From: Andrew Reynolds Date: Thu, 4 Oct 2018 22:26:10 +0000 (-0500) Subject: Infrastructure for string length entailments via approximations (#2514) X-Git-Tag: cvc5-1.0.0~4457 X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=13758686d92eb5a6cfb30d830a35b20c14213717;p=cvc5.git Infrastructure for string length entailments via approximations (#2514) --- diff --git a/src/theory/strings/theory_strings_rewriter.cpp b/src/theory/strings/theory_strings_rewriter.cpp index de5effd23..b2778298a 100644 --- a/src/theory/strings/theory_strings_rewriter.cpp +++ b/src/theory/strings/theory_strings_rewriter.cpp @@ -3673,52 +3673,501 @@ bool TheoryStringsRewriter::checkEntailArith(Node a, Node b, bool strict) } } +struct StrCheckEntailArithTag +{ +}; +struct StrCheckEntailArithComputedTag +{ +}; +/** Attribute true for expressions for which checkEntailArith returned true */ +typedef expr::Attribute StrCheckEntailArithAttr; +typedef expr::Attribute + StrCheckEntailArithComputedAttr; + bool TheoryStringsRewriter::checkEntailArith(Node a, bool strict) { if (a.isConst()) { return a.getConst().sgn() >= (strict ? 1 : 0); } - else + + Node ar = + strict + ? NodeManager::currentNM()->mkNode( + kind::MINUS, a, NodeManager::currentNM()->mkConst(Rational(1))) + : a; + ar = Rewriter::rewrite(ar); + + if (ar.getAttribute(StrCheckEntailArithComputedAttr())) { - Node ar = strict - ? NodeManager::currentNM()->mkNode( - kind::MINUS, - a, - NodeManager::currentNM()->mkConst(Rational(1))) - : a; - ar = Rewriter::rewrite(ar); - if (checkEntailArithInternal(ar)) + return ar.getAttribute(StrCheckEntailArithAttr()); + } + + bool ret = checkEntailArithInternal(ar); + if (!ret) + { + // try with approximations + ret = checkEntailArithApprox(ar); + } + // cache the result + ar.setAttribute(StrCheckEntailArithAttr(), ret); + ar.setAttribute(StrCheckEntailArithComputedAttr(), true); + return ret; +} + +bool TheoryStringsRewriter::checkEntailArithApprox(Node ar) +{ + Assert(Rewriter::rewrite(ar) == ar); + NodeManager* nm = NodeManager::currentNM(); + std::map msum; + Trace("strings-ent-approx-debug") + << "Setup arithmetic approximations for " << ar << std::endl; + if (!ArithMSum::getMonomialSum(ar, msum)) + { + Trace("strings-ent-approx-debug") + << "...failed to get monomial sum!" << std::endl; + return false; + } + // for each monomial v*c, mApprox[v] a list of + // possibilities for how the term can be soundly approximated, that is, + // if mApprox[v] contains av, then v*c > av*c. Notice that if c + // is positive, then v > av, otherwise if c is negative, then v < av. + // In other words, av is an under-approximation if c is positive, and an + // over-approximation if c is negative. + bool changed = false; + std::map > mApprox; + // map from approximations to their monomial sums + std::map > approxMsums; + // aarSum stores each monomial that does not have multiple approximations + std::vector aarSum; + for (std::pair& m : msum) + { + Node v = m.first; + Node c = m.second; + Trace("strings-ent-approx-debug") + << "Get approximations " << v << "..." << std::endl; + if (v.isNull()) + { + Node mn = c.isNull() ? nm->mkConst(Rational(1)) : c; + aarSum.push_back(mn); + } + else { - return true; + // c.isNull() means c = 1 + bool isOverApprox = !c.isNull() && c.getConst().sgn() == -1; + std::vector& approx = mApprox[v]; + std::unordered_set visited; + std::vector toProcess; + toProcess.push_back(v); + do + { + Node curr = toProcess.back(); + Trace("strings-ent-approx-debug") << " process " << curr << std::endl; + curr = Rewriter::rewrite(curr); + toProcess.pop_back(); + if (visited.find(curr) == visited.end()) + { + visited.insert(curr); + std::vector currApprox; + getArithApproximations(curr, currApprox, isOverApprox); + if (currApprox.empty()) + { + Trace("strings-ent-approx-debug") + << "...approximation: " << curr << std::endl; + // no approximations, thus curr is a possibility + approx.push_back(curr); + } + else + { + toProcess.insert( + toProcess.end(), currApprox.begin(), currApprox.end()); + } + } + } while (!toProcess.empty()); + Assert(!approx.empty()); + // if we have only one approximation, move it to final + if (approx.size() == 1) + { + changed = v != approx[0]; + Node mn = ArithMSum::mkCoeffTerm(c, approx[0]); + aarSum.push_back(mn); + mApprox.erase(v); + } + else + { + // compute monomial sum form for each approximation, used below + for (const Node& aa : approx) + { + if (approxMsums.find(aa) == approxMsums.end()) + { + CVC4_UNUSED bool ret = + ArithMSum::getMonomialSum(aa, approxMsums[aa]); + Assert(ret); + } + } + changed = true; + } } - // TODO (#1180) : abstract interpretation goes here - - // over approximation O/U - - // O( x + y ) -> O( x ) + O( y ) - // O( c * x ) -> O( x ) if c > 0, U( x ) if c < 0 - // O( len( x ) ) -> len( x ) - // O( len( int.to.str( x ) ) ) -> len( int.to.str( x ) ) - // O( len( str.substr( x, n1, n2 ) ) ) -> O( n2 ) | O( len( x ) ) - // O( len( str.replace( x, y, z ) ) ) -> - // O( len( x ) ) + O( len( z ) ) - U( len( y ) ) - // O( indexof( x, y, n ) ) -> O( len( x ) ) - U( len( y ) ) - // O( str.to.int( x ) ) -> str.to.int( x ) - - // U( x + y ) -> U( x ) + U( y ) - // U( c * x ) -> U( x ) if c > 0, O( x ) if c < 0 - // U( len( x ) ) -> len( x ) - // U( len( int.to.str( x ) ) ) -> 1 - // U( len( str.substr( x, n1, n2 ) ) ) -> - // min( U( len( x ) ) - O( n1 ), U( n2 ) ) - // U( len( str.replace( x, y, z ) ) ) -> - // U( len( x ) ) + U( len( z ) ) - O( len( y ) ) | 0 - // U( indexof( x, y, n ) ) -> -1 ? - // U( str.to.int( x ) ) -> -1 - + } + if (!changed) + { + // approximations had no effect, return + Trace("strings-ent-approx-debug") << "...no approximations" << std::endl; return false; } + // get the current "fixed" sum for the abstraction of ar + Node aar = aarSum.empty() + ? nm->mkConst(Rational(0)) + : (aarSum.size() == 1 ? aarSum[0] : nm->mkNode(PLUS, aarSum)); + aar = Rewriter::rewrite(aar); + Trace("strings-ent-approx-debug") + << "...processed fixed sum " << aar << " with " << mApprox.size() + << " approximated monomials." << std::endl; + // if we have a choice of how to approximate + if (!mApprox.empty()) + { + // convert aar back to monomial sum + std::map msumAar; + if (!ArithMSum::getMonomialSum(aar, msumAar)) + { + return false; + } + if (Trace.isOn("strings-ent-approx")) + { + Trace("strings-ent-approx") + << "---- Check arithmetic entailment by under-approximation " << ar + << " >= 0" << std::endl; + Trace("strings-ent-approx") << "FIXED:" << std::endl; + ArithMSum::debugPrintMonomialSum(msumAar, "strings-ent-approx"); + Trace("strings-ent-approx") << "APPROX:" << std::endl; + for (std::pair >& a : mApprox) + { + Node c = msum[a.first]; + Trace("strings-ent-approx") << " "; + if (!c.isNull()) + { + Trace("strings-ent-approx") << c << " * "; + } + Trace("strings-ent-approx") + << a.second << " ...from " << a.first << std::endl; + } + Trace("strings-ent-approx") << std::endl; + } + Rational one(1); + // incorporate monomials one at a time that have a choice of approximations + while (!mApprox.empty()) + { + Node v; + Node vapprox; + int maxScore = -1; + // Look at each approximation, take the one with the best score. + // Notice that we are in the process of trying to prove + // ( c1*t1 + .. + cn*tn ) + ( approx_1 | ... | approx_m ) >= 0, + // where c1*t1 + .. + cn*tn is the "fixed" component of our sum (aar) + // and approx_1 ... approx_m are possible approximations. The + // intution here is that we want coefficients c1...cn to be positive. + // This is because arithmetic string terms t1...tn (which may be + // applications of len, indexof, str.to.int) are never entailed to be + // negative. Hence, we add the approx_i that contributes the "most" + // towards making all constants c1...cn positive and cancelling negative + // monomials in approx_i itself. + for (std::pair >& nam : mApprox) + { + for (const Node& aa : nam.second) + { + unsigned helpsCancelCount = 0; + unsigned addsObligationCount = 0; + std::map::iterator it; + for (std::pair& aam : approxMsums[aa]) + { + // Say aar is of the form t + c1*v, and aam is the monomial c2*v + // where c2 != 0. We say aam: + // (1) helps cancel if c1 != 0 and c1>0 != c2>0 + // (2) adds obligation if c1>=0 and c1+c2<0 + Node v = aam.first; + Node c2 = aam.second; + int c2Sgn = c2.isNull() ? 1 : c2.getConst().sgn(); + it = msumAar.find(v); + if (it != msumAar.end()) + { + Node c1 = it->second; + int c1Sgn = c1.isNull() ? 1 : c1.getConst().sgn(); + if (c1Sgn == 0) + { + addsObligationCount += (c2Sgn == -1 ? 1 : 0); + } + else if (c1Sgn != c2Sgn) + { + helpsCancelCount++; + Rational r1 = c1.isNull() ? one : c1.getConst(); + Rational r2 = c2.isNull() ? one : c2.getConst(); + Rational r12 = r1 + r2; + if (r12.sgn() == -1) + { + addsObligationCount++; + } + } + } + else + { + addsObligationCount += (c2Sgn == -1 ? 1 : 0); + } + } + Trace("strings-ent-approx-debug") + << "counts=" << helpsCancelCount << "," << addsObligationCount + << " for " << aa << " into " << aar << std::endl; + int score = (addsObligationCount > 0 ? 0 : 2) + + (helpsCancelCount > 0 ? 1 : 0); + // if its the best, update v and vapprox + if (v.isNull() || score > maxScore) + { + v = nam.first; + vapprox = aa; + maxScore = score; + } + } + if (!v.isNull()) + { + break; + } + } + Trace("strings-ent-approx") + << "- Decide " << v << " = " << vapprox << std::endl; + // we incorporate v approximated by vapprox into the overall approximation + // for ar + Assert(!v.isNull() && !vapprox.isNull()); + Assert(msum.find(v) != msum.end()); + Node mn = ArithMSum::mkCoeffTerm(msum[v], vapprox); + aar = nm->mkNode(PLUS, aar, mn); + // update the msumAar map + aar = Rewriter::rewrite(aar); + msumAar.clear(); + if (!ArithMSum::getMonomialSum(aar, msumAar)) + { + Assert(false); + Trace("strings-ent-approx") + << "...failed to get monomial sum!" << std::endl; + return false; + } + // we have processed the approximation for v + mApprox.erase(v); + } + Trace("strings-ent-approx") << "-----------------" << std::endl; + } + if (aar == ar) + { + Trace("strings-ent-approx-debug") + << "...approximation had no effect" << std::endl; + // this should never happen, but we avoid the infinite loop for sanity here + Assert(false); + return false; + } + // Check entailment on the approximation of ar. + // Notice that this may trigger further reasoning by approximation. For + // example, len( replace( x ++ y, substr( x, 0, n ), z ) ) may be + // under-approximated as len( x ) + len( y ) - len( substr( x, 0, n ) ) on + // this call, where in the recursive call we may over-approximate + // len( substr( x, 0, n ) ) as len( x ). In this example, we can infer + // that len( replace( x ++ y, substr( x, 0, n ), z ) ) >= len( y ) in two + // steps. + if (checkEntailArith(aar)) + { + Trace("strings-ent-approx") + << "*** StrArithApprox: showed " << ar + << " >= 0 using under-approximation!" << std::endl; + Trace("strings-ent-approx") + << "*** StrArithApprox: under-approximation was " << aar << std::endl; + return true; + } + return false; +} + +void TheoryStringsRewriter::getArithApproximations(Node a, + std::vector& approx, + bool isOverApprox) +{ + NodeManager* nm = NodeManager::currentNM(); + // We do not handle PLUS here since this leads to exponential behavior. + // Instead, this is managed, e.g. during checkEntailArithApprox, where + // PLUS terms are expanded "on-demand" during the reasoning. + Trace("strings-ent-approx-debug") + << "Get arith approximations " << a << std::endl; + Kind ak = a.getKind(); + if (ak == MULT) + { + Node c; + Node v; + if (ArithMSum::getMonomial(a, c, v)) + { + bool isNeg = c.getConst().sgn() == -1; + getArithApproximations(v, approx, isNeg ? !isOverApprox : isOverApprox); + for (unsigned i = 0, size = approx.size(); i < size; i++) + { + approx[i] = nm->mkNode(MULT, c, approx[i]); + } + } + } + else if (ak == STRING_LENGTH) + { + Kind aak = a[0].getKind(); + if (aak == STRING_SUBSTR) + { + // over,under-approximations for len( substr( x, n, m ) ) + Node lenx = nm->mkNode(STRING_LENGTH, a[0][0]); + if (isOverApprox) + { + // m >= 0 implies + // m >= len( substr( x, n, m ) ) + if (checkEntailArith(a[0][2])) + { + approx.push_back(a[0][2]); + } + if (checkEntailArith(lenx, a[0][1])) + { + // n <= len( x ) implies + // len( x ) - n >= len( substr( x, n, m ) ) + approx.push_back(nm->mkNode(MINUS, lenx, a[0][1])); + } + else + { + // len( x ) >= len( substr( x, n, m ) ) + approx.push_back(lenx); + } + } + else + { + // 0 <= n and n+m <= len( x ) implies + // m <= len( substr( x, n, m ) ) + Node npm = nm->mkNode(PLUS, a[0][1], a[0][2]); + if (checkEntailArith(a[0][1]) && checkEntailArith(lenx, npm)) + { + approx.push_back(a[0][2]); + } + // 0 <= n and n+m >= len( x ) implies + // len(x)-n <= len( substr( x, n, m ) ) + if (checkEntailArith(a[0][1]) && checkEntailArith(npm, lenx)) + { + approx.push_back(nm->mkNode(MINUS, lenx, a[0][1])); + } + } + } + else if (aak == STRING_STRREPL) + { + // over,under-approximations for len( replace( x, y, z ) ) + // notice this is either len( x ) or ( len( x ) + len( z ) - len( y ) ) + Node lenx = nm->mkNode(STRING_LENGTH, a[0][0]); + Node leny = nm->mkNode(STRING_LENGTH, a[0][1]); + Node lenz = nm->mkNode(STRING_LENGTH, a[0][2]); + if (isOverApprox) + { + if (checkEntailArith(leny, lenz)) + { + // len( y ) >= len( z ) implies + // len( x ) >= len( replace( x, y, z ) ) + approx.push_back(lenx); + } + else + { + // len( x ) + len( z ) >= len( replace( x, y, z ) ) + approx.push_back(nm->mkNode(PLUS, lenx, lenz)); + } + } + else + { + if (checkEntailArith(lenz, leny) || checkEntailArith(lenz, lenx)) + { + // len( y ) <= len( z ) or len( x ) <= len( z ) implies + // len( x ) <= len( replace( x, y, z ) ) + approx.push_back(lenx); + } + else + { + // len( x ) - len( y ) <= len( replace( x, y, z ) ) + approx.push_back(nm->mkNode(MINUS, lenx, leny)); + } + } + } + else if (aak == STRING_ITOS) + { + // over,under-approximations for len( int.to.str( x ) ) + if (isOverApprox) + { + if (checkEntailArith(a[0][0], false)) + { + if (checkEntailArith(a[0][0], true)) + { + // x > 0 implies + // x >= len( int.to.str( x ) ) + approx.push_back(a[0][0]); + } + else + { + // x >= 0 implies + // x+1 >= len( int.to.str( x ) ) + approx.push_back( + nm->mkNode(PLUS, nm->mkConst(Rational(1)), a[0][0])); + } + } + } + else + { + if (checkEntailArith(a[0][0])) + { + // x >= 0 implies + // len( int.to.str( x ) ) >= 1 + approx.push_back(nm->mkConst(Rational(1))); + } + // other crazy things are possible here, e.g. + // len( int.to.str( len( y ) + 10 ) ) >= 2 + } + } + } + else if (ak == STRING_STRIDOF) + { + // over,under-approximations for indexof( x, y, n ) + if (isOverApprox) + { + Node lenx = nm->mkNode(STRING_LENGTH, a[0]); + Node leny = nm->mkNode(STRING_LENGTH, a[1]); + if (checkEntailArith(lenx, leny)) + { + // len( x ) >= len( y ) implies + // len( x ) - len( y ) >= indexof( x, y, n ) + approx.push_back(nm->mkNode(MINUS, lenx, leny)); + } + else + { + // len( x ) >= indexof( x, y, n ) + approx.push_back(lenx); + } + } + else + { + // TODO?: + // contains( substr( x, n, len( x ) ), y ) implies + // n <= indexof( x, y, n ) + // ...hard to test, runs risk of non-termination + + // -1 <= indexof( x, y, n ) + approx.push_back(nm->mkConst(Rational(-1))); + } + } + else if (ak == STRING_STOI) + { + // over,under-approximations for str.to.int( x ) + if (isOverApprox) + { + // TODO?: + // y >= 0 implies + // y >= str.to.int( int.to.str( y ) ) + } + else + { + // -1 <= str.to.int( x ) + approx.push_back(nm->mkConst(Rational(-1))); + } + } + Trace("strings-ent-approx-debug") << "Return " << approx.size() << std::endl; } bool TheoryStringsRewriter::checkEntailArithWithEqAssumption(Node assumption, @@ -3940,12 +4389,11 @@ Node TheoryStringsRewriter::getConstantArithBound(Node a, bool isLower) << "Constant " << (isLower ? "lower" : "upper") << " bound for " << a << " is " << ret << std::endl; Assert(ret.isNull() || ret.isConst()); - Assert(!isLower - || (ret.isNull() || ret.getConst().sgn() < 0) - != checkEntailArith(a, false)); - Assert(!isLower - || (ret.isNull() || ret.getConst().sgn() <= 0) - != checkEntailArith(a, true)); + // entailment check should be at least as powerful as computing a lower bound + Assert(!isLower || ret.isNull() || ret.getConst().sgn() < 0 + || checkEntailArith(a, false)); + Assert(!isLower || ret.isNull() || ret.getConst().sgn() <= 0 + || checkEntailArith(a, true)); return ret; } diff --git a/src/theory/strings/theory_strings_rewriter.h b/src/theory/strings/theory_strings_rewriter.h index 91d87769c..ed42ce762 100644 --- a/src/theory/strings/theory_strings_rewriter.h +++ b/src/theory/strings/theory_strings_rewriter.h @@ -465,6 +465,39 @@ class TheoryStringsRewriter { * Returns true if it is always the case that a >= 0. */ static bool checkEntailArith(Node a, bool strict = false); + /** check arithmetic entailment with approximations + * + * Returns true if it is always the case that a >= 0. We expect that a is in + * rewritten form. + * + * This function uses "approximation" techniques that under-approximate + * the value of a for the purposes of showing the entailment holds. For + * example, given: + * len( x ) - len( substr( y, 0, len( x ) ) ) + * Since we know that len( substr( y, 0, len( x ) ) ) <= len( x ), the above + * term can be under-approximated as len( x ) - len( x ) = 0, which is >= 0, + * and thus the entailment len( x ) - len( substr( y, 0, len( x ) ) ) >= 0 + * holds. + */ + static bool checkEntailArithApprox(Node a); + /** Get arithmetic approximations + * + * This gets the (set of) arithmetic approximations for term a and stores + * them in approx. If isOverApprox is true, these are over-approximations + * for the value of a, otherwise, they are underapproximations. For example, + * an over-approximation for len( substr( y, n, m ) ) is m; an + * under-approximation for indexof( x, y, n ) is -1. + * + * Notice that this function is not generally recursive (although it may make + * a small bounded of recursive calls). Instead, it returns the shape + * of the approximations for a. For example, an under-approximation + * for the term len( replace( substr( x, 0, n ), y, z ) ) returned by this + * function might be len( substr( x, 0, n ) ) - len( y ), where we don't + * consider (recursively) the approximations for len( substr( x, 0, n ) ). + */ + static void getArithApproximations(Node a, + std::vector& approx, + bool isOverApprox = false); /** * Checks whether assumption |= a >= 0 (if strict is false) or