From: Gereon Kremer Date: Fri, 25 Feb 2022 20:17:34 +0000 (+0100) Subject: Slightly refactor arithmetic rewriting for extended operators (#8169) X-Git-Tag: cvc5-1.0.0~373 X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=4d3777a52c6d6342db60dd8525e7ba26bb19eb91;p=cvc5.git Slightly refactor arithmetic rewriting for extended operators (#8169) This PR mostly reorders the implementation to match the order in the header, and does a few very minor refactorings for the rewriters for transcendental functions, and the pow2 and iand operators. --- diff --git a/src/theory/arith/arith_rewriter.cpp b/src/theory/arith/arith_rewriter.cpp index 86835f447..f8d8594eb 100644 --- a/src/theory/arith/arith_rewriter.cpp +++ b/src/theory/arith/arith_rewriter.cpp @@ -602,299 +602,15 @@ RewriteResponse ArithRewriter::postRewriteMult(TNode t){ rewriter::mkMultTerm(ran, std::move(leafs))); } -RewriteResponse ArithRewriter::postRewritePow2(TNode t) -{ - Assert(t.getKind() == kind::POW2); - NodeManager* nm = NodeManager::currentNM(); - // if constant, we eliminate - if (t[0].isConst()) - { - // pow2 is only supported for integers - Assert(t[0].getType().isInteger()); - Integer i = t[0].getConst().getNumerator(); - if (i < 0) - { - return RewriteResponse(REWRITE_DONE, nm->mkConstInt(Rational(0))); - } - // (pow2 t) ---> (pow 2 t) and continue rewriting to eliminate pow - Node two = nm->mkConstInt(Rational(Integer(2))); - Node ret = nm->mkNode(kind::POW, two, t[0]); - return RewriteResponse(REWRITE_AGAIN, ret); - } - return RewriteResponse(REWRITE_DONE, t); -} - -RewriteResponse ArithRewriter::postRewriteIAnd(TNode t) +Node ArithRewriter::makeUnaryMinusNode(TNode n) { - Assert(t.getKind() == kind::IAND); - size_t bsize = t.getOperator().getConst().d_size; - NodeManager* nm = NodeManager::currentNM(); - // if constant, we eliminate - if (t[0].isConst() && t[1].isConst()) - { - Node iToBvop = nm->mkConst(IntToBitVector(bsize)); - Node arg1 = nm->mkNode(kind::INT_TO_BITVECTOR, iToBvop, t[0]); - Node arg2 = nm->mkNode(kind::INT_TO_BITVECTOR, iToBvop, t[1]); - Node bvand = nm->mkNode(kind::BITVECTOR_AND, arg1, arg2); - Node ret = nm->mkNode(kind::BITVECTOR_TO_NAT, bvand); - return RewriteResponse(REWRITE_AGAIN_FULL, ret); - } - else if (t[0] > t[1]) - { - // ((_ iand k) x y) ---> ((_ iand k) y x) if x > y by node ordering - Node ret = nm->mkNode(kind::IAND, t.getOperator(), t[1], t[0]); - return RewriteResponse(REWRITE_AGAIN, ret); - } - else if (t[0] == t[1]) - { - // ((_ iand k) x x) ---> (mod x 2^k) - Node twok = nm->mkConstInt(Rational(Integer(2).pow(bsize))); - Node ret = nm->mkNode(kind::INTS_MODULUS, t[0], twok); - return RewriteResponse(REWRITE_AGAIN, ret); - } - // simplifications involving constants - for (unsigned i = 0; i < 2; i++) - { - if (!t[i].isConst()) - { - continue; - } - if (t[i].getConst().sgn() == 0) - { - // ((_ iand k) 0 y) ---> 0 - return RewriteResponse(REWRITE_DONE, t[i]); - } - if (t[i].getConst().getNumerator() == Integer(2).pow(bsize) - 1) - { - // ((_ iand k) 111...1 y) ---> (mod y 2^k) - Node twok = nm->mkConstInt(Rational(Integer(2).pow(bsize))); - Node ret = nm->mkNode(kind::INTS_MODULUS, t[1-i], twok); - return RewriteResponse(REWRITE_AGAIN, ret); - } - } - return RewriteResponse(REWRITE_DONE, t); -} - -RewriteResponse ArithRewriter::preRewriteTranscendental(TNode t) { - return RewriteResponse(REWRITE_DONE, t); -} - -RewriteResponse ArithRewriter::postRewriteTranscendental(TNode t) { - Trace("arith-tf-rewrite") << "Rewrite transcendental function : " << t << std::endl; - NodeManager* nm = NodeManager::currentNM(); - switch( t.getKind() ){ - case kind::EXPONENTIAL: { - if (t[0].isConst()) - { - Node one = nm->mkConstReal(Rational(1)); - if(t[0].getConst().sgn()>=0 && t[0].getType().isInteger() && t[0]!=one){ - return RewriteResponse( - REWRITE_AGAIN, - nm->mkNode(kind::POW, nm->mkNode(kind::EXPONENTIAL, one), t[0])); - }else{ - return RewriteResponse(REWRITE_DONE, t); - } - } - else if (t[0].getKind() == kind::ADD) - { - std::vector product; - for (const Node tc : t[0]) - { - product.push_back(nm->mkNode(kind::EXPONENTIAL, tc)); - } - // We need to do a full rewrite here, since we can get exponentials of - // constants, e.g. when we are rewriting exp(2 + x) - return RewriteResponse(REWRITE_AGAIN_FULL, - nm->mkNode(kind::MULT, product)); - } - } - break; - case kind::SINE: - if (t[0].isConst()) - { - const Rational& rat = t[0].getConst(); - if(rat.sgn() == 0){ - return RewriteResponse(REWRITE_DONE, nm->mkConstReal(Rational(0))); - } - else if (rat.sgn() == -1) - { - Node ret = nm->mkNode(kind::NEG, - nm->mkNode(kind::SINE, nm->mkConstReal(-rat))); - return RewriteResponse(REWRITE_AGAIN_FULL, ret); - } - } - else if ((t[0].getKind() == MULT || t[0].getKind() == NONLINEAR_MULT) - && t[0][0].isConst() && t[0][0].getConst().sgn() == -1) - { - // sin(-n*x) ---> -sin(n*x) - std::vector mchildren(t[0].begin(), t[0].end()); - mchildren[0] = nm->mkConstReal(-t[0][0].getConst()); - Node ret = nm->mkNode( - kind::NEG, - nm->mkNode(kind::SINE, nm->mkNode(t[0].getKind(), mchildren))); - return RewriteResponse(REWRITE_AGAIN_FULL, ret); - } - else - { - // get the factor of PI in the argument - Node pi_factor; - Node pi; - Node rem; - std::map msum; - if (ArithMSum::getMonomialSum(t[0], msum)) - { - pi = mkPi(); - std::map::iterator itm = msum.find(pi); - if (itm != msum.end()) - { - if (itm->second.isNull()) - { - pi_factor = nm->mkConstReal(Rational(1)); - } - else - { - pi_factor = itm->second; - } - msum.erase(pi); - if (!msum.empty()) - { - rem = ArithMSum::mkNode(t[0].getType(), msum); - } - } - } - else - { - Assert(false); - } - - // if there is a factor of PI - if( !pi_factor.isNull() ){ - Trace("arith-tf-rewrite-debug") << "Process pi factor = " << pi_factor << std::endl; - Rational r = pi_factor.getConst(); - Rational r_abs = r.abs(); - Rational rone = Rational(1); - Rational rtwo = Rational(2); - if (r_abs > rone) - { - //add/substract 2*pi beyond scope - Rational ra_div_two = (r_abs + rone) / rtwo; - Node new_pi_factor; - if (r.sgn() == 1) - { - new_pi_factor = nm->mkConstReal(r - rtwo * ra_div_two.floor()); - } - else - { - Assert(r.sgn() == -1); - new_pi_factor = nm->mkConstReal(r + rtwo * ra_div_two.floor()); - } - Node new_arg = nm->mkNode(kind::MULT, new_pi_factor, pi); - if (!rem.isNull()) - { - new_arg = nm->mkNode(kind::ADD, new_arg, rem); - } - // sin( 2*n*PI + x ) = sin( x ) - return RewriteResponse(REWRITE_AGAIN_FULL, - nm->mkNode(kind::SINE, new_arg)); - } - else if (r_abs == rone) - { - // sin( PI + x ) = -sin( x ) - if (rem.isNull()) - { - return RewriteResponse(REWRITE_DONE, nm->mkConstReal(Rational(0))); - } - else - { - return RewriteResponse( - REWRITE_AGAIN_FULL, - nm->mkNode(kind::NEG, nm->mkNode(kind::SINE, rem))); - } - } - else if (rem.isNull()) - { - // other rational cases based on Niven's theorem - // (https://en.wikipedia.org/wiki/Niven%27s_theorem) - Integer one = Integer(1); - Integer two = Integer(2); - Integer six = Integer(6); - if (r_abs.getDenominator() == two) - { - Assert(r_abs.getNumerator() == one); - return RewriteResponse(REWRITE_DONE, - nm->mkConstReal(Rational(r.sgn()))); - } - else if (r_abs.getDenominator() == six) - { - Integer five = Integer(5); - if (r_abs.getNumerator() == one || r_abs.getNumerator() == five) - { - return RewriteResponse( - REWRITE_DONE, - nm->mkConstReal(Rational(r.sgn()) / Rational(2))); - } - } - } - } - } - break; - case kind::COSINE: { - return RewriteResponse( - REWRITE_AGAIN_FULL, - nm->mkNode( - kind::SINE, - nm->mkNode(kind::SUB, - nm->mkNode(kind::MULT, - nm->mkConstReal(Rational(1) / Rational(2)), - mkPi()), - t[0]))); - } - break; - case kind::TANGENT: - { - return RewriteResponse(REWRITE_AGAIN_FULL, - nm->mkNode(kind::DIVISION, - nm->mkNode(kind::SINE, t[0]), - nm->mkNode(kind::COSINE, t[0]))); - } - break; - case kind::COSECANT: - { - return RewriteResponse(REWRITE_AGAIN_FULL, - nm->mkNode(kind::DIVISION, - nm->mkConstReal(Rational(1)), - nm->mkNode(kind::SINE, t[0]))); - } - break; - case kind::SECANT: - { - return RewriteResponse(REWRITE_AGAIN_FULL, - nm->mkNode(kind::DIVISION, - nm->mkConstReal(Rational(1)), - nm->mkNode(kind::COSINE, t[0]))); - } - break; - case kind::COTANGENT: - { - return RewriteResponse(REWRITE_AGAIN_FULL, - nm->mkNode(kind::DIVISION, - nm->mkNode(kind::COSINE, t[0]), - nm->mkNode(kind::SINE, t[0]))); - } - break; - default: - break; - } - return RewriteResponse(REWRITE_DONE, t); -} - -Node ArithRewriter::makeUnaryMinusNode(TNode n){ NodeManager* nm = NodeManager::currentNM(); Rational qNegOne(-1); return nm->mkNode(kind::MULT, nm->mkConstRealOrInt(n.getType(), qNegOne), n); } -RewriteResponse ArithRewriter::rewriteDiv(TNode t, bool pre){ +RewriteResponse ArithRewriter::rewriteDiv(TNode t, bool pre) +{ Assert(t.getKind() == kind::DIVISION_TOTAL || t.getKind() == kind::DIVISION); Assert(t.getNumChildren() == 2); @@ -905,10 +621,14 @@ RewriteResponse ArithRewriter::rewriteDiv(TNode t, bool pre){ NodeManager* nm = NodeManager::currentNM(); const Rational& den = right.getConst(); - if(den.isZero()){ - if(t.getKind() == kind::DIVISION_TOTAL){ + if (den.isZero()) + { + if (t.getKind() == kind::DIVISION_TOTAL) + { return RewriteResponse(REWRITE_DONE, nm->mkConstReal(0)); - }else{ + } + else + { // This is unsupported, but this is not a good place to complain return RewriteResponse(REWRITE_DONE, t); } @@ -961,10 +681,13 @@ RewriteResponse ArithRewriter::rewriteDiv(TNode t, bool pre){ } Node result = nm->mkRealAlgebraicNumber(inverse(den)); - Node mult = NodeManager::currentNM()->mkNode(kind::MULT,left,result); - if(pre){ + Node mult = NodeManager::currentNM()->mkNode(kind::MULT, left, result); + if (pre) + { return RewriteResponse(REWRITE_DONE, mult); - }else{ + } + else + { return RewriteResponse(REWRITE_AGAIN, mult); } } @@ -1070,10 +793,13 @@ RewriteResponse ArithRewriter::rewriteIntsDivModTotal(TNode t, bool pre) TNode n = t[0]; TNode d = t[1]; bool dIsConstant = d.isConst(); - if(dIsConstant && d.getConst().isZero()){ + if (dIsConstant && d.getConst().isZero()) + { // (div x 0) ---> 0 or (mod x 0) ---> 0 return returnRewrite(t, nm->mkConstInt(0), Rewrite::DIV_MOD_BY_ZERO); - }else if(dIsConstant && d.getConst().isOne()){ + } + else if (dIsConstant && d.getConst().isOne()) + { if (k == kind::INTS_MODULUS_TOTAL) { // (mod x 1) --> 0 @@ -1104,7 +830,8 @@ RewriteResponse ArithRewriter::rewriteIntsDivModTotal(TNode t, bool pre) bool isDiv = (k == kind::INTS_DIVISION || k == kind::INTS_DIVISION_TOTAL); - Integer result = isDiv ? ni.euclidianDivideQuotient(di) : ni.euclidianDivideRemainder(di); + Integer result = isDiv ? ni.euclidianDivideQuotient(di) + : ni.euclidianDivideRemainder(di); // constant evaluation // (mod c1 c2) ---> c3 or (div c1 c2) ---> c3 @@ -1161,6 +888,305 @@ RewriteResponse ArithRewriter::rewriteIntsDivModTotal(TNode t, bool pre) return RewriteResponse(REWRITE_DONE, t); } +RewriteResponse ArithRewriter::postRewriteIAnd(TNode t) +{ + Assert(t.getKind() == kind::IAND); + size_t bsize = t.getOperator().getConst().d_size; + NodeManager* nm = NodeManager::currentNM(); + // if constant, we eliminate + if (t[0].isConst() && t[1].isConst()) + { + Node iToBvop = nm->mkConst(IntToBitVector(bsize)); + Node arg1 = nm->mkNode(kind::INT_TO_BITVECTOR, iToBvop, t[0]); + Node arg2 = nm->mkNode(kind::INT_TO_BITVECTOR, iToBvop, t[1]); + Node bvand = nm->mkNode(kind::BITVECTOR_AND, arg1, arg2); + Node ret = nm->mkNode(kind::BITVECTOR_TO_NAT, bvand); + return RewriteResponse(REWRITE_AGAIN_FULL, ret); + } + else if (t[0] > t[1]) + { + // ((_ iand k) x y) ---> ((_ iand k) y x) if x > y by node ordering + Node ret = nm->mkNode(kind::IAND, t.getOperator(), t[1], t[0]); + return RewriteResponse(REWRITE_AGAIN, ret); + } + else if (t[0] == t[1]) + { + // ((_ iand k) x x) ---> (mod x 2^k) + Node twok = nm->mkConstInt(Rational(Integer(2).pow(bsize))); + Node ret = nm->mkNode(kind::INTS_MODULUS, t[0], twok); + return RewriteResponse(REWRITE_AGAIN, ret); + } + // simplifications involving constants + for (unsigned i = 0; i < 2; i++) + { + if (!t[i].isConst()) + { + continue; + } + if (t[i].getConst().sgn() == 0) + { + // ((_ iand k) 0 y) ---> 0 + return RewriteResponse(REWRITE_DONE, t[i]); + } + if (t[i].getConst().getNumerator() == Integer(2).pow(bsize) - 1) + { + // ((_ iand k) 111...1 y) ---> (mod y 2^k) + Node twok = nm->mkConstInt(Rational(Integer(2).pow(bsize))); + Node ret = nm->mkNode(kind::INTS_MODULUS, t[1 - i], twok); + return RewriteResponse(REWRITE_AGAIN, ret); + } + } + return RewriteResponse(REWRITE_DONE, t); +} + +RewriteResponse ArithRewriter::postRewritePow2(TNode t) +{ + Assert(t.getKind() == kind::POW2); + NodeManager* nm = NodeManager::currentNM(); + // if constant, we eliminate + if (t[0].isConst()) + { + // pow2 is only supported for integers + Assert(t[0].getType().isInteger()); + Integer i = t[0].getConst().getNumerator(); + if (i < 0) + { + return RewriteResponse(REWRITE_DONE, rewriter::mkConst(Integer(0))); + } + // (pow2 t) ---> (pow 2 t) and continue rewriting to eliminate pow + Node two = rewriter::mkConst(Integer(2)); + Node ret = nm->mkNode(kind::POW, two, t[0]); + return RewriteResponse(REWRITE_AGAIN, ret); + } + return RewriteResponse(REWRITE_DONE, t); +} + +RewriteResponse ArithRewriter::preRewriteTranscendental(TNode t) +{ + return RewriteResponse(REWRITE_DONE, t); +} + +RewriteResponse ArithRewriter::postRewriteTranscendental(TNode t) +{ + Trace("arith-tf-rewrite") + << "Rewrite transcendental function : " << t << std::endl; + NodeManager* nm = NodeManager::currentNM(); + switch (t.getKind()) + { + case kind::EXPONENTIAL: + { + if (t[0].isConst()) + { + Node one = rewriter::mkConst(Integer(1)); + if (t[0].getConst().sgn() >= 0 && t[0].getType().isInteger() + && t[0] != one) + { + return RewriteResponse( + REWRITE_AGAIN, + nm->mkNode(kind::POW, nm->mkNode(kind::EXPONENTIAL, one), t[0])); + } + else + { + return RewriteResponse(REWRITE_DONE, t); + } + } + else if (t[0].getKind() == kind::ADD) + { + std::vector product; + for (const Node tc : t[0]) + { + product.push_back(nm->mkNode(kind::EXPONENTIAL, tc)); + } + // We need to do a full rewrite here, since we can get exponentials of + // constants, e.g. when we are rewriting exp(2 + x) + return RewriteResponse(REWRITE_AGAIN_FULL, + nm->mkNode(kind::MULT, product)); + } + } + break; + case kind::SINE: + if (t[0].isConst()) + { + const Rational& rat = t[0].getConst(); + if (rat.sgn() == 0) + { + return RewriteResponse(REWRITE_DONE, rewriter::mkConst(Integer(0))); + } + else if (rat.sgn() == -1) + { + Node ret = nm->mkNode( + kind::NEG, nm->mkNode(kind::SINE, rewriter::mkConst(-rat))); + return RewriteResponse(REWRITE_AGAIN_FULL, ret); + } + } + else if ((t[0].getKind() == MULT || t[0].getKind() == NONLINEAR_MULT) + && t[0][0].isConst() && t[0][0].getConst().sgn() == -1) + { + // sin(-n*x) ---> -sin(n*x) + std::vector mchildren(t[0].begin(), t[0].end()); + mchildren[0] = nm->mkConstReal(-t[0][0].getConst()); + Node ret = nm->mkNode( + kind::NEG, + nm->mkNode(kind::SINE, nm->mkNode(t[0].getKind(), mchildren))); + return RewriteResponse(REWRITE_AGAIN_FULL, ret); + } + else + { + // get the factor of PI in the argument + Node pi_factor; + Node pi; + Node rem; + std::map msum; + if (ArithMSum::getMonomialSum(t[0], msum)) + { + pi = mkPi(); + std::map::iterator itm = msum.find(pi); + if (itm != msum.end()) + { + if (itm->second.isNull()) + { + pi_factor = rewriter::mkConst(Integer(1)); + } + else + { + pi_factor = itm->second; + } + msum.erase(pi); + if (!msum.empty()) + { + rem = ArithMSum::mkNode(t[0].getType(), msum); + } + } + } + else + { + Assert(false); + } + + // if there is a factor of PI + if (!pi_factor.isNull()) + { + Trace("arith-tf-rewrite-debug") + << "Process pi factor = " << pi_factor << std::endl; + Rational r = pi_factor.getConst(); + Rational r_abs = r.abs(); + Rational rone = Rational(1); + Rational rtwo = Rational(2); + if (r_abs > rone) + { + // add/substract 2*pi beyond scope + Rational ra_div_two = (r_abs + rone) / rtwo; + Node new_pi_factor; + if (r.sgn() == 1) + { + new_pi_factor = nm->mkConstReal(r - rtwo * ra_div_two.floor()); + } + else + { + Assert(r.sgn() == -1); + new_pi_factor = nm->mkConstReal(r + rtwo * ra_div_two.floor()); + } + Node new_arg = nm->mkNode(kind::MULT, new_pi_factor, pi); + if (!rem.isNull()) + { + new_arg = nm->mkNode(kind::ADD, new_arg, rem); + } + // sin( 2*n*PI + x ) = sin( x ) + return RewriteResponse(REWRITE_AGAIN_FULL, + nm->mkNode(kind::SINE, new_arg)); + } + else if (r_abs == rone) + { + // sin( PI + x ) = -sin( x ) + if (rem.isNull()) + { + return RewriteResponse(REWRITE_DONE, + nm->mkConstReal(Rational(0))); + } + else + { + return RewriteResponse( + REWRITE_AGAIN_FULL, + nm->mkNode(kind::NEG, nm->mkNode(kind::SINE, rem))); + } + } + else if (rem.isNull()) + { + // other rational cases based on Niven's theorem + // (https://en.wikipedia.org/wiki/Niven%27s_theorem) + Integer one = Integer(1); + Integer two = Integer(2); + Integer six = Integer(6); + if (r_abs.getDenominator() == two) + { + Assert(r_abs.getNumerator() == one); + return RewriteResponse(REWRITE_DONE, + nm->mkConstReal(Rational(r.sgn()))); + } + else if (r_abs.getDenominator() == six) + { + Integer five = Integer(5); + if (r_abs.getNumerator() == one || r_abs.getNumerator() == five) + { + return RewriteResponse( + REWRITE_DONE, + nm->mkConstReal(Rational(r.sgn()) / Rational(2))); + } + } + } + } + } + break; + case kind::COSINE: + { + return RewriteResponse( + REWRITE_AGAIN_FULL, + nm->mkNode( + kind::SINE, + nm->mkNode(kind::SUB, + nm->mkNode(kind::MULT, + nm->mkConstReal(Rational(1) / Rational(2)), + mkPi()), + t[0]))); + } + break; + case kind::TANGENT: + { + return RewriteResponse(REWRITE_AGAIN_FULL, + nm->mkNode(kind::DIVISION, + nm->mkNode(kind::SINE, t[0]), + nm->mkNode(kind::COSINE, t[0]))); + } + break; + case kind::COSECANT: + { + return RewriteResponse(REWRITE_AGAIN_FULL, + nm->mkNode(kind::DIVISION, + nm->mkConstReal(Rational(1)), + nm->mkNode(kind::SINE, t[0]))); + } + break; + case kind::SECANT: + { + return RewriteResponse(REWRITE_AGAIN_FULL, + nm->mkNode(kind::DIVISION, + nm->mkConstReal(Rational(1)), + nm->mkNode(kind::COSINE, t[0]))); + } + break; + case kind::COTANGENT: + { + return RewriteResponse(REWRITE_AGAIN_FULL, + nm->mkNode(kind::DIVISION, + nm->mkNode(kind::COSINE, t[0]), + nm->mkNode(kind::SINE, t[0]))); + } + break; + default: break; + } + return RewriteResponse(REWRITE_DONE, t); +} + TrustNode ArithRewriter::expandDefinition(Node node) { // call eliminate operators, to eliminate partial operators only @@ -1172,8 +1198,8 @@ TrustNode ArithRewriter::expandDefinition(Node node) RewriteResponse ArithRewriter::returnRewrite(TNode t, Node ret, Rewrite r) { - Trace("arith-rewrite") << "ArithRewriter : " << t << " == " << ret << " by " - << r << std::endl; + Trace("arith-rewriter") << "ArithRewriter : " << t << " == " << ret << " by " + << r << std::endl; return RewriteResponse(REWRITE_AGAIN_FULL, ret); } diff --git a/src/theory/arith/arith_rewriter.h b/src/theory/arith/arith_rewriter.h index 072894000..9e2a15c77 100644 --- a/src/theory/arith/arith_rewriter.h +++ b/src/theory/arith/arith_rewriter.h @@ -71,10 +71,14 @@ class ArithRewriter : public TheoryRewriter static RewriteResponse preRewriteMult(TNode t); static RewriteResponse postRewriteMult(TNode t); + /** postRewrite IAND */ static RewriteResponse postRewriteIAnd(TNode t); + /** postRewrite POW2 */ static RewriteResponse postRewritePow2(TNode t); + /** preRewrite transcendental functions */ static RewriteResponse preRewriteTranscendental(TNode t); + /** postRewrite transcendental functions */ static RewriteResponse postRewriteTranscendental(TNode t); static bool isAtom(TNode n);