From: Jacob Lifshay Date: Thu, 6 Oct 2022 05:03:33 +0000 (-0700) Subject: add Matrix class X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=05c03eb9551619d9a61874cd7639020e49a1999f;p=bigint-presentation-code.git add Matrix class --- diff --git a/.gitignore b/.gitignore index d0bb043..4134655 100644 --- a/.gitignore +++ b/.gitignore @@ -4,3 +4,4 @@ __pycache__ *.gtkw *.egg-info *.il +/.vscode diff --git a/setup.py b/setup.py index 5aaa3c2..36d91f4 100644 --- a/setup.py +++ b/setup.py @@ -6,6 +6,7 @@ README = Path(__file__).with_name('README.md').read_text("UTF-8") version = '0.0.1' install_requires = [ + "libresoc-nmutil", 'libresoc-openpower-isa', ] diff --git a/src/bigint_presentation_code/matrix.py b/src/bigint_presentation_code/matrix.py new file mode 100644 index 0000000..2636be8 --- /dev/null +++ b/src/bigint_presentation_code/matrix.py @@ -0,0 +1,207 @@ +import operator +from typing import Callable, Iterable +from fractions import Fraction +from numbers import Rational + + +class Matrix: + __slots__ = "__height", "__width", "__data" + + @property + def height(self): + return self.__height + + @property + def width(self): + return self.__width + + def __init__(self, height, width, data=None): + # type: (int, int, Iterable[Rational | int] | None) -> None + if width < 0 or height < 0: + raise ValueError("matrix size must be non-negative") + self.__height = height + self.__width = width + self.__data = [Fraction()] * (height * width) + if data is not None: + data = list(data) + if len(data) != len(self.__data): + raise ValueError("data has wrong length") + self.__data[:] = map(Fraction, data) + + @staticmethod + def identity(height, width=None): + # type: (int, int | None) -> Matrix + if width is None: + width = height + retval = Matrix(height, width) + for i in range(min(height, width)): + retval[i, i] = 1 + return retval + + def __idx(self, row, col): + # type: (int, int) -> int + if 0 <= col < self.width and 0 <= row < self.height: + return row * self.width + col + raise IndexError() + + def __getitem__(self, row_col): + # type: (tuple[int, int]) -> Fraction + row, col = row_col + return self.__data[self.__idx(row, col)] + + def __setitem__(self, row_col, value): + # type: (tuple[int, int], Rational | int) -> None + row, col = row_col + self.__data[self.__idx(row, col)] = Fraction(value) + + def copy(self): + retval = Matrix(self.width, self.height) + retval.__data[:] = self.__data + return retval + + def indexes(self): + for row in range(self.height): + for col in range(self.width): + yield row, col + + def __mul__(self, rhs): + # type: (Rational | int) -> Matrix + rhs = Fraction(rhs) + retval = self.copy() + for i in self.indexes(): + retval[i] *= rhs + return retval + + def __rmul__(self, lhs): + # type: (Rational | int) -> Matrix + return self.__mul__(lhs) + + def __truediv__(self, rhs): + # type: (Rational | int) -> Matrix + rhs = 1 / Fraction(rhs) + retval = self.copy() + for i in self.indexes(): + retval[i] *= rhs + return retval + + def __matmul__(self, rhs): + # type: (Matrix) -> Matrix + if self.width != rhs.height: + raise ValueError( + "lhs width must equal rhs height to multiply matrixes") + retval = Matrix(self.height, rhs.width) + for row in range(retval.height): + for col in range(retval.width): + sum = Fraction() + for i in range(self.width): + sum += self[row, i] * rhs[i, col] + retval[row, col] = sum + return retval + + def __rmatmul__(self, lhs): + # type: (Matrix) -> Matrix + return lhs.__matmul__(self) + + def __elementwise_bin_op(self, rhs, op): + # type: (Matrix, Callable[[Fraction, Fraction], Fraction]) -> Matrix + if self.height != rhs.height or self.width != rhs.width: + raise ValueError( + "matrix dimensions must match for element-wise operations") + retval = self.copy() + for i in retval.indexes(): + retval[i] = op(retval[i], rhs[i]) + return retval + + def __add__(self, rhs): + # type: (Matrix) -> Matrix + return self.__elementwise_bin_op(rhs, operator.add) + + def __radd__(self, lhs): + # type: (Matrix) -> Matrix + return lhs.__add__(self) + + def __sub__(self, rhs): + # type: (Matrix) -> Matrix + return self.__elementwise_bin_op(rhs, operator.sub) + + def __rsub__(self, lhs): + # type: (Matrix) -> Matrix + return lhs.__sub__(self) + + def __iter__(self): + return iter(self.__data) + + def __reversed__(self): + return reversed(self.__data) + + def __neg__(self): + retval = self.copy() + for i in retval.indexes(): + retval[i] = -retval[i] + return retval + + def __repr__(self): + if self.height == 0 or self.width == 0: + return f"Matrix(height={self.height}, width={self.width})" + lines = [] + line = [] + for row in range(self.height): + line.clear() + for col in range(self.width): + if self[row, col].denominator == 1: + line.append(str(self[row, col].numerator)) + else: + line.append(repr(self[row, col])) + lines.append(", ".join(line)) + lines = ",\n ".join(lines) + return (f"Matrix(height={self.height}, width={self.width}, data=[\n" + f" {lines},\n])") + + def __eq__(self, rhs): + if not isinstance(rhs, Matrix): + return NotImplemented + return (self.height == rhs.height + and self.width == rhs.width + and self.__data == rhs.__data) + + def inverse(self): + size = self.height + if size != self.width: + raise ValueError("can't invert a non-square matrix") + inp = self.copy() + retval = Matrix.identity(size) + # the algorithm is adapted from: + # https://rosettacode.org/wiki/Gauss-Jordan_matrix_inversion#C + for k in range(size): + f = abs(inp[k, k]) # Find pivot. + p = k + for i in range(k + 1, size): + g = abs(inp[k, i]) + if g > f: + f = g + p = i + if f == 0: + raise ZeroDivisionError("Matrix is singular") + if p != k: # Swap rows. + for j in range(k, size): + f = inp[j, k] + inp[j, k] = inp[j, p] + inp[j, p] = f + for j in range(size): + f = retval[j, k] + retval[j, k] = retval[j, p] + retval[j, p] = f + f = 1 / inp[k, k] # Scale row so pivot is 1. + for j in range(k, size): + inp[j, k] *= f + for j in range(size): + retval[j, k] *= f + for i in range(size): # Subtract to get zeros. + if i == k: + continue + f = inp[k, i] + for j in range(k, size): + inp[j, i] -= inp[j, k] * f + for j in range(size): + retval[j, i] -= retval[j, k] * f + return retval diff --git a/src/bigint_presentation_code/test_matrix.py b/src/bigint_presentation_code/test_matrix.py new file mode 100644 index 0000000..ef39742 --- /dev/null +++ b/src/bigint_presentation_code/test_matrix.py @@ -0,0 +1,113 @@ +import unittest +from fractions import Fraction + +from bigint_presentation_code.matrix import Matrix + + +class TestMatrix(unittest.TestCase): + def test_repr(self): + self.assertEqual(repr(Matrix(2, 3, [0, 1, 2, + 3, 4, 5])), + 'Matrix(height=2, width=3, data=[\n' + ' 0, 1, 2,\n' + ' 3, 4, 5,\n' + '])') + self.assertEqual(repr(Matrix(2, 3, [0, 1, Fraction(2) / 3, + 3, 4, 5])), + 'Matrix(height=2, width=3, data=[\n' + ' 0, 1, Fraction(2, 3),\n' + ' 3, 4, 5,\n' + '])') + self.assertEqual(repr(Matrix(0, 3)), 'Matrix(height=0, width=3)') + self.assertEqual(repr(Matrix(2, 0)), 'Matrix(height=2, width=0)') + + def test_eq(self): + self.assertFalse(Matrix(1, 1) == 5) + self.assertFalse(5 == Matrix(1, 1)) + self.assertFalse(Matrix(2, 1) == Matrix(1, 1)) + self.assertFalse(Matrix(1, 2) == Matrix(1, 1)) + self.assertTrue(Matrix(1, 1) == Matrix(1, 1)) + self.assertTrue(Matrix(1, 1, [1]) == Matrix(1, 1, [1])) + self.assertFalse(Matrix(1, 1, [2]) == Matrix(1, 1, [1])) + + def test_add(self): + self.assertEqual(Matrix(2, 2, [1, 2, 3, 4]) + + Matrix(2, 2, [40, 30, 20, 10]), + Matrix(2, 2, [41, 32, 23, 14])) + + def test_identity(self): + self.assertEqual(Matrix.identity(2, 2), + Matrix(2, 2, [1, 0, + 0, 1])) + self.assertEqual(Matrix.identity(1, 3), + Matrix(1, 3, [1, 0, 0])) + self.assertEqual(Matrix.identity(2, 3), + Matrix(2, 3, [1, 0, 0, + 0, 1, 0])) + self.assertEqual(Matrix.identity(3), + Matrix(3, 3, [1, 0, 0, + 0, 1, 0, + 0, 0, 1])) + + def test_sub(self): + self.assertEqual(Matrix(2, 2, [40, 30, 20, 10]) + - Matrix(2, 2, [-1, -2, -3, -4]), + Matrix(2, 2, [41, 32, 23, 14])) + + def test_neg(self): + self.assertEqual(-Matrix(2, 2, [40, 30, 20, 10]), + Matrix(2, 2, [-40, -30, -20, -10])) + + def test_mul(self): + self.assertEqual(Matrix(2, 2, [1, 2, 3, 4]) * Fraction(3, 2), + Matrix(2, 2, [Fraction(3, 2), 3, Fraction(9, 2), 6])) + self.assertEqual(Fraction(3, 2) * Matrix(2, 2, [1, 2, 3, 4]), + Matrix(2, 2, [Fraction(3, 2), 3, Fraction(9, 2), 6])) + + def test_matmul(self): + self.assertEqual(Matrix(2, 2, [1, 2, 3, 4]) + @ Matrix(2, 2, [4, 3, 2, 1]), + Matrix(2, 2, [8, 5, 20, 13])) + self.assertEqual(Matrix(3, 2, [6, 5, 4, 3, 2, 1]) + @ Matrix(2, 1, [1, 2]), + Matrix(3, 1, [16, 10, 4])) + + def test_inverse(self): + self.assertEqual(Matrix(0, 0).inverse(), Matrix(0, 0)) + self.assertEqual(Matrix(1, 1, [2]).inverse(), + Matrix(1, 1, [Fraction(1, 2)])) + self.assertEqual(Matrix(1, 1, [1]).inverse(), + Matrix(1, 1, [1])) + self.assertEqual(Matrix(2, 2, [1, 0, 1, 1]).inverse(), + Matrix(2, 2, [1, 0, -1, 1])) + self.assertEqual(Matrix(3, 3, [0, 1, 0, + 1, 0, 0, + 0, 0, 1]).inverse(), + Matrix(3, 3, [0, 1, 0, + 1, 0, 0, + 0, 0, 1])) + _1_2 = Fraction(1, 2) + _1_3 = Fraction(1, 3) + _1_6 = Fraction(1, 6) + self.assertEqual(Matrix(5, 5, [1, 0, 0, 0, 0, + 1, 1, 1, 1, 1, + 1, -1, 1, -1, 1, + 1, -2, 4, -8, 16, + 0, 0, 0, 0, 1]).inverse(), + Matrix(5, 5, [1, 0, 0, 0, 0, + _1_2, _1_3, -1, _1_6, -2, + -1, _1_2, _1_2, 0, -1, + -_1_2, _1_6, _1_2, -_1_6, 2, + 0, 0, 0, 0, 1])) + with self.assertRaisesRegex(ZeroDivisionError, "Matrix is singular"): + Matrix(1, 1, [0]).inverse() + with self.assertRaisesRegex(ZeroDivisionError, "Matrix is singular"): + Matrix(2, 2, [0, 0, 1, 1]).inverse() + with self.assertRaisesRegex(ZeroDivisionError, "Matrix is singular"): + Matrix(2, 2, [1, 0, 1, 0]).inverse() + with self.assertRaisesRegex(ZeroDivisionError, "Matrix is singular"): + Matrix(2, 2, [1, 1, 1, 1]).inverse() + + +if __name__ == "__main__": + unittest.main()