From: Steve Reinhardt Date: Thu, 10 Jun 2004 03:46:29 +0000 (-0700) Subject: Minor restructuring of Python config code, mostly to avoid walking X-Git-Tag: m5_1.0_beta2~6^2 X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=1c782ad134c0f67263bfbc025472839481b59e57;p=gem5.git Minor restructuring of Python config code, mostly to avoid walking the source tree for *.odesc files every time we run the script. This is now factored out into load_odesc.py, which should be used to generate m5odescs.py, which is then used as the source of object & parameter definitions. util/config/m5configbase.py: - Move odesc loading code to separate load_odescs.py, so maybe someday that can be done once at build time. - Print out children of a node in the order they are added. - Automatically assign a parent-less node to the first node for which it is used as the value of a parameter. (Easier demonstrated than explained.) - Calculate object paths dynamically when requested rather than trying to keep them up to date as objects get assigned to parents. --HG-- rename : util/config/m5config.py => util/config/m5configbase.py extra : convert_revision : 2183a09d32f3862ab377e0a929715f30505a03cb --- diff --git a/util/config/m5config.py b/util/config/m5config.py deleted file mode 100644 index 9aa3e0387..000000000 --- a/util/config/m5config.py +++ /dev/null @@ -1,804 +0,0 @@ -from __future__ import generators - -import os -import re -import sys - -##################################################################### -# -# M5 Python Configuration Utility -# -# The basic idea is to write simple Python programs that build Python -# objects corresponding to M5 SimObjects for the deisred simulation -# configuration. For now, the Python emits a .ini file that can be -# parsed by M5. In the future, some tighter integration between M5 -# and the Python interpreter may allow bypassing the .ini file. -# -# Each SimObject class in M5 is represented by a Python class with the -# same name. The Python inheritance tree mirrors the M5 C++ tree -# (e.g., SimpleCPU derives from BaseCPU in both cases, and all -# SimObjects inherit from a single SimObject base class). To specify -# an instance of an M5 SimObject in a configuration, the user simply -# instantiates the corresponding Python object. The parameters for -# that SimObject are given by assigning to attributes of the Python -# object, either using keyword assignment in the constructor or in -# separate assignment statements. For example: -# -# cache = BaseCache('my_cache', root, size=64*K) -# cache.hit_latency = 3 -# cache.assoc = 8 -# -# (The first two constructor arguments specify the name of the created -# cache and its parent node in the hierarchy.) -# -# The magic lies in the mapping of the Python attributes for SimObject -# classes to the actual SimObject parameter specifications. This -# allows parameter validity checking in the Python code. Continuing -# the example above, the statements "cache.blurfl=3" or -# "cache.assoc='hello'" would both result in runtime errors in Python, -# since the BaseCache object has no 'blurfl' parameter and the 'assoc' -# parameter requires an integer, respectively. This magic is done -# primarily by overriding the special __setattr__ method that controls -# assignment to object attributes. -# -# The Python module provides another class, ConfigNode, which is a -# superclass of SimObject. ConfigNode implements the parent/child -# relationship for building the configuration hierarchy tree. -# Concrete instances of ConfigNode can be used to group objects in the -# hierarchy, but do not correspond to SimObjects themselves (like a -# .ini section with "children=" but no "type=". -# -# Once a set of Python objects have been instantiated in a hierarchy, -# calling 'instantiate(obj)' (where obj is the root of the hierarchy) -# will generate a .ini file. See simple-4cpu.py for an example -# (corresponding to m5-test/simple-4cpu.ini). -# -##################################################################### - -##################################################################### -# -# ConfigNode/SimObject classes -# -# The Python class hierarchy rooted by ConfigNode (which is the base -# class of SimObject, which in turn is the base class of all other M5 -# SimObject classes) has special attribute behavior. In general, an -# object in this hierarchy has three categories of attribute-like -# things: -# -# 1. Regular Python methods and variables. These must start with an -# underscore to be treated normally. -# -# 2. SimObject parameters. These values are stored as normal Python -# attributes, but all assignments to these attributes are checked -# against the pre-defined set of parameters stored in the class's -# _param_dict dictionary. Assignments to attributes that do not -# correspond to predefined parameters, or that are not of the correct -# type, incur runtime errors. -# -# 3. Hierarchy children. The child nodes of a ConfigNode are stored -# in the node's _children dictionary, but can be accessed using the -# Python attribute dot-notation (just as they are printed out by the -# simulator). Children cannot be created using attribute assigment; -# they must be added by specifying the parent node in the child's -# constructor or using the '+=' operator. - -# The SimObject parameters are the most complex, for a few reasons. -# First, both parameter descriptions and parameter values are -# inherited. Thus parameter description lookup must go up the -# inheritance chain like normal attribute lookup, but this behavior -# must be explicitly coded since the lookup occurs in each class's -# _param_dict attribute. Second, because parameter values can be set -# on SimObject classes (to implement default values), the parameter -# checking behavior must be enforced on class attribute assignments as -# well as instance attribute assignments. Finally, because we allow -# class specialization via inheritance (e.g., see the L1Cache class in -# the simple-4cpu.py example), we must do parameter checking even on -# class instantiation. To provide all these features, we use a -# metaclass to define most of the SimObject parameter behavior for -# this class hierarchy. -# -##################################################################### - -# The metaclass for ConfigNode (and thus for everything that derives -# from ConfigNode, including SimObject). This class controls how new -# classes that derive from ConfigNode are instantiated, and provides -# inherited class behavior (just like a class controls how instances -# of that class are instantiated, and provides inherited instance -# behavior). -class MetaConfigNode(type): - - # __new__ is called before __init__, and is where the statements - # in the body of the class definition get loaded into the class's - # __dict__. We intercept this to filter out parameter assignments - # and only allow "private" attributes to be passed to the base - # __new__ (starting with underscore). - def __new__(cls, name, bases, dict): - priv_keys = [k for k in dict.iterkeys() if k.startswith('_')] - priv_dict = {} - for k in priv_keys: priv_dict[k] = dict[k]; del dict[k] - # entries left in dict will get passed to __init__, where we'll - # deal with them as params. - return super(MetaConfigNode, cls).__new__(cls, name, bases, priv_dict) - - # initialization: start out with an empty param dict (makes life - # simpler if we can assume _param_dict is always valid). Also - # build inheritance list to simplify searching for inherited - # params. Finally set parameters specified in class definition - # (if any). - def __init__(cls, name, bases, dict): - super(MetaConfigNode, cls).__init__(cls, name, bases, {}) - # initialize _param_dict to empty - cls._param_dict = {} - # __mro__ is the ordered list of classes Python uses for - # method resolution. We want to pick out the ones that have a - # _param_dict attribute for doing parameter lookups. - cls._param_bases = \ - [c for c in cls.__mro__ if hasattr(c, '_param_dict')] - # initialize attributes with values from class definition - for (pname, value) in dict.items(): - try: - setattr(cls, pname, value) - except Exception, exc: - print "Error setting '%s' to '%s' on class '%s'\n" \ - % (pname, value, cls.__name__), exc - - # set the class's parameter dictionary (called when loading - # class descriptions) - def set_param_dict(cls, param_dict): - # should only be called once (current one should be empty one - # from __init__) - assert not cls._param_dict - cls._param_dict = param_dict - # initialize attributes with default values - for (pname, param) in param_dict.items(): - try: - setattr(cls, pname, param.default) - except Exception, exc: - print "Error setting '%s' default on class '%s'\n" \ - % (pname, cls.__name__), exc - - # Lookup a parameter description by name in the given class. Use - # the _param_bases list defined in __init__ to go up the - # inheritance hierarchy if necessary. - def lookup_param(cls, param_name): - for c in cls._param_bases: - param = c._param_dict.get(param_name) - if param: return param - return None - - # Set attribute (called on foo.attr_name = value when foo is an - # instance of class cls). - def __setattr__(cls, attr_name, value): - # normal processing for private attributes - if attr_name.startswith('_'): - object.__setattr__(cls, attr_name, value) - return - # no '_': must be SimObject param - param = cls.lookup_param(attr_name) - if not param: - raise AttributeError, \ - "Class %s has no parameter %s" % (cls.__name__, attr_name) - # It's ok: set attribute by delegating to 'object' class. - # Note the use of param.make_value() to verify/canonicalize - # the assigned value - object.__setattr__(cls, attr_name, param.make_value(value)) - - # generator that iterates across all parameters for this class and - # all classes it inherits from - def all_param_names(cls): - for c in cls._param_bases: - for p in c._param_dict.iterkeys(): - yield p - -# The ConfigNode class is the root of the special hierarchy. Most of -# the code in this class deals with the configuration hierarchy itself -# (parent/child node relationships). -class ConfigNode(object): - # Specify metaclass. Any class inheriting from ConfigNode will - # get this metaclass. - __metaclass__ = MetaConfigNode - - # Constructor. Since bare ConfigNodes don't have parameters, just - # worry about the name and the parent/child stuff. - def __init__(self, _name, _parent=None): - # Type-check _name - if type(_name) != str: - if isinstance(_name, ConfigNode): - # special case message for common error of trying to - # coerce a SimObject to the wrong type - raise TypeError, \ - "Attempt to coerce %s to %s" \ - % (_name.__class__.__name__, self.__class__.__name__) - else: - raise TypeError, \ - "%s name must be string (was %s, %s)" \ - % (self.__class__.__name__, _name, type(_name)) - # if specified, parent must be a subclass of ConfigNode - if _parent != None and not isinstance(_parent, ConfigNode): - raise TypeError, \ - "%s parent must be ConfigNode subclass (was %s, %s)" \ - % (self.__class__.__name__, _name, type(_name)) - self._name = _name - self._parent = _parent - self._children = {} - if (_parent): - _parent.__addChild(self) - # Set up absolute path from root. - if (_parent and _parent._path != 'Universe'): - self._path = _parent._path + '.' + self._name - else: - self._path = self._name - - # When printing (e.g. to .ini file), just give the name. - def __str__(self): - return self._name - - # Catch attribute accesses that could be requesting children, and - # satisfy them. Note that __getattr__ is called only if the - # regular attribute lookup fails, so private and parameter lookups - # will already be satisfied before we ever get here. - def __getattr__(self, name): - try: - return self._children[name] - except KeyError: - raise AttributeError, \ - "Node '%s' has no attribute or child '%s'" \ - % (self._name, name) - - # Set attribute. All attribute assignments go through here. Must - # be private attribute (starts with '_') or valid parameter entry. - # Basically identical to MetaConfigClass.__setattr__(), except - # this handles instances rather than class attributes. - def __setattr__(self, attr_name, value): - if attr_name.startswith('_'): - object.__setattr__(self, attr_name, value) - return - # not private; look up as param - param = self.__class__.lookup_param(attr_name) - if not param: - raise AttributeError, \ - "Class %s has no parameter %s" \ - % (self.__class__.__name__, attr_name) - # It's ok: set attribute by delegating to 'object' class. - # Note the use of param.make_value() to verify/canonicalize - # the assigned value - object.__setattr__(self, attr_name, param.make_value(value)) - - # Add a child to this node. - def __addChild(self, new_child): - # set child's parent before calling this function - assert new_child._parent == self - if not isinstance(new_child, ConfigNode): - raise TypeError, \ - "ConfigNode child must also be of class ConfigNode" - if new_child._name in self._children: - raise AttributeError, \ - "Node '%s' already has a child '%s'" \ - % (self._name, new_child._name) - self._children[new_child._name] = new_child - - # operator overload for '+='. You can say "node += child" to add - # a child that was created with parent=None. An early attempt - # at playing with syntax; turns out not to be that useful. - def __iadd__(self, new_child): - if new_child._parent != None: - raise AttributeError, \ - "Node '%s' already has a parent" % new_child._name - new_child._parent = self - self.__addChild(new_child) - return self - - # Print instance info to .ini file. - def _instantiate(self): - print '[' + self._path + ']' # .ini section header - if self._children: - # instantiate children in sorted order for backward - # compatibility (else we can end up with cpu1 before cpu0). - child_names = self._children.keys() - child_names.sort() - print 'children =', - for child_name in child_names: - print child_name, - print - self._instantiateParams() - print - # recursively dump out children - if self._children: - for child_name in child_names: - self._children[child_name]._instantiate() - - # ConfigNodes have no parameters. Overridden by SimObject. - def _instantiateParams(self): - pass - -# SimObject is a minimal extension of ConfigNode, implementing a -# hierarchy node that corresponds to an M5 SimObject. It prints out a -# "type=" line to indicate its SimObject class, prints out the -# assigned parameters corresponding to its class, and allows -# parameters to be set by keyword in the constructor. Note that most -# of the heavy lifting for the SimObject param handling is done in the -# MetaConfigNode metaclass. - -class SimObject(ConfigNode): - # initialization: like ConfigNode, but handle keyword-based - # parameter initializers. - def __init__(self, _name, _parent=None, **params): - ConfigNode.__init__(self, _name, _parent) - for param, value in params.items(): - setattr(self, param, value) - - # print type and parameter values to .ini file - def _instantiateParams(self): - print "type =", self.__class__._name - for pname in self.__class__.all_param_names(): - value = getattr(self, pname) - if value != None: - print pname, '=', value - - def _sim_code(cls): - name = cls.__name__ - param_names = cls._param_dict.keys() - param_names.sort() - code = "BEGIN_DECLARE_SIM_OBJECT_PARAMS(%s)\n" % name - decls = [" " + cls._param_dict[pname].sim_decl(pname) \ - for pname in param_names] - code += "\n".join(decls) + "\n" - code += "END_DECLARE_SIM_OBJECT_PARAMS(%s)\n\n" % name - code += "BEGIN_INIT_SIM_OBJECT_PARAMS(%s)\n" % name - inits = [" " + cls._param_dict[pname].sim_init(pname) \ - for pname in param_names] - code += ",\n".join(inits) + "\n" - code += "END_INIT_SIM_OBJECT_PARAMS(%s)\n\n" % name - return code - _sim_code = classmethod(_sim_code) - -##################################################################### -# -# Parameter description classes -# -# The _param_dict dictionary in each class maps parameter names to -# either a Param or a VectorParam object. These objects contain the -# parameter description string, the parameter type, and the default -# value (loaded from the PARAM section of the .odesc files). The -# make_value() method on these objects is used to force whatever value -# is assigned to the parameter to the appropriate type. -# -# Note that the default values are loaded into the class's attribute -# space when the parameter dictionary is initialized (in -# MetaConfigNode.set_param_dict()); after that point they aren't -# used. -# -##################################################################### - -def isNullPointer(value): - return isinstance(value, NullSimObject) - -def isSimObjectType(ptype): - return issubclass(ptype, SimObject) - -# Regular parameter. -class Param(object): - # Constructor. E.g., Param(Int, "number of widgets", 5) - def __init__(self, ptype, desc, default=None): - self.ptype = ptype - self.ptype_name = self.ptype.__name__ - self.desc = desc - self.default = default - - # Convert assigned value to appropriate type. Force parameter - # value (rhs of '=') to ptype (or None, which means not set). - def make_value(self, value): - # nothing to do if None or already correct type. Also allow NULL - # pointer to be assigned where a SimObject is expected. - if value == None or isinstance(value, self.ptype) or \ - isNullPointer(value) and isSimObjectType(self.ptype): - return value - # this type conversion will raise an exception if it's illegal - return self.ptype(value) - - def sim_decl(self, name): - return 'Param<%s> %s;' % (self.ptype_name, name) - - def sim_init(self, name): - if self.default == None: - return 'INIT_PARAM(%s, "%s")' % (name, self.desc) - else: - return 'INIT_PARAM_DFLT(%s, "%s", %s)' % \ - (name, self.desc, str(self.default)) - -# The _VectorParamValue class is a wrapper for vector-valued -# parameters. The leading underscore indicates that users shouldn't -# see this class; it's magically generated by VectorParam. The -# parameter values are stored in the 'value' field as a Python list of -# whatever type the parameter is supposed to be. The only purpose of -# storing these instead of a raw Python list is that we can override -# the __str__() method to not print out '[' and ']' in the .ini file. -class _VectorParamValue(object): - def __init__(self, list): - self.value = list - - def __str__(self): - return ' '.join(map(str, self.value)) - -# Vector-valued parameter description. Just like Param, except that -# the value is a vector (list) of the specified type instead of a -# single value. -class VectorParam(Param): - - # Inherit Param constructor. However, the resulting parameter - # will be a list of ptype rather than a single element of ptype. - def __init__(self, ptype, desc, default=None): - Param.__init__(self, ptype, desc, default) - - # Convert assigned value to appropriate type. If the RHS is not a - # list or tuple, it generates a single-element list. - def make_value(self, value): - if value == None: return value - if isinstance(value, list) or isinstance(value, tuple): - # list: coerce each element into new list - val_list = [Param.make_value(self, v) for v in iter(value)] - else: - # singleton: coerce & wrap in a list - val_list = [Param.make_value(self, value)] - # wrap list in _VectorParamValue (see above) - return _VectorParamValue(val_list) - - def sim_decl(self, name): - return 'VectorParam<%s> %s;' % (self.ptype_name, name) - - # sim_init inherited from Param - -##################################################################### -# -# Parameter Types -# -# Though native Python types could be used to specify parameter types -# (the 'ptype' field of the Param and VectorParam classes), it's more -# flexible to define our own set of types. This gives us more control -# over how Python expressions are converted to values (via the -# __init__() constructor) and how these values are printed out (via -# the __str__() conversion method). Eventually we'll need these types -# to correspond to distinct C++ types as well. -# -##################################################################### - -# Integer parameter type. -class Int(object): - # Constructor. Value must be Python int or long (long integer). - def __init__(self, value): - t = type(value) - if t == int or t == long: - self.value = value - else: - raise TypeError, "Int param got value %s %s" % (repr(value), t) - - # Use Python string conversion. Note that this puts an 'L' on the - # end of long integers; we can strip that off here if it gives us - # trouble. - def __str__(self): - return str(self.value) - -# Counter, Addr, and Tick are just aliases for Int for now. -class Counter(Int): - pass - -class Addr(Int): - pass - -class Tick(Int): - pass - -# Boolean parameter type. -class Bool(object): - - # Constructor. Typically the value will be one of the Python bool - # constants True or False (or the aliases true and false below). - # Also need to take integer 0 or 1 values since bool was not a - # distinct type in Python 2.2. Parse a bunch of boolean-sounding - # strings too just for kicks. - def __init__(self, value): - t = type(value) - if t == bool: - self.value = value - elif t == int or t == long: - if value == 1: - self.value = True - elif value == 0: - self.value = False - elif t == str: - v = value.lower() - if v == "true" or v == "t" or v == "yes" or v == "y": - self.value = True - elif v == "false" or v == "f" or v == "no" or v == "n": - self.value = False - # if we didn't set it yet, it must not be something we understand - if not hasattr(self, 'value'): - raise TypeError, "Bool param got value %s %s" % (repr(value), t) - - # Generate printable string version. - def __str__(self): - if self.value: return "true" - else: return "false" - -# String-valued parameter. -class String(object): - # Constructor. Value must be Python string. - def __init__(self, value): - t = type(value) - if t == str: - self.value = value - else: - raise TypeError, "String param got value %s %s" % (repr(value), t) - - # Generate printable string version. Not too tricky. - def __str__(self): - return self.value - -# Special class for NULL pointers. Note the special check in -# make_param_value() above that lets these be assigned where a -# SimObject is required. -class NullSimObject(object): - # Constructor. No parameters, nothing to do. - def __init__(self): - pass - - def __str__(self): - return "NULL" - -# The only instance you'll ever need... -NULL = NullSimObject() - -# Enumerated types are a little more complex. The user specifies the -# type as Enum(foo) where foo is either a list or dictionary of -# alternatives (typically strings, but not necessarily so). (In the -# long run, the integer value of the parameter will be the list index -# or the corresponding dictionary value. For now, since we only check -# that the alternative is valid and then spit it into a .ini file, -# there's not much point in using the dictionary.) - -# What Enum() must do is generate a new type encapsulating the -# provided list/dictionary so that specific values of the parameter -# can be instances of that type. We define two hidden internal -# classes (_ListEnum and _DictEnum) to serve as base classes, then -# derive the new type from the appropriate base class on the fly. - - -# Base class for list-based Enum types. -class _ListEnum(object): - # Constructor. Value must be a member of the type's map list. - def __init__(self, value): - if value in self.map: - self.value = value - self.index = self.map.index(value) - else: - raise TypeError, "Enum param got bad value '%s' (not in %s)" \ - % (value, self.map) - - # Generate printable string version of value. - def __str__(self): - return str(self.value) - -class _DictEnum(object): - # Constructor. Value must be a key in the type's map dictionary. - def __init__(self, value): - if value in self.map: - self.value = value - self.index = self.map[value] - else: - raise TypeError, "Enum param got bad value '%s' (not in %s)" \ - % (value, self.map.keys()) - - # Generate printable string version of value. - def __str__(self): - return str(self.value) - -# Enum metaclass... calling Enum(foo) generates a new type (class) -# that derives from _ListEnum or _DictEnum as appropriate. -class Enum(type): - # counter to generate unique names for generated classes - counter = 1 - - def __new__(cls, map): - if isinstance(map, dict): - base = _DictEnum - keys = map.keys() - elif isinstance(map, list): - base = _ListEnum - keys = map - else: - raise TypeError, "Enum map must be list or dict (got %s)" % map - classname = "Enum%04d" % Enum.counter - Enum.counter += 1 - # New class derives from selected base, and gets a 'map' - # attribute containing the specified list or dict. - return type.__new__(cls, classname, (base,), { 'map': map }) - - -# -# "Constants"... handy aliases for various values. -# - -# For compatibility with C++ bool constants. -false = False -true = True - -# Some memory range specifications use this as a default upper bound. -MAX_ADDR = 2 ** 63 - -# For power-of-two sizing, e.g. 64*K gives an integer value 65536. -K = 1024 -M = K*K -G = K*M - -##################################################################### -# -# Object description loading. -# -# The final step is to define the classes corresponding to M5 objects -# and their parameters. These classes are described in .odesc files -# in the source tree. This code walks the tree to find those files -# and loads up the descriptions (by evaluating them in pieces as -# Python code). -# -# -# Because SimObject classes inherit from other SimObject classes, and -# can use arbitrary other SimObject classes as parameter types, we -# have to do this in three steps: -# -# 1. Walk the tree to find all the .odesc files. Note that the base -# of the filename *must* match the class name. This step builds a -# mapping from class names to file paths. -# -# 2. Start generating empty class definitions (via def_class()) using -# the OBJECT field of the .odesc files to determine inheritance. -# def_class() recurses on demand to define needed base classes before -# derived classes. -# -# 3. Now that all of the classes are defined, go through the .odesc -# files one more time loading the parameter descriptions. -# -##################################################################### - -# dictionary: maps object names to file paths -odesc_file = {} - -# dictionary: maps object names to boolean flag indicating whether -# class definition was loaded yet. Since SimObject is defined in -# m5.config.py, count it as loaded. -odesc_loaded = { 'SimObject': True } - -# Find odesc files in namelist and initialize odesc_file and -# odesc_loaded dictionaries. Called via os.path.walk() (see below). -def find_odescs(process, dirpath, namelist): - # Prune out SCCS directories so we don't process s.*.odesc files. - i = 0 - while i < len(namelist): - if namelist[i] == "SCCS": - del namelist[i] - else: - i = i + 1 - # Find .odesc files and record them. - for name in namelist: - if name.endswith('.odesc'): - objname = name[:name.rindex('.odesc')] - path = os.path.join(dirpath, name) - if odesc_file.has_key(objname): - print "Warning: duplicate object names:", \ - odesc_file[objname], path - odesc_file[objname] = path - odesc_loaded[objname] = False - - -# Regular expression string for parsing .odesc files. -file_re_string = r''' -^OBJECT: \s* (\w+) \s* \( \s* (\w+) \s* \) -\s* -^PARAMS: \s*\n ( (\s+.*\n)* ) -''' - -# Compiled regular expression object. -file_re = re.compile(file_re_string, re.MULTILINE | re.VERBOSE) - -# .odesc file parsing function. Takes a filename and returns tuple of -# object name, object base, and parameter description section. -def parse_file(path): - f = open(path, 'r').read() - m = file_re.search(f) - if not m: - print "Can't parse", path - sys.exit(1) - return (m.group(1), m.group(2), m.group(3)) - -# Define SimObject class based on description in specified filename. -# Class itself is empty except for _name attribute; parameter -# descriptions will be loaded later. Will recurse to define base -# classes as needed before defining specified class. -def def_class(path): - # load & parse file - (obj, parent, params) = parse_file(path) - # check to see if base class is defined yet; define it if not - if not odesc_loaded.has_key(parent): - print "No .odesc file found for", parent - sys.exit(1) - if not odesc_loaded[parent]: - def_class(odesc_file[parent]) - # define the class. The _name attribute of the class lets us - # track the actual SimObject class name even when we derive new - # subclasses in scripts (to provide new parameter value settings). - s = "class %s(%s): _name = '%s'" % (obj, parent, obj) - try: - # execute in global namespace, so new class will be globally - # visible - exec s in globals() - except Exception, exc: - print "Object error in %s:" % path, exc - # mark this file as loaded - odesc_loaded[obj] = True - -# Munge an arbitrary Python code string to get it to execute (mostly -# dealing with indentation). Stolen from isa_parser.py... see -# comments there for a more detailed description. -def fixPythonIndentation(s): - # get rid of blank lines first - s = re.sub(r'(?m)^\s*\n', '', s); - if (s != '' and re.match(r'[ \t]', s[0])): - s = 'if 1:\n' + s - return s - -# Load parameter descriptions from .odesc file. Object class must -# already be defined. -def def_params(path): - # load & parse file - (obj_name, parent_name, param_code) = parse_file(path) - # initialize param dict - param_dict = {} - # execute parameter descriptions. - try: - # "in globals(), param_dict" makes exec use the current - # globals as the global namespace (so all of the Param - # etc. objects are visible) and param_dict as the local - # namespace (so the newly defined parameter variables will be - # entered into param_dict). - exec fixPythonIndentation(param_code) in globals(), param_dict - except Exception, exc: - print "Param error in %s:" % path, exc - return - # Convert object name string to Python class object - obj = eval(obj_name) - # Set the object's parameter description dictionary (see MetaConfigNode). - obj.set_param_dict(param_dict) - - -# Walk directory tree to find .odesc files. -# Someday we'll have to make the root path an argument instead of -# hard-coding it. For now the assumption is you're running this in -# util/config. -root = '../..' -os.path.walk(root, find_odescs, None) - -# Iterate through file dictionary and define classes. -for objname, path in odesc_file.iteritems(): - if not odesc_loaded[objname]: - def_class(path) - -sim_object_list = odesc_loaded.keys() -sim_object_list.sort() - -# Iterate through files again and load parameters. -for path in odesc_file.itervalues(): - def_params(path) - -##################################################################### - -# Hook to generate C++ parameter code. -def gen_sim_code(file): - for objname in sim_object_list: - print >> file, eval("%s._sim_code()" % objname) - -# The final hook to generate .ini files. Called from configuration -# script once config is built. -def instantiate(*objs): - for obj in objs: - obj._instantiate() - - diff --git a/util/config/m5configbase.py b/util/config/m5configbase.py new file mode 100644 index 000000000..2daf5d94d --- /dev/null +++ b/util/config/m5configbase.py @@ -0,0 +1,697 @@ +from __future__ import generators + +import os +import re +import sys + +##################################################################### +# +# M5 Python Configuration Utility +# +# The basic idea is to write simple Python programs that build Python +# objects corresponding to M5 SimObjects for the deisred simulation +# configuration. For now, the Python emits a .ini file that can be +# parsed by M5. In the future, some tighter integration between M5 +# and the Python interpreter may allow bypassing the .ini file. +# +# Each SimObject class in M5 is represented by a Python class with the +# same name. The Python inheritance tree mirrors the M5 C++ tree +# (e.g., SimpleCPU derives from BaseCPU in both cases, and all +# SimObjects inherit from a single SimObject base class). To specify +# an instance of an M5 SimObject in a configuration, the user simply +# instantiates the corresponding Python object. The parameters for +# that SimObject are given by assigning to attributes of the Python +# object, either using keyword assignment in the constructor or in +# separate assignment statements. For example: +# +# cache = BaseCache('my_cache', root, size=64*K) +# cache.hit_latency = 3 +# cache.assoc = 8 +# +# (The first two constructor arguments specify the name of the created +# cache and its parent node in the hierarchy.) +# +# The magic lies in the mapping of the Python attributes for SimObject +# classes to the actual SimObject parameter specifications. This +# allows parameter validity checking in the Python code. Continuing +# the example above, the statements "cache.blurfl=3" or +# "cache.assoc='hello'" would both result in runtime errors in Python, +# since the BaseCache object has no 'blurfl' parameter and the 'assoc' +# parameter requires an integer, respectively. This magic is done +# primarily by overriding the special __setattr__ method that controls +# assignment to object attributes. +# +# The Python module provides another class, ConfigNode, which is a +# superclass of SimObject. ConfigNode implements the parent/child +# relationship for building the configuration hierarchy tree. +# Concrete instances of ConfigNode can be used to group objects in the +# hierarchy, but do not correspond to SimObjects themselves (like a +# .ini section with "children=" but no "type=". +# +# Once a set of Python objects have been instantiated in a hierarchy, +# calling 'instantiate(obj)' (where obj is the root of the hierarchy) +# will generate a .ini file. See simple-4cpu.py for an example +# (corresponding to m5-test/simple-4cpu.ini). +# +##################################################################### + +##################################################################### +# +# ConfigNode/SimObject classes +# +# The Python class hierarchy rooted by ConfigNode (which is the base +# class of SimObject, which in turn is the base class of all other M5 +# SimObject classes) has special attribute behavior. In general, an +# object in this hierarchy has three categories of attribute-like +# things: +# +# 1. Regular Python methods and variables. These must start with an +# underscore to be treated normally. +# +# 2. SimObject parameters. These values are stored as normal Python +# attributes, but all assignments to these attributes are checked +# against the pre-defined set of parameters stored in the class's +# _param_dict dictionary. Assignments to attributes that do not +# correspond to predefined parameters, or that are not of the correct +# type, incur runtime errors. +# +# 3. Hierarchy children. The child nodes of a ConfigNode are stored +# in the node's _children dictionary, but can be accessed using the +# Python attribute dot-notation (just as they are printed out by the +# simulator). Children cannot be created using attribute assigment; +# they must be added by specifying the parent node in the child's +# constructor or using the '+=' operator. + +# The SimObject parameters are the most complex, for a few reasons. +# First, both parameter descriptions and parameter values are +# inherited. Thus parameter description lookup must go up the +# inheritance chain like normal attribute lookup, but this behavior +# must be explicitly coded since the lookup occurs in each class's +# _param_dict attribute. Second, because parameter values can be set +# on SimObject classes (to implement default values), the parameter +# checking behavior must be enforced on class attribute assignments as +# well as instance attribute assignments. Finally, because we allow +# class specialization via inheritance (e.g., see the L1Cache class in +# the simple-4cpu.py example), we must do parameter checking even on +# class instantiation. To provide all these features, we use a +# metaclass to define most of the SimObject parameter behavior for +# this class hierarchy. +# +##################################################################### + +# The metaclass for ConfigNode (and thus for everything that derives +# from ConfigNode, including SimObject). This class controls how new +# classes that derive from ConfigNode are instantiated, and provides +# inherited class behavior (just like a class controls how instances +# of that class are instantiated, and provides inherited instance +# behavior). +class MetaConfigNode(type): + + # __new__ is called before __init__, and is where the statements + # in the body of the class definition get loaded into the class's + # __dict__. We intercept this to filter out parameter assignments + # and only allow "private" attributes to be passed to the base + # __new__ (starting with underscore). + def __new__(cls, name, bases, dict): + priv_keys = [k for k in dict.iterkeys() if k.startswith('_')] + priv_dict = {} + for k in priv_keys: priv_dict[k] = dict[k]; del dict[k] + # entries left in dict will get passed to __init__, where we'll + # deal with them as params. + return super(MetaConfigNode, cls).__new__(cls, name, bases, priv_dict) + + # initialization: start out with an empty param dict (makes life + # simpler if we can assume _param_dict is always valid). Also + # build inheritance list to simplify searching for inherited + # params. Finally set parameters specified in class definition + # (if any). + def __init__(cls, name, bases, dict): + super(MetaConfigNode, cls).__init__(cls, name, bases, {}) + # initialize _param_dict to empty + cls._param_dict = {} + # __mro__ is the ordered list of classes Python uses for + # method resolution. We want to pick out the ones that have a + # _param_dict attribute for doing parameter lookups. + cls._param_bases = \ + [c for c in cls.__mro__ if hasattr(c, '_param_dict')] + # initialize attributes with values from class definition + for (pname, value) in dict.items(): + try: + setattr(cls, pname, value) + except Exception, exc: + print "Error setting '%s' to '%s' on class '%s'\n" \ + % (pname, value, cls.__name__), exc + + # set the class's parameter dictionary (called when loading + # class descriptions) + def set_param_dict(cls, param_dict): + # should only be called once (current one should be empty one + # from __init__) + assert not cls._param_dict + cls._param_dict = param_dict + # initialize attributes with default values + for (pname, param) in param_dict.items(): + try: + setattr(cls, pname, param.default) + except Exception, exc: + print "Error setting '%s' default on class '%s'\n" \ + % (pname, cls.__name__), exc + + # Set the class's parameter dictionary given a code string of + # parameter initializers (as from an object description file). + # Note that the caller must pass in the namespace in which to + # execute the code (usually the caller's globals()), since if we + # call globals() from inside this function all we get is this + # module's internal scope. + def init_params(cls, init_code, ctx): + dict = {} + try: + exec fixPythonIndentation(init_code) in ctx, dict + except Exception, exc: + print "Error in %s.init_params:" % cls.__name__, exc + raise + cls.set_param_dict(dict) + + # Lookup a parameter description by name in the given class. Use + # the _param_bases list defined in __init__ to go up the + # inheritance hierarchy if necessary. + def lookup_param(cls, param_name): + for c in cls._param_bases: + param = c._param_dict.get(param_name) + if param: return param + return None + + # Set attribute (called on foo.attr_name = value when foo is an + # instance of class cls). + def __setattr__(cls, attr_name, value): + # normal processing for private attributes + if attr_name.startswith('_'): + object.__setattr__(cls, attr_name, value) + return + # no '_': must be SimObject param + param = cls.lookup_param(attr_name) + if not param: + raise AttributeError, \ + "Class %s has no parameter %s" % (cls.__name__, attr_name) + # It's ok: set attribute by delegating to 'object' class. + # Note the use of param.make_value() to verify/canonicalize + # the assigned value + object.__setattr__(cls, attr_name, param.make_value(value)) + + # generator that iterates across all parameters for this class and + # all classes it inherits from + def all_param_names(cls): + for c in cls._param_bases: + for p in c._param_dict.iterkeys(): + yield p + +# The ConfigNode class is the root of the special hierarchy. Most of +# the code in this class deals with the configuration hierarchy itself +# (parent/child node relationships). +class ConfigNode(object): + # Specify metaclass. Any class inheriting from ConfigNode will + # get this metaclass. + __metaclass__ = MetaConfigNode + + # Constructor. Since bare ConfigNodes don't have parameters, just + # worry about the name and the parent/child stuff. + def __init__(self, _name, _parent=None): + # Type-check _name + if type(_name) != str: + if isinstance(_name, ConfigNode): + # special case message for common error of trying to + # coerce a SimObject to the wrong type + raise TypeError, \ + "Attempt to coerce %s to %s" \ + % (_name.__class__.__name__, self.__class__.__name__) + else: + raise TypeError, \ + "%s name must be string (was %s, %s)" \ + % (self.__class__.__name__, _name, type(_name)) + # if specified, parent must be a subclass of ConfigNode + if _parent != None and not isinstance(_parent, ConfigNode): + raise TypeError, \ + "%s parent must be ConfigNode subclass (was %s, %s)" \ + % (self.__class__.__name__, _name, type(_name)) + self._name = _name + self._parent = _parent + if (_parent): + _parent._add_child(self) + self._children = {} + # keep a list of children in addition to the dictionary keys + # so we can remember the order they were added and print them + # out in that order. + self._child_list = [] + + # When printing (e.g. to .ini file), just give the name. + def __str__(self): + return self._name + + # Catch attribute accesses that could be requesting children, and + # satisfy them. Note that __getattr__ is called only if the + # regular attribute lookup fails, so private and parameter lookups + # will already be satisfied before we ever get here. + def __getattr__(self, name): + try: + return self._children[name] + except KeyError: + raise AttributeError, \ + "Node '%s' has no attribute or child '%s'" \ + % (self._name, name) + + # Set attribute. All attribute assignments go through here. Must + # be private attribute (starts with '_') or valid parameter entry. + # Basically identical to MetaConfigClass.__setattr__(), except + # this sets attributes on specific instances rather than on classes. + def __setattr__(self, attr_name, value): + if attr_name.startswith('_'): + object.__setattr__(self, attr_name, value) + return + # not private; look up as param + param = self.__class__.lookup_param(attr_name) + if not param: + raise AttributeError, \ + "Class %s has no parameter %s" \ + % (self.__class__.__name__, attr_name) + # It's ok: set attribute by delegating to 'object' class. + # Note the use of param.make_value() to verify/canonicalize + # the assigned value. + v = param.make_value(value) + object.__setattr__(self, attr_name, v) + + # A little convenient magic: if the parameter is a ConfigNode + # (or vector of ConfigNodes, or anything else with a + # '_set_parent_if_none' function attribute) that does not have + # a parent (and so is not part of the configuration + # hierarchy), then make this node its parent. + if hasattr(v, '_set_parent_if_none'): + v._set_parent_if_none(self) + + def _path(self): + # Return absolute path from root. + if not self._parent and self._name != 'Universe': + print >> sys.stderr, "Warning:", self._name, "has no parent" + parent_path = self._parent and self._parent._path() + if parent_path and parent_path != 'Universe': + return parent_path + '.' + self._name + else: + return self._name + + # Add a child to this node. + def _add_child(self, new_child): + # set child's parent before calling this function + assert new_child._parent == self + if not isinstance(new_child, ConfigNode): + raise TypeError, \ + "ConfigNode child must also be of class ConfigNode" + if new_child._name in self._children: + raise AttributeError, \ + "Node '%s' already has a child '%s'" \ + % (self._name, new_child._name) + self._children[new_child._name] = new_child + self._child_list += [new_child] + + # operator overload for '+='. You can say "node += child" to add + # a child that was created with parent=None. An early attempt + # at playing with syntax; turns out not to be that useful. + def __iadd__(self, new_child): + if new_child._parent != None: + raise AttributeError, \ + "Node '%s' already has a parent" % new_child._name + new_child._parent = self + self._add_child(new_child) + return self + + # Set this instance's parent to 'parent' if it doesn't already + # have one. See ConfigNode.__setattr__(). + def _set_parent_if_none(self, parent): + if self._parent == None: + parent += self + + # Print instance info to .ini file. + def _instantiate(self): + print '[' + self._path() + ']' # .ini section header + if self._child_list: + # instantiate children in same order they were added for + # backward compatibility (else we can end up with cpu1 + # before cpu0). + print 'children =', ' '.join([c._name for c in self._child_list]) + self._instantiateParams() + print + # recursively dump out children + for c in self._child_list: + c._instantiate() + + # ConfigNodes have no parameters. Overridden by SimObject. + def _instantiateParams(self): + pass + +# SimObject is a minimal extension of ConfigNode, implementing a +# hierarchy node that corresponds to an M5 SimObject. It prints out a +# "type=" line to indicate its SimObject class, prints out the +# assigned parameters corresponding to its class, and allows +# parameters to be set by keyword in the constructor. Note that most +# of the heavy lifting for the SimObject param handling is done in the +# MetaConfigNode metaclass. + +class SimObject(ConfigNode): + # initialization: like ConfigNode, but handle keyword-based + # parameter initializers. + def __init__(self, _name, _parent=None, **params): + ConfigNode.__init__(self, _name, _parent) + for param, value in params.items(): + setattr(self, param, value) + + # print type and parameter values to .ini file + def _instantiateParams(self): + print "type =", self.__class__._name + for pname in self.__class__.all_param_names(): + value = getattr(self, pname) + if value != None: + print pname, '=', value + + def _sim_code(cls): + name = cls.__name__ + param_names = cls._param_dict.keys() + param_names.sort() + code = "BEGIN_DECLARE_SIM_OBJECT_PARAMS(%s)\n" % name + decls = [" " + cls._param_dict[pname].sim_decl(pname) \ + for pname in param_names] + code += "\n".join(decls) + "\n" + code += "END_DECLARE_SIM_OBJECT_PARAMS(%s)\n\n" % name + code += "BEGIN_INIT_SIM_OBJECT_PARAMS(%s)\n" % name + inits = [" " + cls._param_dict[pname].sim_init(pname) \ + for pname in param_names] + code += ",\n".join(inits) + "\n" + code += "END_INIT_SIM_OBJECT_PARAMS(%s)\n\n" % name + return code + _sim_code = classmethod(_sim_code) + +##################################################################### +# +# Parameter description classes +# +# The _param_dict dictionary in each class maps parameter names to +# either a Param or a VectorParam object. These objects contain the +# parameter description string, the parameter type, and the default +# value (loaded from the PARAM section of the .odesc files). The +# make_value() method on these objects is used to force whatever value +# is assigned to the parameter to the appropriate type. +# +# Note that the default values are loaded into the class's attribute +# space when the parameter dictionary is initialized (in +# MetaConfigNode.set_param_dict()); after that point they aren't +# used. +# +##################################################################### + +def isNullPointer(value): + return isinstance(value, NullSimObject) + +# Regular parameter. +class Param(object): + # Constructor. E.g., Param(Int, "number of widgets", 5) + def __init__(self, ptype, desc, default=None): + self.ptype = ptype + self.ptype_name = self.ptype.__name__ + self.desc = desc + self.default = default + + # Convert assigned value to appropriate type. Force parameter + # value (rhs of '=') to ptype (or None, which means not set). + def make_value(self, value): + # nothing to do if None or already correct type. Also allow NULL + # pointer to be assigned where a SimObject is expected. + if value == None or isinstance(value, self.ptype) or \ + isNullPointer(value) and issubclass(self.ptype, ConfigNode): + return value + # this type conversion will raise an exception if it's illegal + return self.ptype(value) + + def sim_decl(self, name): + return 'Param<%s> %s;' % (self.ptype_name, name) + + def sim_init(self, name): + if self.default == None: + return 'INIT_PARAM(%s, "%s")' % (name, self.desc) + else: + return 'INIT_PARAM_DFLT(%s, "%s", %s)' % \ + (name, self.desc, str(self.default)) + +# The _VectorParamValue class is a wrapper for vector-valued +# parameters. The leading underscore indicates that users shouldn't +# see this class; it's magically generated by VectorParam. The +# parameter values are stored in the 'value' field as a Python list of +# whatever type the parameter is supposed to be. The only purpose of +# storing these instead of a raw Python list is that we can override +# the __str__() method to not print out '[' and ']' in the .ini file. +class _VectorParamValue(object): + def __init__(self, value): + assert isinstance(value, list) or value == None + self.value = value + + def __str__(self): + return ' '.join(map(str, self.value)) + + # Set member instance's parents to 'parent' if they don't already + # have one. Extends "magic" parenting of ConfigNodes to vectors + # of ConfigNodes as well. See ConfigNode.__setattr__(). + def _set_parent_if_none(self, parent): + if self.value and hasattr(self.value[0], '_set_parent_if_none'): + for v in self.value: + v._set_parent_if_none(parent) + +# Vector-valued parameter description. Just like Param, except that +# the value is a vector (list) of the specified type instead of a +# single value. +class VectorParam(Param): + + # Inherit Param constructor. However, the resulting parameter + # will be a list of ptype rather than a single element of ptype. + def __init__(self, ptype, desc, default=None): + Param.__init__(self, ptype, desc, default) + + # Convert assigned value to appropriate type. If the RHS is not a + # list or tuple, it generates a single-element list. + def make_value(self, value): + if value == None: return value + if isinstance(value, list) or isinstance(value, tuple): + # list: coerce each element into new list + val_list = [Param.make_value(self, v) for v in iter(value)] + else: + # singleton: coerce & wrap in a list + val_list = [Param.make_value(self, value)] + # wrap list in _VectorParamValue (see above) + return _VectorParamValue(val_list) + + def sim_decl(self, name): + return 'VectorParam<%s> %s;' % (self.ptype_name, name) + + # sim_init inherited from Param + +##################################################################### +# +# Parameter Types +# +# Though native Python types could be used to specify parameter types +# (the 'ptype' field of the Param and VectorParam classes), it's more +# flexible to define our own set of types. This gives us more control +# over how Python expressions are converted to values (via the +# __init__() constructor) and how these values are printed out (via +# the __str__() conversion method). Eventually we'll need these types +# to correspond to distinct C++ types as well. +# +##################################################################### + +# Integer parameter type. +class Int(object): + # Constructor. Value must be Python int or long (long integer). + def __init__(self, value): + t = type(value) + if t == int or t == long: + self.value = value + else: + raise TypeError, "Int param got value %s %s" % (repr(value), t) + + # Use Python string conversion. Note that this puts an 'L' on the + # end of long integers; we can strip that off here if it gives us + # trouble. + def __str__(self): + return str(self.value) + +# Counter, Addr, and Tick are just aliases for Int for now. +class Counter(Int): + pass + +class Addr(Int): + pass + +class Tick(Int): + pass + +# Boolean parameter type. +class Bool(object): + + # Constructor. Typically the value will be one of the Python bool + # constants True or False (or the aliases true and false below). + # Also need to take integer 0 or 1 values since bool was not a + # distinct type in Python 2.2. Parse a bunch of boolean-sounding + # strings too just for kicks. + def __init__(self, value): + t = type(value) + if t == bool: + self.value = value + elif t == int or t == long: + if value == 1: + self.value = True + elif value == 0: + self.value = False + elif t == str: + v = value.lower() + if v == "true" or v == "t" or v == "yes" or v == "y": + self.value = True + elif v == "false" or v == "f" or v == "no" or v == "n": + self.value = False + # if we didn't set it yet, it must not be something we understand + if not hasattr(self, 'value'): + raise TypeError, "Bool param got value %s %s" % (repr(value), t) + + # Generate printable string version. + def __str__(self): + if self.value: return "true" + else: return "false" + +# String-valued parameter. +class String(object): + # Constructor. Value must be Python string. + def __init__(self, value): + t = type(value) + if t == str: + self.value = value + else: + raise TypeError, "String param got value %s %s" % (repr(value), t) + + # Generate printable string version. Not too tricky. + def __str__(self): + return self.value + +# Special class for NULL pointers. Note the special check in +# make_param_value() above that lets these be assigned where a +# SimObject is required. +class NullSimObject(object): + # Constructor. No parameters, nothing to do. + def __init__(self): + pass + + def __str__(self): + return "NULL" + +# The only instance you'll ever need... +NULL = NullSimObject() + +# Enumerated types are a little more complex. The user specifies the +# type as Enum(foo) where foo is either a list or dictionary of +# alternatives (typically strings, but not necessarily so). (In the +# long run, the integer value of the parameter will be the list index +# or the corresponding dictionary value. For now, since we only check +# that the alternative is valid and then spit it into a .ini file, +# there's not much point in using the dictionary.) + +# What Enum() must do is generate a new type encapsulating the +# provided list/dictionary so that specific values of the parameter +# can be instances of that type. We define two hidden internal +# classes (_ListEnum and _DictEnum) to serve as base classes, then +# derive the new type from the appropriate base class on the fly. + + +# Base class for list-based Enum types. +class _ListEnum(object): + # Constructor. Value must be a member of the type's map list. + def __init__(self, value): + if value in self.map: + self.value = value + self.index = self.map.index(value) + else: + raise TypeError, "Enum param got bad value '%s' (not in %s)" \ + % (value, self.map) + + # Generate printable string version of value. + def __str__(self): + return str(self.value) + +class _DictEnum(object): + # Constructor. Value must be a key in the type's map dictionary. + def __init__(self, value): + if value in self.map: + self.value = value + self.index = self.map[value] + else: + raise TypeError, "Enum param got bad value '%s' (not in %s)" \ + % (value, self.map.keys()) + + # Generate printable string version of value. + def __str__(self): + return str(self.value) + +# Enum metaclass... calling Enum(foo) generates a new type (class) +# that derives from _ListEnum or _DictEnum as appropriate. +class Enum(type): + # counter to generate unique names for generated classes + counter = 1 + + def __new__(cls, map): + if isinstance(map, dict): + base = _DictEnum + keys = map.keys() + elif isinstance(map, list): + base = _ListEnum + keys = map + else: + raise TypeError, "Enum map must be list or dict (got %s)" % map + classname = "Enum%04d" % Enum.counter + Enum.counter += 1 + # New class derives from selected base, and gets a 'map' + # attribute containing the specified list or dict. + return type.__new__(cls, classname, (base,), { 'map': map }) + + +# +# "Constants"... handy aliases for various values. +# + +# For compatibility with C++ bool constants. +false = False +true = True + +# Some memory range specifications use this as a default upper bound. +MAX_ADDR = 2**64 - 1 + +# For power-of-two sizing, e.g. 64*K gives an integer value 65536. +K = 1024 +M = K*K +G = K*M + +##################################################################### + +# Munge an arbitrary Python code string to get it to execute (mostly +# dealing with indentation). Stolen from isa_parser.py... see +# comments there for a more detailed description. +def fixPythonIndentation(s): + # get rid of blank lines first + s = re.sub(r'(?m)^\s*\n', '', s); + if (s != '' and re.match(r'[ \t]', s[0])): + s = 'if 1:\n' + s + return s + +# Hook to generate C++ parameter code. +def gen_sim_code(file): + for objname in sim_object_list: + print >> file, eval("%s._sim_code()" % objname) + +# The final hook to generate .ini files. Called from configuration +# script once config is built. +def instantiate(*objs): + for obj in objs: + obj._instantiate() + +