam(ID::SET_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
+ }
+ if (cell->hasPort(ID::CLR)) {
+ // Asynchronous clear (for individual bits; priority over set)
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::Q));
+ f << " = ";
+ dump_sigspec_lhs(cell->getPort(ID::Q));
+ f << ".update(";
+ dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID::WIDTH).as_int()));
+ f << ", ";
+ dump_sigspec_rhs(cell->getPort(ID::CLR));
+ f << (cell->getParam(ID::CLR_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
+ }
+ // Memory ports
+ } else if (cell->type.in(ID($memrd), ID($memwr))) {
+ if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
+ RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
+ clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
+ f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
+ << mangle(clk_bit) << ") {\n";
+ inc_indent();
+ }
+ RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID::MEMID).decode_string()];
+ std::string valid_index_temp = fresh_temporary();
+ f << indent << "auto " << valid_index_temp << " = memory_index(";
+ dump_sigspec_rhs(cell->getPort(ID::ADDR));
+ f << ", " << memory->start_offset << ", " << memory->size << ");\n";
+ if (cell->type == ID($memrd)) {
+ bool has_enable = cell->getParam(ID::CLK_ENABLE).as_bool() && !cell->getPort(ID::EN).is_fully_ones();
+ if (has_enable) {
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID::EN));
+ f << ") {\n";
+ inc_indent();
+ }
+ // The generated code has two bounds checks; one in an assertion, and another that guards the read.
+ // This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
+ // loudly crashes if an illegal condition is encountered. The assert may be turned off with -NDEBUG not
+ // just for release builds, but also to make sure the simulator (which is presumably embedded in some
+ // larger program) will never crash the code that calls into it.
+ //
+ // If assertions are disabled, out of bounds reads are defined to return zero.
+ f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
+ f << indent << "if(" << valid_index_temp << ".valid) {\n";
+ inc_indent();
+ if (writable_memories[memory]) {
+ std::string addr_temp = fresh_temporary();
+ f << indent << "const value<" << cell->getPort(ID::ADDR).size() << "> &" << addr_temp << " = ";
+ dump_sigspec_rhs(cell->getPort(ID::ADDR));
+ f << ";\n";
+ std::string lhs_temp = fresh_temporary();
+ f << indent << "value<" << memory->width << "> " << lhs_temp << " = "
+ << mangle(memory) << "[" << valid_index_temp << ".index];\n";
+ std::vector<const RTLIL::Cell*> memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end());
+ std::sort(memwr_cells.begin(), memwr_cells.end(),
+ [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
+ return a->getParam(ID::PRIORITY).as_int() < b->getParam(ID::PRIORITY).as_int();
+ });
+ for (auto memwr_cell : memwr_cells) {
+ f << indent << "if (" << addr_temp << " == ";
+ dump_sigspec_rhs(memwr_cell->getPort(ID::ADDR));
+ f << ") {\n";
+ inc_indent();
+ f << indent << lhs_temp << " = " << lhs_temp;
+ f << ".update(";
+ dump_sigspec_rhs(memwr_cell->getPort(ID::DATA));
+ f << ", ";
+ dump_sigspec_rhs(memwr_cell->getPort(ID::EN));
+ f << ");\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::DATA));
+ f << " = " << lhs_temp << ";\n";
+ } else {
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::DATA));
+ f << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n";
+ }
+ dec_indent();
+ f << indent << "} else {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::DATA));
+ f << " = value<" << memory->width << "> {};\n";
+ dec_indent();
+ f << indent << "}\n";
+ if (has_enable) {
+ dec_indent();
+ f << indent << "}\n";
+ }
+ } else /*if (cell->type == ID($memwr))*/ {
+ log_assert(writable_memories[memory]);
+ // See above for rationale of having both the assert and the condition.
+ //
+ // If assertions are disabled, out of bounds writes are defined to do nothing.
+ f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
+ f << indent << "if (" << valid_index_temp << ".valid) {\n";
+ inc_indent();
+ f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, ";
+ dump_sigspec_rhs(cell->getPort(ID::DATA));
+ f << ", ";
+ dump_sigspec_rhs(cell->getPort(ID::EN));
+ f << ", " << cell->getParam(ID::PRIORITY).as_int() << ");\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
+ dec_indent();
+ f << indent << "}\n";
+ }
+ // Internal cells
+ } else if (is_internal_cell(cell->type)) {
+ log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
+ // User cells
+ } else {
+ log_assert(cell->known());
+ const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
+ for (auto conn : cell->connections())
+ if (cell->input(conn.first) && !cell->output(conn.first)) {
+ f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << " = ";
+ dump_sigspec_rhs(conn.second);
+ f << ";\n";
+ if (getenv("CXXRTL_VOID_MY_WARRANTY")) {
+ // Until we have proper clock tree detection, this really awful hack that opportunistically
+ // propagates prev_* values for clocks can be used to estimate how much faster a design could
+ // be if only one clock edge was simulated by replacing:
+ // top.p_clk = value<1>{0u}; top.step();
+ // top.p_clk = value<1>{1u}; top.step();
+ // with:
+ // top.prev_p_clk = value<1>{0u}; top.p_clk = value<1>{1u}; top.step();
+ // Don't rely on this; it will be removed without warning.
+ RTLIL::Module *cell_module = cell->module->design->module(cell->type);
+ if (cell_module != nullptr && cell_module->wire(conn.first) && conn.second.is_wire()) {
+ RTLIL::Wire *cell_module_wire = cell_module->wire(conn.first);
+ if (edge_wires[conn.second.as_wire()] && edge_wires[cell_module_wire]) {
+ f << indent << mangle(cell) << access << "prev_" << mangle(cell_module_wire) << " = ";
+ f << "prev_" << mangle(conn.second.as_wire()) << ";\n";
+ }
+ }
+ }
+ } else if (cell->input(conn.first)) {
+ f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << ".next = ";
+ dump_sigspec_rhs(conn.second);
+ f << ";\n";
+ }
+ auto assign_from_outputs = [&](bool cell_converged) {
+ for (auto conn : cell->connections()) {
+ if (cell->output(conn.first)) {
+ if (conn.second.empty())
+ continue; // ignore disconnected ports
+ if (is_cxxrtl_sync_port(cell, conn.first))
+ continue; // fully sync ports are handled in CELL_SYNC nodes
+ f << indent;
+ dump_sigspec_lhs(conn.second);
+ f << " = " << mangle(cell) << access << mangle_wire_name(conn.first);
+ // Similarly to how there is no purpose to buffering cell inputs, there is also no purpose to buffering
+ // combinatorial cell outputs in case the cell converges within one cycle. (To convince yourself that
+ // this optimization is valid, consider that, since the cell converged within one cycle, it would not
+ // have any buffered wires if they were not output ports. Imagine inlining the cell's eval() function,
+ // and consider the fate of the localized wires that used to be output ports.)
+ //
+ // Unlike cell inputs (which are never buffered), it is not possible to know apriori whether the cell
+ // (which may be late bound) will converge immediately. Because of this, the choice between using .curr
+ // (appropriate for buffered outputs) and .next (appropriate for unbuffered outputs) is made at runtime.
+ if (cell_converged && is_cxxrtl_comb_port(cell, conn.first))
+ f << ".next;\n";
+ else
+ f << ".curr;\n";
+ }
+ }
+ };
+ f << indent << "if (" << mangle(cell) << access << "eval()) {\n";
+ inc_indent();
+ assign_from_outputs(/*cell_converged=*/true);
+ dec_indent();
+ f << indent << "} else {\n";
+ inc_indent();
+ f << indent << "converged = false;\n";
+ assign_from_outputs(/*cell_converged=*/false);
+ dec_indent();
+ f << indent << "}\n";
+ }
+ }
+
+ void dump_assign(const RTLIL::SigSig &sigsig)
+ {
+ f << indent;
+ dump_sigspec_lhs(sigsig.first);
+ f << " = ";
+ dump_sigspec_rhs(sigsig.second);
+ f << ";\n";
+ }
+
+ void dump_case_rule(const RTLIL::CaseRule *rule)
+ {
+ for (auto action : rule->actions)
+ dump_assign(action);
+ for (auto switch_ : rule->switches)
+ dump_switch_rule(switch_);
+ }
+
+ void dump_switch_rule(const RTLIL::SwitchRule *rule)
+ {
+ // The switch attributes are printed before the switch condition is captured.
+ dump_attrs(rule);
+ std::string signal_temp = fresh_temporary();
+ f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = ";
+ dump_sigspec(rule->signal, /*is_lhs=*/false);
+ f << ";\n";
+
+ bool first = true;
+ for (auto case_ : rule->cases) {
+ // The case attributes (for nested cases) are printed before the if/else if/else statement.
+ dump_attrs(rule);
+ f << indent;
+ if (!first)
+ f << "} else ";
+ first = false;
+ if (!case_->compare.empty()) {
+ f << "if (";
+ bool first = true;
+ for (auto &compare : case_->compare) {
+ if (!first)
+ f << " || ";
+ first = false;
+ if (compare.is_fully_def()) {
+ f << signal_temp << " == ";
+ dump_sigspec(compare, /*is_lhs=*/false);
+ } else if (compare.is_fully_const()) {
+ RTLIL::Const compare_mask, compare_value;
+ for (auto bit : compare.as_const()) {
+ switch (bit) {
+ case RTLIL::S0:
+ case RTLIL::S1:
+ compare_mask.bits.push_back(RTLIL::S1);
+ compare_value.bits.push_back(bit);
+ break;
+
+ case RTLIL::Sx:
+ case RTLIL::Sz:
+ case RTLIL::Sa:
+ compare_mask.bits.push_back(RTLIL::S0);
+ compare_value.bits.push_back(RTLIL::S0);
+ break;
+
+ default:
+ log_assert(false);
+ }
+ }
+ f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
+ dump_const(compare_mask);
+ f << ") == ";
+ dump_const(compare_value);
+ } else {
+ log_assert(false);
+ }
+ }
+ f << ") ";
+ }
+ f << "{\n";
+ inc_indent();
+ dump_case_rule(case_);
+ dec_indent();
+ }
+ f << indent << "}\n";
+ }
+
+ void dump_process(const RTLIL::Process *proc)
+ {
+ dump_attrs(proc);
+ f << indent << "// process " << proc->name.str() << "\n";
+ // The case attributes (for root case) are always empty.
+ log_assert(proc->root_case.attributes.empty());
+ dump_case_rule(&proc->root_case);
+ for (auto sync : proc->syncs) {
+ RTLIL::SigBit sync_bit;
+ if (!sync->signal.empty()) {
+ sync_bit = sync->signal[0];
+ sync_bit = sigmaps[sync_bit.wire->module](sync_bit);
+ }
+
+ pool<std::string> events;
+ switch (sync->type) {
+ case RTLIL::STp:
+ log_assert(sync_bit.wire != nullptr);
+ events.insert("posedge_" + mangle(sync_bit));
+ break;
+ case RTLIL::STn:
+ log_assert(sync_bit.wire != nullptr);
+ events.insert("negedge_" + mangle(sync_bit));
+ break;
+ case RTLIL::STe:
+ log_assert(sync_bit.wire != nullptr);
+ events.insert("posedge_" + mangle(sync_bit));
+ events.insert("negedge_" + mangle(sync_bit));
+ break;
+
+ case RTLIL::STa:
+ events.insert("true");
+ break;
+
+ case RTLIL::ST0:
+ case RTLIL::ST1:
+ case RTLIL::STg:
+ case RTLIL::STi:
+ log_assert(false);
+ }
+ if (!events.empty()) {
+ f << indent << "if (";
+ bool first = true;
+ for (auto &event : events) {
+ if (!first)
+ f << " || ";
+ first = false;
+ f << event;
+ }
+ f << ") {\n";
+ inc_indent();
+ for (auto action : sync->actions)
+ dump_assign(action);
+ dec_indent();
+ f << indent << "}\n";
+ }
+ }
+ }
+
+ void dump_wire(const RTLIL::Wire *wire, bool is_local_context)
+ {
+ if (elided_wires.count(wire))
+ return;
+ if (localized_wires.count(wire) != is_local_context)
+ return;
+
+ if (is_local_context) {
+ dump_attrs(wire);
+ f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n";
+ } else {
+ std::string width;
+ if (wire->module->has_attribute(ID(cxxrtl_blackbox)) && wire->has_attribute(ID(cxxrtl_width))) {
+ width = wire->get_string_attribute(ID(cxxrtl_width));
+ } else {
+ width = std::to_string(wire->width);
+ }
+
+ dump_attrs(wire);
+ f << indent << (is_input_wire(wire) ? "value" : "wire") << "<" << width << "> " << mangle(wire);
+ if (wire->has_attribute(ID::init)) {
+ f << " ";
+ dump_const_init(wire->attributes.at(ID::init));
+ }
+ f << ";\n";
+ if (edge_wires[wire]) {
+ if (is_input_wire(wire)) {
+ f << indent << "value<" << width << "> prev_" << mangle(wire);
+ if (wire->has_attribute(ID::init)) {
+ f << " ";
+ dump_const_init(wire->attributes.at(ID::init));
+ }
+ f << ";\n";
+ }
+ for (auto edge_type : edge_types) {
+ if (edge_type.first.wire == wire) {
+ std::string prev, next;
+ if (is_input_wire(wire)) {
+ prev = "prev_" + mangle(edge_type.first.wire);
+ next = mangle(edge_type.first.wire);
+ } else {
+ prev = mangle(edge_type.first.wire) + ".curr";
+ next = mangle(edge_type.first.wire) + ".next";
+ }
+ prev += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
+ next += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
+ if (edge_type.second != RTLIL::STn) {
+ f << indent << "bool posedge_" << mangle(edge_type.first) << "() const {\n";
+ inc_indent();
+ f << indent << "return !" << prev << " && " << next << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ if (edge_type.second != RTLIL::STp) {
+ f << indent << "bool negedge_" << mangle(edge_type.first) << "() const {\n";
+ inc_indent();
+ f << indent << "return " << prev << " && !" << next << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ }
+ }
+ }
+ }
+ }
+
+ void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
+ {
+ vector<const RTLIL::Cell*> init_cells;
+ for (auto cell : module->cells())
+ if (cell->type == ID($meminit) && cell->getParam(ID::MEMID).decode_string() == memory->name.str())
+ init_cells.push_back(cell);
+
+ std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
+ int a_addr = a->getPort(ID::ADDR).as_int(), b_addr = b->getPort(ID::ADDR).as_int();
+ int a_prio = a->getParam(ID::PRIORITY).as_int(), b_prio = b->getParam(ID::PRIORITY).as_int();
+ return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr);
+ });
+
+ dump_attrs(memory);
+ f << indent << "memory<" << memory->width << "> " << mangle(memory)
+ << " { " << memory->size << "u";
+ if (init_cells.empty()) {
+ f << " };\n";
+ } else {
+ f << ",\n";
+ inc_indent();
+ for (auto cell : init_cells) {
+ dump_attrs(cell);
+ RTLIL::Const data = cell->getPort(ID::DATA).as_const();
+ size_t width = cell->getParam(ID::WIDTH).as_int();
+ size_t words = cell->getParam(ID::WORDS).as_int();
+ f << indent << "memory<" << memory->width << ">::init<" << words << "> { "
+ << stringf("%#x", cell->getPort(ID::ADDR).as_int()) << ", {";
+ inc_indent();
+ for (size_t n = 0; n < words; n++) {
+ if (n % 4 == 0)
+ f << "\n" << indent;
+ else
+ f << " ";
+ dump_const(data, width, n * width, /*fixed_width=*/true);
+ f << ",";
+ }
+ dec_indent();
+ f << "\n" << indent << "}},\n";
+ }
+ dec_indent();
+ f << indent << "};\n";
+ }
+ }
+
+ void dump_eval_method(RTLIL::Module *module)
+ {
+ inc_indent();
+ f << indent << "bool converged = " << (eval_converges.at(module) ? "true" : "false") << ";\n";
+ if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
+ for (auto wire : module->wires()) {
+ if (edge_wires[wire]) {
+ for (auto edge_type : edge_types) {
+ if (edge_type.first.wire == wire) {
+ if (edge_type.second != RTLIL::STn) {
+ f << indent << "bool posedge_" << mangle(edge_type.first) << " = ";
+ f << "this->posedge_" << mangle(edge_type.first) << "();\n";
+ }
+ if (edge_type.second != RTLIL::STp) {
+ f << indent << "bool negedge_" << mangle(edge_type.first) << " = ";
+ f << "this->negedge_" << mangle(edge_type.first) << "();\n";
+ }
+ }
+ }
+ }
+ }
+ for (auto wire : module->wires())
+ dump_wire(wire, /*is_local_context=*/true);
+ for (auto node : schedule[module]) {
+ switch (node.type) {
+ case FlowGraph::Node::Type::CONNECT:
+ dump_connect(node.connect);
+ break;
+ case FlowGraph::Node::Type::CELL_SYNC:
+ dump_cell_sync(node.cell);
+ break;
+ case FlowGraph::Node::Type::CELL_EVAL:
+ dump_cell_eval(node.cell);
+ break;
+ case FlowGraph::Node::Type::PROCESS:
+ dump_process(node.process);
+ break;
+ }
+ }
+ }
+ f << indent << "return converged;\n";
+ dec_indent();
+ }
+
+ void dump_commit_method(RTLIL::Module *module)
+ {
+ inc_indent();
+ f << indent << "bool changed = false;\n";
+ for (auto wire : module->wires()) {
+ if (elided_wires.count(wire) || localized_wires.count(wire))
+ continue;
+ if (is_input_wire(wire)) {
+ if (edge_wires[wire])
+ f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n";
+ continue;
+ }
+ if (!module->get_bool_attribute(ID(cxxrtl_blackbox)) || wire->port_id != 0)
+ f << indent << "changed |= " << mangle(wire) << ".commit();\n";
+ }
+ if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
+ for (auto memory : module->memories) {
+ if (!writable_memories[memory.second])
+ continue;
+ f << indent << "changed |= " << mangle(memory.second) << ".commit();\n";
+ }
+ for (auto cell : module->cells()) {
+ if (is_internal_cell(cell->type))
+ continue;
+ const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
+ f << indent << "changed |= " << mangle(cell) << access << "commit();\n";
+ }
+ }
+ f << indent << "return changed;\n";
+ dec_indent();
+ }
+
+ void dump_debug_info_method(RTLIL::Module *module)
+ {
+ inc_indent();
+ f << indent << "assert(path.empty() || path[path.size() - 1] == ' ');\n";
+ for (auto wire : module->wires()) {
+ if (wire->name[0] != '\\')
+ continue;
+ if (localized_wires.count(wire))
+ continue;
+ f << indent << "items.emplace(path + " << escape_cxx_string(get_hdl_name(wire));
+ f << ", debug_item(" << mangle(wire) << "));\n";
+ }
+ for (auto &memory_it : module->memories) {
+ if (memory_it.first[0] != '\\')
+ continue;
+ f << indent << "items.emplace(path + " << escape_cxx_string(get_hdl_name(memory_it.second));
+ f << ", debug_item(" << mangle(memory_it.second) << "));\n";
+ }
+ for (auto cell : module->cells()) {
+ if (is_internal_cell(cell->type))
+ continue;
+ const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
+ f << indent << mangle(cell) << access << "debug_info(items, ";
+ f << "path + " << escape_cxx_string(get_hdl_name(cell) + ' ') << ");\n";
+ }
+ dec_indent();
+ }
+
+ void dump_metadata_map(const dict<RTLIL::IdString, RTLIL::Const> &metadata_map)
+ {
+ if (metadata_map.empty()) {
+ f << "metadata_map()";
+ return;
+ }
+ f << "metadata_map({\n";
+ inc_indent();
+ for (auto metadata_item : metadata_map) {
+ if (!metadata_item.first.begins_with("\\"))
+ continue;
+ f << indent << "{ " << escape_cxx_string(metadata_item.first.str().substr(1)) << ", ";
+ if (metadata_item.second.flags & RTLIL::CONST_FLAG_REAL) {
+ f << std::showpoint << std::stod(metadata_item.second.decode_string()) << std::noshowpoint;
+ } else if (metadata_item.second.flags & RTLIL::CONST_FLAG_STRING) {
+ f << escape_cxx_string(metadata_item.second.decode_string());
+ } else {
+ f << metadata_item.second.as_int(/*is_signed=*/metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED);
+ if (!(metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED))
+ f << "u";
+ }
+ f << " },\n";
+ }
+ dec_indent();
+ f << indent << "})";
+ }
+
+ void dump_module_intf(RTLIL::Module *module)
+ {
+ dump_attrs(module);
+ if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
+ if (module->has_attribute(ID(cxxrtl_template)))
+ f << indent << "template" << template_params(module, /*is_decl=*/true) << "\n";
+ f << indent << "struct " << mangle(module) << " : public module {\n";
+ inc_indent();
+ for (auto wire : module->wires()) {
+ if (wire->port_id != 0)
+ dump_wire(wire, /*is_local_context=*/false);
+ }
+ f << "\n";
+ f << indent << "bool eval() override {\n";
+ dump_eval_method(module);
+ f << indent << "}\n";
+ f << "\n";
+ f << indent << "bool commit() override {\n";
+ dump_commit_method(module);
+ f << indent << "}\n";
+ f << "\n";
+ if (debug_info) {
+ f << indent << "void debug_info(debug_items &items, std::string path = \"\") override {\n";
+ dump_debug_info_method(module);
+ f << indent << "}\n";
+ f << "\n";
+ }
+ f << indent << "static std::unique_ptr<" << mangle(module);
+ f << template_params(module, /*is_decl=*/false) << "> ";
+ f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n";
+ dec_indent();
+ f << indent << "}; // struct " << mangle(module) << "\n";
+ f << "\n";
+ if (blackbox_specializations.count(module)) {
+ // If templated black boxes are used, the constructor of any module which includes the black box cell
+ // (which calls the declared but not defined in the generated code `create` function) may only be used
+ // if (a) the create function is defined in the same translation unit, or (b) the create function has
+ // a forward-declared explicit specialization.
+ //
+ // Option (b) makes it possible to have the generated code and the black box implementation in different
+ // translation units, which is convenient. Of course, its downside is that black boxes must predefine
+ // a specialization for every combination of parameters the generated code may use; but since the main
+ // purpose of templated black boxes is abstracting over datapath width, it is expected that there would
+ // be very few such combinations anyway.
+ for (auto specialization : blackbox_specializations[module]) {
+ f << indent << "template<>\n";
+ f << indent << "std::unique_ptr<" << mangle(module) << specialization << "> ";
+ f << mangle(module) << specialization << "::";
+ f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n";
+ f << "\n";
+ }
+ }
+ } else {
+ f << indent << "struct " << mangle(module) << " : public module {\n";
+ inc_indent();
+ for (auto wire : module->wires())
+ dump_wire(wire, /*is_local_context=*/false);
+ f << "\n";
+ bool has_memories = false;
+ for (auto memory : module->memories) {
+ dump_memory(module, memory.second);
+ has_memories = true;
+ }
+ if (has_memories)
+ f << "\n";
+ bool has_cells = false;
+ for (auto cell : module->cells()) {
+ if (is_internal_cell(cell->type))
+ continue;
+ dump_attrs(cell);
+ RTLIL::Module *cell_module = module->design->module(cell->type);
+ log_assert(cell_module != nullptr);
+ if (cell_module->get_bool_attribute(ID(cxxrtl_blackbox))) {
+ f << indent << "std::unique_ptr<" << mangle(cell_module) << template_args(cell) << "> ";
+ f << mangle(cell) << " = " << mangle(cell_module) << template_args(cell);
+ f << "::create(" << escape_cxx_string(get_hdl_name(cell)) << ", ";
+ dump_metadata_map(cell->parameters);
+ f << ", ";
+ dump_metadata_map(cell->attributes);
+ f << ");\n";
+ } else {
+ f << indent << mangle(cell_module) << " " << mangle(cell) << ";\n";
+ }
+ has_cells = true;
+ }
+ if (has_cells)
+ f << "\n";
+ f << indent << "bool eval() override;\n";
+ f << indent << "bool commit() override;\n";
+ if (debug_info)
+ f << indent << "void debug_info(debug_items &items, std::string path = \"\") override;\n";
+ dec_indent();
+ f << indent << "}; // struct " << mangle(module) << "\n";
+ f << "\n";
+ }
+ }
+
+ void dump_module_impl(RTLIL::Module *module)
+ {
+ if (module->get_bool_attribute(ID(cxxrtl_blackbox)))
+ return;
+ f << indent << "bool " << mangle(module) << "::eval() {\n";
+ dump_eval_method(module);
+ f << indent << "}\n";
+ f << "\n";
+ f << indent << "bool " << mangle(module) << "::commit() {\n";
+ dump_commit_method(module);
+ f << indent << "}\n";
+ f << "\n";
+ if (debug_info) {
+ f << indent << "void " << mangle(module) << "::debug_info(debug_items &items, std::string path) {\n";
+ dump_debug_info_method(module);
+ f << indent << "}\n";
+ f << "\n";
+ }
+ }
+
+ void dump_design(RTLIL::Design *design)
+ {
+ RTLIL::Module *top_module = nullptr;
+ std::vector<RTLIL::Module*> modules;
+ TopoSort<RTLIL::Module*> topo_design;
+ for (auto module : design->modules()) {
+ if (!design->selected_module(module))
+ continue;
+ if (module->get_bool_attribute(ID(cxxrtl_blackbox)))
+ modules.push_back(module); // cxxrtl blackboxes first
+ if (module->get_blackbox_attribute() || module->get_bool_attribute(ID(cxxrtl_blackbox)))
+ continue;
+ if (module->get_bool_attribute(ID::top))
+ top_module = module;
+
+ topo_design.node(module);
+ for (auto cell : module->cells()) {
+ if (is_internal_cell(cell->type) || is_cxxrtl_blackbox_cell(cell))
+ continue;
+ RTLIL::Module *cell_module = design->module(cell->type);
+ log_assert(cell_module != nullptr);
+ topo_design.edge(cell_module, module);
+ }
+ }
+ log_assert(topo_design.sort());
+ modules.insert(modules.end(), topo_design.sorted.begin(), topo_design.sorted.end());
+
+ if (split_intf) {
+ // The only thing more depraved than include guards, is mangling filenames to turn them into include guards.
+ std::string include_guard = design_ns + "_header";
+ std::transform(include_guard.begin(), include_guard.end(), include_guard.begin(), ::toupper);
+
+ f << "#ifndef " << include_guard << "\n";
+ f << "#define " << include_guard << "\n";
+ f << "\n";
+ if (top_module != nullptr && debug_info) {
+ f << "#include <backends/cxxrtl/cxxrtl_capi.h>\n";
+ f << "\n";
+ f << "#ifdef __cplusplus\n";
+ f << "extern \"C\" {\n";
+ f << "#endif\n";
+ f << "\n";
+ f << "cxxrtl_toplevel " << design_ns << "_create();\n";
+ f << "\n";
+ f << "#ifdef __cplusplus\n";
+ f << "}\n";
+ f << "#endif\n";
+ f << "\n";
+ } else {
+ f << "// The CXXRTL C API is not available because the design is built without debug information.\n";
+ f << "\n";
+ }
+ f << "#ifdef __cplusplus\n";
+ f << "\n";
+ f << "#include <backends/cxxrtl/cxxrtl.h>\n";
+ f << "\n";
+ f << "using namespace cxxrtl;\n";
+ f << "\n";
+ f << "namespace " << design_ns << " {\n";
+ f << "\n";
+ for (auto module : modules)
+ dump_module_intf(module);
+ f << "} // namespace " << design_ns << "\n";
+ f << "\n";
+ f << "#endif // __cplusplus\n";
+ f << "\n";
+ f << "#endif\n";
+ *intf_f << f.str(); f.str("");
+ }
+
+ if (split_intf)
+ f << "#include \"" << intf_filename << "\"\n";
+ else
+ f << "#include <backends/cxxrtl/cxxrtl.h>\n";
+ f << "\n";
+ f << "#if defined(CXXRTL_INCLUDE_CAPI_IMPL) || \\\n";
+ f << " defined(CXXRTL_INCLUDE_VCD_CAPI_IMPL)\n";
+ f << "#include <backends/cxxrtl/cxxrtl_capi.cc>\n";
+ f << "#endif\n";
+ f << "\n";
+ f << "#if defined(CXXRTL_INCLUDE_VCD_CAPI_IMPL)\n";
+ f << "#include <backends/cxxrtl/cxxrtl_vcd_capi.cc>\n";
+ f << "#endif\n";
+ f << "\n";
+ f << "using namespace cxxrtl_yosys;\n";
+ f << "\n";
+ f << "namespace " << design_ns << " {\n";
+ f << "\n";
+ for (auto module : modules) {
+ if (!split_intf)
+ dump_module_intf(module);
+ dump_module_impl(module);
+ }
+ f << "} // namespace " << design_ns << "\n";
+ f << "\n";
+ if (top_module != nullptr && debug_info) {
+ f << "cxxrtl_toplevel " << design_ns << "_create() {\n";
+ inc_indent();
+ f << indent << "return new _cxxrtl_toplevel { ";
+ f << "std::make_unique<" << design_ns << "::" << mangle(top_module) << ">()";
+ f << " };\n";
+ dec_indent();
+ f << "}\n";
+ }
+
+ *impl_f << f.str(); f.str("");
+ }
+
+ // Edge-type sync rules require us to emit edge detectors, which require coordination between
+ // eval and commit phases. To do this we need to collect them upfront.
+ //
+ // Note that the simulator commit phase operates at wire granularity but edge-type sync rules
+ // operate at wire bit granularity; it is possible to have code similar to:
+ // wire [3:0] clocks;
+ // always @(posedge clocks[0]) ...
+ // To handle this we track edge sensitivity both for wires and wire bits.
+ void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
+ {
+ signal = sigmap(signal);
+ log_assert(signal.is_wire() && signal.is_bit());
+ log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
+
+ RTLIL::SigBit sigbit = signal[0];
+ if (!edge_types.count(sigbit))
+ edge_types[sigbit] = type;
+ else if (edge_types[sigbit] != type)
+ edge_types[sigbit] = RTLIL::STe;
+ edge_wires.insert(signal.as_wire());
+ }
+
+ void analyze_design(RTLIL::Design *design)
+ {
+ bool has_feedback_arcs = false;
+ bool has_buffered_wires = false;
+
+ for (auto module : design->modules()) {
+ if (!design->selected_module(module))
+ continue;
+
+ SigMap &sigmap = sigmaps[module];
+ sigmap.set(module);
+
+ if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
+ for (auto port : module->ports) {
+ RTLIL::Wire *wire = module->wire(port);
+ if (wire->has_attribute(ID(cxxrtl_edge))) {
+ RTLIL::Const edge_attr = wire->attributes[ID(cxxrtl_edge)];
+ if (!(edge_attr.flags & RTLIL::CONST_FLAG_STRING) || (int)edge_attr.decode_string().size() != GetSize(wire))
+ log_cmd_error("Attribute `cxxrtl_edge' of port `%s.%s' is not a string with one character per bit.\n",
+ log_id(module), log_signal(wire));
+
+ std::string edges = wire->get_string_attribute(ID(cxxrtl_edge));
+ for (int i = 0; i < GetSize(wire); i++) {
+ RTLIL::SigSpec wire_sig = wire;
+ switch (edges[i]) {
+ case '-': break;
+ case 'p': register_edge_signal(sigmap, wire_sig[i], RTLIL::STp); break;
+ case 'n': register_edge_signal(sigmap, wire_sig[i], RTLIL::STn); break;
+ case 'a': register_edge_signal(sigmap, wire_sig[i], RTLIL::STe); break;
+ default:
+ log_cmd_error("Attribute `cxxrtl_edge' of port `%s.%s' contains specifiers "
+ "other than '-', 'p', 'n', or 'a'.\n",
+ log_id(module), log_signal(wire));
+ }
+ }
+ }
+ }
+
+ // Black boxes converge by default, since their implementations are quite unlikely to require
+ // internal propagation of comb signals.
+ eval_converges[module] = true;
+ continue;
+ }
+
+ FlowGraph flow;
+
+ for (auto conn : module->connections())
+ flow.add_node(conn);
+
+ dict<const RTLIL::Cell*, FlowGraph::Node*> memrw_cell_nodes;
+ dict<std::pair<RTLIL::SigBit, const RTLIL::Memory*>,
+ pool<const RTLIL::Cell*>> memwr_per_domain;
+ for (auto cell : module->cells()) {
+ if (!cell->known())
+ log_cmd_error("Unknown cell `%s'.\n", log_id(cell->type));
+
+ RTLIL::Module *cell_module = design->module(cell->type);
+ if (cell_module &&
+ cell_module->get_blackbox_attribute() &&
+ !cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
+ log_cmd_error("External blackbox cell `%s' is not marked as a CXXRTL blackbox.\n", log_id(cell->type));
+
+ if (cell_module &&
+ cell_module->get_bool_attribute(ID(cxxrtl_blackbox)) &&
+ cell_module->get_bool_attribute(ID(cxxrtl_template)))
+ blackbox_specializations[cell_module].insert(template_args(cell));
+
+ FlowGraph::Node *node = flow.add_node(cell);
+
+ // Various DFF cells are treated like posedge/negedge processes, see above for details.
+ if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) {
+ if (cell->getPort(ID::CLK).is_wire())
+ register_edge_signal(sigmap, cell->getPort(ID::CLK),
+ cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
+ }
+ // Similar for memory port cells.
+ if (cell->type.in(ID($memrd), ID($memwr))) {
+ if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
+ if (cell->getPort(ID::CLK).is_wire())
+ register_edge_signal(sigmap, cell->getPort(ID::CLK),
+ cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
+ }
+ memrw_cell_nodes[cell] = node;
+ }
+ // Optimize access to read-only memories.
+ if (cell->type == ID($memwr))
+ writable_memories.insert(module->memories[cell->getParam(ID::MEMID).decode_string()]);
+ // Collect groups of memory write ports in the same domain.
+ if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire()) {
+ RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
+ const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
+ memwr_per_domain[{clk_bit, memory}].insert(cell);
+ }
+ // Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence
+ // of RTLIL memory objects and $memrd/$memwr/$meminit cells.
+ if (cell->type.in(ID($mem)))
+ log_assert(false);
+ }
+ for (auto cell : module->cells()) {
+ // Collect groups of memory write ports read by every transparent read port.
+ if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire() &&
+ cell->getParam(ID::TRANSPARENT).as_bool()) {
+ RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
+ const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
+ for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) {
+ transparent_for[cell].insert(memwr_cell);
+ // Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell
+ // in the same domain, which isn't directly visible in the netlist. Add these uses explicitly.
+ flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::EN));
+ flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::ADDR));
+ flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::DATA));
+ }
+ }
+ }
+
+ for (auto proc : module->processes) {
+ flow.add_node(proc.second);
+
+ for (auto sync : proc.second->syncs)
+ switch (sync->type) {
+ // Edge-type sync rules require pre-registration.
+ case RTLIL::STp:
+ case RTLIL::STn:
+ case RTLIL::STe:
+ register_edge_signal(sigmap, sync->signal, sync->type);
+ break;
+
+ // Level-type sync rules require no special handling.
+ case RTLIL::ST0:
+ case RTLIL::ST1:
+ case RTLIL::STa:
+ break;
+
+ case RTLIL::STg:
+ log_cmd_error("Global clock is not supported.\n");
+
+ // Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire
+ // attribute regardless of input.
+ case RTLIL::STi:
+ log_assert(false);
+ }
+ }
+
+ for (auto wire : module->wires()) {
+ if (!flow.is_elidable(wire)) continue;
+ if (wire->port_id != 0) continue;
+ if (wire->get_bool_attribute(ID::keep)) continue;
+ if (wire->name.begins_with("$") && !elide_internal) continue;
+ if (wire->name.begins_with("\\") && !elide_public) continue;
+ if (edge_wires[wire]) continue;
+ log_assert(flow.wire_comb_defs[wire].size() == 1);
+ elided_wires[wire] = **flow.wire_comb_defs[wire].begin();
+ }
+
+ dict<FlowGraph::Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_defs;
+ for (auto wire_comb_def : flow.wire_comb_defs)
+ for (auto node : wire_comb_def.second)
+ node_defs[node].insert(wire_comb_def.first);
+
+ Scheduler<FlowGraph::Node> scheduler;
+ dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_map;
+ for (auto node : flow.nodes)
+ node_map[node] = scheduler.add(node);
+ for (auto node_def : node_defs) {
+ auto vertex = node_map[node_def.first];
+ for (auto wire : node_def.second)
+ for (auto succ_node : flow.wire_uses[wire]) {
+ auto succ_vertex = node_map[succ_node];
+ vertex->succs.insert(succ_vertex);
+ succ_vertex->preds.insert(vertex);
+ }
+ }
+
+ auto eval_order = scheduler.schedule();
+ pool<FlowGraph::Node*, hash_ptr_ops> evaluated;
+ pool<const RTLIL::Wire*> feedback_wires;
+ for (auto vertex : eval_order) {
+ auto node = vertex->data;
+ schedule[module].push_back(*node);
+ // Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi
+ // is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be
+ // caused by a true logic loop, but usually are a benign result of dependency tracking that works
+ // on wire, not bit, level. Nevertheless, feedback wires cannot be localized.
+ evaluated.insert(node);
+ for (auto wire : node_defs[node])
+ for (auto succ_node : flow.wire_uses[wire])
+ if (evaluated[succ_node]) {
+ feedback_wires.insert(wire);
+ // Feedback wires may never be elided because feedback requires state, but the point of elision
+ // (and localization) is to eliminate state.
+ elided_wires.erase(wire);
+ }
+ }
+
+ if (!feedback_wires.empty()) {
+ has_feedback_arcs = true;
+ log("Module `%s' contains feedback arcs through wires:\n", log_id(module));
+ for (auto wire : feedback_wires)
+ log(" %s\n", log_id(wire));
+ log("\n");
+ }
+
+ for (auto wire : module->wires()) {
+ if (feedback_wires[wire]) continue;
+ if (wire->port_id != 0) continue;
+ if (wire->get_bool_attribute(ID::keep)) continue;
+ if (wire->name.begins_with("$") && !localize_internal) continue;
+ if (wire->name.begins_with("\\") && !localize_public) continue;
+ if (edge_wires[wire]) continue;
+ if (flow.wire_sync_defs.count(wire) > 0) continue;
+ localized_wires.insert(wire);
+ }
+
+ // For maximum performance, the state of the simulation (which is the same as the set of its double buffered
+ // wires, since using a singly buffered wire for any kind of state introduces a race condition) should contain
+ // no wires attached to combinatorial outputs. Feedback wires, by definition, make that impossible. However,
+ // it is possible that a design with no feedback arcs would end up with doubly buffered wires in such cases
+ // as a wire with multiple drivers where one of them is combinatorial and the other is synchronous. Such designs
+ // also require more than one delta cycle to converge.
+ pool<const RTLIL::Wire*> buffered_wires;
+ for (auto wire : module->wires()) {
+ if (flow.wire_comb_defs[wire].size() > 0 && !elided_wires.count(wire) && !localized_wires[wire]) {
+ if (!feedback_wires[wire])
+ buffered_wires.insert(wire);
+ }
+ }
+ if (!buffered_wires.empty()) {
+ has_buffered_wires = true;
+ log("Module `%s' contains buffered combinatorial wires:\n", log_id(module));
+ for (auto wire : buffered_wires)
+ log(" %s\n", log_id(wire));
+ log("\n");
+ }
+
+ eval_converges[module] = feedback_wires.empty() && buffered_wires.empty();
+ }
+ if (has_feedback_arcs || has_buffered_wires) {
+ // Although both non-feedback buffered combinatorial wires and apparent feedback wires may be eliminated
+ // by optimizing the design, if after `proc; flatten` there are any feedback wires remaining, it is very
+ // likely that these feedback wires are indicative of a true logic loop, so they get emphasized in the message.
+ const char *why_pessimistic = nullptr;
+ if (has_feedback_arcs)
+ why_pessimistic = "feedback wires";
+ else if (has_buffered_wires)
+ why_pessimistic = "buffered combinatorial wires";
+ log_warning("Design contains %s, which require delta cycles during evaluation.\n", why_pessimistic);
+ if (!max_opt_level)
+ log("Increasing the optimization level may eliminate %s from the design.\n", why_pessimistic);
+ }
+ }
+
+ void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem)
+ {
+ has_sync_init = has_packed_mem = false;
+
+ for (auto module : design->modules()) {
+ if (module->get_blackbox_attribute() && !module->has_attribute(ID(cxxrtl_blackbox)))
+ continue;
+
+ if (!design->selected_whole_module(module))
+ if (design->selected_module(module))
+ log_cmd_error("Can't handle partially selected module `%s'!\n", id2cstr(module->name));
+ if (!design->selected_module(module))
+ continue;
+
+ for (auto proc : module->processes)
+ for (auto sync : proc.second->syncs)
+ if (sync->type == RTLIL::STi)
+ has_sync_init = true;
+
+ for (auto cell : module->cells())
+ if (cell->type == ID($mem))
+ has_packed_mem = true;
+ }
+ }
+
+ void prepare_design(RTLIL::Design *design)
+ {
+ bool did_anything = false;
+ bool has_sync_init, has_packed_mem;
+ log_push();
+ check_design(design, has_sync_init, has_packed_mem);
+ if (run_proc_flatten) {
+ Pass::call(design, "proc");
+ Pass::call(design, "flatten");
+ did_anything = true;
+ } else if (has_sync_init) {
+ // We're only interested in proc_init, but it depends on proc_prune and proc_clean, so call those
+ // in case they weren't already. (This allows `yosys foo.v -o foo.cc` to work.)
+ Pass::call(design, "proc_prune");
+ Pass::call(design, "proc_clean");
+ Pass::call(design, "proc_init");
+ did_anything = true;
+ }
+ if (has_packed_mem) {
+ Pass::call(design, "memory_unpack");
+ did_anything = true;
+ }
+ // Recheck the design if it was modified.
+ if (has_sync_init || has_packed_mem)
+ check_design(design, has_sync_init, has_packed_mem);
+ log_assert(!(has_sync_init || has_packed_mem));
+ log_pop();
+ if (did_anything)
+ log_spacer();
+ analyze_design(design);
+ }
+};
+
+struct CxxrtlBackend : public Backend {
+ static const int DEFAULT_OPT_LEVEL = 5;
+ static const int DEFAULT_DEBUG_LEVEL = 1;
+
+ CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
+ void help() YS_OVERRIDE
+ {
+ // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
+ log("\n");
+ log(" write_cxxrtl [options] [filename]\n");
+ log("\n");
+ log("Write C++ code that simulates the design. The generated code requires a driver\n");
+ log("that instantiates the design, toggles its clock, and interacts with its ports.\n");
+ log("\n");
+ log("The following driver may be used as an example for a design with a single clock\n");
+ log("driving rising edge triggered flip-flops:\n");
+ log("\n");
+ log(" #include \"top.cc\"\n");
+ log("\n");
+ log(" int main() {\n");
+ log(" cxxrtl_design::p_top top;\n");
+ log(" top.step();\n");
+ log(" while (1) {\n");
+ log(" /* user logic */\n");
+ log(" top.p_clk = value<1> {0u};\n");
+ log(" top.step();\n");
+ log(" top.p_clk = value<1> {1u};\n");
+ log(" top.step();\n");
+ log(" }\n");
+ log(" }\n");
+ log("\n");
+ log("Note that CXXRTL simulations, just like the hardware they are simulating, are\n");
+ log("subject to race conditions. If, in the example above, the user logic would run\n");
+ log("simultaneously with the rising edge of the clock, the design would malfunction.\n");
+ log("\n");
+ log("This backend supports replacing parts of the design with black boxes implemented\n");
+ log("in C++. If a module marked as a CXXRTL black box, its implementation is ignored,\n");
+ log("and the generated code consists only of an interface and a factory function.\n");
+ log("The driver must implement the factory function that creates an implementation of\n");
+ log("the black box, taking into account the parameters it is instantiated with.\n");
+ log("\n");
+ log("For example, the following Verilog code defines a CXXRTL black box interface for\n");
+ log("a synchronous debug sink:\n");
+ log("\n");
+ log(" (* cxxrtl_blackbox *)\n");
+ log(" module debug(...);\n");
+ log(" (* cxxrtl_edge = \"p\" *) input clk;\n");
+ log(" input en;\n");
+ log(" input [7:0] i_data;\n");
+ log(" (* cxxrtl_sync *) output [7:0] o_data;\n");
+ log(" endmodule\n");
+ log("\n");
+ log("For this HDL interface, this backend will generate the following C++ interface:\n");
+ log("\n");
+ log(" struct bb_p_debug : public module {\n");
+ log(" value<1> p_clk;\n");
+ log(" bool posedge_p_clk() const { /* ... */ }\n");
+ log(" value<1> p_en;\n");
+ log(" value<8> p_i_data;\n");
+ log(" wire<8> p_o_data;\n");
+ log("\n");
+ log(" bool eval() override;\n");
+ log(" bool commit() override;\n");
+ log("\n");
+ log(" static std::unique_ptr<bb_p_debug>\n");
+ log(" create(std::string name, metadata_map parameters, metadata_map attributes);\n");
+ log(" };\n");
+ log("\n");
+ log("The `create' function must be implemented by the driver. For example, it could\n");
+ log("always provide an implementation logging the values to standard error stream:\n");
+ log("\n");
+ log(" namespace cxxrtl_design {\n");
+ log("\n");
+ log(" struct stderr_debug : public bb_p_debug {\n");
+ log(" bool eval() override {\n");
+ log(" if (posedge_p_clk() && p_en)\n");
+ log(" fprintf(stderr, \"debug: %%02x\\n\", p_i_data.data[0]);\n");
+ log(" p_o_data.next = p_i_data;\n");
+ log(" return bb_p_debug::eval();\n");
+ log(" }\n");
+ log(" };\n");
+ log("\n");
+ log(" std::unique_ptr<bb_p_debug>\n");
+ log(" bb_p_debug::create(std::string name, cxxrtl::metadata_map parameters,\n");
+ log(" cxxrtl::metadata_map attributes) {\n");
+ log(" return std::make_unique<stderr_debug>();\n");
+ log(" }\n");
+ log("\n");
+ log(" }\n");
+ log("\n");
+ log("For complex applications of black boxes, it is possible to parameterize their\n");
+ log("port widths. For example, the following Verilog code defines a CXXRTL black box\n");
+ log("interface for a configurable width debug sink:\n");
+ log("\n");
+ log(" (* cxxrtl_blackbox, cxxrtl_template = \"WIDTH\" *)\n");
+ log(" module debug(...);\n");
+ log(" parameter WIDTH = 8;\n");
+ log(" (* cxxrtl_edge = \"p\" *) input clk;\n");
+ log(" input en;\n");
+ log(" (* cxxrtl_width = \"WIDTH\" *) input [WIDTH - 1:0] i_data;\n");
+ log(" (* cxxrtl_width = \"WIDTH\" *) output [WIDTH - 1:0] o_data;\n");
+ log(" endmodule\n");
+ log("\n");
+ log("For this parametric HDL interface, this backend will generate the following C++\n");
+ log("interface (only the differences are shown):\n");
+ log("\n");
+ log(" template<size_t WIDTH>\n");
+ log(" struct bb_p_debug : public module {\n");
+ log(" // ...\n");
+ log(" value<WIDTH> p_i_data;\n");
+ log(" wire<WIDTH> p_o_data;\n");
+ log(" // ...\n");
+ log(" static std::unique_ptr<bb_p_debug<WIDTH>>\n");
+ log(" create(std::string name, metadata_map parameters, metadata_map attributes);\n");
+ log(" };\n");
+ log("\n");
+ log("The `create' function must be implemented by the driver, specialized for every\n");
+ log("possible combination of template parameters. (Specialization is necessary to\n");
+ log("enable separate compilation of generated code and black box implementations.)\n");
+ log("\n");
+ log(" template<size_t SIZE>\n");
+ log(" struct stderr_debug : public bb_p_debug<SIZE> {\n");
+ log(" // ...\n");
+ log(" };\n");
+ log("\n");
+ log(" template<>\n");
+ log(" std::unique_ptr<bb_p_debug<8>>\n");
+ log(" bb_p_debug<8>::create(std::string name, cxxrtl::metadata_map parameters,\n");
+ log(" cxxrtl::metadata_map attributes) {\n");
+ log(" return std::make_unique<stderr_debug<8>>();\n");
+ log(" }\n");
+ log("\n");
+ log("The following attributes are recognized by this backend:\n");
+ log("\n");
+ log(" cxxrtl_blackbox\n");
+ log(" only valid on modules. if specified, the module contents are ignored,\n");
+ log(" and the generated code includes only the module interface and a factory\n");
+ log(" function, which will be called to instantiate the module.\n");
+ log("\n");
+ log(" cxxrtl_edge\n");
+ log(" only valid on inputs of black boxes. must be one of \"p\", \"n\", \"a\".\n");
+ log(" if specified on signal `clk`, the generated code includes edge detectors\n");
+ log(" `posedge_p_clk()` (if \"p\"), `negedge_p_clk()` (if \"n\"), or both (if\n");
+ log(" \"a\"), simplifying implementation of clocked black boxes.\n");
+ log("\n");
+ log(" cxxrtl_template\n");
+ log(" only valid on black boxes. must contain a space separated sequence of\n");
+ log(" identifiers that have a corresponding black box parameters. for each\n");
+ log(" of them, the generated code includes a `size_t` template parameter.\n");
+ log("\n");
+ log(" cxxrtl_width\n");
+ log(" only valid on ports of black boxes. must be a constant expression, which\n");
+ log(" is directly inserted into generated code.\n");
+ log("\n");
+ log(" cxxrtl_comb, cxxrtl_sync\n");
+ log(" only valid on outputs of black boxes. if specified, indicates that every\n");
+ log(" bit of the output port is driven, correspondingly, by combinatorial or\n");
+ log(" synchronous logic. this knowledge is used for scheduling optimizations.\n");
+ log(" if neither is specified, the output will be pessimistically treated as\n");
+ log(" driven by both combinatorial and synchronous logic.\n");
+ log("\n");
+ log("The following options are supported by this backend:\n");
+ log("\n");
+ log(" -header\n");
+ log(" generate separate interface (.h) and implementation (.cc) files.\n");
+ log(" if specified, the backend must be called with a filename, and filename\n");
+ log(" of the interface is derived from filename of the implementation.\n");
+ log(" otherwise, interface and implementation are generated together.\n");
+ log("\n");
+ log(" -namespace <ns-name>\n");
+ log(" place the generated code into namespace <ns-name>. if not specified,\n");
+ log(" \"cxxrtl_design\" is used.\n");
+ log("\n");
+ log(" -O <level>\n");
+ log(" set the optimization level. the default is -O%d. higher optimization\n", DEFAULT_OPT_LEVEL);
+ log(" levels dramatically decrease compile and run time, and highest level\n");
+ log(" possible for a design should be used.\n");
+ log("\n");
+ log(" -O0\n");
+ log(" no optimization.\n");
+ log("\n");
+ log(" -O1\n");
+ log(" elide internal wires if possible.\n");
+ log("\n");
+ log(" -O2\n");
+ log(" like -O1, and localize internal wires if possible.\n");
+ log("\n");
+ log(" -O3\n");
+ log(" like -O2, and elide public wires not marked (*keep*) if possible.\n");
+ log("\n");
+ log(" -O4\n");
+ log(" like -O3, and localize public wires not marked (*keep*) if possible.\n");
+ log("\n");
+ log(" -O5\n");
+ log(" like -O4, and run `proc; flatten` first.\n");
+ log("\n");
+ log(" -g <level>\n");
+ log(" set the debug level. the default is -g%d. higher debug levels provide\n", DEFAULT_DEBUG_LEVEL);
+ log(" more visibility and generate more code, but do not pessimize evaluation.\n");
+ log("\n");
+ log(" -g0\n");
+ log(" no debug information.\n");
+ log("\n");
+ log(" -g1\n");
+ log(" debug information for non-localized public wires.\n");
+ log("\n");
+ }
+
+ void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
+ {
+ int opt_level = DEFAULT_OPT_LEVEL;
+ int debug_level = DEFAULT_DEBUG_LEVEL;
+ CxxrtlWorker worker;
+
+ log_header(design, "Executing CXXRTL backend.\n");
+
+ size_t argidx;
+ for (argidx = 1; argidx < args.size(); argidx++)
+ {
+ if (args[argidx] == "-O" && argidx+1 < args.size()) {
+ opt_level = std::stoi(args[++argidx]);
+ continue;
+ }
+ if (args[argidx].substr(0, 2) == "-O" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
+ opt_level = std::stoi(args[argidx].substr(2));
+ continue;
+ }
+ if (args[argidx] == "-g" && argidx+1 < args.size()) {
+ debug_level = std::stoi(args[++argidx]);
+ continue;
+ }
+ if (args[argidx].substr(0, 2) == "-g" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
+ debug_level = std::stoi(args[argidx].substr(2));
+ continue;
+ }
+ if (args[argidx] == "-header") {
+ worker.split_intf = true;
+ continue;
+ }
+ if (args[argidx] == "-namespace" && argidx+1 < args.size()) {
+ worker.design_ns = args[++argidx];
+ continue;
+ }
+ break;
+ }
+ extra_args(f, filename, args, argidx);
+
+ switch (opt_level) {
+ // the highest level here must match DEFAULT_OPT_LEVEL
+ case 5:
+ worker.max_opt_level = true;
+ worker.run_proc_flatten = true;
+ YS_FALLTHROUGH
+ case 4:
+ worker.localize_public = true;
+ YS_FALLTHROUGH
+ case 3:
+ worker.elide_public = true;
+ YS_FALLTHROUGH
+ case 2:
+ worker.localize_internal = true;
+ YS_FALLTHROUGH
+ case 1:
+ worker.elide_internal = true;
+ YS_FALLTHROUGH
+ case 0:
+ break;
+ default:
+ log_cmd_error("Invalid optimization level %d.\n", opt_level);
+ }
+
+ switch (debug_level) {
+ // the highest level here must match DEFAULT_DEBUG_LEVEL
+ case 1:
+ worker.debug_info = true;
+ YS_FALLTHROUGH
+ case 0:
+ break;
+ default:
+ log_cmd_error("Invalid optimization level %d.\n", opt_level);
+ }
+
+ std::ofstream intf_f;
+ if (worker.split_intf) {
+ if (filename == "<stdout>")
+ log_cmd_error("Option -header must be used with a filename.\n");
+
+ worker.intf_filename = filename.substr(0, filename.rfind('.')) + ".h";
+ intf_f.open(worker.intf_filename, std::ofstream::trunc);
+ if (intf_f.fail())
+ log_cmd_error("Can't open file `%s' for writing: %s\n",
+ worker.intf_filename.c_str(), strerror(errno));
+
+ worker.intf_f = &intf_f;
+ }
+ worker.impl_f = f;
+
+ worker.prepare_design(design);
+ worker.dump_design(design);
+ }
+} CxxrtlBackend;
+
+PRIVATE_NAMESPACE_END