From: Alan Modra Date: Wed, 11 Mar 2020 10:52:37 +0000 (+1030) Subject: [RS6000] PR94145, make PLT loads volatile X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=19e5389debb03c3623f6a2ce8a8f6f4aa2118901;p=gcc.git [RS6000] PR94145, make PLT loads volatile The PLT is volatile. On PowerPC it is a bss style section which the dynamic loader initialises to point at resolver stubs (called glink on PowerPC64) to support lazy resolution of function addresses. The first call to a given function goes via the dynamic loader symbol resolver, which updates the PLT entry for that function and calls the function. The second call, if there is one and we don't have a multi-threaded race, will use the updated PLT entry and thus avoid the relatively slow symbol resolver path. Calls via the PLT are like calls via a function pointer, except that no initialised function pointer is volatile like the PLT. All initialised function pointers are resolved at program startup to point at the function or are left as NULL. There is no support for lazy resolution of any user visible function pointer. So why does any of this matter to gcc? Well, normally the PLT call mechanism happens entirely behind gcc's back, but since we implemented inline PLT calls (effectively putting the PLT code stub that loads the PLT entry inline and making that code sequence scheduled), the load of the PLT entry is visible to gcc. That load then is subject to gcc optimization, for example in /* -S -mcpu=future -mpcrel -mlongcall -O2. */ int foo (int); void bar (void) { while (foo(0)) foo (99); } we see the PLT load for foo being hoisted out of the loop and stashed in a call-saved register. If that happens to be the first call to foo, then the stashed value is that for the resolver stub, and every call to foo in the loop will then go via the slow resolver path. Not a good idea. Also, if foo turns out to be a local function and the linker replaces the PLT calls with direct calls to foo then gcc has just wasted a call-saved register. This patch teaches gcc that the PLT loads are volatile. The change doesn't affect other loads of function pointers and thus has no effect on normal indirect function calls. Note that because the "optimization" this patch prevents can only occur over function calls, the only place gcc can stash PLT loads is in call-saved registers or in other memory. I'm reasonably confident that this change will be neutral or positive for the "ld -z now" case where the PLT is not volatile, in code where there is any register pressure. Even if gcc could be taught to recognise cases where the PLT is resolved, you'd need to discount use of registers to cache PLT loads by some factor involving the chance that those calls would be converted to direct calls. PR target/94145 * config/rs6000/rs6000.c (rs6000_longcall_ref): Use unspec_volatile for PLT16_LO and PLT_PCREL. * config/rs6000/rs6000.md (UNSPEC_PLT16_LO, UNSPEC_PLT_PCREL): Remove. (UNSPECV_PLT16_LO, UNSPECV_PLT_PCREL): Define. (pltseq_plt16_lo_, pltseq_plt_pcrel): Use unspec_volatile. --- diff --git a/gcc/ChangeLog b/gcc/ChangeLog index 5f7081c9c1d..3bfe5ff8f69 100644 --- a/gcc/ChangeLog +++ b/gcc/ChangeLog @@ -1,3 +1,12 @@ +2020-03-27 Alan Modra + + PR target/94145 + * config/rs6000/rs6000.c (rs6000_longcall_ref): Use unspec_volatile + for PLT16_LO and PLT_PCREL. + * config/rs6000/rs6000.md (UNSPEC_PLT16_LO, UNSPEC_PLT_PCREL): Remove. + (UNSPECV_PLT16_LO, UNSPECV_PLT_PCREL): Define. + (pltseq_plt16_lo_, pltseq_plt_pcrel): Use unspec_volatile. + 2020-03-27 Martin Sebor PR c++/94098 diff --git a/gcc/config/rs6000/rs6000.c b/gcc/config/rs6000/rs6000.c index 5b36593bfb7..13851d12551 100644 --- a/gcc/config/rs6000/rs6000.c +++ b/gcc/config/rs6000/rs6000.c @@ -19283,8 +19283,9 @@ rs6000_longcall_ref (rtx call_ref, rtx arg) if (rs6000_pcrel_p (cfun)) { rtx reg = gen_rtx_REG (Pmode, regno); - rtx u = gen_rtx_UNSPEC (Pmode, gen_rtvec (3, base, call_ref, arg), - UNSPEC_PLT_PCREL); + rtx u = gen_rtx_UNSPEC_VOLATILE (Pmode, + gen_rtvec (3, base, call_ref, arg), + UNSPECV_PLT_PCREL); emit_insn (gen_rtx_SET (reg, u)); return reg; } @@ -19303,8 +19304,9 @@ rs6000_longcall_ref (rtx call_ref, rtx arg) rtx reg = gen_rtx_REG (Pmode, regno); rtx hi = gen_rtx_UNSPEC (Pmode, gen_rtvec (3, base, call_ref, arg), UNSPEC_PLT16_HA); - rtx lo = gen_rtx_UNSPEC (Pmode, gen_rtvec (3, reg, call_ref, arg), - UNSPEC_PLT16_LO); + rtx lo = gen_rtx_UNSPEC_VOLATILE (Pmode, + gen_rtvec (3, reg, call_ref, arg), + UNSPECV_PLT16_LO); emit_insn (gen_rtx_SET (reg, hi)); emit_insn (gen_rtx_SET (reg, lo)); return reg; diff --git a/gcc/config/rs6000/rs6000.md b/gcc/config/rs6000/rs6000.md index ad88b6783af..5a8e9de670b 100644 --- a/gcc/config/rs6000/rs6000.md +++ b/gcc/config/rs6000/rs6000.md @@ -148,8 +148,6 @@ UNSPEC_SI_FROM_SF UNSPEC_PLTSEQ UNSPEC_PLT16_HA - UNSPEC_PLT16_LO - UNSPEC_PLT_PCREL ]) ;; @@ -178,6 +176,8 @@ UNSPECV_MTFSB1 ; Set FPSCR Field bit to 1 UNSPECV_SPLIT_STACK_RETURN ; A camouflaged return UNSPECV_SPEC_BARRIER ; Speculation barrier + UNSPECV_PLT16_LO + UNSPECV_PLT_PCREL ]) ; The three different kinds of epilogue. @@ -10359,10 +10359,10 @@ (define_insn "*pltseq_plt16_lo_" [(set (match_operand:P 0 "gpc_reg_operand" "=r") - (unspec:P [(match_operand:P 1 "gpc_reg_operand" "b") - (match_operand:P 2 "symbol_ref_operand" "s") - (match_operand:P 3 "" "")] - UNSPEC_PLT16_LO))] + (unspec_volatile:P [(match_operand:P 1 "gpc_reg_operand" "b") + (match_operand:P 2 "symbol_ref_operand" "s") + (match_operand:P 3 "" "")] + UNSPECV_PLT16_LO))] "TARGET_PLTSEQ" { return rs6000_pltseq_template (operands, RS6000_PLTSEQ_PLT16_LO); @@ -10382,10 +10382,10 @@ (define_insn "*pltseq_plt_pcrel" [(set (match_operand:P 0 "gpc_reg_operand" "=r") - (unspec:P [(match_operand:P 1 "" "") - (match_operand:P 2 "symbol_ref_operand" "s") - (match_operand:P 3 "" "")] - UNSPEC_PLT_PCREL))] + (unspec_volatile:P [(match_operand:P 1 "" "") + (match_operand:P 2 "symbol_ref_operand" "s") + (match_operand:P 3 "" "")] + UNSPECV_PLT_PCREL))] "HAVE_AS_PLTSEQ && TARGET_ELF && rs6000_pcrel_p (cfun)" {