From: Richard Sandiford Date: Wed, 29 Apr 2015 13:32:59 +0000 (+0000) Subject: Makefile.in (build/genrecog.o): Depend on inchash.h. X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=72d33bd3d2045888b6fc2c6e651d54a8fe2a598a;p=gcc.git Makefile.in (build/genrecog.o): Depend on inchash.h. gcc/ * Makefile.in (build/genrecog.o): Depend on inchash.h. (build/genrecog$(build_exeext): Depend on build/hash-table.o and build/inchash.o * genrecog.c: Rewrite most of the code except for the third page. From-SVN: r222575 --- diff --git a/gcc/ChangeLog b/gcc/ChangeLog index 9bffca450f6..4fb54903d61 100644 --- a/gcc/ChangeLog +++ b/gcc/ChangeLog @@ -1,3 +1,10 @@ +2015-04-29 Richard Sandiford + + * Makefile.in (build/genrecog.o): Depend on inchash.h. + (build/genrecog$(build_exeext): Depend on build/hash-table.o and + build/inchash.o + * genrecog.c: Rewrite most of the code except for the third page. + 2015-04-29 Richard Sandiford * inchash.h, inchash.c: Include bconfig.h for build objects. diff --git a/gcc/Makefile.in b/gcc/Makefile.in index e1f6f0ed085..20a34a1408e 100644 --- a/gcc/Makefile.in +++ b/gcc/Makefile.in @@ -2527,7 +2527,8 @@ build/genpeep.o : genpeep.c $(RTL_BASE_H) $(BCONFIG_H) $(SYSTEM_H) \ build/genpreds.o : genpreds.c $(RTL_BASE_H) $(BCONFIG_H) $(SYSTEM_H) \ coretypes.h $(GTM_H) errors.h $(READ_MD_H) gensupport.h $(OBSTACK_H) build/genrecog.o : genrecog.c $(RTL_BASE_H) $(BCONFIG_H) $(SYSTEM_H) \ - coretypes.h $(GTM_H) errors.h $(READ_MD_H) gensupport.h + coretypes.h $(GTM_H) errors.h $(READ_MD_H) gensupport.h \ + $(HASH_TABLE_H) inchash.h build/genhooks.o : genhooks.c $(TARGET_DEF) $(C_TARGET_DEF) \ $(COMMON_TARGET_DEF) $(BCONFIG_H) $(SYSTEM_H) errors.h build/genmddump.o : genmddump.c $(RTL_BASE_H) $(BCONFIG_H) $(SYSTEM_H) \ @@ -2559,6 +2560,8 @@ genprog = $(genprogerr) check checksum condmd match # These programs need libs over and above what they get from the above list. build/genautomata$(build_exeext) : BUILD_LIBS += -lm +build/genrecog$(build_exeext) : build/hash-table.o build/inchash.o + # For stage1 and when cross-compiling use the build libcpp which is # built with NLS disabled. For stage2+ use the host library and # its dependencies. diff --git a/gcc/genrecog.c b/gcc/genrecog.c index 9367d74bb3f..e152b341408 100644 --- a/gcc/genrecog.c +++ b/gcc/genrecog.c @@ -46,7 +46,63 @@ This program also generates the function `peephole2_insns', which returns 0 if the rtl could not be matched. If there was a match, the new rtl is returned in an INSN list, and LAST_INSN will point - to the last recognized insn in the old sequence. */ + to the last recognized insn in the old sequence. + + + At a high level, the algorithm used in this file is as follows: + + 1. Build up a decision tree for each routine, using the following + approach to matching an rtx: + + - First determine the "shape" of the rtx, based on GET_CODE, + XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs + since SET_SRCs tend to be more distinctive. It examines other + operands in numerical order, since the canonicalization rules + prefer putting complex operands of commutative operators first. + + - Next check modes and predicates. This phase examines all + operands in numerical order, even for SETs, since the mode of a + SET_DEST is exact while the mode of a SET_SRC can be VOIDmode + for constant integers. + + - Next check match_dups. + + - Finally check the C condition and (where appropriate) pnum_clobbers. + + 2. Try to optimize the tree by removing redundant tests, CSEing tests, + folding tests together, etc. + + 3. Look for common subtrees and split them out into "pattern" routines. + These common subtrees can be identical or they can differ in mode, + code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code). + In the latter case the users of the pattern routine pass the + appropriate mode, etc., as argument. For example, if two patterns + contain: + + (plus:SI (match_operand:SI 1 "register_operand") + (match_operand:SI 2 "register_operand")) + + we can split the associated matching code out into a subroutine. + If a pattern contains: + + (minus:DI (match_operand:DI 1 "register_operand") + (match_operand:DI 2 "register_operand")) + + then we can consider using the same matching routine for both + the plus and minus expressions, passing PLUS and SImode in the + former case and MINUS and DImode in the latter case. + + The main aim of this phase is to reduce the compile time of the + insn-recog.c code and to reduce the amount of object code in + insn-recog.o. + + 4. Split the matching trees into functions, trying to limit the + size of each function to a sensible amount. + + Again, the main aim of this phase is to reduce the compile time + of insn-recog.c. (It doesn't help with the size of insn-recog.o.) + + 5. Write out C++ code for each function. */ #include "bconfig.h" #include "system.h" @@ -56,9 +112,90 @@ #include "errors.h" #include "read-md.h" #include "gensupport.h" - -#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \ - printf ("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER)) +#include "hash-table.h" +#include "inchash.h" +#include + +#undef GENERATOR_FILE +enum true_rtx_doe { +#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM, +#include "rtl.def" +#undef DEF_RTL_EXPR + FIRST_GENERATOR_RTX_CODE +}; +#define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE) +#define GENERATOR_FILE 1 + +/* Debugging variables to control which optimizations are performed. + Note that disabling merge_states_p leads to very large output. */ +static const bool merge_states_p = true; +static const bool collapse_optional_decisions_p = true; +static const bool cse_tests_p = true; +static const bool simplify_tests_p = true; +static const bool use_operand_variables_p = true; +static const bool use_subroutines_p = true; +static const bool use_pattern_routines_p = true; + +/* Whether to add comments for optional tests that we decided to keep. + Can be useful when debugging the generator itself but is noise when + debugging the generated code. */ +static const bool mark_optional_transitions_p = false; + +/* Whether pattern routines should calculate positions relative to their + rtx parameter rather than use absolute positions. This e.g. allows + a pattern routine to be shared between a plain SET and a PARALLEL + that includes a SET. + + In principle it sounds like this should be useful, especially for + recog_for_combine, where the plain SET form is generated automatically + from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't + seem to help much and leads to slightly bigger object files. */ +static const bool relative_patterns_p = false; + +/* Whether pattern routines should be allowed to test whether pnum_clobbers + is null. This requires passing pnum_clobbers around as a parameter. */ +static const bool pattern_have_num_clobbers_p = true; + +/* Whether pattern routines should be allowed to test .md file C conditions. + This requires passing insn around as a parameter, in case the C + condition refers to it. In practice this tends to lead to bigger + object files. */ +static const bool pattern_c_test_p = false; + +/* Whether to require each parameter passed to a pattern routine to be + unique. Disabling this check for example allows unary operators with + matching modes (like NEG) and unary operators with mismatched modes + (like ZERO_EXTEND) to be matched by a single pattern. However, we then + often have cases where the same value is passed too many times. */ +static const bool force_unique_params_p = true; + +/* The maximum (approximate) depth of block nesting that an individual + routine or subroutine should have. This limit is about keeping the + output readable rather than reducing compile time. */ +static const int MAX_DEPTH = 6; + +/* The minimum number of pseudo-statements that a state must have before + we split it out into a subroutine. */ +static const int MIN_NUM_STATEMENTS = 5; + +/* The number of pseudo-statements a state can have before we consider + splitting out substates into subroutines. This limit is about avoiding + compile-time problems with very big functions (and also about keeping + functions within --param optimization limits, etc.). */ +static const int MAX_NUM_STATEMENTS = 200; + +/* The minimum number of pseudo-statements that can be used in a pattern + routine. */ +static const unsigned int MIN_COMBINE_COST = 4; + +/* The maximum number of arguments that a pattern routine can have. + The idea is to prevent one pattern getting a ridiculous number of + arguments when it would be more beneficial to have a separate pattern + routine instead. */ +static const unsigned int MAX_PATTERN_PARAMS = 5; + +/* The maximum operand number plus one. */ +int num_operands; /* Ways of obtaining an rtx to be tested. */ enum position_type { @@ -99,131 +236,39 @@ struct position /* The argument to TYPE (shown as ARG in the position_type comments). */ int arg; - /* The depth of this position, with 0 as the root. */ - int depth; -}; - -/* A listhead of decision trees. The alternatives to a node are kept - in a doubly-linked list so we can easily add nodes to the proper - place when merging. */ - -struct decision_head -{ - struct decision *first; - struct decision *last; -}; - -/* These types are roughly in the order in which we'd like to test them. */ -enum decision_type -{ - DT_num_insns, - DT_mode, DT_code, DT_veclen, - DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe, - DT_const_int, - DT_veclen_ge, DT_dup, DT_pred, DT_c_test, - DT_accept_op, DT_accept_insn -}; - -/* A single test. The two accept types aren't tests per-se, but - their equality (or lack thereof) does affect tree merging so - it is convenient to keep them here. */ - -struct decision_test -{ - /* A linked list through the tests attached to a node. */ - struct decision_test *next; - - enum decision_type type; - - union - { - int num_insns; /* Number if insn in a define_peephole2. */ - machine_mode mode; /* Machine mode of node. */ - RTX_CODE code; /* Code to test. */ - - struct - { - const char *name; /* Predicate to call. */ - const struct pred_data *data; - /* Optimization hints for this predicate. */ - machine_mode mode; /* Machine mode for node. */ - } pred; - - const char *c_test; /* Additional test to perform. */ - int veclen; /* Length of vector. */ - int dup; /* Number of operand to compare against. */ - HOST_WIDE_INT intval; /* Value for XINT for XWINT. */ - int opno; /* Operand number matched. */ - - struct { - int code_number; /* Insn number matched. */ - int lineno; /* Line number of the insn. */ - int num_clobbers_to_add; /* Number of CLOBBERs to be added. */ - } insn; - } u; -}; + /* The instruction to which the position belongs. */ + unsigned int insn_id; -/* Data structure for decision tree for recognizing legitimate insns. */ + /* The depth of this position relative to the instruction pattern. + E.g. if the instruction pattern is a SET, the SET itself has a + depth of 0 while the SET_DEST and SET_SRC have depths of 1. */ + unsigned int depth; -struct decision -{ - struct decision_head success; /* Nodes to test on success. */ - struct decision *next; /* Node to test on failure. */ - struct decision *prev; /* Node whose failure tests us. */ - struct decision *afterward; /* Node to test on success, - but failure of successor nodes. */ - - struct position *position; /* Position in pattern. */ - - struct decision_test *tests; /* The tests for this node. */ - - int number; /* Node number, used for labels */ - int subroutine_number; /* Number of subroutine this node starts */ - int need_label; /* Label needs to be output. */ + /* A unique identifier for this position. */ + unsigned int id; }; -#define SUBROUTINE_THRESHOLD 100 - -static int next_subroutine_number; - -/* We can write three types of subroutines: One for insn recognition, - one to split insns, and one for peephole-type optimizations. This - defines which type is being written. */ - enum routine_type { - RECOG, SPLIT, PEEPHOLE2 + SUBPATTERN, RECOG, SPLIT, PEEPHOLE2 }; -#define IS_SPLIT(X) ((X) != RECOG) - -/* Next available node number for tree nodes. */ - -static int next_number; - /* Next number to use as an insn_code. */ - static int next_insn_code; -/* Record the highest depth we ever have so we know how many variables to - allocate in each subroutine we make. */ - -static int max_depth; - /* The line number of the start of the pattern currently being processed. */ static int pattern_lineno; /* The root position (x0). */ static struct position root_pos; +/* The number of positions created. Also one higher than the maximum + position id. */ +static unsigned int num_positions = 1; + /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position, since we are given that instruction's pattern as x0. */ static struct position *peep2_insn_pos_list = &root_pos; -extern void debug_decision - (struct decision *); -extern void debug_decision_list - (struct decision *); - /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR points to where the unique object that represents the position should be stored. Create the object if it doesn't already exist, @@ -239,10 +284,21 @@ next_position (struct position **next_ptr, struct position *base, if (!pos) { pos = XCNEW (struct position); - pos->base = base; pos->type = type; pos->arg = arg; - pos->depth = base->depth + 1; + if (type == POS_PEEP2_INSN) + { + pos->base = 0; + pos->insn_id = arg; + pos->depth = base->depth; + } + else + { + pos->base = base; + pos->insn_id = base->insn_id; + pos->depth = base->depth + 1; + } + pos->id = num_positions++; *next_ptr = pos; } return pos; @@ -275,40 +331,27 @@ compare_positions (struct position *pos1, struct position *pos2) return diff; } -/* Create a new node in sequence after LAST. */ - -static struct decision * -new_decision (struct position *pos, struct decision_head *last) -{ - struct decision *new_decision = XCNEW (struct decision); - - new_decision->success = *last; - new_decision->position = pos; - new_decision->number = next_number++; - - last->first = last->last = new_decision; - return new_decision; -} - -/* Create a new test and link it in at PLACE. */ +/* Return the most deeply-nested position that is common to both + POS1 and POS2. If the positions are from different instructions, + return the one with the lowest insn_id. */ -static struct decision_test * -new_decision_test (enum decision_type type, struct decision_test ***pplace) +static struct position * +common_position (struct position *pos1, struct position *pos2) { - struct decision_test **place = *pplace; - struct decision_test *test; - - test = XNEW (struct decision_test); - test->next = *place; - test->type = type; - *place = test; - - place = &test->next; - *pplace = place; - - return test; + if (pos1->insn_id != pos2->insn_id) + return pos1->insn_id < pos2->insn_id ? pos1 : pos2; + if (pos1->depth > pos2->depth) + std::swap (pos1, pos2); + while (pos1->depth != pos2->depth) + pos2 = pos2->base; + while (pos1 != pos2) + { + pos1 = pos1->base; + pos2 = pos2->base; + } + return pos1; } - + /* Search for and return operand N, stop when reaching node STOP. */ static rtx @@ -712,1896 +755,4463 @@ validate_pattern (rtx pattern, rtx insn, rtx set, int set_code) } } } - -/* Create a chain of nodes to verify that an rtl expression matches - PATTERN. - - LAST is a pointer to the listhead in the previous node in the chain (or - in the calling function, for the first node). - - POSITION is the current position in the insn. - - INSN_TYPE is the type of insn for which we are emitting code. - - A pointer to the final node in the chain is returned. */ - -static struct decision * -add_to_sequence (rtx pattern, struct decision_head *last, - struct position *pos, enum routine_type insn_type, int top) + +/* Simple list structure for items of type T, for use when being part + of a list is an inherent property of T. T must have members equivalent + to "T *prev, *next;" and a function "void set_parent (list_head *)" + to set the parent list. */ +template +struct list_head { - RTX_CODE code; - struct decision *this_decision, *sub; - struct decision_test *test; - struct decision_test **place; - struct position *subpos, **subpos_ptr; - size_t i; - const char *fmt; - int len; - machine_mode mode; - enum position_type pos_type; + /* A range of linked items. */ + struct range + { + range (T *); + range (T *, T *); - if (pos->depth > max_depth) - max_depth = pos->depth; + T *start, *end; + void set_parent (list_head *); + }; - sub = this_decision = new_decision (pos, last); - place = &this_decision->tests; + list_head (); + range release (); + void push_back (range); + range remove (range); + void replace (range, range); + T *singleton () const; - mode = GET_MODE (pattern); - code = GET_CODE (pattern); + T *first, *last; +}; - switch (code) - { - case PARALLEL: - /* Toplevel peephole pattern. */ - if (insn_type == PEEPHOLE2 && top) - { - int num_insns; +/* Create a range [START_IN, START_IN]. */ - /* Check we have sufficient insns. This avoids complications - because we then know peep2_next_insn never fails. */ - num_insns = XVECLEN (pattern, 0); - if (num_insns > 1) - { - test = new_decision_test (DT_num_insns, &place); - test->u.num_insns = num_insns; - last = &sub->success; - } - else - { - /* We don't need the node we just created -- unlink it. */ - last->first = last->last = NULL; - } +template +list_head ::range::range (T *start_in) : start (start_in), end (start_in) {} - subpos_ptr = &peep2_insn_pos_list; - for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++) - { - subpos = next_position (subpos_ptr, &root_pos, - POS_PEEP2_INSN, i); - sub = add_to_sequence (XVECEXP (pattern, 0, i), - last, subpos, insn_type, 0); - last = &sub->success; - subpos_ptr = &subpos->next; - } - goto ret; - } +/* Create a range [START_IN, END_IN], linked by next and prev fields. */ - /* Else nothing special. */ - break; +template +list_head ::range::range (T *start_in, T *end_in) + : start (start_in), end (end_in) {} - case MATCH_PARALLEL: - /* The explicit patterns within a match_parallel enforce a minimum - length on the vector. The match_parallel predicate may allow - for more elements. We do need to check for this minimum here - or the code generated to match the internals may reference data - beyond the end of the vector. */ - test = new_decision_test (DT_veclen_ge, &place); - test->u.veclen = XVECLEN (pattern, 2); - /* Fall through. */ +template +void +list_head ::range::set_parent (list_head *owner) +{ + for (T *item = start; item != end; item = item->next) + item->set_parent (owner); + end->set_parent (owner); +} - case MATCH_OPERAND: - case MATCH_SCRATCH: - case MATCH_OPERATOR: - { - RTX_CODE was_code = code; - const char *pred_name; - bool allows_const_int = true; +template +list_head ::list_head () : first (0), last (0) {} - if (code == MATCH_SCRATCH) - { - pred_name = "scratch_operand"; - code = UNKNOWN; - } - else - { - pred_name = XSTR (pattern, 1); - if (code == MATCH_PARALLEL) - code = PARALLEL; - else - code = UNKNOWN; - } +/* Add R to the end of the list. */ - if (pred_name[0] != 0) - { - const struct pred_data *pred; +template +void +list_head ::push_back (range r) +{ + if (last) + last->next = r.start; + else + first = r.start; + r.start->prev = last; + last = r.end; + r.set_parent (this); +} - test = new_decision_test (DT_pred, &place); - test->u.pred.name = pred_name; - test->u.pred.mode = mode; +/* Remove R from the list. R remains valid and can be inserted into + other lists. */ - /* See if we know about this predicate. - If we do, remember it for use below. +template +typename list_head ::range +list_head ::remove (range r) +{ + if (r.start->prev) + r.start->prev->next = r.end->next; + else + first = r.end->next; + if (r.end->next) + r.end->next->prev = r.start->prev; + else + last = r.start->prev; + r.start->prev = 0; + r.end->next = 0; + r.set_parent (0); + return r; +} - We can optimize the generated code a little if either - (a) the predicate only accepts one code, or (b) the - predicate does not allow CONST_INT or CONST_WIDE_INT, - in which case it can match only if the modes match. */ - pred = lookup_predicate (pred_name); - if (pred) - { - test->u.pred.data = pred; - allows_const_int = (pred->codes[CONST_INT] - || pred->codes[CONST_WIDE_INT]); - if (was_code == MATCH_PARALLEL - && pred->singleton != PARALLEL) - error_with_line (pattern_lineno, - "predicate '%s' used in match_parallel " - "does not allow only PARALLEL", pred->name); - else - code = pred->singleton; - } - else - error_with_line (pattern_lineno, - "unknown predicate '%s' in '%s' expression", - pred_name, GET_RTX_NAME (was_code)); - } +/* Replace OLDR with NEWR. OLDR remains valid and can be inserted into + other lists. */ - /* Can't enforce a mode if we allow const_int. */ - if (allows_const_int) - mode = VOIDmode; +template +void +list_head ::replace (range oldr, range newr) +{ + newr.start->prev = oldr.start->prev; + newr.end->next = oldr.end->next; - /* Accept the operand, i.e. record it in `operands'. */ - test = new_decision_test (DT_accept_op, &place); - test->u.opno = XINT (pattern, 0); + oldr.start->prev = 0; + oldr.end->next = 0; + oldr.set_parent (0); - if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL) - { - if (was_code == MATCH_OPERATOR) - { - pos_type = POS_XEXP; - subpos_ptr = &pos->xexps; - } - else - { - pos_type = POS_XVECEXP0; - subpos_ptr = &pos->xvecexp0s; - } - for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++) - { - subpos = next_position (subpos_ptr, pos, pos_type, i); - sub = add_to_sequence (XVECEXP (pattern, 2, i), - &sub->success, subpos, insn_type, 0); - subpos_ptr = &subpos->next; - } - } - goto fini; - } + if (newr.start->prev) + newr.start->prev->next = newr.start; + else + first = newr.start; + if (newr.end->next) + newr.end->next->prev = newr.end; + else + last = newr.end; + newr.set_parent (this); +} - case MATCH_OP_DUP: - code = UNKNOWN; +/* Empty the list and return the previous contents as a range that can + be inserted into other lists. */ - test = new_decision_test (DT_dup, &place); - test->u.dup = XINT (pattern, 0); +template +typename list_head ::range +list_head ::release () +{ + range r (first, last); + first = 0; + last = 0; + r.set_parent (0); + return r; +} - test = new_decision_test (DT_accept_op, &place); - test->u.opno = XINT (pattern, 0); +/* If the list contains a single item, return that item, otherwise return + null. */ - subpos_ptr = &pos->xexps; - for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++) - { - subpos = next_position (subpos_ptr, pos, POS_XEXP, i); - sub = add_to_sequence (XVECEXP (pattern, 1, i), - &sub->success, subpos, insn_type, 0); - subpos_ptr = &subpos->next; - } - goto fini; +template +T * +list_head ::singleton () const +{ + return first == last ? first : 0; +} + +struct state; - case MATCH_DUP: - case MATCH_PAR_DUP: - code = UNKNOWN; +/* Describes a possible successful return from a routine. */ +struct acceptance_type +{ + /* The type of routine we're returning from. */ + routine_type type : 16; - test = new_decision_test (DT_dup, &place); - test->u.dup = XINT (pattern, 0); - goto fini; + /* True if this structure only really represents a partial match, + and if we must call a subroutine of type TYPE to complete the match. + In this case we'll call the subroutine and, if it succeeds, return + whatever the subroutine returned. - default: - break; - } + False if this structure presents a full match. */ + unsigned int partial_p : 1; - fmt = GET_RTX_FORMAT (code); - len = GET_RTX_LENGTH (code); + union + { + /* If PARTIAL_P, this is the number of the subroutine to call. */ + int subroutine_id; - /* Do tests against the current node first. */ - for (i = 0; i < (size_t) len; i++) + /* Valid if !PARTIAL_P. */ + struct { - if (fmt[i] == 'i') - { - gcc_assert (i < 2); + /* The identifier of the matching pattern. For SUBPATTERNs this + value belongs to an ad-hoc routine-specific enum. For the + others it's the number of an .md file pattern. */ + int code; + union + { + /* For RECOG, the number of clobbers that must be added to the + pattern in order for it to match CODE. */ + int num_clobbers; + + /* For PEEPHOLE2, the number of additional instructions that were + included in the optimization. */ + int match_len; + } u; + } full; + } u; +}; - if (!i) - { - test = new_decision_test (DT_elt_zero_int, &place); - test->u.intval = XINT (pattern, i); - } - else - { - test = new_decision_test (DT_elt_one_int, &place); - test->u.intval = XINT (pattern, i); - } - } - else if (fmt[i] == 'w') - { - /* If this value actually fits in an int, we can use a switch - statement here, so indicate that. */ - enum decision_type type - = ((int) XWINT (pattern, i) == XWINT (pattern, i)) - ? DT_elt_zero_wide_safe : DT_elt_zero_wide; +bool +operator == (const acceptance_type &a, const acceptance_type &b) +{ + if (a.partial_p != b.partial_p) + return false; + if (a.partial_p) + return a.u.subroutine_id == b.u.subroutine_id; + else + return a.u.full.code == b.u.full.code; +} - gcc_assert (!i); +bool +operator != (const acceptance_type &a, const acceptance_type &b) +{ + return !operator == (a, b); +} - test = new_decision_test (type, &place); - test->u.intval = XWINT (pattern, i); - } - else if (fmt[i] == 'E') - { - gcc_assert (!i); +/* Represents a parameter to a pattern routine. */ +struct parameter +{ + /* The C type of parameter. */ + enum type_enum { + /* Represents an invalid parameter. */ + UNSET, - test = new_decision_test (DT_veclen, &place); - test->u.veclen = XVECLEN (pattern, i); - } - } + /* A machine_mode parameter. */ + MODE, - /* Now test our sub-patterns. */ - subpos_ptr = &pos->xexps; - for (i = 0; i < (size_t) len; i++) - { - subpos = next_position (subpos_ptr, pos, POS_XEXP, i); - switch (fmt[i]) - { - case 'e': case 'u': - sub = add_to_sequence (XEXP (pattern, i), &sub->success, - subpos, insn_type, 0); - break; + /* An rtx_code parameter. */ + CODE, - case 'E': - { - struct position *subpos2, **subpos2_ptr; - int j; + /* An int parameter. */ + INT, - subpos2_ptr = &pos->xvecexp0s; - for (j = 0; j < XVECLEN (pattern, i); j++) - { - subpos2 = next_position (subpos2_ptr, pos, POS_XVECEXP0, j); - sub = add_to_sequence (XVECEXP (pattern, i, j), - &sub->success, subpos2, insn_type, 0); - subpos2_ptr = &subpos2->next; - } - break; - } + /* A HOST_WIDE_INT parameter. */ + WIDE_INT + }; - case 'i': case 'w': - /* Handled above. */ - break; - case '0': - break; + parameter (); + parameter (type_enum, bool, uint64_t); - default: - gcc_unreachable (); - } - subpos_ptr = &subpos->next; - } + /* The type of the parameter. */ + type_enum type; - fini: - /* Insert nodes testing mode and code, if they're still relevant, - before any of the nodes we may have added above. */ - if (code != UNKNOWN) - { - place = &this_decision->tests; - test = new_decision_test (DT_code, &place); - test->u.code = code; - } + /* True if the value passed is variable, false if it is constant. */ + bool is_param; - if (mode != VOIDmode) - { - place = &this_decision->tests; - test = new_decision_test (DT_mode, &place); - test->u.mode = mode; - } + /* If IS_PARAM, this is the number of the variable passed, for an "i%d" + format string. If !IS_PARAM, this is the constant value passed. */ + uint64_t value; +}; - /* If we didn't insert any tests or accept nodes, hork. */ - gcc_assert (this_decision->tests); +parameter::parameter () + : type (UNSET), is_param (false), value (0) {} - ret: - return sub; -} - -/* A subroutine of maybe_both_true; examines only one test. - Returns > 0 for "definitely both true" and < 0 for "maybe both true". */ +parameter::parameter (type_enum type_in, bool is_param_in, uint64_t value_in) + : type (type_in), is_param (is_param_in), value (value_in) {} -static int -maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2) +bool +operator == (const parameter ¶m1, const parameter ¶m2) { - if (d1->type == d2->type) - { - switch (d1->type) - { - case DT_num_insns: - if (d1->u.num_insns == d2->u.num_insns) - return 1; - else - return -1; - - case DT_mode: - return d1->u.mode == d2->u.mode; - - case DT_code: - return d1->u.code == d2->u.code; - - case DT_veclen: - return d1->u.veclen == d2->u.veclen; - - case DT_elt_zero_int: - case DT_elt_one_int: - case DT_elt_zero_wide: - case DT_elt_zero_wide_safe: - return d1->u.intval == d2->u.intval; - - default: - break; - } - } + return (param1.type == param2.type + && param1.is_param == param2.is_param + && param1.value == param2.value); +} - /* If either has a predicate that we know something about, set - things up so that D1 is the one that always has a known - predicate. Then see if they have any codes in common. */ +bool +operator != (const parameter ¶m1, const parameter ¶m2) +{ + return !operator == (param1, param2); +} - if (d1->type == DT_pred || d2->type == DT_pred) - { - if (d2->type == DT_pred) - { - struct decision_test *tmp; - tmp = d1, d1 = d2, d2 = tmp; - } +/* Represents a routine that matches a partial rtx pattern, returning + an ad-hoc enum value on success and -1 on failure. The routine can + be used by any subroutine type. The match can be parameterized by + things like mode, code and UNSPEC number. */ +struct pattern_routine +{ + /* The state that implements the pattern. */ + state *s; - /* If D2 tests a mode, see if it matches D1. */ - if (d1->u.pred.mode != VOIDmode) - { - if (d2->type == DT_mode) - { - if (d1->u.pred.mode != d2->u.mode - /* The mode of an address_operand predicate is the - mode of the memory, not the operand. It can only - be used for testing the predicate, so we must - ignore it here. */ - && strcmp (d1->u.pred.name, "address_operand") != 0) - return 0; - } - /* Don't check two predicate modes here, because if both predicates - accept CONST_INT, then both can still be true even if the modes - are different. If they don't accept CONST_INT, there will be a - separate DT_mode that will make maybe_both_true_1 return 0. */ - } + /* The deepest root position from which S can access all the rtxes it needs. + This is NULL if the pattern doesn't need an rtx input, usually because + all matching is done on operands[] instead. */ + position *pos; - if (d1->u.pred.data) - { - /* If D2 tests a code, see if it is in the list of valid - codes for D1's predicate. */ - if (d2->type == DT_code) - { - if (!d1->u.pred.data->codes[d2->u.code]) - return 0; - } + /* A unique identifier for the routine. */ + unsigned int pattern_id; - /* Otherwise see if the predicates have any codes in common. */ - else if (d2->type == DT_pred && d2->u.pred.data) - { - bool common = false; - int c; + /* True if the routine takes pnum_clobbers as argument. */ + bool pnum_clobbers_p; - for (c = 0; c < NUM_RTX_CODE; c++) - if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c]) - { - common = true; - break; - } + /* True if the routine takes the enclosing instruction as argument. */ + bool insn_p; - if (!common) - return 0; - } - } - } + /* The types of the other parameters to the routine, if any. */ + auto_vec param_types; +}; - /* Tests vs veclen may be known when strict equality is involved. */ - if (d1->type == DT_veclen && d2->type == DT_veclen_ge) - return d1->u.veclen >= d2->u.veclen; - if (d1->type == DT_veclen_ge && d2->type == DT_veclen) - return d2->u.veclen >= d1->u.veclen; +/* All defined patterns. */ +static vec patterns; - return -1; -} +/* Represents one use of a pattern routine. */ +struct pattern_use +{ + /* The pattern routine to use. */ + pattern_routine *routine; -/* A subroutine of maybe_both_true; examines all the tests for a given node. - Returns > 0 for "definitely both true" and < 0 for "maybe both true". */ + /* The values to pass as parameters. This vector has the same length + as ROUTINE->PARAM_TYPES. */ + auto_vec params; +}; -static int -maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2) +/* Represents a test performed by a decision. */ +struct test { - struct decision_test *t1, *t2; + test (); - /* A match_operand with no predicate can match anything. Recognize - this by the existence of a lone DT_accept_op test. */ - if (d1->type == DT_accept_op || d2->type == DT_accept_op) - return 1; + /* The types of test that can be performed. Most of them take as input + an rtx X. Some also take as input a transition label LABEL; the others + are booleans for which the transition label is always "true". - /* Eliminate pairs of tests while they can exactly match. */ - while (d1 && d2 && d1->type == d2->type) - { - if (maybe_both_true_2 (d1, d2) == 0) - return 0; - d1 = d1->next, d2 = d2->next; - } + The order of the enum isn't important. */ + enum kind_enum { + /* Check GET_CODE (X) == LABEL. */ + CODE, - /* After that, consider all pairs. */ - for (t1 = d1; t1 ; t1 = t1->next) - for (t2 = d2; t2 ; t2 = t2->next) - if (maybe_both_true_2 (t1, t2) == 0) - return 0; - - return -1; -} + /* Check GET_MODE (X) == LABEL. */ + MODE, -/* Return 0 if we can prove that there is no RTL that can match both - D1 and D2. Otherwise, return 1 (it may be that there is an RTL that - can match both or just that we couldn't prove there wasn't such an RTL). + /* Check XINT (X, u.opno) == LABEL. */ + INT_FIELD, - TOPLEVEL is nonzero if we are to only look at the top level and not - recursively descend. */ + /* Check XWINT (X, u.opno) == LABEL. */ + WIDE_INT_FIELD, -static int -maybe_both_true (struct decision *d1, struct decision *d2, - int toplevel) -{ - struct decision *p1, *p2; - int cmp; + /* Check XVECLEN (X, 0) == LABEL. */ + VECLEN, - /* Don't compare strings on the different positions in insn. Doing so - is incorrect and results in false matches from constructs like + /* Check peep2_current_count >= u.min_len. */ + PEEP2_COUNT, - [(set (subreg:HI (match_operand:SI "register_operand" "r") 0) - (subreg:HI (match_operand:SI "register_operand" "r") 0))] - vs - [(set (match_operand:HI "register_operand" "r") - (match_operand:HI "register_operand" "r"))] + /* Check XVECLEN (X, 0) >= u.min_len. */ + VECLEN_GE, - If we are presented with such, we are recursing through the remainder - of a node's success nodes (from the loop at the end of this function). - Skip forward until we come to a position that matches. + /* Check whether X is a cached const_int with value u.integer. */ + SAVED_CONST_INT, - Due to the way positions are constructed, we know that iterating - forward from the lexically lower position will run into the lexically - higher position and not the other way around. This saves a bit - of effort. */ + /* Check u.predicate.data (X, u.predicate.mode). */ + PREDICATE, - cmp = compare_positions (d1->position, d2->position); - if (cmp != 0) - { - gcc_assert (!toplevel); + /* Check rtx_equal_p (X, operands[u.opno]). */ + DUPLICATE, - /* If the d2->position was lexically lower, swap. */ - if (cmp > 0) - p1 = d1, d1 = d2, d2 = p1; + /* Check whether X matches pattern u.pattern. */ + PATTERN, - if (d1->success.first == 0) - return 1; - for (p1 = d1->success.first; p1; p1 = p1->next) - if (maybe_both_true (p1, d2, 0)) - return 1; + /* Check whether pnum_clobbers is nonnull (RECOG only). */ + HAVE_NUM_CLOBBERS, - return 0; - } + /* Check whether general C test u.string holds. In general the condition + needs access to "insn" and the full operand list. */ + C_TEST, - /* Test the current level. */ - cmp = maybe_both_true_1 (d1->tests, d2->tests); - if (cmp >= 0) - return cmp; + /* Execute operands[u.opno] = X. (Always succeeds.) */ + SET_OP, - /* We can't prove that D1 and D2 cannot both be true. If we are only - to check the top level, return 1. Otherwise, see if we can prove - that all choices in both successors are mutually exclusive. If - either does not have any successors, we can't prove they can't both - be true. */ + /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT. + May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */ + ACCEPT + }; - if (toplevel || d1->success.first == 0 || d2->success.first == 0) - return 1; + /* The position of rtx X in the above description, relative to the + incoming instruction "insn". The position is null if the test + doesn't take an X as input. */ + position *pos; - for (p1 = d1->success.first; p1; p1 = p1->next) - for (p2 = d2->success.first; p2; p2 = p2->next) - if (maybe_both_true (p1, p2, 0)) - return 1; + /* Which element of operands[] already contains POS, or -1 if no element + is known to hold POS. */ + int pos_operand; - return 0; -} - -/* A subroutine of nodes_identical. Examine two tests for equivalence. */ - -static int -nodes_identical_1 (struct decision_test *d1, struct decision_test *d2) -{ - switch (d1->type) + /* The type of test and its parameters, as described above. */ + kind_enum kind; + union + { + int opno; + int min_len; + struct { - case DT_num_insns: - return d1->u.num_insns == d2->u.num_insns; - - case DT_mode: - return d1->u.mode == d2->u.mode; - - case DT_code: - return d1->u.code == d2->u.code; - - case DT_pred: - return (d1->u.pred.mode == d2->u.pred.mode - && strcmp (d1->u.pred.name, d2->u.pred.name) == 0); + bool is_param; + int value; + } integer; + struct + { + const struct pred_data *data; + /* True if the mode is taken from a machine_mode parameter + to the routine rather than a constant machine_mode. If true, + MODE is the number of the parameter (for an "i%d" format string), + otherwise it is the mode itself. */ + bool mode_is_param; + unsigned int mode; + } predicate; + pattern_use *pattern; + const char *string; + acceptance_type acceptance; + } u; - case DT_c_test: - return strcmp (d1->u.c_test, d2->u.c_test) == 0; + static test code (position *); + static test mode (position *); + static test int_field (position *, int); + static test wide_int_field (position *, int); + static test veclen (position *); + static test peep2_count (int); + static test veclen_ge (position *, int); + static test predicate (position *, const pred_data *, machine_mode); + static test duplicate (position *, int); + static test pattern (position *, pattern_use *); + static test have_num_clobbers (); + static test c_test (const char *); + static test set_op (position *, int); + static test accept (const acceptance_type &); + + bool terminal_p () const; + bool single_outcome_p () const; + +private: + test (position *, kind_enum); +}; - case DT_veclen: - case DT_veclen_ge: - return d1->u.veclen == d2->u.veclen; +test::test () {} - case DT_dup: - return d1->u.dup == d2->u.dup; +test::test (position *pos_in, kind_enum kind_in) + : pos (pos_in), pos_operand (-1), kind (kind_in) {} - case DT_elt_zero_int: - case DT_elt_one_int: - case DT_elt_zero_wide: - case DT_elt_zero_wide_safe: - return d1->u.intval == d2->u.intval; +test +test::code (position *pos) +{ + return test (pos, test::CODE); +} - case DT_accept_op: - return d1->u.opno == d2->u.opno; +test +test::mode (position *pos) +{ + return test (pos, test::MODE); +} - case DT_accept_insn: - /* Differences will be handled in merge_accept_insn. */ - return 1; +test +test::int_field (position *pos, int opno) +{ + test res (pos, test::INT_FIELD); + res.u.opno = opno; + return res; +} - default: - gcc_unreachable (); - } +test +test::wide_int_field (position *pos, int opno) +{ + test res (pos, test::WIDE_INT_FIELD); + res.u.opno = opno; + return res; } -/* True iff the two nodes are identical (on one level only). Due - to the way these lists are constructed, we shouldn't have to - consider different orderings on the tests. */ +test +test::veclen (position *pos) +{ + return test (pos, test::VECLEN); +} -static int -nodes_identical (struct decision *d1, struct decision *d2) +test +test::peep2_count (int min_len) { - struct decision_test *t1, *t2; + test res (0, test::PEEP2_COUNT); + res.u.min_len = min_len; + return res; +} - for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next) - { - if (t1->type != t2->type) - return 0; - if (! nodes_identical_1 (t1, t2)) - return 0; - } +test +test::veclen_ge (position *pos, int min_len) +{ + test res (pos, test::VECLEN_GE); + res.u.min_len = min_len; + return res; +} - /* For success, they should now both be null. */ - if (t1 != t2) - return 0; +test +test::predicate (position *pos, const struct pred_data *data, + machine_mode mode) +{ + test res (pos, test::PREDICATE); + res.u.predicate.data = data; + res.u.predicate.mode_is_param = false; + res.u.predicate.mode = mode; + return res; +} - /* Check that their subnodes are at the same position, as any one set - of sibling decisions must be at the same position. Allowing this - requires complications to find_afterward and when change_state is - invoked. */ - if (d1->success.first - && d2->success.first - && d1->success.first->position != d2->success.first->position) - return 0; +test +test::duplicate (position *pos, int opno) +{ + test res (pos, test::DUPLICATE); + res.u.opno = opno; + return res; +} - return 1; +test +test::pattern (position *pos, pattern_use *pattern) +{ + test res (pos, test::PATTERN); + res.u.pattern = pattern; + return res; } -/* A subroutine of merge_trees; given two nodes that have been declared - identical, cope with two insn accept states. If they differ in the - number of clobbers, then the conflict was created by make_insn_sequence - and we can drop the with-clobbers version on the floor. If both - nodes have no additional clobbers, we have found an ambiguity in the - source machine description. */ +test +test::have_num_clobbers () +{ + return test (0, test::HAVE_NUM_CLOBBERS); +} -static void -merge_accept_insn (struct decision *oldd, struct decision *addd) +test +test::c_test (const char *string) { - struct decision_test *old, *add; + test res (0, test::C_TEST); + res.u.string = string; + return res; +} - for (old = oldd->tests; old; old = old->next) - if (old->type == DT_accept_insn) - break; - if (old == NULL) - return; +test +test::set_op (position *pos, int opno) +{ + test res (pos, test::SET_OP); + res.u.opno = opno; + return res; +} - for (add = addd->tests; add; add = add->next) - if (add->type == DT_accept_insn) - break; - if (add == NULL) - return; +test +test::accept (const acceptance_type &acceptance) +{ + test res (0, test::ACCEPT); + res.u.acceptance = acceptance; + return res; +} - /* If one node is for a normal insn and the second is for the base - insn with clobbers stripped off, the second node should be ignored. */ +/* Return true if the test represents an unconditionally successful match. */ - if (old->u.insn.num_clobbers_to_add == 0 - && add->u.insn.num_clobbers_to_add > 0) - { - /* Nothing to do here. */ - } - else if (old->u.insn.num_clobbers_to_add > 0 - && add->u.insn.num_clobbers_to_add == 0) - { - /* In this case, replace OLD with ADD. */ - old->u.insn = add->u.insn; - } - else - { - error_with_line (add->u.insn.lineno, "`%s' matches `%s'", - get_insn_name (add->u.insn.code_number), - get_insn_name (old->u.insn.code_number)); - message_with_line (old->u.insn.lineno, "previous definition of `%s'", - get_insn_name (old->u.insn.code_number)); - } +bool +test::terminal_p () const +{ + return kind == test::ACCEPT && u.acceptance.type != PEEPHOLE2; } -/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */ +/* Return true if the test is a boolean that is always true. */ -static void -merge_trees (struct decision_head *oldh, struct decision_head *addh) +bool +test::single_outcome_p () const { - struct decision *next, *add; + return terminal_p () || kind == test::SET_OP; +} - if (addh->first == 0) - return; - if (oldh->first == 0) +bool +operator == (const test &a, const test &b) +{ + if (a.pos != b.pos || a.kind != b.kind) + return false; + switch (a.kind) { - *oldh = *addh; - return; + case test::CODE: + case test::MODE: + case test::VECLEN: + case test::HAVE_NUM_CLOBBERS: + return true; + + case test::PEEP2_COUNT: + case test::VECLEN_GE: + return a.u.min_len == b.u.min_len; + + case test::INT_FIELD: + case test::WIDE_INT_FIELD: + case test::DUPLICATE: + case test::SET_OP: + return a.u.opno == b.u.opno; + + case test::SAVED_CONST_INT: + return (a.u.integer.is_param == b.u.integer.is_param + && a.u.integer.value == b.u.integer.value); + + case test::PREDICATE: + return (a.u.predicate.data == b.u.predicate.data + && a.u.predicate.mode_is_param == b.u.predicate.mode_is_param + && a.u.predicate.mode == b.u.predicate.mode); + + case test::PATTERN: + return (a.u.pattern->routine == b.u.pattern->routine + && a.u.pattern->params == b.u.pattern->params); + + case test::C_TEST: + return strcmp (a.u.string, b.u.string) == 0; + + case test::ACCEPT: + return a.u.acceptance == b.u.acceptance; } + gcc_unreachable (); +} - /* Trying to merge bits at different positions isn't possible. */ - gcc_assert (oldh->first->position == addh->first->position); +bool +operator != (const test &a, const test &b) +{ + return !operator == (a, b); +} - for (add = addh->first; add ; add = next) - { - struct decision *old, *insert_before = NULL; +/* A simple set of transition labels. Most transitions have a singleton + label, so try to make that case as efficient as possible. */ +struct int_set : public auto_vec +{ + typedef uint64_t *iterator; - next = add->next; + int_set (); + int_set (uint64_t); + int_set (const int_set &); - /* The semantics of pattern matching state that the tests are - done in the order given in the MD file so that if an insn - matches two patterns, the first one will be used. However, - in practice, most, if not all, patterns are unambiguous so - that their order is independent. In that case, we can merge - identical tests and group all similar modes and codes together. + int_set &operator = (const int_set &); - Scan starting from the end of OLDH until we reach a point - where we reach the head of the list or where we pass a - pattern that could also be true if NEW is true. If we find - an identical pattern, we can merge them. Also, record the - last node that tests the same code and mode and the last one - that tests just the same mode. + iterator begin (); + iterator end (); +}; - If we have no match, place NEW after the closest match we found. */ +int_set::int_set () {} - for (old = oldh->last; old; old = old->prev) - { - if (nodes_identical (old, add)) - { - merge_accept_insn (old, add); - merge_trees (&old->success, &add->success); - goto merged_nodes; - } +int_set::int_set (uint64_t label) +{ + safe_push (label); +} - if (maybe_both_true (old, add, 0)) - break; +int_set::int_set (const int_set &other) +{ + safe_splice (other); +} - /* Insert the nodes in DT test type order, which is roughly - how expensive/important the test is. Given that the tests - are also ordered within the list, examining the first is - sufficient. */ - if ((int) add->tests->type < (int) old->tests->type) - insert_before = old; - } +int_set & +int_set::operator = (const int_set &other) +{ + truncate (0); + safe_splice (other); + return *this; +} - if (insert_before == NULL) - { - add->next = NULL; - add->prev = oldh->last; - oldh->last->next = add; - oldh->last = add; - } - else - { - if ((add->prev = insert_before->prev) != NULL) - add->prev->next = add; - else - oldh->first = add; - add->next = insert_before; - insert_before->prev = add; - } +int_set::iterator +int_set::begin () +{ + return address (); +} - merged_nodes:; - } +int_set::iterator +int_set::end () +{ + return address () + length (); } - -/* Walk the tree looking for sub-nodes that perform common tests. - Factor out the common test into a new node. This enables us - (depending on the test type) to emit switch statements later. */ -static void -factor_tests (struct decision_head *head) +bool +operator == (const int_set &a, const int_set &b) { - struct decision *first, *next; + if (a.length () != b.length ()) + return false; + for (unsigned int i = 0; i < a.length (); ++i) + if (a[i] != b[i]) + return false; + return true; +} - for (first = head->first; first && first->next; first = next) - { - enum decision_type type; - struct decision *new_dec, *old_last; +bool +operator != (const int_set &a, const int_set &b) +{ + return !operator == (a, b); +} - type = first->tests->type; - next = first->next; +struct decision; - /* Want at least two compatible sequential nodes. */ - if (next->tests->type != type) - continue; +/* Represents a transition between states, dependent on the result of + a test T. */ +struct transition +{ + transition (const int_set &, state *, bool); - /* Don't want all node types, just those we can turn into - switch statements. */ - if (type != DT_mode - && type != DT_code - && type != DT_veclen - && type != DT_elt_zero_int - && type != DT_elt_one_int - && type != DT_elt_zero_wide_safe) - continue; + void set_parent (list_head *); - /* If we'd been performing more than one test, create a new node - below our first test. */ - if (first->tests->next != NULL) - { - new_dec = new_decision (first->position, &first->success); - new_dec->tests = first->tests->next; - first->tests->next = NULL; - } + /* Links to other transitions for T. Always null for boolean tests. */ + transition *prev, *next; - /* Crop the node tree off after our first test. */ - first->next = NULL; - old_last = head->last; - head->last = first; + /* The transition should be taken when T has one of these values. + E.g. for test::CODE this is a set of codes, while for booleans like + test::PREDICATE it is always a singleton "true". The labels are + sorted in ascending order. */ + int_set labels; - /* For each compatible test, adjust to perform only one test in - the top level node, then merge the node back into the tree. */ - do - { - struct decision_head h; + /* The source decision. */ + decision *from; - if (next->tests->next != NULL) - { - new_dec = new_decision (next->position, &next->success); - new_dec->tests = next->tests->next; - next->tests->next = NULL; - } - new_dec = next; - next = next->next; - new_dec->next = NULL; - h.first = h.last = new_dec; + /* The target state. */ + state *to; - merge_trees (head, &h); - } - while (next && next->tests->type == type); + /* True if TO would function correctly even if TEST wasn't performed. + E.g. it isn't necessary to check whether GET_MODE (x1) is SImode + before calling register_operand (x1, SImode), since register_operand + performs its own mode check. However, checking GET_MODE can be a cheap + way of disambiguating SImode and DImode register operands. */ + bool optional; - /* After we run out of compatible tests, graft the remaining nodes - back onto the tree. */ - if (next) - { - next->prev = head->last; - head->last->next = next; - head->last = old_last; - } - } + /* True if LABELS contains parameter numbers rather than constants. + E.g. if this is true for a test::CODE, the label is the number + of an rtx_code parameter rather than an rtx_code itself. + LABELS is always a singleton when this variable is true. */ + bool is_param; +}; - /* Recurse. */ - for (first = head->first; first; first = first->next) - factor_tests (&first->success); -} +/* Represents a test and the action that should be taken on the result. + If a transition exists for the test outcome, the machine switches + to the transition's target state. If no suitable transition exists, + the machine either falls through to the next decision or, if there are no + more decisions to try, fails the match. */ +struct decision : list_head +{ + decision (const test &); -/* After factoring, try to simplify the tests on any one node. - Tests that are useful for switch statements are recognizable - by having only a single test on a node -- we'll be manipulating - nodes with multiple tests: + void set_parent (list_head *s); + bool if_statement_p (uint64_t * = 0) const; - If we have mode tests or code tests that are redundant with - predicates, remove them. */ + /* The state to which this decision belongs. */ + state *s; -static void -simplify_tests (struct decision_head *head) -{ - struct decision *tree; + /* Links to other decisions in the same state. */ + decision *prev, *next; - for (tree = head->first; tree; tree = tree->next) - { - struct decision_test *a, *b; + /* The test to perform. */ + struct test test; +}; - a = tree->tests; - b = a->next; - if (b == NULL) - continue; +/* Represents one machine state. For each state the machine tries a list + of decisions, in order, and acts on the first match. It fails without + further backtracking if no decisions match. */ +struct state : list_head +{ + void set_parent (list_head *) {} +}; - /* Find a predicate node. */ - while (b && b->type != DT_pred) - b = b->next; - if (b) - { - /* Due to how these tests are constructed, we don't even need - to check that the mode and code are compatible -- they were - generated from the predicate in the first place. */ - while (a->type == DT_mode || a->type == DT_code) - a = a->next; - tree->tests = a; - } - } +transition::transition (const int_set &labels_in, state *to_in, + bool optional_in) + : prev (0), next (0), labels (labels_in), from (0), to (to_in), + optional (optional_in), is_param (false) {} + +/* Set the source decision of the transition. */ - /* Recurse. */ - for (tree = head->first; tree; tree = tree->next) - simplify_tests (&tree->success); +void +transition::set_parent (list_head *from_in) +{ + from = static_cast (from_in); } -/* Count the number of subnodes of HEAD. If the number is high enough, - make the first node in HEAD start a separate subroutine in the C code - that is generated. */ +decision::decision (const struct test &test_in) + : prev (0), next (0), test (test_in) {} -static int -break_out_subroutines (struct decision_head *head, int initial) +/* Set the state to which this decision belongs. */ + +void +decision::set_parent (list_head *s_in) { - int size = 0; - struct decision *sub; + s = static_cast (s_in); +} - for (sub = head->first; sub; sub = sub->next) - size += 1 + break_out_subroutines (&sub->success, 0); +/* Return true if the decision has a single transition with a single label. + If so, return the label in *LABEL if nonnull. */ - if (size > SUBROUTINE_THRESHOLD && ! initial) +inline bool +decision::if_statement_p (uint64_t *label) const +{ + if (singleton () && first->labels.length () == 1) { - head->first->subroutine_number = ++next_subroutine_number; - size = 1; + if (label) + *label = first->labels[0]; + return true; } - return size; + return false; } -/* For each node p, find the next alternative that might be true - when p is true. */ +/* Add to FROM a decision that performs TEST and has a single transition + TRANS. */ static void -find_afterward (struct decision_head *head, struct decision *real_afterward) +add_decision (state *from, const test &test, transition *trans) { - struct decision *p, *q, *afterward; - - /* We can't propagate alternatives across subroutine boundaries. - This is not incorrect, merely a minor optimization loss. */ - - p = head->first; - afterward = (p->subroutine_number > 0 ? NULL : real_afterward); - - for ( ; p ; p = p->next) - { - /* Find the next node that might be true if this one fails. */ - for (q = p->next; q ; q = q->next) - if (maybe_both_true (p, q, 1)) - break; - - /* If we reached the end of the list without finding one, - use the incoming afterward position. */ - if (!q) - q = afterward; - p->afterward = q; - if (q) - q->need_label = 1; - } - - /* Recurse. */ - for (p = head->first; p ; p = p->next) - if (p->success.first) - find_afterward (&p->success, p->afterward); - - /* When we are generating a subroutine, record the real afterward - position in the first node where write_tree can find it, and we - can do the right thing at the subroutine call site. */ - p = head->first; - if (p->subroutine_number > 0) - p->afterward = real_afterward; + decision *d = new decision (test); + from->push_back (d); + d->push_back (trans); } - -/* Assuming that the state of argument is denoted by OLDPOS, take whatever - actions are necessary to move to NEWPOS. If we fail to move to the - new state, branch to node AFTERWARD if nonzero, otherwise return. - Failure to move to the new state can only occur if we are trying to - match multiple insns and we try to step past the end of the stream. */ +/* Add a transition from FROM to a new, empty state that is taken + when TEST == LABELS. OPTIONAL says whether the new transition + should be optional. Return the new state. */ -static void -change_state (struct position *oldpos, struct position *newpos, - const char *indent) +static state * +add_decision (state *from, const test &test, int_set labels, bool optional) { - while (oldpos->depth > newpos->depth) - oldpos = oldpos->base; - - if (oldpos != newpos) - switch (newpos->type) - { - case POS_PEEP2_INSN: - printf ("%stem = peep2_next_insn (%d);\n", indent, newpos->arg); - printf ("%sx%d = PATTERN (tem);\n", indent, newpos->depth); - break; + state *to = new state; + add_decision (from, test, new transition (labels, to, optional)); + return to; +} - case POS_XEXP: - change_state (oldpos, newpos->base, indent); - printf ("%sx%d = XEXP (x%d, %d);\n", - indent, newpos->depth, newpos->depth - 1, newpos->arg); - break; +/* Insert a decision before decisions R to make them dependent on + TEST == LABELS. OPTIONAL says whether the new transition should be + optional. */ - case POS_XVECEXP0: - change_state (oldpos, newpos->base, indent); - printf ("%sx%d = XVECEXP (x%d, 0, %d);\n", - indent, newpos->depth, newpos->depth - 1, newpos->arg); - break; - } +static decision * +insert_decision_before (state::range r, const test &test, + const int_set &labels, bool optional) +{ + decision *newd = new decision (test); + state *news = new state; + newd->push_back (new transition (labels, news, optional)); + r.start->s->replace (r, newd); + news->push_back (r); + return newd; } - -/* Print the enumerator constant for CODE -- the upcase version of - the name. */ + +/* Remove any optional transitions from S that turned out not to be useful. */ static void -print_code (enum rtx_code code) +collapse_optional_decisions (state *s) { - const char *p; - for (p = GET_RTX_NAME (code); *p; p++) - putchar (TOUPPER (*p)); + decision *d = s->first; + while (d) + { + decision *next = d->next; + for (transition *trans = d->first; trans; trans = trans->next) + collapse_optional_decisions (trans->to); + /* A decision with a single optional transition doesn't help + partition the potential matches and so is unlikely to be + worthwhile. In particular, if the decision that performs the + test is the last in the state, the best it could do is reject + an invalid pattern slightly earlier. If instead the decision + is not the last in the state, the condition it tests could hold + even for the later decisions in the state. The best it can do + is save work in some cases where only the later decisions can + succeed. + + In both cases the optional transition would add extra work to + successful matches when the tested condition holds. */ + if (transition *trans = d->singleton ()) + if (trans->optional) + s->replace (d, trans->to->release ()); + d = next; + } } -/* Emit code to cross an afterward link -- change state and branch. */ +/* Try to squash several separate tests into simpler ones. */ static void -write_afterward (struct decision *start, struct decision *afterward, - const char *indent) +simplify_tests (state *s) { - if (!afterward || start->subroutine_number > 0) - printf ("%sgoto ret0;\n", indent); - else + for (decision *d = s->first; d; d = d->next) { - change_state (start->position, afterward->position, indent); - printf ("%sgoto L%d;\n", indent, afterward->number); + uint64_t label; + /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N + into checks for const_int_rtx[N'], if N is suitably small. */ + if (d->test.kind == test::CODE + && d->if_statement_p (&label) + && label == CONST_INT) + if (decision *second = d->first->to->singleton ()) + if (second->test.kind == test::WIDE_INT_FIELD + && second->test.u.opno == 0 + && second->if_statement_p (&label) + && IN_RANGE (int64_t (label), + -MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT)) + { + d->test.kind = test::SAVED_CONST_INT; + d->test.u.integer.is_param = false; + d->test.u.integer.value = label; + d->replace (d->first, second->release ()); + d->first->labels[0] = true; + } + /* If we have a CODE test followed by a PREDICATE test, rely on + the predicate to test the code. + + This case exists for match_operators. We initially treat the + CODE test for a match_operator as non-optional so that we can + safely move down to its operands. It may turn out that all + paths that reach that code test require the same predicate + to be true. cse_tests will then put the predicate test in + series with the code test. */ + if (d->test.kind == test::CODE) + if (transition *trans = d->singleton ()) + { + state *s = trans->to; + while (decision *d2 = s->singleton ()) + { + if (d->test.pos != d2->test.pos) + break; + transition *trans2 = d2->singleton (); + if (!trans2) + break; + if (d2->test.kind == test::PREDICATE) + { + d->test = d2->test; + trans->labels = int_set (true); + s->replace (d2, trans2->to->release ()); + break; + } + s = trans2->to; + } + } + for (transition *trans = d->first; trans; trans = trans->next) + simplify_tests (trans->to); } } -/* Emit a HOST_WIDE_INT as an integer constant expression. We need to take - special care to avoid "decimal constant is so large that it is unsigned" - warnings in the resulting code. */ +/* Return true if all successful returns passing through D require the + condition tested by COMMON to be true. -static void -print_host_wide_int (HOST_WIDE_INT val) + When returning true, add all transitions like COMMON in D to WHERE. + WHERE may contain a partial result on failure. */ + +static bool +common_test_p (decision *d, transition *common, vec *where) { - HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1); - if (val == min) - printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1); - else - printf (HOST_WIDE_INT_PRINT_DEC_C, val); + if (d->test.kind == test::ACCEPT) + /* We found a successful return that didn't require COMMON. */ + return false; + if (d->test == common->from->test) + { + transition *trans = d->singleton (); + if (!trans + || trans->optional != common->optional + || trans->labels != common->labels) + return false; + where->safe_push (trans); + return true; + } + for (transition *trans = d->first; trans; trans = trans->next) + for (decision *subd = trans->to->first; subd; subd = subd->next) + if (!common_test_p (subd, common, where)) + return false; + return true; } -/* Emit a switch statement, if possible, for an initial sequence of - nodes at START. Return the first node yet untested. */ +/* Indicates that we have tested GET_CODE (X) for a particular rtx X. */ +const unsigned char TESTED_CODE = 1; -static struct decision * -write_switch (struct decision *start, int depth) -{ - struct decision *p = start; - enum decision_type type = p->tests->type; - struct decision *needs_label = NULL; +/* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */ +const unsigned char TESTED_VECLEN = 2; - /* If we have two or more nodes in sequence that test the same one - thing, we may be able to use a switch statement. */ +/* Represents a set of conditions that are known to hold. */ +struct known_conditions +{ + /* A mask of TESTED_ values for each position, indexed by the position's + id field. */ + auto_vec position_tests; - if (!p->next - || p->tests->next - || p->next->tests->type != type - || p->next->tests->next - || nodes_identical_1 (p->tests, p->next->tests)) - return p; + /* Index N says whether operands[N] has been set. */ + auto_vec set_operands; - /* DT_code is special in that we can do interesting things with - known predicates at the same time. */ - if (type == DT_code) - { - char codemap[NUM_RTX_CODE]; - struct decision *ret; - RTX_CODE code; + /* A guranteed lower bound on the value of peep2_current_count. */ + int peep2_count; +}; - memset (codemap, 0, sizeof (codemap)); +/* Return true if TEST can safely be performed at D, where + the conditions in KC hold. TEST is known to occur along the + first path from D (i.e. always following the first transition + of the first decision). Any intervening tests can be used as + negative proof that hoisting isn't safe, but only KC can be used + as positive proof. */ - printf (" switch (GET_CODE (x%d))\n {\n", depth); - code = p->tests->u.code; - do +static bool +safe_to_hoist_p (decision *d, const test &test, known_conditions *kc) +{ + switch (test.kind) + { + case test::C_TEST: + /* In general, C tests require everything else to have been + verified and all operands to have been set up. */ + return false; + + case test::ACCEPT: + /* Don't accept something before all conditions have been tested. */ + return false; + + case test::PREDICATE: + /* Don't move a predicate over a test for VECLEN_GE, since the + predicate used in a match_parallel can legitimately expect the + length to be checked first. */ + for (decision *subd = d; + subd->test != test; + subd = subd->first->to->first) + if (subd->test.pos == test.pos + && subd->test.kind == test::VECLEN_GE) + return false; + goto any_rtx; + + case test::DUPLICATE: + /* Don't test for a match_dup until the associated operand has + been set. */ + if (!kc->set_operands[test.u.opno]) + return false; + goto any_rtx; + + case test::CODE: + case test::MODE: + case test::SAVED_CONST_INT: + case test::SET_OP: + any_rtx: + /* Check whether it is safe to access the rtx under test. */ + switch (test.pos->type) { - if (p != start && p->need_label && needs_label == NULL) - needs_label = p; + case POS_PEEP2_INSN: + return test.pos->arg < kc->peep2_count; - printf (" case "); - print_code (code); - printf (":\n goto L%d;\n", p->success.first->number); - p->success.first->need_label = 1; + case POS_XEXP: + return kc->position_tests[test.pos->base->id] & TESTED_CODE; - codemap[code] = 1; - p = p->next; + case POS_XVECEXP0: + return kc->position_tests[test.pos->base->id] & TESTED_VECLEN; } - while (p - && ! p->tests->next - && p->tests->type == DT_code - && ! codemap[code = p->tests->u.code]); - - /* If P is testing a predicate that we know about and we haven't - seen any of the codes that are valid for the predicate, we can - write a series of "case" statement, one for each possible code. - Since we are already in a switch, these redundant tests are very - cheap and will reduce the number of predicates called. */ - - /* Note that while we write out cases for these predicates here, - we don't actually write the test here, as it gets kinda messy. - It is trivial to leave this to later by telling our caller that - we only processed the CODE tests. */ - if (needs_label != NULL) - ret = needs_label; - else - ret = p; - - while (p && p->tests->type == DT_pred && p->tests->u.pred.data) - { - const struct pred_data *data = p->tests->u.pred.data; - int c; - - for (c = 0; c < NUM_RTX_CODE; c++) - if (codemap[c] && data->codes[c]) - goto pred_done; + gcc_unreachable (); - for (c = 0; c < NUM_RTX_CODE; c++) - if (data->codes[c]) - { - fputs (" case ", stdout); - print_code ((enum rtx_code) c); - fputs (":\n", stdout); - codemap[c] = 1; - } + case test::INT_FIELD: + case test::WIDE_INT_FIELD: + case test::VECLEN: + case test::VECLEN_GE: + /* These tests access a specific part of an rtx, so are only safe + once we know what the rtx is. */ + return kc->position_tests[test.pos->id] & TESTED_CODE; - printf (" goto L%d;\n", p->number); - p->need_label = 1; - p = p->next; - } + case test::PEEP2_COUNT: + case test::HAVE_NUM_CLOBBERS: + /* These tests can be performed anywhere. */ + return true; - pred_done: - /* Make the default case skip the predicates we managed to match. */ + case test::PATTERN: + gcc_unreachable (); + } + gcc_unreachable (); +} - printf (" default:\n"); - if (p != ret) +/* Look for a transition that is taken by all successful returns from a range + of decisions starting at OUTER and that would be better performed by + OUTER's state instead. On success, store all instances of that transition + in WHERE and return the last decision in the range. The range could + just be OUTER, or it could include later decisions as well. + + WITH_POSITION_P is true if only tests with position POS should be tried, + false if any test should be tried. WORTHWHILE_SINGLE_P is true if the + result is useful even when the range contains just a single decision + with a single transition. KC are the conditions that are known to + hold at OUTER. */ + +static decision * +find_common_test (decision *outer, bool with_position_p, + position *pos, bool worthwhile_single_p, + known_conditions *kc, vec *where) +{ + /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains + just a single decision is useful, regardless of the number of + transitions it has. */ + if (!outer->singleton ()) + worthwhile_single_p = true; + /* Quick exit if we don't have enough decisions to form a worthwhile + range. */ + if (!worthwhile_single_p && !outer->next) + return 0; + /* Follow the first chain down, as one example of a path that needs + to contain the common test. */ + for (decision *d = outer; d; d = d->first->to->first) + { + transition *trans = d->singleton (); + if (trans + && (!with_position_p || d->test.pos == pos) + && safe_to_hoist_p (outer, d->test, kc)) { - if (p) + if (common_test_p (outer, trans, where)) { - printf (" goto L%d;\n", p->number); - p->need_label = 1; + if (!outer->next) + /* We checked above whether the move is worthwhile. */ + return outer; + /* See how many decisions in OUTER's chain could reuse + the same test. */ + decision *outer_end = outer; + do + { + unsigned int length = where->length (); + if (!common_test_p (outer_end->next, trans, where)) + { + where->truncate (length); + break; + } + outer_end = outer_end->next; + } + while (outer_end->next); + /* It is worth moving TRANS if it can be shared by more than + one decision. */ + if (outer_end != outer || worthwhile_single_p) + return outer_end; } - else - write_afterward (start, start->afterward, " "); + where->truncate (0); } - else - printf (" break;\n"); - printf (" }\n"); - - return ret; } - else if (type == DT_mode - || type == DT_veclen - || type == DT_elt_zero_int - || type == DT_elt_one_int - || type == DT_elt_zero_wide_safe) - { - const char *indent = ""; + return 0; +} + +/* Try to promote common subtests in S to a single, shared decision. + Also try to bunch tests for the same position together. POS is the + position of the rtx tested before reaching S. KC are the conditions + that are known to hold on entry to S. */ - /* We cast switch parameter to integer, so we must ensure that the value - fits. */ - if (type == DT_elt_zero_wide_safe) +static void +cse_tests (position *pos, state *s, known_conditions *kc) +{ + for (decision *d = s->first; d; d = d->next) + { + auto_vec where; + if (d->test.pos) { - indent = " "; - printf (" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", - depth, depth); + /* Try to find conditions that don't depend on a particular rtx, + such as pnum_clobbers != NULL or peep2_current_count >= X. + It's usually better to check these conditions as soon as + possible, so the change is worthwhile even if there is + only one copy of the test. */ + decision *endd = find_common_test (d, true, 0, true, kc, &where); + if (!endd && d->test.pos != pos) + /* Try to find other conditions related to position POS + before moving to the new position. Again, this is + worthwhile even if there is only one copy of the test, + since it means that fewer position variables are live + at a given time. */ + endd = find_common_test (d, true, pos, true, kc, &where); + if (!endd) + /* Try to find any condition that is used more than once. */ + endd = find_common_test (d, false, 0, false, kc, &where); + if (endd) + { + transition *common = where[0]; + /* Replace [D, ENDD] with a test like COMMON. We'll recurse + on the common test and see the original D again next time. */ + d = insert_decision_before (state::range (d, endd), + common->from->test, + common->labels, + common->optional); + /* Remove the old tests. */ + while (!where.is_empty ()) + { + transition *trans = where.pop (); + trans->from->s->replace (trans->from, trans->to->release ()); + } + } } - printf ("%s switch (", indent); - switch (type) + + /* Make sure that safe_to_hoist_p isn't being overly conservative. + It should realize that D's test is safe in the current + environment. */ + gcc_assert (d->test.kind == test::C_TEST + || d->test.kind == test::ACCEPT + || safe_to_hoist_p (d, d->test, kc)); + + /* D won't be changed any further by the current optimization. + Recurse with the state temporarily updated to include D. */ + int prev = 0; + switch (d->test.kind) { - case DT_mode: - printf ("GET_MODE (x%d)", depth); + case test::CODE: + prev = kc->position_tests[d->test.pos->id]; + kc->position_tests[d->test.pos->id] |= TESTED_CODE; break; - case DT_veclen: - printf ("XVECLEN (x%d, 0)", depth); - break; - case DT_elt_zero_int: - printf ("XINT (x%d, 0)", depth); + + case test::VECLEN: + case test::VECLEN_GE: + prev = kc->position_tests[d->test.pos->id]; + kc->position_tests[d->test.pos->id] |= TESTED_VECLEN; break; - case DT_elt_one_int: - printf ("XINT (x%d, 1)", depth); + + case test::SET_OP: + prev = kc->set_operands[d->test.u.opno]; + gcc_assert (!prev); + kc->set_operands[d->test.u.opno] = true; break; - case DT_elt_zero_wide_safe: - /* Convert result of XWINT to int for portability since some C - compilers won't do it and some will. */ - printf ("(int) XWINT (x%d, 0)", depth); + + case test::PEEP2_COUNT: + prev = kc->peep2_count; + kc->peep2_count = MAX (prev, d->test.u.min_len); break; + default: - gcc_unreachable (); + break; } - printf (")\n%s {\n", indent); - - do + for (transition *trans = d->first; trans; trans = trans->next) + cse_tests (d->test.pos ? d->test.pos : pos, trans->to, kc); + switch (d->test.kind) { - /* Merge trees will not unify identical nodes if their - sub-nodes are at different levels. Thus we must check - for duplicate cases. */ - struct decision *q; - for (q = start; q != p; q = q->next) - if (nodes_identical_1 (p->tests, q->tests)) - goto case_done; - - if (p != start && p->need_label && needs_label == NULL) - needs_label = p; - - printf ("%s case ", indent); - switch (type) - { - case DT_mode: - printf ("%smode", GET_MODE_NAME (p->tests->u.mode)); - break; - case DT_veclen: - printf ("%d", p->tests->u.veclen); - break; - case DT_elt_zero_int: - case DT_elt_one_int: - case DT_elt_zero_wide: - case DT_elt_zero_wide_safe: - print_host_wide_int (p->tests->u.intval); - break; - default: - gcc_unreachable (); - } - printf (":\n%s goto L%d;\n", indent, p->success.first->number); - p->success.first->need_label = 1; + case test::CODE: + case test::VECLEN: + case test::VECLEN_GE: + kc->position_tests[d->test.pos->id] = prev; + break; - p = p->next; - } - while (p && p->tests->type == type && !p->tests->next); + case test::SET_OP: + kc->set_operands[d->test.u.opno] = prev; + break; - case_done: - printf ("%s default:\n%s break;\n%s }\n", - indent, indent, indent); + case test::PEEP2_COUNT: + kc->peep2_count = prev; + break; - return needs_label != NULL ? needs_label : p; + default: + break; + } } - else +} + +/* Return the type of value that can be used to parameterize test KIND, + or parameter::UNSET if none. */ + +parameter::type_enum +transition_parameter_type (test::kind_enum kind) +{ + switch (kind) { - /* None of the other tests are amenable. */ - return p; + case test::CODE: + return parameter::CODE; + + case test::MODE: + return parameter::MODE; + + case test::INT_FIELD: + case test::VECLEN: + case test::PATTERN: + return parameter::INT; + + case test::WIDE_INT_FIELD: + return parameter::WIDE_INT; + + case test::PEEP2_COUNT: + case test::VECLEN_GE: + case test::SAVED_CONST_INT: + case test::PREDICATE: + case test::DUPLICATE: + case test::HAVE_NUM_CLOBBERS: + case test::C_TEST: + case test::SET_OP: + case test::ACCEPT: + return parameter::UNSET; } + gcc_unreachable (); } -/* Emit code for one test. */ +/* Initialize the pos_operand fields of each state reachable from S. + If OPERAND_POS[ID] >= 0, the position with id ID is stored in + operands[OPERAND_POS[ID]] on entry to S. */ static void -write_cond (struct decision_test *p, int depth, - enum routine_type subroutine_type) +find_operand_positions (state *s, vec &operand_pos) { - switch (p->type) + for (decision *d = s->first; d; d = d->next) { - case DT_num_insns: - printf ("peep2_current_count >= %d", p->u.num_insns); - break; - - case DT_mode: - printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode)); - break; - - case DT_code: - printf ("GET_CODE (x%d) == ", depth); - print_code (p->u.code); - break; + int this_operand = (d->test.pos ? operand_pos[d->test.pos->id] : -1); + if (this_operand >= 0) + d->test.pos_operand = this_operand; + if (d->test.kind == test::SET_OP) + operand_pos[d->test.pos->id] = d->test.u.opno; + for (transition *trans = d->first; trans; trans = trans->next) + find_operand_positions (trans->to, operand_pos); + if (d->test.kind == test::SET_OP) + operand_pos[d->test.pos->id] = this_operand; + } +} - case DT_veclen: - printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen); - break; +/* Statistics about a matching routine. */ +struct stats +{ + stats (); + + /* The total number of decisions in the routine, excluding trivial + ones that never fail. */ + unsigned int num_decisions; + + /* The number of non-trivial decisions on the longest path through + the routine, and the return value that contributes most to that + long path. */ + unsigned int longest_path; + int longest_path_code; + + /* The maximum number of times that a single call to the routine + can backtrack, and the value returned at the end of that path. + "Backtracking" here means failing one decision in state and + going onto to the next. */ + unsigned int longest_backtrack; + int longest_backtrack_code; +}; - case DT_elt_zero_int: - printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval); - break; +stats::stats () + : num_decisions (0), longest_path (0), longest_path_code (-1), + longest_backtrack (0), longest_backtrack_code (-1) {} - case DT_elt_one_int: - printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval); - break; +/* Return statistics about S. */ - case DT_elt_zero_wide: - case DT_elt_zero_wide_safe: - printf ("XWINT (x%d, 0) == ", depth); - print_host_wide_int (p->u.intval); - break; +static stats +get_stats (state *s) +{ + stats for_s; + unsigned int longest_path = 0; + for (decision *d = s->first; d; d = d->next) + { + /* Work out the statistics for D. */ + stats for_d; + for (transition *trans = d->first; trans; trans = trans->next) + { + stats for_trans = get_stats (trans->to); + for_d.num_decisions += for_trans.num_decisions; + /* Each transition is mutually-exclusive, so just pick the + longest of the individual paths. */ + if (for_d.longest_path <= for_trans.longest_path) + { + for_d.longest_path = for_trans.longest_path; + for_d.longest_path_code = for_trans.longest_path_code; + } + /* Likewise for backtracking. */ + if (for_d.longest_backtrack <= for_trans.longest_backtrack) + { + for_d.longest_backtrack = for_trans.longest_backtrack; + for_d.longest_backtrack_code = for_trans.longest_backtrack_code; + } + } - case DT_const_int: - printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]", - depth, (int) p->u.intval); - break; + /* Account for D's test in its statistics. */ + if (!d->test.single_outcome_p ()) + { + for_d.num_decisions += 1; + for_d.longest_path += 1; + } + if (d->test.kind == test::ACCEPT) + { + for_d.longest_path_code = d->test.u.acceptance.u.full.code; + for_d.longest_backtrack_code = d->test.u.acceptance.u.full.code; + } - case DT_veclen_ge: - printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen); - break; + /* Keep a running count of the number of backtracks. */ + if (d->prev) + for_s.longest_backtrack += 1; - case DT_dup: - printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup); - break; + /* Accumulate D's statistics into S's. */ + for_s.num_decisions += for_d.num_decisions; + for_s.longest_path += for_d.longest_path; + for_s.longest_backtrack += for_d.longest_backtrack; - case DT_pred: - printf ("%s (x%d, %smode)", p->u.pred.name, depth, - GET_MODE_NAME (p->u.pred.mode)); - break; + /* Use the code from the decision with the longest individual path, + since that's more likely to be useful if trying to make the + path shorter. In the event of a tie, pick the later decision, + since that's closer to the end of the path. */ + if (longest_path <= for_d.longest_path) + { + longest_path = for_d.longest_path; + for_s.longest_path_code = for_d.longest_path_code; + } - case DT_c_test: - print_c_condition (p->u.c_test); - break; + /* Later decisions in a state are necessarily in a longer backtrack + than earlier decisions. */ + for_s.longest_backtrack_code = for_d.longest_backtrack_code; + } + return for_s; +} - case DT_accept_insn: - gcc_assert (subroutine_type == RECOG); - gcc_assert (p->u.insn.num_clobbers_to_add); - printf ("pnum_clobbers != NULL"); - break; +/* Optimize ROOT. Use TYPE to describe ROOT in status messages. */ - default: - gcc_unreachable (); +static void +optimize_subroutine_group (const char *type, state *root) +{ + /* Remove optional transitions that turned out not to be worthwhile. */ + if (collapse_optional_decisions_p) + collapse_optional_decisions (root); + + /* Try to remove duplicated tests and to rearrange tests into a more + logical order. */ + if (cse_tests_p) + { + known_conditions kc; + kc.position_tests.safe_grow_cleared (num_positions); + kc.set_operands.safe_grow_cleared (num_operands); + kc.peep2_count = 1; + cse_tests (&root_pos, root, &kc); + } + + /* Try to simplify two or more tests into one. */ + if (simplify_tests_p) + simplify_tests (root); + + /* Try to use operands[] instead of xN variables. */ + if (use_operand_variables_p) + { + auto_vec operand_pos (num_positions); + for (unsigned int i = 0; i < num_positions; ++i) + operand_pos.quick_push (-1); + find_operand_positions (root, operand_pos); + } + + /* Print a summary of the new state. */ + stats st = get_stats (root); + fprintf (stderr, "Statistics for %s:\n", type); + fprintf (stderr, " Number of decisions: %6d\n", st.num_decisions); + fprintf (stderr, " longest path: %6d (code: %6d)\n", + st.longest_path, st.longest_path_code); + fprintf (stderr, " longest backtrack: %6d (code: %6d)\n", + st.longest_backtrack, st.longest_backtrack_code); +} + +struct merge_pattern_info; + +/* Represents a transition from one pattern to another. */ +struct merge_pattern_transition +{ + merge_pattern_transition (merge_pattern_info *); + + /* The target pattern. */ + merge_pattern_info *to; + + /* The parameters that the source pattern passes to the target pattern. + "parameter (TYPE, true, I)" represents parameter I of the source + pattern. */ + auto_vec params; +}; + +merge_pattern_transition::merge_pattern_transition (merge_pattern_info *to_in) + : to (to_in) +{ +} + +/* Represents a pattern that can might match several states. The pattern + may replace parts of the test with a parameter value. It may also + replace transition labels with parameters. */ +struct merge_pattern_info +{ + merge_pattern_info (unsigned int); + + /* If PARAM_TEST_P, the state's singleton test should be generalized + to use the runtime value of PARAMS[PARAM_TEST]. */ + unsigned int param_test : 8; + + /* If PARAM_TRANSITION_P, the state's single transition label should + be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */ + unsigned int param_transition : 8; + + /* True if we have decided to generalize the root decision's test, + as per PARAM_TEST. */ + unsigned int param_test_p : 1; + + /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */ + unsigned int param_transition_p : 1; + + /* True if the contents of the structure are completely filled in. */ + unsigned int complete_p : 1; + + /* The number of pseudo-statements in the pattern. Used to decide + whether it's big enough to break out into a subroutine. */ + unsigned int num_statements; + + /* The number of states that use this pattern. */ + unsigned int num_users; + + /* The number of distinct success values that the pattern returns. */ + unsigned int num_results; + + /* This array has one element for each runtime parameter to the pattern. + PARAMS[I] gives the default value of parameter I, which is always + constant. + + These default parameters are used in cases where we match the + pattern against some state S1, then add more parameters while + matching against some state S2. S1 is then left passing fewer + parameters than S2. The array gives us enough informatino to + construct a full parameter list for S1 (see update_parameters). + + If we decide to create a subroutine for this pattern, + PARAMS[I].type determines the C type of parameter I. */ + auto_vec params; + + /* All states that match this pattern must have the same number of + transitions. TRANSITIONS[I] describes the subpattern for transition + number I; it is null if transition I represents a successful return + from the pattern. */ + auto_vec transitions; + + /* The routine associated with the pattern, or null if we haven't generated + one yet. */ + pattern_routine *routine; +}; + +merge_pattern_info::merge_pattern_info (unsigned int num_transitions) + : param_test (0), + param_transition (0), + param_test_p (false), + param_transition_p (false), + complete_p (false), + num_statements (0), + num_users (0), + num_results (0), + routine (0) +{ + transitions.safe_grow_cleared (num_transitions); +} + +/* Describes one way of matching a particular state to a particular + pattern. */ +struct merge_state_result +{ + merge_state_result (merge_pattern_info *, position *, merge_state_result *); + + /* A pattern that matches the state. */ + merge_pattern_info *pattern; + + /* If we decide to use this match and create a subroutine for PATTERN, + the state should pass the rtx at position ROOT to the pattern's + rtx parameter. A null root means that the pattern doesn't need + an rtx parameter; all the rtxes it matches come from elsewhere. */ + position *root; + + /* The parameters that should be passed to PATTERN for this state. + If the array is shorter than PATTERN->params, the missing entries + should be taken from the corresponding element of PATTERN->params. */ + auto_vec params; + + /* An earlier match for the same state, or null if none. Patterns + matched by earlier entries are smaller than PATTERN. */ + merge_state_result *prev; +}; + +merge_state_result::merge_state_result (merge_pattern_info *pattern_in, + position *root_in, + merge_state_result *prev_in) + : pattern (pattern_in), root (root_in), prev (prev_in) +{} + +/* Information about a state, used while trying to match it against + a pattern. */ +struct merge_state_info +{ + merge_state_info (state *); + + /* The state itself. */ + state *s; + + /* Index I gives information about the target of transition I. */ + merge_state_info *to_states; + + /* The number of transitions in S. */ + unsigned int num_transitions; + + /* True if the state has been deleted in favor of a call to a + pattern routine. */ + bool merged_p; + + /* The previous state that might be a merge candidate for S, or null + if no previous states could be merged with S. */ + merge_state_info *prev_same_test; + + /* A list of pattern matches for this state. */ + merge_state_result *res; +}; + +merge_state_info::merge_state_info (state *s_in) + : s (s_in), + to_states (0), + num_transitions (0), + merged_p (false), + prev_same_test (0), + res (0) {} + +/* True if PAT would be useful as a subroutine. */ + +static bool +useful_pattern_p (merge_pattern_info *pat) +{ + return pat->num_statements >= MIN_COMBINE_COST; +} + +/* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined + into PAT1's C routine. */ + +static bool +same_pattern_p (merge_pattern_info *pat1, merge_pattern_info *pat2) +{ + return pat1->num_users == pat2->num_users || !useful_pattern_p (pat2); +} + +/* PAT was previously matched against SINFO based on tentative matches + for the target states of SINFO's state. Return true if the match + still holds; that is, if the target states of SINFO's state still + match the corresponding transitions of PAT. */ + +static bool +valid_result_p (merge_pattern_info *pat, merge_state_info *sinfo) +{ + for (unsigned int j = 0; j < sinfo->num_transitions; ++j) + if (merge_pattern_transition *ptrans = pat->transitions[j]) + { + merge_state_result *to_res = sinfo->to_states[j].res; + if (!to_res || to_res->pattern != ptrans->to) + return false; + } + return true; +} + +/* Remove any matches that are no longer valid from the head of SINFO's + list of matches. */ + +static void +prune_invalid_results (merge_state_info *sinfo) +{ + while (sinfo->res && !valid_result_p (sinfo->res->pattern, sinfo)) + { + sinfo->res = sinfo->res->prev; + gcc_assert (sinfo->res); } } -/* Emit code for one action. The previous tests have succeeded; - TEST is the last of the chain. In the normal case we simply - perform a state change. For the `accept' tests we must do more work. */ +/* Return true if PAT represents the biggest posssible match for SINFO; + that is, if the next action of SINFO's state on return from PAT will + be something that cannot be merged with any other state. */ + +static bool +complete_result_p (merge_pattern_info *pat, merge_state_info *sinfo) +{ + for (unsigned int j = 0; j < sinfo->num_transitions; ++j) + if (sinfo->to_states[j].res && !pat->transitions[j]) + return false; + return true; +} + +/* Update TO for any parameters that have been added to FROM since TO + was last set. The extra parameters in FROM will be constants or + instructions to duplicate earlier parameters. */ static void -write_action (struct decision *p, struct decision_test *test, - int depth, int uncond, struct decision *success, - enum routine_type subroutine_type) +update_parameters (vec &to, const vec &from) { - const char *indent; - int want_close = 0; + for (unsigned int i = to.length (); i < from.length (); ++i) + to.quick_push (from[i]); +} - if (uncond) - indent = " "; - else if (test->type == DT_accept_op || test->type == DT_accept_insn) +/* Return true if A and B can be tested by a single test. If the test + can be parameterised, store the parameter value for A in *PARAMA and + the parameter value for B in *PARAMB, otherwise leave PARAMA and + PARAMB alone. */ + +static bool +compatible_tests_p (const test &a, const test &b, + parameter *parama, parameter *paramb) +{ + if (a.kind != b.kind) + return false; + switch (a.kind) { - fputs (" {\n", stdout); - indent = " "; - want_close = 1; + case test::PREDICATE: + if (a.u.predicate.data != b.u.predicate.data) + return false; + *parama = parameter (parameter::MODE, false, a.u.predicate.mode); + *paramb = parameter (parameter::MODE, false, b.u.predicate.mode); + return true; + + case test::SAVED_CONST_INT: + *parama = parameter (parameter::INT, false, a.u.integer.value); + *paramb = parameter (parameter::INT, false, b.u.integer.value); + return true; + + default: + return a == b; } - else - indent = " "; +} + +/* PARAMS is an array of the parameters that a state is going to pass + to a pattern routine. It is still incomplete; index I has a kind of + parameter::UNSET if we don't yet know what the state will pass + as parameter I. Try to make parameter ID equal VALUE, returning + true on success. */ - if (test->type == DT_accept_op) +static bool +set_parameter (vec ¶ms, unsigned int id, + const parameter &value) +{ + if (params[id].type == parameter::UNSET) { - printf ("%soperands[%d] = x%d;\n", indent, test->u.opno, depth); + if (force_unique_params_p) + for (unsigned int i = 0; i < params.length (); ++i) + if (params[i] == value) + return false; + params[id] = value; + return true; + } + return params[id] == value; +} + +/* PARAMS2 is the "params" array for a pattern and PARAMS1 is the + set of parameters that a particular state is going to pass to + that pattern. + + Try to extend PARAMS1 and PARAMS2 so that there is a parameter + that is equal to PARAM1 for the state and has a default value of + PARAM2. Parameters beginning at START were added as part of the + same match and so may be reused. */ + +static bool +add_parameter (vec ¶ms1, vec ¶ms2, + const parameter ¶m1, const parameter ¶m2, + unsigned int start, unsigned int *res) +{ + gcc_assert (params1.length () == params2.length ()); + gcc_assert (!param1.is_param && !param2.is_param); + + for (unsigned int i = start; i < params2.length (); ++i) + if (params1[i] == param1 && params2[i] == param2) + { + *res = i; + return true; + } + + if (force_unique_params_p) + for (unsigned int i = 0; i < params2.length (); ++i) + if (params1[i] == param1 || params2[i] == param2) + return false; + + if (params2.length () >= MAX_PATTERN_PARAMS) + return false; - /* Only allow DT_accept_insn to follow. */ - if (test->next) + *res = params2.length (); + params1.quick_push (param1); + params2.quick_push (param2); + return true; +} + +/* If *ROOTA is nonnull, return true if the same sequence of steps are + required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA + is null, update it if necessary in order to make the condition hold. */ + +static bool +merge_relative_positions (position **roota, position *a, + position *rootb, position *b) +{ + if (!relative_patterns_p) + { + if (a != b) + return false; + if (!*roota) { - test = test->next; - gcc_assert (test->type == DT_accept_insn); + *roota = rootb; + return true; } + return *roota == rootb; + } + /* If B does not belong to the same instruction as ROOTB, we don't + start with ROOTB but instead start with a call to peep2_next_insn. + In that case the sequences for B and A are identical iff B and A + are themselves identical. */ + if (rootb->insn_id != b->insn_id) + return a == b; + while (rootb != b) + { + if (!a || b->type != a->type || b->arg != a->arg) + return false; + b = b->base; + a = a->base; } + if (!*roota) + *roota = a; + return *roota == a; +} - /* Sanity check that we're now at the end of the list of tests. */ - gcc_assert (!test->next); +/* A hasher of states that treats two states as "equal" if they might be + merged (but trying to be more discriminating than "return true"). */ +struct test_pattern_hasher : typed_noop_remove +{ + typedef merge_state_info *value_type; + typedef merge_state_info *compare_type; + static inline hashval_t hash (const value_type &); + static inline bool equal (const value_type &, const compare_type &); +}; - if (test->type == DT_accept_insn) - { - switch (subroutine_type) - { - case RECOG: - if (test->u.insn.num_clobbers_to_add != 0) - printf ("%s*pnum_clobbers = %d;\n", - indent, test->u.insn.num_clobbers_to_add); - printf ("%sreturn %d; /* %s */\n", indent, - test->u.insn.code_number, - get_insn_name (test->u.insn.code_number)); - break; +hashval_t +test_pattern_hasher::hash (merge_state_info *const &sinfo) +{ + inchash::hash h; + decision *d = sinfo->s->singleton (); + h.add_int (d->test.pos_operand + 1); + if (!relative_patterns_p) + h.add_int (d->test.pos ? d->test.pos->id + 1 : 0); + h.add_int (d->test.kind); + h.add_int (sinfo->num_transitions); + return h.end (); +} - case SPLIT: - printf ("%sreturn gen_split_%d (insn, operands);\n", - indent, test->u.insn.code_number); - break; +bool +test_pattern_hasher::equal (merge_state_info *const &sinfo1, + merge_state_info *const &sinfo2) +{ + decision *d1 = sinfo1->s->singleton (); + decision *d2 = sinfo2->s->singleton (); + gcc_assert (d1 && d2); + + parameter new_param1, new_param2; + return (d1->test.pos_operand == d2->test.pos_operand + && (relative_patterns_p || d1->test.pos == d2->test.pos) + && compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2) + && sinfo1->num_transitions == sinfo2->num_transitions); +} - case PEEPHOLE2: - { - int match_len = 0; - struct position *pos; +/* Try to make the state described by SINFO1 use the same pattern as the + state described by SINFO2. Return true on success. - for (pos = p->position; pos; pos = pos->base) - if (pos->type == POS_PEEP2_INSN) - { - match_len = pos->arg; - break; - } - printf ("%s*_pmatch_len = %d;\n", indent, match_len); - printf ("%stem = gen_peephole2_%d (insn, operands);\n", - indent, test->u.insn.code_number); - printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent); + SINFO1 and SINFO2 are known to have the same hash value. */ + +static bool +merge_patterns (merge_state_info *sinfo1, merge_state_info *sinfo2) +{ + merge_state_result *res2 = sinfo2->res; + merge_pattern_info *pat = res2->pattern; + + /* Write to temporary arrays while matching, in case we have to abort + half way through. */ + auto_vec params1; + auto_vec params2; + params1.quick_grow_cleared (pat->params.length ()); + params2.splice (pat->params); + unsigned int start_param = params2.length (); + + /* An array for recording changes to PAT->transitions[?].params. + All changes involve replacing a constant parameter with some + PAT->params[N], where N is the second element of the pending_param. */ + typedef std::pair pending_param; + auto_vec pending_params; + + decision *d1 = sinfo1->s->singleton (); + decision *d2 = sinfo2->s->singleton (); + gcc_assert (d1 && d2); + + /* If D2 tests a position, SINFO1's root relative to D1 is the same + as SINFO2's root relative to D2. */ + position *root1 = 0; + position *root2 = res2->root; + if (d2->test.pos_operand < 0 + && d1->test.pos + && !merge_relative_positions (&root1, d1->test.pos, + root2, d2->test.pos)) + return false; + + /* Check whether the patterns have the same shape. */ + unsigned int num_transitions = sinfo1->num_transitions; + gcc_assert (num_transitions == sinfo2->num_transitions); + for (unsigned int i = 0; i < num_transitions; ++i) + if (merge_pattern_transition *ptrans = pat->transitions[i]) + { + merge_state_result *to1_res = sinfo1->to_states[i].res; + merge_state_result *to2_res = sinfo2->to_states[i].res; + merge_pattern_info *to_pat = ptrans->to; + gcc_assert (to2_res && to2_res->pattern == to_pat); + if (!to1_res || to1_res->pattern != to_pat) + return false; + if (to2_res->root + && !merge_relative_positions (&root1, to1_res->root, + root2, to2_res->root)) + return false; + /* Match the parameters that TO1_RES passes to TO_PAT with the + parameters that PAT passes to TO_PAT. */ + update_parameters (to1_res->params, to_pat->params); + for (unsigned int j = 0; j < to1_res->params.length (); ++j) + { + const parameter ¶m1 = to1_res->params[j]; + const parameter ¶m2 = ptrans->params[j]; + gcc_assert (!param1.is_param); + if (param2.is_param) + { + if (!set_parameter (params1, param2.value, param1)) + return false; + } + else if (param1 != param2) + { + unsigned int id; + if (!add_parameter (params1, params2, + param1, param2, start_param, &id)) + return false; + /* Record that PAT should now pass parameter ID to TO_PAT, + instead of the current contents of *PARAM2. We only + make the change if the rest of the match succeeds. */ + pending_params.safe_push + (pending_param (&ptrans->params[j], id)); + } } - break; + } - default: - gcc_unreachable (); + unsigned int param_test = pat->param_test; + unsigned int param_transition = pat->param_transition; + bool param_test_p = pat->param_test_p; + bool param_transition_p = pat->param_transition_p; + + /* If the tests don't match exactly, try to parameterize them. */ + parameter new_param1, new_param2; + if (!compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2)) + gcc_unreachable (); + if (new_param1.type != parameter::UNSET) + { + /* If the test has not already been parameterized, all existing + matches use constant NEW_PARAM2. */ + if (param_test_p) + { + if (!set_parameter (params1, param_test, new_param1)) + return false; + } + else if (new_param1 != new_param2) + { + if (!add_parameter (params1, params2, new_param1, new_param2, + start_param, ¶m_test)) + return false; + param_test_p = true; } } - else + + /* Match the transitions. */ + transition *trans1 = d1->first; + transition *trans2 = d2->first; + for (unsigned int i = 0; i < num_transitions; ++i) { - printf ("%sgoto L%d;\n", indent, success->number); - success->need_label = 1; + if (param_transition_p || trans1->labels != trans2->labels) + { + /* We can only generalize a single transition with a single + label. */ + if (num_transitions != 1 + || trans1->labels.length () != 1 + || trans2->labels.length () != 1) + return false; + + /* Although we can match wide-int fields, in practice it leads + to some odd results for const_vectors. We end up + parameterizing the first N const_ints of the vector + and then (once we reach the maximum number of parameters) + we go on to match the other elements exactly. */ + if (d1->test.kind == test::WIDE_INT_FIELD) + return false; + + /* See whether the label has a generalizable type. */ + parameter::type_enum param_type + = transition_parameter_type (d1->test.kind); + if (param_type == parameter::UNSET) + return false; + + /* Match the labels using parameters. */ + new_param1 = parameter (param_type, false, trans1->labels[0]); + if (param_transition_p) + { + if (!set_parameter (params1, param_transition, new_param1)) + return false; + } + else + { + new_param2 = parameter (param_type, false, trans2->labels[0]); + if (!add_parameter (params1, params2, new_param1, new_param2, + start_param, ¶m_transition)) + return false; + param_transition_p = true; + } + } + trans1 = trans1->next; + trans2 = trans2->next; } - if (want_close) - fputs (" }\n", stdout); + /* Set any unset parameters to their default values. This occurs if some + other state needed something to be parameterized in order to match SINFO2, + but SINFO1 on its own does not. */ + for (unsigned int i = 0; i < params1.length (); ++i) + if (params1[i].type == parameter::UNSET) + params1[i] = params2[i]; + + /* The match was successful. Commit all pending changes to PAT. */ + update_parameters (pat->params, params2); + { + pending_param *pp; + unsigned int i; + FOR_EACH_VEC_ELT (pending_params, i, pp) + *pp->first = parameter (pp->first->type, true, pp->second); + } + pat->param_test = param_test; + pat->param_transition = param_transition; + pat->param_test_p = param_test_p; + pat->param_transition_p = param_transition_p; + + /* Record the match of SINFO1. */ + merge_state_result *new_res1 = new merge_state_result (pat, root1, + sinfo1->res); + new_res1->params.splice (params1); + sinfo1->res = new_res1; + return true; } -/* Return 1 if the test is always true and has no fallthru path. Return -1 - if the test does have a fallthru path, but requires that the condition be - terminated. Otherwise return 0 for a normal test. */ -/* ??? is_unconditional is a stupid name for a tri-state function. */ +/* The number of states that were removed by calling pattern routines. */ +static unsigned int pattern_use_states; -static int -is_unconditional (struct decision_test *t, enum routine_type subroutine_type) +/* The number of states used while defining pattern routines. */ +static unsigned int pattern_def_states; + +/* Information used while constructing a use or definition of a pattern + routine. */ +struct create_pattern_info +{ + /* The routine itself. */ + pattern_routine *routine; + + /* The first unclaimed return value for this particular use or definition. + We walk the substates of uses and definitions in the same order + so each return value always refers to the same position within + the pattern. */ + unsigned int next_result; +}; + +static void populate_pattern_routine (create_pattern_info *, + merge_state_info *, state *, + const vec &); + +/* SINFO matches a pattern for which we've decided to create a C routine. + Return a decision that performs a call to the pattern routine, + but leave the caller to add the transitions to it. Initialize CPI + for this purpose. Also create a definition for the pattern routine, + if it doesn't already have one. + + PARAMS are the parameters that SINFO passes to its pattern. */ + +static decision * +init_pattern_use (create_pattern_info *cpi, merge_state_info *sinfo, + const vec ¶ms) { - if (t->type == DT_accept_op) - return 1; + state *s = sinfo->s; + merge_state_result *res = sinfo->res; + merge_pattern_info *pat = res->pattern; + cpi->routine = pat->routine; + if (!cpi->routine) + { + /* We haven't defined the pattern routine yet, so create + a definition now. */ + pattern_routine *routine = new pattern_routine; + pat->routine = routine; + cpi->routine = routine; + routine->s = new state; + routine->insn_p = false; + routine->pnum_clobbers_p = false; + + /* Create an "idempotent" mapping of parameter I to parameter I. + Also record the C type of each parameter to the routine. */ + auto_vec def_params; + for (unsigned int i = 0; i < pat->params.length (); ++i) + { + def_params.quick_push (parameter (pat->params[i].type, true, i)); + routine->param_types.quick_push (pat->params[i].type); + } + + /* Any of the states that match the pattern could be used to + create the routine definition. We might as well use SINFO + since it's already to hand. This means that all positions + in the definition will be relative to RES->root. */ + routine->pos = res->root; + cpi->next_result = 0; + populate_pattern_routine (cpi, sinfo, routine->s, def_params); + gcc_assert (cpi->next_result == pat->num_results); + + /* Add the routine to the global list, after the subroutines + that it calls. */ + routine->pattern_id = patterns.length (); + patterns.safe_push (routine); + } + + /* Create a decision to call the routine, passing PARAMS to it. */ + pattern_use *use = new pattern_use; + use->routine = pat->routine; + use->params.splice (params); + decision *d = new decision (test::pattern (res->root, use)); + + /* If the original decision could use an element of operands[] instead + of an rtx variable, try to transfer it to the new decision. */ + if (s->first->test.pos && res->root == s->first->test.pos) + d->test.pos_operand = s->first->test.pos_operand; + + cpi->next_result = 0; + return d; +} + +/* Make S return the next unclaimed pattern routine result for CPI. */ + +static void +add_pattern_acceptance (create_pattern_info *cpi, state *s) +{ + acceptance_type acceptance; + acceptance.type = SUBPATTERN; + acceptance.partial_p = false; + acceptance.u.full.code = cpi->next_result; + add_decision (s, test::accept (acceptance), true, false); + cpi->next_result += 1; +} + +/* Initialize new empty state NEWS so that it implements SINFO's pattern + (here referred to as "P"). P may be the top level of a pattern routine + or a subpattern that should be inlined into its parent pattern's routine + (as per same_pattern_p). The choice of SINFO for a top-level pattern is + arbitrary; it could be any of the states that use P. The choice for + subpatterns follows the choice for the parent pattern. + + PARAMS gives the value of each parameter to P in terms of the parameters + to the top-level pattern. If P itself is the top level pattern, PARAMS[I] + is always "parameter (TYPE, true, I)". */ - if (t->type == DT_accept_insn) +static void +populate_pattern_routine (create_pattern_info *cpi, merge_state_info *sinfo, + state *news, const vec ¶ms) +{ + pattern_def_states += 1; + + decision *d = sinfo->s->singleton (); + merge_pattern_info *pat = sinfo->res->pattern; + pattern_routine *routine = cpi->routine; + + /* Create a copy of D's test for the pattern routine and generalize it + as appropriate. */ + decision *newd = new decision (d->test); + gcc_assert (newd->test.pos_operand >= 0 + || !newd->test.pos + || common_position (newd->test.pos, + routine->pos) == routine->pos); + if (pat->param_test_p) { - switch (subroutine_type) + const parameter ¶m = params[pat->param_test]; + switch (newd->test.kind) { - case RECOG: - return (t->u.insn.num_clobbers_to_add == 0); - case SPLIT: - return 1; - case PEEPHOLE2: - return -1; + case test::PREDICATE: + newd->test.u.predicate.mode_is_param = param.is_param; + newd->test.u.predicate.mode = param.value; + break; + + case test::SAVED_CONST_INT: + newd->test.u.integer.is_param = param.is_param; + newd->test.u.integer.value = param.value; + break; + default: gcc_unreachable (); + break; } } + if (d->test.kind == test::C_TEST) + routine->insn_p = true; + else if (d->test.kind == test::HAVE_NUM_CLOBBERS) + routine->pnum_clobbers_p = true; + news->push_back (newd); + + /* Fill in the transitions of NEWD. */ + unsigned int i = 0; + for (transition *trans = d->first; trans; trans = trans->next) + { + /* Create a new state to act as the target of the new transition. */ + state *to_news = new state; + if (merge_pattern_transition *ptrans = pat->transitions[i]) + { + /* The pattern hasn't finished matching yet. Get the target + pattern and the corresponding target state of SINFO. */ + merge_pattern_info *to_pat = ptrans->to; + merge_state_info *to = sinfo->to_states + i; + gcc_assert (to->res->pattern == to_pat); + gcc_assert (ptrans->params.length () == to_pat->params.length ()); + + /* Express the parameters to TO_PAT in terms of the parameters + to the top-level pattern. */ + auto_vec to_params; + for (unsigned int j = 0; j < ptrans->params.length (); ++j) + { + const parameter ¶m = ptrans->params[j]; + to_params.quick_push (param.is_param + ? params[param.value] + : param); + } - return 0; -} + if (same_pattern_p (pat, to_pat)) + /* TO_PAT is part of the current routine, so just recurse. */ + populate_pattern_routine (cpi, to, to_news, to_params); + else + { + /* TO_PAT should be matched by calling a separate routine. */ + create_pattern_info sub_cpi; + decision *subd = init_pattern_use (&sub_cpi, to, to_params); + routine->insn_p |= sub_cpi.routine->insn_p; + routine->pnum_clobbers_p |= sub_cpi.routine->pnum_clobbers_p; -/* Emit code for one node -- the conditional and the accompanying action. - Return true if there is no fallthru path. */ + /* Add the pattern routine call to the new target state. */ + to_news->push_back (subd); -static int -write_node (struct decision *p, int depth, - enum routine_type subroutine_type) -{ - struct decision_test *test, *last_test; - int uncond; - - /* Scan the tests and simplify comparisons against small - constants. */ - for (test = p->tests; test; test = test->next) - { - if (test->type == DT_code - && test->u.code == CONST_INT - && test->next - && test->next->type == DT_elt_zero_wide_safe - && -MAX_SAVED_CONST_INT <= test->next->u.intval - && test->next->u.intval <= MAX_SAVED_CONST_INT) + /* Add a transition for each successful call result. */ + for (unsigned int j = 0; j < to_pat->num_results; ++j) + { + state *res = new state; + add_pattern_acceptance (cpi, res); + subd->push_back (new transition (j, res, false)); + } + } + } + else + /* This transition corresponds to a successful match. */ + add_pattern_acceptance (cpi, to_news); + + /* Create the transition itself, generalizing as necessary. */ + transition *new_trans = new transition (trans->labels, to_news, + trans->optional); + if (pat->param_transition_p) { - test->type = DT_const_int; - test->u.intval = test->next->u.intval; - test->next = test->next->next; + const parameter ¶m = params[pat->param_transition]; + new_trans->is_param = param.is_param; + new_trans->labels[0] = param.value; } + newd->push_back (new_trans); + i += 1; } +} + +/* USE is a decision that calls a pattern routine and SINFO is part of the + original state tree that the call is supposed to replace. Add the + transitions for SINFO and its substates to USE. */ - last_test = test = p->tests; - uncond = is_unconditional (test, subroutine_type); - if (uncond == 0) +static void +populate_pattern_use (create_pattern_info *cpi, decision *use, + merge_state_info *sinfo) +{ + pattern_use_states += 1; + gcc_assert (!sinfo->merged_p); + sinfo->merged_p = true; + merge_state_result *res = sinfo->res; + merge_pattern_info *pat = res->pattern; + decision *d = sinfo->s->singleton (); + unsigned int i = 0; + for (transition *trans = d->first; trans; trans = trans->next) { - printf (" if ("); - write_cond (test, depth, subroutine_type); + if (pat->transitions[i]) + /* The target state is also part of the pattern. */ + populate_pattern_use (cpi, use, sinfo->to_states + i); + else + { + /* The transition corresponds to a successful return from the + pattern routine. */ + use->push_back (new transition (cpi->next_result, trans->to, false)); + cpi->next_result += 1; + } + i += 1; + } +} + +/* We have decided to replace SINFO's state with a call to a pattern + routine. Make the change, creating a definition of the pattern routine + if it doesn't have one already. */ - while ((test = test->next) != NULL) +static void +use_pattern (merge_state_info *sinfo) +{ + merge_state_result *res = sinfo->res; + merge_pattern_info *pat = res->pattern; + state *s = sinfo->s; + + /* The pattern may have acquired new parameters after it was matched + against SINFO. Update the parameters that SINFO passes accordingly. */ + update_parameters (res->params, pat->params); + + create_pattern_info cpi; + decision *d = init_pattern_use (&cpi, sinfo, res->params); + populate_pattern_use (&cpi, d, sinfo); + s->release (); + s->push_back (d); +} + +/* Look through the state trees in STATES for common patterns and + split them into subroutines. */ + +static void +split_out_patterns (vec &states) +{ + unsigned int first_transition = states.length (); + hash_table hashtab (128); + /* Stage 1: Create an order in which parent states come before their child + states and in which sibling states are at consecutive locations. + Having consecutive sibling states allows merge_state_info to have + a single to_states pointer. */ + for (unsigned int i = 0; i < states.length (); ++i) + for (decision *d = states[i].s->first; d; d = d->next) + for (transition *trans = d->first; trans; trans = trans->next) { - last_test = test; - if (is_unconditional (test, subroutine_type)) - break; + states.safe_push (trans->to); + states[i].num_transitions += 1; + } + /* Stage 2: Now that the addresses are stable, set up the to_states + pointers. Look for states that might be merged and enter them + into the hash table. */ + for (unsigned int i = 0; i < states.length (); ++i) + { + merge_state_info *sinfo = &states[i]; + if (sinfo->num_transitions) + { + sinfo->to_states = &states[first_transition]; + first_transition += sinfo->num_transitions; + } + /* For simplicity, we only try to merge states that have a single + decision. This is in any case the best we can do for peephole2, + since whether a peephole2 ACCEPT succeeds or not depends on the + specific peephole2 pattern (which is unique to each ACCEPT + and so couldn't be shared between states). */ + if (decision *d = sinfo->s->singleton ()) + /* ACCEPT states are unique, so don't even try to merge them. */ + if (d->test.kind != test::ACCEPT + && (pattern_have_num_clobbers_p + || d->test.kind != test::HAVE_NUM_CLOBBERS) + && (pattern_c_test_p + || d->test.kind != test::C_TEST)) + { + merge_state_info **slot = hashtab.find_slot (sinfo, INSERT); + sinfo->prev_same_test = *slot; + *slot = sinfo; + } + } + /* Stage 3: Walk backwards through the list of states and try to merge + them. This is a greedy, bottom-up match; parent nodes can only start + a new leaf pattern if they fail to match when combined with all child + nodes that have matching patterns. + + For each state we keep a list of potential matches, with each + potential match being larger (and deeper) than the next match in + the list. The final element in the list is a leaf pattern that + matches just a single state. + + Each candidate pattern created in this loop is unique -- it won't + have been seen by an earlier iteration. We try to match each pattern + with every state that appears earlier in STATES. + + Because the patterns created in the loop are unique, any state + that already has a match must have a final potential match that + is different from any new leaf pattern. Therefore, when matching + leaf patterns, we need only consider states whose list of matches + is empty. + + The non-leaf patterns that we try are as deep as possible + and are an extension of the state's previous best candidate match (PB). + We need only consider states whose current potential match is also PB; + any states that don't match as much as PB cannnot match the new pattern, + while any states that already match more than PB must be different from + the new pattern. */ + for (unsigned int i2 = states.length (); i2-- > 0; ) + { + merge_state_info *sinfo2 = &states[i2]; + + /* Enforce the bottom-upness of the match: remove matches with later + states if SINFO2's child states ended up finding a better match. */ + prune_invalid_results (sinfo2); + + /* Do nothing if the state doesn't match a later one and if there are + no earlier states it could match. */ + if (!sinfo2->res && !sinfo2->prev_same_test) + continue; + + merge_state_result *res2 = sinfo2->res; + decision *d2 = sinfo2->s->singleton (); + position *root2 = (d2->test.pos_operand < 0 ? d2->test.pos : 0); + unsigned int num_transitions = sinfo2->num_transitions; + + /* If RES2 is null then SINFO2's test in isolation has not been seen + before. First try matching that on its own. */ + if (!res2) + { + merge_pattern_info *new_pat + = new merge_pattern_info (num_transitions); + merge_state_result *new_res2 + = new merge_state_result (new_pat, root2, res2); + sinfo2->res = new_res2; + + new_pat->num_statements = !d2->test.single_outcome_p (); + new_pat->num_results = num_transitions; + bool matched_p = false; + /* Look for states that don't currently match anything but + can be made to match SINFO2 on its own. */ + for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1; + sinfo1 = sinfo1->prev_same_test) + if (!sinfo1->res && merge_patterns (sinfo1, sinfo2)) + matched_p = true; + if (!matched_p) + { + /* No other states match. */ + sinfo2->res = res2; + delete new_pat; + delete new_res2; + continue; + } + else + res2 = new_res2; + } + + /* Keep the existing pattern if it's as good as anything we'd + create for SINFO2. */ + if (complete_result_p (res2->pattern, sinfo2)) + { + res2->pattern->num_users += 1; + continue; + } + + /* Create a new pattern for SINFO2. */ + merge_pattern_info *new_pat = new merge_pattern_info (num_transitions); + merge_state_result *new_res2 + = new merge_state_result (new_pat, root2, res2); + sinfo2->res = new_res2; + + /* Fill in details about the pattern. */ + new_pat->num_statements = !d2->test.single_outcome_p (); + new_pat->num_results = 0; + for (unsigned int j = 0; j < num_transitions; ++j) + if (merge_state_result *to_res = sinfo2->to_states[j].res) + { + /* Count the target state as part of this pattern. + First update the root position so that it can reach + the target state's root. */ + if (to_res->root) + { + if (new_res2->root) + new_res2->root = common_position (new_res2->root, + to_res->root); + else + new_res2->root = to_res->root; + } + merge_pattern_info *to_pat = to_res->pattern; + merge_pattern_transition *ptrans + = new merge_pattern_transition (to_pat); + + /* TO_PAT may have acquired more parameters when matching + states earlier in STATES than TO_RES's, but the list is + now final. Make sure that TO_RES is up to date. */ + update_parameters (to_res->params, to_pat->params); + + /* Start out by assuming that every user of NEW_PAT will + want to pass the same (constant) parameters as TO_RES. */ + update_parameters (ptrans->params, to_res->params); + + new_pat->transitions[j] = ptrans; + new_pat->num_statements += to_pat->num_statements; + new_pat->num_results += to_pat->num_results; + } + else + /* The target state doesn't match anything and so is not part + of the pattern. */ + new_pat->num_results += 1; + + /* See if any earlier states that match RES2's pattern also match + NEW_PAT. */ + bool matched_p = false; + for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1; + sinfo1 = sinfo1->prev_same_test) + { + prune_invalid_results (sinfo1); + if (sinfo1->res + && sinfo1->res->pattern == res2->pattern + && merge_patterns (sinfo1, sinfo2)) + matched_p = true; + } + if (!matched_p) + { + /* Nothing else matches NEW_PAT, so go back to the previous + pattern (possibly just a single-state one). */ + sinfo2->res = res2; + delete new_pat; + delete new_res2; + } + /* Assume that SINFO2 will use RES. At this point we don't know + whether earlier states that match the same pattern will use + that match or a different one. */ + sinfo2->res->pattern->num_users += 1; + } + /* Step 4: Finalize the choice of pattern for each state, ignoring + patterns that were only used once. Update each pattern's size + so that it doesn't include subpatterns that are going to be split + out into subroutines. */ + for (unsigned int i = 0; i < states.length (); ++i) + { + merge_state_info *sinfo = &states[i]; + merge_state_result *res = sinfo->res; + /* Wind past patterns that are only used by SINFO. */ + while (res && res->pattern->num_users == 1) + { + res = res->prev; + sinfo->res = res; + if (res) + res->pattern->num_users += 1; + } + if (!res) + continue; + + /* We have a shared pattern and are now committed to the match. */ + merge_pattern_info *pat = res->pattern; + gcc_assert (valid_result_p (pat, sinfo)); + + if (!pat->complete_p) + { + /* Look for subpatterns that are going to be split out and remove + them from the number of statements. */ + for (unsigned int j = 0; j < sinfo->num_transitions; ++j) + if (merge_pattern_transition *ptrans = pat->transitions[j]) + { + merge_pattern_info *to_pat = ptrans->to; + if (!same_pattern_p (pat, to_pat)) + pat->num_statements -= to_pat->num_statements; + } + pat->complete_p = true; + } + } + /* Step 5: Split out the patterns. */ + for (unsigned int i = 0; i < states.length (); ++i) + { + merge_state_info *sinfo = &states[i]; + merge_state_result *res = sinfo->res; + if (!sinfo->merged_p && res && useful_pattern_p (res->pattern)) + use_pattern (sinfo); + } + fprintf (stderr, "Shared %d out of %d states by creating %d new states," + " saving %d\n", + pattern_use_states, states.length (), pattern_def_states, + pattern_use_states - pattern_def_states); +} + +/* Information about a state tree that we're considering splitting into a + subroutine. */ +struct state_size +{ + /* The number of pseudo-statements in the state tree. */ + unsigned int num_statements; + + /* The approximate number of nested "if" and "switch" statements that + would be required if control could fall through to a later state. */ + unsigned int depth; +}; + +/* Pairs a transition with information about its target state. */ +typedef std::pair subroutine_candidate; + +/* Sort two subroutine_candidates so that the one with the largest + number of statements comes last. */ + +static int +subroutine_candidate_cmp (const void *a, const void *b) +{ + return int (((const subroutine_candidate *) a)->second.num_statements + - ((const subroutine_candidate *) b)->second.num_statements); +} + +/* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new + state that performs a subroutine call to S. */ + +static state * +create_subroutine (routine_type type, state *s, vec &procs) +{ + procs.safe_push (s); + acceptance_type acceptance; + acceptance.type = type; + acceptance.partial_p = true; + acceptance.u.subroutine_id = procs.length (); + state *news = new state; + add_decision (news, test::accept (acceptance), true, false); + return news; +} + +/* Walk state tree S, of type TYPE, and look for subtrees that would be + better split into subroutines. Accumulate all such subroutines in PROCS. + Return the size of the new state tree (excluding subroutines). */ + +static state_size +find_subroutines (routine_type type, state *s, vec &procs) +{ + auto_vec candidates; + state_size size; + size.num_statements = 0; + size.depth = 0; + for (decision *d = s->first; d; d = d->next) + { + if (!d->test.single_outcome_p ()) + size.num_statements += 1; + for (transition *trans = d->first; trans; trans = trans->next) + { + /* Keep chains of simple decisions together if we know that no + change of position is required. We'll output this chain as a + single "if" statement, so it counts as a single nesting level. */ + if (d->test.pos && d->if_statement_p ()) + for (;;) + { + decision *newd = trans->to->singleton (); + if (!newd + || (newd->test.pos + && newd->test.pos_operand < 0 + && newd->test.pos != d->test.pos) + || !newd->if_statement_p ()) + break; + if (!newd->test.single_outcome_p ()) + size.num_statements += 1; + trans = newd->singleton (); + if (newd->test.kind == test::SET_OP + || newd->test.kind == test::ACCEPT) + break; + } + /* The target of TRANS is a subroutine candidate. First recurse + on it to see how big it is after subroutines have been + split out. */ + state_size to_size = find_subroutines (type, trans->to, procs); + if (d->next && to_size.depth > MAX_DEPTH) + /* Keeping the target state in the same routine would lead + to an excessive nesting of "if" and "switch" statements. + Split it out into a subroutine so that it can use + inverted tests that return early on failure. */ + trans->to = create_subroutine (type, trans->to, procs); + else + { + size.num_statements += to_size.num_statements; + if (to_size.num_statements < MIN_NUM_STATEMENTS) + /* The target state is too small to be worth splitting. + Keep it in the same routine as S. */ + size.depth = MAX (size.depth, to_size.depth); + else + /* Assume for now that we'll keep the target state in the + same routine as S, but record it as a subroutine candidate + if S grows too big. */ + candidates.safe_push (subroutine_candidate (trans, to_size)); + } + } + } + if (size.num_statements > MAX_NUM_STATEMENTS) + { + /* S is too big. Sort the subroutine candidates so that bigger ones + are nearer the end. */ + candidates.qsort (subroutine_candidate_cmp); + while (!candidates.is_empty () + && size.num_statements > MAX_NUM_STATEMENTS) + { + /* Peel off a candidate and force it into a subroutine. */ + subroutine_candidate cand = candidates.pop (); + size.num_statements -= cand.second.num_statements; + cand.first->to = create_subroutine (type, cand.first->to, procs); + } + } + /* Update the depth for subroutine candidates that we decided not to + split out. */ + for (unsigned int i = 0; i < candidates.length (); ++i) + size.depth = MAX (size.depth, candidates[i].second.depth); + size.depth += 1; + return size; +} + +/* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */ + +static bool +safe_predicate_mode (const struct pred_data *pred, machine_mode mode) +{ + /* Scalar integer constants have VOIDmode. */ + if (GET_MODE_CLASS (mode) == MODE_INT + && (pred->codes[CONST_INT] + || pred->codes[CONST_DOUBLE] + || pred->codes[CONST_WIDE_INT])) + return false; + + return !pred->special && mode != VOIDmode; +} + +/* Fill CODES with the set of codes that could be matched by PRED. */ + +static void +get_predicate_codes (const struct pred_data *pred, int_set *codes) +{ + for (int i = 0; i < NUM_TRUE_RTX_CODE; ++i) + if (!pred || pred->codes[i]) + codes->safe_push (i); +} + +/* Return true if the first path through D1 tests the same thing as D2. */ + +static bool +has_same_test_p (decision *d1, decision *d2) +{ + do + { + if (d1->test == d2->test) + return true; + d1 = d1->first->to->first; + } + while (d1); + return false; +} + +/* Return true if D1 and D2 cannot match the same rtx. All states reachable + from D2 have single decisions and all those decisions have single + transitions. */ + +static bool +mutually_exclusive_p (decision *d1, decision *d2) +{ + /* If one path through D1 fails to test the same thing as D2, assume + that D2's test could be true for D1 and look for a later, more useful, + test. This isn't as expensive as it looks in practice. */ + while (!has_same_test_p (d1, d2)) + { + d2 = d2->singleton ()->to->singleton (); + if (!d2) + return false; + } + if (d1->test == d2->test) + { + /* Look for any transitions from D1 that have the same labels as + the transition from D2. */ + transition *trans2 = d2->singleton (); + for (transition *trans1 = d1->first; trans1; trans1 = trans1->next) + { + int_set::iterator i1 = trans1->labels.begin (); + int_set::iterator end1 = trans1->labels.end (); + int_set::iterator i2 = trans2->labels.begin (); + int_set::iterator end2 = trans2->labels.end (); + while (i1 != end1 && i2 != end2) + if (*i1 < *i2) + ++i1; + else if (*i2 < *i1) + ++i2; + else + { + /* TRANS1 has some labels in common with TRANS2. Assume + that D1 and D2 could match the same rtx if the target + of TRANS1 could match the same rtx as D2. */ + for (decision *subd1 = trans1->to->first; + subd1; subd1 = subd1->next) + if (!mutually_exclusive_p (subd1, d2)) + return false; + break; + } + } + return true; + } + for (transition *trans1 = d1->first; trans1; trans1 = trans1->next) + for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next) + if (!mutually_exclusive_p (subd1, d2)) + return false; + return true; +} + +/* Try to merge S2's decision into D1, given that they have the same test. + Fail only if EXCLUDE is nonnull and the new transition would have the + same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2 + and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null + if the merge is complete. */ + +static bool +merge_into_decision (decision *d1, state *s2, const int_set *exclude, + state **next_s1, state **next_s2, + const int_set **next_exclude) +{ + decision *d2 = s2->singleton (); + transition *trans2 = d2->singleton (); + + /* Get a list of the transitions that intersect TRANS2. */ + auto_vec intersecting; + for (transition *trans1 = d1->first; trans1; trans1 = trans1->next) + { + int_set::iterator i1 = trans1->labels.begin (); + int_set::iterator end1 = trans1->labels.end (); + int_set::iterator i2 = trans2->labels.begin (); + int_set::iterator end2 = trans2->labels.end (); + bool trans1_is_subset = true; + bool trans2_is_subset = true; + bool intersect_p = false; + while (i1 != end1 && i2 != end2) + if (*i1 < *i2) + { + trans1_is_subset = false; + ++i1; + } + else if (*i2 < *i1) + { + trans2_is_subset = false; + ++i2; + } + else + { + intersect_p = true; + ++i1; + ++i2; + } + if (i1 != end1) + trans1_is_subset = false; + if (i2 != end2) + trans2_is_subset = false; + if (trans1_is_subset && trans2_is_subset) + { + /* There's already a transition that matches exactly. + Merge the target states. */ + trans1->optional &= trans2->optional; + *next_s1 = trans1->to; + *next_s2 = trans2->to; + *next_exclude = 0; + return true; + } + if (trans2_is_subset) + { + /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into + the target of TRANS1, but (to avoid infinite recursion) + make sure that we don't end up creating another transition + like TRANS1. */ + *next_s1 = trans1->to; + *next_s2 = s2; + *next_exclude = &trans1->labels; + return true; + } + if (intersect_p) + intersecting.safe_push (trans1); + } + + if (intersecting.is_empty ()) + { + /* No existing labels intersect the new ones. We can just add + TRANS2 itself. */ + d1->push_back (d2->release ()); + *next_s1 = 0; + *next_s2 = 0; + *next_exclude = 0; + return true; + } + + /* Take the union of the labels in INTERSECTING and TRANS2. Store the + result in COMBINED and use NEXT as a temporary. */ + int_set tmp1 = trans2->labels, tmp2; + int_set *combined = &tmp1, *next = &tmp2; + for (unsigned int i = 0; i < intersecting.length (); ++i) + { + transition *trans1 = intersecting[i]; + next->truncate (0); + next->safe_grow (trans1->labels.length () + combined->length ()); + int_set::iterator end + = std::set_union (trans1->labels.begin (), trans1->labels.end (), + combined->begin (), combined->end (), + next->begin ()); + next->truncate (end - next->begin ()); + std::swap (next, combined); + } + + /* Stop now if we've been told not to create a transition with these + labels. */ + if (exclude && *combined == *exclude) + return false; + + /* Get the transition that should carry the new labels. */ + transition *new_trans = intersecting[0]; + if (intersecting.length () == 1) + { + /* We're merging with one existing transition whose labels are a + subset of those required. If both transitions are optional, + we can just expand the set of labels so that it's suitable + for both transitions. It isn't worth preserving the original + transitions since we know that they can't be merged; we would + need to backtrack to S2 if TRANS1->to fails. In contrast, + we might be able to merge the targets of the transitions + without any backtracking. + + If instead the existing transition is not optional, ensure that + all target decisions are suitably protected. Some decisions + might already have a more specific requirement than NEW_TRANS, + in which case there's no point testing NEW_TRANS as well. E.g. this + would have happened if a test for an (eq ...) rtx had been + added to a decision that tested whether the code is suitable + for comparison_operator. The original comparison_operator + transition would have been non-optional and the (eq ...) test + would be performed by a second decision in the target of that + transition. + + The remaining case -- keeping the original optional transition + when adding a non-optional TRANS2 -- is a wash. Preserving + the optional transition only helps if we later merge another + state S3 that is mutually exclusive with S2 and whose labels + belong to *COMBINED - TRANS1->labels. We can then test the + original NEW_TRANS and S3 in the same decision. We keep the + optional transition around for that case, but it occurs very + rarely. */ + gcc_assert (new_trans->labels != *combined); + if (!new_trans->optional || !trans2->optional) + { + decision *start = 0; + for (decision *end = new_trans->to->first; end; end = end->next) + { + if (!start && end->test != d1->test) + /* END belongs to a range of decisions that need to be + protected by NEW_TRANS. */ + start = end; + if (start && (!end->next || end->next->test == d1->test)) + { + /* Protect [START, END] with NEW_TRANS. The decisions + move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */ + state *new_s = new state; + decision *new_d = new decision (d1->test); + new_d->push_back (new transition (new_trans->labels, new_s, + new_trans->optional)); + state::range r (start, end); + new_trans->to->replace (r, new_d); + new_s->push_back (r); + + /* Continue with an empty range. */ + start = 0; + + /* Continue from the decision after NEW_D. */ + end = new_d; + } + } + } + new_trans->optional = true; + new_trans->labels = *combined; + } + else + { + /* We're merging more than one existing transition together. + Those transitions are successfully dividing the matching space + and so we want to preserve them, even if they're optional. + + Create a new transition with the union set of labels and make + it go to a state that has the original transitions. */ + decision *new_d = new decision (d1->test); + for (unsigned int i = 0; i < intersecting.length (); ++i) + new_d->push_back (d1->remove (intersecting[i])); + + state *new_s = new state; + new_s->push_back (new_d); + + new_trans = new transition (*combined, new_s, true); + d1->push_back (new_trans); + } + + /* We now have an optional transition with labels *COMBINED. Decide + whether we can use it as TRANS2 or whether we need to merge S2 + into the target of NEW_TRANS. */ + gcc_assert (new_trans->optional); + if (new_trans->labels == trans2->labels) + { + /* NEW_TRANS matches TRANS2. Just merge the target states. */ + new_trans->optional = trans2->optional; + *next_s1 = new_trans->to; + *next_s2 = trans2->to; + *next_exclude = 0; + } + else + { + /* Try to merge TRANS2 into the target of the overlapping transition, + but (to prevent infinite recursion or excessive redundancy) without + creating another transition of the same type. */ + *next_s1 = new_trans->to; + *next_s2 = s2; + *next_exclude = &new_trans->labels; + } + return true; +} + +/* Make progress in merging S2 into S1, given that each state in S2 + has a single decision. If EXCLUDE is nonnull, avoid creating a new + transition with the same test as S2's decision and with the labels + in *EXCLUDE. + + Return true if there is still work to do. When returning true, + set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that + S1, S2 and EXCLUDE should have next time round. + + If S1 and S2 both match a particular rtx, give priority to S1. */ + +static bool +merge_into_state_1 (state *s1, state *s2, const int_set *exclude, + state **next_s1, state **next_s2, + const int_set **next_exclude) +{ + decision *d2 = s2->singleton (); + if (decision *d1 = s1->last) + { + if (d1->test.terminal_p ()) + /* D1 is an unconditional return, so S2 can never match. This can + sometimes be a bug in the .md description, but might also happen + if genconditions forces some conditions to true for certain + configurations. */ + return false; + + /* Go backwards through the decisions in S1, stopping once we find one + that could match the same thing as S2. */ + while (d1->prev && mutually_exclusive_p (d1, d2)) + d1 = d1->prev; + + /* Search forwards from that point, merging D2 into the first + decision we can. */ + for (; d1; d1 = d1->next) + { + /* If S2 performs some optional tests before testing the same thing + as D1, those tests do not help to distinguish D1 and S2, so it's + better to drop them. Search through such optional decisions + until we find something that tests the same thing as D1. */ + state *sub_s2 = s2; + for (;;) + { + decision *sub_d2 = sub_s2->singleton (); + if (d1->test == sub_d2->test) + { + /* Only apply EXCLUDE if we're testing the same thing + as D2. */ + const int_set *sub_exclude = (d2 == sub_d2 ? exclude : 0); + + /* Try to merge SUB_S2 into D1. This can only fail if + it would involve creating a new transition with + labels SUB_EXCLUDE. */ + if (merge_into_decision (d1, sub_s2, sub_exclude, + next_s1, next_s2, next_exclude)) + return *next_s2 != 0; + + /* Can't merge with D1; try a later decision. */ + break; + } + transition *sub_trans2 = sub_d2->singleton (); + if (!sub_trans2->optional) + /* Can't merge with D1; try a later decision. */ + break; + sub_s2 = sub_trans2->to; + } + } + } + + /* We can't merge D2 with any existing decision. Just add it to the end. */ + s1->push_back (s2->release ()); + return false; +} + +/* Merge S2 into S1. If they both match a particular rtx, give + priority to S1. Each state in S2 has a single decision. */ + +static void +merge_into_state (state *s1, state *s2) +{ + const int_set *exclude = 0; + while (s2 && merge_into_state_1 (s1, s2, exclude, &s1, &s2, &exclude)) + continue; +} + +/* Pairs a pattern that needs to be matched with the rtx position at + which the pattern should occur. */ +struct pattern_pos { + pattern_pos () {} + pattern_pos (rtx, position *); + + rtx pattern; + position *pos; +}; + +pattern_pos::pattern_pos (rtx pattern_in, position *pos_in) + : pattern (pattern_in), pos (pos_in) +{} + +/* Compare entries according to their depth-first order. There shouldn't + be two entries at the same position. */ + +bool +operator < (const pattern_pos &e1, const pattern_pos &e2) +{ + int diff = compare_positions (e1.pos, e2.pos); + gcc_assert (diff != 0 || e1.pattern == e2.pattern); + return diff < 0; +} + +/* Return the name of the predicate matched by MATCH_RTX. */ + +static const char * +predicate_name (rtx match_rtx) +{ + if (GET_CODE (match_rtx) == MATCH_SCRATCH) + return "scratch_operand"; + else + return XSTR (match_rtx, 1); +} + +/* Add new decisions to S that check whether the rtx at position POS + matches PATTERN. Return the state that is reached in that case. + TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */ + +static state * +match_pattern_2 (state *s, rtx top_pattern, position *pos, rtx pattern) +{ + auto_vec worklist; + auto_vec pred_and_mode_tests; + auto_vec dup_tests; + + worklist.safe_push (pattern_pos (pattern, pos)); + while (!worklist.is_empty ()) + { + pattern_pos next = worklist.pop (); + pattern = next.pattern; + pos = next.pos; + unsigned int reverse_s = worklist.length (); + + enum rtx_code code = GET_CODE (pattern); + switch (code) + { + case MATCH_OP_DUP: + case MATCH_DUP: + case MATCH_PAR_DUP: + /* Add a test that the rtx matches the earlier one, but only + after the structure and predicates have been checked. */ + dup_tests.safe_push (pattern_pos (pattern, pos)); + + /* Use the same code check as the original operand. */ + pattern = find_operand (top_pattern, XINT (pattern, 0), NULL_RTX); + /* Fall through. */ + + case MATCH_PARALLEL: + case MATCH_OPERAND: + case MATCH_SCRATCH: + case MATCH_OPERATOR: + { + const char *pred_name = predicate_name (pattern); + const struct pred_data *pred = 0; + if (pred_name[0] != 0) + { + pred = lookup_predicate (pred_name); + /* Only report errors once per rtx. */ + if (code == GET_CODE (pattern)) + { + if (!pred) + error_with_line (pattern_lineno, + "unknown predicate '%s'" + " in '%s' expression", + pred_name, GET_RTX_NAME (code)); + else if (code == MATCH_PARALLEL + && pred->singleton != PARALLEL) + error_with_line (pattern_lineno, + "predicate '%s' used in match_parallel" + " does not allow only PARALLEL", + pred->name); + } + } + + if (code == MATCH_PARALLEL || code == MATCH_PAR_DUP) + { + /* Check that we have a parallel with enough elements. */ + s = add_decision (s, test::code (pos), PARALLEL, false); + int min_len = XVECLEN (pattern, 2); + s = add_decision (s, test::veclen_ge (pos, min_len), + true, false); + } + else + { + /* Check that the rtx has one of codes accepted by the + predicate. This is necessary when matching suboperands + of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't + call XEXP (X, N) without checking that X has at least + N+1 operands. */ + int_set codes; + get_predicate_codes (pred, &codes); + bool need_codes = (pred + && (code == MATCH_OPERATOR + || code == MATCH_OP_DUP)); + s = add_decision (s, test::code (pos), codes, !need_codes); + } + + /* Postpone the predicate check until we've checked the rest + of the rtx structure. */ + if (code == GET_CODE (pattern)) + pred_and_mode_tests.safe_push (pattern_pos (pattern, pos)); + + /* If we need to match suboperands, add them to the worklist. */ + if (code == MATCH_OPERATOR || code == MATCH_PARALLEL) + { + position **subpos_ptr; + enum position_type pos_type; + int i; + if (code == MATCH_OPERATOR || code == MATCH_OP_DUP) + { + pos_type = POS_XEXP; + subpos_ptr = &pos->xexps; + i = (code == MATCH_OPERATOR ? 2 : 1); + } + else + { + pos_type = POS_XVECEXP0; + subpos_ptr = &pos->xvecexp0s; + i = 2; + } + for (int j = 0; j < XVECLEN (pattern, i); ++j) + { + position *subpos = next_position (subpos_ptr, pos, + pos_type, j); + worklist.safe_push (pattern_pos (XVECEXP (pattern, i, j), + subpos)); + subpos_ptr = &subpos->next; + } + } + break; + } + + default: + { + /* Check that the rtx has the right code. */ + s = add_decision (s, test::code (pos), code, false); + + /* Queue a test for the mode if one is specified. */ + if (GET_MODE (pattern) != VOIDmode) + pred_and_mode_tests.safe_push (pattern_pos (pattern, pos)); + + /* Push subrtxes onto the worklist. Match nonrtx operands now. */ + const char *fmt = GET_RTX_FORMAT (code); + position **subpos_ptr = &pos->xexps; + for (size_t i = 0; fmt[i]; ++i) + { + position *subpos = next_position (subpos_ptr, pos, + POS_XEXP, i); + switch (fmt[i]) + { + case 'e': case 'u': + worklist.safe_push (pattern_pos (XEXP (pattern, i), + subpos)); + break; + + case 'E': + { + /* Make sure the vector has the right number of + elements. */ + int length = XVECLEN (pattern, i); + s = add_decision (s, test::veclen (pos), length, false); + + position **subpos2_ptr = &pos->xvecexp0s; + for (int j = 0; j < length; j++) + { + position *subpos2 = next_position (subpos2_ptr, pos, + POS_XVECEXP0, j); + rtx x = XVECEXP (pattern, i, j); + worklist.safe_push (pattern_pos (x, subpos2)); + subpos2_ptr = &subpos2->next; + } + break; + } + + case 'i': + /* Make sure that XINT (X, I) has the right value. */ + s = add_decision (s, test::int_field (pos, i), + XINT (pattern, i), false); + break; + + case 'w': + /* Make sure that XWINT (X, I) has the right value. */ + s = add_decision (s, test::wide_int_field (pos, i), + XWINT (pattern, 0), false); + break; + + case '0': + break; + + default: + gcc_unreachable (); + } + subpos_ptr = &subpos->next; + } + } + break; + } + /* Operands are pushed onto the worklist so that later indices are + nearer the top. That's what we want for SETs, since a SET_SRC + is a better discriminator than a SET_DEST. In other cases it's + usually better to match earlier indices first. This is especially + true of PARALLELs, where the first element tends to be the most + individual. It's also true for commutative operators, where the + canonicalization rules say that the more complex operand should + come first. */ + if (code != SET && worklist.length () > reverse_s) + std::reverse (&worklist[0] + reverse_s, + &worklist[0] + worklist.length ()); + } + + /* Sort the predicate and mode tests so that they're in depth-first order. + The main goal of this is to put SET_SRC match_operands after SET_DEST + match_operands and after mode checks for the enclosing SET_SRC operators + (such as the mode of a PLUS in an addition instruction). The latter + two types of test can determine the mode exactly, whereas a SET_SRC + match_operand often has to cope with the possibility of the operand + being a modeless constant integer. E.g. something that matches + register_operand (x, SImode) never matches register_operand (x, DImode), + but a const_int that matches immediate_operand (x, SImode) also matches + immediate_operand (x, DImode). The register_operand cases can therefore + be distinguished by a switch on the mode, but the immediate_operand + cases can't. */ + if (pred_and_mode_tests.length () > 1) + std::sort (&pred_and_mode_tests[0], + &pred_and_mode_tests[0] + pred_and_mode_tests.length ()); + + /* Add the mode and predicate tests. */ + pattern_pos *e; + unsigned int i; + FOR_EACH_VEC_ELT (pred_and_mode_tests, i, e) + { + switch (GET_CODE (e->pattern)) + { + case MATCH_PARALLEL: + case MATCH_OPERAND: + case MATCH_SCRATCH: + case MATCH_OPERATOR: + { + int opno = XINT (e->pattern, 0); + num_operands = MAX (num_operands, opno + 1); + const char *pred_name = predicate_name (e->pattern); + if (pred_name[0]) + { + const struct pred_data *pred = lookup_predicate (pred_name); + /* Check the mode first, to distinguish things like SImode + and DImode register_operands, as described above. */ + machine_mode mode = GET_MODE (e->pattern); + if (safe_predicate_mode (pred, mode)) + s = add_decision (s, test::mode (e->pos), mode, true); + + /* Assign to operands[] first, so that the rtx usually doesn't + need to be live across the call to the predicate. + + This shouldn't cause a problem with dirtying the page, + since we fully expect to assign to operands[] at some point, + and since the caller usually writes to other parts of + recog_data anyway. */ + s = add_decision (s, test::set_op (e->pos, opno), true, false); + s = add_decision (s, test::predicate (e->pos, pred, mode), + true, false); + } + else + /* Historically we've ignored the mode when there's no + predicate. Just set up operands[] unconditionally. */ + s = add_decision (s, test::set_op (e->pos, opno), true, false); + break; + } + + default: + s = add_decision (s, test::mode (e->pos), + GET_MODE (e->pattern), false); + break; + } + } + + /* Finally add rtx_equal_p checks for duplicated operands. */ + FOR_EACH_VEC_ELT (dup_tests, i, e) + s = add_decision (s, test::duplicate (e->pos, XINT (e->pattern, 0)), + true, false); + return s; +} + +/* Add new decisions to S that make it return ACCEPTANCE if: + + (1) the rtx doesn't match anything already matched by S + (2) the rtx matches TOP_PATTERN and + (3) C_TEST is true. + + For peephole2, TOP_PATTERN is the DEFINE_PEEPHOLE2 itself, otherwise + it is the rtx pattern to match (PARALLEL, SET, etc.). */ + +static void +match_pattern_1 (state *s, rtx top_pattern, const char *c_test, + acceptance_type acceptance) +{ + if (GET_CODE (top_pattern) == DEFINE_PEEPHOLE2) + { + /* Match each individual instruction. */ + position **subpos_ptr = &peep2_insn_pos_list; + int count = 0; + for (int i = 0; i < XVECLEN (top_pattern, 0); ++i) + { + rtx x = XVECEXP (top_pattern, 0, i); + /* Ignore scratch register requirements. */ + if (GET_CODE (x) != MATCH_SCRATCH && GET_CODE (x) != MATCH_DUP) + { + position *subpos = next_position (subpos_ptr, &root_pos, + POS_PEEP2_INSN, count); + if (count > 0) + s = add_decision (s, test::peep2_count (count + 1), + true, false); + s = match_pattern_2 (s, top_pattern, subpos, x); + subpos_ptr = &subpos->next; + count += 1; + } + } + acceptance.u.full.u.match_len = count - 1; + } + else + { + /* Make the rtx itself. */ + s = match_pattern_2 (s, top_pattern, &root_pos, top_pattern); + + /* If the match is only valid when extra clobbers are added, + make sure we're able to pass that information to the caller. */ + if (acceptance.type == RECOG && acceptance.u.full.u.num_clobbers) + s = add_decision (s, test::have_num_clobbers (), true, false); + } + + /* Make sure that the C test is true. */ + if (maybe_eval_c_test (c_test) != 1) + s = add_decision (s, test::c_test (c_test), true, false); + + /* Accept the pattern. */ + add_decision (s, test::accept (acceptance), true, false); +} + +/* Like match_pattern_1, but (if merge_states_p) try to merge the + decisions with what's already in S, to reduce the amount of + backtracking. */ + +static void +match_pattern (state *s, rtx top_pattern, const char *c_test, + acceptance_type acceptance) +{ + if (merge_states_p) + { + state root; + /* Add the decisions to a fresh state and then merge the full tree + into the existing one. */ + match_pattern_1 (&root, top_pattern, c_test, acceptance); + merge_into_state (s, &root); + } + else + match_pattern_1 (s, top_pattern, c_test, acceptance); +} + +/* Begin the output file. */ + +static void +write_header (void) +{ + puts ("\ +/* Generated automatically by the program `genrecog' from the target\n\ + machine description file. */\n\ +\n\ +#include \"config.h\"\n\ +#include \"system.h\"\n\ +#include \"coretypes.h\"\n\ +#include \"tm.h\"\n\ +#include \"rtl.h\"\n\ +#include \"tm_p.h\"\n\ +#include \"hashtab.h\"\n\ +#include \"hash-set.h\"\n\ +#include \"vec.h\"\n\ +#include \"machmode.h\"\n\ +#include \"hard-reg-set.h\"\n\ +#include \"input.h\"\n\ +#include \"function.h\"\n\ +#include \"insn-config.h\"\n\ +#include \"recog.h\"\n\ +#include \"output.h\"\n\ +#include \"flags.h\"\n\ +#include \"hard-reg-set.h\"\n\ +#include \"predict.h\"\n\ +#include \"basic-block.h\"\n\ +#include \"resource.h\"\n\ +#include \"diagnostic-core.h\"\n\ +#include \"reload.h\"\n\ +#include \"regs.h\"\n\ +#include \"tm-constrs.h\"\n\ +#include \"predict.h\"\n\ +\n"); + + puts ("\n\ +/* `recog' contains a decision tree that recognizes whether the rtx\n\ + X0 is a valid instruction.\n\ +\n\ + recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\ + returns a nonnegative number which is the insn code number for the\n\ + pattern that matched. This is the same as the order in the machine\n\ + description of the entry that matched. This number can be used as an\n\ + index into `insn_data' and other tables.\n"); + puts ("\ + The third parameter to recog is an optional pointer to an int. If\n\ + present, recog will accept a pattern if it matches except for missing\n\ + CLOBBER expressions at the end. In that case, the value pointed to by\n\ + the optional pointer will be set to the number of CLOBBERs that need\n\ + to be added (it should be initialized to zero by the caller). If it"); + puts ("\ + is set nonzero, the caller should allocate a PARALLEL of the\n\ + appropriate size, copy the initial entries, and call add_clobbers\n\ + (found in insn-emit.c) to fill in the CLOBBERs.\n\ +"); + + puts ("\n\ + The function split_insns returns 0 if the rtl could not\n\ + be split or the split rtl as an INSN list if it can be.\n\ +\n\ + The function peephole2_insns returns 0 if the rtl could not\n\ + be matched. If there was a match, the new rtl is returned in an INSN list,\n\ + and LAST_INSN will point to the last recognized insn in the old sequence.\n\ +*/\n\n"); +} + +/* Return the C type of a parameter with type TYPE. */ + +static const char * +parameter_type_string (parameter::type_enum type) +{ + switch (type) + { + case parameter::UNSET: + break; + + case parameter::CODE: + return "rtx_code"; + + case parameter::MODE: + return "machine_mode"; + + case parameter::INT: + return "int"; + + case parameter::WIDE_INT: + return "HOST_WIDE_INT"; + } + gcc_unreachable (); +} + +/* Return true if ACCEPTANCE requires only a single C statement even in + a backtracking context. */ + +static bool +single_statement_p (const acceptance_type &acceptance) +{ + if (acceptance.partial_p) + /* We need to handle failures of the subroutine. */ + return false; + switch (acceptance.type) + { + case SUBPATTERN: + case SPLIT: + return true; + + case RECOG: + /* False if we need to assign to pnum_clobbers. */ + return acceptance.u.full.u.num_clobbers == 0; + + case PEEPHOLE2: + /* We need to assign to pmatch_len_ and handle null returns from the + peephole2 routine. */ + return false; + } + gcc_unreachable (); +} + +/* Return the C failure value for a routine of type TYPE. */ + +static const char * +get_failure_return (routine_type type) +{ + switch (type) + { + case SUBPATTERN: + case RECOG: + return "-1"; + + case SPLIT: + case PEEPHOLE2: + return "NULL_RTX"; + } + gcc_unreachable (); +} + +/* Indicates whether a block of code always returns or whether it can fall + through. */ + +enum exit_state { + ES_RETURNED, + ES_FALLTHROUGH +}; + +/* Information used while writing out code. */ + +struct output_state +{ + /* The type of routine that we're generating. */ + routine_type type; + + /* Maps position ids to xN variable numbers. The entry is only valid if + it is less than the length of VAR_TO_ID, but this holds for every position + tested by a state when writing out that state. */ + auto_vec id_to_var; + + /* Maps xN variable numbers to position ids. */ + auto_vec var_to_id; + + /* Index N is true if variable xN has already been set. */ + auto_vec seen_vars; +}; + +/* Return true if D is a call to a pattern routine and if there is some X + such that the transition for pattern result N goes to a successful return + with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT + to the number of return values. (We know that every PATTERN decision has + a transition for every successful return.) */ + +static bool +terminal_pattern_p (decision *d, unsigned int *base_out, + unsigned int *count_out) +{ + if (d->test.kind != test::PATTERN) + return false; + unsigned int base = 0; + unsigned int count = 0; + for (transition *trans = d->first; trans; trans = trans->next) + { + if (trans->is_param || trans->labels.length () != 1) + return false; + decision *subd = trans->to->singleton (); + if (!subd || subd->test.kind != test::ACCEPT) + return false; + unsigned int this_base = (subd->test.u.acceptance.u.full.code + - trans->labels[0]); + if (trans == d->first) + base = this_base; + else if (base != this_base) + return false; + count += 1; + } + *base_out = base; + *count_out = count; + return true; +} + +/* Return true if TEST doesn't test an rtx or if the rtx it tests is + already available in state OS. */ + +static bool +test_position_available_p (output_state *os, const test &test) +{ + return (!test.pos + || test.pos_operand >= 0 + || os->seen_vars[os->id_to_var[test.pos->id]]); +} + +/* Like printf, but print INDENT spaces at the beginning. */ + +static void ATTRIBUTE_PRINTF_2 +printf_indent (unsigned int indent, const char *format, ...) +{ + va_list ap; + va_start (ap, format); + printf ("%*s", indent, ""); + vprintf (format, ap); + va_end (ap); +} + +/* Emit code to initialize the variable associated with POS, if it isn't + already valid in state OS. Indent each line by INDENT spaces. Update + OS with the new state. */ + +static void +change_state (output_state *os, position *pos, unsigned int indent) +{ + unsigned int var = os->id_to_var[pos->id]; + gcc_assert (var < os->var_to_id.length () && os->var_to_id[var] == pos->id); + if (os->seen_vars[var]) + return; + switch (pos->type) + { + case POS_PEEP2_INSN: + printf_indent (indent, "x%d = PATTERN (peep2_next_insn (%d));\n", + var, pos->arg); + break; + + case POS_XEXP: + change_state (os, pos->base, indent); + printf_indent (indent, "x%d = XEXP (x%d, %d);\n", + var, os->id_to_var[pos->base->id], pos->arg); + break; + + case POS_XVECEXP0: + change_state (os, pos->base, indent); + printf_indent (indent, "x%d = XVECEXP (x%d, 0, %d);\n", + var, os->id_to_var[pos->base->id], pos->arg); + break; + } + os->seen_vars[var] = true; +} + +/* Print the enumerator constant for CODE -- the upcase version of + the name. */ + +static void +print_code (enum rtx_code code) +{ + const char *p; + for (p = GET_RTX_NAME (code); *p; p++) + putchar (TOUPPER (*p)); +} + +/* Emit a uint64_t as an integer constant expression. We need to take + special care to avoid "decimal constant is so large that it is unsigned" + warnings in the resulting code. */ + +static void +print_host_wide_int (uint64_t val) +{ + uint64_t min = uint64_t (1) << (HOST_BITS_PER_WIDE_INT - 1); + if (val == min) + printf ("(" HOST_WIDE_INT_PRINT_DEC_C " - 1)", val + 1); + else + printf (HOST_WIDE_INT_PRINT_DEC_C, val); +} + +/* Print the C expression for actual parameter PARAM. */ + +static void +print_parameter_value (const parameter ¶m) +{ + if (param.is_param) + printf ("i%d", (int) param.value + 1); + else + switch (param.type) + { + case parameter::UNSET: + gcc_unreachable (); + break; + + case parameter::CODE: + print_code ((enum rtx_code) param.value); + break; + + case parameter::MODE: + printf ("%smode", GET_MODE_NAME ((machine_mode) param.value)); + break; + + case parameter::INT: + printf ("%d", (int) param.value); + break; + + case parameter::WIDE_INT: + print_host_wide_int (param.value); + break; + } +} + +/* Print the C expression for the rtx tested by TEST. */ + +static void +print_test_rtx (output_state *os, const test &test) +{ + if (test.pos_operand >= 0) + printf ("operands[%d]", test.pos_operand); + else + printf ("x%d", os->id_to_var[test.pos->id]); +} + +/* Print the C expression for non-boolean test TEST. */ + +static void +print_nonbool_test (output_state *os, const test &test) +{ + switch (test.kind) + { + case test::CODE: + printf ("GET_CODE ("); + print_test_rtx (os, test); + printf (")"); + break; + + case test::MODE: + printf ("GET_MODE ("); + print_test_rtx (os, test); + printf (")"); + break; + + case test::VECLEN: + printf ("XVECLEN ("); + print_test_rtx (os, test); + printf (", 0)"); + break; + + case test::INT_FIELD: + printf ("XINT ("); + print_test_rtx (os, test); + printf (", %d)", test.u.opno); + break; + + case test::WIDE_INT_FIELD: + printf ("XWINT ("); + print_test_rtx (os, test); + printf (", %d)", test.u.opno); + break; + + case test::PATTERN: + { + pattern_routine *routine = test.u.pattern->routine; + printf ("pattern%d (", routine->pattern_id); + const char *sep = ""; + if (test.pos) + { + print_test_rtx (os, test); + sep = ", "; + } + if (routine->insn_p) + { + printf ("%sinsn", sep); + sep = ", "; + } + if (routine->pnum_clobbers_p) + { + printf ("%spnum_clobbers", sep); + sep = ", "; + } + for (unsigned int i = 0; i < test.u.pattern->params.length (); ++i) + { + fputs (sep, stdout); + print_parameter_value (test.u.pattern->params[i]); + sep = ", "; + } + printf (")"); + break; + } + + case test::PEEP2_COUNT: + case test::VECLEN_GE: + case test::SAVED_CONST_INT: + case test::DUPLICATE: + case test::PREDICATE: + case test::SET_OP: + case test::HAVE_NUM_CLOBBERS: + case test::C_TEST: + case test::ACCEPT: + gcc_unreachable (); + } +} + +/* IS_PARAM and LABEL are taken from a transition whose source + decision performs TEST. Print the C code for the label. */ + +static void +print_label_value (const test &test, bool is_param, uint64_t value) +{ + print_parameter_value (parameter (transition_parameter_type (test.kind), + is_param, value)); +} + +/* If IS_PARAM, print code to compare TEST with the C variable i. + If !IS_PARAM, print code to compare TEST with the C constant VALUE. + Test for inequality if INVERT_P, otherwise test for equality. */ + +static void +print_test (output_state *os, const test &test, bool is_param, uint64_t value, + bool invert_p) +{ + switch (test.kind) + { + /* Handle the non-boolean TESTs. */ + case test::CODE: + case test::MODE: + case test::VECLEN: + case test::INT_FIELD: + case test::WIDE_INT_FIELD: + case test::PATTERN: + print_nonbool_test (os, test); + printf (" %s ", invert_p ? "!=" : "=="); + print_label_value (test, is_param, value); + break; + + case test::SAVED_CONST_INT: + gcc_assert (!is_param && value == 1); + print_test_rtx (os, test); + printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ", + invert_p ? "!=" : "=="); + print_parameter_value (parameter (parameter::INT, + test.u.integer.is_param, + test.u.integer.value)); + printf ("]"); + break; + + case test::PEEP2_COUNT: + gcc_assert (!is_param && value == 1); + printf ("peep2_current_count %s %d", invert_p ? "<" : ">=", + test.u.min_len); + break; + + case test::VECLEN_GE: + gcc_assert (!is_param && value == 1); + printf ("XVECLEN ("); + print_test_rtx (os, test); + printf (", 0) %s %d", invert_p ? "<" : ">=", test.u.min_len); + break; + + case test::PREDICATE: + gcc_assert (!is_param && value == 1); + printf ("%s%s (", invert_p ? "!" : "", test.u.predicate.data->name); + print_test_rtx (os, test); + printf (", "); + print_parameter_value (parameter (parameter::MODE, + test.u.predicate.mode_is_param, + test.u.predicate.mode)); + printf (")"); + break; + + case test::DUPLICATE: + gcc_assert (!is_param && value == 1); + printf ("%srtx_equal_p (", invert_p ? "!" : ""); + print_test_rtx (os, test); + printf (", operands[%d])", test.u.opno); + break; + + case test::HAVE_NUM_CLOBBERS: + gcc_assert (!is_param && value == 1); + printf ("pnum_clobbers %s NULL", invert_p ? "==" : "!="); + break; + + case test::C_TEST: + gcc_assert (!is_param && value == 1); + if (invert_p) + printf ("!"); + print_c_condition (test.u.string); + break; + + case test::ACCEPT: + case test::SET_OP: + gcc_unreachable (); + } +} + +static exit_state print_decision (output_state *, decision *, + unsigned int, bool); + +/* Print code to perform S, indent each line by INDENT spaces. + IS_FINAL is true if there are no fallback decisions to test on failure; + if the state fails then the entire routine fails. */ + +static exit_state +print_state (output_state *os, state *s, unsigned int indent, bool is_final) +{ + exit_state es = ES_FALLTHROUGH; + for (decision *d = s->first; d; d = d->next) + es = print_decision (os, d, indent, is_final && !d->next); + if (es != ES_RETURNED && is_final) + { + printf_indent (indent, "return %s;\n", get_failure_return (os->type)); + es = ES_RETURNED; + } + return es; +} + +/* Print the code for subroutine call ACCEPTANCE (for which partial_p + is known to be true). Return the C condition that indicates a successful + match. */ + +static const char * +print_subroutine_call (const acceptance_type &acceptance) +{ + switch (acceptance.type) + { + case SUBPATTERN: + gcc_unreachable (); + + case RECOG: + printf ("recog_%d (x1, insn, pnum_clobbers)", + acceptance.u.subroutine_id); + return ">= 0"; + + case SPLIT: + printf ("split_%d (x1, insn)", acceptance.u.subroutine_id); + return "!= NULL_RTX"; + + case PEEPHOLE2: + printf ("peephole2_%d (x1, insn, pmatch_len_)", + acceptance.u.subroutine_id); + return "!= NULL_RTX"; + } + gcc_unreachable (); +} + +/* Print code for the successful match described by ACCEPTANCE. + INDENT and IS_FINAL are as for print_state. */ + +static exit_state +print_acceptance (const acceptance_type &acceptance, unsigned int indent, + bool is_final) +{ + if (acceptance.partial_p) + { + /* Defer the rest of the match to a subroutine. */ + if (is_final) + { + printf_indent (indent, "return "); + print_subroutine_call (acceptance); + printf (";\n"); + return ES_RETURNED; + } + else + { + printf_indent (indent, "res = "); + const char *res_test = print_subroutine_call (acceptance); + printf (";\n"); + printf_indent (indent, "if (res %s)\n", res_test); + printf_indent (indent + 2, "return res;\n"); + return ES_FALLTHROUGH; + } + } + switch (acceptance.type) + { + case SUBPATTERN: + printf_indent (indent, "return %d;\n", acceptance.u.full.code); + return ES_RETURNED; + + case RECOG: + if (acceptance.u.full.u.num_clobbers != 0) + printf_indent (indent, "*pnum_clobbers = %d;\n", + acceptance.u.full.u.num_clobbers); + printf_indent (indent, "return %d; /* %s */\n", acceptance.u.full.code, + get_insn_name (acceptance.u.full.code)); + return ES_RETURNED; + + case SPLIT: + printf_indent (indent, "return gen_split_%d (insn, operands);\n", + acceptance.u.full.code); + return ES_RETURNED; + + case PEEPHOLE2: + printf_indent (indent, "*pmatch_len_ = %d;\n", + acceptance.u.full.u.match_len); + if (is_final) + { + printf_indent (indent, "return gen_peephole2_%d (insn, operands);\n", + acceptance.u.full.code); + return ES_RETURNED; + } + else + { + printf_indent (indent, "res = gen_peephole2_%d (insn, operands);\n", + acceptance.u.full.code); + printf_indent (indent, "if (res != NULL_RTX)\n"); + printf_indent (indent + 2, "return res;\n"); + return ES_FALLTHROUGH; + } + } + gcc_unreachable (); +} + +/* Print code to perform D. INDENT and IS_FINAL are as for print_state. */ + +static exit_state +print_decision (output_state *os, decision *d, unsigned int indent, + bool is_final) +{ + uint64_t label; + unsigned int base, count; + + /* Make sure the rtx under test is available either in operands[] or + in an xN variable. */ + if (d->test.pos && d->test.pos_operand < 0) + change_state (os, d->test.pos, indent); + + /* Look for cases where a pattern routine P1 calls another pattern routine + P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL + is true and BASE is zero we can simply use: + + return patternN (...); + + Otherwise we can use: + + res = patternN (...); + if (res >= 0) + return res + BASE; + + However, if BASE is nonzero and patternN only returns 0 or -1, + the usual "return BASE;" is better than "return res + BASE;". + If BASE is zero, "return res;" should be better than "return 0;", + since no assignment to the return register is required. */ + if (os->type == SUBPATTERN + && terminal_pattern_p (d, &base, &count) + && (base == 0 || count > 1)) + { + if (is_final && base == 0) + { + printf_indent (indent, "return "); + print_nonbool_test (os, d->test); + printf ("; /* [-1, %d] */\n", count - 1); + return ES_RETURNED; + } + else + { + printf_indent (indent, "res = "); + print_nonbool_test (os, d->test); + printf (";\n"); + printf_indent (indent, "if (res >= 0)\n"); + printf_indent (indent + 2, "return res"); + if (base != 0) + printf (" + %d", base); + printf ("; /* [%d, %d] */\n", base, base + count - 1); + return ES_FALLTHROUGH; + } + } + else if (d->test.kind == test::ACCEPT) + return print_acceptance (d->test.u.acceptance, indent, is_final); + else if (d->test.kind == test::SET_OP) + { + printf_indent (indent, "operands[%d] = ", d->test.u.opno); + print_test_rtx (os, d->test); + printf (";\n"); + return print_state (os, d->singleton ()->to, indent, is_final); + } + /* Handle decisions with a single transition and a single transition + label. */ + else if (d->if_statement_p (&label)) + { + transition *trans = d->singleton (); + if (mark_optional_transitions_p && trans->optional) + printf_indent (indent, "/* OPTIONAL IF */\n"); + + /* Print the condition associated with TRANS. Invert it if IS_FINAL, + so that we return immediately on failure and fall through on + success. */ + printf_indent (indent, "if ("); + print_test (os, d->test, trans->is_param, label, is_final); + + /* Look for following states that would be handled by this code + on recursion. If they don't need any preparatory statements, + include them in the current "if" statement rather than creating + a new one. */ + for (;;) + { + d = trans->to->singleton (); + if (!d + || d->test.kind == test::ACCEPT + || d->test.kind == test::SET_OP + || !d->if_statement_p (&label) + || !test_position_available_p (os, d->test)) + break; + trans = d->first; + printf ("\n"); + if (mark_optional_transitions_p && trans->optional) + printf_indent (indent + 4, "/* OPTIONAL IF */\n"); + printf_indent (indent + 4, "%s ", is_final ? "||" : "&&"); + print_test (os, d->test, trans->is_param, label, is_final); + } + printf (")\n"); + + /* Print the conditional code with INDENT + 2 and the fallthrough + code with indent INDENT. */ + state *to = trans->to; + if (is_final) + { + /* We inverted the condition above, so return failure in the + "if" body and fall through to the target of the transition. */ + printf_indent (indent + 2, "return %s;\n", + get_failure_return (os->type)); + return print_state (os, to, indent, is_final); + } + else if (to->singleton () + && to->first->test.kind == test::ACCEPT + && single_statement_p (to->first->test.u.acceptance)) + { + /* The target of the transition is a simple "return" statement. + It doesn't need any braces and doesn't fall through. */ + if (print_acceptance (to->first->test.u.acceptance, + indent + 2, true) != ES_RETURNED) + gcc_unreachable (); + return ES_FALLTHROUGH; + } + else + { + /* The general case. Output code for the target of the transition + in braces. This will not invalidate any of the xN variables + that are already valid, but we mustn't rely on any that are + set by the "if" body. */ + auto_vec old_seen; + old_seen.safe_splice (os->seen_vars); + + printf_indent (indent + 2, "{\n"); + print_state (os, trans->to, indent + 4, is_final); + printf_indent (indent + 2, "}\n"); + + os->seen_vars.truncate (0); + os->seen_vars.splice (old_seen); + return ES_FALLTHROUGH; + } + } + else + { + /* Output the decision as a switch statement. */ + printf_indent (indent, "switch ("); + print_nonbool_test (os, d->test); + printf (")\n"); + + /* Each case statement starts with the same set of valid variables. + These are also the only variables will be valid on fallthrough. */ + auto_vec old_seen; + old_seen.safe_splice (os->seen_vars); + + printf_indent (indent + 2, "{\n"); + for (transition *trans = d->first; trans; trans = trans->next) + { + gcc_assert (!trans->is_param); + if (mark_optional_transitions_p && trans->optional) + printf_indent (indent + 2, "/* OPTIONAL CASE */\n"); + for (int_set::iterator j = trans->labels.begin (); + j != trans->labels.end (); ++j) + { + printf_indent (indent + 2, "case "); + print_label_value (d->test, trans->is_param, *j); + printf (":\n"); + } + if (print_state (os, trans->to, indent + 4, is_final)) + { + /* The state can fall through. Add an explicit break. */ + gcc_assert (!is_final); + printf_indent (indent + 4, "break;\n"); + } + printf ("\n"); - printf ("\n && "); - write_cond (test, depth, subroutine_type); + /* Restore the original set of valid variables. */ + os->seen_vars.truncate (0); + os->seen_vars.splice (old_seen); } - - printf (")\n"); + /* Add a default case. */ + printf_indent (indent + 2, "default:\n"); + if (is_final) + printf_indent (indent + 4, "return %s;\n", + get_failure_return (os->type)); + else + printf_indent (indent + 4, "break;\n"); + printf_indent (indent + 2, "}\n"); + return is_final ? ES_RETURNED : ES_FALLTHROUGH; } +} - write_action (p, last_test, depth, uncond, p->success.first, subroutine_type); +/* Make sure that OS has a position variable for POS. ROOT_P is true if + POS is the root position for the routine. */ - return uncond > 0; +static void +assign_position_var (output_state *os, position *pos, bool root_p) +{ + unsigned int idx = os->id_to_var[pos->id]; + if (idx < os->var_to_id.length () && os->var_to_id[idx] == pos->id) + return; + if (!root_p && pos->type != POS_PEEP2_INSN) + assign_position_var (os, pos->base, false); + os->id_to_var[pos->id] = os->var_to_id.length (); + os->var_to_id.safe_push (pos->id); } -/* Emit code for all of the sibling nodes of HEAD. */ +/* Make sure that OS has the position variables required by S. */ static void -write_tree_1 (struct decision_head *head, int depth, - enum routine_type subroutine_type) +assign_position_vars (output_state *os, state *s) { - struct decision *p, *next; - int uncond = 0; - - for (p = head->first; p ; p = next) + for (decision *d = s->first; d; d = d->next) { - /* The label for the first element was printed in write_tree. */ - if (p != head->first && p->need_label) - OUTPUT_LABEL (" ", p->number); - - /* Attempt to write a switch statement for a whole sequence. */ - next = write_switch (p, depth); - if (p != next) - uncond = 0; - else - { - /* Failed -- fall back and write one node. */ - uncond = write_node (p, depth, subroutine_type); - next = p->next; - } + /* Positions associated with operands can be read from the + operands[] array. */ + if (d->test.pos && d->test.pos_operand < 0) + assign_position_var (os, d->test.pos, false); + for (transition *trans = d->first; trans; trans = trans->next) + assign_position_vars (os, trans->to); } - - /* Finished with this chain. Close a fallthru path by branching - to the afterward node. */ - if (! uncond) - write_afterward (head->last, head->last->afterward, " "); } -/* Write out the decision tree starting at HEAD. PREVPOS is the - position at the node that branched to this node. */ +/* Print the open brace and variable definitions for a routine that + implements S. ROOT is the deepest rtx from which S can access all + relevant parts of the first instruction it matches. Initialize OS + so that every relevant position has an rtx variable xN and so that + only ROOT's variable has a valid value. */ static void -write_tree (struct decision_head *head, struct position *prevpos, - enum routine_type type, int initial) +print_subroutine_start (output_state *os, state *s, position *root) { - struct decision *p = head->first; - - putchar ('\n'); - if (p->need_label) - OUTPUT_LABEL (" ", p->number); - - if (! initial && p->subroutine_number > 0) + printf ("{\n rtx * const operands ATTRIBUTE_UNUSED" + " = &recog_data.operand[0];\n"); + os->var_to_id.truncate (0); + os->seen_vars.truncate (0); + if (root) { - static const char * const name_prefix[] = { - "recog", "split", "peephole2" - }; + /* Create a fake entry for position 0 so that an id_to_var of 0 + is always invalid. This also makes the xN variables naturally + 1-based rather than 0-based. */ + os->var_to_id.safe_push (num_positions); - static const char * const call_suffix[] = { - ", pnum_clobbers", "", ", _pmatch_len" - }; + /* Associate ROOT with x1. */ + assign_position_var (os, root, true); - /* This node has been broken out into a separate subroutine. - Call it, test the result, and branch accordingly. */ + /* Assign xN variables to all other relevant positions. */ + assign_position_vars (os, s); - if (p->afterward) + /* Output the variable declarations (except for ROOT's, which is + passed in as a parameter). */ + unsigned int num_vars = os->var_to_id.length (); + if (num_vars > 2) { - printf (" tem = %s_%d (x0, insn%s);\n", - name_prefix[type], p->subroutine_number, call_suffix[type]); - if (IS_SPLIT (type)) - printf (" if (tem != 0)\n return tem;\n"); - else - printf (" if (tem >= 0)\n return tem;\n"); - - change_state (p->position, p->afterward->position, " "); - printf (" goto L%d;\n", p->afterward->number); - } - else - { - printf (" return %s_%d (x0, insn%s);\n", - name_prefix[type], p->subroutine_number, call_suffix[type]); + for (unsigned int i = 2; i < num_vars; ++i) + /* Print 8 rtx variables to a line. */ + printf ("%s x%d", + i == 2 ? " rtx" : (i - 2) % 8 == 0 ? ";\n rtx" : ",", i); + printf (";\n"); } - } - else - { - change_state (prevpos, p->position, " "); - write_tree_1 (head, p->position->depth, type); - for (p = head->first; p; p = p->next) - if (p->success.first) - write_tree (&p->success, p->position, type, 0); + /* Say that x1 is valid and the rest aren't. */ + os->seen_vars.safe_grow_cleared (num_vars); + os->seen_vars[1] = true; } + if (os->type == SUBPATTERN || os->type == RECOG) + printf (" int res ATTRIBUTE_UNUSED;\n"); + else + printf (" rtx res ATTRIBUTE_UNUSED;\n"); } -/* Write out a subroutine of type TYPE to do comparisons starting at - node TREE. */ +/* Output the definition of pattern routine ROUTINE. */ static void -write_subroutine (struct decision_head *head, enum routine_type type) +print_pattern (output_state *os, pattern_routine *routine) { - int subfunction = head->first ? head->first->subroutine_number : 0; - const char *s_or_e; - char extension[32]; - int i; - const char *insn_param; - - s_or_e = subfunction ? "static " : ""; + printf ("\nstatic int\npattern%d (", routine->pattern_id); + const char *sep = ""; + /* Add the top-level rtx parameter, if any. */ + if (routine->pos) + { + printf ("%srtx x1", sep); + sep = ", "; + } + /* Add the optional parameters. */ + if (routine->insn_p) + { + /* We can't easily tell whether a C condition actually reads INSN, + so add an ATTRIBUTE_UNUSED just in case. */ + printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep); + sep = ", "; + } + if (routine->pnum_clobbers_p) + { + printf ("%sint *pnum_clobbers", sep); + sep = ", "; + } + /* Add the "i" parameters. */ + for (unsigned int i = 0; i < routine->param_types.length (); ++i) + { + printf ("%s%s i%d", sep, + parameter_type_string (routine->param_types[i]), i + 1); + sep = ", "; + } + printf (")\n"); + os->type = SUBPATTERN; + print_subroutine_start (os, routine->s, routine->pos); + print_state (os, routine->s, 2, true); + printf ("}\n"); +} - if (subfunction) - sprintf (extension, "_%d", subfunction); - else if (type == RECOG) - extension[0] = '\0'; - else - strcpy (extension, "_insns"); +/* Output a routine of type TYPE that implements S. PROC_ID is the + number of the subroutine associated with S, or 0 if S is the main + routine. */ +static void +print_subroutine (output_state *os, state *s, int proc_id) +{ /* For now, the top-level functions take a plain "rtx", and perform a checked cast to "rtx_insn *" for use throughout the rest of the function and the code it calls. */ - insn_param = subfunction ? "rtx_insn *insn" : "rtx uncast_insn"; - - switch (type) + const char *insn_param + = proc_id > 0 ? "rtx_insn *insn" : "rtx uncast_insn"; + printf ("\n"); + switch (os->type) { + case SUBPATTERN: + gcc_unreachable (); + case RECOG: - printf ("%sint\n\ -recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\t%s ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", - s_or_e, extension, insn_param); + if (proc_id) + printf ("static int\nrecog_%d", proc_id); + else + printf ("int\nrecog"); + printf (" (rtx x1 ATTRIBUTE_UNUSED,\n" + "\t%s ATTRIBUTE_UNUSED,\n" + "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", insn_param); break; + case SPLIT: - printf ("%srtx\n\ -split%s (rtx x0 ATTRIBUTE_UNUSED, %s ATTRIBUTE_UNUSED)\n", - s_or_e, extension, insn_param); + if (proc_id) + printf ("static rtx\nsplit_%d", proc_id); + else + printf ("rtx\nsplit_insns"); + printf (" (rtx x1 ATTRIBUTE_UNUSED, %s ATTRIBUTE_UNUSED)\n", + insn_param); break; + case PEEPHOLE2: - printf ("%srtx\n\ -peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\t%s ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n", - s_or_e, extension, insn_param); + if (proc_id) + printf ("static rtx\npeephole2_%d", proc_id); + else + printf ("rtx\npeephole2_insns"); + printf (" (rtx x1 ATTRIBUTE_UNUSED,\n" + "\t%s ATTRIBUTE_UNUSED,\n" + "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n", insn_param); break; } - - printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n"); - for (i = 1; i <= max_depth; i++) - printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i); - - printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int"); - - if (!subfunction) - printf (" recog_data.insn = NULL_RTX;\n"); - - /* For now add the downcast to rtx_insn *, at the top of each top-level - function. */ - if (!subfunction) + print_subroutine_start (os, s, &root_pos); + if (proc_id == 0) { + printf (" recog_data.insn = NULL_RTX;\n"); printf (" rtx_insn *insn ATTRIBUTE_UNUSED;\n"); printf (" insn = safe_as_a (uncast_insn);\n"); } - - if (head->first) - write_tree (head, &root_pos, type, 1); - else - printf (" goto ret0;\n"); - - printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1); + print_state (os, s, 2, true); + printf ("}\n"); } -/* In break_out_subroutines, we discovered the boundaries for the - subroutines, but did not write them out. Do so now. */ +/* Print out a routine of type TYPE that performs ROOT. */ static void -write_subroutines (struct decision_head *head, enum routine_type type) +print_subroutine_group (output_state *os, routine_type type, state *root) { - struct decision *p; - - for (p = head->first; p ; p = p->next) - if (p->success.first) - write_subroutines (&p->success, type); - - if (head->first->subroutine_number > 0) - write_subroutine (head, type); + os->type = type; + if (use_subroutines_p) + { + /* Split ROOT up into smaller pieces, both for readability and to + help the compiler. */ + auto_vec subroutines; + find_subroutines (type, root, subroutines); + + /* Output the subroutines (but not ROOT itself). */ + unsigned int i; + state *s; + FOR_EACH_VEC_ELT (subroutines, i, s) + print_subroutine (os, s, i + 1); + } + /* Output the main routine. */ + print_subroutine (os, root, 0); } -/* Begin the output file. */ +/* Return the rtx pattern specified by the list of rtxes in a + define_insn or define_split. */ -static void -write_header (void) +static rtx +add_implicit_parallel (rtvec vec) { - puts ("\ -/* Generated automatically by the program `genrecog' from the target\n\ - machine description file. */\n\ -\n\ -#include \"config.h\"\n\ -#include \"system.h\"\n\ -#include \"coretypes.h\"\n\ -#include \"tm.h\"\n\ -#include \"rtl.h\"\n\ -#include \"tm_p.h\"\n\ -#include \"hashtab.h\"\n\ -#include \"hash-set.h\"\n\ -#include \"vec.h\"\n\ -#include \"machmode.h\"\n\ -#include \"hard-reg-set.h\"\n\ -#include \"input.h\"\n\ -#include \"function.h\"\n\ -#include \"insn-config.h\"\n\ -#include \"recog.h\"\n\ -#include \"output.h\"\n\ -#include \"flags.h\"\n\ -#include \"hard-reg-set.h\"\n\ -#include \"predict.h\"\n\ -#include \"basic-block.h\"\n\ -#include \"resource.h\"\n\ -#include \"diagnostic-core.h\"\n\ -#include \"reload.h\"\n\ -#include \"regs.h\"\n\ -#include \"tm-constrs.h\"\n\ -#include \"predict.h\"\n\ -\n"); - - puts ("\n\ -/* `recog' contains a decision tree that recognizes whether the rtx\n\ - X0 is a valid instruction.\n\ -\n\ - recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\ - returns a nonnegative number which is the insn code number for the\n\ - pattern that matched. This is the same as the order in the machine\n\ - description of the entry that matched. This number can be used as an\n\ - index into `insn_data' and other tables.\n"); - puts ("\ - The third argument to recog is an optional pointer to an int. If\n\ - present, recog will accept a pattern if it matches except for missing\n\ - CLOBBER expressions at the end. In that case, the value pointed to by\n\ - the optional pointer will be set to the number of CLOBBERs that need\n\ - to be added (it should be initialized to zero by the caller). If it"); - puts ("\ - is set nonzero, the caller should allocate a PARALLEL of the\n\ - appropriate size, copy the initial entries, and call add_clobbers\n\ - (found in insn-emit.c) to fill in the CLOBBERs.\n\ -"); - - puts ("\n\ - The function split_insns returns 0 if the rtl could not\n\ - be split or the split rtl as an INSN list if it can be.\n\ -\n\ - The function peephole2_insns returns 0 if the rtl could not\n\ - be matched. If there was a match, the new rtl is returned in an INSN list,\n\ - and LAST_INSN will point to the last recognized insn in the old sequence.\n\ -*/\n\n"); -} - - -/* Construct and return a sequence of decisions - that will recognize INSN. - - TYPE says what type of routine we are recognizing (RECOG or SPLIT). */ - -static struct decision_head -make_insn_sequence (rtx insn, enum routine_type type) -{ - rtx x; - const char *c_test = XSTR (insn, type == RECOG ? 2 : 1); - int truth = maybe_eval_c_test (c_test); - struct decision *last; - struct decision_test *test, **place; - struct decision_head head; - struct position *c_test_pos, **pos_ptr; - - /* We should never see an insn whose C test is false at compile time. */ - gcc_assert (truth); - - c_test_pos = &root_pos; - if (type == PEEPHOLE2) - { - int i, j; - - /* peephole2 gets special treatment: - - X always gets an outer parallel even if it's only one entry - - we remove all traces of outer-level match_scratch and match_dup - expressions here. */ - x = rtx_alloc (PARALLEL); - PUT_MODE (x, VOIDmode); - XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0)); - pos_ptr = &peep2_insn_pos_list; - for (i = j = 0; i < XVECLEN (insn, 0); i++) - { - rtx tmp = XVECEXP (insn, 0, i); - if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP) - { - c_test_pos = next_position (pos_ptr, &root_pos, - POS_PEEP2_INSN, j); - XVECEXP (x, 0, j) = tmp; - j++; - pos_ptr = &c_test_pos->next; - } - } - XVECLEN (x, 0) = j; - } - else if (XVECLEN (insn, type == RECOG) == 1) - x = XVECEXP (insn, type == RECOG, 0); + if (GET_NUM_ELEM (vec) == 1) + return RTVEC_ELT (vec, 0); else { - x = rtx_alloc (PARALLEL); - XVEC (x, 0) = XVEC (insn, type == RECOG); - PUT_MODE (x, VOIDmode); + rtx pattern = rtx_alloc (PARALLEL); + XVEC (pattern, 0) = vec; + return pattern; } +} - validate_pattern (x, insn, NULL_RTX, 0); - - memset (&head, 0, sizeof (head)); - last = add_to_sequence (x, &head, &root_pos, type, 1); - - /* Find the end of the test chain on the last node. */ - for (test = last->tests; test->next; test = test->next) - continue; - place = &test->next; - - /* Skip the C test if it's known to be true at compile time. */ - if (truth == -1) - { - /* Need a new node if we have another test to add. */ - if (test->type == DT_accept_op) - { - last = new_decision (c_test_pos, &last->success); - place = &last->tests; - } - test = new_decision_test (DT_c_test, &place); - test->u.c_test = c_test; - } +/* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing + rtx can be added automatically by add_clobbers. If so, update + *ACCEPTANCE_PTR so that its num_clobbers field contains the number + of such trailing rtxes and update *PATTERN_PTR so that it contains + the pattern without those rtxes. */ - test = new_decision_test (DT_accept_insn, &place); - test->u.insn.code_number = next_insn_code; - test->u.insn.lineno = pattern_lineno; - test->u.insn.num_clobbers_to_add = 0; +static bool +remove_clobbers (acceptance_type *acceptance_ptr, rtx *pattern_ptr) +{ + int i; + rtx new_pattern; - switch (type) + /* Find the last non-clobber in the parallel. */ + rtx pattern = *pattern_ptr; + for (i = XVECLEN (pattern, 0); i > 0; i--) { - case RECOG: - /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends - with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes. - If so, set up to recognize the pattern without these CLOBBERs. */ - - if (GET_CODE (x) == PARALLEL) - { - int i; - - /* Find the last non-clobber in the parallel. */ - for (i = XVECLEN (x, 0); i > 0; i--) - { - rtx y = XVECEXP (x, 0, i - 1); - if (GET_CODE (y) != CLOBBER - || (!REG_P (XEXP (y, 0)) - && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH)) - break; - } - - if (i != XVECLEN (x, 0)) - { - rtx new_rtx; - struct decision_head clobber_head; - - /* Build a similar insn without the clobbers. */ - if (i == 1) - new_rtx = XVECEXP (x, 0, 0); - else - { - int j; - - new_rtx = rtx_alloc (PARALLEL); - XVEC (new_rtx, 0) = rtvec_alloc (i); - for (j = i - 1; j >= 0; j--) - XVECEXP (new_rtx, 0, j) = XVECEXP (x, 0, j); - } - - /* Recognize it. */ - memset (&clobber_head, 0, sizeof (clobber_head)); - last = add_to_sequence (new_rtx, &clobber_head, &root_pos, - type, 1); - - /* Find the end of the test chain on the last node. */ - for (test = last->tests; test->next; test = test->next) - continue; - - /* We definitely have a new test to add -- create a new - node if needed. */ - place = &test->next; - if (test->type == DT_accept_op) - { - last = new_decision (&root_pos, &last->success); - place = &last->tests; - } - - /* Skip the C test if it's known to be true at compile - time. */ - if (truth == -1) - { - test = new_decision_test (DT_c_test, &place); - test->u.c_test = c_test; - } - - test = new_decision_test (DT_accept_insn, &place); - test->u.insn.code_number = next_insn_code; - test->u.insn.lineno = pattern_lineno; - test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i; - - merge_trees (&head, &clobber_head); - } - } - break; - - case SPLIT: - /* Define the subroutine we will call below and emit in genemit. */ - printf ("extern rtx gen_split_%d (rtx_insn *, rtx *);\n", next_insn_code); - break; - - case PEEPHOLE2: - /* Define the subroutine we will call below and emit in genemit. */ - printf ("extern rtx gen_peephole2_%d (rtx_insn *, rtx *);\n", - next_insn_code); - break; + rtx x = XVECEXP (pattern, 0, i - 1); + if (GET_CODE (x) != CLOBBER + || (!REG_P (XEXP (x, 0)) + && GET_CODE (XEXP (x, 0)) != MATCH_SCRATCH)) + break; } - return head; -} + if (i == XVECLEN (pattern, 0)) + return false; -static void -process_tree (struct decision_head *head, enum routine_type subroutine_type) -{ - if (head->first == NULL) - { - /* We can elide peephole2_insns, but not recog or split_insns. */ - if (subroutine_type == PEEPHOLE2) - return; - } + /* Build a similar insn without the clobbers. */ + if (i == 1) + new_pattern = XVECEXP (pattern, 0, 0); else { - factor_tests (head); - - next_subroutine_number = 0; - break_out_subroutines (head, 1); - find_afterward (head, NULL); - - /* We run this after find_afterward, because find_afterward needs - the redundant DT_mode tests on predicates to determine whether - two tests can both be true or not. */ - simplify_tests (head); - - write_subroutines (head, subroutine_type); + new_pattern = rtx_alloc (PARALLEL); + XVEC (new_pattern, 0) = rtvec_alloc (i); + for (int j = 0; j < i; ++j) + XVECEXP (new_pattern, 0, j) = XVECEXP (pattern, 0, j); } - write_subroutine (head, subroutine_type); + /* Recognize it. */ + acceptance_ptr->u.full.u.num_clobbers = XVECLEN (pattern, 0) - i; + *pattern_ptr = new_pattern; + return true; } - -extern int main (int, char **); int main (int argc, char **argv) { rtx desc; - struct decision_head recog_tree, split_tree, peephole2_tree, h; + state insn_root, split_root, peephole2_root; progname = "genrecog"; - memset (&recog_tree, 0, sizeof recog_tree); - memset (&split_tree, 0, sizeof split_tree); - memset (&peephole2_tree, 0, sizeof peephole2_tree); - if (!init_rtx_reader_args (argc, argv)) return (FATAL_EXIT_CODE); @@ -2617,21 +5227,50 @@ main (int argc, char **argv) if (desc == NULL) break; + rtx pattern; + + acceptance_type acceptance; + acceptance.partial_p = false; + acceptance.u.full.code = next_insn_code; + switch (GET_CODE (desc)) { case DEFINE_INSN: - h = make_insn_sequence (desc, RECOG); - merge_trees (&recog_tree, &h); - break; + { + /* Match the instruction in the original .md form. */ + pattern = add_implicit_parallel (XVEC (desc, 1)); + acceptance.type = RECOG; + acceptance.u.full.u.num_clobbers = 0; + match_pattern (&insn_root, pattern, XSTR (desc, 2), acceptance); + + /* If the pattern is a PARALLEL with trailing CLOBBERs, + allow recog_for_combine to match without the clobbers. */ + if (GET_CODE (pattern) == PARALLEL + && remove_clobbers (&acceptance, &pattern)) + match_pattern (&insn_root, pattern, XSTR (desc, 2), acceptance); + break; + } case DEFINE_SPLIT: - h = make_insn_sequence (desc, SPLIT); - merge_trees (&split_tree, &h); + acceptance.type = SPLIT; + pattern = add_implicit_parallel (XVEC (desc, 0)); + match_pattern (&split_root, pattern, XSTR (desc, 1), acceptance); + + /* Declare the gen_split routine that we'll call if the + pattern matches. The definition comes from insn-emit.c. */ + printf ("extern rtx gen_split_%d (rtx_insn *, rtx *);\n", + next_insn_code); break; case DEFINE_PEEPHOLE2: - h = make_insn_sequence (desc, PEEPHOLE2); - merge_trees (&peephole2_tree, &h); + acceptance.type = PEEPHOLE2; + match_pattern (&peephole2_root, desc, XSTR (desc, 1), acceptance); + + /* Declare the gen_peephole2 routine that we'll call if the + pattern matches. The definition comes from insn-emit.c. */ + printf ("extern rtx gen_peephole2_%d (rtx_insn *, rtx *);\n", + next_insn_code); + break; default: /* do nothing */; @@ -2643,140 +5282,35 @@ main (int argc, char **argv) puts ("\n\n"); - process_tree (&recog_tree, RECOG); - process_tree (&split_tree, SPLIT); - process_tree (&peephole2_tree, PEEPHOLE2); - - fflush (stdout); - return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE); -} - -static void -debug_decision_2 (struct decision_test *test) -{ - switch (test->type) - { - case DT_num_insns: - fprintf (stderr, "num_insns=%d", test->u.num_insns); - break; - case DT_mode: - fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode)); - break; - case DT_code: - fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code)); - break; - case DT_veclen: - fprintf (stderr, "veclen=%d", test->u.veclen); - break; - case DT_elt_zero_int: - fprintf (stderr, "elt0_i=%d", (int) test->u.intval); - break; - case DT_elt_one_int: - fprintf (stderr, "elt1_i=%d", (int) test->u.intval); - break; - case DT_elt_zero_wide: - fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval); - break; - case DT_elt_zero_wide_safe: - fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval); - break; - case DT_veclen_ge: - fprintf (stderr, "veclen>=%d", test->u.veclen); - break; - case DT_dup: - fprintf (stderr, "dup=%d", test->u.dup); - break; - case DT_pred: - fprintf (stderr, "pred=(%s,%s)", - test->u.pred.name, GET_MODE_NAME (test->u.pred.mode)); - break; - case DT_c_test: - { - char sub[16+4]; - strncpy (sub, test->u.c_test, sizeof (sub)); - memcpy (sub+16, "...", 4); - fprintf (stderr, "c_test=\"%s\"", sub); - } - break; - case DT_accept_op: - fprintf (stderr, "A_op=%d", test->u.opno); - break; - case DT_accept_insn: - fprintf (stderr, "A_insn=(%d,%d)", - test->u.insn.code_number, test->u.insn.num_clobbers_to_add); - break; - - default: - gcc_unreachable (); - } -} - -static void -debug_decision_1 (struct decision *d, int indent) -{ - int i; - struct decision_test *test; - - if (d == NULL) - { - for (i = 0; i < indent; ++i) - putc (' ', stderr); - fputs ("(nil)\n", stderr); - return; - } - - for (i = 0; i < indent; ++i) - putc (' ', stderr); - - putc ('{', stderr); - test = d->tests; - if (test) - { - debug_decision_2 (test); - while ((test = test->next) != NULL) - { - fputs (" + ", stderr); - debug_decision_2 (test); - } - } - fprintf (stderr, "} %d n %d a %d\n", d->number, - (d->next ? d->next->number : -1), - (d->afterward ? d->afterward->number : -1)); -} + /* Optimize each routine in turn. */ + optimize_subroutine_group ("recog", &insn_root); + optimize_subroutine_group ("split_insns", &split_root); + optimize_subroutine_group ("peephole2_insns", &peephole2_root); -static void -debug_decision_0 (struct decision *d, int indent, int maxdepth) -{ - struct decision *n; - int i; + output_state os; + os.id_to_var.safe_grow_cleared (num_positions); - if (maxdepth < 0) - return; - if (d == NULL) + if (use_pattern_routines_p) { - for (i = 0; i < indent; ++i) - putc (' ', stderr); - fputs ("(nil)\n", stderr); - return; + /* Look for common patterns and split them out into subroutines. */ + auto_vec states; + states.safe_push (&insn_root); + states.safe_push (&split_root); + states.safe_push (&peephole2_root); + split_out_patterns (states); + + /* Print out the routines that we just created. */ + unsigned int i; + pattern_routine *routine; + FOR_EACH_VEC_ELT (patterns, i, routine) + print_pattern (&os, routine); } - debug_decision_1 (d, indent); - for (n = d->success.first; n ; n = n->next) - debug_decision_0 (n, indent + 2, maxdepth - 1); -} - -DEBUG_FUNCTION void -debug_decision (struct decision *d) -{ - debug_decision_0 (d, 0, 1000000); -} + /* Print out the matching routines. */ + print_subroutine_group (&os, RECOG, &insn_root); + print_subroutine_group (&os, SPLIT, &split_root); + print_subroutine_group (&os, PEEPHOLE2, &peephole2_root); -DEBUG_FUNCTION void -debug_decision_list (struct decision *d) -{ - while (d) - { - debug_decision_0 (d, 0, 0); - d = d->next; - } + fflush (stdout); + return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE); }